
Approximating Dependency Grammars through

Intersection of Regular Languages

Anssi Yli-Jyrä

Department of General Linguistics, University of Helsinki
P.O. Box 9, FIN-00014 University of Helsinki, Finland

anssi.yli-jyra@helsinki.fi

Abstract. The paper formulates projective dependency grammars in
terms of constraints on a string based encoding of dependency trees
and develops an approach to obtain a regular approximation for these
grammars. In the approach, dependency analyses are encoded with bal-
anced bracketing that encodes dependency relations among the words of
the analyzed sentence. The brackets, thus, indicate dependencies rather
than delimit phrases. The encoding allows expressing dependency rules
(in the sense of Hays and Gaifman) using a semi-Dyck language and a
so-called context restriction operation. When the semi-Dyck language in
the representation is replaced with a regular restriction of it, we obtain
an approximation for the original dependency grammar.

1 Introduction

Simple and efficient approaches to the task of dependency parsing, where de-
pendency analyses are assigned to sentences, has recently attracted considerable
attention ([1, 2] etc.). In this paper, we will show that parsing with ambigu-
ous projective dependency grammars is an intersection problem. With a certain
restriction, this leads to a linear-time restriction, implementable with finite au-
tomata.

A dependency analysis consists of a dependency tree (D-tree) whose nodes
are, as assumed in this paper, words in a sentence. A D-tree shows which words
are related to which other words and in what way. It shows the structure of the
sentence in terms of hierarchical links between its actual elements. D-trees can
be visualized using tree diagrams such as the one in Fig. 1.

that man an apple
det det objpred

ate
subj

Fig. 1. A D-tree consists of dependency links drawn above a sentence. (This example is
borrowed from (Oflazer 2003), but the arrows are drawn here in the opposite direction.)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Helsingin yliopiston digitaalinen arkisto

https://core.ac.uk/display/14919437?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


The links denote syntactic dependencies and are represented by arcs with
arrows and category labels. If X � Y is an arc between two words X and Y ,
we will say that Y depends immediately on X (or, conversely, X governs Y
immediately), and that Y is an immediate syntactic dependent of X (or, X is
the immediate syntactic governor of Y ). In the D-tree, there is a unique non-
governed word called the root. The category label of each link indicates how Y
is dependent on X . Word Y can be e.g. a subject (subj), a object (obj) or a
determiner (det) of X . (Cf. [3], p.14,23)

A D-tree is said to be planar (more precisely, semi-planar) if the links do
not cross each other when drawn above the sentence [4]. Thus, the example in
Fig. 1 is planar. A planar D-tree D is projective [5, 6] if it remains planar (Fig.
2) even if we add the so-called left wall node (/////) that governs the root of D
(cf. [7], pages 99–100).

that man an apple/////
det det objpred

ate
subj

Fig. 2. The D-tree of Fig. 1 maintains planarity when the wall node is added.

In this paper, we will present a regular approximation of grammars that gen-
erate only projective dependency trees. The approximation is based on a new
formulation of the Hays [8] and Gaifman [9] dependency grammars. The for-
mulation represents dependency trees as bracketed strings. The correspondence
between tree diagrams and their bracket-encoding is best understood through
an example, such as the one shown in Fig. 3.

apple
pred det

an
obj

ate
det

that/////
subj
man

# /////[−−→
pred

# that[←−
det

# ]←−
det

man[←−−
subj

# ]←−−
subj

]−−→
pred

ate[−→
obj

# an[←−
det

# ]←−
det

]−→
obj

apple #

Fig. 3. The correspondence between a tree diagram and its encoding as a string. In
order to facilitate reading, brackets belonging to the same tree node have been grouped
with an underline that is not part of the encoding.

The string encoding of a D-tree involves the words of a sentence, labeled
square brackets, a symbol (#) for word boundaries, and the wall node /////. Each
bracket belongs to the word (or to the wall) within the closest surrounding word
boundaries. The wall node ///// is not needed to enforce projectivity, but it
will make all the word nodes have a governor link, which slightly simplifies the
representation.



In the encoding, each arc of the D-tree is split into two parts. An opening
bracket [ (with an additional label as a subscript) indicates the left end of the
arc, and a closing bracket ] (with an additional label as a subscript) indicates
the right end of the arc. The substring between these brackets must contain a
balanced bracketing. A pair of matching brackets always indicate a link between
two words in the sentence.

Let Λ be the set of category labels in D-trees. For each category label a ∈ Λ,
the string encoding has two different labels for brackets. If e.g. ’subject’ is a

label in the D-tree, ’
−−−−→
subject’ and ’

←−−−−
subject’ are possible labels of brackets in the

string encoding. Using the bracket label ’
−−−−→
subject’ indicates that the subject is

at the closing bracket and using the bracket label ’
←−−−−
subject’ indicates that the

subject is at the opening bracket.

The first important contribution of this paper is to point out certain less
obvious properties of Robinson’s [10] set of axioms for projective D-trees:

– The usual projectivity condition [6] is stronger than her fourth axiom.

– Her axioms do not themselves imply treeness (cf. vs. [11], p.4).

– Robinson premised the acyclicity property, but this nuance of the axiom set
is often disregarded (cf. e.g. [12, 11, 2]).

– Antisymmetricity is a necessary consequence of non-crossing brackets that
represent dependencies and a simple local condition.

– Projectivity follows from the placement and the uniqueness of the root node,
irreflexivity, and non-crossing brackets.

The second important contribution of this paper is a reformulation of the
generative dependency rules of the Hays and Gaifman dependency grammars
(HGDG) as properties of bracketed string languages. The grammar representa-
tion makes use of a semi-Dyck language (cf. [13]) in order to capture non-local
properties of bracketed strings. Because HGDGs generate context-free languages
[9], we get from the intersection of these constraints a homomorphic representa-
tion for context-free languages. This new characterization resembles the famous
Chomsky-Schützenberger theorem [14] that says that every context-free language
is a homomorphic image of an intersection of a semi-Dyck language and a regular
language.

Finally, the third important contribution of this paper is to present a linear-
time parseable non-deterministic dependency grammar with restriction to lim-
ited projective dependency trees. This is obtained by replacing the semi-Dyck
language with a regular language. A regular approximation for the semi-Dyck
language can handle only limited balanced bracketing. Consequently, the inter-
section of constraints becomes a regular subset approximation for the grammar
that does not limit the depth of balanced bracketing. The regular approxima-
tion grammar obtained can obviously be applied to sentences in linear time. In
contrast to typical linear-time deterministic dependency parsers, our approach
leaves the ambiguity unsolved. Moreover, our approach can be used for enumer-
ation of valid D-trees and sentences.



2 Some Related Work

The applicability of finite-state methods to automatic syntactic analysis of natu-
ral language has been investigated in different approaches [15]. In pure finite-state
approaches, finite-state devices are combined so that the whole system could be
represented by a single finite-state machine, although it may be of an impracti-
cal size. In extended finite-state approaches, finite-state devices are used as basic
components, but they are combined in such a way that the finite-state nature of
the whole system is not necessarily retained.

Oflazer [2] has presented an interesting extended finite-state approach for
dependency parsing of natural language. In particular, the string encoding used
in our approach can be seen as a notational variant of Oflazer’s representation.
The representation used by Oflazer encodes the example in Fig. 1 as the string

<00(that)0d> <D0(man)0s> <S0(ate)O0> <01(an)1d> <Do(apple)00>

where the stacked “brackets” d,D, O,o and s,S (corresponding to our [←−
det

, ]←−
det

,
[−→

obj
, ]−→

obj
, [←−−

subj
, ]←−−

subj
) are stored into so-called channels.

There exist cubic-time dependency parsers for HGDGs [16]. Most phrase
types can be produced with a parser with quadratic time complexity [17]. Deter-
ministic linear time dependency parsers have been studied e.g. in [1]. Constraint-
based approaches to dependency parsing include Constraint Dependency Gram-
mar [18] and Topological Dependency Grammar [19], which can actually generate
non-context-free languages. Other approaches to assigning dependency struc-
tures to sentences include many lexicalized grammar formalisms that will not be
listed here.

3 Hays and Gaifman Dependency Grammars

Tesnière’s work [20] pioneered dependency-syntax grammars (DG). A formula-
tion of more restricted dependency grammars given by Hays [8] and Gaifman
[9] is only loosely related to Tesnière’s theory, but it is still very influential in
practical DG implementations. Their dependency grammar, HGDG, contains
three kinds of rules by which the dependency analysis for a particular language
is done:

1. Rules of the form X(?) that state that elements of the word category X may
govern the sentence. (We adopt a short-hand notation ?({X1, X2, . . . , Xn})
for the set of these rules.)

2. Rules giving for every word category X the list of words belonging to it.
These are of the form X : {w1, w2, . . . , wn}.

3. Rules which give for each word categoryX those categories which may derive
directly from it with their relative positions. For each X there is a finite
number of rules of the type X(V1V2 . . . Vn ? Y1Y2 . . . Ym). An application of
this rule means that in the D-tree a word of the category X immediately
governs words of categories V1, V2, . . . , Vn on the left of X and words of



the categories Y1, Y2, . . . , Ym on the right. The governed words occur in the
order in which their categories are specified in the rule. These rules are called
dependency rules.

For details of the semantics of HGDGs, the reader is referred to Gaifman [9].

3.1 Axiomatization of Projective Dependency Trees

A famous mathematical axiomatization of the D-graphs generated by HGDGs
is given by Robinson [10]. This axiomatization is usually regarded as a set con-
sisting of the following axioms:

1. There is one and only one word that is independent.

2. All other words are immediately governed by some word.

3. No word depends immediately (i.e. directly) on more than one other word.

4. If word A depends immediately on word B and some word C intervenes
between them (in the linear order of the words in the sentence), then C
depends immediately on A or B or some other intervening element.

It should be noted that Robinson’s fourth axiom is not equivalent to the usual
condition of projectivity in the sense of Harper, Hays, Lecerf and Ihm (cf. [6]).
The projectivity condition drops the underlined part in the fourth axiom and
says instead that C depends transitively on A or B. In contrast to what is
claimed in [1], neither of these conditions imply non-existence of cycles longer
than one or two edges (Fig. 4). The reader can now easily proof that acyclicity

//// W1 W2 W3 W4 W5 W6 W7 W8 W9

Fig. 4. A D-graph that conforms to Robinson’s four axioms but violates acyclicity. The
Harper, Hays, Lecerf and Ihm projectivity accepts the cycles at W5-W9, but not at
W2-W3.

and connectedness of the dependency trees are not consequences of Robinson’s
set of axioms, contrary to what is often suggested [12, 11, 2]. It is often forgot-
ten that Robinson included a crucial premise according to which the transitive
closure of the immediate dependency relation will be (i) irreflexive i.e. with-
out trivial cycles and (ii) antisymmetric i.e. without other cycles. When these
extra requirements are taken as additional axioms, we are restricted to acyclic
structures and the extended axiom set describes exactly the set of projective
dependency trees.



4 The Essentials of the New Representation

4.1 The Alphabet

Assume that Λ is the set of category labels. We define four disjoint bracket sets
as follows:

BL = {[−→a | a ∈ Λ}; Br = {]−→a | a ∈ Λ};
Bl = {[←−a | a ∈ Λ}; BR = {]←−a | a ∈ Λ}.

The brackets with capital L and R subscripts attach to the governor and the
brackets with small l and r subscripts to the dependent member of the pair.
We will assume that Σ is the alphabet for building strings. It is the union of
a number of disjoint subsets, namely the set of word tokens W , the labeled left
square brackets BL ∪ Bl, the labeled right square brackets BR ∪ Br, and the set
of other special symbols {#, ///// }.

The first string homomorphism g : Σ∗ → Σ′∗, where [, ] /∈ Σ and Σ′ =
Σ − (BL ∪ Bl ∪ BR ∪ Br) ∪ {[, ] }, is defined in such a way that it essentially
replaces labeled brackets with the corresponding unlabeled ones. The second
string homomorphism h : Σ′∗ → W ∗ is defined in such a way that it deletes
from the strings all other symbols except the words W .

Obviously, the inverse homomorphism h−1 can be used to freely inject sym-
bols {#, /////, [, ] } into strings of W ∗, and g−1 to replace [ and ]with various
left and right square brackets. To parse a string w ∈ W+, we will intersect
the inverse homomorphic image g−1(h−1(w)) with the grammar G that is an
intersection C1 ∩ C2 ∩ · · ·Cn of constraint languages.

4.2 The Context Restriction Operation

A context restriction of a center X in contexts C1,C2, · · · ,Cn is an operation
whose first argument X is a subset of Σ∗ and each context Ci, 1 ≤ i ≤ n, is
of the form V i Y i, where V i,Y i ⊆ Σ∗. The operation is expressed using a
notation

X ⇒ V1 Y1,V2 Y2, . . . ,Vn Yn.
and it defines the set of all strings w ∈ Σ∗ such that, for every possible v, y ∈ Σ∗
and x ∈ X , for which w = vxy, there exists some context V i Y i, 1 ≤ i ≤ n,
where both v ∈ Σ∗Vi and y ∈ Y iΣ∗.

If all the languages involved in a context restriction are regular, the operation
defines a regular language. In case n = 1, the language expressed by the operation
isΣ∗−((Σ∗−Σ∗V1)XΣ∗∪Σ∗X (Σ∗−Y1Σ

∗)). Context restrictions with multiple
contexts can also be routinely compiled into finite automata [21].

4.3 The Semi-Dyck Derivative and Its Regular Approximations

The semi-Dyck language (cf. [13]) over the alphabet { [, ]} is the language D1

generated by the context-free grammar with single nonterminal S, two terminals



[, ] and the productions S → ε | S [ S ] S. The regular language D1,d is an
approximation of D1, where the depth d of bracketing is bounded:

D1,d =

{
ε if d = 0

(D1,d−1 ∪ ( [ D1,d−1 ]))∗ if d > 0

Let f : Σ∗ → (BL∪Br∪Bl∪BR)∗ be a string homomorphism that deletes all the
other symbols except the square brackets. Obviously, the inverse homomorphism
f−1 can be used to insert other symbols into the strings of square brackets.

The variable ∆ can be given different kinds of values in the following ways:

∆ ← f−1(g−1(D1)) (1)

∆ ← f−1(g−1(D1,d)) (2)

Assignment (1) makes ∆ a context-free language and (2) makes it regular. The
choice between (1) and (2) will determine whether the grammar in this paper
gives exactly the power of HGDGs or whether it admits only a regular approxi-
mation for them. Our motivation to use variable ∆ is that, in the second case,
we actually get a neat finite-state equivalent formalism for a regular subset of
context-free sets whose dependency structures are naturally described by non-
finite-state formalisms.

In both cases, the language ∆ is more liberal with respect to bracket labels
compared to a semi-Dyck language based on an equivalent number of terminal
symbols. Later on in this paper we will, however, employ a technique presented
by Wrathall [22] in order to enforce matching bracket labels in aid of variable ∆
and the context restriction operation (Wrathall used more elementary operations
instead of context restriction).

Note that when ∆ is defined to be a context-free derivative of the semi-Dyck
language D, the obtained grammar representation will not be regular. Although
context-free languages in general are not closed under relative complement that
is used in context restrictions, all the constraints and their intersection will be
context-free languages because of the “backbone” of balanced bracketing.

5 The Axiomatization of Bracketed Dependency Trees

5.1 The Basic Set of Strings with Balanced Brackets

In our encoding of D-trees, the sentence begins and ends with a word boundary
# (3a), and the bracketing must be balanced (3b). These axioms are expressed
as constraints:

#Σ∗#; ∆. (3)

Moreover, between each two word boundaries there exists at least one word, and
two words are always separated by a word boundary. These axioms are expressed



by the following regular constraint languages:

Σ∗ −Σ∗# (Σ − (W ∪ {/////}))∗ # Σ∗; (4)

Σ∗ −Σ∗ (W ∪ {/////}) (Σ − {#})∗ (W ∪ {/////}) Σ∗ .

In addition, the matching brackets must have equivalent labels. This is done
through the following constraints that are inserted for each bracket label (i.e.
word category) a ∈ Λ (cf. [22]):

[−→a ⇒ ∆ ]−→a ; [←−a ⇒ ∆ ]←−a . (5)

5.2 The Properties of Projective Dependency Trees

We will now implement each of the requirements stated by Robinson by means
of language properties. Our convention to use the wall node causes some unim-
portant modifications.

1. There is one and only one node that is independent, i.e.

Σ∗#(Σ − {#} ∪Bl ∪ Br)∗#Σ∗; (6)

Σ∗ −Σ∗#(Σ − {#} ∪ Bl ∪ Br)∗#(Σ∗#)∗(Σ − {#} ∪Bl ∪ Br)∗#Σ∗. (7)

2. All word nodes except the wall node (/////) are immediately governed by
some node:

W ⇒ (Br ∪ Bl)(Σ − {#})∗ , (Σ − {#})∗(Br ∪ Bl). (8)

3. No word depends immediately on more than one other word, i.e.

Σ∗ − Σ∗(Br ∪ Bl)(Σ − {#})∗(Br ∪ Bl)Σ∗. (9)

4. There are no trivial cycles (irreflexivity), i.e.

Σ∗ −Σ∗(Bl ∪BL)(Σ − {#})∗(Br ∪ BR)Σ∗. (10)

5. If Robinson’s fourth axiom is violated between two words A and B, where
A is immediately dependent on B, then at least one of the following cases
must hold:
(a) An intervening word C is the root of the sentence. This case can be

excluded with the following constraint that requires that the root (in
practice, the wall) is not an intervening word:

# ///// Σ∗. (11)

(b) An intervening word C is one of the independent words of the sentence
(−→ multiple roots). This case is excluded by Constraint (7).

(c) An intervening word C is dependent on itself (−→ violates irreflexivity).
This case is excluded by Constraint (10).



(d) An intervening word C is governed by a word that is not A, B, C nor
any other intervening word (−→ a crossing edge). This case is excluded
by Constraint (3b).

6. The simplest kind of nontrivial cycle contains two adjacent words. Such a
case occurs if the bracketing has either of the following two patterns:

· · · # E [←−
X
[−→

Y
# ]−→

Y
]←−
X
F # · · · or · · · # F [−→

Y
[←−

X
# ]←−

X
]−→

Y
E #

· · ·

Observe that at the word F , the bracket indicating the category of the word
itself is not adjacent to it. This means that the link from F to its governor
is shorter than a link to one of its dependents that is in the same direction
as the governor. In fact, every cycle containing at least two words must have
such a word F . There are also other situations where the bracket indicating
the category of a word is not adjacent to the word itself. These are exactly
those cases in which an intervening element C governs two linked words A
or B.

Σ∗ −Σ∗(BLBl ∪ BrBR)Σ∗. (12)

Due to Constraint (10) we can adopt a convention that places closing brackets
on the left side of each word and opening brackets on the right side by saying
that

(W ∪ {/////})⇒ # (BR ∪ Br)∗ (BL ∪ Bl)∗ #. (13)

Because the bracketing used in the encoding is balanced, the bracket corre-
sponding to the longest link will be placed closest to the word, and the bracket
corresponding to the shortest link will be placed closest to the word boundary
#. This conforms the same order that is used by Oflazer [2, page 524] when he
allocates so called channel symbol slots in his representation.

6 The New Representation for the Grammars

We will now re-express all the rules of HGDGs using context restrictions. The
rule listing the categories that can be independent is of the form ?({X1, X2, . . . ,
Xn}). This is expressed through the following regular constraint

/////⇒ # {[−→
X1
, [−→
X2
, · · · , [−→

Xn
} #. (14)

The rules listing words {w1, w2, . . . , wn} in each category X are of the form
X : {w1, w2, . . . , wn}. In the presence of (13), these rules can be expressed by
the following constraints:

[←−
X
⇒ {w1, w2, . . . , wn} ; ]−→

X
⇒ {w1, w2, . . . , wn}. (15)



Each dependency rule X(V1V2 . . . Vn?Y1Y2 . . . Ym) specifying a set of dependents
for category X corresponds to the context C(V1V2...Vn?Y1Y2...Ym):

# ]←−
Vn
]←−−−
Vn−1

· · ·]←−
V1
W ∗ W ∗ [−→

Ym
[−−−→
Ym−1

· · · ]−→
Y1

#.

When a word category X has n such contexts C1,C2, . . . ,Cn, their union corre-
sponds to the following regular context restriction:

{ ]−→
X
, [←−
X
} ⇒ C1,C2, . . . ,Cn. (16)

For example, the dependency rule

bitransitive(subject ? object indirect-object)

will be represented using the following context restriction1:

{ ]−−−−−−−−→
bitransitive

, [←−−−−−−−−
bitransitive

} ⇒ # ]←−−−−
subject

W ∗ W ∗ [−−−−−−−−−−→
indirect-object

[−−−−→
object

#.

7 Discussion on Practical Applicability

As to the regular approximation that is obtained when an approximation D1,d

of D1 is assigned to the variable ∆, the most important practical question is:
Can we actually use the obtained finite-state grammar to parse natural language
sentences efficiently and accurately?

Parsing of the obtained approximation grammars means computing the in-
tersection of the language g−1(h−1(w)) and the grammar constraints. Such a
system can be seen as a special variant of Finite-State Intersection Grammar
(FSIG) (cf. [15]), where the most striking problem has been to prevent interme-
diate results from blowing up in size when the intersection is computed. However,
we have some reasons to be more optimistic with the current grammars than
with FSIGs in general:

1. There are examples of so-far more successful extended finite-state approaches
[2] (cf. also [15]), where bracketing at different depths is elaborated incre-
mentally, according to a Bottom-Up or Top-Down parsing strategy. It seems
that such strategies could be implemented also in the framework of FSIG by
splitting each context restriction into sub-constraints [21].

2. The bracketing employed here represents local context-free trees, which gives
rise to new ambiguity packing methods [23] based on parallel decompositions
of automata. This may lead to improvements that narrow the distance be-
tween techniques for parsing through finite-state intersection and parsing
with Chart-like data structures.

3. Most of the constraint languages presented here are locally testable, which
entails that their intersection can be done without considerable difficulties.
In our initial experiments, we applied them first and enforced the non-local
constraints (3b) and (5) in a later stage.

1 In the expression, the opening bracket for the indirect-object precedes the bracket
of the object, because matching brackets obey the LIFO discipline.



At this stage our experiments are still very limited and they merely highlight that
the proposed representation is implementable and can be used both in parsing
and enumeration of valid sentences. We extracted two kinds of grammars from
a portion of the Danish Dependency Treebank [24] (the second, smaller gram-
mar was mainly hand-crafted). As word categories, we used syntactic functions
in the first grammar and words themselves in the second one. These grammars
represented two (almost) extreme ways to make generalizations from the avail-
able data. In both cases, the grammar constraints were given in a script to the
XFST program [25]. Compiling a grammar with a few hundred rules into a set
of separate automata took only one second. Intersection during parsing of both
grammars was also quite fast because the constraint automata were small and
only a few of them contributed to parsing of the actual input sentence.

In the bracketing scheme presented of the current paper, the number of de-
pendents per node contributes directly to the depth of nested brackets. It is,
however, possible to optimize bracketing depth in such cases by using so-called
reduced bracketing. Accordingly, the bracketing of Fig. 3 can be replaced with
the following bracketing:

# /////[−−→
pred

# that[←−
det

# ←−
det

] man 〈←−−
subj

# ←−−
subj
−−→
pred

]ate[−→
obj

# an 〈←−
det

# ←−
det
−→
obj

]apple #

Due to space limitations the intricate details of reduced dependency bracketing
cannot be handled here. A scheme for reduced bracketing of dependencies and
its extension to non-projective dependency trees appear in [26]. The problems
related to grammar induction or extraction and accuracy cannot be discussed
here in depth due to space limitations.

8 Acknowledgments

I would like to thank Kimmo Koskenniemi, Lauri Carlson and the three anony-
mous referees for valuable comments on earlier versions of this article. The work
was funded by NorFA under the author’s personal Ph.D. scholarship (ref.nr.
010529).

References

1. Nivre, J.: An efficient algorithm for projective dependency parsing. In: 8th Int’l
Workshop on Parsing Technologies (IWPT 03), Nancy, France (2003)

2. Oflazer, K.: Dependency parsing with an extended finite-state approach. Compu-
tational Linguistics 29 (2003)

3. Mel’čuk, I.A.: Dependency Syntax: Theory and Practice. State University of New
York Press, Albany (1988)

4. Sleator, D., Temperley, D.: Parsing English with a link grammar. In: 3rd Interna-
tional Workshop on Parsing Technologies. (1993) 277–291

5. Ihm, P., Lecerf, Y.: Éléments pour une grammaire générale des langues projectives.
Technical Report EUR 210.f, Centre de Traitement de l’Information Scientifique
— CETIS (1963)



6. Marcus, S.: Algebraic Linguistics; Analytical Models. Academic Press, New York
and London (1967)

7. Höfler, S.: Link2tree: A dependency-constituency converter. Lizentiatsarbeit, In-
stitute of Computational Linguistics, University of Zürich (2002)

8. Hays, D.G.: Dependency theory: A formalism and some observations. Language
40 (1964) 511–525

9. Gaifman, H.: Dependency systems and phrase-structure systems. Information and
Control 8 (1965) 304–37

10. Robinson, J.J.: Dependency structures and transformational rules. Language 46
(1970) 259–285

11. Debusmann, R.: An introduction to dependency grammar. Hausarbeit für das
Hauptseminar Dependenzgrammatik SoSe 99. Univeristät des Saarlandes (2000)

12. Lai, T.B.Y., Huang, C.: Functional constraints in dependency grammar.
In: GLDV’99. Multilinguale Corpora: Codierung, Structurierung, Analyse. 11.
Jahrestagung der Gesellschaft für Linguistische Daten Verarbeitung, 8.-10.7.1999,
Frankfurt a/M (1999) 235–244

13. Harrison, M.A.: Introduction to Formal Language Theory. Reading, MA, Addison-
Wesley (1978)

14. Chomsky, N., Schützenberger, M.P.: The algebraic theory of context-free lan-
guages. In Brafford, P., Hirschberg, D., eds.: Computer Programming and Formal
Systems. North-Holland, Amsterdam (1963) 118–161

15. Roche, E., Schabes, Y., eds.: Finite-state language processing. A Bradford Book,
MIT Press, Cambridge, MA (1997)

16. Lombardo, V., Lesmo, L.: An Earley-type recognizer for dependency grammar. In:
16th COLING. Volume 2., Copenhagen (1996) 723–728

17. Elworthy, D.: A finite state parser with dependency structure output. In: Pro-
ceedings of International Workshop on Parsing Technologies. (2000)

18. Maruyama, H.: Structural disambiguation with constraint propagation. In: Pro-
ceedings of the 28th ACL (ACL-90), Pittsburgh, PA (1990) 31–38

19. Duchier, D.: Lexicalized syntax and topology for non-projective dependency gram-
mar. In: Joint Conference on Formal Grammars and Mathematics of Language
FGMOL’01, Helsinki (2001)

20. Tesnière, L.: Éléments de Syntaxe Structurale. Editions Klincksieck, Paris (1959)
21. Yli-Jyrä, A., Koskenniemi, K.: Compiling contextual restrictions on strings into

finite-state automata. In: The Eindhoven FASTAR Days, Technische Universiteit
Eindhoven, Eindhoven, The Netherlands (2004)

22. Wrathall, C.: Characterizations of the Dyck sets. R.A.I.R.O. Informatique
théorique/Theoretical Computer Science 11 (1977) 53–62

23. Yli-Jyrä, A.: Simplification of intermediate results during intersection of multi-
ple weighted automata. In Droste, M., Vogler, H., eds.: ¨Weighted Automata —
Theory and Applications¨, Dresden, Germany (2004) 46–48

24. Kromann, M.T., Mikkelsen, L., Lynge, S.K.: The Danish Dependency Tree-
bank Website. Dept. of Computational Linguistics, Copenhagen Business School.
http://www.id.cbs.dk/~mtk/treebank (2003)

25. Beesley, K.R., Karttunen, L.: Finite State Morphology. CSLI Studies in Compu-
tational Linguistics. CSLI Publications (2003)

26. Yli-Jyrä, A.: Axiomatization of restricted non-projective dependency trees through
finite-state constraints that analyse crossing bracketings. In Kruijff, G.J.M.,
Duchier, D., eds.: Proceedings of the Workshop of Recent Advances in Depen-
dency Grammar, COLING’04 Workshop. (2004) 33–40


