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Abstract

This paper describes a new flexible delexicalization method
based on glottal excited parametric speech synthesis scheme.
The system utilizes inverse filtered glottal flow and all-pole
modelling of the vocal tract. The method provides a possibil-
ity to retain and manipulate all relevant prosodic features of any
kind of speech. Most importantly, the features include voice
quality, which has not been properly modeled in earlier delex-
icalization methods. The functionality of the new method was
tested in a prosodic tagging experiment aimed at providing word
prominence data for a text-to-speech synthesis system. The ex-
periment confirmed the usefulness of the method and further
corroborated earlier evidence that linguistic factors influence
the perception of prosodic prominence.

Index Terms: prosody, delexicalization, speech synthesis,
voice quality

1. Introduction

Delexicalization — removing segmentally relevant information
from speech signals to render them unintelligible while retain-
ing their prosodic characteristics — has a long history as a tool
in prosody research [1, 2, 3]. The main reason for using delixi-
calized signals stems from the fact that listeners use lexical and
grammatical information in making judgements concerning ut-
terance internal phenomena which are related to prosody. There
are a multitude of factors, such as for instance, word frequency,
part of speech, as well as semantic content, which can influence
the perceived prominence of words. Importantly, the perceived
word prominences have been shown to be influenced by syntac-
tic and information structure [4].

In Text-to-Speech synthesis (TTS), however, it is not re-
alistic to model the very complex way in which human lis-
teners perceive prosody when it is interacting with the lin-
guistic content and grammatical structures of the utterances.
Nevertheless, word prominence can serve as an intermediate
parameter for a synthesis system [5] as the relationship be-
tween prosodic prominence and the acoustic parameters is more
straight-forward.

One of the acoustic parameters which has been shown to
be relevant for prosody in general is voice quality [6]. It has
been fairly difficult to both analyze and model, but there are
both subtle and large differences in voice quality that may be
related to the perceived prominence of words: there are obvious
spectral differences between stressed and unstressed syllables

which are caused by different shapes of the glottal pulses as well
as the fairly discrete modes (e.g., modal vs. non-modal voice).
With respect to delexicalization, this calls for a method which
leaves voice quality as well as the other prosodic parameters
intact while removing the segmental information.

In this paper we present a new method for delexicaliza-
tion of speech signals based on ongoing work in developing a
new signal generation component for a Hidden Markov Model
(HMM) based TTS system. The method uses inverse filtered
glottal airflow pulses as an excitation for voiced speech retain-
ing the prosodic and segmental characteristics related to the
glottal pulse. After describing the method in detail, we present
a pilot study in which we evaluated the functionality of the
method by comparing prominence tags by experts to ones made
by non-experts. The experiment aims at improving a proce-
dure for obtaining training data for a TTS system that utilizes
prominence for prosody control [7]. The system is trained us-
ing prominence annotations which are provided by experts and
a subsequent statistical model to successfully tag a speech cor-
pus for a HMM based synthesis system — tags provided by non-
experts would greatly enhance the data preparation process in
synthetic voice building.

2. Delexicalization using glottal flow based
speech synthesis

The proposed delexicalization method is based on the
parametrization and synthesis methods used in a recently devel-
oped HMM-based speech synthesizer [8, 9]. This speech syn-
thesis system aims to produce high quality synthetic speech ca-
pable of conveying various styles of speaking, speaker charac-
teristics, and emotions. To achieve this goal, the human speech
production mechanism is modeled with the help of glottal in-
verse filtering. Glottal inverse filtering is a procedure where
voiced speech signal is decomposed into the glottal source sig-
nal and the vocal tract filter. Through this decomposition, the
behaviour of the natural glottal source signal can be modeled in
the synthesis of the speech waveform.

The delexicalization procedure is illustrated in Figure 1.
First, speech signal in parametrised into voice source and vo-
cal tract features using the parametrization method of the TTS
system. Then, the voice source is reconstructed from the pa-
rameters; natural glottal flow pulses are used in order to create
the excitation signal, and this excitation is further modified in
order to imitate the time-varying changes in the natural voice
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Figure 1: lllustration of the delexicalization procedure. Speech
is decomposed into voice source and vocal tract parameters.
The voice source is reconstructed from the parameters and fil-
tered with a modified vocal tract filter, where the varying param-
eters of voiced segments are replaced with constant parameters
from a neutral vowel.

source. Finally, speech is synthesized by filtering the excita-
tion signal with the vocal tract filter, with the modification that
the parameters of the varying vocal tract filter in voiced seg-
ments are replaced with constant parameters representing a neu-
tral vowel. This procedure effectively delexicalizes speech but
retains all the characteristics of the voice source, preserving all
of the prosodic information including the voice source related
changes. That is, in addition to fundamental frequency, features
related to vocal effort such as voice quality, intensity and har-
monic to noise ratio of the original speech are also preserved.

In the next few sections, glottal inverse filtering and speech
parametrization and synthesis methods are explained in more
detail.

2.1. Glottal inverse filtering

The basic idea of glottal inverse filtering is to separate the glottal
source and the vocal tract filter based on the linear speech pro-
duction model [10]. This theory assumes that the production of
speech can be interpreted as a linear cascade of three processes:
S(z) = G(2)V(z)L(z), where S(z) denotes speech, and
G(z), V(2), and L(z) denote the voice source, the vocal tract
filter, and the lip radiation effect, respectively. Conceptually,
glottal inverse filtering corresponds to solving the glottal vol-
ume velocity G(z) according to G(z) = S(2)1/V(2)1/L(z).

In this study, an automatic glottal inverse filtering method,
Iterative Adaptive Inverse Filtering (IAIF) [11, 12] is used as a
computational tool to implement glottal inverse filtering. IAIF
is based on the repetitive procedure of canceling the effects of
the vocal tract and the lip radiation from the speech signal. The
only input required for the IAIF method is the acoustical speech
signal recorded with a microphone. Various spectral modeling
tools can be used within the IAIF method, but Linear Predictive
Coding (LPC) is used in this work due to the computational ef-
ficiency and simplicity. The method is explained in more detail
for example in [12].

2.2. Speech parametrization

The speech parametrization stage compresses the information
of the speech signal into a few parameters which describe the
essential characteristics of the original speech signal as accu-
rately as possible. The voice source and the vocal tract are
separately parametrized, enabling the individual modification
of both speech production processes.

The parametrization is done as follows: First, the signal is
high-pass filtered, and windowed with a rectangular window to
25-ms frames at 5-ms intervals. The speech features, presented
in Table 1, are then extracted from each frame. The log-energy
of the window is evaluated, after which glottal inverse filtering
is performed with the Iterative Adaptive Inverse Filtering (IAIF)
[11, 12] method in order to estimate the glottal volume veloc-
ity waveform from the speech pressure signal. TAIF iteratively
cancels the effects of the vocal tract and the lip radiation from
the speech signal using adaptive all-pole modeling. The out-
puts of the inverse filtering block are the estimated glottal flow
signal g(n) and the LPC model of the vocal tract V(z). The
spectral envelope of the glottal flow is parametrised with LPC
(denoted by G(z)). The fundamental frequency is determined
from the glottal flow signal with the autocorrelation method,
and a harmonic-to-noise ratio (HNR) of four frequency bands
(0-2 kHz, 2-4 kHz, 4-6 kHz, 6-8 kHz) is estimated from the
glottal flow signal using cepstrum. HNR values are estimated
through evaluating the cepstrum of each band, and comparing
the energy of the cepstral peak, corresponding to the fundamen-
tal period, to the energy of other quefrencies of cepstrum. LPC
models of the vocal tract V' (z) and the voice source G(z) are
converted to Line Spectral Frequencies (LSF) providing stabil-
ity and low spectral distortion.

In case of unvoiced speech, conventional LPC is used to
evaluate the spectral model of speech, and the speech param-
eters describing only voiced speech, namely, the fundamental
frequency, harmonic-to-noise ratio, and the voice source spec-
trum, are not extracted.

2.3. Speech Synthesis

The flow chart of the synthesis stage is presented in Figure 2.
The excitation signal consists of voiced and unvoiced sound
sources. The basis of the voiced sound source is a glottal flow
pulse extracted from a natural vowel. By interpolating the real
glottal flow pulse according to Fp and scaling in magnitude ac-
cording to the energy measure, a pulse train comprising a se-
ries of individual glottal flow pulses with varying period lengths
and energies is generated. For each pulse, the HNR is mea-
sured and the values are compared to the extracted HNR val-
ues. The amount of noise is matched in each frequency band
by manipulating the phase and magnitude of the spectrum of
each pulse. Furthermore, in order to mimic the natural varia-
tions in the voice source, the spectral tilt of each pulse is mod-

Table 1: Speech features and the number of parameters.

Feature Parameters per frame
Fundamental frequency (Fo) 1

Energy 1

Harmonic-to-noise ratio (HNR) 4

Voice source spectrum G(z) 10

Vocal tract spectrum V (z) 20
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Figure 2: Flow chart of the synthesis stage. The basis of the
voiced excitation signal is a library glottal flow pulse, which is
modified according to the voice source parameters. Unvoiced
excitation is composed of white noise. Excitation signals are
combined and filtered with the vocal tract filter V (z) to gener-
ate speech.

ified according to the all-pole spectrum. This is achieved by
first evaluating the LPC spectrum of each pulse, and then fil-
tering the pulse train with an adaptive IIR filter which flattens
the spectrum of the pulse train and applies the desired spectrum.
These procedures aim to preserve the original voice quality. For
voiced excitation, the lip radiation effect is modeled as a first-
order differentiation operation. Finally, LSFs are interpolated
and converted to LPC coefficients V' (z), and used for filtering
the excitation signal.

For delexicalization purposes, the LSFs of the vocal tract
in voiced segments are replaced with parameters from e.g., a
phonetically neutral vowel. The neutral vowel can be manually
selected from the parameters, or it can be generated by evaluat-
ing the average of the vocal tract spectrum in voiced segments.

3. Word prominence labeling experiment

In order to evaluate the functionality of the new method we con-
ducted an experiment, where a group of naive listeners were
asked to mark a set of words with their corresponding promi-
nence. Such an experiment has not been conducted for Finnish,
but e.g., Portele and Heuft ([5] and references therein) have re-
ported fairly reliable agreements on prominence between naive
labelers. We were, therefore, interested in whether this would
be the case with Finnish speakers, as well. More specifically,
we were interested in whether the results would differ signifi-
cantly between the original and delixicalized utterances with the
working hypothesis that the results from the delexicalized ones
would be — on average — closer to the labels provided by experts.
In other words, if the method benefits the task of prominence
tagging, we should observe less interference from non-phonetic
linguistic information and closer agreement with expert opinion
in the delexicalized condition.

&

Sound pressure level (dB/Hz)
[
=]

il

=

R A

0 Frequency (Hz) 8000

Figure 3: Spectra from an original (red line) and a delexicalized
(black line) utterances.

Materials: Sixty utterances developed for a Finnish version
of speech reception threshold test for speech coding evaluation
[13] were used as test materials. The sentences were phonet-
ically balanced and the recorded utterances were equated for
intelligibility and, thus, had varying intensities. Materials from
two speakers — one male, one female — were used in the current
experiment.

Two experts (the first two authors) labeled the word promi-
nences for each sentence; any disagreements between the ex-
perts were further discussed until an agreement was reached.

The chosen utterances were delexicalized using the new
method in — what could be called — semi-fricated form. That is,
unvoiced segments were replaced with low-pass filtered noise in
order for the listeners to hear the ends of the utterances. Finnish
speakers typically end their utterances with a non-modal voice
(voiceless speech or creaky voice) after the last accented sylla-
ble (invariantly the first syllable of the last word). The constant
vocal tract filter spectrum for a given utterance was obtained
by first calculating the average spectrum of the syllable nuclei,
and then selecting the LSF frame of the analyzed parameters
that best matched the average spectrum. This was done in order
to keep the spectral characteristics (in terms of e.g., slope) as
similar as possible with the original signal.

The resulting delexicalized and the original utterances were
divided into two counter-balanced sets consisting of 60 utter-
ances each: 15 original and 15 delexicalized utterances from
both speakers. The participants were randomly assigned to one
of the two versions. Thus, none of the participants heard more
than one version of a given experimental utterance.

Figure 3 shows spectra from the original (red line) and syn-
thesized (black line) signals (515 ms from a voiced segment at
the beginning of an utterance). The formant structure of the ut-
terance has been almost totally disrupted while the overall char-
acteristics of the original spectrum have been retained. Figure
4 shows a spectrogram of the a noun phrase “pieni ndyttdimo”
(small scene) in its delixicalized form. The overall spectral
shape of the original speech is preserved whereas the formants
are kept stationary. The differences in harmonic-to-noise ratio
are clearly visible between the different parts of the utterance.

Participants and procedure: 18 female students of phonetics,
language technology, and logopedics took part in the experi-
ment (ages 20-48 with an average of 26.9 years). All partici-
pants were native speakers of Finnish, none reported any hear-
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Figure 4: A narrow-band spectrogram of the word pair “pieni
nédyttamd” (small scene). See text for more detail.

ing problems, and none were acquainted with prosody related
research. They could, therefore, be considered as naive listen-
ers.

The materials were presented to the participants using the
Praat program and high quality headphones (Sennheiser HD-
250). The participants could adjust the output volume of the
headphones. The utterances were segmented on word level and
the participants were instructed to listen to both the individual
words and the whole utterance. No time limit was given and
the test took between 30 to 60 minutes to complete. The par-
ticipants were further instructed to mark on paper each words
sentence stress on a scale from O (totally unstressed, typically
e.g., a conjunction or a copula) to 3 (emphatically stressed; typ-
ically a narrow contrastive focus).

Results: Before the statistical analyses we had to discard the
data from two speakers, who had systematically marked a
wrong number of words in the sheet. There were an additional
24 missing items. This left 3621 responses for the analyses.
The results were calculated as the absolute difference between
the given prominence value and the one given by the experts.
Table 2 shows the average absolute error for both delexicalized
and original utterances for the final, initial, and medial word po-
sitions. In all cases the average error was fairly small and stays
within one category. Obviously, the listeners were able to fulfill
the task with a high degree of agreement. Importantly, the error
in the delexicalized condition was smaller in all positions with
the words in the initial position labeled most accurately.

Table 2: Average absolute errors in final, initial, and medial
word positions for delexicalized and original utterances.

final initial medial
Delexicalized 0.5659955 0.4854586 0.5475410
Original 0.7299107 0.5736607 0.6168122

We used a non-parametric Wilcoxon rank sum test to as-
sess the significance between the Original and Delexicalized
conditions. As expected, the difference is highly significant
(W = 1502188, p < 0.0001). Thus, we can safely conclude
that the naive listeners behaved more like the experts when they
were not influenced by the linguistic properties of the utter-
ances.

4. Conclusions

In this paper we have described a new method for delexicaliza-
tion of speech signals based on parametrization and synthesis
methods that utilize a realistic voice source model. The new
method allows for an unprecedented degree of control of both
the glottal and vocal tract parameters in the process of delexical-
ization. We have furthermore shown in a listening experiment
that the method can be successfully used in studying labelling of
word prominence in running speech by naive listeners. There-
fore, the method improves the labeling accuracy to a degree that
the labeling of large speech corpora for both general prosody
related and TTS research could be partly done by phonetically
untrained, non-professional, personnel. Importantly, the result
provides further evidence that abstract linguistic properties have
a strong influence on the perceived prosodic prominence of the
individual words in an utterance.
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