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ABSTRACT 

The pathogenic members of the picornavirus superfamily 
have adverse effects on humans, their crops and their livestock. 
As structure is related to function, detailed structural studies on 
these viruses are important not only for fundamental 
understanding of the viral life cycle, but also for the rational 
design of vaccines and inhibitors for disease control. These 
viruses have positive sense, single-stranded RNA genomes 
enclosed in a protein capsid. X-ray crystallography and cryo-
electron microscopy studies have revealed that the isometric 
members of this group have icosahedrally-symmetric capsids 
made up of 60 copies of each of the structural proteins. The 
members that infect animal cells often employ one or more 
cellular receptors to facilitate cell entry which in some cases is 
known to initiate the uncoating sequence of the genome. The 
nature of the interactions between individual viruses and 
alternative cellular receptors has rarely been probed. The capsid 
assembly of the members of the picornavirus superfamily is 
considered to be cooperative and the interactions of RNA and 
capsid proteins are thought to play an important role in 
orchestrating virus assembly. 

The major aims of this thesis were to solve the structures of 
blackcurrant reversion virus (BRV), human parechovirus 1 
(HPEV1) and coxsackievirus A7 (CAV7), as well as the structure 
of HPEV1 complexed with two of its cellular receptors using 
cryo-electron microscopy, three-dimensional image 
reconstruction and homology modeling. Each of the selected 
viruses represents a taxonomic group where little or no structural 
data was previously available. The results enabled the detailed 
comparison of the new structures to those of known 
picornaviruses, the identification of surface-exposed epitopes 
potentially important for host interaction, the mapping of RNA-
capsid protein interactions and the elucidation of the basis for the 
specificity of two different receptor molecules for the same 
capsid. This work will form the basis for further studies on the 
influence of RNA on parechovirus assembly as a potential target 
for drug design. 
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A. INTRODUCTION

Viruses are peculiar organisms; 
they have no metabolism of their 
own and thus they are dependent on 
the metabolism of their host cell for 
reproduction. Despite their 
dependence on other organisms, 
viruses manage to exist in great 
numbers and are perhaps the most 
numerous organisms on Earth 
(Bamford et al., 2005; Wommack 
and Colwell, 2000). Viruses are 
known to infect cells in all branches 
of life, and interestingly viruses that 
have a parasitic relationship with a 
larger virus have been discovered 
(Briani et al., 2001; Brown, 2010; 
Desnues and Raoult, 2010). 

To gain access to the resources 
of a host cell the virus must first 
insert, at least, the viral genome in 
the cytoplasm of the cell. In animal 
cells the entry often involves 
exploitation of the cells’ own intake 
mechanisms, such as endocytosis 
(Mercer et al., 2010). Alternatively, 
many enveloped viruses, such as 
human immunodeficiency virus 
(HIV), are able to fuse their 
enveloping membrane with the 
cellular membrane of the host, 
allowing insertion of the viral capsid 
in the cytoplasm of the host cell 
(Tilton and Doms, 2010). In plants, 
viruses rely on the help of larger 
organisms to either deliver them 
directly inside the plant or at least to 
an opening from where entry may 

proceed (Brault et al., 2010; Shaw, 
1999; Wang et al., 2002). 

Even though viral infections in 
humans are often treatable, viruses 
are annually responsible for 
numerous deaths worldwide. 
Rotavirus alone has been estimated 
to be responsible for 527000 deaths 
annually among children under five 
years of age, which equals 29 % of 
the deaths due to diarrhea (Parashar 
et al., 2009). In addition to 
immediately fatal infections a great 
number of persistent viral infections 
occur each year. For example, in 
2007 around 33 million people were 
estimated to live with HIV and 127 
million with hepatitis C (De Cock 
and De Lay, 2008; Dehesa-Violante 
and Nunez-Nateras, 2007). The 
persistent infections may eventually 
lead to death, even with proper 
medical care. However, some 
struggles against viruses have been 
successful, of which the best 
example for picornaviruses is the 
eradication of poliovirus. Due to a 
massive vaccination campaign 
organized in 1988 by the World 
Health Organization, Rotary 
International, the US Centers for 
Disease Control and Prevention, and 
UNICEF, polio has become an 
extremely rare disease nowadays 
(Robbins and de Quadros, 1997). 

In plants, viruses cause 
significant economic losses annually 
and often the damage caused to 
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crops by viruses outweighs the 
damage caused by their vectors 
(Dedryver et al., 2010). As plant 
viruses require the help of a vector 
for transmission, chemicals have 
been used to protect the crops from 
the vectors. However, chemical 
control is not effective in guarding 
against all viral infections (Perring 
et al., 1999; Reddy et al., 2009). To 
enhance the resistance of plants 
against viral infections, genetically 
engineered plants with viral RNA 
silencing abilities have been 
engineered (Collinge et al., 2010; 
Reddy et al., 2009; Wu et al., 2010). 
Many plant viruses have also 
yielded efficient tools for studying 
plant gene function (Macfarlane, 
2010; Purkayastha and Dasgupta, 
2009). While plant viruses pose no 
direct threat to human beings, they 
can cause severe losses in the yield 
of food crops, which is potentially 
disastrous to a small, isolated 
society relying on their own 
agricultural products. 

The picornavirus superfamily is 
a large group of viruses that 
contains picorna-, como-, nepo-, 
poty- and bymoviruses (Ryan and 
Flint, 1997). Picornaviruses alone 
are one of the largest and most 

important families of human and 
agricultural pathogens (Oliveira et 
al., 1999). Apart from being able to 
cause very severe acute diseases in 
humans, picornaviruses have also 
been indicated in some long term 
illnesses. For example, rhinoviruses 
are linked with induction and 
exacerbation of asthma, whereas 
enteroviruses, especially members 
of the coxsackievirus B group, have 
been linked with the development of 
type 1 diabetes (Hansbro et al., 
2008; Hober and Sane, 2010; 
Jaidane et al., 2010; Johnston, 2005; 
Tauriainen et al., 2010; Walton and 
Johnston, 2008). Picornaviruses also 
infect live stock and for example, 
the foot-and-mouth disease virus 
(FMDV) is one of the most 
important pathogens of cloven-
hoofed animals, it is highly 
contagious and it can cause severe 
economic losses (Grubman et al., 
2008; Klein, 2009; Mardones et al., 
2010). Furthermore, the 
picornavirus superfamily contains 
many agriculturally and 
economically significant plant 
viruses, for example tobacco 
ringspot virus (TRSV) and potato 
virus Y (Singh et al., 2008; Wang et 
al., 2002). 
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1. Capsid structure, assembly and cell entry of 
spherical members of the picornavirus superfamily 

1.1. Why so symmetric? 

Virus capsids are essentially 
protective shells that contain and 
protect the genome, until a suitable 
host is found, entered and the 
genome released (Smith and 
Helenius, 2004). The viral genome 
holds the information for producing 
all the necessary proteins, including 
the structural proteins, to make new 
virus capsids. As such, increasing 
the size of the capsid by increasing 
the size of the capsid proteins, 
inevitably leads to a larger genome. 
Thus a problem arises: how can a 
virus produce a capsid spacious 
enough to package the genome 
while maintaining a conservative 
use of nucleic acid. Viruses have 
resolved this dilemma by 
constructing their capsids from 
several copies of one or more small 

proteins (Caspar and Klug, 1962; 
Johnson, 1996). 

Virus capsids are generally 
found to be either rod-shaped, 
spherical or pleomorphic (Casjens, 
1997). The rod-shaped capsids, such 
as that of tobacco mosaic virus 
(TMV), display symmetry around 
the longitudinal axis and is referred 
to as having helical symmetry 
(Namba and Stubbs, 1986). Of all 
the possible symmetries capable of 
producing a closed spherical capsid, 
only icosahedral symmetry has been 
observed (Casjens, 1997). The 
diameter of icosahedrally-symmetric 
viruses has been observed to range 
from approximately 25 nm (e.g. 
parvovirus) to 500 nm (mimivirus) 
(Xiao et al., 2005b; Xie and 
Chapman, 1996). 

1.2. Icosahedrally-symmetric capsids

Icosahedral symmetry is also 
referred to as ‘point group 532’ 
symmetry, as it contains five-fold, 
three-fold and two-fold axes of 
symmetry (Crowther, 1971b). 
Icosahedral symmetry is found in 
such geometrical constructions as 
icosahedrons and dodecahedrons 
(Baker et al., 1999). The 
icosahedron is a geometric 

construction that has 12 five-fold 
symmetric vertices, 20 three-fold 
symmetric facets and 30 edges with 
two-fold symmetry. The 
dodecahedron on the other hand has 
12 five-fold symmetric facets, 20 
three-fold symmetric vertices and 30 
edges (Figure 1). The icosahedron is 
60-fold symmetric, which means 
that the complete icosahedron can 
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be generated by the application of 
icosahedral symmetry elements if 
the asymmetric unit is known 
(Baker et al., 1999; Crowther et al., 
1970). The asymmetric unit is a 

triangle that lies between two 
adjacent five-fold axes of symmetry 
and one adjacent three-fold axis of 
symmetry (Figure 1). 

 
 

Figure 1. Geometric representations 
of an icosahedron (left) and a 
dodecahedron (right). One two-fold 
(2), one three-fold (3) and two five-
fold (5) symmetry axes are indicated 
along with the asymmetric unit that 
they define in both. Reprinted from 
(Baker et al., 1999) with permission 
from American Society for 
Microbiology. 

  
The icosahedrally-symmetric 

capsids are often described simply 
by supplying the triangulation 
number (T-number) (Caspar and 
Klug, 1962). The T-number is a 
geometric concept which arises 
when an icosahedron is folded from 
a two-dimensional lattice composed 
of hexagons. To fold an icosahedron 
out of a hexagonal lattice, 12 of the 
hexagons must be replaced with 
pentagons in correct positions 

(Baker et al., 1999; Crowther, 
1971b). The T-number describes 
how the pentagons are placed in the 
hexagonal lattice. In the hexagonal 
lattice two axes (h and k) are 
defined (Figure 2). The separation 
of the pentagons on axes h and k 
gives rise to the related T-number 
according to the formula (1) (Baker 
et al., 1999; Caspar and Klug, 
1962).

 

22 khkhT ++=      (1)
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Figure 2. Geometric principles of constructing icosahedral lattices of defined 
triangulation number. (a) A hexagonal lattice indicating the ordering of h- and k-axes. 
(b) Example of building a T=3 icosahedron from the hexagonal lattice, the (h,k)-
coordinates for the correct position of the pentagon are indicated (1,1). (c) Example of 
building a T=4 icosahedron from the hexagonal lattice, the (h,k)-coordinates for the 
correct position of the pentagon are indicated (2,0). Modified from (Baker et al., 1999), 
with permission from American Society for Microbiology. 

 
Greater separation of the 

pentagons along the h and k axes 
leads to larger capsids for the same 
subunit. Thus, replacing all 
hexagons with pentagons leads to 
separation of one step (either in h or 
k) and correspondingly to T=1 
characterization of the structure. The 
definition of the T-number predicts 
that only certain types of 
icosahedrally symmetric capsids are  

 
possible and for example no T=2 
structures can exist (Baker et al., 
1999; Caspar and Klug, 1962; 
Crowther, 1971b). 

In icosahedral viruses the 
hexagons and pentagons are 
composed of the capsid proteins that 
assemble into the viral capsid 
(Crowther, 1971b). Thus, the T-
number often allows one to predict 
the number of capsid proteins. The 
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simplest icosahedral capsid (T=1) 
has 60 copies of each of the capsid 
proteins, whereas the next allowed 
icosahedral capsid (T=3; h=1, k=1) 
has 180 copies (Caspar and Klug, 
1962; Chandrasekar and Johnson, 
1998; Crowther, 1971b). It is 
important to note that, although the 
proteins are identical in amino acid 
sequence, the interactions between 
the proteins are not necessarily the 
same for each copy (Caspar and 
Klug, 1962). In the simplest 
icosahedral capsid each asymmetric 
unit is composed of a single protein 
and all the interactions are identical. 
However, the assembly of a more 
complicated icosahedral capsid 
requires some of the proteins to 
adopt a slightly different 
environment usually through 
conformational flexibility and this 
leads to quasi-equivalence (Caspar 
and Klug, 1962). 

However, some of the 
experimentally obtained virus 
structures contradict the theory 
developed by Caspar and Klug 
(Caspar and Klug, 1962). These 
contradictory cases include at least: 

polyoma virus, Simian Virus 40 
(SV40) and L-A virus (Caston et al., 
1997; Liddington et al., 1991; 
Rayment et al., 1982). In the case of 
polyoma virus and SV40 the theory 
by Caspar and Klug, while 
predicting the position of capsomers 
correctly, fails to predict the number 
of protein subunits correctly. 
Additionally, these experimental 
data illustrate that virus structures 
can have pentameric structures in 
positions where the theory predicts 
only trimeric or hexameric features 
(Caspar and Klug, 1962; Twarock, 
2004). Furthermore, the 
experimentally obtained data reveals 
that the L-A virus exhibits the 
‘forbidden’ T=2 organization. A 
newer theory, inspired by Penrose 
tilings, that allows a more 
generalized solution is able to 
correctly predict these structures 
(Twarock, 2004). The newer theory 
deviates from the older theory by 
allowing icosahedrally symmetric 
structures to be composed from 
elements other than triangles, for 
example rhombs (Twarock, 2006).

1.3. Genomic organization in picornavirus superfamily

The single-stranded (ss) RNA 
genomes of members of the 
picornavirus superfamily are around 
8 kb in size and as such can only 
code for a minimal amount of 
proteins (Bedard and Semler, 2004; 
Ryan and Flint, 1997). The proteins 

encoded by the genome can be 
divided into structural and non-
structural proteins. The structural 
proteins assemble to make up the 
viral capsid and the non-structural 
proteins contain at least proteases, 
VPg terminal proteins, helicases and 
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RNA dependent RNA polymerases 
(Bedard and Semler, 2004; Lin et 
al., 2009). The RNA is transcribed 
into a single polypeptide, which is 
then appropriately cleaved by the 
proteases to make the final protein 
products (Figure 3). The viral 
proteases are responsible for the 
cleavage of the polyprotein. The 

polymerases replicate the genome 
and the helicases separate positive 
RNA strands from the negative 
RNA strands. The VPg terminal 
protein binds to the 5’ end of the 
plus strand RNA and participates in 
the replication of the genome 
(Bedard and Semler, 2004; Lin et 
al., 2009). 

 
Figure 3. Picornavirus polyprotein processing cascade. The processing schematic 
shows the precursor and mature polyproteins that result from cleavage by the three 
viral proteases. The functions of the precursor and mature polyproteins are indicated. 
Reprinted from (Bedard and Semler, 2004) with permission from Elsevier. 

1.4.  Morphology and symmetry of picornavirus 
superfamily members 

The members of the 
picornavirus superfamily exhibit 
considerable structural variation, as 
the superfamily contains both 
icosahedral and rod-shaped viruses 
(Ryan and Flint, 1997). However, 

the icosahedral members of the 
superfamily have structural 
characteristics similar to 
picornaviruses. Picornaviruses have 
icosahedral capsids made up of 60 
copies of each structural protein and 
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no lipid membranes (Muckelbauer 
et al., 1995). Additionally, the 
icosahedral members of this 
superfamily have capsid diameters 
ranging between 300-330 Å (Fry et 
al., 1999; Hendry et al., 1999). 
Furthermore, all of the icosahedral 
viruses from the picornavirus 
superfamily, that have known 
structures, exhibit the simplest 
icosahedral symmetry, T=1 
symmetry (Chandrasekar and 
Johnson, 1998; Hogle et al., 1985; 
Rossmann et al., 1985). However, 
many of the picornavirus animal 
pathogens have three different 
structural proteins in one 
asymmetric unit and are thus 

characterized with a pseudo-T-
number (pT-number) instead, to 
describe the structure in more detail. 
The pT=3 structure describes the 
capsid as being made up of 60 
copies of each of the three different 
capsid proteins (VP1, VP2 and 
VP3). Capsid protein VP4 is often 
considered non-structural, although 
it is present in the capsid. Most 
known plant viruses of the 
picornavirus superfamily on the 
other hand have only one structural 
protein, which folds in three 
separate domains, which is also 
sometimes referred to as a pT=3 
structure (Chandrasekar and 
Johnson, 1998). 

1.5. Common fold of the coat proteins 

Proteins fold to form two types 
of secondary structures, α-helices 
and β-sheets. A β-sheet is formed 
when a protein strand loops around 
and the amino acids of the parallel 
or anti-parallel strands form 
hydrogen bonds. The β-sheets can 
then further curl to form β-barrels 
(Figure 4). The known structures of 
picornaviruses almost invariably 
reveal the capsid proteins to form 8-
stranded β-barrels (Hogle et al., 
1985; Krishnaswamy and 
Rossmann, 1990; Muckelbauer et 
al., 1995). As an exception the VP1 
of FMDV forms a 7-stranded β-

barrel (Acharya et al., 1989; Fry et 
al., 1993). In the case of viruses 
with more than one structural 
protein, each of the major structural 
proteins (VP1, VP2 and VP3) forms 
a β-barrel, thus effectively having 
three β-barrels per asymmetric unit 
(Hendry et al., 1999). The VP4, 
which is a smaller protein, is unable 
to form a β-barrel and often contains 
little secondary structure. In the case 
of the viruses with only one 
structural protein, the sole protein 
folds into three separate β-barrel 
domains (Chandrasekar and 
Johnson, 1998). 
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Figure 4. Schematic representation of the poliovirus capsid proteins. (a) Simplified 
diagram showing the topology of the structurally conserved β-barrel structure. Ribbon 
diagrams illustrate the β-barrel fold of (b) VP1, (c) VP2 and (d) VP3. The NH2- and 
COOH-terminal extensions of VP1 and the NH2-terminal extension of VP3 have been 
truncated for clarity. Reprinted from (Hogle et al., 1985) with permission from AAAS. 

1.6. Assembly 

The capsids of picornavirus 
superfamily members assemble 
without the help of additional 
molecules. Some picornaviruses can 
form assembly intermediates, for 
example poliovirus produces 
pentamers which cluster together to 
form the complete capsid (Watanabe 
et al., 1965). For poliovirus capsid at 
least two assembly routes have been 
suggested: co-assembly of the 
capsid and the genome, or 
alternatively the genome is 

packaged in to an empty precursory 
capsid (Ansardi et al., 1994; 
Basavappa et al., 1994). As no 
translocation active proteins have 
been detected in poliovirus, the 
suggested mechanism associates 
RNA packaging with autocatalytic 
maturation cleavage of VP0 
(Basavappa et al., 1994; Levy et al., 
2010). Poliovirus might also be able 
to use both pathways depending on 
the prevailing conditions. 
Presumably some form of 
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interactions between the capsid 
proteins and the genome must exist, 
as the capsid can selectively 
package the correct RNA segment to 
become infectious. It has been 
shown that the assembly of cowpea 
chlorotic mottle virus (CCMV) is 
RNA-dependent. No empty capsids 
are formed in native infection as the 
viral RNA initiates the capsid 
assembly (Fox et al., 1998). As with 
poliovirus, the assembly of CCMV 
has been shown to proceed through 
pentameric assembly intermediates 
(pentamers of dimers) (Zlotnick et 
al., 2000). 

 Perhaps the most 
comprehensive model of co-
assembly is available for 
bacteriophage MS2 (Basnak et al., 
2010; Dykeman et al., 2010; Morton 
et al., 2010; Rolfsson et al., 2010). 
The bacteriophage MS2 has an 
organized ssRNA genome enclosed 
in a T=3 capsid (Convery et al., 
1998; Toropova et al., 2008; 
Valegård et al., 1994; Valegård et 
al., 1997). The MS2 capsid is made 
up of 90 non-covalently bound 

dimers which exist in two forms, the 
symmetric and the non-symmetric 
(Golmohammadi et al., 1993). The 
binding of a specific RNA stem loop 
triggers the formation of the non-
symmetric dimer from the 
symmetric dimer (Stockley et al., 
2007). The strongest interactions 
between dimers occur between a 
symmetric dimer and a non-
symmetric dimer. Additionally, an 
intermediate formed by two RNA 
stem loop bound dimers is likely to 
be a dead end assembly pathway 
(Morton et al., 2010). Thus, protein-
RNA interactions are directing the 
assembly by stabilizing 
intermediates on the correct 
pathway and blocking the ones on 
the wrong pathway. The dimers 
have been observed to assemble 
further in to hexameric and 
decameric intermediates. The 
current model of MS2 assembly 
sheds light on the importance of 
interactions between RNA and 
capsid proteins in directing the 
assembly towards the correct capsid 
structure.

1.7. Host-cell infection

As all viruses are obligate 
parasites, each virus must manage 
the critical step of entry in to a host 
cell (Pelkmans and Helenius, 2003; 
Roth et al., 2004; Smith and 
Helenius, 2004). The entry 
mechanism depends heavily on the 
host, species, the host cell type as 
well as the species of the virus. 

Similarly, the subsequent steps 
leading to successful viral 
replication and release are also host 
and virus specific (Klein, 2009; Lin 
et al., 2009). The specificity 
required for successful cell entry 
and the subsequent replication 
effectively prohibits viruses from 
freely migrating from one species to 
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another. Still some viruses have an 
enormous range of hosts, for 
example cucumber mosaic virus has 
a host range of about 1200 species, 
whereas the only known host of 
poliovirus is man (Minor, 1996; 
Roossinck, 2010). More detailed 
description of cell entry will be 
presented in later sections that focus 
on poliovirus 1 and human 
rhinovirus 14. 

Plant virus entry is relatively 
simple; in natural settings the virus 
is often inserted in the plant by a 
vector (Shaw, 1999; Wang et al., 
2002). Alternatively, entry may 
occur through damaged surface of 
the plant, which has been exploited 
in laboratory conditions to infect 
plants (Shaw, 1999). Once the virus 
has entered a suitable cell the 
infection commences and the cell 
starts producing viral proteins and 
viral genome. The infection then 
proceeds to adjacent cells and may 
eventually lead to a systemic 
infection of the whole plant via the 
phloem (Loebenstein, 2009; Roth et 
al., 2004). In the case of insect 
vectors, the disease is then 
transmitted further when a suitable 
vector feeds on an infected plant, 
ingests mature viral particles and 
later feeds on another susceptible 
plant. Hence affinity for an insect 
vector that feeds exclusively on 
suitable host plants is advantageous 
for the virus. Additionally, it has 
been suggested that the nematode-
borne viruses are required to 
dissociate from virus-retention sites 
of the vector, prior to the successful 

infection of the next host plant 
(Wang and Gergerich, 1998; Wang 
et al., 2002). Selection for the proper 
vector is conveyed by the capsid of 
the virus and mutations in the 
structural proteins have been shown 
to severely affect plant virus vector 
transmission (Atreya et al., 1991; 
Harrison et al., 1974; Mayo et al., 
1974). 

In the picornaviruses infecting 
animals, the structure of the capsid 
plays a key role in cell entry. For 
successful cell entry, the viral capsid 
must identify and bind the correct 
cellular receptor(s) which then 
mediate entry by triggering the 
uptake mechanisms of the cell 
(Mercer et al., 2010; Smith and 
Helenius, 2004). Some 
picornaviruses require an additional 
receptor or receptors to trigger the 
uptake mechanism, whereas others, 
such as poliovirus, utilize the same 
receptor for initial recognition and 
signaling (Coyne and Bergelson, 
2006; Hogle, 2002; Nemerow, 
2000). 

Viruses infecting mammalian 
cells utilize a multitude of pathways 
for cell entry (Smith and Helenius, 
2004). Of non-enveloped viruses, 
such as picornaviruses, many 
require one of the endocytic 
pathways (Figure 5) (Marsh and 
Helenius, 2006). The clathrin-
mediated pathway is the most 
commonly observed pathway 
utilized by viruses. Additionally, 
picornaviruses such as echovirus1 
and coxsackievirus B3 are known to 
use the caveolar pathway (Coyne 
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and Bergelson, 2006; Pietiäinen et 
al., 2004). Once the cell is entered 
viruses require proper conditions to 
initiate the uncoating of the genome. 
For some viruses binding of the 
correct receptor is enough to initiate 
uncoating, whereas others require 
otherwise suitable conditions, such 
as low pH (Arita et al., 1998; Nurani 
et al., 2003). If the conditions are 

not met, the infection is not 
successful. The strict requirements 
for a correct receptor are one reason 
for host species specificity as the 
receptors vary from species to 
species. The receptor specificity also 
directs the virus into certain tissues 
of the infected animal as different 
tissues express receptors in different 
quantities.

 
Figure 5. Endocytotic pathways used by viruses infecting animal cells. (a) 
Macropinocytosis is involved in the entry of adenoviruses. (b) A clathrin-independent 
pathway from plasma membrane has been shown to exist for influenza virus and 
arenaviruses. (c) The clathrin-mediated pathway is the most commonly observed 
uptake pathway for viruses. (d) The caveolar pathway is one of the several closely 
related, cholesterol-dependent pathways that bring viruses to caveosomes, from which 
many of them continue to the ER, by a second vesicle transport step. (e) A cholesterol-
dependent endocytotic pathway devoid of clathrin and caveolin-1. (f) A pathway 
similar to (d) except dependent on dynamin-2. Depending on the virus and cell type, 
penetration reactions occur in five locations: the plasma membrane, early and late 
endosomes, caveosomes and the ER. The additional endocytotic mechanism of 
phagocytosis also operates in many cells but has not as yet been linked to virus entry 
and is not included here. Modified from (Marsh and Helenius, 2006) with permission 
from Elsevier. 
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2. Select members of the picornavirus superfamily 

Several of the members of the 
picornavirus superfamily are 
significant for the human 
population. Among the best studied 
are the serotypes of poliovirus, 
which are members of the human 
enterovirus group C (HEV-C). Of 
the three serotypes, it is poliovirus 1 
(PV1) that has been most 
extensively studied. Additionally, 
the successful vaccination campaign 
against the serotypes of poliovirus 
offers an interesting example of an 
eradication campaign and the 
difficulties likely to affect similar 
campaigns in the future (see Section 
2.1). Another well studied virus in 
the picornavirus family is 
rhinovirus, which is a member of the 
human rhinovirus group B (HRV-
B). Several of the serotypes have 
been well studied, but human 
rhinovirus 14 (HRV14) was the first 
picornavirus structure that was 
resolved at atomic resolution 
(Rossmann et al., 1985). Many of 

the proposed mechanisms of 
picornaviruses are derived from the 
wealth of information made 
available by the poliovirus and 
rhinovirus studies. On the other 
hand, enterovirus 71 (EV71) is a 
relatively little studied virus, but one 
that is the subject of many scientific 
inquiries at the moment. EV71 is a 
member of the human enterovirus 
group A (HEV-A) and the causative 
agent of an epidemic circulating in 
Asia since 1997, causing severe 
symptoms in many of the infected 
human beings (Ang et al., 2009; Tee 
et al., 2009; van der Sanden et al., 
2009). As such EV71 is a strong 
candidate for vaccine development 
and a possible candidate for the next 
large scale vaccination campaign. 
Although, many structures of plant 
viruses are available, the only 
member of the nepovirus family to 
be structurally studied to atomic 
resolution is TRSV (Chandrasekar 
and Johnson, 1998). 

2.1.  Poliovirus 1 

Poliovirus 1 is the most 
comprehensively studied 
picornavirus to date in the world. 
PV1 has been a subject of scientific 
enquiries since 1908 when it was 
identified as the cause of 
poliomyelitis (Racaniello, 2006). 
The poliovirus epidemic is 

considered to have started with the 
improvement of overall hygiene in 
the western countries. Before the 
improvement in hygiene poliovirus 
was first contracted in early infancy 
while still under the protection of 
maternal antibodies. Poliomyelitis 
causes irreversible damage to the 
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nervous system causing temporary 
or permanent neural damage of 
varying severity in 0.1–1 % of 
patients (Ehrenfeld et al., 2009). The 
battle against poliomyelitis started 
in 1955 with the formalin-
inactivated poliovirus vaccine (IPV) 
developed by Jonas Salk (Salk et al., 
1954a; Salk et al., 1954b). Three 
monovalent live-attenuated oral 
poliovirus vaccines (OPV) 
developed by Albert Sabin were 
licensed for use in 1961 (Sabin et 
al., 1954). In 1963 trivalent OPV 
providing coverage for different 
poliovirus serotypes was introduced 
and Salk IPV was quickly replaced 
in routine vaccinations. The war 
waged on polio has been successful 
in most countries worldwide, but 
there have been some setbacks and 
the war is still waged in some 
countries where polio eradication 
has not been successful. 

The OPV vaccine widely used 
carries the burden of the attenuated 
virus reverting back to 
neurovirulence in approximately 1 
per 750 000 cases. Vaccine derived 
poliovirus (VDPV) has been 
responsible for a few epidemics 
around the world. The VDPV 
epidemic in Hispaniola in 2000 was 
traced to Sabin OPV type 1 virus 
which had recombined with an 
unidentified Group C enterovirus 
and regained neurovirulence (Kew 
et al., 2002). If the proportion of 
vaccinated population is low, a 
recombined poliovirus can 
propagate efficiently and start an 
epidemic. Additionally, the ability 

of OPV strains to revert back to 
neurovirulence has led to opposition 
to the vaccine in some regions. 
Currently the greatest obstacles in 
OPV distribution are logistical 
problems, regional wars and 
resistance of the population against 
vaccinations. These issues make 
delivering the vaccine to everyone a 
difficult task. Overall the battle 
against polio could not have been 
this successful unless the vaccine 
was relatively easy to produce and 
the effects were long-
lasting/permanent. The long-lasting 
effect of the vaccine is most likely 
due to the inability of polioviruses 
to mutate the antigenic parts of their 
protein shell, whereas some viruses 
undergo constant mutations to avoid 
detection by the immune system e.g. 
influenza viruses. 

 Poliovirus 1 utilizes CD155 
as a receptor for cell entry 
(Mendelsohn et al., 1989). Binding 
to CD155 is the first step of PV1 
cell entry and binding of CD155 to 
PV1 is known to initiate conversion 
of native 160S particles to altered 
135S particles in physiological 
temperatures (Arita et al., 1998). 
The 135S particles expose 
transiently the hydrophobic C-
termini of the VP1, the VP4 
molecules become externalized and 
embedded in the cell membrane 
(Danthi et al., 2003; Fricks and 
Hogle, 1990). Following steps lead 
to internalization via an endocytotic 
pathway, although the exact 
pathway remains unclear 
(Basavappa et al., 1994; DeTulleo 
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and Kirchhausen, 1998). 
Subsequently, the RNA genome is 
released through a pore opened into 
the endosomal membrane and the 
135S particles are converted to 80S 
particles devoid of RNA (Arita et 
al., 1998). It has been proposed that 
the pore-forming proteins are VP4 
and the N-termini of VP1 (Tuthill et 
al., 2006). The only RNA density 
present in the native PV1 capsid X-
ray structures is found associated 
with the amino-terminal residues of 
VP2 (Levy et al., 2010). However, 
biochemical studies have shown that 
a single point mutation in either one 
of the capsid proteins VP3 or VP4 
can inhibit packaging of RNA, 
while allowing empty capsid 
assembly (Ansardi et al., 1994). 
Furthermore, the PV1 VP4 and the 
N-termini of VP1 are positioned on 
the inside of the capsid, near the 
strongest sign of capsid protein-
RNA interaction site of cryoEM 
model EMD-5144. 

Studies of poliovirus 1 have 
yielded a wealth of information, 
including an abundance of structural 
information. It is due to the 
combination of biochemical and 
structural data that we have a 
working model of poliovirus cell 

entry. The structure of the 160S 
form of PV1 was solved to 2.9 Å 
resolution in 1985 and subsequently 
to 2.2 Å resolution in 2001 by X-ray 
crystallography (Hogle et al., 1985; 
Miller et al., 2001). The structure of 
PV1 complexed with CD155 was 
solved to 15 Å resolution in 2003 
and later to 8 Å resolution in 2008 
using cryoEM (He et al., 2003; 
Zhang et al., 2008a). The 135S cell 
entry intermediate of PV1 has been 
solved to 10 Å resolution using 
cryoEM and the 73S empty capsid 
to 2.88 Å resolution using X-ray 
crystallography (Basavappa et al., 
1994; Bubeck et al., 2005). 
Additionally, the early and late 80S 
forms have been solved to 10 Å 
resolutions using cryoEM (Levy et 
al., 2010). In addition to the 
structures listed above, structures of 
several mutant PV1 and antibody 
bound PV1 have been solved. The 
structural studies of intermediate 
forms of the PV1 capsid have 
provided detailed information on 
which amino acid residues are 
critical for the interaction PV1 
capsid and CD155 receptor and 
what conformational changes occur 
in the PV1 capsid during the 
uncoating steps. 

2.2. Enterovirus 71 

Enterovirus 71 was first isolated 
and described in California in 1974 
and it is one of the most prominent 
picornaviruses of humans today, 
causing major epidemics in Asia for 

over ten years now (Lee and Chang, 
2010; Schmidt et al., 1974). 
Between 1975 and 2009 epidemics 
involving EV71 have been reported 
in Europe as well (Chumakov et al., 
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1979; van der Sanden et al., 2009). 
The most common symptoms of 
EV71 infection are fever and hand, 
foot, and mouth disease where 
typically oral ulcers and rashes in 
the extremities develop. The 
extreme consequences of EV71 
infection, which are flaccid paralysis 
or even death, appear to affect 
mostly children (Chan et al., 2000; 
Ho et al., 1999). The severe 
symptoms of EV71 infection in 
childhood have been associated with 
adverse effects in neural 
development (Chang et al., 2007). 
The disease caused by EV71 can 
resemble poliomyelitis in nearly 
every respect (Chumakov et al., 
1979). Studies of EV71 are still 
ongoing, but it seems that the rate of 
severe symptoms is comparable to 
that of different poliovirus serotypes 
(Arita et al., 2007). During the past 
ten years EV71 has also been 
mutating rather quickly giving rise 
to the possibility that EV71 may 
become a successor of polio. 

These considerations make 
EV71 a prime candidate for vaccine 
development and a vaccine against 
EV71 is currently under active 
development in Asia. Some 
promising vaccine candidates, 
consisting of inactivated virus, 
attenuated virus, virus-like particles 
or capsid subunits, have been 
discovered and a vaccine against 
EV71 may become available in the 
next five to ten years (Arita et al., 
2007; Arita et al., 2005; Chung et 
al., 2008; Wu et al., 2002). Recent 
studies have shown that EV71 
utilizes sialylated glycans, P-selectin 
glycoprotein ligand-1 and scavenger 
receptor B2 as cellular receptors 
(Nishimura et al., 2009; Yamayoshi 
et al., 2009; Yang et al., 2009). 
Identification of these receptors may 
prove helpful for vaccine 
development and also for 
understanding the tissue tropism of 
EV71. EV71 is a member of the 
HEV-A group and currently there is 
no structural data available on any 
of the members of that group.

2.3. Human rhinovirus 14 

Rhinoviruses are divided into a 
minor and a major group depending 
on the cellular receptor they employ 
to enter the cell (Uncapher et al., 
1991). HRV14 is a member of the 
major group rhinoviruses which 
bind to intracellular adhesion 
molecule 1 (ICAM-1). Additionally, 
HRV14 is one of the best studied 
picornaviruses along with PV1. 

HRV14 infections often lead to 
respiratory illnesses and it is one of 
the many causes of the common 
cold (Hayden, 2004). The sheer 
number of rhinovirus serotypes has 
made the development of a vaccine 
against rhinovirus-induced diseases 
very difficult. Additionally, the 
symptoms of rhinovirus infections 
are generally so mild that the 
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development a vaccine preventing 
infection is not of such high priority 
as the polio vaccine was in the 
1960s. However, studies performed 
on HRV14 provide further insight 
into the cell entry and uncoating 
mechanisms of picornaviruses 
(Goncalves et al., 2007; Grunert et 
al., 1997; Katpally and Smith, 2007; 
Khan et al., 2010; Nurani et al., 
2003; Rossmann, 1994). 

 The cell entry of HRV14 has 
been determined to enter 
rhabdomyosarcoma cells in a 
manner that is independent of 
clathrin, caveolin and flotillin, and 
resembles macropinocytosis (Khan 
et al., 2010). However, HRV14 
seems to utilize an endocytotic 
pathway when infecting HeLa cells 
(Grunert et al., 1997). These studies 
indicate that cell entry pathway of a 
given virus may vary depending on 
the cell type. Furthermore, HRV14 
as model system, along with PV1, 
allow better understanding of 
common themes in picornavirus life 
cycles, as well as the differences in 
them. 

The uncoating mechanism of the 
endocytotic pathway of major group 
rhinoviruses is similar to that of 
PV1. Binding of the cellular 
receptor initiates entry and 
uncoating (Bayer et al., 1999). 
However, low pH in addition to the 
receptor binding facilitates 
uncoating (Nurani et al., 2003). The 
VP4 protein of HRV14 is 
externalized or released and the C-
termini of VP1 is exposed and 
together they interact with the 
endosomal membrane to allow 
release of the RNA genome in to the 
cytosol (Hoover-Litty and Greve, 
1993). The release of VP4, prior to 
binding with ICAM-1, renders 
HRV14 particles uninfectious. The 
anti-viral compounds developed 
against rhinoviruses, known as the 
WIN compounds, bind to rhinovirus 
particles, so that either the binding 
of ICAM-1 is blocked or the VP4 
protein cannot be released 
(Goncalves et al., 2007; Hadfield et 
al., 1995; Smith et al., 1986).

2.4. Tobacco ringspot virus

The genome of TRSV is 
bipartite positive-sense single-
stranded RNA. One segment 
(RNA1) codes the non-structural 
proteins and the second (RNA2) 
codes for the capsid protein and a 
movement protein (Forster and 
Morris-Krsinich, 1985; Jobling and 
Wood, 1985). The genome segments 

are packaged in separate particles 
and both segments are required for 
infection (Diener and Schneider, 
1966) (Murant et al., 1981). TRSV 
is not limited to tobacco as a host 
and is capable of causing such 
diseases as soybean budblight, 
ringspot diseases of tobacco and 
cucumber, and chlorotic or necrotic 
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spotting in many annual and 
perennial crops (Chandrasekar et al., 
1997). 

The TRSV capsid protein has 
been expressed in insect cells and 
subsequently the structure of the 
TRSV virus-like particle, a particle 
composed of native virus capsid 
proteins but assembled without 
RNA encapsidation, has been solved 
by cryoTEM (Singh et al., 1995). 
The native virus structure of TRSV 
has been solved by X-ray diffraction 
(Chandrasekar and Johnson, 1998). 
The TRSV capsid is 280 Å in 
diameter and is made up of 60 

copies of a single structural protein. 
The structural protein has a 
molecular weight of 56 kDa and it 
folds to form three β-barrel 
domains. The density corresponding 
to RNA is not visible in the X-ray 
structure due to asymmetric 
distribution in the capsid. 
Additionally, even though RNA 
density is generally visible in 
cryoEM structures of icosahedral 
viruses, the density does not 
represent the native distribution of 
RNA, but only the average of the 
icosahedrally symmetric RNA. 

3. Viruses in this study 

3.1. Blackcurrant reversion virus 

Blackcurrant reversion virus 
(BRV) is an important pathogen of 
commercial blackcurrant crops. 
BRV has been shown to be the 
causative agent of blackcurrant 
reversion disease (BRD) (Lemmetty 
et al., 1997; Lemmetty and Lehto, 
1999). BRD occurs worldwide with 
the exception of the Americas 
(Jones, 2000). The disease occurs in 
two different forms of which the 
more severe one affects 
Scandinavia, Eastern Europe and 
countries of the former Soviet Union 
(Jones and McGavin, 2002).  

The virus itself spreads from 
one plant to next via an insect 
vector, the eriophyid mite 
Cecidophyopsis ribis (Thresh, 

1964). BRV is the only member of 
the nepovirus group transmitted by 
mites. BRV is transmitted between 
the blackcurrant plant and the mites 
as the mites feed on the plant. The 
first symptoms of BRD typically 
appear 1-2 years after the initial 
BRV infection (Jones, 2000). 
Initially the symptoms involve 
deformation of leafs and flowers. 
Eventually the infection progresses 
to complete sterility stopping the 
plant from bearing any fruit (Jones, 
2000). 

BRV has a bipartite positive 
sense RNA genome that encodes a 
single capsid protein (Latvala et al., 
1998). The capsid protein of BRV 
has been observed in two forms with 
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molecular weights of 54 and 55 
kDa. The N-termini of the 
differently sized proteins are 
identical (Lemmetty et al., 1997). 
Containment of BRV infection in a 
blackcurrant farm is a very difficult 
task, as the symptoms take a long 
time to become apparent. 
Additionally, the wind-dispersed 
mites are capable of spreading the 
disease quickly from plant to plant. 
Currently the only effective method 

of purging BRV infection from a 
blackcurrant farm is to replace all 
the plants at once. Identification of 
the mite-specific segment of the 
BRV capsid protein might provide 
means to limit the transmission of 
BRV from infected plants to healthy 
plants in the future. Thus, only the 
diseased plants would need to be 
removed, allowing a less wasteful 
method of purging BRV from a 
farm.

3.2. Human parechovirus 1 

Human parechovirus 1 
(HPEV1) was originally known as 
echovirus 22, but later genome 
analysis revealed significant 
differences in comparison to other 
picornaviruses and thus it was 
reclassified as HPEV1 (Hyypiä et 
al., 1992). HPEV1 is a very 
common human pathogen 
worldwide. The majority of HPEV1 
infections occur in early childhood 
and are mild gastrointestinal or 
respiratory illnesses (Joki-Korpela 
and Hyypiä, 2001). However, 
HPEV1 can cause infections of the 
central nervous system, myocarditis 
and generalized infections in 
neonates which are serious medical 
conditions (Stanway et al., 2000). 

 HPEV1 differs from most 
other known picornaviruses as it 
lacks the cleavage of VP0 protein 
into VP2 and VP4 (Stanway et al., 
1994). This maturation cleavage 
stabilizes the virion and is 
considered a necessary step for 

polioviruses (Basavappa et al., 
1994). To date, the only other 
picornavirus that lacks this cleavage 
is the Aichivirus (Yamashita et al., 
1998). Similarly to coxsackievirus 
A9 (CAV9) and echovirus 9 (EV9, 
Barty strain) HPEV1 has an 
arginine-glycine-aspartic acid 
(RGD) motif at the C-terminus of 
VP1 (Chang et al., 1989; Hyypiä et 
al., 1992; Zimmermann et al., 1996). 

Mutations in the RGD-motif of 
CAV9 are found to affect virus titres 
and the range of tissues where 
CAV9 is recovered from (Harvala et 
al., 2003). Whereas, neither CAV9 
nor EV9 infection is completely 
dependent of an intact RGD-motif, 
deletions in the RGD-motif have 
been shown to be lethal for HPEV1 
(Boonyakiat et al., 2001; Hughes et 
al., 1995; Zimmermann et al., 1995). 
For CAV9, studies have identified 
integrin αVβ3 as a cellular receptor 
and shown that HPEV1 competes 
with CAV9 for this receptor, 
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indicating that HPEV1 employs the 
same receptor (Roivainen et al., 
1994). Integrin αVβ6 has been 
identified as another RGD-
dependent cellular receptor of 
CAV9 (Williams et al., 2004). 
Furthermore, integrin αVβ1 and 
matrix metalloproteinase 9 have 
been identified as cellular receptors 
of HPEV1 (Pulli et al., 1997). The 

interaction of RGD-motif with 
integrin αVβ3 has been structurally 
characterized and the interacting 
residues identified (Xiong et al., 
2002). Studies on HPEV1 cell entry 
have indicated clathrin-dependent 
endocytic pathway as the entry route 
of HPEV1 (Joki-Korpela et al., 
2001).

3.3. Coxsackievirus A7 

Coxsackievirus A7 (CAV7) is 
member of the human enterovirus A 
group. CAV7 has been responsible 
for small scale epidemics in the 
USSR in 1952 and 1956, as well as 
in Scotland in 1959 and 1963 (Grist 
and Bell, 1984). Symptoms of a 
CAV9 infection include at least 
aseptic meningitis and paralysis, 
which is why it was originally 
named poliovirus type 4 in the 
USSR (Grist, 1962; Habel and 
Loomis, 1957). CAV7 was once 
considered the most important 
paralysis causing picornavirus, after 
poliovirus (Grist, 1969). However, 
CAV7 has been rarely encountered 
after the epidemics in the 1960’s 
(Blomqvist et al., 2008). Several 
isolates of CAV7 were obtained 

during the epidemics in 1950’s and 
1960’s and later one more in 1971 
(Richter et al., 1971). The different 
strains of CAV7 exhibit differences 
in pathogenesis in mice and 
monkeys (Habel and Loomis, 1957; 
Richter et al., 1971). Interestingly, 
accumulation of haemagglutinin in 
CAV7 infected mouse tissues has 
been reported, but the purpose of the 
accumulation remains unclear 
(Williamson and Grist, 1965). The 
CAV7-Parker strain has been 
sequenced recently (Oberste et al., 
2004). However, the cellular 
receptors of CAV7 have not been 
identified yet and no structural data 
for any member of the HEV-A 
group is available. 
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B. AIMS OF THE PRESENT STUDY 

For this study we chose 
members of the picornavirus 
superfamily as they commonly 
affect human lives either directly or 
through food production. The 
members of the picornavirus 
superfamily are numerous and there 
are still branches which have not 
been structurally characterized. 
Detailed knowledge of the virus 
structure is necessary to rationally 
design anti-viral compounds to 
combat the infections caused by 
viruses. The viruses studied in this 
study include BRV, which is the 
most significant pathogen of 
blackcurrant crops, CAV7 which 
was once considered the most 
significant paralysis-causing 
member of the enterovirus genus 
after poliovirus and HPEV1 which 
infects humans very efficiently and 
may become a major threat to the 
health of humans through 
recombination. The study was 
conducted to gain insight on the 
structural determinants vital for 
virus transmission and initiation of 
infection, which are events that offer 
potential targets for anti-viral 
compounds. 

The aim was to use cryoEM and 
icosahedral image reconstruction to 
determine the structures of three 
viruses and the structures of 
additional states such as empty 
capsids or capsids complexed with 
their host receptors. We also wanted 
to combine homology models or X-

ray structures to our results for more 
detailed analysis of the structures. 
The specific aims were: 

1. To solve the structure of 
BRV and look for structural 
similarities to TRSV which, based 
on amino acid sequence, is the 
closest relative of BRV where an X-
ray structure is available. The goal 
was that the structure could be used 
to model putative vector 
transmission sequences on the 
capsid proteins. Furthermore, we 
wanted to confirm, using antibodies 
that the smaller form of the capsid 
protein of BRV is due to C-terminal 
truncation of the capsid protein 
(Study I). 

2. To solve the structure of 
HPEV1 as the first example of the 
parechovirus group, to compare the 
structure to other known 
picornavirus structures and correlate 
any similarities or differences with 
amino acid sequence comparisons. 
We also sought to identify receptors 
for the virus with infectivity studies, 
to solve the structures of HPEV1 
complexed with those receptors and 
to locate the receptor-binding site on 
the viral capsid. The involvement of 
the RGD-motif in the receptor 
binding was to be confirmed with 
peptide blocking assays (Study II). 

3. To sequence a number of 
CAV7 isolates, to solve the first 
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structure of a representative isolate 
as the first example in the 
enterovirus A group, and to map 
differences in the capsid proteins to 

try to understand the differences in 
pathogenicity at the structural level 
(Study III). 

C. MATERIALS AND METHODS 

1. Cryo-electron microscopy and image processing 

1.1. The electron microscope 

Unlike light microscopes, which 
function in the visible light 
spectrum, the electron microscope 
uses electrons for probing the 
sample. The electrons are extracted 
from an electron source, which can 
be either a metal filament or a field 
emission gun (FEG) tip. In effect the 
metal filament is a metal wire, 
similar to those found in light bulbs. 
To extract electrons the filament is 
subjected to a significant amount of 
heat. The material commonly used 
for the filament is either tungsten or 
lanthanum-hexaboride (LaB6). The 
FEG tip, on the other hand, is a 
carefully shaped piece of solid 
tungsten. Additionally, a specific 
type of FEG tip, named Schottky 
type, is coated with zirconium oxide 
to enhance thermionic emission at 
high temperatures. Regardless of the 
type, the electron source is heated to 
lower the energy barrier of electron 
extraction while maintained in an 
electric extraction potential. The 
extracted electrons are then 
accelerated with another electric 
potential, acceleration potential, to 

relativistic velocities. Electron 
sources must also be maintained in a 
vacuum or else they will degrade 
very rapidly. 

 Although, the process of 
electron extraction is similar in the 
case of either electron source, using 
a FEG tip has a few significant 
advantages. The temperature 
required for electron extraction is 
significantly lower, which slows the 
degradation of the tip. More 
importantly the electron beam 
produced with a FEG source is 
highly coherent and bright, which is 
important for imaging of biological 
samples which give weak and 
diffuse scattering (Orlova and 
Saibil, 2004). The use of electrons 
for sample probing is a cause for 
few other considerations. Firstly, 
electrons interact strongly with 
matter; therefore it is necessary to 
maintain a vacuum throughout the 
electron beam column. Secondly, 
the electron beam is controlled with 
magnetic lenses which, in 
comparison to glass lenses, are 
fairly difficult to shape accurately. 
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Thus, when compared to the lenses 
used in optical microscopes, the 

magnetic lenses are inferior and 
cause more distortion in the image.

1.2. Preparation and imaging of vitrified samples 

Biological samples often 
contain water, which is problematic 
as the electron microscope column 
must be maintained in a vacuum and 
liquid water would dissipate quickly 
in those conditions. Thus it is 
necessary to fix the samples before 
they can be inserted in a 
transmission electron microscope 
(TEM). This can be achieved by 
cooling the sample so that the water 
solidifies. Three kinds of solid water 
exist at low pressure: hexagonal ice, 
cubic ice and vitreous water 
(Dubochet et al., 1988). Crystal 
formation in the sample would 
impose forces on the proteins 
distorting and disrupting them. 
Thus, the vitreous state of water is 
necessary to protect the sample from 
the vacuum and to preserve the 
native state of the proteins as much 
as possible. 

Vitrified cryo samples are 
prepared using a so-called “plunging 
method” (Adrian et al., 1984; Baker 
et al., 1999). In this method a holey 
carbon coated copper grid is fixed to 
a pair of forceps, which in turn are 
attached to a guillotine-like device. 
A small amount of the sample (2-5 
µl) is applied to the suspended grid 
and excess sample is then blotted 
away with a piece of filter paper, 
with the objective of leaving a thin 
film (~200 nm or less) of the sample 

in the holes. The thin layer of 
sample is essential, as to achieve the 
vitreous state of water; a 
temperature of -140 °C must be 
reached rapidly throughout the 
sample. The guillotine is released 
and the grid is plunged into a 
cryogen, usually liquid ethane or 
propane, which cools the sample 
rapidly (Dubochet et al., 1988). 
Liquid ethane or propane is used 
initially in the plunging step, as 
nitrogen has too low a heat capacity 
to allow rapid cooling. The low 
specific heat capacity of nitrogen 
causes boiling of nitrogen in the 
immediate vicinity of the sample 
and causes slow cooling; this is also 
known as the Leidenfrost effect 
(Baker et al., 1999). Treatment of 
the grids with a glow-discharge unit 
or a plasma cleaner prior to sample 
application leaves the grid surface 
charged, effectively rendering the 
grid surface hydrophilic. This is 
helpful because water is a polar 
molecule and the hydrophilic 
surface allows water to spread more 
evenly on the grid surface, whereas 
on hydrophobic surfaces water tends 
to form small droplets. Using the 
treated grids for sample preparation 
increases the chances of successful 
grid preparation significantly. Once 
the grid is prepared it is stored in a 
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holder, which in turn is placed in 
liquid nitrogen for storage. 

 For imaging purposes the 
grid is removed from storage and 
attached to a specific cryo-holder. 
The cryo-holder has a liquid 
nitrogen dewar at one end to keep 
the sample at the other end cooled 
below -140 °C for the duration of 
imaging. If the sample is heated 
above -140 °C, the vitrified water 
undergoes a phase transition to a 
crystalline phase (cubic or 
hexagonal ice is formed) and the 
formation of crystalline structure 
compromises the native state of the 
sample (Figure 6) (Adrian et al., 
1984; Dubochet et al., 1988). The 
phase transition of water is an 
irreversible event and cooling the 
sample below the phase transition 
threshold temperature does not 
recover the amorphous state. The 
cool temperatures also provide cryo 
protection for the sample, as 
biological materials are very 
sensitive to the electron beam 
(Hayward and Glaeser, 1979). At 

liquid helium temperatures a dose of 
20 to 230 e-/Å2 (electrons per 
angstrom squared), depending on 
the molecule, has been reported to 
reduce the first order reflections of 
protein crystals to 1/e (~37 %) of 
their initial values (Knapek and 
Dubochet, 1980). Once the electron 
dose starts to accumulate the 
biological materials are degraded 
and the fine structural details are the 
first ones to suffer. The maximum 
total dose which is generally 
considered safe is 20 e-/Å2 (Baker et 
al., 1999). The electron dose is 
regulated by using a low-dose setup 
which minimizes the exposure of 
areas which are imaged. In low-dose 
mode the grid is searched at a low 
magnification, where the electron 
dose is low and does not damage the 
sample very quickly. The actual area 
of interest is exposed with the 
intense beam only when data is 
collected. Other operations, such as 
focusing and beam adjustments, are 
performed in an area adjacent to the 
area of interest. 
 

Figure 6. Typical images and electron diffraction 
patterns of three forms of solid water observed in 
the electron microscope. (a) Hexagonal ice 
obtained by rapid freezing of a water layer on a 
carbon film. The diffraction patterns, obtained 
from other specimens, show the (110) and (101) 
plane. (b) Cubic ice obtained by warming a layer 
of vitreous water obtained by condensation. The 
shoulder on the (111) reflection, possibly indicates 
a small amount of hexagonal ice (arrow). (c) 
Vitreous water obtained in the microscope, by 
condensation of vapor on a cold carbon film 
supporting polystyrene spheres. Reprinted from 
Dubochet et al. (1982) with permission from 
Royal Microscopical Society. 
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1.3. Image formation and contrast transfer 

The image in transmission 
electron microscope is formed by 
electrons passing through the 
sample. The electrons are guided 
and focused by magnetic lenses 
inside a column that is maintained in 
a high vacuum state. The electrons 
scatter from the sample via 
processes known as elastic and 
inelastic scattering. The elastically 
scattered electrons do not lose 
momentum due to the scattering, 
whereas the inelastically scattered 
electrons lose momentum. The 
inelastic electrons are an undesired, 
yet unavoidable outcome, as they 
are a source of noise in the final 
image (Schröder et al., 1990). The 
amount of inelastic electrons 
passing to the image plane can be 
reduced through the use of 
apertures, which are metal plates 
with a small hole in them. The 
electrons that have scattered in a 
wide angle do not pass through the 
hole. This is a routine method used 
in TEM imaging. However, this 
method is unable to remove the 

inelastic electrons that scatter in a 
narrow angle. However, the 
inelastically scattered electrons 
carry less momentum compared to 
the elastically scattered electrons 
and thus they can be further 
prevented from reaching the image 
plane by the use of an energy filter 
(Angert et al., 2000; Schröder, 
1992). 

 After being scattered by the 
sample, electrons pass through 
apertures and are focused on the 
image plane by the objective lens. 
The image formed on the plane is 
composed of two components, the 
amplitude contrast and the phase 
contrast. In cryo transmission 
electron microscopy (cryoTEM), it 
is the phase contrast that is the 
dominant component in the final 
image. The fraction of amplitude 
contrast is around seven percent 
(Toyoshima and Unwin, 1988). The 
behavior of phase contrast is 
described by the contrast transfer 
function (CTF) which is described 
by the formula (Baker et al., 2000):

2)(2
12 ))}(cos())(sin()1{)( δννχνχν −⋅⋅+⋅−−= eFFCTF ampamp (2) 

Where sin(χ(ν)) is the phase 
contrast element, cos(χ(ν)) is the 
amplitude contrast element, Famp is 
the fractional amplitude contrast and 
e-(δν)2

 describes the attenuation of the 
signal as a function of spatial 
frequency (ν) and beam coherence 

(δ). Function χ(ν) is a phase shift 
function which describes the 
aberrations introduced to the object 
transform due to the imperfections 
in the electron microscope, and it is 
defined as: 
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)2
1()( 422 νλνλπνχ ⋅⋅−⋅Δ⋅= sCf    (3) 

Where Cs is the spherical 
aberration caused by the 
imperfections of the magnetic 
lenses, is the beam defocus 
(positive for underfocus) and λ is the 
wavelength of the electrons in the 
beam. The main limitations imposed 
on the maximum achievable 

resolution with cryoTEM are mostly 
due to imperfections of the 
equipment. Especially the spherical 
aberration of the objective lens 
limits the obtainable resolution, 
which can be theoretically estimated 
by a formula (Wade, 1992): 

fΔ

4
13 )( λ⋅= sCd        (4) 

Where d is the maximum 
achievable resolution with an 
instrument with a spherical lens 
aberration of Cs and electron 
wavelength of λ. 

 CryoTEM images are 
generally collected with settings 
where focus is set slightly under the 
image plane, instead of focusing on 
the image plane. This is done to 
enhance the phase contrast term, 
which arises from constructive 
interference. Because of the 
spherical aberration in the objective 
lens, an effect much like defocus is 
introduced and as a result the full 
beam is never focused at the focal 
plane at the same time (Erickson 
and Klug, 1971). The effect due to 
spherical aberration is partially 
compensated for by setting the focal 
level slightly underfocus, which 
enhances the phase contrast signal 
of features in a certain size range. 
This leads to the situation where the 

signal originating from features of a 
certain size is enhanced while the 
signal from features of different size 
is decreased. To observe features of 
all sizes in one image, several 
images collected at different defoci 
must be combined or alternatively a 
phase plate must be used. 

Furthermore, as the phase 
contrast is a periodic sin function, 
half of the terms are negative; this 
can be corrected by flipping the 
negative terms to positive. To flip 
the phases, the defocus of the 
micrograph must first be 
determined, so that the CTF can be 
solved and phase amplitudes 
correctly flipped. Plotting of the 
CTF curve is useful for evaluation 
of the quality of the data. The 
presence of crystalline ice is easily 
detected by eye, but detection of 
drift and astigmatism is significantly 
more effective from the CTF curve. 
Additionally, comparison of the 
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CTF extracted from experimental 
data and the CTF calculated at the 
same defocus level gives a quick 
way to assess the degree of high 
resolution information present in the 
collected data (Angert et al., 2000; 
Mindell and Grigorieff, 2003). 

A major obstacle for imaging 
vitrified biological samples with 
cryoTEM is the poor contrast. The 
interactions between electrons and 
sample depend on the atomic mass 
of the atoms in the sample. Water 
and proteins have two elements in 
common, oxygen and hydrogen. The 
non-shared elements, carbon, 
sulphur and nitrogen, have atomic 
masses very similar to that of 
oxygen. Thus, water interacts with 
electrons much like proteins and as 
such, proteins embedded in water 
produce minimal contrast. However, 
the use of water is essential as the 
use of alternative media potentially 
compromises the integrity of the 
protein structure. 

 The image formed in the 
electron microscope can be 
observed with a fluorescent screen 
or recorded either on electron 
sensitive film or with a specialized 
charge-coupled device (CCD) 
camera. The images recorded on 
film are then digitized with a 
scanner whereas the CCD-camera 
produces the digitized image 
directly. When the digitized image 
is immediately available, quality 
control can be conducted in real-
time and problems in imaging 
conditions can be more readily 
detected. However, most CCD-

devices are required to convert the 
electrons to photons which are then 
passed on and detected by the CCD-
matrix. This process deteriorates the 
image quality as the incoming 
electrons and the phosphorous 
emitted photons spread laterally 
along the phosphor layer (Daberkow 
et al., 1991; Downing and 
Hendrickson, 1999). The correct 
thickness of the phosphor layer is 
critical, as although a thicker 
phosphor layer allows for maximal 
light output, it results in reduced 
spatial resolution (Faruqi and Tyrell, 
1999). Additionally, the optimal 
phosphor layer thickness is 
dependent on the acceleration 
voltage used. The degradation due 
to lateral spread of electron and 
photons causes severe widening of 
the point spread function (PSF) from 
the theoretically-derived values 
(Faruqi and Andrews, 1997). 
Compensating measures, such as 
higher magnification, are required to 
match the resolution obtained by 
imaging on film (Faruqi and 
Subramaniam, 2000). Additionally, 
increasing the acceleration voltage 
leads to a decline of the high 
resolution information in the 
modulation transfer function 
(Downing and Hendrickson, 1999). 
However, the current generation of 
CCD-cameras already in use, have 
been shown to produce data of 
comparable quality to film (Booth et 
al., 2004; Saban et al., 2006; Zhang 
et al., 2003). Further improvements 
can be expected when CCD matrices 
capable of direct electron detection 
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become widely available (Faruqi, 
2009; Faruqi and Henderson, 2007; 

McMullan et al., 2009). 

1.4. Orientation search and three-dimensional reconstruction 

In transmission electron 
microscope the final image is 
observed with a fluorescent plate, 
film or two-dimensional CCD-
matrix and as such the outcome is a 
two dimensional image of a three-
dimensional object. The situation is 
similar to a medical X-ray of human 
body. The information, or the shapes 
and sizes of all the organs, is 
compressed into a two-dimensional 
image, and it takes a trained person 
to interpret what the image tells 
about the state of the patient. To 
obtain a three-dimensional model of 
the patient something similar to 
magnetic resonance imaging (MRI) 
is required. In MRI the camera is 
rotated around the patient and 
projections of the patient are 
recorded. These projections are then 
mathematically combined to 
produce a three-dimensional model 
of the patient, which is then 
analyzed. 

 Similarly, the object 
observed in the TEM is three-
dimensional, but what we see is only 
the projection of the object. The 
projection of the object depends on 
the orientation of the object in 
relation to the illuminating electron 
flux. Assuming that projections of 
the object in various orientations are 
available and the orientations are 
known, a three-dimensional 

reconstruction of the object can be 
completed. Unlike MRI, the three-
dimensional image reconstruction of 
viruses relies on the notion that the 
particles are identical to each other 
and that they are suspended in 
random orientations in the vitreous 
water. These conditions allow 
collection of projections, 
representing the same object in 
various orientations. However, no 
information on the orientations is 
provided. 

 Thus, determination of the 
orientations of the particles becomes 
the key issue and several 
alternatives to accomplish this task 
are available. The initial model can 
be obtained from the raw data with 
the common lines method or the 
random model method. The 
common lines method searches for 
identical lines from the Fourier 
transforms of the 2D-projections 
(Fuller et al., 1996). For 
icosahedrally-symmetric particles 
this method is particularly powerful, 
as the symmetry gives rise to 37 
pairs of lines per particle. Random 
model generation does not even 
attempt to assign correct 
orientations to particles, but assumes 
the centre of the particle is in the 
center of the box and assigns 
random orientations to a small 
subset of the particles, calculates a 
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three-dimensional reconstruction 
and refines the orientations of the 
subset against the model (Yan et al., 
2007). Further orientation 
assignment, using the full dataset, is 
then performed using the subset 
model as an initial model. 
Alternatively, an object of the 
correct size and shape may be used 
as the initial model; even an 
idealized geometric construction can 
work (Baker and Cheng, 1996). For 
refinement of the orientations all the 
methods use an iterative approach, 
where projections of the model 
generated are used in the next 
iteration to improve the orientations 
of each particle. 

This reasoning is valid, because 
the Fourier transforms of two-
dimensional projections of a three-
dimensional object are equivalent to 
the central cross-sections of the 
Fourier transform of the three-
dimensional object (Crowther, 
1971a). Thus, projections of the 
model can be correlated with the 
projections obtained via cryoTEM 
and with the real object. In addition 
to determining the orientations of 
each particle, it is necessary to fill 
the three-dimensional Fourier space, 
with the two-dimensional 
projections sufficiently, before an 
inverse three-dimensional transform 
can be calculated to a given 
resolution (Crowther, 1971a). 

1.5. Cryo electron tomography 

In many cases the individual 
viral particles are not identical, but 
pleomorphic human 
immunodeficiency virus 1 (HIV1) is 
an example of such a virus (Briggs 
et al., 2003). In this sort of situation 
the information for the three-
dimensional reconstruction must be 
obtained from many views of just 
one particle. Cryo electron 
tomography (cryoET) is used to 
obtain three-dimensional structural 
information from one individual 
particle. This is achieved by tilting 
the sample in electron microscope 
and collecting several projections 
from the same area of the sample at 
different tilt angles (Figure 7). The 
tilt range of the specimen holder is 

usually limited to the range between 
-70° and +70° and the typical tilt 
angle step size is between 1.5° and 
5° (Grünewald et al., 2003; Steven 
and Aebi, 2003). The number of 
projections that can be collected 
typically varies between 80 and 120 
projections (Grünewald et al., 2003). 
Often the limiting factor for the 
number of projections that can be 
collected is the accumulating 
electron dose on the sample. The 
specimen can also be tilted around 
two axes, which allows more views 
of the object of interest to be 
collected (Penczek et al., 1995). To 
study one particle in the sample a 
three-dimensional tomogram, 
combining the information from 
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each projection and the initial tilt 
angles from the microscope, can be 
calculated and the area of interest 
can be isolated. The tomogram 
calculation requires accurate 
positioning of the projections in 
relation to each other and for this 
refinement of the tilt angles is 
required for instance, through the 

use of fiducial markers added to the 
specimen prior to vitrification 
(Castano-Diez et al., 2007; 
Kobayashi et al., 2009; Masich et 
al., 2006). Gold markers are 
commonly used since they have a 
very high contrast in the cryoTEM 
image.

 
Figure 7. Principle of electron tomography. The idea is to record series of 2D 
transmission electron micrographs at different tilt angles for individual 3D objects. In 
practice (a), the specimen holder is tilted incrementally around an axis perpendicular 
to the electron beam and projection images of the same specimen area are recorded at 
each position. A more schematic diagram (b) illustrates the images projected by a 
specimen at successive tilt angles. After mutual aligning all of these projection images, 
they are synthesized into a density map (the tomogram) by a weighted backprojection 
procedure (c), effected in Fourier space. This map represents the distribution of 
density through the specimen volume. Reprinted from (Grünewald et al., 2003) with 
permission from Elsevier. 

Single particle reconstructions 
have achieved resolutions around 3-
4 Å, which is sufficient to track the 
carbon backbone and assign side 
chains to proteins, whereas the 
resolution achieved with cryoET is 
estimated to be around 5 to 8 

nm(Grünewald et al., 2003; Masich 
et al., 2006). This is due to the 
insufficient number of views and 
views from high tilt ranges that are 
missing completely. Tighter spacing 
of the tilt step is impossible, as the 
accumulation of the electron dose 
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destroys the sample. Furthermore, 
increase of the sample thickness at 
the high tilt range adds noise to the 
collected data and weakens the 
contrast. CryoET is not capable of 

studying the fine details of 
biological macromolecules, but it is 
the only technique capable of three-
dimensional studies of pleomorphic 
structures.

1.6. Homology modeling 

Homology modeling refers to a 
method that uses the amino acid 
sequence to predict the structure of 
the protein. Typically the amino 
acid sequence is aligned to 
sequences that have known 
structures. The conserved regions 
are assigned secondary structure 
based on the known structures and 
the unconserved segments of the 
amino acid sequence are modeled 
computationally from scratch 
(Zhang, 2008). The final models are 
built by joining the domains. This 
type of homology modeling is 
referred to as “threading”. Unlike 
homology modeling where the 
entire sequence is matched to a 
single existing structure, the 
threading approach requires the 
match of the secondary structure 
features to existing templates. This 
is advantageous when no single 
close homolog of the query protein 
has a known structure. However, the 
threading approach will fail, if no 
suitable templates for the secondary 
structure prediction exist in the fold 
library. Additionally, the threading 

approach does not provide an actual 
model, but predicts an essentially 
correct fold for the query protein. 
The quality of homology model 
predictions depends heavily on the 
availability of suitable templates. If 
close homolog templates are 
available, high resolution models 
(RMSD 1-2 Å) can be readily 
achieved (Roy et al., 2010). Medium 
resolution models (RMSD 2-5 Å) 
can be achieved even with distant 
homolog models through the use of 
threading (Roy et al., 2010). The 
energy landscape hypothesis of 
protein folding predicts that the 
native state of a protein is also the 
energy minimum. Thus, the 
reliability of protein homology 
models is often estimated by 
evaluating the energy state of the 
models. The use of information 
derived from known structures is 
necessary, as proteins typically 
contain too many atoms for 
calculation of predictions that are 
based solely on interactions between 
the atoms. 
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2. Materials and methods specific to studies included 
this thesis 

BRV was purified from 
inoculated and systematically 
infected Chenopodium quinoa 
Willd. plants. Polyclonal antisera 
against the C-terminal peptides of 
denatured BRV capsid protein were 
generated in rabbits. The binding of 
the antibodies to denatured BRV 
capsid protein was observed by 
western blotting. The details are as 
described in study I. 

 HPEV1 was cultured in a 
human lung carcinoma cell line and 
purified as described earlier 
(Abraham and Colonno, 1984). 
Integrin αVβ6 ectodomain was 
expressed in CHO cells and purified 
as described earlier (Weinacker et 
al., 1994; Williams et al., 2004). 
Integrin αVβ3 was obtained 
commercially (BioMarket Ltd., 
Finland) and Triton X-100 was 
removed prior to biochemical 
assays. Binding of integrins αVβ3 
and αVβ6 to HPEV1 was analyzed in 
a solid-phase integrin binding assay. 
The ability of integrins αVβ3 and 
αVβ6 to prevent HPEV1 plaque 
formation was analyzed in a plaque 
neutralization assay. To test whether 
or not small RGD peptides can 
block the binding of integrins αVβ3 
and αVβ6 to HPEV1, a peptide 
blocking assay was performed. 
These steps are described in study 
II. 

 CAV7 was propagated in B-
Vero cells and purified in CsCl 
gradients. To analyze the stability of 
CAV7 particles, virus preparations 
were heated to 56°C for 30 min 
immediately prior to vitrification 
(Hewat and Blaas, 2004). The 
stability of native CAV7 particles 
was also tested by comparing the 
infectivity of CAV7 stored at -80 °C 
versus freshly-prepared CAV7, in 
two different sample buffers. Two 
CAV7 strains from laboratory 
collections were separately grown 
and purified. The viruses were 
identified as CAV7 strains by 
CAV7-specific antiserum and viral 
RNA was extracted. RT-PCR was 
performed and the 3 kb amplicon 
was subjected to stepwise 
sequencing using primers that were 
generated according to CAV7-
Parker. The details involved in these 
steps are described in study III. 

Low dose EM data for all 
projects were collected with a FEI 
Tecnai F20 microscope operated at 
200kV. The spherical aberration of 
the instrument is 2.0 mm. The 
icosahedral reconstruction data in all 
studies were recorded on Kodak 
SO163 film with a 62000× 
magnification. The micrographs 
were scanned with a Zeiss 
PhotoScan TD scanner with a step 
size of 7 µm. The tomographic data 
in study II were recorded with a 
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Gatan UltraScan 4000 CCD camera 
with 39400× and 48000× 
magnifications, using SerialEM 
software (Mastronarde, 2005). The 
pixel size in the CCD cell used was 
15 µm. 

For the icosahedral 
reconstruction data the contrast 
transfer function was estimated with 
CTFFIND3 (Mindell and Grigorieff, 
2003). The particles were picked 
automatically with a program named 
ETHAN (Kivioja et al., 2000) and 
manually checked and extracted 
using EMAN (Ludtke et al., 1999). 
The reconstructions were done 
either with a combination of PFT2 
(Baker and Cheng, 1996), POR (Ji 
et al., 2006) and EM3DR2 
(Marinescu and Ji, 2003) (Study I) 
or with AUTO3DEM (Yan et al., 

2007) (Studies II and III). In study II 
a bfactor correction was applied 
through the AUTO3DEM system. In 
study III the bfactor was estimated 
and corrected with EM-Bfactor 
(Fernandez et al., 2008; Rosenthal 
and Henderson, 2003). The 
homology modeling of the BRV 
capsid protein (Study I) and CAV7 
capsid proteins (Study III) was 
carried out with I-TASSER (Zhang, 
2009). The homology modeling of 
the β6 subunit of integrin αVβ6 
(Study II) was carried out with 
Phyre (Kelley and Sternberg, 2009). 
The tomographic reconstructions 
were calculated and visualized with 
IMOD (Kremer et al., 1996). All 
other visualizations were done with 
UCSF Chimera (Pettersen et al., 
2004). 
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D. RESULTS AND DISCUSSION 

We solved the structures of the 
selected viruses BRV (Study I), 
HPEV1 (Study II) and CAV7 (Study 
III). In addition we solved the 
structure of CAV7 empty capsid 
(Study III) and the structure of 
HPEV1 complexed with integrins 
αVβ3 and αVβ6 (Study II). As all of 
the viruses studied exhibit 
icosahedral symmetry, the method 
of choice for all projects was model-
based icosahedral three-dimensional 
reconstruction, which allows full 
exploitation of the high symmetry 
found in icosahedral capsids. To 
observe the number and 
conformation of integrin molecules 
bound to HPEV1 we performed 
tomography (Study II). Antibodies 
against the C-terminus of BRV 
capsid protein were used to 
determine if the shorter form of the 
capsid protein is a truncated form of 
the larger form (Study I). The effect 
of soluble integrins αVβ3 and αVβ6 to 
HPEV1 infection was studied with a 
plaque neutralization assay (Study 
II). Furthermore, the ability of 
RGD-peptides to block the 
interaction between integrins αVβ3 

and αVβ6, and HPEV1 was studied 
with peptide-blocking assay (Study 
II). To compare genomic differences 
and to generate a homology models 
of the USSR and the 275/58 strains 
of CAV7, the RNA genome of 
USSR and 275/58 strains of CAV7 
were sequenced (Study III). 
Homology models of the capsid 
protein of BRV (Study I), capsid 
proteins VP1, VP2 and VP3 of 
CAV7 (Study III) and the β-subunit 
of integrin αVβ6 were generated 
(Study II). The homology modeled 
capsid protein of BRV was aligned  
to that of the TRSV X-ray model 
(Study I) and the homology modeled 
capsid proteins of CAV7 were fitted 
into the corresponding segmented 
densities of CAV7 capsid proteins 
(Study III) using the rigid body 
fitting algorithm embedded in UCSF 
Chimera (Pettersen et al., 2004). 
Additionally, the aligned homology 
model of BRV capsid protein was 
used to generate the whole capsid of 
BRV (Study I) using the Oligomer 
Generator in ViperDB (Shepherd et 
al., 2006). 
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1. The structure of the BRV capsid 

1.1. The cryoEM reconstruction 

We solved the structure of the 
native BRV capsid to 17 Å 
resolution using cryoEM and 
icosahedral image reconstruction 
techniques (Study I; Figure 1b). 
Sections of the capsid revealed 
icosahedrally organized RNA 
density inside the capsid (Study I; 
Figure 1c and 1d). Amino acid 
sequence comparisons of the 
structural protein revealed the 
closest relative of BRV that had a 
structure available was TRSV 
(Study I; Figure 2). Comparisons 
between the cryoEM reconstruction 
of the BRV capsid and the X-ray 

model of TRSV revealed the 
structures to be nearly identical 
(Study I; Figure 3a and 3b). Using 
difference imaging between the 
cryoEM reconstruction of BRV and 
the X-ray model of TRSV filtered to 
17 Å resolution we managed to 
differentiate the densities deriving 
from protein and RNA. With the 
results from the difference imaging 
we could determine that the RNA 
density followed the contours on the 
inside of the protein shell closely, 
filling the protrusions at the five-
fold axes (Study I; Figure 1e and 
1f).

1.2. Homology modeling 

Once the structural similarity 
had been confirmed we proceeded to 
produce a highly reliable homology 
model of the BRV capsid protein. 
The carbon backbone trace of the 
homology modeled capsid protein 
was very similar to that of the TRSV 
X-ray structure (Study I; Figure 3a 
and 3b). The BRV capsid protein 
homology model was aligned to that 
of the TRSV X-ray model and then 
used to generate the whole capsid of 
BRV (Study I; Figure 3c and 3d). 
Amino acid sequence comparison of 
nepovirus capsid proteins revealed, 
that BRV has a three amino acid 

insertion (KAG) in the DE loop 
(Study I; Figure 2). Using the full 
capsid homology model we looked 
for the position of the loop indicated 
in the amino acid sequence 
comparison. The DE loop was found 
on the surface of the capsid, 
clustering near the five-fold axes 
(Study I; Figure 3c and 3d). The 
importance of a specific coat protein 
sequence in insect transmission has 
been demonstrated (Atreya et al., 
1991). The clustering of the DE loop 
in BRV may enhance vector-virus 
interaction and supports the 
hypothesis that this loop may have a 
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role in the mite-transmission. The 
residues involved in the protein-
RNA contacts were studied by 
fitting the homology model of the 
BRV in the cryoEM density of the 
BRV (Study I; Figure 3e). The fit 
placed residues 1-3 (SGL), 112-114 
(TFT) and 290-292 (FHI) closest to 
the protein-RNA interaction sites. 
The importance of protein-RNA 
interactions in virus capsid assembly 
have been well characterized in 
MS2 (Morton et al., 2010; Rolfsson 
et al., 2010; Toropova et al., 2008). 
The viral protein-RNA interactions 
have not been conclusively shown to 

be important in the uncoating of 
picornavirus superfamily members, 
but the capsid proteins VP1 and 
VP4 have been suggested to be 
functionally involved in PV1 
uncoating and the protein-RNA 
interactions may have a role in 
uncoating (Danthi et al., 2003). 
Thus the protein-RNA interactions 
identified in BRV (Study I) may 
indicate important sites for capsid 
assembly and uncoating, and the 
predicted residues provide potential 
targets for studying these processes 
in BRV. 

1.3. Short form of the capsid protein 

Western blot of capsid proteins 
incubated with antibodies specific to 
the C-terminus of the BRV capsid 
protein revealed that only the longer 
form of the capsid protein binds the 
very C-terminal antibody (Study I; 
Figure 4). Thus, we concluded that 

the shorter form of the capsid 
protein is due to a C-terminal 
truncation of the longer form. The 
truncation may arise either during 
infection or the purification process, 
but the exact reason for the 
truncation remains unclear. 

2. The structure of the HPEV1 capsid 

2.1. The cryoEM reconstruction of the HPEV1 capsid 

We solved the structure of 
HPEV1 native capsid to 8.5 Å 
resolution (Study II; Figure 2E and 
3). Amino acid sequence 
comparison of VP1 to other 
picornaviruses revealed little 
similarity (Study II; Figure 1). 
Comparison of the structure to other 
known picornavirus structures 

filtered to 8.5 Å resolution 
confirmed that HPEV1 structure 
differs significantly from other 
known structures (Study II; Figure 
3). The signature truncated five-fold 
vertex was found only in FMDV. 
Further examination of the amino 
acid sequence alignments revealed 
that both FMDV and HPEV1 have 
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deletions in the VP1 β-barrel surface 
exposed loops, which are 
responsible for forming the five-fold 
protrusions (Study II; Figure 1). One 
of the deletions is extensive enough 
to potentially merge the β-sheets of 
the VP1 β-barrel, leading to a seven 
sheet β-barrel, like in FMDV, 
instead of the more common eight 
sheet β-barrel found in other 
picornavirus structures (Acharya et 
al., 1989; Hendry et al., 1999; Hogle 
et al., 1985; Rossmann et al., 1985). 

Furthermore, we observed a 
novel “finger-like” structure near 
the five-fold vertices, extending 
approximately 30 Å into the capsid 
(Study II; Figure 4C-E). The density 
of the fingers was markedly higher 
than the density of the capsid 
protein shell in the reconstruction 
(Study II; Figure 2E). The position 
of the fingers was compared to the 
position of CAV9 capsid proteins. 
The comparison placed the fingers 
very close to the position where the 
N-termini of CAV9 VP1 and VP4 
lie, however the fingers extend 
further into the capsid (Study II; 
Figure 4C-E). We speculate that the 
fingers are a site of protein-RNA 
interaction, and as HPEV1 lacks the 
cleavage of VP0 to VP2 and VP4, 
we suspect that the N-termini of 
VP0 and VP1 are involved in the 
interaction. Additionally, the very 
high density of fingers suggests that 

the fingers are highly organized 
material, possibly highly-ordered 
duplex RNA and protein. The 
fingers potentially indicate positions 
which are important in capsid 
assembly, as has been shown for 
MS2, or RNA uncoating, as has 
been speculated for PV1 (Danthi et 
al., 2003; Morton et al., 2010; 
Rolfsson et al., 2010; Toropova et 
al., 2008). In assembly these areas 
may function as RNA binding sites 
in pre-assembled subunits, where 
RNA binding drives the assembly. 
Alternatively, the fingers may mark 
the position of a protein terminal or 
loop that is externalized during 
uncoating, pulling the RNA along 
and driving the uncoating. Both of 
these aspects would be interesting to 
study with mutation studies in the 
coat proteins at this region. The 
RNA genome could also be 
analyzed for the existence of 
energetically-favorable stem-loop 
structures that might be involved in 
assembly as is the case for MS2 
(Horn et al., 2006; Morton et al., 
2010; Valegård et al., 1997). 
Expression of the capsid proteins 
individually in a recombinant 
system could also prove helpful in 
assembly studies, as has been done 
for example with CCMV and MS2 
(Fox et al., 1998; Valegård et al., 
1997). 
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2.2. Integrin binding to HPEV1 

An infectivity assay showed 
that, while incubation in the 
presence of soluble, recombinant, 
extracellular segment of integrin 
αVβ6 blocked HPEV1 infection, 
whereas incubation with soluble full 
length integrin αVβ3 rather enhanced 
than blocked the infection (Study II; 
Figure 5). The observed difference 
may be due to different forms of the 
integrins. Only the extracellular 
segment of integrin αVβ6 was used, 
whereas the full length integrin αVβ3 
was used. A fraction of the full 
length integrin αVβ3 may have been 
incorporated to the cell membrane 
before or after binding to HPEV1 
increasing the number of integrin 
molecules on the cell surface, thus 
increasing the infectivity. 
Alternatively, as the integrin αVβ3 
was observed to aggregate 
efficiently at higher concentrations, 

it may be that the clustering of 
integrin αVβ3 molecules reduces the 
number of molecules able to bind 
HPEV1.  

The interaction between full 
length integrin αVβ3 and 
recombinant, extracellular part of 
integrin αVβ6 was studied with 
peptide blocking assays. The assays 
showed that the RGD-motif is a 
major binding site for both integrins 
(Study II; Figure 5). Furthermore, 
my comparison of the β-subunit of 
integrin αVβ3 and the homology 
model of the β-subunit of integrin 
αVβ6 revealed limited conservation 
of the amino acid sequence in the 
region of the RGD binding site 
(unpublished data). Thus the 
difference in the affinity for RGD-
peptides is most likely due to the 
differences in the β-subunit. 

2.3. Reconstructions of HPEV1 complexed with integrins 

The results of the binding assays 
led us to produce vitrified samples 
of HPEV1 complexed with either 
integrin αVβ3 or αVβ6 (Study II; 
Figure 2B and 2C). To optimize the 
complex sample for cryo 
preparation variable mixture ratios 
of HPEV1 and integrins were tested. 
Ratios ranging from one binding site 
per one integrin molecule to one 
binding site per 50 integrin 

molecules were tested. The optimal 
ratio was found to be three integrin 
molecules per two binding sites, for 
both integrins. 

In the micrographs we observed 
only a few integrins bound per 
particle and in variable 
conformations. To further confirm 
the situation we performed cryo-
electron tomography on the sample 
(Study II; Figure 2D). The 
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tomography confirmed that the 
degree of labeling varied from 1 to 6 
integrin molecules bound per 
particle and the conformation of the 
integrin molecules varied 
significantly. The number of 
integrin molecules bound did not 
increase even when we prepared the 
sample with 50-fold excess of 
integrin per binding site. 
Furthermore, in the integrin αVβ3 
complexed sample we observed a 
strong tendency of the integrin-
complexed particles to form 
aggregates (unpublished data). The 
tendency is most likely due to the 
transmembrane domain, present in 
the commercial integrin αVβ3 
sample. The αVβ6 protein was a 
recombinant ectodomain lacking the 
transmembrane sequence and was 
easier to work with. Statistical 
comparison of the ratio of empty 
capsids to full in virion and the 
virion with the integrins showed that 
there was no statistically significant 
indication of either integrin 
initiating uncoating of the HPEV1 
under the conditions used (Study II; 
Table 1). 

 The structures of HPEV1 
complexed with integrins αVβ3 and 
αVβ6 were solved to 15 Å and 8.7 Å 

resolutions, respectively (Study II; 
Figure 7A and 7B). The density of 
the integrin molecules was very 
weak in the reconstructions and the 
contact between HPEV1 and 
integrin αVβ3 was only visible when 
the viewing threshold was set below 
the mean density level. However, 
the observed low density of the 
integrin molecules is in line with the 
low occupancy of integrin 
molecules on the viral surface, as 
was observed in the tomographic 
data (Study II; Figure 2D). The 
contact points, residing between the 
three-fold and five-fold axes, were 
nearly identical for both integrins. 
Comparison with the X-ray model 
of CAV9 places the position of the 
integrin foot-print on residues 268-
270 (PTP) of CAV9 VP1 (Study II; 
Figure 7C and 7D). The amino acid 
sequence alignment featured an 
approximately 20 amino acid 
deletion in the C-terminus of 
HPEV1 (Study II; Figure 1). When 
this deletion is taken into account, 
the position of the integrin footprint 
on the CAV9 X-ray structure 
matches fairly well with the 
predicted position of the RGD-motif 
in CAV9. 
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3. The structure of CAV7 capsid 

3.1. Differences in the sequences of CAV7 strains 

The USSR and 275/58 strains of 
CAV7 were sequenced and amino 
acid sequence comparisons of the 
revealed the capsid proteins of the 
USSR strain to be nearly identical 
with the Parker strain sequenced 
earlier (Study III; Supplementary 
material). The capsid proteins VP2 
and VP4 of the USSR strain and the 
Parker strain were found to be 
identical and only a few point 
mutations in the amino acid 
sequences were observed in VP1 

and VP3 (Study III; Supplementary 
material). Each of the 275/58 strain 
capsid proteins were found to 
contain several point mutations in 
comparison to the Parker strain 
capsid proteins (Study III; 
Supplementary material). However, 
as the pathogenesis of the 275/58 
strain differs from both the USSR 
and the Parker strain, these point 
mutations are likely to be, at least 
partially, responsible for the 
observed differences. 

3.2. The structure of CAV7 empty and filled capsid 

We chose to solve the structure 
of CAV7 USSR strain and so we 
prepared vitrified samples from 
purified virus extract. Initial 
inspection of the micrographs 
revealed that the sample consisted of 
approximately one third RNA filled, 
capsids and two thirds empty 
capsids (Study III; Figure 1). We 
tried to investigate the source of the 
empty capsids in the preparation by 
studying the effect of pH, freezing 
and thawing, and buffer composition 
by infectivity measurement and 
observation by cryoEM (Study III; 
Table 1). The experiment 
demonstrated that neither the 
infectivity nor the percentage of 
empty particles was significantly 

affected by buffer composition or a 
freeze-thaw cycle. This result was 
not surprising since the ability to 
tolerate pH changes is typical for 
enteroviruses. We then used heat 
treatment to generate empty 
particles and analyzed the structure 
of capsids. Heat treatment of full 
CAV7 particles significantly 
reduced the infectivity (around 
1,000-fold decrease). Additionally, 
no full particles were detected in 
cryoEM images of the heat treated 
CAV7 sample (Study III; Table 1). 

The particles from mixed 
population micrographs were 
divided in to empty and filled 
datasets and processed 
independently. The empty capsids 
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from micrographs of the heat treated 
sample were initially processed 
independently to reveal possible 
differences to the empty capsid 
reconstruction from the mixed 
population sample. After the 
refinement had halted and no 
differences could be discerned, the 
empty capsid datasets were 
combined. Ultimately, the CAV7 
filled and empty capsid structures 
were solved to 8.2 Å and 6.1 Å 
resolutions respectively (Study III; 
Figure 3A and 3B). Comparison of 
the maps revealed that the CAV7 
filled capsid has an opening at the 
five-fold symmetry axis, whereas 
the CAV7 empty capsid is closed at 
the five-fold symmetry axis (Study 
III; Figure 3A and 3B). The capsid 
proteins VP1, VP2 and VP3 were 
manually segmented from both of 
the reconstructions (Study III; 
Figure 4A). Comparison between 
the capsid proteins derived from the 
empty capsid reconstruction and 
those derived from the filled capsid 
reconstruction revealed no apparent 
changes in VP2 or in VP3. 
However, in VP1 the comparison 
revealed a slight domain movement, 
which appears to determine the state 

of the opening at the five-fold vertex 
(Study III; Figure 4B). 

The density for VP4 could not 
be detected by difference imaging, 
but putative density for the capsid 
protein VP4 was found in the full 
capsid reconstruction, near the five-
fold vertex (Study III; Figure 3C). 
The density of the putative VP4 in 
the full capsid reconstruction was 
found to be similar to the density of 
the RNA. This is probably due to 
non-homogeneity in the dataset, as 
the some of the full capsids may 
have lost their VP4 while retaining 
their RNA, as happens with PV1 
upon receptor binding (Arita et al., 
1998). The segmented density of 
VP4 appears quite massive in 
comparison with the segmented 
density of the other, larger capsid 
proteins and thus it is very likely 
that it contains density belonging to 
either RNA or one of the other 
capsid proteins. The effect of the 
heating on CAV7 was confirmed by 
infectivity assay and cryoEM (Study 
III; Table 1). The micrographs of the 
heat treated sample had no filled 
capsids, whereas the untreated 
sample displayed the expected one 
third filled particles. 

3.3. Homology models of the capsid proteins 

As CAV7 amino acid sequence 
analysis revealed relatives that have 
X-ray structures available, thus we 
proceeded to attempt homology 
modeling of the capsid proteins 
(Study III; Supplementary material). 

Reliable models were then 
generated for capsid proteins VP1, 
VP2 and VP3 (C-scores: 0.60, 1.08 
and 1.33, respectively). In I-
TASSER, a model with a C-score 
above -1.5 is considered to have the 
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correct fold (Roy et al., 2010). The 
homology modeling of VP4 
produced a less reliable model, but 
one that still has a C-score above the 
cut-off (C-score: -0.93). The 
homology modeled capsid proteins 
were fitted into the segmented 
density of CAV7 capsid proteins 
using a rigid body fitting algorithm 
(Study III; Figure 4A). Majority of 
the homology models fit in the 
corresponding segmented density. 
Especially the strands that make up 
the β-barrels fit well with the 
segmented density. However, as the 
intertwining parts of the capsid 
proteins could not be separated from 
each other by segmentation, the 
correctness of the homology 
predictions remains partially 
unconfirmed. 

 The point mutations in the 
USSR and 275/58 strains were 
mapped on the respective homology 
modeled capsids (Study III; Figure 
5). The mapping revealed many 
surface exposed residues in the 
275/58 strain, while in the USSR 

strain only a few surface exposed 
residues were observed. 
Interestingly, one of the surface 
exposed point mutations in the 
275/58 strain occurs directly at a site 
homologous to the receptor binding 
sites in PV1, CAV21 and CBV3 (He 
et al., 2000; He et al., 2001; Xiao et 
al., 2005a). Furthermore, four 
additional point mutations cluster 
near the same site. It is conceivable, 
that these point mutations affect the 
receptor binding of the 275/58 strain 
and thus are responsible for the 
altered virulence of the 275/58 
strain. 

 The CAV7 structure is from 
a taxonomic group that has had no 
structural information available 
before. The fitting of the homology 
models of the capsid protein could 
be improved by applying flexible 
fitting. When combined with the 
homology model predictions it 
becomes possible to generate a road 
map of the surface exposed amino 
acid residues. 
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E. CONCLUSIONS AND FUTURE STUDIES 

Although the three projects 
described in this thesis were carried 
out independently, there are several 
points that one can draw only when 
considering them as a whole. In the 
following section I will summarize 
these. The three different 
picornaviruses studied showed the 
huge advantages that can be gained 
only through the combination of 
experimental structure 
determination with homology 
modeling and biochemical studies. It 
was possible to very reliably predict 
some capsid protein tertiary 
structures as expected given the 
large number of picornavirus-like 
atomic models available in the 
Protein Data Bank. However, due to 
the very diverse nature of these 
deceptively simple viruses due to 
evolutionary pressures brought 
about by interactions with their 
respective hosts, this simple β-barrel 
framework has such variation and 
elaborations on it that the exact side-
chain interactions, and even the fold 
of some of the proteins, for example 
the capsid proteins of HPEV1 
(Study II) , could not be predicted 
using the best currently-available 
threading algorithms used by Phyre 
and I-TASSER (Kelley and 
Sternberg, 2009; Roy et al., 2010). 
Hence the structural verification, 
even at the limited resolutions 
achieved in this study, are 
informative. 

 Despite the significant 
variance found in the amino acid 
sequences of icosahedral members 
of the picornavirus superfamily, the 
β-barrel fold of the structural 
proteins is well conserved. 
Interestingly, the fold is conserved 
between members of the supergroup 
regardless of whether the host cell is 
a plant cell or an animal cell. 
However, the currently available 
results suggest that the animal and 
plant viruses differ in the cleavage 
of the β-barrel domains of the capsid 
proteins, which are cleaved nearly 
always in the animal viruses, but 
rarely in plant viruses. This could be 
an adaptation to facilitate more 
efficient exploitation of the intake 
mechanisms found in animal cells 
and manipulation of the plasma 
membrane. Whilst the β-barrel fold 
is well conserved, the primary 
amino acid sequence undergoes 
rapid changes, as has been observed 
with, for example EV71 (van der 
Sanden et al., 2010). The 
conservation of the β-barrel fold 
extends beyond the picornavirus 
superfamily and the β-barrel fold 
has been observed in members of 
many virus families, including RNA 
and DNA viruses from all domains 
of life (Nandhagopal et al., 2002). 
Additionally, viral lineages have 
been organized based on the 
conservation of structure, as 
structure is preserved more strictly 
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than amino acid sequence. The β-
barrel domain is a versatile building 
block for viral capsids as it requires 
no specific orientation in the capsid, 
for example the β-strands of the β-
barrel domains are found to be 
roughly perpendicular to the capsid 
surface in e.g. adenoviruses and 
parallel in e.g. tomato bushy stunt 
virus (Harrison et al., 1978; Roberts 
et al., 1986). 

 Prediction of virus-host 
interactions from sequence data 
alone is nearly impossible. The use 
of high reliability homology 
modeling helps in these pursuits by 
providing indications of amino acid 
residues that are surface exposed, 
but prediction of specific 
interactions remains extremely 
difficult. On the other hand, 
structural studies can be used to 
produce reliable evidence of the 
virus-host interactions and 
homology modeling can be 
combined with the results of the 
structural studies to enhance the 
interpretation, as has been seen for 
example with herpes simplex virus 
(Baker et al., 2003; Bowman et al., 
2003; Lasker et al., 2009; Topf et 
al., 2006; Topf et al., 2008). In this 
study the combination of structural 
studies and homology modeling 
enabled the prediction of surface 
exposed residues, as well as residues 
involved in protein-RNA 
interactions. Even with highly 
reliable homology models and high 
resolution structures, such 
predictions should be tested and 
verified with mutational studies. 

 Electron cryo-microscopy 
and image reconstruction is a 
relatively young field that is still 
advancing quickly. The 
development of instruments and 
techniques has had a huge impact on 
the results achieved with cryoEM 
and image reconstruction, even 
within the short time span of this 
project as seen in the results 
presented here. The software used 
for the orientation search in studies 
II and III (AUTO3DEM) resulted in 
a significant improvement of 
resolution in comparison to study I 
(PFT2 and POR) (Baker and Cheng, 
1996; Ji et al., 2006; Yan et al., 
2007). The increased efficiency of 
calculations allowed more freedom 
for optimization of the iteration 
conditions and the data could be 
exhaustively iterated in a reasonable 
time. For fine refinement the use of 
larger datasets improved signal to 
noise ratio, which enabled higher 
resolution reconstructions. The use 
of advanced graphics, including 
stereo graphics, for the analysis of 
the higher resolution reconstructions 
aided greatly the interpretation of 
the results. The data in these studies 
were mainly limited by the sample 
preparation and the electron 
microscope used which has a 
relatively unstable side entry stage 
and a low operating voltage. 
Although, to the best of my 
knowledge, 6Å in a virus 
reconstruction for this design is the 
highest resolution that has been 
reported (Study III). To date the 
highest resolutions reached with 
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cryoEM and icosahedral image 
reconstruction techniques are 
between 3-4 Å (Chen et al., 2009; 
Liu et al., 2010; Yu et al., 2008; 
Zhang et al., 2010; Zhang et al., 
2008b). To calculate a very high 
resolution reconstruction, the quality 
and the consistency of the data 
becomes critical. Even though 
electron microscopes of older design 
allow the collection of high 
resolution data, the lack of stability 
results in great variance in the 
quality of the data collected and 
accumulation of a large dataset of 
high quality becomes very tedious. 
The newer electron microscopes 
operating at higher voltages with 
better pole piece designs have the 
advantage that they are stable 
enough to allow collection of high 
quality data more on regular basis 
and thus enable the collection of 
huge datasets of high quality (Zhang 
et al., 2010; Zhang et al., 2008b). 

 Contacts between the capsid 
proteins and RNA were observed in 
every virus studied, this is due to 
collecting the low resolution 
information that tells about the RNA 
density, albeit inappropriately 
averaged, which is ignored in x-ray 
processing as low resolution 
information is not generally 
collected or modeled. The protein-
RNA contacts are likely to play a 
part in the capsid assembly and 
possibly in the uncoating event as 
well. Studies on MS2 indicate that 
protein-RNA interactions are very 
important for capsid assembly and 
anti-viral agents, inhibiting the 

interaction between viral proteins 
and viral RNA, have been suggested 
(Morton et al., 2010). Such anti-
virals could also prove effective 
against the members of the 
picornavirus superfamily.  

An alternative strategy that 
emerges from these studies is the 
identification of surface epitopes 
involved in host-cell interactions. 
One could investigate the use of 
peptides mimicking these epitopes 
as antiviral agents disrupting the 
initial stages of entry. One example 
could be the putative mite-
transmission epitopes of BRV that 
may offer a low-cost method to 
prevent transmission of BRV from 
plant to plant. This should be 
pursued further as success might 
provide economic advantages and 
an approach which could be 
generalized for other pathogens of 
cultivated plants. It would also be 
interesting to perform a mutagenesis 
study on one of the CAV7 strains to 
determine which, if any, of the 
observed point mutations can 
explain the altered pathogenesis of 
the CAV7 275/58 strain. 
Additionally, comparison of the 
structural road maps between CAV7 
and related viruses, whose crystal 
structure are known, could be used 
to detect areas similar to known 
receptor binding sites and thus aid in 
the search for CAV7 receptors. 

The receptor binding studies on 
HPEV1 revealed two receptors of 
HPEV1, integrin αVβ3 and integrin 
αVβ6. However, neither of the 
receptors indicated ability to initiate 
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the uncoating of the HPEV1 genome 
and currently it seems that both of 
the receptors are primarily 
attachment receptors. The role of the 
integrin receptors in HPEV1 cell 
entry requires further studies and 
possibly more receptors need to be 
identified by siRNA screening for 
example. The existence of additional 
receptors is probable as other HPEV 
serotypes have been identified that 
lack the RGD motif, and these could 
then be used in comparison studies 
to help in mapping out the first 
stages of HPEV cell entry. 

Although many of the 
picornaviruses can cause central 
nervous system (CNS) related 
symptoms it is worth noting that 
only a few of them have been 

reported to cause paralytic 
symptoms. It would be most 
interesting to study why the 
infection by for example poliovirus, 
CAV7 or EV71 can cause paralysis, 
whereas others like for example, 
HPEV1 do not. Are there perhaps 
some subtle differences in 
replication or release in neural cells 
that are the reason for this difference 
in pathogenicity? This matter is 
worth further studies to gain insight 
on the mechanisms of 
picornaviruses. Structural studies 
can help with these goals by 
providing molecular details on 
virus-receptor interaction, structural 
changes involved in cell entry, and 
amino acid residues critical for 
successful infection. 
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