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ABSTRACT 

 
Bone mass accrual and maintenance are regulated by a complex interplay between 
genetic and environmental factors. Recent studies have revealed an important role for 
the low-density lipoprotein receptor-related protein 5 (LRP5) in this process. The aim 
of this thesis study was to identify novel variants in the LRP5 gene and to further 
elucidate  the  association  of  LRP5 and its variants with various bone health related 
clinical characteristics. 
 
The results of our studies show that loss-of-function mutations in LRP5 cause severe 
osteoporosis not only in homozygous subjects but also in the carriers of these 
mutations, who have significantly reduced bone mineral density (BMD) and increased 
susceptibility to fractures. In addition, we demonstrated for the first time that a 
common polymorphic LRP5 variant (p.A1330V) was associated with reduced peak bone 
mass, an important determinant of BMD and osteoporosis in later life. The results from 
these two studies are concordant with results seen in other studies on LRP5 mutations 
and in association studies linking genetic variation in LRP5 with BMD and osteoporosis.  
 
Several rare LRP5 variants were identified in children with recurrent fractures. 
Sequencing and multiplex ligation-dependent probe amplification (MLPA) analyses 
revealed no disease-causing mutations or whole-exon deletions. Our findings from 
clinical assessments and family-based genotype-phenotype studies suggested that the 
rare LRP5 variants identified are not the definite cause of fractures in these children.  
 
Clinical assessments of our study subjects with LPR5 mutations revealed an 
unexpectedly high prevalence of impaired glucose tolerance and dyslipidaemia. 
Moreover, in subsequent studies we discovered that common polymorphic LRP5 
variants are associated with unfavorable metabolic characteristics. Changes in lipid 
profile were already apparent in pre-pubertal children. These results, together with the 
findings from other studies, suggest an important role for LRP5 also in glucose and lipid 
metabolism. 
 
Our results underscore the important role of LRP5 not only in bone mass accrual and 
maintenance of skeletal health but also in glucose and lipid metabolism. The role of 
LRP5 in bone metabolism has long been studied, but further studies with larger study 
cohorts are still needed to evaluate the specific role of LRP5 variants as metabolic risk 
factors. 
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INTRODUCTION 

 
The first years of the 21st century were fascinating as new genetic data rapidly emerged 
after the release of the complete nucleotide sequence of the human genome (Lander 
et  al.  2001,  Venter  et  al.  2001,  Levy  et  al.  2007).  The  research  brought  to  light  new  
mutations causing a variety of inherited disorders and genetic variants predisposing to 
common diseases. Similar developments took place in the research focused on finding 
the basic genetic determinants and mechanisms underlying normal bone metabolism 
and heritable bone disorders. The discovery and characterization of the low-density 
lipoprotein receptor-related protein 5 (LRP5) gene and its association with inherited 
bone disorders, the osteoporosis pseudoglioma (OPPG) syndrome and high bone mass 
(HBM)  disorder  (Gong  et  al.  2001,  Little  et  al.  2002,  Boyden  et  al.  2002),  generated  
growing interest towards this gene and its role in normal bone mass development. The 
first association studies on LRP5 polymorphic variants and low bone mineral density 
(BMD) (Ferrari et al. 2004, Koay et al. 2004, Mizuguchi et al. 2004, Urano et al. 2004) 
provided a promising platform for further studies. 
 
This study was conducted to gain further knowledge about LRP5 and its role in bone 
metabolism. We decided to look for LRP5 variants in Finnish patients with OPPG or 
skeletal fragility and to study the role of common polymorphic LRP5 variants in skeletal 
characteristics. During the course of this thesis study, new data on the association 
between LRP5 and metabolic parameters emerged and therefore we expanded our 
studies to non-skeletal characteristics of OPPG and to patients with premature 
adrenarche (PA). 
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REVIEW OF THE LITERATURE 

 
1. Bone 
 
A newborn child has 270 bones, which grow and merge and eventually form the 206 
bones that are in the adult human body. They act as a support for the rest of the body 
and enable movement together with muscles, tendons and joints. Bones also provide 
protection for vital organs such as the brain, heart and lungs. On the microscopic level 
bones have numerous vital metabolic functions, such as production of blood cells 
(haematopoiesis) and storage of minerals and fatty acids (Clarke 2008). Bone also acts 
as an endocrine organ by secreting osteocalcin, a hormone that regulates glucose 
metabolism and insulin sensitivity, and FGF23, a hormone involved in phosphate 
homeostasis (Shimada et al. 2004, Ferron et al. 2010).  
 
1.1. Bone structure 
 
The adult human skeleton is composed of cortical bone and trabecular bone. Different 
bones and skeletal sites within bones have different ratios of cortical to trabecular 
bone. Cortical bone is dense and solid and surrounds the marrow space. It accounts for 
most of the total bone mass of an adult skeleton. Bone marrow and most of the blood 
vessels are located in the trabecular bone, found at the ends of long bones and inside 
individual vertebrae. Unlike the dense cortical bone, the trabecular bone is composed 
of a honeycomb-like network of rod-like and plate-like elements. Among its many 
functions, trabecular bone is the place where haematopoiesis occurs. (Clarke 2008) 
 
1.2. Bone cells 
 
Bone is a constantly changing living tissue where new bone is formed and old bone is 
broken down throughout the human life. New bone is formed by osteoblasts, single-
nucleated cells that are differentiated from multipotential mesenchymal stem cells. 
These  stem  cells  also  give  rise  to  adipocytes  (fat  cells),  myoblasts  (muscle  cells),  
chondrocytes (cartilage forming cells), and bone marrow stromal cells (Minguell et al. 
2001). Osteoclasts, which are the bone degrading cells, are in turn large multi-nuclear 
cells  that  originate  from  differentiated  and  fused  monocyte  stem  cells,  the  same  
progenitor cells that give rise to macrophages (Boyle et al. 2003). Osteoblasts and 
osteoclasts are constantly degrading old and making new bone in a process called bone 
remodeling (Figure 1). In childhood, when bones grow in length and width, the 
anabolic function of osteoblasts is greater than the catabolic function of osteoclasts. 
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Figure 1. Bone remodeling (a) Cytokines and prostaglandins activate osteoclasts to 
remove minerals and collagen from the bone surface. (b) They form a cavity, which is 
replaced by a new collagen network synthesized by osteoblasts. (c) Mineralization takes 
place when calcium and phosphate surround the collagen network. 
 
The most abundant (>90-95%) cell type in bone is the osteocyte, a single-nucleated cell 
that differentiates from osteoblasts (Bonewald and Johnson 2008). Osteocytes are 
dispersed throughout the mineralized matrix and connected to each other and other 
cells  through  dendrites.  The  complex  function  of  the  osteocytes  is  not  yet  fully  
understood, but it has long been thought that they might work as mechano-sensory 
receptors and function actively in bone turnover. Several studies have shown that a 
protein  called  sclerostin  is  expressed  solely  in  the  osteocytes  (Balemans  et  al.  2001,  
Winkler et al. 2003, van Bezooijen et al. 2004). The essential role of osteocytes in the 
regulation of bone formation was further highlighted in recent studies showing that 
sclerostin works as an inhibitor of the Wnt signaling pathway (Li et al. 2005, Semenov 
et al. 2005) and is therefore a potential target for drug treatment against osteoporosis 
(Li et al. 2009, Eddleston et al. 2009).  
 
1.3. Bone density 
 
The  fragility  risk  and  the  overall  well-being  of  bones  usually  correlate  with  bone  
mineral density (BMD) and bone mineral content (BMC). BMD (g/cm2) and BMC (g) are 
clinical values which can be measured using dual energy X-ray absorptiometry (DXA). 
BMD values are given as T-score or Z-score values, indicating the number of standard 
deviations (SD) the measured BMD differs from the mean reference value. The T-score 
value  compares  the  measured  BMD  value  with  a  BMD  value  of  a  20  to  40  year  old  
ethnic and gender matched healthy control population, whereas the Z-score indicates 
in  SD  units  how  much  the  measured  BMD  value  differs  from  the  average  BMD  of  an  
age,  sex,  and  ethnicity  matched  control  population.  According  to  The  World  Health  
Organization (WHO) definition, a BMD T-score -1.0 SD or higher is considered normal 
(Kanis  et  al.  1994).  In  post-menopausal  women  and  in  men  over  50  years  old,  these  
groups having the highest risk of osteoporosis, the T-score values are used to predict 
fracture risk. The Z-scores are used when measuring BMD in children, pre-menopausal 
women  or  in  men  less  than  50  years  old  as  in  such  cases  T-scores  are  not  reliable  
(Carey and Delaney 2010). 
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The  amount  of  bone  mass  varies  during  different  phases  of  human  life.  Skeletal  
development  begins  at  early  stages  of  fetal  development  and  bone  mass  accrual  
continues until peak bone mass (PBM) is attained in late adolescence. The bones reach 
their final length at the age of 16 to 18 years, but BMD still increases after that and 
PBM is reached only some years later. After that bone mass remains fairly stable for 
several  years  until  it  starts  to  decrease  gradually  (Peacock  et  al.  2002).  After  
menopause bone loss becomes significantly more rapid, due to reducing estrogen 
levels  and  loss  of  the  protective  effect  of  this  hormone  against  bone  loss  (Kiel  et  al.  
2008).  PBM  is  highly  regulated  by  hereditary  factors.  It  is  estimated  that  as  much  as  
80% of bone mass is determined by genes and only 20% can be explained by 
environmental factors (Howard et al. 1998, Peacock et al. 2005). Healthy life style 
factors, such as exercise, nutrition and healthy diet help in building and maintaining 
good bone health. The interaction between these lifestyle factors and genes that 
participate in bone metabolism and fracture risk determine the inter-individual 
variability of BMD. 
 
1.4. Vitamin D 
 
The human body contains approximately 1 kg of calcium, 99% of which is stored in the 
bones. Therefore a sufficient amount of calcium in needed in our diet. However, 
calcium cannot be absorbed from the gut without the help of vitamin D, a vitamin vital 
for maintaining good bone health. Vitamin D precursor 7-dehydrocholesterol is 
produced in the inner layers of the skin with the help of ultraviolet light from the sun. 
The 7-dehydrocholesterol is processed into pre-vitamin D cholecalciferol (D3), which is 
circulated in the bloodstream to the liver and finally to the kidneys where it is 
processed into calcitriol, a physiologically active form of vitamin D (Lehmann and 
Meurer 2010).  
 
In  cells  calcitriol  binds  to  the  nuclear  vitamin  D  receptor  (VDR)  and  activates  its  
function as a transcription factor (Baker et al. 1988). VDR is expressed in most tissues 
and it has numerous vital functions throughout the human body. In addition to 
regulating the intestinal calcium absorption in skeletal metabolism, it also plays an 
important role in other metabolic pathways such as the immune system, and cell 
proliferation and differentiation (Uitterlinden et al. 2004a). 
 
The amount of vitamin D processed in the skin may not alone be sufficient to maintain 
adequate calcitriol levels in the bloodstream. This is especially the case in the Nordic 
countries as the amount of sunlight is minimal during the winter months. In particular, 
people wearing clothing that covers the whole body and people with dark complexions 
are  at  a  very  high  risk  of  vitamin  D  deficiency.  Nutritional  sources  of  vitamin  D  are  
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scarce and include fish and fortified dairy products. Vitamin D supplementation is 
recommended to prevent vitamin D insufficiency. 

 

2. Bone disorders 
 
An unbalanced diet can lead to severe health problems and can also affect bone 
health. Severe vitamin D and calcium deficiency can lead to rickets, a disease 
characterized by insufficient endochondral bone mineralization, impaired bone growth 
and deformities. Rickets is a common disease in developing countries especially in 
children, but it is also seen in adults and known as osteomalacia. Insufficient vitamin D 
intake also contributes to sub-optimal bone mass development and risk of fractures 
(Lips  et  al.  2008).  Other  environmental  factors,  such  as  lack  of  physical  exercise  and  
smoking, can also affect bone health (Ducher et al. 2008, Kanis 2008). 
 
Genetic factors have an important role in the development of a large number of bone 
disorders. The etiology of some common bone diseases is multifactorial: environmental 
and lifestyle factors together with multiple genes define an individual’s risk of getting 
the disease. On the other hand, some rare skeletal disorders are inherited as 
Mendelian  traits  where  a  specific  mutation  or  mutations  in  a  single  gene  cause  the  
disease. 
 
2.1. Osteoporosis 
 
The most common bone disorder worldwide is osteoporosis. It affects millions of 
people every year and creates a major burden to the health-care system. In Finland, 
approximately 400 000 people suffer from osteoporosis and it causes 30 000 to 40 000 
osteoporotic fractures yearly. As in many developed countries, the numbers have been 
continuously  rising  as  a  consequence  of  increased  longevity  (Kiel  et  al.  2008).  In  
addition, lifestyle, nutrition and exercise habits have changed tremendously, especially 
in children, and it has been estimated that this can elevate the number of osteoporosis 
cases  in  the  future  (Harvey  et  al.  2008).  Postmenopausal  osteoporosis,  the  most  
common form of primary osteoporosis, is a multifactorial disorder as it is caused by a 
combination of genetic and environmental factors (Kiel et al. 2008). Secondary 
osteoporosis, on the other hand, is caused as a secondary effect due to various medical 
or pharmacological factors (Hamdy 2008). For example, patients with nutritional or 
gastrointestinal disorders (e.g. Crohn’s disease and celiac disease) or patients taking 
anti-cancer drugs or glucocorticoids have an increased risk of osteoporosis. 
 
WHO  defines  osteoporosis  as  BMD  or  BMC  less  than  2.5  SD  below  the  young  adult  
mean in the population (Kanis 1994). Osteoporotic bones have low bone mass and 
microarchitectural deterioration, which leads to enhanced bone fragility and increased 
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fracture risk. The majority of osteoporotic fractures occur in the wrist, hip and spine. 
(Harvey et al. 2008) 
 
In recent years, a large number of genes have been associated with osteoporosis. At 
least 15 genes can be regarded as confirmed osteoporosis genes and even more are 
considered as promising candidate genes. The number of these genes is still rising as 
new susceptibility loci are found. Interestingly, the main genes and proteins are 
clustered in the same biological pathways, one of them being the focus of this thesis, 
the Wnt/ -catenin pathway. Table 1 summarizes some of the most promising 
pathways and candidate genes. 

 
2.2. Osteogenesis Imperfecta (OI) 
 
Osteogenesis Imperfecta (OI) is one of the most extensively studied genetic bone 
disorders. The name refers to the pathological mechanism of the disease, incomplete 
formation of bone. To date, at least eight clinically different OI subtypes have been 
described and the symptoms vary even between individuals with a similar OI subtype. 
The clinical feature common to all OI patients is the fragility of bones, which usually 
leads to recurrent fractures, severe deformities and sometimes even death at early 
stages of life. Other clinical features include loose joints, short stature, respiratory and 
hearing problems, blue sclera, and dentinogenesis imperfecta (aberrant tooth 
development). It is estimated that approximately 6-7 in 100 000 people are affected by 
OI or one of its subtypes each year. In Finland there are approximately 400 patients 
with OI. 
 
Most  OI  patients  have  dominant  mutations  in  the  genes  coding  for  type  I  collagen  
(COL1A1, COL1A2), a protein essential for strengthening and supporting various tissues, 
including  bone,  cartilage  and  skin  (Rauch  and  Glorieux  2004).  In  some  rare  cases,  a  
recessive form of OI has been reported as a consequence of mutations in the CRTAP, 
LEPRE1, PPIB, SERPINH1, and FKBP10 genes encoding CRTAP, P3H1, CyPB, HSP47, and 
FKBP65 collagen-modifying enzymes or chaperon proteins (Morello et al. 2006, Cabral 
et al. 2007, van Dijk et al. 2009, Alanay et al. 2010, Christiansen et al. 2010). 
 
2.3. Osteoporosis pseudoglioma (OPPG) syndrome 
 
Osteoporosis pseudoglioma syndrome (OPPG) is a genetic disorder characterized by 
severe juvenile onset osteoporosis and congenital or early-onset visual loss. The bone 
phenotype is caused by disruption of bone mass accrual and reduced osteoblast 
proliferation during growth whereas the visual loss is caused by extensive eye 
vascularization due to disrupted macrophage function during early eye development 
(Gong et al. 2001, Kato et al. 2002). While the disease was characterized in the 1960’s 
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the causative genetic defect was not discovered until 2001 when Gong and co-workers 
showed that mutations in the LRP5 gene cause OPPG (Gong et al. 2001). 
 
Table 1. Summary of some of the most promising osteoporosis-associated genes. 

Gene Protein Status Method Ref. 

COL1A1 Type 1 collagen Confirmed CGAS+MA 1,2 
ESR1* Estrogen receptor 1 Confirmed CGAS+GWAS+MA 3-5 
ESR2* Estrogen receptor 2 Confirmed CGAS 4,6,7 
GRP177** G-protein-coupled receptor 177 Confirmed MA 5 
ITGA1 Integrin alpha 1 Confirmed CGAS+MA 8,9 
LRP4** Low-density lipoprotein receptor-

related protein 4 
Confirmed GWAS+MA 3,5 

LRP5** Low-density lipoprotein receptor-
related protein 5 

Confirmed CGAS+GWAS+MA 5,10,11 

SOST** Sclerostin Confirmed CGAS+GWAS 12,13 
SOX6 SOX transcription factor 6 Confirmed GWAS+MA 5,14 
SP7 Zink finger protein osterix Confirmed GWAS+MA 5,13 
SPP1 Secreted phosphoprotein 1 Confirmed CGAS+MA 9,15 
TNFRSF11*** Receptor activator of NF-kappa-B 

ligand (RANKL) 
Confirmed CGAS+GWAS+MA 3,5 

TNFRSF11A*** Receptor activator of NF-kappa-B 
(RANK) 

Confirmed CGAS+GWAS+MA 5,13 

TNFRSF11B*** Osteoprogerin (OPG) Confirmed CGAS+GWAS+MA 3,5,10 
VDR**** Vitamin D receptor Confirmed CGAS+GWAS+MA 3,16,17 
CTNNB1** Beta-catenin Suggestive MA 5 
FOXC2** Forkhead box C2 Suggestive CGAS+GWAS 5,18 
MARK3 Microtubule affinity-regulating 

kinase 3 
Suggestive GWAS+MA 13 

SFRP4** Secreted frizzled-related protein 4 Suggestive GWAS 19 
SPTBN1 Spectrin beta non-erythrocytic 1 Suggestive MA 5 
TGFBR3 Transforming growth factor beta 

receptor 3 
Suggestive GWAS 20 

UGT2B17* Uridine 
diphosphoglucuronosyltransferase 

Suggestive GWAS 21 

ZBTB40 Zink finger and BTB domain 
containing 40 

Suggestive GWAS+MA 3,5 

CGAS, candidate gene association study; GWAS, genome-wide association study; MA, 
meta-analysis. The corresponding pathways are marked with an asterisk: *) the 
estrogen endocrine pathway, **) the Wnt/beta-catenin signaling pathway, ***) the 
RANKL/RANK/OPG pathway, ****) the vitamin D endocrine pathway. Referred 
publications: 1) Steward et al. 2006, 2) Husted et al. 2009, 3) Styrkarsdottir et al. 2008, 
4) Wang et al. 2008, 5) Rivadeneira et al. 2009, 6) Rivadeneira et al. 2006, 7) Massart et 
al. 2009, 8) Lee et al. 2007, 9) Richards et al. 2009, 10) Richards et al. 2008, 11) van 
Meurs et al. 2008, 12) Uitterlinden et al. 2004b, 13) Styrkarsdottir et al 2009, 14) Liu et 
al. 2009, 15) Willing et al. 2003, 16) Fang et al. 2005, 17) Moffett et al. 2007, 18) 
Yamada et al. 2006, 19) Cho et al. 2009, 20) Xiong et al. 2009, 21) Yang et al. 2008. 
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OPPG is inherited as an autosomal recessive trait and is an extremely rare disorder, the 
estimated incidence being as low as 1 in 2 000 000 and the carrier frequency of 1 per 
700  (Ai  et  al.  2005a).  Estimates  from  these  numbers  suggest  that  as  many  as  7  500  
people in Finland could be LRP5 mutation carriers. Identification of these individuals is 
important since findings in several  studies suggest  a  reduced BMD in OPPG mutation 
carriers (Gong et al. 2001, Lev et al. 2003). 
 
2.4. High bone mass disorder (HBM) 
 
The autosomal dominant high bone mass (HBM) disorder was originally discovered 
through a surprising coincidence where a teenage girl from Nebraska USA survived a 
car collision without breaking a single bone. Her bones were subsequently shown to be 
about 50% more dense than normal and therefore resistant to fractures. This started 
an  intensive  study  among  the  family  as  several  family  members  were  found  to  have  
similarly increased BMD. The causative gene defect was found by genetic linkage 
studies  (Johnson  et  al.  1997,  Little  et  al.  2002,  Boyden  et  al.  2002).  Surprisingly  the  
HBM gene turned out to be LRP5, the same gene that was one year earlier associated 
with the low bone mass phenotype OPPG. 
 
2.5. Familial exudative vitreoretinopathy (FEVR) type 4 
 
Familial exudative vitreoretinopathies (FEVRs) are a diverse group of disorders 
characterized by incomplete vascularization of the retina (Benson 1995). Mutations in 
NDP, FZD4, LRP5 and TSPAN12 genes, coding for proteins in the Norrin/ -catenin 
pathway, have been reported to cause different forms of FEVR (Poulter et al. 2010). 
Autosomal  dominant  and  autosomal  recessive  forms  of  FEVR  type  4  are  caused  by  
mutations in LRP5 (Toomes  et  al.  2004).  In  addition  to  ocular  changes,  patients  with  
FEVR type 4 have reduced BMD. This has led to speculation suggesting that FEVR type 4 
and OPPG are part of a single phenotypic spectrum with both ocular and bone 
manifestations (Qin et al. 2005). 
 
2.6. Treatment possibilities for osteoporosis and other bone disorders 
 
As there is no effective treatment for most genetic bone disorders the patients are 
treated with the same drugs as osteoporosis patients. In addition to exercise and 
nutritional recommendations, there are several pharmacological agents affecting bone 
metabolism. Antiresorption drugs, such as bisphosphonates, inhibit bone resorption by 
osteoclasts whereas some anabolic agents, such as teriparatide, stimulate osteoblast 
activity, thus enhancing bone formation (Kleerekoper 2008). 
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Recent studies on inhibitory proteins of the Wnt/ -catenin signaling pathway have 
revealed potential targets for treatment of osteoporosis and other bone related 
disorders (Roux 2010). A more detailed summary of these future scenarios will be 
discussed in the next section. 
 

3. The Wnt signaling pathway 
 
The Wnt signaling pathway is one of the most extensively studied pathways in biology. 
It is the focus of a broad spectrum of research in embryogenesis, cancer research, stem 
cell studies, and bone metabolism. The Wnt signaling pathway is highly conserved 
across species and it regulates various essential cellular functions, for example 
embryonic development, homeostasis, and cell differentiation (Angers and Moon 
2009). Although the function and relevance in many of these areas is still largely 
unclear, its crucial role in bone metabolism is undeniable.  
 
The Wnt signaling pathway consists of at least four different pathways, the canonical 
pathway, the planar cell polarity (PCP) pathway, the Wnt/Ca2+ pathway, and the 
protein kinase A pathway (Semenov et al. 2007). The canonical Wnt signaling pathway, 
being the most studied one, is activated through -catenin, whereas the non-canonical 
pathways are -catenin independent. Problems in the Wnt signaling pathway, caused 
by mutations or other environmental factors, can lead to homeostatic disequilibrium, 
severe developmental abnormalities or cancer (Moon et al. 2004). 
 
3.1. Wnt proteins 
 
Wnt proteins are secreted extracellular glycoproteins that act as ligands in the Wnt 
signaling pathway. The name Wnt comes from a combination of Drosophila wingless 
(wg) and a murine int-1 proto-oncogene. To date, nineteen Wnt genes have been 
identified in the human genome. Of these, Wnt1, Wnt3A, and Wnt8 are, in the current 
understanding, the ligands that activate the canonical Wnt signaling pathway (Van 
Amerongen et al. 2008). From here onward, I will focus mainly on the canonical Wnt/ -
catenin signaling pathway. 
 
3.2. Genes in the canonical Wnt/ beta-catenin signaling pathway 
 
In the presence of Wnt ligands, the canonical Wnt/ -catenin signaling cascade is 
activated through dephosphorylation of intracellular -catenin. The Wnt ligands bind 
to the LRP5/6 and Frizzled complex located in the cell membrane. This induces a 
breakdown of the GSK-3  inhibitory complex, which in turn stabilizes -catenin and 
allows its accumulation in the cytoplasm and nucleus. In the nucleus, -catenin 
activates transcription of the desired target genes. A schematic diagram of the Wnt/ -
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catenin signaling pathway is presented in Figure 2. The main genes and protein 
complexes are described in detail below. 
 

 
Figure 2.  A schematic drawing of the Wnt/beta-catenin signaling pathway.  
A) Activation of the pathway is initiated when Wnt associates with Frizzled and LRP5/6. 
This causes activation of intracellular Dishevelled (Dsh) which, in turn, inhibits GSK3. ß-
catenin is no longer phosphorylated and is thus stabilised and translocated to the 
nucleus where it induces transcription via the TCF/LEF family of transcription factors.  
B) Inhibition of the pathway is initiated by LRP5/6 binding inhibitory proteins (DKK1 and 
SOST) or Wnt-binding proteins (sFRPs and Wif-1). For example, DKK1 interaction with 
LRP5/6 and Kremen triggers endocytosis which prevents the formation of LRP5/6–Wnt–
Frizzled complex. Axin brings together the proteins that promote ß-catenin 
phosphorylation, enabling ß-catenin degradation and inhibition of the canonical 
pathway. 

 
3.2.1. LRP5/6 and Frizzled complex 
 
Frizzled proteins were the first identified receptors shown to interact with the Wnt 
ligands  (Bhanot  et  al.  1996).  Structurally,  Frizzled  is  a  membrane  protein  with  seven  
transmembrane loops and a cytoplasmic tail. In the extracellular amino-terminus, 
Frizzled has a cysteine-rich binding site for Wnts. Wnt ligands, together with Frizzled, 
bind to a specific domain of LRP5/6, activating signal transduction (Figure 2A). 
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LDL receptor-related proteins 5 and 6 (LRP5 and LRP6) are single-pass transmembrane 
proteins with 71% homology. The extracellular part of these proteins is comprised of 
four repeating epidermal growth factor (EGF) repeats and YWTD propeller domains, 
which serve as a binding site for the Wnts. In the intracellular C-terminus, they have 
several PPPS-motifs, which are phosphorylated by GSK-3  after Wnt activation. In 
addition, cytoplasmic proteins Dishevelled and Axin are required for this 
phosphorylation, which in turn deactivates the GSK-3  complex and stabilizes -
catenin (Figure 2A). 
 
3.2.2. GSK-3beta complex 
 
The  key  components  of  the  GSK-3  complex  are  the  following  proteins:  glycogen  
synthase kinase GSK-3  (GSK3), adenomatous polyposis coli protein (APC), casein 
kinase 1 alpha (CK1a), and Axin. Of these, GSK3 and CK1a have a phosphorylating 
kinase activity, which is active in the absence of Wnt proteins. During this period, the 
cytoplasmic -catenin is phosphorylated and transported to the proteasome complex 
for degradation (Figure 2B). This degradation continues constantly until Wnt proteins 
activate the signaling cascade and demolish the GSK-3  complex. 
 
The genes coding for these GSK-3  complex proteins have been widely studied because 
of their role in the development of some cancer types. For example, mutations in the 
APC gene,  also  known  for  its  role  as  a  tumor  suppressor  gene,  can  cause  colorectal  
cancer (Morin et al. 1997). More recently, an interesting link was proposed between 
increased GSK3 activity and common diseases such as Alzheimer’s disease and diabetes 
(De Ferrari & Inestrosa 2000, Kaidanovich & Eldar-Finkelman 2002). 
  
3.2.3. Beta-catenin and TCF/LEF1 complex 
 

-catenin (armadillo in Drosophila) is encoded by the CTNNB1 gene and it has a central 
role in the canonical Wnt signaling pathway. The breakdown of the GSK-3  complex in 
the presence of Wnt proteins dephosphorylates and activates the cytoplasmic -
catenin. It then accumulates to the nucleus and binds to specific transcription factors 
initiating the transcription of Wnt target genes (Figure 2A). 
 
The lymphoid enhancer-binding factor 1 (LEF1) and T-cell specific transcription factors 
(TCF) form a family of DNA binding transcription factors that, together with -catenin, 
activate a number of Wnt target genes. Many of these genes have been identified 
through experimental approaches and most of them have a role in development or 
tumorigenesis. 
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As  with  the  GSK-3  complex,  defects  in  the  -catenin  signaling  or  TCF/LEF1  complex  
can lead to severe outcomes. The CTNNB1 gene can function as an oncogene, as 
mutations in CTNNB1 can increase -catenin production and cause cancer (Morin et al. 
1997, Moon et al. 2004). Interestingly, common polymorphisms in one of the TCF 
family genes, TCF7L2, were associated with type 2 diabetes (Grant et al. 2006). 
 
3.3. Inhibition of the canonical Wnt/ beta-catenin signaling 
 
Excess activation of the canonical Wnt signaling is prevented by various extracellular 
inhibitory proteins. Dickkopfs (DKK) and sclerostin (SOST) bind to the Wnt binding 
domain of LRP5/6, preventing Wnts from activating the signaling (Figure 2B). On the 
other hand, secreted frizzled related proteins (sFRPs) and Wnt inhibitory factor (Wif-1) 
bind directly to Wnt ligands and prevent their binding to the receptor (Figure 2B). The 
presence of these inhibitory proteins and the knowledge about Wnt signaling in various 
disorders has introduced a promising platform for potential treatment modalities 
against these illnesses. The main inhibitory proteins and their role as possible 
therapeutic agents in various diseases are discussed next in detail. 
 
3.3.1. Dickkopf (DKK1) 
 
In the human genome, the Dickkopf (DKK) family consists of four members, DKK1, 
DKK2, DKK3, and DKK4. Of these, DKK1 is probably the most extensively studied and it 
functions as a negative regulator of the canonical Wnt signaling. DKK1 is expressed in 
various neural and mesenchymal tissues during embryonic development and it has a 
central role in head development (Glinka et al. 1998). In adult tissues it is expressed in 
osteoblasts  and  osteocytes  and  therefore  has  an  important  role  also  in  bone  
metabolism  (Zhang  et  al.  2004).  Recent  studies  have  shown  that  over-expression  of  
DKK1 in transgenic mice results in decreased bone mass through reduced numbers of 
osteoblasts  (Li  et  al.  2006).  On  the  other  hand,  heterozygous  Dkk1+/- deficient mice 
have increased bone formation and bone mass (Morvan et al. 2006). 
 
DKK1  is  a  soluble  protein  that  binds  to  the  LRP5/6  receptor  together  with  a  protein  
called  Kremen  (Mao  et  al.  2002).  This  protein  complex  is  removed  from  the  plasma  
membrane by endocytosis, preventing Wnt ligand binding (Figure 2B). It is speculated 
that this process disrupts the dephosphorylation of -catenin through Axin malfunction 
and that way inhibits the Wnt signaling (Kawano and Kypta 2003). 
 
Recent studies have reported DKK1 as a potential target in the development of drugs 
against  myeloma  (Yaccoby  et  al.  2007).  A  DKK1  binding  antibody  was  shown  to  
decrease bone resorption and increase BMD in mice with induced myeloma, suggesting 
a significant anabolic effect on bone. 
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3.3.2. Secreted Frizzled related proteins (sFRPs) 
 
Secreted Frizzled related proteins (sFRPs) are a diverse group of proteins that block the 
Wnt signaling by binding to Wnt proteins and preventing them from interacting with 
Frizzled (Figure 2B). As in Frizzled, the sFRPs have a cysteine rich domain which is likely 
to  serve  as  the  binding  site  for  Wnts.  This  domain  might  also  interact  with  itself  and  
form a non-functional complex with Frizzled (Bafico et al. 1999). 
 
Possible therapeutic approaches against altered bone metabolism might emerge from 
studies with sFRPs, as some of them contribute to the development of skeleton and 
bone formation. In addition, the Wnt binding approach has shown to be promising as 
antibodies against Wnt-1 and Wnt-2 induced apoptosis in human cancer cells (He et al. 
2004, You et al. 2004). 
 
3.3.3. Sclerostin 
 
Sclerostin is a soluble protein which regulates bone mass by inhibiting Wnt signaling. It 
binds to the extracellular domain of LRP5/6 and disrupts Frizzled/LRP complex 
formation (Figure 2B) (Semenov et al. 2005). Sclerostin is encoded by the SOST gene, 
which is mutated in sclerosteosis and Van Buchem disease (Balemans et al. 2001 and 
2002). Sclerostosis is an autosomal recessive disorder caused by a loss-of-function 
mutation in SOST and is characterized by dramatically increased bone density 
(Balemans et al. 2001). Van Buchem disease resembles sclerostosis, but is clinically less 
severe. It is caused by a large homozygous deletion in the regulatory area required for 
transcription of SOST (Balemans et al. 2002). SOST is expressed in osteoblasts and 
osteocytes and mice over-expressing SOST show severe bone loss, indicating an 
important role for SOST in bone homeostasis (Winkler et al. 2003). 
 
The high bone mass phenotype in patients with sclerosteosis and Van Buchem disease, 
together with experiments in mice, strongly support the idea that interfering with 
SOST/LRP binding might be a potential strategy when developing treatment for 
osteoporosis and other low bone mass phenotypes. In fact, studies on rodents and 
monkeys treated with an anti-sclerostin antibody resulted in increased bone formation, 
bone  mass  and  bone  strength  (Li  et  al.  2009,  Eddleston  et  al.  2009,  Ominsky  et  al.  
2010). 
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4. Low-density lipoprotein receptor-related protein 5 (LRP5) 
 
4.1. LRP5 genomic structure and homology 
 
Human LRP5 spans  approximately  136  kb  on  the  long  arm  of  chromosome  11  at  
position 11q13.4. The gene consists of 23 exons with flanking 5’ and 3’ UTR regions and 
the total length of the transcript is 5124 basepairs. The translation initiation codon ATG 
is located in the first exon.  
 
The LRP5 protein is fairly homologous among species. LRP5 has an amino acid similarity 
of 99.7% with chimpanzee (Pan troglodytes), 95.0% with rat (Rattus norvegicus), 94.3% 
with mouse (Mus musculus), 76.4% with zebrafish (Danio rerio), and 46.1% with fruit fly 
(Drosophila melanogaster). Interestingly, no similarity to human LRP5 is found in dogs 
(Canis familiaris), pigs (Sus scrofa), or worms (Caenorhabditis elegans).  
 
4.2. LRP5 protein structure and expression  
 
LRP5 consists of 1615 amino acids. After protein synthesis, LRP5 is folded in the ER and 
transported to the cell membrane with the help of chaperone protein MESD (Culi et al. 
2003,  Hsieh  et  al.  2003,  Culi  et  al.  2004).  LRP5  is  embedded  in  the  membrane  with  
most of its structure in the extracellular matrix (Figure 3). This extracellular part is 
responsible for Wnt/Frizzled complex binding, whereas the cytoplasmic tail is involved 
in GSK-3  complex inactivation. Figure 3 illustrates the different LRP5 domains and 
their functions. 
 

 
 
Figure 3. A schematic diagram of LRP5 and its functional domains. An N-terminal signal 
peptide is followed by four alternating epidermal growth factor (EGF) and YWTD 
propeller domains and three cysteine-rich LDL domains. The transmembrane domain is 
followed by a short intra-cellular domain. 
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LRP5  expression  is  detected  in  a  variety  of  human  tissues,  with  the  highest  level  of  
expression in the liver hepatocytes and adrenal gland cortex (Dong et al. 1998, Hey et 
al. 1998, Kim et al. 1998). LRP5 is also expressed in the pancreatic beta cells and 
involved in the glucose-induced insulin secretion of the pancreatic islets (Figueroa et al. 
2000, Fujino 2003). Looking at the expression levels in bone tissues, LRP5 is found in 
osteoblasts  and  osteocytes,  but  not  in  osteoclasts  (Babij  et  al.  2003,  Spencer  et  al.  
2006). 
 
4.3. LRP5 mutations and polymorphic variation in bone 
 
LRP5 was originally discovered when searching for candidate genes causing type 1 
diabetes (Hey et al. 1998). In 2001, Gong and co-workers (Gong et al. 2001) found that 
loss-of-function mutations in LRP5 cause OPPG, the autosomal recessive disorder 
described in Section 2. Surprisingly, a year later two individual research groups 
reported mutations in this same gene in patients with HBM, a disorder with a bone 
phenotype totally opposite to that seen in OPPG (Little et al. 2002, Boyden et al. 2002). 
In 2004, mutations in LRP5 were found in patients with FEVR, a disorder characterized 
with retinal abnormalities and low BMD (Toomes et al. 2004). 
 
4.3.1. OPPG mutations 
 
The reported OPPG-associated LRP5 mutations are scattered throughout the gene with 
no clustering to any specific regions or domains. With only a few exceptions, they are 
missense mutations, affecting only one amino acid of the protein. 
 
OPPG patients, homozygous or compound heterozygous for LRP5 mutations, are blind 
and have extremely low BMD. Signal transduction assays on cell cultures have shown 
that these LRP5 mutations  disrupt  the  Wnt  and  Norrin  signal  transduction  (Ai  et  al.  
2005a). Studies on mice have revealed that disruption of LRP5 results  in  a  similar  
phenotype as seen in OPPG patients. Lrp5-/- mice have a low bone mass phenotype, 
which develops after birth as a secondary effect due to reduced osteoblast 
proliferation and function (Kato et al. 2002). These mice also undergo extensive 
postnatal vascularisation of the eye, causing a similar eye phenotype as seen in OPPG 
patients. 
 
Interestingly, not only the OPPG patients but also the obligate mutation carriers, for 
example the parents of OPPG patients, have a reduced BMD (Gong et al. 2001, Lev et 
al.  2003).  This  is  also  seen  in  the  mouse  model,  as  Lrp5+/- mice have a mild delay of 
osteogenesis and eventually a lower BMD than their wild type (WT) littermates (Kato et 
al. 2002, Holmen et al. 2004). No defects in the vascularisation of the eye have been 
reported in these Lrp5+/- mice (Kato et al. 2002). 
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4.3.2. HBM mutations 
 
All HBM mutations published to date are located in the first -propeller domain of 
LRP5, suggesting the importance of this domain in the regulation of bone metabolism. 
The p.G171V mutation, reported in several HBM patients, is fairly well characterized 
and its role in preventing the binding of Dkk1 inhibitor protein to LRP5 has been 
proposed (Boyden et al. 2002). This in turn might activate Wnt/ -catenin signaling 
continuously and thus elevate bone density. Zhang and co-workers (2004) presented 
an alternative mechanism for the HBM phenotype. The p.G171V mutation was shown 
not to directly alter the binding of Dkk1 but to interfere with the interaction of LRP5 
and its chaperone protein MESD, resulting in disruption of LRP5 transportation to the 
cell membrane and thereby reducing the number of targets for Dkk1 inhibition (Zhang 
et al. 2004). 
 
4.3.3. LRP5 polymorphic variation 
 
To date, almost 800 polymorphic variations have been identified in LRP5 and 27 of 
these are located in the coding sequence (SNPper, http://snpper.chip.org). Many of 
these have shown association with BMD and other bone parameters in several 
individual studies (Ferrari et al. 2004, Koay et al. 2004, Mizuguchi et al. 2004, Urano et 
al. 2004, Koller et al. 2005, Brixen et al. 2007, Ezura et al. 2007, Giroux et al. 2007, Koay 
et al. 2007, Grundberg et al. 2008, Sims et al. 2008, Urano et al. 2009, van Meurs et al. 
2008). Recent genome-wide association (GWA) studies and meta-analyses have further 
elucidated the importance of these variations on BMD (Richards et al. 2008, Tran et al. 
2008, Richards et al. 2009, Rivadeneira et al. 2009, Zhang et al. 2009). 
 

5. Human sequence variation 
 
The phenotypic differencies seen between individuals are a result of sequence 
variation in their genomes. A majority of this variation is due to variation in single 
nucleotide polymorphisms (SNPs), whereas the rest is attributable to insertions or 
deletions, copy number variations (CNVs), microsatellites or other tandem repeats, and 
other chromosomal rearrangements (Sachidanandam et al. 2001, Stankiewicz and 
Lupski 2010).  
 
The current (September 2010) version of the NCBI dbSNP database human build 131 
contains over 20 million reference (rs) SNPs (http://www.ncbi.nlm.nih.gov/snp/). 
Recent studies on CNVs have revealed the importance of these variants on genetic 
variation and disease (Zhang et al. 2009). To date, almost 60 000 CNVs have been 
identified according to the Database of Genomic Variants 
(http://projects.tcag.ca/variation) and the number will probably increase as new 
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sequence data emerge. The challenge in most, if not all genetic research projects, is to 
find and identify the right pathogenic variants and mutations from this enormous 
amount of genetic variation. The number of reported mutations underlying or 
associated with human disease has exceeded 100 000 in the public databases (Cooper 
et al. 2010). In addition, recent GWA studies have produced over 650 publications 
showing  association  with  over  3  000  SNPs  and  human  diseases  
(http://www.genome.gov/gwastudies/). It is important to remember that each person 
carries approximately 250 to 300 loss-of-function variants in annotated genes and 50 
to 100 variants previously reported in inherited disorders (The 1000 Genomes Project 
Consortium 2010). 
 
5.1. Mutation types 
 
Mutations  can  be  divided  into  several  groups  according  to  their  different  effects  on  
protein function.  
 
Missense mutations are nucleotide substitutions that result in a change of the amino 
acid sequence. They are often difficult to distinguish from normal polymorphic 
variations. Pathogenic, i.e. disease-causing missense mutations, are often located in 
evolutionally conserved regions in functionally significant amino acid regions. They can 
modify the protein function by changing its chemical properties and affecting protein 
folding.  
 
Nonsense mutations introduce a premature translation-termination codon that 
disrupts the protein synthesis. This usually leads to the degradation of the newly-
formed transcript through a process called nonsense-mediated mRNA decay (NMD) 
(Brogna and Wen 2009). In some rare cases the transcript escapes this degradation and 
a truncated protein is produced (Khajavi et al. 2006). For example, if the mutation is 
located downstream from the last exon junction complex, the NMD-complex does not 
form (Nagy and Maquat 1998). 
 
In addition to missense and nonsense mutations, a third mutation type affecting only 
one  nucleotide  is  the  silent mutation.  It  occurs  in  the  third  position  of  a  codon  but  
does not change the amino acid sequence. Silent mutations have long been thought as 
non-effective, but in some cases they have been shown to have an effect on RNA 
processing and splicing (Cooper and Mattox 1997, Chao et al. 2001). 
 
Splicing mutations are nucleotide changes located in the conserved motifs of the exon-
intron boundaries or in the branch sites inside exons (Cartegni et al. 2002). Changes in 
these regions may, for example, disrupt the exon splicing completely or partially, 
activate cryptic splice sites, or interfere with the normal splicing of splice variants. 
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Abnormal splicing can disrupt the reading frame and therefore cause a premature 
translation-termination codon which in turn leads to NMD. 
 
Deletions, insertions and duplications of one or more nucleotides usually lead to NMD 
as the reading frame is disrupted and a premature translation-termination codon is 
produced. If the aberration length is divisible by three nucleotides, i.e. one or more 
codons, the reading frame is maintained and the protein might be produced normally. 
Large deletions, duplications, triplications, insertions, and other genomic 
rearrangements can all result in CNVs (Stankiewicz  and  Lupski  2010).  The  CNVs  are  
partly responsible for the evolution and diversity between individuals but they can also 
predispose to common complex traits such as Alzheimer disease and autism (Rovelet-
Recrux et al. 2006, Sebat et al. 2007). 
 

6. Identification of disease-causing mutations and predisposing variants 
 
6.1. Association analyses 
 
During the past ten years, advances in microarray technology have provided cost-
effective and fast ways for analysis of genetic variation. SNPs and CNVs can be analyzed 
at very large scales using various assays including allele-specific hybridization and DNA 
polymerase- and ligase-assisted genotyping (Syvänen 2005). Even the whole genome 
can be sequenced at a relatively robust and easily implemented manner, although the 
costs and computational capacity required are still significant. 
 
In  association  studies,  the  polymorphisms  of  interest  are  usually  common  in  the  
population and therefore a clear association between the phenotype and genotype 
cannot be made without a large scale analysis. It is estimated that a conventional SNP 
association  study  needs  a  sample  size  of  2  000  cases  and  2  000  controls  to  give  
sufficient power to detect the associated common variants (Spencer et al. 2009). In the 
future, even whole-genome sequencing studies will be carried out with very large 
sample  sizes  as  in  GWA  studies,  but  in  the  meantime  it  is  important  to  focus  on  
methods  that  are  optimized  to  detect  the  role  of  causal  genomic  variants  in  smaller  
sample sizes (Cirulli and Goldstein 2010).   
 
6.2. Mutation analyses 
 
Mutations  are  often  screened  at  a  smaller  scale  of  samples  from  patients,  family  
members and controls. Probably the most common method is the direct sequencing of 
PCR amplified genes. Several other methods for mutation screening have also been 
developed, including denaturing high-performance liquid chromatography (DHPLC) 
(Xiao and Oefner 2001) and multiplex ligation-dependent probe amplification (MLPA) 
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(den Dunnen and White 2006). The most recent application for mutation screening is 
array-based exome sequencing (Ng et al. 2009). This method provides a cost-effective 
and sensitive identification of genetic variants located in the protein-coding regions of 
individual genomes.  

 
When looking for disease-causing mutations it is important to distinguish them from 
the numerous normal polymorphic variants located in the human genome. Nonsense 
and splicing variants are usually mutations, as they rarely occur in healthy subjects, but 
missense mutations can be difficult to distinguish from SNPs. The absence of a 
variation from more than 200 individuals of the same ethnic group as the patient 
usually excludes the possibility of a common polymorphism (Antonarakis and Cooper 
2001). Disease-causing mutations are usually very rare when compared to common 
polymorphic  variants,  but  it  is  important  to  note  that  a  rare  variant  is  not  always  a  
mutation. Results from recent studies suggest that some common diseases and 
unfavourable traits, such as colorectal cancer and low plasma HDL cholesterol levels, 
are caused by a combination of multiple rare genetic variants (Bodmer and Bonilla 
2008). Therefore, the analysis of control samples is mandatory in all mutation analyses. 
 
6.3. Functional analyses 
 
Mutation screening and identification is the first step in the process of identification of 
causative genes and mutations in various human disorders. To understand the 
molecular mechanisms of genes and their protein products and the way these are 
changed in the presence of a pathogenic mutation, a series of functional analyses are 
needed. 
 
Web resources provide useful programs that can give helpful information when 
determining gene function and predicting the effects of mutations. These in silico 
programs usually provide plenty of data that can be overwhelming and sometimes 
even give contradictory results. Among the most useful programs are sequence 
alignment programs such as BLAST (http://www.ncbi.nlm.nih.gov/BLAST) and BLAT 
(http://genome.ucsc.edu/chi-bin/hgBlat). These provide information about similarities 
between sequences in the same or different species. This can be helpful, for example, 
when characterizing pathogenic genetic variants, because if located in conserved 
regions they are more likely to be disease-causing (Mooney and Klein 2002). Moreover, 
web-based programs such as SIFT (http://sift.jcvi.org) and PolyPhen 
(http://genetics.bwh.harvard.edu/pph) are used to predict the effects of identified 
sequence variants. In addition, the 3D structure of proteins can be calculated with 
complex algorithms and this can give further clues about the protein function (Sanchez 
et al. 2000). 
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If the gene and its protein product are already characterized, functional assays in cell 
cultures can be useful methods. The intracellular localization of wild type and mutated 
proteins can be monitored in cells over-expressing the desired proteins. In addition, 
protein-protein interactions can be studied with numerous different assays, such as co-
immunoprecipitation of protein complexes and phage display. 
 
The disease pathogenesis and the function of pathogenic mutations can also be studied 
using  genetically  modified  animal  models.  Mouse  (Mus musculus) is  the  most  
commonly used model organism for studying human biology and diseases (Bult et al. 
2008). Rat (Rattus norvegicus) is another mammalian organism commonly used, and 
non-mammalian models, such as round worm (Caenorhabditis elegans), fruit fly 
(Drosophila melanogaster), and zebrafish (Danio rerio) are also frequently used. These 
model organisms are genetically modified to study the biomechanical mechanisms of 
human diseases. The creation and maintenance of these animal models is expensive 
and time consuming. However, these models are valuable tools when assessing gene 
therapy or pharmacological therapies for patients.  
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AIMS OF THE STUDY 
 
Prior  to this  thesis  work,  the LRP5 gene had been identified and characterized as the 
causative gene for osteoporosis pseudoglioma syndrome (OPPG) and high bone mass 
disorder (HBM). A few papers, describing the association of LRP5 polymorphisms with 
bone mineral density, had already been published, and during the course of the study 
several other LRP5 association studies were published. The present study was aimed to 
identify novel LRP5 variations and to study their association with different clinical 
characteristics. 
 
The following specific aims were set for the study: 
 
1. To determine the role of LRP5 variation in peak bone mass (PBM) attainment. 
2. To screen LRP5 mutations in Finnish OPPG patients and their family members and 

to characterize their association with the clinical phenotype. 
3. To determine if LRP5 variation contributes to the susceptibility of childhood 

fractures. 
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MATERIALS AND METHODS 
 

1. Patients and controls 
 
1.1. Consent and ethics committee permissions 
 
Informed written consent was obtained from all patients and healthy controls studied. 
The studies on Finnish army recruits, osteoporosis pseudoglioma families, and children 
with recurrent fractures were approved by the Research Ethics Committee of Helsinki 
University Hospital. The study on children with premature adrenarche was approved by 
the Ethics Committee of Kuopio University Hospital. 
 
1.2. Finnish army recruits 
 
Study I comprised 185 healthy male conscripts from the Finnish army and 50 men of 
the same age who had postponed their military service for reasons unrelated to health. 
These 235 men, aged 18.3 to 20.6 years, were part of a larger epidemiological study 
aimed at elucidating the role of genes, hormones, and life style factors as determinants 
of peak bone mass (PBM), and studying the effect of exercise on bone mass during 
military service. 
 
1.3. Patients with premature adrenarche (PA) 
 
Altogether 170 Finnish children, living in the area of the Kuopio University Hospital 
district,  took  part  in  Study  II.  Of  these,  73  children  (63  girls  and  10  boys)  had  clear  
clinical signs of adrenarche before the age of 8 years in girls and 9 years in boys. 
Tumors and endocrine disorders were excluded biochemically and by abdominal 
ultrasound. In addition, 97 age- and gender-matched children (79 girls and 18 boys) 
were identified from the Finnish population register and included in the study as 
healthy controls. 
 
1.4. Osteoporosis pseudoglioma patients and family members 
 
Members of a three-generation Finnish family were included in Study III. Clinical 
findings for two of the family members had been described in 1988 by Somer and co-
workers  (Figure  4)  (Somer  et  al.  1988).  These  two  OPPG  patients  had  typical  clinical  
findings; they both were blind and had severe osteoporosis with multiple compression 
fractures. The causative LRP5 mutation, homozygous p.R570W, underlying their 
symptoms was discovered in the first genetic study describing LRP5 mutations (Gong et 
al 2001). In the beginning of our study, relatives of these two OPPG patients were 
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contacted and asked if they were willing to participate in further studies. Twenty eight 
family members agreed. Data on their previous medical history were collected, they 
were clinically assessed, blood samples were obtained for DNA and blood 
biochemistry, and the skeletal phenotype was determined by DXA and radiography. 
 

 
 
Figure 4. A schematic pedigree showing two OPPG patients and their close family 
members included in the original study by Somer and co-workers (1988). Reproduced 
from Somer et al. (1988) with permission from the BMJ Publishing Group Ltd.  
 
In addition to the large Finnish family, fourteen unrelated individuals from Orton 
Orthopaedic Hospital (Helsinki, Finland) were screened for LRP5 mutations as part of 
their osteoporosis assessment. 
 
1.5. Children with recurrent fractures 
 
The participants for Study IV were recruited from a cohort of children who were 
treated for an acute fracture at the Hospital for Children and Adolescents, University of 
Helsinki, during a 12-month study period in 2005-2006. For the present study all those 
children aged from 4 to 16 years were recruited who had experienced: 
 
1) at least two low-energy long bone fractures before the age of 10 year, or 
2) at least three low-energy long bone fractures before the age of 16 years, or 
3) had sustained at least one low-energy vertebral fracture.   
 
Children with chronic illness affecting the bone or with features suggestive of 
osteogenesis imperfecta (OI) or OPPG were excluded from the study. Of the 1390 
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children with a fracture during the study period, 72 (5.2%) fulfilled the criteria and 66 
(92%)  of  them  were  willing  to  participate.  A  thorough  clinical  assessment  and  DNA  
analysis were performed on those children and their parents, who had a potentially 
significant LRP5 variation. 
 
1.6. Control samples 
 
The controls used in Studies III and IV were unrelated Finnish Caucasian samples from 
the Finnish Red Cross Blood Transfusion Service and other unrelated healthy subjects 
of Finnish origin. 
 

2. Methods 

 
The clinical, radiological, and biochemical studies performed to determine the 
phenotype of the study subjects are summarized in Table 2 and described in detail in 
the original publications I-IV. The methods used in the genetic studies are summarized 
in Table 3. 
 
Table 2.  Clinical, radiological, and biochemical studies performed in this thesis.  

Method Original publication 

Clinical assessment and biochemistry I, II, III, IV 
DNA analysis I, II, III, IV 
Glucose metabolism II, III 
Lipid profile II, III 
Radiography, ultrasound, and bone densitometry  I, III, IV 
Opthalmology III 

 
 

2.1. Clinical assessment and biochemistry (I, II, III, IV) 
 
The study subjects were clinically assessed (Studies II, III and IV); anthropometry 
(Studies I, II, III, and IV) and pubertal stage according to Tanner (Studies II and IV) were 
determined. Blood and urine samples were obtained for parameters of calcium 
homeostasis and bone turnover markers, including serum/plasma calcium (Study IV), 
phosphate (Study IV), alkaline phosphatase (Study IV), 25-hydroxyvitamin D (25-OHD) 
(Studies I and IV), parathyroid hormone (PTH) (Studies I and IV), type I procollagen 
aminoterminal propeptide (PINP) (Studies I and III), total osteocalcin (TOC) (Study I), 
carboxylated osteocalcin (COC) (Study I), tartrate-resistant acid phosphatase 5b 
(TRACP5b) (Study I), and urinary type I collagen aminoterminal telopeptide (NTX) 
(Studies I and III). Serum cortisol, dehydroepiandrosterone sulphate (DHEAS), 
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dehydroepiandrosterone (DHEA), androstenedione, and sex hormone binding globulin 
(SHBG)  were  used  to  assess  adrenal  function  (Study  II).  Serotonin  (5-
hydroxytryptamine, 5-HT) was determined in subjects participating in Study III. 
 
2.2. Glucose metabolism and lipid profile measurements (II, III) 
 
Plasma glucose, serum insulin, and C-peptide concentrations were measured to 
evaluate glucose tolerance and insulin secretion. An oral glucose tolerance test (OGTT) 
was performed after an overnight fast. For the evaluation of insulin sensitivity, 
homeostasis model assessment for insulin resistance (HOMA-IR) was calculated. 
Specific methods and reference values are described in the original publications (II and 
III). 
 
Total plasma cholesterol, low-density lipoprotein (LDL) and high-density lipoprotein 
(HDL) cholesterol and triglycerides were analyzed after an overnight fast with 
enzymatic methods. Specific methods and reference values are described in the 
original publications (II and III). 
 
2.3. Radiography, ultrasound, and BMD measurements (I, III, IV) 
 
Anterior-posterior  and  lateral  radiographs  of  the  thoracic  and  lumbar  spine  were  
obtained  to  identify  vertebral  compression  fractures.  X-ray  examination  was  used  to  
confirm stress fractures in Study I, and fractures and bone age in Study IV. In Study I, 
stiffness of the bone was calculated using broadband ultrasound attenuation (BUA) 
and speed of sound (SOS) measurements of the heel. BMC and BMD for the lumbar 
spine, femoral neck, proximal femur, and whole body were measured with dual-energy 
X-ray absorptiometry (DXA) (Studies I, III, and IV). 
 
2.4. Opthalmological measurements (III) 
 
Study subjects with heterozygous LRP5 mutations (Study III) were examined for visual 
acuity, refraction, and ocular abnormalities. Vitreous and retina were evaluated after 
papillary dilatation and abnormal findings were recorded with a Panoret 1000 wide-
angle digital fundus camera (Medibell Medical Vision Technologies Ltd, Valley Stream, 
NY, USA). 
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Table 3. Methods used in the genetic studies of this thesis. 

Method Original publication 

Agarose gel electrophoresis I, II, III, IV, U 
Cell culture III, U 
DNA isolation and purification III, IV, U 
DNA sequencing I, II, III, IV, U 
Immunofluorescence microscopy U 
Immunofluorescence staining U 
In silico sequence analysis I, II, III, IV, U 
Multiplex ligation-dependent probe amplification (MLPA) U 
Polymerase chain reaction (PCR) I, II, III, IV, U 
Recombinant DNA techniques (cloning) III, U 
Restriction analysis III, U 
Site-directed mutagenesis III, U 
TaqMan SNP genotyping I 
Transient transfections III, U 
Wnt/ -catenin signaling assays III 

 
2.5. DNA isolation and purification (III, IV, U) 
 
Genomic DNA was extracted according to manufacturer’s instructions from peripheral 
blood (Puregene DNA Purification kit, Gentra Systems, Minneapolis, MN, USA) or saliva 
(Oragene, DNA Genotek Inc., Ontario, Canada). DNA concentration and purity were 
measured using a standard spectrophotometer or NanoDrop ND-1000 (Thermo Fisher 
Scientific, Waltham, MA, USA). 
 
2.6. Amplification and sequencing (I, II, III, IV, U) 
 
Genomic DNA was amplified via polymerase chain reaction (PCR) with standard 
methods. PCR and sequencing primers were generated using Primer3 
(http://frodo.wi.mit.edu/primer3), Repeat Masker (http://www.repeatmasker.org), 
and UCSC Blat (http://genome.ucsc.edu/). Primers were designed to amplify all 23 
exons and exon-intron boundaries and flanking 3’ and 5’UTR regions of the LRP5 gene. 
PCR products were purified enzymatically using ExoSAP-IT (USB, Cleveland, OH, USA), 
labeled with BigDye Terminator v3.1 Cycle Sequencing Kit (Applied Biosystems, Foster 
City, CA, USA), and then sequenced with ABI 3730 DNA analyzer (Applied Biosystems).  

 
2.7. Sequence analysis and predictions (I, II, III, IV, U) 
 
Sequences were analyzed using BioEdit (Ibis Therapeutics, Carlsbad, CA, USA) and 
Sequencher 4.7 (Gene Codes Corporation, Ann Arbor, MI, USA). Web-based tools Sift 
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(http://sift.jcvi.org), PolyPhen (http://genetics.bwh.harvard.edu/pph), and ESEfinder 
2.0 (http://rulai.cshl.edu/tools/ESE2) were used to predict the effects of identified 
LRP5 sequence variants. 
 
2.8. Restriction analysis (III, U) 
 
The identified OPPG mutations p.R570W and p.R1036Q were screened in family 
members and controls using restriction enzyme digestion of PCR-amplified DNA. Exons 
8 and 14, respectively, were amplified from genomic DNA and then digested using 
BsrBI (for p.R570W) or HpaII (for p.R1036Q) restriction enzymes (New England Biolabs, 
Ipswich, MA, USA). Digested PCR products were run on a 2% agarose gel and visualized 
with ethidium bromide under UV light. 

 
2.9. TaqMan SNP genotyping assays (I) 
 
TaqMan SNP genotyping assay was used to detect three LRP5 polymorphisms: p.Q89R, 
p.F549F, and p.V667M. Samples in a 384-well PCR plate were amplified with specific 
TaqMan primers and probes provided by Applied Biosystems. SNP detection and allelic 
discrimination was performed using ABI Prism 7900HT Sequence Detection System 
(SDS, Applied Biosystems). 
 
2.10. Cell lines (III, U) 
 
Commercially available cell lines of human cervical cancer cells (HeLa), human 
embryonic kidney cells (HEK-293T), and African green monkey kidney cells (COS-1) 
from the American Type Culture Collection (ATCC) were used in the Wnt/ -catenin 
signaling assays (III) and immunofluorescent LRP5 trafficking assays (U). 
 
2.11. Mutagenesis and transfections (III, U) 
 
The  wild  type  (WT)  and/or  mutant  vectors  were  introduced  to  HeLa,  HEK-293T,  and  
COS-1 cells using FuGENE 6 (Roche Diagnostics, Mannheim, Germany) or Lipofectamine 
LTX PLUS (Invitrogen, Carlsbad, CA, USA) transfection reagents. 
 
For mutagenesis, QuickChangeTM Site-Directed Mutagenesis Kit (Stratagene, La Jolla, 
CA, USA) was used to introduce identified sequence variants into the vector. The 
pcDNA3.1(-) expression vector, containing the full length WT human LRP5 cDNA, was 
kindly  provided  by  Dr.  Matthew  Warman.  In  order  to  verify  correct  changes,  inserts  
were sequenced with specific exonic primers (primer design and sequencing were 
performed as described previously). 
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2.12. Wnt/beta-catenin signaling assays (III) 
 
In order to study the role of the identified sequence variants on LRP5 signal 
transduction we performed a series of Wnt/ -catenin signaling assays, described 
earlier by Ai and co-workers in 2005. Expression constructs Wnt1-v5, Topflash, pRL-TK, 
and MESD-C2, together with WT and/or mutant LRP5 in pcDNA3.1 were transfected 
into HEK293T cells  with FuGENE 6.  If  needed,  -galactosidase (LacZ)  in  pcDNA3.1 was 
used to ensure equal amounts of DNA in each transfection. After 30 hours, cells were 
lysed  and  Firefly  (from  Topflash)  and  Renilla  (from  pRL-TK)  luciferase  activities  were  
measured using the Dual Luciferace Assay Kit (Promega, Madison, WI, USA) and Wallac 
Victor 1420 luminometer (Perkin Elmer, Waltham, MA, USA).  
 
The WT LRP5 in pcDNA3.1 and the expression constructs Wnt1-v5, Topflash, pRL-TK, 
and MESD-C2 were all kindly provided by Dr. Matthew Warman and his co-workers. 
 
2.13. Immunofluorescence staining and visualization of transfected cells (U) 
 
In order to study the role of the identified sequence variants on LRP5 localization and 
transport to the cell membrane, we performed a series of immunofluorescent assays. 
HeLa, HEK-293T, and COS-1 cells were transfected with WT or mutant Myc-tagged LRP5 
in pcDNA3.1, MESD-C2, and RAP expression constructs using FuGENE 6 or 
Lipofectamine LTX with PLUS reagent. Transfection efficiency was tested using a GFP-
tagged Cystatin B expression construct. Confluent cells growing in cover slips were 
treated with cyclohexamide 2 hours prior to fixation to stop the biosynthesis of 
proteins. Fixation of the cells was performed using 4% paraformaldehyde (PFA) or -
20°C methanol (MeOH). PFA fixed cells were permeabilized with 0.1% Triton-X-100 in 
phosphate buffered saline (PBS). Cells were then blocked with 0.2% bovine serum 
albumin (BSA) or 10% fetal calf serum (FCS) in PBS. Stainings were performed using the 
following primary and secondary antibodies: mouse anti-c-Myc (Santa Cruz 
Biotechnology, Santa Cruz, CA, USA), rabbit anti-pan-Cadherin (Zymed laboratories, San 
Francisco, CA, USA), Alexa Fluor® 594 donkey anti-mouse (Invitrogen), and Alexa Fluor® 
488 donkey anti-rabbit (Invitrogen). Nuclear staining was performed using DAPI or 
Hoechst. Stained cells were visualized with a Zeiss Axioplan 2 microscope and digital 
camera, and Axiovision 3.1 software. 
 
2.14. Multiplex ligation-dependent probe amplification (MLPA) (U) 
 
We used multiplex ligation-dependent probe amplification (MLPA) to look for possible 
exonic amplifications and deletions in DNA samples of the 66 children with recurrent 
fractures (Study IV). The Salsa MLPA P285-A1 LRP5 probemix (MRC-Holland, 
Amsterdam, The Netherlands) contained 38 specific probes for each of the 23 exons for 
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LRP5 and each of the 4 exons of DKK1. Furthermore, an additional probe for the LRP5 
p.G171V HBM mutation, located in exon 3, was included. Each probe had a unique 
“stuffer” sequence of variable length so that they could be distinguished from each 
other using electrophoresis.  
 
Denaturated  genomic  DNA  was  first  hybridized  with  the  probe  mix  for  16-18  hours.  
Hybridized probe pairs were then ligated and amplified via PCR. PCR products, with 
sizes ranging from 136 to 436 nucleotides, were then separated with an ABI 3730 DNA 
Analyzer (Applied Biosystems) and fragment sizes were determined using GeneMapper 
v4.0 (Applied Biosystems). The eventual MLPA data was normalized and analyzed using 
Coffalyser software (MRC-Holland). 
 
2.15. Statistical analyses (I, II, III, IV) 
 
Statistical analyses were performed using the Statistical Package for Social Sciences for 
Windows 14.0 or 17.0 (SPSS Inc., Chicago, IL, USA) and SAS® System version 8.02 for 
Windows (SAS Institute Inc., Cary, NC, USA). Fisher’s exact tests, Student’s T-tests, and 
Mann Whitney U tests were used to test differences between genotype and phenotype 
groups, as appropriate. In Study I, the association analyses were performed with a one-
way analysis of variance (unadjusted analysis) and a multiple regression model using 
life style factors (age, height, weight, smoking, exercise, alcohol, and calcium intake) as 
adjusting factors. A p-value less than 0.05 was considered statistically significant. Chi-
square ( 2) tests were used to calculate Hardy-Weinberg equilibrium. Linkage 
disequilibrium (LD) was analyzed with HaploView 3.2 or 4.0. 
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RESULTS AND DISCUSSION 
 

All the LRP5 variants found during the course of this thesis are listed in Table 4. The 
corresponding locations of the exonic variants in the LRP5 protein domains are 
presented in Figure 5. The characterization and role of these variants in different 
clinical entities and the relevance of these results in a larger context will be discussed 
in detail in the following sections. 

 
Figure 5. A  schematic  drawing  of  the  LRP5  protein  and  the  location  of  all  exonic  
variants found in Studies I-IV. The polymorphic variants are depicted on the right side of 
the protein and the three OPPG related LRP5 missense mutations are marked on the left 
of the protein structure. 



R E S U L T S  A N D  D I S C U S S I O N  | 41 
 

1. Genetic variation in LRP5 and skeletal characteristics 
 
The low BMD seen in OPPG patients and the high bone mass phenotype seen in HBM 
patients are due to mutations in the LRP5 gene (Gong et al. 2001, Little et al. 2002, 
Boyden et al. 2002). In addition, several common polymorphisms in the LRP5 gene 
have been associated with low BMD, suggesting an important role for this gene in 
normal bone development. Moreover, studies on LRP5 deficient mice (Lrp5-/-) have 
further demonstrated that LRP5 and its homologue LRP6 have important roles in bone 
development  (Holmen  et  al.  2004).  The  biological  mechanism  causing  the  abnormal  
bone phenotype in these mice and in human patients is thought to be due to the 
reduction of signal transduction of the Wnt/ -catenin signaling pathway (Ai et al. 
2005a), although alternative pathways have also been suggested (Yadav and Ducy 
2010). Encouraged by these previous studies, we decided to examine the role of LRP5 
genetic variation on different clinical bone characteristics in several Finnish cohorts. 
 
1.1.  Polymorphic LRP5 variations are associated with low peak bone mass (I) 
 
The influence of common LRP5 polymorphisms on normal variation in BMD was 
demonstrated quite soon after the original discovery of OPPG associated mutations in 
LRP5 (Ferrari  et  al.  2004,  Koay  et  al.  2004,  Mizuguchi  et  al.  2004,  Urano  et  al.  2004,  
Bollerslev et al. 2005, Zhang et al. 2005). These studies were mainly performed using 
samples from post-menopausal women, although in some cases samples from men 
were also used (Ferrari et al. 2004, Koh et al. 2004). Nevertheless, the role of these 
variants  on  bone  mass  accrual  and  development  of  peak  bone  mass  (PBM)  in  early  
adolescence remained unclear. 
 
In our study we searched for exonic LRP5 variants  in  DNA  samples  from  235  Finnish  
men  aged  18  to  20  years,  i.e.  the  age  when  BMD  is  the  highest  (PBM).  These  men  
underwent a series of clinical assessments including bone mineral density 
measurement by DXA. The aim of this study was to identify LRP5 variants that would 
associate with low BMD. Since PBM is an important determinant of BMD later in life, 
the identification of these variants would be important. 
 
For  the analysis,  we selected 10 polymorphic  LRP5 variants that had been associated 
with variation in BMD in previous studies (Van Wesenbeeck et al. 2003, Ferrari et al. 
2004,  Koay  et  al.  2004,  Mizuguchi  et  al.  2004,  Ferrari  et  al.  2005,  Koller  et  al.  2005,  
Zhang et al. 2005, van Meurs et al. 2006). These variants were spread throughout the 
gene; eight were located in exons and two were in introns in the immediate vicinity of 
the exon-intron boundaries. One of the alterations, p.Q89R in exon 2, was not found in 
any of the study subjects. However, the remaining nine variants were identified and  
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Table 4. Summary of all the LRP5 variants found in Studies I-IV. The three putative 
mutations described in Study III are marked in bold. 

Exon/ 
Intron 

Base change Amino acid 
change 

Thesis 
study 

Previously associated 
with 

Exon 2 c.266A>G p.Q89R II BMD1-3 

hypertension4 

osteoarthritis5 

Exon 3 c.518C>T p.T173M IV  FEVR6 

Intron 4 c.844-4C>T  II   

Exon 5 c.1002G>A p.R334R IV   

Exon 6 c.1264G>T p.A422S IV   

Intron 6 c.1412+8G>A  I, II   

Exon 8 c.1647C>T p.F549F I, II, IV  BMD7 

Exon 8 c.1708C>T p.R570W III OPPG8 

Exon 9 c.1932G>A p.E644E I, II, IV  BMD7 

Exon 9 c.1999G>A p.V667M I, II, IV  BMC/BMD8-10 
idiopathic osteoporosis11 
PBM12 

Exon 10 c.2220C>T p.N740N I, II, IV  BMD2,3,13,14 

Exon 10 c.2241G>A p.L747L IV  

Intron 11 c.2318+6T>C  I, II   

Exon 12 c.2773C>T p.R925C III  

Exon 14 c.3107G>A p.R1036Q III  juvenile osteoporosis15 

Exon 15 c.3297C>T p.D1099D I, IV   

Exon 15 c.3357C>T p.V1119V I, II, IV  BMC/BMD14,16 
osteoporotic fractures16 

Exon 16 c.3564G>A p.R1188R II, IV  

Exon 17 c.3723A>G p.P1241P II  

Exon 18 c.3989C>T p.A1330V I, II, IV  BMD9,13,17-21 
blood pressure22 
C-peptide and proinsulin 
levels23 
hypercholesterolaemia24 
idiopathic osteoporosis11 
PBM12 
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Exon 19 c.4089C>T p.D1363D II  

Exon 21 c.4380C>T p.S1460S II, IV   

Exon 21 c.4405G>A p.G1469R II, IV   

Exon 21 c.4431C>T p.H1477H II  

Exon 22 c.4574C>T p.A1525V II, IV  osteoblast 
differentiation25 

Exon 23 c.4788C>T p.T1596T II  

3’UTR ex23+4C>T  II   

BMC, bone mineral content; BMD, bone mineral density; FEVR, familial exudative 
vitreoretinopathy; PBM, peak bone mass; SNP, single nucleotide polymorphism. 
Mutations and polymorphic SNPs are numbered using the nucleotide (NM_002335) and 
protein (NP_002326) sequences according to the official Mutation Nomenclature 
Guidelines (http://www.hgvs.org/mutnomen). Referred publications: 1) Koh et al. 2004, 
2) Zhang et al. 2005, 3) Lau et al. 2006, 4) Suwazono et al. 2000b), 5) Urano et al. 2007, 
6) Toomes et al. 2004, 7) Utriainen et al. 2009, 8) Gong et al. 2001, 9) Giroux et al. 
2007, 10) Grundberg et al. 2008, 11) Ferrari et al. 2005, 12) Brixen et al. 2007, 13) 
Mizuguchi et al. 2004, 14) Koay et al. 2007, 15) Hartikka et al. 2005, 16) Bollerslev et al. 
2005, 17) van Meurs et al. 2006, 18) Ezura et al. 2007, 19) Kruk et al. 2009, 20) Lee et 
al. 2009, 21) Urano et al. 2009, 22) Suwazono et al. 2006c, 23) Bendlova et al. 2008, 24) 
Suwazono et al. 2000a, 25) Guo et al. 2007. 
 
the allelic distributions in the study subjects were in line with those expected under 
Hardy-Weinberg equilibrium. 
 
Combining the genetic and clinical data revealed significant association between the 
p.A1330V variant and several bone parameters (Table 5). Individuals with the p.A1330V 
variant  (n=20)  had  significantly  lower  BMD  and  BMC  values  in  the  femoral  neck,  
trochanter, and lumbar spine compared to individuals without p.A1330V (n=215). In 
addition, the total hip BMD and BMC and bone strength and elasticity, measured from 
the  heel,  were  significantly  lower  in  those  with  the  p.A1330V  variant.  No  significant  
association with bone parameters was seen with the remaining eight LRP5 variants. 

 
The p.A1330V variant is located in exon 18, a region encoding the second LDL-domain 
of the LRP5 protein. Although the function of this domain is unclear, some predictions 
can be made according to its homology with other LDL domains in other proteins. For 
example,  similar  LDL  domains  in  the  LDL  receptor  are  involved  in  the  binding  of  
lipoprotein particles (Hey et al 1998, Gent and Braakman 2004). The LDL receptor 
regulates blood cholesterol levels through this lipoprotein uptake, and mutations in the 
LDLR gene cause familial hypercholesterolaemia (Gent and Braakman 2004). The 
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results from our study and from other subsequent studies show that the p.A1330V 
variant in LRP5 also associates with low BMD, indicating that this variant might alter 
LRP5 signal transduction, possibly by decreasing the binding capacity of extra-cellular 
Wnt ligands or inhibitory proteins. 
 
Table 5. Skeletal findings in the study subjects with and without the A1330V variant. 
Mean values after adjusting for life style factors (age, weight, height, exercise, 
smoking, calcium and alcohol intake) are shown. 

 Ala/Ala (n=215) Ala/Val (n=20) P 

Lumbar spine BMC (g) 61.2 58.1 0.10 
Lumbar spine scan area (cm2) 49.2 48.6 0.52 
Lumbar spine BMD (g/cm2) 1.241 1.185 0.047 
Femoral neck BMC (g) 6.47 6.07 0.043 
Femoral neck scan area (cm2) 5.44 5.49 0.51 
Femoral neck BMD (g/cm2) 1.189 1.104 0.0082 
Trochanter BMC (g) 14.8 13.2 0.014 
Trochanter BMD (g/cm2) 0.984 0.912 0.016 
Total hip BMC (g) 42.9 39.4 0.0068 
Total hip BMD (g/cm2) 1.186 1.104 0.0089 
BUA (dB/MHz) 79.5 75.4 0.23 
SOS (m/s) 1560 1547 0.035 

BMC; bone mineral content; BMD, bone mineral density; BUA, broadband ultrasound 
attenuation; SOS, speed of sound. 
 
Our study consisted of a relatively small number (n=235) of samples, which may have 
prevented us from observing associations between some of the variants and bone 
mass. As all the LRP5 variants tested in this study had shown association with BMD in 
previous studies, the fact that only one of these variants showed a significant 
association with low BMD in our study was probably due to the small sample size or 
cohort characteristics as many of the previous studies have assessed only elderly 
subjects and mostly women. However, our finding is in line with results from several 
other studies, confirming the association between the p.A1330V variant and low BMD 
(Van  Wesenbeeck  et  al.  2003,  Ferrari  et  al.  2004,  Koay  et  al.  2004,  Mizuguchi  et  al.  
2004, Ferrari et al. 2005, Koller et al. 2005, Zhang et al. 2005, van Meurs et al. 2006, 
Giroux  et  al.  2007,  Urano  et  al.  2009).  For  example,  in  a  cohort  of  6373  men  and  
women, aged over 55 years, the p.A1330V variant associated with decreased BMD at 
the lumbar spine and femoral neck (van Meurs et al. 2006). Interestingly, the 
association was more prominent in men than in women.  Furthermore, a large study 
(n=5144) on pre-  and post-menopausal  women 25 to 91 years  of  age showed a clear  
association between low BMD and the p.A1330V and p.V667M variants (Giroux et al. 
2007). Interestingly, the BMD values were even lower in individuals with both of these 
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variants. In another study the p.V667M variant, but not p.A1330V, was associated with 
various bone characteristics (Ferrari et al. 2004). This study was performed in a cohort 
of  164 men and 200 women under 57 years,  and thus it  is  likely  that  the association 
with p.A1330V remained unclear because of the small study sample size.  
 
As studies with small sample size often have insufficient statistical power to detect 
associations, meta-analyses provide more statistical power by pooling the results from 
different studies. The results from our study were used in a comparative meta-analysis 
that included data from seven different publications concerning the association 
between the LRP5 p.A1330V variant and BMD (Lee et al. 2009). The results showed a 
clear association between p.A1330V and low BMD. Finally, data from three 
independent meta-analyses and large scale GWA studies highlighted p.A1330V, among 
many other alterations, as an important genomic variant contributing to BMD (Tran et 
al. 2008, Richards et al. 2009, Zhang et al. 2009). 
 
To conclude, our study of 235 Finnish young men showed an association between the 
p.A1330V variant in LRP5 and low BMD. This is parallel to the results seen in several 
other association studies. Most importantly, our results indicate the importance of 
LRP5 in the acquisition of PBM, a determinant of BMD in later life. 
 
1.2. The role of LRP5 variation in childhood fractures (IV, U) 
 
Low BMD and previous fractures can predispose to new fractures. Although fractures 
are  very  common  in  children,  recurrent  fractures  may  be  a  sign  of  primary  or  
secondary osteoporosis. Primary forms of osteoporosis are rare in children and usually 
caused by heritable disorders affecting the connective tissue. The most common of 
these  is  osteogenesis  imperfecta  (OI).  A  common  polymorphic  variation  in  the  LRP5 
gene has been shown to associate with osteoporotic fractures in men and women aged 
over 60 years (Richards et al. 2008). In addition, heterozygous mutations in LRP5 have 
been found in three children with primary osteoporosis, characterized by reduced BMD 
and/or increased tendency to fracture (Hartikka et al. 2005). These results inspired us 
to study the role of common polymorphic LRP5 variants in childhood fractures. Our aim 
was to study whether these variants were over-represented in a cohort of 66 Finnish 
children with recurrent fractures. 
 
Clinical assessments and data from questionnaires revealed that these 66 children had 
sustained altogether over two hundred fractures ranging from one spinal compression 
fracture  to  seven  long  bone  fractures  (Table  6).  Spinal  radiographs  showed  
compression fractures in eleven patients. Sequencing of the exons and exon-intron 
boundaries of LRP5 revealed 15 exonic variants in 22 (22/66; 33%) children (Table 4). 
Intronic variants were found in most of the samples but these were not included in 
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further studies. Of the 15 exonic variants, seven were regarded as common 
polymorphisms and were considered non-significant. The remaining eight variants 
were rare (seen in less than 1.5% of the control samples) and were therefore included 
in the final study. Four of these variants (p.T173M, p.A422S, p.G1469R, and p.A1525V) 
resulted in an amino acid substitution and four (p.R334R, p.L747L, p.R1188R, and 
p.S1460S) were silent changes. According to the SIFT and PolyPhen programs, only one 
of the missense variants (p.G1469R) was predicted to be possibly damaging to  protein 
function. 
 
Table 6. Clinical characteristics of the 66 fracture prone children. 

Characteristic  

N 66 
Age, mean ±SD (years) 10.7 ± 3.0 
Sex, males 45 (68%) 
Height (Z-score), mean SD 0.7 ± 1.0 
Height adjusted weight (%), mean SD 0.84 ± 1.7 
BMI (kg/m2) 18.9 ± 3.3 
BMD (Z-score)  
     Lumbar spine -0.5 ± 1.0 
     Femoral neck -0.1 ± 0.9 
     Whole body -0.1 ± 0.9 
Fractures, no of patients  
     Low-energy vertebral fracture 11 (17%) 
     Clavicle fractures 17 (26%) 
     Upper limb fractures 58 (89%) 
     Lower limb fractures 19 (29%) 
     0-1 fractures 9 (14%) 
     2-3 fractures 40 (61%) 
     4 or more fractures 17 (26%) 

BMD, bone mineral density; BMI, body mass index. 
 
The above-mentioned eight LRP5 variants were identified in nine children (Table 7). 
These children and the remaining 57 children with recurrent fractures did not differ in 
age, sex, or number of fractures. However, clavicle fractures were more prevalent in 
this group (56% vs. 21%). A tendency towards younger age at first fracture (median 2.0 
years vs. 5.0 years) was also seen. Despite the high number of fractures, the DXA 
measurements showed no clear signs of reduced BMD in these children. Instead, most 
(8/9) had BMD Z-scores within the normal range. This indicates that the fractures 
might be due to impaired bone quality, not quantity.   
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Table 7. Clinical characteristics of the 9 fracture prone children with rare LRP5 variants. 

Patient 
no 

Amino acid change Sex Age Lumbar spine 
BMD (Z-score) 

No of fractures 

#1 p.T173M M 15 -0.4 3 
#2 p.A422S F 6 -2.8 2 
#3 p.R1188R F 9 -1.3 2 
#4 p.S1460S M 6 -0.1 7 
#5 p.S1460S M 13 -0.5 4 
#6 p.G1469R M 15 -0.2 4 
#7 p.G1469R M 8 -1.1 2 
#8 p.A1525V F 7 -1.0 2 
#9 p.R334R and p.L747L M 7 +0.9 2 

BMD, bone mineral density; F, female; M, male. 
 
The role of these eight variants on BMD and susceptibility to fractures was further 
studied within the individual families. Parents from 8/9 families were willing to 
participate in these studies. Clinical assessments of the parents revealed no clear 
correlation between the genotypes and the phenotypes. Contrary what had been 
expected, the BMD values in some families seemed to be even higher in those parents 
with the corresponding variant.  
 
Although the number of children with fractures in the beginning of this study was 
relatively high (n=1390), the number of children with recurrent fractures who fulfilled 
the inclusion criteria (n=72; 5.2%) and were willing to participate in the study was low 
(n=66; 4.7%). Therefore, the association analyses with common LRP5 variants did not 
have enough power to reach statistical significance. However, the p.V667M, p.N740N, 
and p.A1330V variants seemed to be slightly more common in patients than in controls 
(4.5% vs. 2.6%, 10.6% vs. 7.2%, and 10.6% vs. 8.5%, respectively). Instead, we 
concentrated our studies on the rare variants. Comparison of the clinical data between 
fracture prone children with and without the rare LRP5 variants and results from the 
genotype-phenotype assessments of individual families let us conclude that the rare 
LRP5 variants identified in this study are unlikely to be the definite cause of fractures in 
these children. However, the specific role of these variants remained unclear and they 
may, together with other genetic or environmental factors, predispose to fractures. It 
is not unreasonable to believe that the predisposition to fractures comes through a 
combination of several predisposing SNPs, rather than through just one SNP alone. 
Interestingly, studies on Lrp5 and Lrp6 deficient mice have shown that introduction of 
an inactivating mutation to Lrp6 further reduces BMD in the Lrp5 deficient mice, 
suggesting an overlapping role of these genes during bone mass accrual (Holmen et al. 
2004).  
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1.2.1. MLPA analysis (U) 
 
To date, only a few studies have reported intragenic exon-spanning deletions within 
the LRP5 gene (Chung et al. 2009, Narumi et al. 2010). However, this could be due only 
to the commonly used PCR-based mutation detection methods with genomic DNA, as 
these usually cannot detect exonic deletions. As RT-PCR and MLPA-based methods 
become more commonly used the characterization of novel LRP5 exonic  deletions  is  
likely to occur. Consequently, it has been estimated that intragenic deletions would 
account approximately 5% of the LRP5 mutations (Chung et al. 2009). As sequencing of 
the LRP5 gene  did  not  reveal  any  clear  mutations  in  the  66  children  with  recurrent  
fractures, we decided to search for possible exonic deletions or amplifications in LRP5 
using MLPA. 
 
Analyses  performed  with  a  commercially  available  MLPA  kit,  containing  probes  for  
exons in LRP5 and DKK1, did not detect any exonic deletions. However, in nine samples 
a possible duplication of LRP5 exon  18  was  detected.  Several  PCR  primer  pairs  were  
generated to detect and characterize this in genomic DNA. Unfortunately, these 
attempts failed and we could not confirm the existence of these aberrations. As RNA 
samples were not available from the studied children, we could not use RT-PCR-based 
methods. Another method, such as the high-density oligonucleotide-based array 
comparative genomic hybridization (aCGH) assay used in the work by Narumi and co-
workers (2010), would be needed to verify and characterize the possible duplications.  
 
In conclusion, mutations and exonic deletions in LRP5 are not frequent alterations 
underlying recurrent fractures in children. Further studies in larger cohorts and 
extended pedigrees are needed to evaluate the effect of common and rare LRP5 
variants on childhood fractures. The role and existence of exonic amplifications in LRP5 
will need to be verified in further studies.  
 
1.3. LRP5 mutations in the Finnish OPPG family (III, U) 
 
The first publication showing the association between OPPG and the LRP5 gene 
described mutations in 17 OPPG patients in 12 families (Gong et al. 2001). One of these 
families was of Finnish origin and included two siblings with OPPG. The putative LRP5 
mutation in these patients was found to be a homozygous C to T transition (c.1708C>T) 
in exon 8, changing the corresponding amino acid from arginine to tryptophan 
(p.R570W).  The  original  study  by  Somer  and  co-workers  (1988)  described  the  clinical  
features of these two patients but also stated that several other family members 
showed signs of bone and eye involvement. The finding of the disease-causing LRP5 
mutation in this family encouraged us to contact more family members in the hope of 
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finding previously unknown OPPG patients and the obligate OPPG mutation carriers 
and to assess the clinical phenotype of these individuals more thoroughly.  
 
The  two  OPPG  patients  and  28  of  their  close  relatives  were  willing  to  participate  in  
further genetic and clinical studies. One additional individual with severe primary 
osteoporosis and an identified LRP5 mutation was invited to participate. Sequencing of 
the 23 exons with corresponding exon-intron boundaries and the flanking 5’ and 3’ UTR 
regions of LRP5 revealed two different missense mutations in the OPPG family (Figure 
6). The previously reported p.R570W mutation was found in nine individuals; in a 
homozygous state in the sib pair with the OPPG diagnosis and in a heterozygous state 
in seven family members. Surprisingly, another missense mutation (c.3107G>A, 
p.R1036Q) located in exon 14 was found in a heterozygous state in four individuals; 
one of these was a compound heterozygote for p.R570W and p.R1036Q. No LRP5 
mutations were found in the remaining eighteen family members. The additional 
individual with severe osteoporosis had a novel heterozygous missense mutation 
(c.2773C>T, p.R925C) located in exon 12. 
 

 
 
Figure 6. The large nine-generation Finnish family with OPPG-associated LRP5 
mutations. The individuals participating in the current study and the corresponding 
genotypes (homozygous vs, heterozygous) are marked. The two original OPPG patients 
homozygous for R570W are indicated with an asterisk. 
 
The two previously diagnosed OPPG patients with a homozygous p.R570W mutation 
had a typical OPPG phenotype. Both patients had severe osteoporosis with multiple 
compression fractures and they had both been blind since early childhood. The skeletal 
measurements showed clear signs of osteoporosis (Table 8). Their BMD T-score values 
were -5.4 and -3.3 in the lumbar spine and -5.8 and -2.1 in the femoral neck, 
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respectively. No accurate BMD measurements were available for the compound 
heterozygote for p.R570W and p.R1036Q. However, clinical records showed that she 
had severe osteoporosis and multiple compression fractures. Interestingly, she did not 
have the typical eye phenotype seen in OPPG patients but had normal vision. 
 
Identification of the ten heterozygous LRP5 mutation carriers gave us a unique 
opportunity to perform a systematic analysis of the bone phenotype in LRP5 mutation 
carriers (Table 8). Our studies revealed that LRP5 mutations, even in a heterozygous 
state, have an effect on BMD. Moreover, we were the first group to demonstrate the 
high number of spinal compression fractures in these mutation carriers. Bone density 
measurements revealed that the mean BMD T-score and Z-score values in mutation 
carriers  (lumbar  spine  -2.4  and  -0.9,  femoral  neck  -2.1  and  -0.8)  were  significantly  
lower than those seen in the mutation negative individuals (lumbar spine -0.2 and +0.4, 
femoral neck -0.3 and +0.8). In addition, spinal compression fractures were more 
common in mutation carriers (7/9; 78%) than in the individuals with no mutations 
(3/18; 17%). 
 
Table 8. Skeletal findings in patients with LRP5 mutations. 

Patient 
no 

   Fractures BMD (lumbar spine) 

Age Sex Genotype Peripheral Spinal T-score Z-score 

#1 58 F R570W / R570W >3 Multiple -5.4 -4.1 
#2 52 M R570W / R570W 2 Multiple -3.3 -2.9 
#3 15 F R570W / WT 1 No -0.3 -0.3 
#4 19 F R570W / WT 0 No -0.7 -0.7 
#5 72 F R570W / WT 1 Multiple -4.3 -2.1 
#6 67 F R570W / WT 3 Multiple -2.7 -0.7 
#7 60 M R570W / WT 5 Multiple -2.5 -1.8 
#8 57 M R570W / WT 3 One -2.2 -1.7 
#9 58 M R1036Q / WT 0 One -1.5 -1.0 
#10 59 F R1036Q / WT 1 One -3.4 -2.0 
#11 60 F R1036Q / WT 0 NA -1.4 +0.1 
#12 85 F R570W / R1036Q 4 Multiple NA NA 
#13 69 F R925C / WT 2 Multiple -2.0 +0.2 

BMD, bone mineral density; F, female; M, male; NA, data not available; WT, wild type 
 

The results from our study with heterozygous LRP5 mutation carriers are concordant 
with those seen in previous studies. The significance of the LRP5 mutations in the 
OPPG mutation carriers was already noticed in the publication of Gong and co-workers 
(2001). They reported that OPPG mutation carriers had reduced bone mass when 
compared to age- and gender-matched controls. These findings were apparent also in 
several subsequent studies, showing reduced BMD and primary osteoporosis in LRP5 
mutation carriers (Lev et al. 2003, Crabbe et al. 2005, Hartikka et al. 2005). However, 
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our study was the first to describe an extensive and detailed clinical analysis of these 
individuals and to show that the carriers not only have reduced bone mass but often 
severe symptomatic osteoporosis that requires treatment.  
 
As missense mutations can be difficult to distinguish from normal polymorphic 
variation, supporting in vitro and in silico data is usually needed. The three missense 
mutations identified in the present study are likely to be disease-causing for a number 
of reasons. First, these sequence alterations were not present in any of the 478 control 
samples of Finnish origin. Second, all three nucleotide changes alter amino acid 
residues that are highly conserved across species. And thirdly, these amino acid 
alterations  are  predicted  to  affect  the  protein  function  when  using  algorithms  from  
web-based SIFT and PolyPhen programs. 
 
The three missense mutations are located in different parts of the LRP5 protein; 
p.R570W in the second YWTD-propeller, p.R925C in the third EGF-domain, and 
p.R1036Q in the fourth YWTD-propeller (Figure 5). The role of these domains on LRP5 
function is not clearly understood and therefore the exact consequences of these 
mutations on LRP5 function cannot be predicted. The reported OPPG-associated LRP5 
mutations have been located along the entire gene with no recognizable hot spot 
areas, suggesting that mutations in any or all domains result in the same phenotype. 
However, the interesting finding that one of our study subjects in the large Finnish 
family was compound heterozygote for p.R570W and p.R1036Q but completely lacked 
the eye phenotype typical for OPPG patients raises the question about the importance 
of different LPR5 domains on ocular function. A patient with an autosomal recessive 
FEVR, characterized by ocular abnormalities, has been reported to have the p.R570Q 
mutation in LRP5 (Jiao  et  al.  2004).  This  mutation  is  located  in  the  same  amino  acid  
residue as the p.R570W mutation found in our study and therefore highlights the 
importance  of  this  functional  domain  for  the  development  of  the  eye  phenotype  in  
OPPG  and  FEVR.  On  the  other  hand,  the  location  of  the  p.R1036Q  mutation  in  the  
fourth YWTD-propeller suggests that this domain might be crucial for the bone 
phenotype but not for the eye phenotype. In addition, the Wnt/Frizzled complex binds 
to the same domain where p.R570W and p.R925C are located suggesting an 
explanation for the bone phenotype in these patients. In contrast, the role of EGF-
domains in LRP5 is poorly understood and the p.R925C mutation located in this domain 
and the severity of the patient’s phenotype, especially as she is a heterozygote 
mutation carrier, raises the question about the importance of this EGF-domain. Based 
on predicted 3D LRP5 protein crystal structure, most OPPG-associated LRP5 mutations 
occur in the core of the protein and are likely to cause destabilization in protein folding 
(Toomes et al. 2004). In addition, those mutations located in the surface area of YWTD- 
and EGF-domains of LRP5 might disrupt functionally important protein-protein 
interactions (Toomes et al. 2004). 



52 | R E S U L T S  A N D  D I S C U S S I O N  
 

1.3.1. Wnt/ beta-catenin signaling assays (III) 
 
To further characterize the role of p.R570W, p.R925C and p.R1036Q mutations on LRP5 
function, we performed Wnt signaling assays to test the effect of these mutations on 
Wnt signal transduction. This was measured using a luciferase based reporter assay 
described previously by Ai and co-workers (2005). HEK293T cells were transfected with 
wild type or mutated LRP5 constructs according to the patient and carrier genotypes: 
R570W/R570W, R570W/R1036Q, R570W/WT, R925C/WT, and R1036Q/WT. In 
addition, R925C/R925C and R1036Q/R1036Q genotypes were generated although 
these were not seen in any of the study subjects. 

 
Figure 7. Luciferase activities from the Wnt/beta-catenin signal transduction assays in 
HEK293T cells expressing WT or mutant constructs. 
 
The Wnt/ -catenin signal transduction was significantly reduced only in cells 
transfected with vector combinations mimicking homozygous and compound 
heterozygous genotypes for p.R570W and p.R1036Q mutations (Figure 7). Signal 
transduction was completely lost in the case of homozygous p.R570W, but only slightly 
reduced in the case of homozygous p.R1036Q. The R570W/R1036Q genotype, as seen 
in the compound heterozygote patient, resulted in signal transduction intermediate to 
WT and homozygous p.R570W. Co-transfection of WT and mutant constructs, 
mimicking a heterozygous state, resulted in signal transduction levels equal to those 
seen  with  WT  LRP5.  Somewhat  surprisingly,  the  p.R925C  mutation  did  not  alter  the  
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signal transduction, suggesting an alternative pathological mechanism for this 
mutation. This also implies that in addition to reduced signal transduction, other 
pathomechanisms can also affect the skeletal phenotype. 
 
Our results from the Wnt/ -catenin signal transduction assays are in accordance with 
the results reported in the paper by Ai and co-workers (2005). Notably, the reduced 
signal transduction capacity of the p.R570W mutation resembles that seen with the 
FEVR associated p.R570Q mutation, located in the same amino acid residue (Ai et al. 
2005).   
 
1.3.2. Immunofluorescent LRP5 trafficking assays (U) 
 
The post-translational modification, trafficking, and localization of OPPG- and HBM-
associated LRP5 mutations  have  previously  been  studied  using  vectors  that  over-
express a truncated form of LRP5 protein lacking the transmembrane and cytoplasmic 
domains (Ai et al. 2005a and 2005b). In order to study the effect of the identified LRP5 
mutations on the subcellular trafficking and localization of corresponding proteins we 
performed a series of immunofluorescent assays. Instead of using the truncated forms 
of LRP5 we used myc-tagged LRP5 constructs expressing a full-length protein and 
monitored their subcellular localization using an anti-myc antibody.   
 
We performed a series of transfections with WT and mutant constructs in different cell 
lines and made numerous different immunofluorescence stainings in order to obtain 
reliable and repeatable results. However, the transfection efficiency of the 
experiments was unexpectedly low, especially when compared to the GFP control. The 
few transfected cells over-expressing the WT LRP5 protein showed LRP5 localization in 
the plasma membrane as expected. Our experiments with the mutated LPR5 
constructs, however, resulted in no or weak fluorescent signal. As the number of 
transfected cells was low, we could not get conclusive evidence for different sub-
cellular localization of WT and mutant proteins. In light of previous studies this would 
have been anticipated, as the truncated mutant LRP5 proteins, although normally post-
translationally modified, have been shown to traffic less efficiently to the plasma 
membrane than the WT LRP5 (Ai ei al. 2005). 
 
Our problems with these experiments might be due to several reasons. Microscopic 
visualization of the transfected cells showed morphological changes and protein 
aggregates indicating a level of stress when culturing the cells. It is thus possible that 
over-expression of the constructs lead to abnormal folding and aggregation of the LRP5 
protein and, eventually, to breakdown of the cell. This hypothesis would explain the 
low transfection efficiency seen in the experiments. Truncated forms of LRP5 should be 
used in future trafficking assays as has been reported in previous protocols. 
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1.4. LRP5 and serotonin (III) 
 
Recent studies have revealed an unexpected connection between the bone and the 
gut, as LRP5 was  suggested  to  be  responsible  for  the  regulation  of  bone  formation  
through a gut-derived serotonin (Yadav et al. 2008). LRP5 deficient mice (Lrp5-/-) were 
shown to have elevated serum serotonin levels and this was also seen in three OPPG 
patients with homozygous LRP5 mutations and in one obligate OPPG mutation carrier 
(Yadav et al. 2008). Encouraged by these findings, we measured serum serotonin levels 
from stored blood samples obtained from our Finnish OPPG patients and their family 
members. 
 

 
Figure 8. Serum serotonin concentrations in 17 subjects with and without LRP5 
mutations. The light grey bars represent the heterozygote mutation carriers. 
 
Serum serotonin levels were measured in 17 subjects of whom one was homozygous 
for the p.R570W mutation, nine were OPPG mutation carriers (heterozygous for 
p.R570W, p.R1036Q or p.R925C), and seven were mutation negative individuals. There 
was  notable  variation  in  the  measured  serotonin  levels  between  the  samples,  but  a  
clear trend towards higher serotonin concentrations in the mutation positive 
individuals was seen (Figure 8). In the OPPG patient homozygous for the p.R570W 
mutation  the  serum  serotonin  concentration  was  1016  nmol/l,  whereas  the  level  in  
mutation negative individuals was 109-776 nmol/l. The OPPG mutation carriers’ serum 
serotonin levels settled between the previous two groups (380-1091 nmol/l) as 
expected. No clear correlation between the serotonin levels and BMD values of 
individuals was seen. 
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The serum serotonin levels differed quite substantially between individuals with the 
same genotype. The differences might be due to long storage of the blood samples, 
differences in the uniformity of sample preparations, or normal variability in serotonin 
concentrations over time. The latter is the most likely explanation as some variability of 
serotonin levels was also seen in the three OPPG patients described in the paper by 
Yadav and co-workers (2008).  
 
Mödder and co-workers (2010) performed a population-based study on 275 women 
and noticed that peripheral serum serotonin levels are inversely associated with 
numerous BMD values and structural parameters. In our study we could not detect a 
clear correlation between serum serotonin levels and BMD values, but this was 
probably due to small sample size and therefore lack of statistical power. 
 
To understand the role of gut-derived serotonin and LRP5 on bone formation, Yadav 
and co-workers (2008) performed a series of experiments and presented a model of 
the LRP5-serotonin pathway (Figure 9). Serotonin (5-hydroxytryptamine) is a biogenic 
amine that functions as a neurotransmitter in the central nervous system and as a 
hormone in the gastrointestinal tract where 95% of it is produced (Gershon et al. 
1990). Because of the blood-brain barrier, these two forms of serotonin are never in 
contact but instead have different functions in the body. An enzyme called tryptophan 
hydroxylase 1, encoded by the TPH1 gene, is responsible for the peripheral serotonin 
production in the duodenum (Gershon and Tack 2007). Peripheral serotonin binds to, 
among other proteins, the HTR1B receptor in osteoblasts and activates a signaling 
cascade which in the end increases the expression of CyclinD1, a gene essential for the 
cell cycle (Yadav et al. 2008). Enhanced CyclinD1 activation increases the proliferation 
of osteoblasts and eventually the accrual of bone mass (Yadav et al. 2008). 

 
The results from our study on Finnish OPPG patients and their family members strongly 
support the findings of Yadav and co-workers (2008) describing the LRP5-serotonin 
dependent regulation of bone mass. In addition, studies on patients with gain-of-
function mutations in LRP5 causing the high bone mass (HBM) phenotype have 
revealed reduced plasma serotonin levels (Frost et al. 2010). These findings together 
give rise to a potential therapeutic pathway for drug development against bone loss. 
Indeed, studies on LRP5 deficient  (Lrp5-/-) mice have revealed that gut-specific 
activation of Lrp5 or inactivation of Tph1 increase bone mass and prevent ovariectomy-
induced  bone  loss  in  mice  (Yadav  et  al.  2008  and  2010).  Characterization  of  the  
mechanisms involved in this novel LRP5 and serotonin dependent bone formation is 
still ongoing and contrasting findings have also been reported (Bliziotes 2010). 
Therefore, further work is required to understand the biochemical pathways and the 
feedback loops involved in the regulation of LRP5-associated bone formation. 
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Figure 9. A schematic model of the LRP5-serotonin dependent regulation of bone mass. 
LRP5 activation inhibits the expression of TPH1 and regulates the peripheral serotonin 
levels. A decrease in serotonin levels results in less HTR1B signaling in the osteoblasts, 
which in turn increases cell proliferation through increased CREB binding and CyclinD1 
expression. Adapted from the publication by Yadav and Ducy (2010). 
 

2. LRP5 variation and metabolic characteristics 
 
Genes together with environmental factors contribute to the risk of metabolic 
syndrome, a cluster of risk factors (visceral obesity, insulin resistance, dyslipidaemia, 
and hypertension) predisposing to type 2 diabetes and cardiovascular disease 
(Andreassi 2009). Mutations in the genes encoding proteins such as apolipoprotein E 
(ApoE) and the low-density lipoprotein receptor (LDLR) have been shown to cause 
hyperlipidaemia and atherosclerosis (Wouters et al. 2005). Studies on LRP5 have long 
focused solely on bone metabolism, but recent studies have emerged with a new focus 
towards lipid and glucose metabolisms. Fujino and co-workers (2003) demonstrated 
the essential role of LRP5 in normal cholesterol metabolism and glucose-induced 
insulin secretion. They demonstrated that Lrp5 deficient mice, fed with a high-fat diet, 
had elevated cholesterol levels due to decreased hepatic clearance of chylomicron 
remnants. In addition, the significant glucose intolerance seen in these mice was due to 
decreased insulin secretion but not insulin resistance. They further demonstrated that 
the cholesterol levels were even higher in mice lacking both Lrp5 and ApoE, suggesting 
that LRP5 has an important role in the ApoE-dependent catabolism of lipoproteins 
(Magoori et al. 2003).  
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Association studies with common polymorphic variations in LRP5 have further 
elucidated the role of LRP5 on metabolic risk factors. A study of 1873 Caucasian people 
from 405 families revealed an association between intronic LRP5 SNPs and obesity 
(Guo et al. 2006). Moreover, the p.A1330V variant showed association with high serum 
total cholesterol levels in Japanese men (Suwazono et al. 2006a). Further studies from 
the same authors revealed that the combination of this p.A1330V variant with the 
p.C1429T variant in GNB3, a gene coding for the G-protein beta-3 subunit, even 
increases the risk for hypercholesterolaemia (Suwazono et al. 2007). Another Japanese 
study of 1444 men and 1161 women with elevated blood pressure revealed an 
association between the LRP5 p.Q89R variant and hypertension in females (Suwazono 
et al. 2006b). 
 
2.1. Metabolic characteristics in the Finnish OPPG family (III) 
 
The evident role of LRP5 in lipid and glucose metabolism led us to assess the Finnish 
OPPG patients and their family members, described in the previous chapter, for 
metabolic characteristics. The two OPPG patients and 15 of their family members, 
together with the one additional patient with a heterozygous LRP5 mutation, were 
assessed for medical history, lipid profile, and glucose metabolism. The two OPPG 
patients were homozygous for the p.R570W mutation, ten were heterozygous carriers 
of either p.R570W, p.R1036Q, or p.R925C and six had no mutations in LRP5. 
 
Glucose tolerance tests showed an abnormal glucose tolerance in seven (7/12; 58%) 
individuals with an LRP5 mutation (Table 9). The two patients with OPPG had diabetes. 
All three individuals heterozygous for p.R1036Q and the one individual heterozygous 
for p.R925C had impaired glucose tolerance, whereas this was only seen in one of the 
six p.R570W mutation carriers. Only one of the seven heterozygous individuals was 
obese (BMI 33.2 kg/m2), the remaining six were considered normal weight or slightly 
overweight (BMI 22.2-27.4 kg/m2). Blood biochemistry measurements indicated that 
the glucose intolerance in these individuals was not due to insulin resistance but a 
consequence of an impaired pancreatic beta-cell function. This resembles maturity 
onset diabetes of the young (MODY), a monogenic type of diabetes caused by 
mutations  in  at  least  six  different  genes  (Vaxillaire  and  Froguel  2008).  In  the  six  
individuals without LRP5 mutation glucose intolerance was seen in two (2/6; 33%). 
Although the prevalence of abnormal glucose tolerance in individuals with an LRP5 
mutation was notably high, due to the small sample size it did not differ statistically 
when compared to the individuals without LRP5 mutation.  
 
The lipid profiles (Table 9) in individuals with LRP5 mutations resembled those 
measured in mutation negative subjects. The two patients with OPPG had normal lipid 
values whereas seven (7/10; 70%) of the heterozygotes had hypercholesterolaemia or 
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were already on cholesterol-lowering medication. In mutation negative family 
members the cholesterol levels indicated mild hypercholesterolaemia in five 
individuals (5/13; 38%), one (1/18; 6%) was already on cholesterol-lowering 
medication.  
 
Table 9. Lipid profiles and glucose tolerance in 12 patients with LRP5 mutations. 

Patient 
no 

 
Genotype 

Glucose 
tolerance 

Total cholesterol 
(mmol/l) 

 
BMI (kg/m2) 

 
Fat % 

#1 R570W / R570W Diabetes 4.3 22.2 38.7 
#2 R570W / R570W Diabetes 3.9 33.2 35.7 
#3 R570W / WT Normal 3.2 22.0 29.9 
#4 R570W / WT Normal 4.1 21.7 36.0 
#5* R570W / WT Normal 4.6 27.4 35.6 
#6* R570W / WT Normal 5.1 27.6 NA 
#7 R570W / WT Diabetes 6.8 26.8 NA 
#8 R570W / WT Normal 3.9 25.1 20.0 
#9* R1036Q / WT Diabetes 5.6 27.4 27.5 
#10 R1036Q / WT Impaired 6.3 26.3 37.9 
#11* R1036Q / WT Diabetes 5.0 25.7 37.8 
#13* R925C / WT Diabetes 3.6 26.7 33.6 

BMI, body mass index; NA, data not available, WT, wild type. Reference range for total 
cholesterol is <5.0 mmol/l. Patients on cholesterol-lowering medication are marked 
with an asterisk. Fat% was determined by DXA.  
 
Even though the prevalence of glucose intolerance and high cholesterol levels seemed 
to be elevated in individuals with an LRP5 mutation, there was no statistical power to 
detect significant differences. The sample size in our study was relatively small, with 
only two homozygotes, ten heterozygotes, and six individuals without mutations. 
Increasing the number of study subjects in the original family might have revealed 
more LRP5 mutation carriers, and clinical assessment of additional subjects could have 
given sufficient power to confirm the differences seen in metabolic parameters. 

 
However, our results, showing a trend towards glucose intolerance and higher 
cholesterol levels in LRP5 mutation carriers, are in line with the previous findings from 
Lrp5 deficient mice (Fujino et al. 2003, Magoori et al. 2003). The prevalence of these 
metabolic findings in LRP5 mutation carriers needs to be studied further in larger 
cohorts and in different populations. As the etiology underlying aberrant glucose and 
cholesterol metabolism on the population level is most probably multigenic, future 
studies are needed to explore novel pathways and interactions between LRP5 and 
other genes. Interestingly, a recent study by Mani and co-workers (2007) revealed a 
connection between LRP6 and several metabolic risk factors. A missense mutation 
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(p.R611C), located in a highly conserved residue of the second EGF domain of LRP6, 
was found in a family with autosomal dominant early onset coronary artery disease, 
features  of  metabolic  syndrome,  and  osteoporosis.  The  same  year,  findings  from  
another study revealed an association between a common polymorphic LRP6 variant 
(p.I1062V) and late-onset Alzheimer’s disease (De Ferrari et al. 2007). As the interplay 
between LRP5 and LRP6 is  already evident in  bone metabolism (Holmen et  al.  2004),  
the interaction between these genes in the pathways of extra-skeletal metabolisms 
should be studied further.  
 
Circulating gut-derived serotonin levels were elevated in the family members with an 
LRP5 mutation (Figure 8). The role of brain-derived serotonin has been demonstrated 
in the regulation of bone mass and appetite (Yadav et al. 2009) but the possible role of 
this “other” serotonin in the regulation of lipid and glucose metabolism still remains 
unclear. Intriguingly, recent studies revealed an unexpected finding showing that the 
skeleton works as an endocrine organ by regulating blood glucose levels through 
osteocalcin (Ferron et al. 2010). They showed that osteocalcin, expressed solely in the 
osteoblasts, regulates insulin production by pancreatic beta-cells and, on the other 
hand, insulin sensitivity through adiponectin release from adipocytes. Further studies 
are still needed to evaluate the role of serotonin and osteocalcin in lipid and glucose 
metabolism. 
 
2.2. The role of LRP5 in adrenal cortex function (II) 
 
Adrenal glands are essential hormone secreting glands located immediately anterior to 
the kidneys. The adrenal gland consists of two separate parts, the medulla and the 
cortex, which have their own distinct endocrine functions. Adrenal cortex produces, 
among many other hormones, androgens such as dehydroepiandrosterone (DHEA) and 
dehydroepiandrosterone sulfate (DHEAS), which are required for adrenarche and 
development of the typical physiological changes seen in puberty (Auchus and Rainey 
2004).  Adrenarche  is  regarded  as  premature  if  the  typical  signs  (growth  of  pubic  or  
axillary hair, oily hair and skin, acne, adult-type sweating and body odor) occur before 
the age of 8 years in girls or before 9 years in boys and if the signs are accompanied by 
elevated DHEA/DHEAS levels (Ibáñez et al. 2000a). Patients with PA have an increased 
risk  of  metabolic  syndrome  and  cardiovascular  diseases  (Ibáñez  et  al.  2009).  In  
addition, children with PA have elevated BMD levels compared to age-matched pre-
pubertal controls (Ibáñez et al. 2000b, Utriainen et al. 2009). 
 
Wnt signaling is present in almost every tissue and it plays a role also in the adrenal 
cortex cells (Suwa et al. 2003). High levels of LRP5 expression have been detected in 
the adrenal cortex, suggesting a pivotal role in cortical function (Kim et al. 1998). As 
mentioned previously, the role of common polymorphic LRP5 variants  in  the  risk  
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factors for metabolic syndrome was shown recently (Guo et al. 2006, Suwazono et al. 
2006a and 2006b). Moreover, a highly conserved missense mutation in LRP6 was found 
in a family with early-onset coronary artery disease and features of metabolic 
syndrome (Mani et al. 2007). These genetic findings, together with the preliminary 
results from our own studies (Study III) and clinical metabolic findings in children with 
PA, encouraged us to study the role of LRP5 in the pathogenesis of PA. 
 
We sequenced the exons and flanking intronic and UTR regions of LRP5 in DNA samples 
from 73 children with PA and 97 healthy pre-pubertal  controls.  No apparent disease-
causing mutations were found in either group. However, 19 polymorphic sequence 
variants were identified and those with an allele frequency >5% were selected for 
association analyses. The p.A1330V variant was the only missense change, whereas the 
remaining four variants were synonymous (p.F549F, p.E644E, p.N740N, and p.V1119V). 
 
No significant differences in the distribution of the 19 variants were noticed between 
the two groups. Association analyses with the five common LRP5 variants revealed 
several significant associations in both groups. In children with PA (Table 10) the 
p.F549F variant was significantly associated with low baseline cortisol levels, whereas 
the p.N740N and p.V1119V variants showed association with higher HDL cholesterol 
levels and higher systolic blood pressure, respectively. No association was seen 
between the genotypes in adrenocortical hormone profile or metabolic characteristics 
of these children.  
 
Table 10. LRP5 variants associated with clinical characteristics in PA subjects. 

Variant Characteristic Major allele Minor allele P 

p.F549F Cortisol (nmol/l) 249 (224-278) 149 (104-214) 0.002 
p.N740N HDL cholesterol (mmol/l) 1.4 (1.3-1.4) 1.6 (1.3-1.9) 0.03 
p.V1119V Systolic BP (mmHg) 103 (100-105) 108 (104-112) 0.02 

BP, blood pressure; HDL, high-density lipoprotein. 
 
Interestingly, association with several metabolic characteristics was seen in the control 
group (Table 11). A significant association was seen between the p.A1330V variant and 
the  total/HDL  cholesterol  ratio.  The  p.A1330V  variant  was  also  associated  with  total  
cholesterol,  LDL  cholesterol,  and  DHEAS  levels.  A  slight  association  was  also  seen  
between p.A1330V and higher weight-for-height ratios. The p.V1119V variant showed 
association  with  higher  total  cholesterol  and  LDL  cholesterol  levels.  Control  subjects  
with the p.F549F variant had a tendency towards higher systolic blood pressure.   
 
We presented the first study describing unfavourable metabolic characteristics in 
children with common LRP5 variants. Notably, the effect of these variants is apparent 
already in early childhood highlighting the important role of LRP5 in metabolic 
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features. Our findings are in concordance with those seen in other studies (Fujino et al. 
2003, Suwazono et al. 2006a) and in our own studies with OPPG patients and LRP5 
mutation carriers (Study III). However, one finding from the present study differs from 
the  previous  findings  by  Suwazono  and  co-workers  (2006c).  They  showed  that  the  
p.A1330V variant associates with low blood pressure in the Japanese population. Our 
own results, however, showed higher blood pressure levels in subjects with the 
p.F549F and p.V1119V variants. The contradictory results might be due to differences 
in age or ethnicity between study cohorts. Also, it is possible that due to the relatively 
small sample size used in our study we did not have enough statistical power to reach 
significant associations. 
 
Table 11. LRP5 variants associated with clinical characteristics in control subjects. 

Variant Characteristic Major allele Minor allele P 

p.F549F Systolic BP (mmHg) 100 (98-102) 108 (95-121) 0.04 
p.V1119V Cholesterol (mmol/l) 4.1 (4.0-4.3) 4.5 (4.2-4.8) 0.04 
 LDL cholesterol (mmol/l) 2.4 (2.3-2.5) 2.7 (2.4-3.0) 0.03 
p.A1330V Cholesterol (mmol/l) 4.2 (4.0-4.3) 4.7 (4.1-5.4) 0.02 
 LDL cholesterol (mmol/l) 2.4 (2.3-2.5) 2.9 (2.3-3.6) 0.02 
 Total/HDL cholesterol (mmol/l) 2.9 (2.8-3.0) 3.6 (2.5-4.7) 0.007 
 DHEAS (µmol/l) 0.8 (0.7-0.9) 1.4 (0.8-2.3) 0.01 
 Weight-for-height (%) 106 (103-109) 112 (103-121) 0.09 

BP, blood pressure; DHEAS, dehydroepiandrosterone; HDL, high-density lipoprotein; 
LDL, low-density lipoprotein. 
 
The similarities in genotypes between the children with PA and in the control group 
clearly indicate that LRP5 does not contribute to the pathogenesis of PA. However, the 
lower cortisol levels seen in PA subjects with the p.F549F variant and the elevated 
DHEAS levels seen in control subjects with the p.A1330V variant indicate that LRP5 
function may modulate the adrenal cortex hormone synthesis through Wnt or other 
signaling pathways.  
 
To conclude, we demonstrated that common polymorphic variants in LRP5 associate 
with unfavorable metabolic characteristics. Changes in the lipid profile are already 
apparent in pre-pubertal children. Further studies with larger study cohorts are needed 
to study the role of LRP5 variants on cholesterol and blood pressure levels and in the 
development of metabolic syndrome. 
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CONCLUSIONS AND FUTURE PROSPECTS 

 
This thesis describes several novel findings concerning the role of LRP5 in bone mass 
development and in glucose and lipid metabolism.  
 
We demonstrated that LRP5 has a major role on bone accrual and in peak bone mass 
development. Our studies showed that homozygous mutations in LRP5 cause severe 
osteoporosis  and  even  in  a  heterozygous  state  increase  the  risk  for  osteoporosis.  
Obligate LRP5 mutation carriers have significantly reduced BMD and a higher number 
of spinal compression fractures compared to individuals without mutations. 
Furthermore, we demonstrated that the LRP5 mutation positive individuals have a 
clear trend towards higher circulating serotonin concentrations, supporting the model 
for LRP5-serotonin dependent regulation of bone mass. In addition, we were the first 
group to demonstrate that a common polymorphic variant in LRP5 contributes to peak 
bone mass development, an important determinant of bone mineral density in later 
life. The role of rare LRP5 variants in bone metabolism and in the ethiology of fractures 
remained unclear.  
 
In  addition  to  the  evident  role  of  LRP5  in  bone  metabolism,  we  demonstrated  that  
LRP5 has also a distinct role in glucose and lipid metabolism. Our studies revealed an 
unexpectedly high prevalence of glucose intolerance and dyslipidaemia in subjects with 
LRP5 mutations. In addition, we demonstrated that common polymorphic LRP5 
variants associate with unfavorable metabolic characteristics such as high cholesterol 
levels and blood pressure in healthy pre-pubertal children, indicating that the effect of 
these variants is evident already in childhood. Our concurrent studies showed that 
LRP5 variants do not contribute to the pathogenesis of premature adrenarche. 

 
Bones have typically been thought of as calcified structures with a sole function as the 
backbone for the body and producer of blood cells. However, this thought has now 
changed permanently as new evidence has revealed an additional role for bone in lipid 
and  glucose  metabolism.  Moreover,  the  surprising  observation  that  gut-derived  
serotonin regulates bone formation makes the function of bone and the regulation of 
bone formation even more intriguing. 

 
The prevailing hypothesis suggests that a combination of multiple rare variants 
predispose to common traits. Therefore, a candidate gene based analysis would be 
needed to identify the combination of variants predisposing to fractures, and 
ultimately, osteoporosis. Further studies will be needed to evaluate the role of LRP5 
and impaired Wnt signaling in the development of osteoporosis, fractures, and 
aberrant glucose and lipid metabolism. It is important to recognize the unknown 
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number of LRP5 mutation carriers as they have not only low BMD but also an increased 
risk for metabolic syndrome. Therefore, it is important to characterize these variants 
and to determine their functional metabolic consequences. Finally, the outcome of 
future research might help in the development of treatments for bone disorders and 
also against those extra-skeletal implications caused by altered Wnt signaling. 
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