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1 INTRODUCTION 

A network of protein filaments known as the cytoskeleton spatially organizes the 

cytoplasm of eukaryotic cells. Cytoskeleton is a complex system of protein filaments 

involved in a range of functions such as cell attachment, cell locomotion, intracellular 

trafficking, signal transduction as well as generating spatial organization and 

mechanical robustness (Mizuno et al., 2007). The major building blocks of the 

cytoskeleton are three types of filaments, each assembling into characteristic structures 

and carrying typical functions. Microtubules are widely recognized from their 

involvement in spindle formation and star-like configuration during mitosis and are 

responsible for the positioning and intra-cellular transport of cell organelles (Kaverina, 

1998). Intermediate filaments provide mechanical stability and resistance to shear stress 

and pressure (Kreplak and Fudge, 2007). Actin filaments form bundles and networks, 

which determine the cell shape and enable cell locomotion with the help of surface 

protrusions as well as enable cytokinesis (Pollard and Borisy, 2003). Each of the three 

major filament classes has a large dedicated subset of accessory proteins that modify the 

dynamics and structure of cytoskeletal filaments (Miano et al., 2007). 

 

1.1 Actin filaments and their function in nonmuscle cells 

A network of actin filaments is involved in regulating specific structural changes and 

formation of structures such as filopodia, lamellipodia and stress fibers as well as 

maintenance of morphology within cells and cellular regions (Nemethova et al., 2008; 

Pollard et al., 2000). In muscle cells, actin filaments function primarily as part of the 

contractile machinery whereas in nonmuscle cells actin filaments are involved in cell 

motility, cytokinesis, polarity and cell spreading (Pellegrin, 2007).  

 

Actin filaments are formed through head-to-tail polymerization of actin monomers (G-

actin) and exist as two helical interlaced strands of filamentous actin subunits (F-actin) 

(Schleicher, 2008). Actin filaments have a fast-growing barbed end (+ end) and a slow-

growing pointed end (- end). Actin filament elongation or polymerization occurs mostly 

at the barbed end, and shortening or depolymerization at the pointed end (Welch and 

Mullins, 2002). Furthermore, actin filament network is an exceptionally dynamic 

organization, which is to a great extent determined by variety of actin binding proteins 



 

 

6 

associated with its polymeric structure. Numerous actin binding proteins regulate 

dynamics of actin filaments through actin polymerization/depolymerization, 

crosslinking or bundling of actin filaments (Pollard et al., 2000).  

 

In cultured cells, actin filaments are prominent and well-studied filaments. In vivo, actin 

filaments have been detected and found essential in endothelial cells regulating blood 

flow tension and mechanical stress, in platelet activation in case of endothelial injury as 

well as in wound healing (Tanaka, 1998; van Nieuw Amerongen, 2001). 

 

1.2 Actin stress fibers are sarcomeric-like structures 

Actin stress fibers also known as actomyosin fibers are formed when a cell is stably 

connected to the substrate and arranged in parallel with myosin and actin binding 

protein to build long, straight, contractile fibers (Chrzanowska-Wodnicka and Burridge, 

1996). Based on protein composition, interacting proteins and ability to contract, actin 

stress fibers resemble sarcomeric-like structure found in the muscle cells (Clark et al., 

2002). Stress fibers are extremely dynamic structures and can easily be detected in 

immunofluorescence analysis by phalloidin staining. 

 

To date, most well characterized regulator of stress fiber assembly is RhoA, small 

GTPases family member (Pellegrin, 2007). The GTP bound form of RhoA activates 

Rho-associated kinase (ROCK) which in turn phosphorylates myosin light chain (MLC) 

therefore promoting stress fiber formation (Riento and Ridley, 2003). Activation of 

RhoA promotes both bundling of actin filaments into stress fibers and clustering of 

integrins and associated proteins to form focal adhesions (Bershadsky et al., 2006). 

Focal adhesions are anchoring cell junctions, which anchor the cell and stress fibers to 

the extracellular matrix thus promoting mechanotransduction forces between 

extracellular matrix and intracellular tension (Clark et al., 2007; Endlich et al., 2007).  

 

In general, stress fibers are crucial for cell function by enabling cells to sense and 

respond to mechanical stimuli and affecting cell motility, adhesion, apoptosis and 

invasion of cancer cells (Lu et al., 2008). 
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1.3 Diverse actin stress fiber types 

Actin stress fibers have been subcategorized to three distinct stress fiber types: dorsal 

and ventral stress fibers and transverse arcs, based on their subcellular localization and 

association with focal adhesions in mouse fibroblasts (Small et al., 1998). More 

recently, this view has been expanded and stress fibers have been further characterized 

according to their connection to substratum as well as in their dynamics and assembly 

mechanisms (Hotulainen and Lappalainen, 2006).  

 

Dorsal stress fibers (Figure 1; indicated in red) are connected to the substrate via a focal 

adhesion at the leading edge of the cell. Dorsal stress fibers elongate from a focal 

adhesion and is assembled through an actin nucleation promoting formin called mDIA1 

and actin polymerization. In comparison, transverse arcs are not directly associated with 

a focal adhesion. Transverse arcs (Figure 1; indicated in blue) are contractile and 

myosin rich arc structures with a suggested function in cell contraction. Suggested 

model for transverse arcs formation is through endwise annealing between myosin and 

actin-related protein (Arp2/3) complex of nucleated actin bundles (Hotulainen and 

Lappalainen, 2006). Third type of stress fibers – ventral stress fibers (Figure 1; 

indicated in green) – is connected from both ends to a focal adhesion thus proposing 

that ventral stress fibers could be important in cell adhesion. 
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Figure 1. Diverse stress fiber types found in a migrating cell. Direction of cell 
migration is indicated as well as leading edge and trailing edge of the cell. Cell nucleus 
is located near the trailing edge of the cell. Dorsal stress fibers (indicated in red) 
elongate from a focal adhesion (black circles) at the leading edge towards the cell center 
where they connect with transverse arcs (indicated in blue). Ventral stress fibers 
(indicated in green) are the third type of stress fibers, which are formed between two 
distinct focal adhesions at both ends. 
 

 

Even though stress fibers have been subcategorized to separate stress fiber types, it still 

remains uncharacterized how distinct stress fiber types differ in their function and 

molecular composition. At this point, it is essential to investigate involvement of stress 

fiber interacting proteins such as alpha-actinins and their function as well as regulation 

of distinct stress fiber types.  
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1.4 Alpha-actinins as structural components of actin filaments 

Alpha-actinin is conserved and ubiquitously expressed protein with the exception of 

plants and prokaryotes, which has originally been identified as actin crosslinking protein 

(Ebashi and Ebashi, 1964). Alpha-actinin is a long, narrow, rod shaped antiparallel, 

dimer formed of two 100kDa alpha-actinin monomers (Lorenzi and Gimona, 2008). 

Alpha-actinin belongs to a family of structurally related proteins, including spectrin, 

dystrophin and utrophin, which regulate the organization of actin cytoskeleton in a cell 

type specific fashion (Bois et al., 2005). All members of the family as illustrated in 

Figure 2, possess a N-terminal actin binding domain (ABD), an EF-hand calcium 

binding motif at the C-terminal and a central rod domain containing a varying number 

of spectrin repeats where the dimerization of alpha-actinin is mediated (Virel and 

Backman, 2007). 

 

 
Figure 2. Alpha-actinin as a structural component of actin filaments. (A) A closer 
look at the alpha-actinin antiparallel, dimer structure where actin binding domain 
(ABD), four spectrin-like repeats (R1-R4) and C-terminal EF hands are indicated. (B) 
Interlaced strands of actin filaments (indicated in red) and alpha-actinin dimer 
(indicated in green) crosslinking the two actin filaments. 
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In humans, four alpha-actinin genes have been identified and grouped into two distinct 

classes: muscle and nonmuscle cytoskeletal alpha-actinins (Blanchard et al., 1989). 

Alpha-actinin-2 and -3 can be found in striated, cardiac and smooth muscle cells mainly 

at the Z-disks of sarcomeres and analogous dense bodies, where they form a lattice like 

structure and stabilize the muscle contractile apparatus (Sjöblom et al., 2008). Alpha-

actinin-2 is a major protein in the cardiac and oxidative skeletal muscle whereas alpha-

actinin-3 is largely expressed in glycolytic skeletal muscle fibers (Mills et al., 2001). In 

nonmuscle cells, alpha-actinin-1 and -4 are primarily located on stress fibers, focal 

adhesions and cell-cell contact sites, cellular protrusions, lamellipodia and stress fiber 

dense regions (Otey and Carpen, 2004). In addition, alpha-actinin-1 and -4 have an 

exceptional large number of interacting molecular partners. However, specificity to 

which of the nonmuscle alpha-actinins an interacting protein binds has not clearly been 

recognized. 

 

1.5 Nonmuscle alpha-actinin-1 and -4 as actin stress fiber regulators 

Nonmuscle alpha-actinin-1 and -4 share over 80% homology but display diverse roles in 

cytoskeletal organization, and cell motility as well as in subcellular localization and 

binding partners (Bolshakova et al., 2007; Youssoufian et al., 1990). Nonmuscle alpha-

actinin-1 was first identified (Lazarides, 1975) followed by much later identification of 

alpha-actinin-4 (Honda et al., 1998). Based on previous knockdown studies, alpha-

actinin-1 has been demonstrated to primarily localize along stress fibers, at focal 

adhesion plaques as well as taking part in bundling of actin filaments (Craig et al., 

2008). It also associates with several cytoskeletal and membrane associated proteins 

such as integrins, intercellular adhesion molecules and vinculin (Bois et al., 2005; 

Vallenius et al., 2000).  

 

In comparison, alpha-actinin-4 is less clearly concentrated to stress fibers and is neither 

detected in focal adhesions nor cell contacts but it is enriched at the leading edge of 

invading cells and in cytoplasmic regions with sharp cell extensions (Honda et al., 

2005). Alpha-actinin-4 is a cell motility enhancer and is associated with invasion and 

metastasis of cancer cells (Honda et al., 1998). Alpha-actinin-4 is overexpressed in 

various human epithelial carcinomas, including colorectal, breast and ovarian 

carcinomas (Barbolina et al., 2008). Hence, interest in studying role and function of 
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alpha-actinin-4 has increased enormously over the past years.  Futhremore, mutations in 

alpha-actinin-4 gene cause familial focal segmental glomerulosclerosis (FSGS), an 

autosomal dominant disease with abnormal protein secretion to the urine and as a result 

gradually causing renal insufficiency (Kaplan et al., 2000). Mouse studies where alpha-

actinin-4 has been deleted show kidney failure, progressive proteinuria and severe 

glomerular disease (Dandapani et al., 2007; Kos et al., 2003), therefore suggesting a role 

for alpha-actinin-4 in regulating multiple cellular processes and animal development.  

 

Both alpha-actinin-1 and -4 are most commonly known as structural components of 

stress fibers and their ability to crosslink actin filaments. Nevertheless, from previous 

studies it is evident that alpha-actinin-1 and -4 possess wider roles and functions in the 

cell (Sen et al., 2009).  Now it is important to establish if there are any localization or 

functional differences between alpha-actinin-1 and -4 such as in the assembly and 

crosslinking ability, stability and regulation of stress fibers in mammalian cells. 
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2 OBJECTIVES OF MASTER THESIS 

Objectives of my master thesis study: 

1) Determine localization of nonmuscle alpha-actinin-1 and -4 in human U2OS 

osteosarcoma cells by utilizing specific antibodies generated in the lab 

2) Investigate how alpha-actinin-1 and -4 regulate distinct stress fiber types 

previously characterized in nonmuscle cells thus determine how the individual 

stress fiber types differ in their functional and molecular composition  

3) Exploring functional situations, such as cell motility, where alpha-actinin-1 and 

alpha-actinin-4 could differ 

Understanding functional differences between alpha-actinin-1 and -4 would further 

enable investigation of how they regulate distinct stress fiber types and therefore overall 

cell function in mammalian cells as well as in cancer. 
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3 MATERIAL AND METHODS 

3.1 Cell culture 

Human U2OS osteosarcoma cell line was used during this master thesis study. U2OS 

cells were propagated in Dulbecco’s modified Eagle’s medium (DMEM) supplemented 

with 10% fetal calf serum, penicillin and streptomycin and glutamine at 37°C in 5% 

CO2 incubator. U2OS cells were cultured on 10 cm culture dishes and passaged every 

four days. Prior cell passaging, culture dishes were rinsed twice with sterile PBS 

followed by 5 min incubation with trypsin-EDTA resulting in cell detachment. 

Detached cells were re-suspended in a fresh growth media and re-plated for further 

experiments. 

 

3.2 Antibodies 

Following primary antibodies were used: the rabbit polyclonal antibody to detect alpha-

actinin-1 (SNO341), which was specifically generated in the lab (dil. 1:4000 for 

Western blotting and dil. 1:400 for immunofluorescence), the rabbit polyclonal antibody 

to detect alpha-actinin-4 (ALX-210-356) from Alexis Biochemicals (dil. 1:2000 for 

Western blotting and dil. 1:300 for immunofluorescence), the mouse monoclonal anti-

vinculin antibody (V9131) from Sigma to detect focal adhesions (dil. 1:400 for 

immunofluorescence). Filamentous actin was stained by using Alexa Fluor® 488 

phalloidin from Invitrogen (dil. 1:50). For secondary antibodies in Western Blotting 

anti-rabbit-HRP (Chemicon International) was used (dil. 1:5000). For 

immunofluorescence, Alexa Fluor® anti-rabbit 594 (dil. 1:500) and Alexa Fluor® anti-

mouse 647 (dil. 1:500) from Invitrogen were used.  
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3.3 RNAi-mediated gene silencing 

For RNAi-mediated gene silencing Lipofectamine™ 2000 transfection reagent 

(Invitrogen) was used together with the pooled short interfering RNA (siRNA) oligos L-

011195 (siACTN1), L-011988 (siACTN4) and D-001206-13 (siNT) (Dharmacon). One 

day prior to transfection, U2OS cells were plated, 70 000 cells per six-well plate 

chamber to reach 40-50% confluence on the day of transfection. On the first day of 

transfection, each transfection sample was prepared by adding diluted 20 pmol siRNA 

to Opti-MEM I Reduced Serum Medium to form a complex. Lipofectamine™ 2000 

was also mixed with Opti-MEM I Reduced Serum Medium to form a separate 

complex. Both complexes were mixed gently and let to settle for 5 min separately. After 

5 min incubation, diluted siRNAs were combined with diluted Lipofectamine™ 2000 

and incubated for 20 min at room temperature. Following the 20 min incubation period, 

siRNA - Lipofectamine™ 2000 complexes were added to each plate containing 40-50% 

confluent U2OS cells together with penicillin and streptomycin free media. Penicillin 

and streptomycin free media was changed to Dulbecco’s modified Eagle’s medium 

(DMEM) supplemented with 10% fetal calf serum, penicillin and streptomycin and 

glutamine after 4-6 hours of transfection. Same transfection protocol was conducted 

also on the following day to reach the highest knockdown efficiency. Cells were 

incubated at 37°C in 5% CO2 incubator for a total of 96 h. 

 

3.4 Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-
PAGE) 

SDS-PAGE is a widely used technique to separate proteins according to their 

electrophoretic mobility. For detection of alpha-actinin-1 and -4 total protein levels 

following siRNA-mediated transfection, cells were lysed using SDS-boiling buffer 

(2.5% SDS, 0.25 M Trizma base including 50 mM NaF, 10 mM β-glycerophosphate, 

0.5 mM DTT, 0.5 mM PMSF, 2.5 µg/ml Aprotinin and 1 µg/ml Leupeptin). Preceding 

cell lysis, each culture dish was rinsed twice with sterile PBS to ensure the absence of 

growth media from the protein lysates. SDS-lysis buffer was heated to 95°C and then 

added over the cells. Cells were carefully scraped from the culture dishes by using a 

policeman and collected to separate eppendorf tubes. SDS-lysed samples were needled 

with a 25G needle 10 times and centrifuged for 15 min at 13 000 rpm, +4°C. 



 

 

15 

Supernatant was separated from the pellet and stored by freezing at -20°C or proceeded 

directly to protein concentration measurements.  Protein concentrations were measured 

by using Bio-Rad DC protein assay kit (Bio-Rad Laboratories) at the wavelength of 595 

nm with a spectrophotometer. 10-30 µg protein lysates were prepared for the SDS-

PAGE gel run according to BSA standard protein concentration measurements. Protein 

lysates were finalized by addition of 1 x Laemmli buffer and further diluted with 

supplementary SDS-lysis buffer. Prepared lysates were heated for 5 min at +95°C, 

cooled down and run on a SDS-PAGE gel or alternatively stored at -20°C.  

 

3.5 Western blotting 

SDS-PAGE samples were run on a 10% SDS-PAGE gel with a 35 mA current for a 

period of 2,5 hours. Following SDS-PAGE run, proteins were transferred on a 

nitrocellulose filter for a period of 1 h 45 min by using 400 mA current and finally 

detected by a Ponceau staining. 5% milkpowder – TBS – 0,05% Tween buffer was used 

for blocking the nitrocellulose filter as well as primary and secondary antibody 

incubations. Nitrocellulose filter was blocked for a period of 1 h, followed by an 

overnight incubation with a primary antibody at +4°C. Primary antibody was washed 3 

x 10 min with TBS – 0,05% Tween buffer followed by 40 min secondary antibody 

(peroxidase conjugated anti-rabbit) incubation. Secondary antibody was washed 

following the same protocol as with primary antibody.  For the protein detection, 

commercially available ECL reagents (SuperSignal West Femto Maximum sensitivity 

Substrate, PIERCE) were used in equal amounts in PBS. 

 

3.6 Immunofluorescence analysis 

Immunofluorescence analysis was used for detection of both alpha-actinin-1 and -4 as 

well as stress fibers. U2OS cells were re-plated 3 h prior fixation on 10 µg/ml 

fibronectin (734-0101, from VWR International) pre-coated coverslips. For part of the 

coverslips the 0.5% Triton X-100 extraction was performed prior to fixation. Coverslips 

were fixed with 4% paraformaldehyde (PFA) for 15 minutes and washed three times 

with PBS. Fixed coverslips were further permeabilized with 0.1% Triton X-100 for 5 

minutes. 5% goat serum in PBS buffer was used for blocking the cells as well as 

diluting the primary and secondary antibodies. Cells were blocked with 5% goat serum 
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in PBS for 30 minutes, labeled with primary antibody for 30 minutes, washed three 

times with PBS, labeled with secondary antibody for 30 minutes, washed three times in 

PBS. Nucleus was labeled with 0,5 µm/ml Hoechst, washed two times with PBS and 

finally stained coverslips were mounted with Immu-mount (Thermo Scientific) and 

stored at +4°C until further analysis.  

 

3.7 Confocal microscope imaging and analysis 

As part of my master thesis study, confocal microscope use was extensive and essential 

for observing and understanding my results. I received my advanced confocal 

microscope training in the molecular imaging unit (MIU) in Meilahti. MIU is an 

imaging core facility responsible for the training and maintenance of the confocal 

microscope and offers also other state-of-the-art imaging facilities. Stained coverslips 

from the immunofluorescence analysis were analyzed and imaged by using Zeiss LSM 

510 Meta laser scanning confocal microscope equipped with 63x/Plan-

Apochromat/1.40/DIC objective. While acquiring images with the confocal microscope 

the following lasers were used Diode 25 mW, Argon 30 mW, Helium-Neon 1 mW and 

Helium-Neon 5 mW to detect 405 nm, 488 nm, 543 nm and 633 nm wavelengths, 

respectively, thus enabling visualization of up to four different immunofluorescence 

stainings simultaneously. LSM 3.2 software was used for the images acquired by the 

confocal microscope and by using Adobe photoshop CS4 imaging software final images 

were generated. 
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3.8 Analysis of focal adhesions 

Anti-vinculin stained focal adhesions were quantified by ImageJ software by 

determining the threshold for each image to clearly distinguish individual focal 

adhesions, followed by measurement of the amount and size of focal adhesion present in 

the image (see Results for detail). Focal adhesions were quantified according to their 

size and amount from 20 different cells of transfected pooled non-targeting, ACTN1 or 

ACNT4 siRNA oligos. 

 

3.9 Wound healing assay and analysis 

A scratch wound assay was generated to a confluent monolayer of U2OS cells with a 

sterile tip 72 hours after transfection of pooled non-targeting, ACTN1 or ACNT4 

siRNA oligos. Wound areas were marked to the bottom of each plate to enable image 

acquisition of the same are using Olympus CKX42 microscope equipped with UplanFL 

4x/0,13 PhP objective and Canon DS6041 EOS 300D digital camera. Wound closure 

was monitored up to 24 hours and images where acquired at 0 h, 8 h and 24 h 

timepoints. For image analysis and quantification ImagePro Plus software was used to 

calculate and measure remaining open areas of each wound from four independent 

experiments.  
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4 RESULTS 

4.1 Alpha-actinin-1 and -4 differ in their localization on actin stress fibers 

Motivation for this master thesis was to study localization and function of alpha-actinin-

1 and -4 as well as their contribution in crosslinking distinct stress fibers. Human 

osteosarcoma U2OS cells were selected due to their prominent stress fiber structures 

(Hotulainen and Lappalainen, 2006; Vallenius et al., 2000; Vallenius and Mäkelä, 

2002), and importantly based on a recent study demonstrating different dynamics and 

assembly mechanisms of dorsal and ventral stress fibers and transverse arcs in these 

cells (Hotulainen and Lappalainen, 2006). Prior to my master thesis studies, rabbit 

polyclonal peptide antibody raised against N-terminal end of alpha-actinin-1 was 

generated in the lab and specificity of commercially available alpha-actinin-4 was 

determined. Hence, providing excellent tools and enabling precise investigation of 

alpha-actinin-1 and -4 and their functional and localization differences.  

 

To study possible localization differences between alpha-actinin-1 and -4 an 

immunofluorescence analysis was performed utilizing either the rabbit polyclonal 

alpha-actinin-1 or -4 specific antibodies accompanied with phalloidin staining together 

with mouse monoclonal vinculin staining. Phalloidin was used to recognize actin stress 

fibers, whereas vinculin detected the focal adhesions present in the cell. Subsequent 

analysis of endogenous alpha-actinins revealed that alpha-actinin-1 was localized on all 

three distinct stress fibers (Figure 3. A; top row) whereas alpha-actinin-4 was detected 

at the cell edge and in cytoplasm as dotted-like manner (Figure 3. A; bottom row). 

Furthermore, in the majority of cells alpha-actinin-4 also exhibited bright perinuclear 

accumulation. In agreement with previous studies (Hotulainen and Lappalainen, 2006) 

phalloidin staining evidently indicated dorsal and ventral stress fibers as well as 

transverse arcs, and vinculin staining the focal adhesions.  

 

Based on these immunofluorescence studies, it still remained unclear whether alpha-

actinin-4 dotted-like pattern was associated with stress fibers. Thus Triton X-100 

detergent extraction was performed for part of the coverslips prior fixation to remove 

soluble cytoplasm (Sainio et al., 1997). Following the detergent extraction, dotted 

pattern of alpha-actinin-4 enriched at distal ends of stress fibers as well as at the base of 

focal adhesions (Figure 3. B; bottom row), while localization of alpha-actinin-1 became 
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more evident along all three stress fiber types (Figure 3. B; top row). These results 

indicate distinct distribution between alpha-actinin-1 and -4 due to alpha-actinin-1 

localization on all type of stress fibers in comparison to alpha-actinin-4 localization only 

on a subset of stress fibers as well as cell membrane. 
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Figure 3. Nonmuscle alpha-actinin-1 and -4 localize differently on stress fibers. 
Immunofluorescence analysis of U2OS cells using alpha-actinin-1 and -4 specific 
antibodies together with phalloidin and vinculin antibodies as shown on top. (A) Alpha-
actinin-1 is localized on dorsal (red arrowhead) and ventral stress fibers (white 
arrowhead) and transverse arcs (purple arrowhead). Distinct stress fibers are clearly 
indicated by phalloidin staining and focal adhesions by vinculin staining. In comparison 
alpha-actinin-4 is localized on cell edge and has a cytoplasmic dotted appearance. (B) 
Similar analysis as in (A) but following a Triton X-100 extraction. Localization of 
alpha-actinin-1 remained noticeably on all three stress fibers, while alpha-actinin-4 
localization changed to the distal ends of stress fibers as well as to the base of focal 
adhesions. Scale bar 10 µm. 
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4.2 Downregulation of alpha-actinin-1 results in specific loss of dorsal 
stress fibers 

Observed differences in subcellular localization between alpha-actinin-1 and -4 

suggested that these two alpha-actinins might differently crosslink distinct stress fibers, 

thus prompted to further investigate consequences following downregulation of alpha-

actinin-1 and -4 in U2OS cells. To this end RNAi-mediated gene silencing of alpha-

actinin-1 and -4 was conducted where short interfering RNA (siRNA) were used to 

interfere with the expression of alpha-actinin-1 and -4 genes by silencing. Subsequent 

Western blotting analysis indicated over 90% downregulation of both alpha-actinin 

proteins (Figure 4. A). Here note of mentioning, that over 90% downregulation of 

alpha-actinin-1 required optimization, and it was achieved by a double siRNA 

transfection over a period of 96 h (see Material and Methods for detail). This could be 

due to differences in protein levels between alpha-actinin-1 and -4 in U2OS cells, where 

it is known that alpha-actinin-1 is more abundant than alpha-actinin-4 (Vallenius et al., 

2000) or even different protein half-life periods. Thus indicating that alpha-actinin-1 

requires a longer siRNA treatment for complete gene silencing. 

 

Next, immunofluorescence analysis of phalloidin stained control, alpha-actinin-1 and -4 

downregulated cells was performed. Strikingly, in alpha-actinin-1 depleted cells, lack of 

dorsal stress fibers became evident without disturbing the formation of transverse arcs 

and ventral stress fibers (Figure 4. B; middle panel). However, depletion of alpha-

actinin-4 maintained all three stress fibers (Figure 4. B; right panel), thus indicating that 

alpha-actinin-1 is selectively required for dorsal stress fibers. 
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Figure 4. Loss of dorsal stress fibers following alpha-actinin-1 silencing. RNAi-
mediated gene silencing technique was adapted to downregulate both alpha-actinin-1 
and -4. (A) Western blotting analysis was performed to observe the silencing efficiency. 
Protein levels of alpha-actinin-1 and -4 were detected by using specific rabbit 
polyclonal alpha-actinin-1 and -4 antibodies, respectively. (B) Immunofluorescence 
analysis was conducted with phalloidin staining on control, alpha-actinin-1 and -4 
silenced cells. Control cell illustrates all three stress fibers present; dorsal (red 
arrowhead) and ventral stress fibers (white arrowhead) and transverse arcs (purple 
arrowhead) (B; left panel). Strikingly, in alpha-actinin-1 depleted cells lack of dorsal 
stress fibers became evident and only transverse arcs (purple arrowheads) and ventral 
stress fibers (white arrowheads) remained (B; middle panel). In alpha-actinin-4 depleted 
cells all three types of stress fibers were evident (B; right panel). Scale bar 10 µm. 
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4.3 Alpha-actinin-4 relocalizes prominently to transverse arcs and ventral 
stress fibers following alpha-actinin-1 downregulation 

Further investigating localization and functional differences between alpha-actinin-1 

and -4 it was essential to observe whether alpha-actinin-1 and -4 could compensate each 

other when either of the alpha-actinins is lost. Alpha-actinin-1 staining was performed 

on control, alpha-actinin-1 and -4 depleted cells prior and following Triton X-100 

detergent extraction to observe possible localization or compensation changes. 

Importantly, localization of alpha-actinin-1 was not altered during alpha-actinin-4 

silencing, suggesting alpha-actinin-1 having a primary role in crosslinking dorsal stress 

fibers (Figure 5. A). These findings were further confirmed when an alpha-actinin-4 

staining was performed in the same manner as for alpha-actinin-1 mentioned above. In 

alpha-actinin-1 silenced cells, alpha-actinin-4 was found to loose its cell edge 

localization prior Triton X-100 extraction (Figure 5. B; arrow) and furthermore 

prominently relocalized to remaining transverse arcs and ventral stress fibers following 

Triton X-100 extraction (Figure 5. B; arrowheads). These results demonstrate evident 

relocalization of alpha-actinin-4 to transverse arcs and ventral stress fibers subsequent 

Triton X-100 extraction and alpha-actinin-1 silencing but not the ability to fully 

compensate each other’s localizations. Hence, suggesting a primary role for alpha-

actinin-1 in selectively crosslinking dorsal stress fibers.  
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Figure 5. Alpha-actinin-4 relocalizes to transverse arcs and ventral stress fibers 
upon alpha-actinin-1 depletion. (A) Immunofluorescence analysis with alpha-actinin-
1 specific antibody prior and following Triton X-100 treatment of control and silenced 
alpha-actinin-1 and -4 U2OS cells. As illustrated in both conditions, alpha-actinin-1 
localization is not affected by the loss of alpha-actinin-4 when compared to the control 
cell. (B) Similar analysis as in (A) but cells were stained by alpha-actinin-4 specific 
antibody. Surprisingly, depletion of alpha-actinin-1 prior Triton X-100 treatment 
resulted in a loss of cell edge localization (white arrow) and became apparent on distal 
ends of stress fibers. Furthermore, relocalization of alpha-actinin-4 became more 
evident following Triton X-100 treatment where alpha-actinin-4 was clearly relocalized 
to transverse arcs and ventral stress fibers (white arrowheads). Scale bar 10 µm.  
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4.4 Depletion of alpha-actinin-1 results in smaller and fewer focal 
adhesions 

Previous stress fiber studies demonstrate that formation and elongation of stress fibers 

require mature focal adhesions as well as RhoA induced contractility (Chrzanowska-

Wodnicka and Burridge, 1996). Therefore it was of a great interest to determine focal 

adhesions in the cells. 96 hours after knockdown, vinculin staining was performed on 

alpha-actinin-1 depleted cells from which it became evident that focal adhesions, 

particularly at the leading edge of the cell, were smaller (Figure 6. A; top row; 

arrowhead). Strikingly, focal adhesions formed between ventral stress fibers appear to 

be mature which was further indicated from double-immunofluorescence analysis 

between phalloidin and vinculin (Figure 6. A; bottom row; second panel). Hence, 

indicating that loss of dorsal stress fibers following depletion of alpha-actinin-1 has an 

affect on focal adhesion maturation. In comparison, focal adhesion maturation in either 

control or alpha-actinin-4 depleted cells was not affected which was also indicated by 

vinculin staining (Figure 6. A; top row). Results were further confirmed by merge 

image of phalloidin and vinculin stained control and alpha-actinin-4 depleted cells 

where stress fiber formation was normal and dorsal as well as ventral stress fibers were 

elongating from a focal adhesion (Figure 6. A; bottom row).  

 

To quantify this obvious difference I used ImageJ software where the threshold was 

adjusted for each image to distinguish individual focal adhesions, followed by 

measurement of the amount and size of focal adhesion present in the cell (Figure 6. B). 

This analysis indicate focal adhesions being 27% smaller as well as 20 focal adhesions 

less per cell in cells lacking alpha-actinin-1, whereas loss of alpha-actinin-4 was not 

significantly changed in comparison to the control cells (Figure 6. C). Results suggest 

that alpha-actinin-1 is required for a part of focal adhesion maturation at the leading 

edge of migrating cells where loss of dorsal stress fibers was detected.  
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Figure 6. Alpha-actinin-1 is essential for focal adhesion maturation. (A) 
Immunofluorescence analysis with vinculin and phalloidin antibodies to detect focal 
adhesions and stress fibers present in the cell. Vinculin staining of control and silenced 
alpha-actinin-1 and -4 cells indicate smaller focal adhesions in alpha-actinin-1 depleted 
cells, especially at the leading edge of the cell (white arrowhead). Results were further 
confirmed by vinculin and phalloidin double staining, where elongation of a stress fiber 
from a focal adhesion can be seen in control and alpha-actinin-4 silenced cells but not 
alpha-actinin-1. (B) Focal adhesions were quantified by using ImageJ software and by 
adjusting the threshold for each vinculin stained image followed by ImageJ particle 
analysis. (C) Double-axis diagram of quantified control and silenced alpha-actinin-1 and 
-4 cells where focal adhesions (FA) per cell and an average area of a focal adhesion are 
illustrated. Left axis indicates an average amount of focal adhesions in each condition 
from where it is evident that there are only 62 focal adhesions in alpha-actinin-1 
depleted cells in comparison to control and alpha-actinin-4 82 focal adhesions. Right 
axis indicates that in alpha-actinin-1 silenced cells the average area of a focal adhesion 
is 7,4 µm2 while in control and alpha-actinin-4 it is 10,5 µm2. Scale bar 10 µm. 
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4.5 Alpha-actinin-4 is required for cell motility 

Cell motility requires constant assembly and disassembly of stress fibers and focal 

adhesions (Hu, 2007). Based on the lack of dorsal stress fibers and smaller focal 

adhesions it was of interest to study cell motility. Furthermore, from previous studies it 

is also known that alpha-actinin-4 is a cell motility enhancer and associated with 

invasion and metastasis of cancer cells (Barbolina et al., 2008; Honda et al., 1998). To 

this end I allowed cells lacking alpha-actinin-1 and -4 to become confluent, and then 

generated a wound with a sterile pipette tip. Subsequently I followed wound healing by 

taking images at 0 h, 8 h and 24 h in control and both in alpha-actinin-1 and -4 depleted 

cells. A scratch wound assay was conducted to observe any cell motility defects that 

cells lacking either alpha-actinin-1 or -4 might have encountered. Surprisingly, cell 

motility was not affected in the absence of alpha-actinin-1 (Figure 7. A; middle row), 

therefore suggesting alpha-actinin-1 as well as dorsal stress fibers are not essential for 

cell motility. Cell motility was significantly slower in the absence of alpha-actinin-4 

(Figure 7. A; right row), thus confirming previous role of alpha-actinin-4 in motility of 

cancer invasion and metastasis (Honda et al., 2005).  

 

To quantify the remaining wound area in control, alpha-actinin-1 and -4 silenced 

conditions at all three time points I used ImagePro Plus software. Individually 

quantified wound areas evidently indicate that after 24 h of wound opening, 70% of 

wound still remains open in alpha-actinin-4 depleted cells. In comparison to full closure 

of control cells as well as 95% closure of alpha-actinin-1 depleted cells (Figure 7. B). 

These results indicate that dorsal stress fibers are not required for cell motility, thus 

suggesting that alpha-actinin-4 motility defect is not mediated through the three distinct 

stress fibers types. This is due to the fact that all three stress fiber types appear normal 

in the phalloidin staining even when alpha-actinin-4 is lost (Figure 4). 
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Figure 7. Cell motility requires alpha-actinin-4. (A) Images taken from the scratch 
wound assay at 0 h and 24 h time points of control and silenced alpha-actinin-1 and -4 
U2OS cells. Following 24 h of wound closure, it is evident that alpha-actinin-4 silenced 
cells remain open in comparison to control and alpha-actinin-1 silenced cells. (B) 
Wound area from 0 h, 8 h and 24 h were measured and quantified from four subsequent 
experiments. The diagram illustrates percentage of wound healing process following 8 h 
and 24 h wound closure in control and silenced alpha-actinin-1 and -4 cells. A 
remarkable motility defect is noticed after 24 h of cell migration in alpha-actinin-4 
depleted cells, where wound healing has occurred only 72% in comparison to control 
and alpha-actinin-1 silenced cells where wound healing was 100% and 94%, 
respectively.  
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5 DISCUSSION 

During my master thesis study I have been able to identify alpha-actinin-1 as a selective 

dorsal stress fiber crosslinking protein as well as to be required for focal adhesion 

maturation, while alpha-actinin-4 was demonstrated to be fundamental for cell 

migration.   

 

5.1 Analysis of the role and function of alpha-actinin-1 and -4 

Thus far, human osteosarcoma (U2OS) cell line together with fibroblasts have been 

documented to contain subcategories of stress fibers; dorsal and ventral stress fibers and 

transverse arcs (Hotulainen and Lappalainen, 2006; Small et al., 1998). As actin 

cytoskeleton is an extremely dynamic network, having a cell line model that enables 

investigation of defined subcategories of stress fibers and their regulation is essential. 

My work during the master thesis study using U2OS cells provides the first evidence 

that these distinct stress fibers might be crosslinked by different proteins. These results 

were obtained due to the specific antibodies generated in the lab. Hence, for the first 

time being able to provide an excellent tool to investigate alpha-actinin-1 and -4 

differences.  

 

So far, alpha-actinin-1 and -4 have been studied separately but comparison studies 

between the two alpha-actinins have been rare (Bolshakova et al., 2007). During my 

thesis work, a study was published demonstrating that both alpha-actinin-1 and -4 are 

critical in contributing to the invasiveness of glioblastoma multiforme, a malignant 

astrocytic tumor (Sen et al., 2009). Nevertheless, this study did not explore role of 

alpha-actinin-1 and -4 in correlation to the stress fiber subcategories defined previously.   

 

From now on functional, localization as well as expression differences between alpha-

actinin-1 and -4 can be investigated by using the specific tools available. Thus, 

extending this kind of analysis to fibroblasts as well as other cell or tissue types would 

be extremely informative. A starting point could be investigation of differences between 

alpha-actinin-1 and -4 expression patterns found in different tissues and compare how 

they correlate with already established results. On the other hand, trying to identify 

alpha-actinin-1 selective dorsal stress fibers in other cells or tissues through contractility 
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or associated proteins would enable understanding of the physiological or pathological 

circumstances where these types of alpha-actinin-1 specific fibers are advantageous.   

 

5.2 Involvement and function of alpha-actinin-1 in nonmuscle cells 

Previous studies suggest that alpha-actinin-1 contributes to cell contractility (Lu et al., 

2008). My results, which indicate that alpha-actinin-1 is localized along all three 

detected stress fiber types further supports contractility idea. Lack of dorsal stress fibers 

accompanied by smaller focal adhesions upon alpha-actinin-1 loss proposes that this is 

due to lack of contractile function for dorsal stress fibers. This can be addressed by 

determining phosphorylated myosin light chain levels in the cell, which is increased 

when stress fibers are contractile. Stress fiber assembly and cell contractility are 

activated by myosin light chain phosphorylation which in turn is activated by the ROCK 

kinase (Riento and Ridley, 2003). Indeed, investigation of such a contractility assay is 

of my future interest. Alpha-actinin-1 has previously been demonstrated also to 

modulate pressure-induced colon cancer cell adhesion (Craig et al., 2007), thus future 

cell adhesion as well as cell spreading studies are essential for further characterizing 

alpha-actinin-1 function. Cell adhesion and cell spreading are cellular events that 

require constant assembly of focal adhesions as well as stress fiber formation (Partridge 

and Marcantonio, 2006). Furthermore, use of GFP-tagged alpha-actinin-1 and -4 

plasmids in live cell imaging could also provide further functional as well as 

localization information in live cells. Here however, it is essential to confirm with the 

help of specific antibodies whether such overexpressed proteins localize as endogenous 

proteins.  

 

Interestingly smaller and fewer focal adhesions in alpha-actinin-1 downregulated cells 

were more frequently detected at the leading edge. This correlates extremely well with 

the noted loss of dorsal stress fibers. In the future it is highly important to quantify this 

piece of interesting data. One way to do it could be by observing focal adhesion 

maturation at the leading edge in comparison to the trailing edge of the cell where 

ventral stress fibers are noted to elongate from mature focal adhesions. For this master 

thesis study all the focal adhesions present in the cell were categorized under the same 

measurement therefore resulting in high standard deviations when measuring focal 

adhesion area. In general, cell attachment to the extracellular matrix is mediated by 
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variety of transmembrane proteins such as integrins, which are further linked through a 

range of other proteins to the stress fibers in the cytoplasm (Huveneers and Danen, 

2009). Investigation of other adhesion components such as integrins and their 

involvement in focal adhesion maturation in alpha-actinin-1 and -4 depleted cells is an 

essential future study. 

 

5.3 Alpha-actinin-4 as a cell motility regulator 

Directional motility is essential in various cellular processes such as wound healing, 

embryonic as well as tissue development (Pollard and Borisy, 2003). From the scratch 

wound healing experiment used in this master thesis study, it was obvious that alpha-

actinin-4 had an effect on cell motility but alpha-actinin-1 seemed not to have. Alpha-

actinin-4 cell motility defect was expected due to previous studies implicating 

overexpression of alpha-actinin-4 increasing invasion of cancer cells (Honda et al., 

2005). Thus provided a good positive control for my experiments. Based on the results 

obtained from this study it can be concluded that alpha-actinin-1 has not a major role in 

scratch wound healing process in U2OS cells. Importantly my data indicates that dorsal 

stress fibers are neither required for cell motility. Still remaining question is what is the 

role of these fibers. Obvious follow-up experiments in addition to determine their 

contractility is to study their involvement in other known stress fiber functions such as 

cell spreading and polarity.  

 

Furthermore my studies strongly suggest that the noted migration defect of alpha-

actinin-4 cannot be compensated by alpha-actinin-1 and does not involve any of the 

three subcategorized stress fiber types detected by phalloidin. In comparison, alpha-

actinin-4 is relocalized only to transverse arcs and ventral stress fibers following alpha-

actinin-1 downregulation. Hence, lack of complete compensation between the two 

alpha-actinins further confirms distinct functions for alpha-actinin-1 and 4 in U2OS 

cells. Results obtained during this master thesis study suggest that cell motility is 

mediated through other possible adhesion proteins that have not been addressed in this 

study (Geiger et al., 2009) or possibly through different cell migration modes that can 

occur in a cell (Friedl and Wolf, 2010). 
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6 CONCLUSION 

In summary, as part of my master thesis study I have been able to demonstrate distinct 

localization as well as functions for nonmuscle alpha-actinin-1 and -4. Identify alpha-

actinin-1 as a selective crosslinking protein for dorsal stress fibers without alpha-

actinin-4 being able to compensate the crosslinking ability when alpha-actinin-1 is lost. 

In addition, alpha-actinin-1 is required for focal adhesion maturation whereas alpha-

actinin-4 for overall cell migration. 
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