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Abstract

Let¢ andy be analytic self-maps of the unit disc, and denot&ByandCy, the induced compo-
sition operators. The compactness and weak compactness of the différenCg — Cy, are studied
on HP spaces of the unit disc arid? spaces of the unit circle. It is shown that the compactness of
T on H? is independent op € [1, c0). The compactness df on L1 and M (the space of complex
measures) is characterized, and example$ ahd v, are constructed such thatis compact on
H1 but non-compact oi.1. Other given results deal with®, weakly compact counterparts of the
previous results, and a conjecture of J.E. Shapiro.
0 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Let D be the open unit disc of the complex plane ahdD — D an analytic map.
It is well known that the compositiofy f = f o ¢ defines a linear operatdr, which
acts boundedly on various spaces oélgtic or harmonic functions oi®, including the
classical Hardy spacd$?. During the past few decades much effort has been devoted to
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the study of these operators with the goal of explaining the operator-theoretic properties
of Cy, such as compactness and spectra, in terms of the function-theoretic properties of the
symbol¢. We refer to the monographs by J.H. Shapiro [25] and Cowen and MacCluer [6]
for an overview of the field as of the early 1990s.

The mapping properties of the difference of two composition operators, i.e., an operator
of the form

T=Cyp—Cy

have also been studied. Primary motivation this line of research has arisen from the
urge to understand the topological struetof the set of composition operatorslitiH?),
the space of bounded linear operators on the Hilbert spgc@®apers pursuing this theme
include [3,15,17,23,27]. Properties Bfacting on other function spaces have been studied
in, e.g., [16] and [12].

In the present paper we investigate the compactne&sai various classical spaces.
In addition to theH?” spaces, we will considet” and M, the spaces op-integrable
functions and complex Borel measures on the unit ciitie 9ID. The definition ofCy on
these spaces was first given by Sarason [21]. The idea is simple: M, then the Poisson
integral

—z|?
= d
u(@) = / )

is a harmonic function o). Since¢ is analytic, the composition = u o ¢ is also har-
monic, and by expressingas a linear combination of pitise measures, one sees thas
the Poisson integral of a unique measure M. One setyu =v. ThenCy : M — M is
bounded, and one may further show that the restrictiafyoo L? for 1 < p < oo defines
a bounded operatdt? — L”. Let us recall here that the functions H” correspond to
those functions ir.? (or measures i if p = 1) whose negative Fourier coefficients are
all zero.

Some of our results make use of the notiorAtdksandrov measureBor any analytic
map¢ : D — D, these are the positive Borel measuggssupported orf' and defined by
the Poisson representation

—l¢p@1%  [1-]z?
|Ol_ (Z)|2 |€_ |2 dﬂa({) (1)

forall e € T. In other words, one haSyd, = uq if 8¢ is the unit point mass at. In [1]

A.B. Aleksandrov used these measures to analyse the boundary values of inner functions.
Let us recall that in the case of a single composition operator, the compactn&ss on

(1 < p < 00) was first characterized by J.H. Shapiro [24] in terms of the Nevanlinna count-

ing function. Sarason’s work [21] gave a different-looking compactness criterion for the

case ofL.1 andM, but soon after Shapiro and Sundberg [26] discovered that Shapiro’s and

Sarason’s conditions are equivalent. Later Cima and Matheson [4] expressed the condi-

tion in terms of the Aleksandrov measuresgofthe operatoCy is compact if and only if

o is absolutely continuous for eaeh(the correspondence of Nevanlinna counting func-

tions and Aleksandrov measures was studied in greater detail in [18]). Thus, interestingly
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enough, the same criterion characterizes the compactneSg ofi each of the spaces
mentioned above. One of the purposes of the present work is to investigate to what extent
the same phenomenon exists for the difference of two composition operators, and whether
natural analogues of the absolutstinuity criterion still hold true.

We now give a brief description of the results obtained. In Section 2 we show that the
compactness df on H? is independent of the exponeptin the range X p < oo. This
generalizes the corresponding result forreg® composition operator. We also provide a
counterpart of a result of Sarason [22] as we show ThatW (H?') impliesT € K (HY).

Here and throughout the paper we usé€X) and W (X) to denote the spaces of compact
and weakly compact linear opors on a Banach spade

In Section 3 we characterize in a relatively simple manner the compactn&ssrof. 1
and M. Let us denote by, andv, the Aleksandrov measures ¢f and ¢ at «, re-
spectively. Also lefu, = ug + u;, be the Lebesgue decompositioniqf into absolutely
continuous and singular parts with the analogous notation useg foYe prove that

1D py=vyforallacT,

l .
TeK(LY),KM) if { (2) {u® —19: « €T} is uniformly integrable

We also show that this condition is equivalent boti'te W (L) and toT € W(M).

The above characterization lesatb an interesting question: & e K (L') equivalent
to T € K(HY) as it is in the case of a single composition operator? If the answer were
affirmative, conditions (1) and (2) would yield a characterization for the compactn&ss of
onH!andhence onallf” for 1 < p < oc. In Section 4 we answer the question negatively,
which is a main result of this paper. The required counter-example is fairly complicated and
relies, among other things, on rather delicate estimates involving the harmonic measure.
However, we will find that the constructiolmeds some light on the different naturemof
onH!andL?!.

The necessity of condition (1) above, whicequires that theingular parts of the
Aleksandrov measures agree at every point, may actually be deduced from the work of
J.E. Shapiro [23]. In fact, Shapiro showed that (1) is necessary K (H?), and then
he conjectured that it would also be sufficient. In Section 5 we provide a counter-example
to this conjecture. Thus we also see that condition (2) above cannot be dispensed with.

Finally, in Section 6 we extend a result ofddCluer et al. [16] by characterizing the
compactness and weak compactnest oh L*°.

Notations. The unit circleT is equipped with the one-dimensional Lebesgue measure,
normalized to have total mass one and denotea bjhe L? norms of functions off’ will

be computed in terms a@f. The symbol is used to denote the planar Lebesgue measure,
normalized so that the area of the unit dids one.

2. Compactnesson H?,1< p <o

In the present section we consider compactness of the difference two composition op-
erators on the scale df? spaces for K p < co. We show that the compactness of the
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difference is independent of the exponenin the indicated range. For a single compo-
sition operator the analogous result was known already in the 1970s [28]. In our case the
classical proof does not work, and the argumebdty combines an algebraic trick with in-
terpolation. We also show that the weak compactnesd bis equivalent to compactness.

For a single composition operator this fact was proved by Sarason [22].

Theorem 1. Let¢, ¥ : D — I be analytic and puf’ = Cy4 — Cy.. Then the following three
conditions are equivalent

(1) TeK(HP)forall 1< p < o0,
(2) T € K(HP) for somel < p < oo,
(3) T e W(HY).

Proof. Propositions 2 and 3 below isolate the twajor steps of the proof. Assuming these
results, the proof boils down to a standard interpolation argument. Namely, it is known that
in the real interpolation method (see [2]) the compactness of the operator on one of the
end-point spaces implies its compactness anititerpolation space as well (the general
result is due to Cwikel [7]). In addition, by a result of Fefferman et al. [10], for any given

1 < p < g we obtain the spaceF* with p < s < ¢ as real interpolation spaces of the
couple(H?, H?).

In the present situation, & is bounded on eacH ? with 1 < p < oo, it follows im-
mediately tha” € K (H?) for some 1< p < oo implies thatT € K(H?) for all p in this
range. In addition] € K (H1) impliesT € K (HP?) for 1 < p < co. Combining these facts
with Propositions 2 and 3 we get the equivalence of the stated conditians.

It should be remarked that it is possible to avoid the use of general (and rather involved)
results of interpolation theory and give a more straightforward argument in the special case
considered above.

Proposition 2. If T € K (H?), thenT € K (HY).

Proof. We will employ the de la Vallee-Poussin operatdys H! — H?! defined by set-
ting

n 2n—1 o —k
Vaf@=)_ fid+ 3 = fid
k=0

k=n+1

for f € H* with the Taylor expansiorf (z) = Yo frz*. Viewed as acting on boundary
values these are the convolutiolsf = (2K2,—-1 — K,—1) * f, wherek,, denotes thath
Fejer kernel (see [14, 1.2.13]). Thy¥, || < 3. EachV,, is a finite-rank operator and hence
compact onA L.

We assume thaf € K (H?). SinceT Vo, € K(HY) for all n, it suffices to prove that
IT R2,|| — O, whereR, = I — V,. To this end we fixf € H! with || f||1 = 1 and note
that we always have,, f = z%'g where||g|l1 = |R2, fll1 < 4| fll1 = 4. By a routine
application of the inner—outer factorization theorentof functions, we can further write
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g =h3 + h3 whereh; € H2 with ||h;]13 < |igll1, j = 1, 2. Thus, our claim will follow if
we show that
sup{ ||T(12"h2) Hl: heH? |hl2< 1} —0 asn— oo.
Now leth € H? with ||]» < 1. The main idea is to utilize the identity
T(z*"h?) = (Cy + Cy)(<"h) - T(Z"h).

Since||z" k]2 = ||h||2, an application of Holder’s inequality to this identity yields the esti-
mate

|7 (%) < M| T("R)

20

where M is the sum of the operator norms 6f and Cy, acting onH?. Sincez" — 0

in D and since the functions in the unit ball of H2 are uniformly bounded on com-

pact subsets ob), the compactness of on H? implies by a standard argument that
SURIT (z"h)|l2: |lkll2 < 1} — 0 asn — oo. The desired conclusion obtains immedi-
ately. O

Proposition 3. If T € W(H?Y), thenT € K (HY).

The crux of the proof of this proposition is contained in the following lemma, just as in
the case of a single composition operator. Here we will make use of the well-known fact
that a sequence ib! that converges both weakly and alst everywhere converges also in
L1 norm (see [9, IV.8.12] or the remarks at the beginning of Section 3).

Lemmad. If T € W(H?Y) and¢ # v, then|¢(¢)| < 1and|y(¢)| < 1fora.e.c.

Proof. We will show that|¢(¢)| < 1 for a.e.c. Assume to the contrary. Singe(¢) #

¥ (¢) fora.e.c € T, it follows that there exists a sét C T of positive measure such that
lp(2)|=1and|¢p(¢) — ¥ (¢)| > ¢ forall ¢ € F and some > 0. Consequently, the Borel
measure: on T defined byu(A) = m(F N ¢~1(A)) is positive and non-vanishing. Thus
there exists a poirt € T such that ifl, = {¢?¢o: || < 1/n}, then

iim Y% im ) = > 0. )

n=00 m(ly)  n—oo

In order to proceed, we introduce “test function,, H? such that

() 1Onll1=1,
(i) 1Qnl =nonl,, and _
(i) @, — 0Olocally uniformly onD \ {¢o} asn — oo.
These can be easily realized as outer functions of the form

log 0, (z) = / g logg,(¢)dm(¢),
T
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whereg, assumes constant values bnand onT \ I,,. By (i) it is clear that the sequence
(T Q,) is bounded inH* norm, and (iii) implies that it converges to zero pointwiseln
On the other hand, sincg € W(H?'), every subsequence 6f Q,) must have a weakly
convergent subsequence. But by the preceding observation the only possible weak limit is
zero, so the whole sequencEQ,,) converges to zero weakly i and hence ir.1. In
addition, property (iii) yields thal' Q,, — 0 almost everywhere Ofi. Together these two
facts imply thatl” 9, — 0 in L norm.

To obtain a contradiction we consider the estimate

ITQnll1= / |CpQnldm — / |Cy Qnldm.

FNg=1(I,) FOg=1(I,)

The first integral here equal§ |Q.|du, which is greater thanu(1,) by property (ii)
of 0,. The second integral tends to zeroias- oo because for large the boundary values
of y are bounded away frogy in the setF N ¢~1(1,) and thus property (i) ensures that
Cy Qn — 0 uniformly in that set. Hence, in view of (2), we have that lim|iifQ, ||, >
limnu(l,) =c/m > 0, which is a contradiction. O

Proof of Proposition 3. Let (f,,) be a bounded sequencefft. We need to show that the
sequenceéT f,) has a subsequence that converged inSince( f;,) is a normal family, we
may assume, by passing to a subsequence( fhatonverges locally uniformly to some
functiong onDD. Itis easy to check thate H1. ThenT (f,, — g) — 0 pointwise orlD and
almost everywhere ofi due to the preceding lemma. On the other hand, stheev (H1),
we may extract a subsequengg, ) for which T'(f,, — g) — 0 weakly in H. Together
these facts yield that f,, — Tg in H1, and the proof is complete.O

Remark 5. For 1< p < oo one of course has thdte K (L?) ifand only if T € K(HP)
because the Riesz projection is bounded in this case and commutaSatid Cy, .

3. Compactnesson L' and M

In his important work [21], Sarason considered the composition opejoas an
integral operator acting on the spaces and M of integrable functions and complex
Borel measures offi. He showed that the following four compactness conditions are all
equivalentC, € K (M), Cy € W(M), Cy € K(LY), andCy € W(LY). Moreover, he char-
acterized all these by a condition which is easily seen to be equivalent to the absolute
continuity of the Aleksandrov measuresg{see [4]).

In this section we will give a generalization of Sarason’s result to the setting of differ-
ences of composition operators. We recall from (1) that the Aleksandrov meagiuet ®f
can be defined g8, = Cyd,. Similarly we lety, = Cy 4, if ¢ is another self-map of the
unit discD. We also recall that a set ¢ L is uniformly integrablef

sup |fldm — 0 asL — oo.
feA
{If1>L}
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According to the classical Dunford—Pettis theorem (see [29, 111.C.12]), & setL? is
relatively weakly compact if and only if it is uniformly integrable. We will also have an
occasion to use Vitali's convergence theoreseq, e.g., [19, Exercise 6.10]), which asserts
that if ( f,) is a uniformly integrable sequenceirt such thatf, — f almost everywhere,
thenf, — f in L! norm.

Our characterization is the following.

Theorem 6. Let iy = ug, + g, andvy = vy + v, be the Lebesgue decompositions of the
Aleksandrov measures ¢fand s, respectively, so that

1-1p©)P iy L= WP

vRE Vg (§) = ——+5.

lo — ¢ (5)] lo — ¥ ()l

andu;,, vy are singular. The followinganditions are equivalent fof = Cy — Cy:

wg(0) =

(1) T e K(M),
(2) T e W(M),
(3) T e K(LY,
(4) T eW(LY,
(5) u, =v forall « e T and{ng — v§: o € T} is uniformly integrable.

It should be emphasized that to guarantee the compactné@semff andL?, it is not
sufficient to require only that!, = v} for all «. This issue is discussed in greater detail in
Section 5.

Note that (1) is the strongest and (4) i® tiweakest of the compactness conditions in
Theorem 6. Therefore, the proof of the theorem reduces to verifying implicatiogas (8)
and (5)= (1). The first of these depends on the fact that every composition operator (and
henceT’) is weak-weak‘-continuous as an operator @#f. This fact is a consequence of
the following easy observation.

Lemma 7. Let (7,) be a bounded sequence Mi and let(«,) be the sequence of corre-
sponding Poisson integrals. Thétn,) converges wedklto zero if and only if{u,,) converges
pointwise to zero.

For implication (5)= (1) we require another lemma from functional analysis. This
lemma is basically a consequence of the Krein—Milman theorem (see, e.g., [20, 3.23]),
which ensures that the absolute convex hull of the{&gt o € T} is weak-dense in the
unit ball of M. We omit the details of the argument.

Lemma 8. Let S: M — M be a bounded linear operator which is wéakeak-
continuous. If the s€tS3,: « € T} is relatively compact inM, thenS € K (M).

Proof of Theorem 6. (4) implies(5). For everyx € T and O< r < 1, definef,,, € L*
by setting fy.-(¢) = (1 — r?)/la — r¢|? Then| fy. 1 =1 and, as" — 1—, fu., — 84
in the weak topology of M. SinceT is weak-weak‘-continuous onM, it follows that
T fo.r = Mo — Vo Weak:. Furthermore, sincé e W(L%Y), we can find some, increasing
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to 1 such thaf'f,,, converges weakly to an elementbf asn — oo. By the uniqueness

of the limit, we conclude that, — v, € L1, or equivalentlyu?, = v5. Moreover, our ar-
gument also shows that the differenges— v, = ¢ — vé belong to the weak closure of
the relatively weakly compact s¢T'f,, ,: « € T, 0 < r < 1}. Therefore, the sd? — v5:

a € T} is relatively weakly compact and, by the Dunford—Pettis theorem, uniformly inte-
grable.

(5) implies (1). Observe first that the functiani— p4(¢) — vi(¢) is continuous for
almost allz € T. Therefore, since the sgtg, — v5: o € T} is assumed to be uniformly in-
tegrable, Vitali’'s convergence theorem can be applied to show that the map? — vg is
continuous with respect to the norm topologyldf Hence{u§ —vi: a € T} is a compact
subset ofL.. Becausel'sy = ity — vy = p& — v¢, Lemma 8 implies thal' € K (M). O

Remark 9. The weaK-weak' continuity of C, on M indicates thatCy4 is an adjoint of
some operator acting ofi, the space of continuous functions @n Using the identity
Cyée = e @and an approximation argument (see [5]), one finds that this operator is the
Aleksandrov operatoA, defined by the integral formula

A¢,f(a)=/fd,u,a, aeT.
T

The operator 4 was introduced by Aleksandrov [1], who showed that it defines a bounded
linear operator on many function spaces, includihgnd L? for 1 < p < oco. Also, one

may show thatdy : LP — L? represents the adjoint (or preadjoint) 6f : LY — L4
wheng is the conjugate exponent pf Since an operator is compact (respectively weakly
compact) if and only if its adjoint is, these observations provide an alternative approach to
the proof of Theorem 6.

4. Comparison between the casesof L' and H*

After Theorems 6 and 1 it becomes natural to ask whether a complete analogue of
the case of one composition operator holds. That is, whefher Cy, € K (H') implies
Cy — Cy € K(LY). If it were so, the compactness of the difference on each of the spaces
HP, L? (1< p < o00), andM would be equivalent and characterized by condition (5) of
Theorem 6. Our next theorem, which can be seen as a main result of the present paper,
answers this question negatively. The counter-example is fairly complicated, but it gives
some intuition on the difference between the casas'aind H* (cf. Remark 15 below).

Theorem 10. There exist two analytic functions, v : D — D such thatl = C4 — Cy,
satisfiesI € K (HY) butT ¢ K (L1).

Before we turn to the actual proof, we collect a number of auxiliary notions and lemmas.
First, we have a useful compactness condition, which reminds [27, Theorem 3.2]. Let us
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recall that a bounded linear operaforon a (separable) Hilbert spaceHdbert—Schmidt
if its Hilbert—Schmidt norm

00 1/2
1T lIns = (annz)

k=0
is finite, where(ey) is any orthonormal basis of the underlying Hilbert space. Every
Hilbert—-Schmidt operator is compact.

Lemma ll. Letg, v : D — D be analytic functions such thab| < 1 and|y| < 1 almost
everywhere orl, and letE ¢ T be measurable. Then the Hilbert—-Schmidt norm of the
operatorT : H2 — L2 defined by

TF(E)=(Cyf(&)—Cy f(O)xe()

satisfies

2 lp — |
||T”HS<CE/min(1—|¢|,1—liﬁ|)2 m,

whereC is an absolute constant.

Proof. We have
9] 2 oo 2
ITifs= Y17 5= 3 [ 16t = v*am.
k=0 k=0

By writing |a — b2 = |a|?+ |b|? — 2 Reab and summing the appropriate geometric series,
we obtain

1 1 1
T2 =/( + —2Re _>d )
1Tl J\T=19R " 1= TP 1-¢y )"

Fix w, w’" € D and consider the function

=—t 41
S T

—2Re —
1—|w|? 1—zw

on the line segment connectingandw’. On this segment we have the estimiig| <
C min(1 — |w|, 1 — |w’|)~2. Moreover,g(w) = 0. The lemma follows immediately from
these observations and the above expressiofifffiys. O

Next we recall the following well-known estimate for thé2 norm of a function
feH?

12— |F O ~ / @R = 121) dA), 3)
D

where A denotes the normalized planar Lebesgue measui®.drhe symbol~ means
that the left- and right-hahsides of (3) are comparable to each other with some positive
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constants. In fact, an exact identity rather than just an equivalent expression féfthe
norm of f is obtained by replacing the weight-|z| with 2log(1/|z|). This identity is
known as the Littlewood—Paley identity.

Lemma 12. Let (zx) be a sequence of points i and putd; = 1 — |zx|. Suppose
di+1 < ady for all k and some constait< a < 1. Then

o
SIreolfa <ciri3. feH?

k=1

whereC depends only oa.

Proof. Letc = %(1 —a) and Dy = B(zx, cdy). Since the function /| is subharmonic,
we havec2d?| f'(z)2 < [p, | /12 d for eachk. Thus

Bl cof <22 [|r@P - e ane

Dy

becausel; < 2(1 — |z|) for z € Dy. As the discsD; are disjoint by the choice af, the
desired estimate is obtained by summing dvand applying (3). O

As a final preparatory step we give a technical lemma that estimates the harmonic mea-
sure in a domain obtained froi by removing a number of small discs. Here we let

(4)

I—w

Bz, w) = T oa
— 2w

be the pseudo-hyperbolic distance between any two painis € . The pseudo-
hyperbolic disc with centre € D and radius is denoted byD(z, r), whereasB(z, r)
stands for the usual Euclidean disc.
Lemma 13. Supposels, ..., d, are positive numbers with; < %1 andd; < 1—10dj,1 for
j=2,...,n.DefineB; = B(1-d;j,dje?")and2 =D\ | J]_, B,. Leta be a complex
number with|a| < % and lety; be the harmonic measure 8B; with respect ta2 ata.
Then

dj dj .
Cl; <Yj <C27, 1<j<n,

whereC; and C» are absolute positive constants.

Proof. It is a consequence of the Harnack inequality that the harmonic measugedor
a is comparable (with absolute constants) to the corresponding harmonic measure at 0. So
it is enough to consider the cage= 0.
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Forb > 0 definevy(z) = b~tlog(1/|z|) and note thaty is the radially decreasing har-
monic function inC \ {0} that equals 1 on the circle| = ¢e~? and vanishes off. Let us
write r; = 1 —d;, fix k with 1 < k < n, and consider the function

k=1 n
Z—rk d z—r.,') <Z_rj>
u(@)=v - E v - E v .
@ 30"(1—rkz> .j:15ndj 20'1<1—rjz i 20 1-rjz

It is harmonic in a region containin@. We also claim that
uldBr <1 and u|dB; <0 forj#k. (5)

To see this, we first note that by a simple estimate;, e =3%) c B; ¢ D(r;, e~?") for
all j. Then the first claim as well as the cagse k of the second one follow by inspection.
For j < k one just needs to observe that i 3 B;, then|z| < %r; + § and hence

2 1 3d
1- 8@k, 2) <1—,3(rk, =rj +—> <=

3 3 d;
Consequently,
Z—rg 1 1 dy
=——1Io < .
U30n<1—rkz) 30n g,B(rk,z) 5nd;

Here we applied the right-hand side of the simple estimatex1< log(1/x) < 2(1 — x),
valid for all x € (%, 1). According to (5), we now get

k—1 n
1.1 1.1 1.1
>u(0) = =—— log = — - log— — —log—
nuO=551000 =3 50 559 T 2 519
j=1 j=k+1
k—1 n
1 (2 di d (2 2 2
> (24 - .2d; — 2d; )| > 2 (£-2_% .
20n<3k L Bpd; Z -’) 20n<3 5 9)

Since the number in parentheses is positive, the required lower bound is obtained.

To get the upper bound we just observe thais less than the harmonic measure of the
pseudo-hyperbolic circleD(r;, e =2%) with respect tdD \ D(r;, e~2) at 0. This yields
yj < (1/20n)log(1/rj) <d;/10n. O

Remark 14. The above lemma may also be approached from a stochastic point of view.
In this way one obtains a very intuitive explanation for the faetot® in the radii of

the discs. In fact, this choice ensures that the harmonic measaig;a$ of order~ 1/n

(with respect to the domail \ B;). Hence, in the first approximation the Brownian motion
started at zero hits the circbaB; with probability~ (1 — c/n) ~Y(c/n) ~c'/n, asis seen

by considering the probability that it has not first hit any of the diB¢s..., B;_1. Here

one crudely assumes that the hits to different discs are independent of each other. This
argument can be made rigorous to provide another proof of the lemma.

We are ready for the details of the proof of Theorem 10. We have divided the argument
into three steps. First, we define the ma@nd investigate some of its properties. Then
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we construct the mag, and finally establish the compactness properties of the resulting
operatotT = Cy — Cy.

Step 1. The mapyp. For eachk > 1, let Ay = B(%ei/k, %) and put2o = ;2 Ax. Then
define the discs

Dy =B(L—dp j)e’* d je %), 1<j <2 k=1,

wheredy ; = 107%=J/. One can easily check that these are pairwise disjoint and satisfy

Dy,j C Ax and Dy j N Ay = ¢ wheneverk # k'. Now let 2 = 20\ U2 U§k=1 Dy, ;.
Clearly, 2 is a region contained in the unit disc whose boundary intersects the unit circle
only at the points 1 and’/*, k > ko. The mapp is now defined to be an analytic covering
map fromD onto 2 with ¢ (0) = 0.

We will next obtain some information on the distribution of the boundary valugs of
Recall that since is a covering map, its radial boundary limits (which, by Fatou’s theorem,
exist at almost every boundary point) all lied2. Moreover, their distribution is given by
the harmonic measure f&? at 0. Let us introduce the notation

Eo=¢ 1(020), Exj=¢ @D, 1<j<2 k=1

In order to study the boundary value distributiongobn 92, we use the well-known
fact that the boundary values of every analytic self-map of the unit disc induce a Carleson
measure (see, e.g., [6, Theorem 3.12]). This implies that there is a consté@nsuch that

m({¢ €T: p(t) e W}) <cy
for every “Carleson window”
W:W(eig,y)z{rei’: l1-y<r<1, |t—96] gy}.

A simple geometric reasoning shows that for- 0 the union of W(1,4s%4) and
W(e'/k, 281/2), 1 < k < 814, covers all points € 352 whose distance to the unit circle
is < 8. Therefore

m({¢ € Eo: 1—|p(0)] <8}) <c-48M4 45714 ¢ 2612 = 6esV/,
In particular, if we let
Eoj={¢eEo 27/ <1—|p@)| <27}, j=>1,
then
m(Eoj) <c'27//%  j>1, (6)

with ¢’ = 6. 21/4¢. Moreover,Uj?il Eg,j covers all ofEq apart from a set of measure zero.
Then we estimate: (Ey ;), the harmonic measure 8D ; with respect ta2 at 0. An
upper bound is obtained as a direct application of Lemma 13 by considering the harmonic

measure 0b Dy ; with respect to the regioB \ U?’;l Dy, ;. This yields

m(Eyx ;) < C227%dy ;. (7
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To get a Iower bound, we estimate the harmonic measui@Dgf; with respect to the
regionAg \ U _1 Dy, j. Using Lemma 13 plus a scaling argument, we find

m(Ey, ;) > C127"dy ;. (8)
Step 2. The mapy . Consider the positive functiol defined almost everywhere dhby
setting

272 ifreko;, j=1,

h =
© {%dk,j ifeeEr;, 1<j<2% k>1.

As a consequence of the definitions, one immediately obtains the inequality

1
|h| < 5(1— l¢|) a.e.orl. (9)
We also claim that

/Iogh dm > —00, (10)

hdm
/(1 6| — h)2 )

To verify the first claim, we use (6) to compute

oo

o
/ loghdm = "m(Eq j)log2 % >2(log2)c’ Y " 279/} > —o0.
Eo Jj=1 j=1

. k .
Also, if E = Ule Ey,j, then (7) can be used to estimate

2k 2k
/Ioghdm Zm(Ek,)log di,j > Co2” de,log dy,j = Cady 1109~ dkl
Ep j=1 j=1

Substitutingdy.1 = 107*~1 and summing ovek yields (10). For the second claim we
observe that oifp ; one has - |¢| —h > 27/ — 2-2/ and hence

hdm ¢'272i27il4 < it
(A= lpl—n? < (27 —2- 21)2\

Inequallty (11) is obtained by summing ovger
For eachk > 1 and 1< j < 2% we now define a functiofy ; onT by setting

2*]‘*/' XEy |
hij=(5— 2 \h.
ko ( 100 "2 )
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We also letHy, ; be an outer function satisfyinid?y ;| = A, ; almost everywhere off.
Such a function exists due to (10). Then we set

H= Zpk,ij,j,
k.j

wherepy, ; are unimodular constants to be specified in a moment. It is easy to check that the
above series is convergent and defines an analytic functifin bmaddition, our definitions
and (9) yield that

1
|H| <h< 5(1— l¢|) a.e.orT.
Thus the formula

Vv=¢+H

defines an analytic self-map Bf.

What still remains of the definition of is the choice of the phase factgsg ;. We
claim that these can be chosen in such a way that
/ -y 1-9? m(Eg,))

. - — dm > c
let/k— |2 Jel/k — |2 T i
Ek’j

(12)

with ¢ a positive constant independentioénd j. For the verification of this fact we first
observe from the definition off ; that

di. i
|H,j| > 1—Oj on Ey; (13)
and (independently of the choice of the phase factors)
[V — ¢ — ok ‘Hk‘|<£ onEy (14)
] J 100 sJ

forall k > 1 and 1< j < 2. A direct computation shows for the norm of the gradient of
the Poisson kernel that
1—1z)2 2
Vi 15)
¢ =zl ¢ =zl

As a consequence we obtain

|Vu(0)| <2/|u|dm
T

for any functionu harmonic in a neighbourhood of the closed unit disc. Let us apply this
estimate to the function

1—1¢(C) +zHi j(0)]2 1—1p(0)I?

O =TT — b, O T - g @R
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with ¢ € Ey ; fixed. By (13) and (15), we gevVu(0)| > |Hk,j(§)|/d,§_j > 1/10dk, ;, so an
application of Fubini’'s theorem shows that '

1-— Hy | 1—|p)? 1 m(Ey,
/ /‘ L — |9t oMl A—p | L Im )
lei/k —¢ — pHy j?  |el/k — ¢ 20 dy,;
T Ek,j ’
Thereforep, ; € T can be chosen such that
/‘ 1—lp+pe il 11l | 1 m(E) (16)
lei/k — ¢ — pijHijI?  lel/F—¢|2]"" 7 20 dy;
k,j
On the other hand, in view of inequality (14) we have the estimate
/ 1—lp+pr bl 1=y |
- — - m
lei/k — ¢ — pi jHy j12  lei/k — |2
k,j
4 dkj 1 m(Ex j)
<— - —=m(Ey, ;) = ———*. 17
a2, 100" ) = 7 a7

Here we used the fact that the gradient of the Poisson kernel on the line segment connecting

the points involved is less tharycd,(z)j. Combining (16) and (17), we now get (12) with
1 1 1

¢=26 " 25 = 100"

Step 3. Compactness propertieRecall that we writel' = C4 — Cy,. First we check that
T € K(H?).We letE; = Uikzl Ey,j fork > 1 and defindly f = xg, T f fork > 0, so that
Ty is an operator fronH? to L2. We obviously have

T=To+T1i+To+-

with convergence in the strong operator topology (i.e., with pointwise convergence).
It is enough to show that each summand on the right-hand side is compact and that
>« ITkll < oo. The compactness dfp is a consequence of (11), the fact that| <

a.e. onl, and Lemma 11. Fix > 1. Sincep andy are bounded away from the unit circle

on Ey, itis clear thatl}, is compact. We next estimate the normipf Let f € H2. Since

the values ofp and on Ey_; lie in the discB((1 — dx_j)e'/%, 3di ;), we see that there
exists a pointwg, ; in the closure of that disc such that

|fop— foyl<|f (wkj)|de,j OnEg;.
Applying inequality (7) and Lemma 12, we obtain

2k
_ 2 _
1T f13 < C227% Y | (e p)|“dR ; < CC2274) £113.
j=1

Thus||Tx|| < (CC2)Y/?27%/2, and it follows thaty", || Tk |l < co. HenceT e K (H?).
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Finally we verify thatT ¢ K (L1). Summing overj in (12) and applying estimate (8),
we find

/

Ey

2k
E .
dm >c E w >cC1.
=1 Yk

-yl 1-?
e/ — |2 el/k — |2

Sincem(E}) tends to zero ak — oo, we conclude that condition (5) of Theorem 6 fails.
HenceT ¢ K (LY). The proof of Theorem 10 is now completer

Remark 15. The above proof deals witH2, but it might be more instructive to consider
H' instead because it beaa close relation td.! and the compactness @f on H?! is
equivalent to compactness @f¥ by Theorem 1. Slightly heuristically speaking, one ap-
plies above the fact (essentially due to Paley) that in the dudlfofidely separated blocks
with respect to the trigonometric basis genedatewhereas nothing like this is true fés.

5. Necessity of the uniform integrability condition in Theorem 6: a conjecture
of J.E. Shapiro

In this section we show that the uniformtegrability requirement in condition (5)
of Theorem 6 is not superfluous. This matter is directly connected to a conjecture of
J.E. Shapiro [23]. Shapiro’'s work contains, among other things, a number of interest-
ing estimates for the norm and essential norm of the opefaterCy — Cy, on H2. In
his Conjecture 5.4 it is conjectured thate K (H?) if the singular parts of the Alek-
sandrov measures gf and v coincide at every point off. Our next result produces a
counter-example to this conjecture and a §ame time verifies the necessity of uniform
integrability in conditian (5) of Theorem 6.

Theorem 16. There exist two analytic functiors v : D — D such that the singular parts
of the Aleksandrov measuresgtinds coincide at every point &f but7 = Cy — Cy is
non-compact on all the spacés” (1< p < o0), LY andM.

Note that it is sufficient to verify the non-compactnes§'anly on the spacé/? since
Theorem 1 asserts that the compactnesg oh H” does not depend op and sinceH
is a subspace af! and M. We will actually provide two different examples to prove the
theorem. The first one will be obtained as a simple application of a result by J.H. Shapiro
and C. Sundberg [27]. Lat: R — [0, 1) be a continuous,s2-periodic function which is
increasing and positive of®, 7], decreasing and positive ¢, 0), and vanishes at the
origin. Shapiro and Sundberg call sucta contact functionlt defines an approach region

Q) ={re': 1—r >«(©®)},

whose boundary is a Jordan curvelrthat meets the unit circle only at the point 1. The
following theorem is a slightly simplified version of [27, Theorem 4.1], as complemented
by [27, Remark 5.1].
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Theorem 17. Suppose is a C2 contact function ané is a conformal map frori onto
Q). If

T
/ logx (0) d6 = —o0,
0

thenCy is essentially isolated in the set of composition operator#én

First proof of Theorem 16. Choose any contact functionsatisfying the conditions of
the above theorem; for instance, k&) = ¢/l when 0< |6| < 7, andx (0) = 0. Also
let ¢ be a conformal map frorf® onto £2 (k) such that Ing (0) # 0 and¢ (1) = 1. Here
we consider as extended to a homeomorphism friinonto 2 (x). Sinces2 («) touches
the unit circle only at the point 1, we see that foral 1 the function (1) is bounded and
hence the singular part of the corresponding Aleksandrov measure vanighesd. In
addition,.3 must be a multiple o8; since in the case = 1 the function (1) is continuous
onD\ {1}. Now definey by the formulay () = ¢ (z) and use, to denote the Aleksandrov
measure ofy ata. By symmetry considerations it is clear thgt= u}, for all «. However,

sinceg (0) # ¥ (0), Theorem 17 shows th&l, — Cy, is non-compactof?. 0O

Remark 18. Observe that in the above example the operafgrandCy, are bothessen-
tially isolatedin the set of composition operators &7, that is, isolated in the topology
induced by the essential norm. Moreover, bg¢tand+ are univalent.

Since the proof of Theorem 17 is fairly longatechnical, it seems desirable to establish
Theorem 16 by a direct argument, which eals in a more transparent manner how the
continuous parts of the Aleksandrov measures influence the difference operator. We will
spend the rest of the present section sketching such an example.

To prepare, we note that wheneyeis a univalent map of® we may perform a change
of variables in (3) to get the estimate

ICs £113 — | £ (6(0) [~ / /)P (1 = |6~ w)]) dA(w) (18)
¢ (D)

for f € H2. A consequence of this is given by the next lemma.

Lemma 19. Let¢ : D — D be univalent withp (0) = 0, and assume thak is an open disc
of radius3 contained ing (D). Then, for all f € H2,

||C¢f||§>c/|f’(w)|2dist(w,BB)d)\(w),
B

wherec > 0is a constant independent¢f B, and 1.

Proof. Lety be a conformal map takin onto B with v (0) = 0. Applying the Schwarz
lemma to the map 1 o v, one sees thap—L(w)| < |y ~(w)| for w € B. Moreover,
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sincey is a Mobius transformation and di€toB) > %1, it is not difficult to show that

1— v Y(w)| > ¢ dist(w, dB) wherec’ > 0 is an absolute constant. Thus-1¢~1(w)| >
¢’ dist(w, 9 B) for w € B, and the lemma follows from (18).0

Second proof of Theorem 16. For every integek # 0 define

1 . 3
Av=B( (> —1k7%)e’k =),
4 4

so thatAy is an open disc contained ih with radius%. Its distance td equalsik|~°, the
closest point or' beinge'/. Let 2 = |J;2, Ax. Then$2 is a simply connected Jordan
region that touches the unit circle only at the point 1. The map now defined to be
the conformal map takin@ onto 2 with ¢(0) = 0 and¢ (1) = 1; again we considap
as extended to a homeomorphism betwBeand 2. Finally, define the map through
the formulay (Z) = ¢(z), so thaty becomes a conformal map frof onto the region
Q' = U2, A—, the reflection of2 with respect to the real axis.

Let u, andy, be the Aleksandrov measuresgpfandyr at o € T, respectively. Also,
for everya € D, definef, € H? to be the normalized reproducing kernel function

VIZ[aP
fa (Z) = 1_4 .

az

Then| full2 =1 and f, — 0 weakly in H2 as|a| — 1—. With this notation, the crucial
properties ofp andys can be summarized as follows:

1) w,=vy,=0 fora_;é 1, anduj =v) =ys1 withy > 0;
(2) if ax = (1 —k=9)e'/* then
liminf [|Cy fo, l2>0 and lim ||Cy full2=0.
k— 00 k— o0

Notice that property (2) ensures that the differe@ige- Cy is non-compact o2 since
it does not map the weakly null sequen(gg, ) into a norm-null sequence.

Property (1) is verified by exactly the same reasoning as used in the paragraph following
Theorem 17. To establish the first part of (2), wekléet 2 and apply Lemma 19 to get

||C¢fak||%>c/|fgk(w)|2dist(w,aAk)duw),
Ak

wherec > 0 is a constant. Writ&, = B((1—3k~9)¢!/* k=9). ThenGy C A, and an easy
estimate shows that fap € G one has1 — @ w| < 5k~° and hence f;, (w)[? > ¢'k?’

with some constant’ > 0. Since distw, dA;) > k2 for w € G, we obtain
ICy fur I3 > cc'k*8A(Gr) = ¢,
and the first part of (2) follows.
For the proof of the second part of (2) we begin with the estimate

ICy fu I3 < |fak(0>|2+c-f|f;k(w)|2dx(w),

Q/
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which trivially follows from (18). Clearlyf,, (0) — 0 ask — oo. To estimate the integral,
observe that by the definition of the regigt, we have

: 13 1
dist(1/ag, 82" >dist( /%, 9B =, 2 ) | > —.
ist(1/ay, ) IS (e 72 162
Hence, ifw € £2/, one has
1—|a)? 2k—°

T lar?1/a; —wl* T (1/2)2(1/16k2)%

and it follows that/,, |f;k |2d) — 0 ask — oo. This establishes the second part of (2) and
finishes the second proof of Theorem 163

6. Compactnesson H*® and L

In [16] B. MacCluer et al. studied the topological structure and compact differences
of composition operators on the spalié® of bounded analytic functions. Their results
involve the pseudo-hyperbolic metiii; defined by (4). In particular, they showed that the
operatorT = Cy — Cy, is compact orH > if and only if

B(¢(2). ¥(2)) > 0 as mag|g(2)|. |[v(2)]) > L. (19)

In this section we revisit this result and generalize it slightly by considering the case of
L and weakly compact differences. ObservattfiL6] established the equivalence of
conditions (3) and (5) of the following result.

9

Theorem 20. Let¢, ¥ : D — D be analytic and pul’ = Cy4 — Cy,.. Then the following five
conditions are equivalent

(1) T € K(L™),
(2) T e W(L™),
(3) T € K(H™),
(4) T e W(H®™),
(5) condition(19) holds.

Note that it is enough to verify that (4) implies (5) and (5) implies (1). The latter impli-
cation is a straightforward adaptation bEtargument given in [16] and it is dealt with in
Proposition 22 below. The former implicatios more involved and will be established as
Proposition 24.

We begin with an easy lemma. Here we ys® denote the hyperbolic metric @ it is
related to the pseudo-hyperbolic metric by the formula

1+ 8z, w)
1-B(z,w)
(See, for example, [11, §1.1].)

p(z,w) = log
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Lemma 21. If u is the Poisson integral of a functiofi € L*, then |u(z) — u(w)| <
I flloop (z, w) for z, w € D.

Proof. An application of equality (15) yields that

2| flloo 2| flloc
\% < = .
| ”(Z)|<T/|;—z|2dm“) -

The lemma follows since|@z|/(1 — |z|%) is the element of arc length in the hyperbolic
metric. O

Proposition 22. If (19)holds, therT € K (L*°).

Proof. Let(f,) be a bounded sequenceliff and let(u,) be the sequence of correspond-
ing Poisson integrals. We should show that a subsequen¢g ff converges inL>°.
Invoking a normal family argument (or the weakompactness of the closed unit ball of
L), we may further assume (cf. the proof of Proposition 3) ihat> 0 locally uniformly
in D.

Lete > 0. By condition (19) and the above lemma we can find O< 1 such that for
alln

|un(¢(2)) —ua(¥(2))| <& when max|¢(2)|, [V (2)]) >r.
On the other hand, sinag, — 0 locally uniformly, we have for. large enough
|un(#(2)) —un (¥ (2))| <& when max|o )|, |[v(2)]) <r.

Combining these two inequalities yields tHat f;, lloo = llun 0 ¢ — uy o ¥lleo < € for all
sufficiently largen. HenceT f,, — 0 in L*° and the proof is complete.O

’

’

In order to prove that condition (19) is implied by the weak compactnegsasf H°,
we recall some notions from the Banach space theory. A Banach Xpiasaid to have the
Dunford—Pettis propertif x;*(x,) — 0 whenever, — 0 weakly inX andx,” — 0 weakly
in the dualX*. Equivalently, this means that evemgakly compact linear operator from
into some Banach space is completely continuous, i.e., maps weakly null sequences into
norm-null sequences. A well-known example of a space with the Dunford—Pettis property
is co, the space of null sequences of scalars under the supremum norm. For a survey of the
Dunford—Pettis property we refer to [8].

The special auxiliary functions provided by the next lemma will be crucial to our argu-
ment. We leave the simple verification of the lemma to the reader.

Lemma 23. Supposéa,,) is a sequence of points I such thata, — 1. Then there exist
number < ¢, <1and0 <, < §, < such that, — 0, §, — 0, and if

i 1, fors,<|0| <
h i0) _ s n = n»
n(e ) {Sn, otherwise,
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then the outer functions

2

1 i6 .
Qn(Z)ZeXp{Z/: +Zloghn(e’9)d9}

0 _ »
0

satisfy|| @y lloo = 1 and|Q, (an)| > 3 for everyn.
We have now reached our objective.
Proposition 24. If T € W(H®°), then(19) holds.

Proof. Suppose to the contrary that (19) fails. This means that we can find a namb@r
and pointg,, € D such that ifa,, = ¢ (z,) andb,, = ¥ (z,), then

max(lanl, |by]) > 1 and B(a,, by) =¢ foralln.

By passing to a subsequence and interchanging the rotesiod v, if necessary, we may
assume that, — « for somea € T. Without loss of generality, take = 1. Let (Q,,) be
the sequence of outer functions correspondin@}o as given by Lemma 23. By passing
to a further subsequence, we may assumesthat< 8, ande, < 2L forall n.
Now define
z—by
fn (@) = 0n(2) 1—Zb_n’
so that f;, € H*® with || fullco = 1, | fu(an)| = %s, and f,(b,) = 0. Because the sets
{¢ € T: | fu(¢)| > e} are pairwise disjointany_, &, < % itis easy to check that the map-
ping (§,) — Y, & f» is an isomorphic embedding of into H°°. Thus f,, — 0 weakly
and sincel’ was assumed weakly compact, the Dunford—Pettis propedyinfiplies that
IT fullco — O. However, it follows from the definition of;, that

1
17 fulloo = ‘Tfn(zn)| = |fn(an) - fn(bn)| = |fn(an)| > 58

for everyn. This contradiction completes thequf of the proposition and, as noted before,
the proof of Theorem 20. O

Note. After submitting the initial version of thipaper we learned about a manuscript by
T. Hosokawa et al. [13], where the equivalence of conditions (3)—(5) of Theorem 20 has
been proved for the more general case of weighted composition operatdr¥on
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