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Disjunct eddy covariance measurements of volatile organic compound fluxes using

proton transfer reaction mass spectrometry

Risto Matti Taipale

University of Helsinki, 2011

Abstract

Volatile organic compounds (VOCs) are emitted into the atmosphere from natural and an-

thropogenic sources, vegetation being the dominant source on a global scale. Some of these

reactive compounds are deemed major contributors or inhibitors to aerosol particle forma-

tion and growth, thus making VOC measurements essential for current climate change re-

search. This thesis discusses ecosystem scale VOC fluxes measured above a boreal Scots pine

dominated forest in southern Finland. The flux measurements were performed using the

micrometeorological disjunct eddy covariance (DEC) method combined with proton transfer

reaction mass spectrometry (PTR-MS), which is an online technique for measuring VOC

concentrations.

The measurement, calibration, and calculation procedures developed in this work proved to

be well suited to long-term VOC concentration and flux measurements with PTR-MS. A new

averaging approach based on running averaged covariance functions improved the determi-

nation of the lag time between wind and concentration measurements, which is a common

challenge in DEC when measuring fluxes near the detection limit. The ecosystem scale emis-

sions of methanol, acetaldehyde, and acetone were substantial. These three oxygenated VOCs

made up about half of the total emissions, with the rest comprised of monoterpenes. Contrary

to the traditional assumption that monoterpene emissions from Scots pine originate mainly

as evaporation from specialized storage pools, the DEC measurements indicated a significant

contribution from de novo biosynthesis to the ecosystem scale monoterpene emissions.

This thesis offers practical guidelines for long-term DEC measurements with PTR-MS. In

particular, the new averaging approach to the lag time determination seems useful in the

automation of DEC flux calculations. Seasonal variation in the monoterpene biosynthesis

and the detailed structure of a revised hybrid algorithm, describing both de novo and pool

emissions, should be determined in further studies to improve biological realism in the mod-

elling of monoterpene emissions from Scots pine forests. The increasing number of DEC

measurements of oxygenated VOCs will probably enable better estimates of the role of these

compounds in plant physiology and tropospheric chemistry.

Keywords: disjunct eddy covariance, lag time determination, long-term flux measurements,

proton transfer reaction mass spectrometry, Scots pine forests, volatile organic compounds
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1 Introduction

Vegetation emits large amounts of volatile organic compounds (VOCs) into the atmo-

sphere. Oceans, biomass burning, and human activity are other major sources of these

reactive compounds. VOCs are also formed in the atmosphere as reaction products of

other organic compounds. Global biogenic VOC emissions (∼ 1150 Tg (C) per year)

are estimated about ten times higher than anthropogenic emissions, although in urban

areas the human impact often dominates (Piccot et al., 1992; Guenther et al., 1995).

The largest VOC sources are tropical, temperate, and boreal forests. Examples of

significant biogenic compounds found so far are terpenoids (isoprene, monoterpenes,

and sesquiterpenes) and some oxygenated compounds like methanol, acetaldehyde,

acetone, methacrolein, methyl vinyl ketone, methyl ethyl ketone, and methylbutenol.

Since the first reported measurements by Isidorov et al. (1985), numerous studies,

including this thesis, have focused on VOC emissions from the Eurasian boreal zone,

nowadays recognized as an important but still poorly characterized source. The main

findings and future directions of research on boreal VOC emissions have been recently

reviewed by Rinne et al. (2009).

The reasons for plant VOC emissions are somewhat unclear and under debate (e.g.

Sharkey and Singsaas, 1995; Pẽnuelas and Llusià, 2004; Owen and Pẽnuelas, 2005). The

known ecological functions of biogenic VOCs include pollination, seed dispersal, defence

against herbivores and pathogens, plant-to-plant signalling, allelopathy, and protection

against abiotic stress (for reviews see, e.g. Yuan et al., 2009; Loreto and Schnitzler,

2010). Various algorithms have been developed to describe terpenoid emissions from

different plant species (e.g. Tingey et al., 1980; Guenther et al., 1991, 1993, 2006; Schuh

et al., 1997; Shao et al., 2001; Niinemets et al., 2002; Bäck et al., 2005; Schurgers

et al., 2009). These algorithms connect emissions with a varying number of biological,

environmental, and physico-chemical factors (Niinemets et al., 2010a,b). They have

been the basis for regional and global emission inventories, both for terpenoids and

some oxygenated compounds (e.g. Guenther et al., 1995, 2006; Tarvainen et al., 2007;

Millet et al., 2008, 2010; Karl et al., 2009; Keenan et al., 2009).

VOCs play a significant role in tropospheric chemistry (e.g. Koppmann, 2007). They

affect concentrations of ozone, the hydroxyl radical, and the nitrate radical, and hence

the oxidative capacity of the lower atmosphere (Atkinson and Arey, 2003). VOCs

seem to have an influence on the atmospheric lifetime of methane as they compete
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for hydroxyl radicals with this effective greenhouse gas (Kaplan et al., 2006). As once

proposed by Went (1960), some VOCs are major contributors to aerosol particle for-

mation and growth (e.g. Hoffmann et al., 1997; Claeys et al., 2004; Kulmala et al.,

2004; Allan et al., 2006; Tunved et al., 2006; Kroll and Seinfeld, 2008; Hallquist et al.,

2009). However, at least isoprene also has the potential to inhibit new particle for-

mation (Kiendler-Scharr et al., 2009). In addition, VOCs may have an effect on the

optical properties of aerosol particles (Nozière and Esteve, 2005). As aerosol particles

absorb and scatter solar radiation and act as condensation nuclei for cloud droplets,

they impact the Earth’s radiation budget and therefore also the climate.

Given the intricate feedbacks between vegetation, biogenic VOC emissions, aerosol

processes, and climate change, VOC measurements are an essential part of the current

atmospheric research. They are often based on gas chromatographic analyses of air

samples collected on adsorbents or in canisters. Such measurements are highly sensitive

and give detailed information on the atmospheric VOC composition. However, these

methods are usually too slow to follow fast concentration changes. Their response

times are limited by the required sampling times, which can vary from a few seconds

up to an hour. Also the acquisition and analysis of samples is often time-consuming

and labour-intensive.

In this work, proton transfer reaction mass spectrometry (PTR-MS; Hansel et al.,

1995; Lindinger et al., 1998a,b) was used in the VOC concentration measurements. It

is an online technique based on chemical ionization of VOCs by proton transfer from

hydronium ions (H3O
+), followed by mass spectrometric analysis of the reagent and

product ions. PTR-MS allows measurements of numerous VOCs with high sensitivity

(10–100 parts per trillion by volume (pptv)) and fast response time (0.1–10 s). The

technique does not require any sample treatment, such as drying or preseparation, and

is thus suitable for oxygenated compounds, which are difficult to detect with other

methods. The major disadvantage is that PTR-MS determines only the masses of the

product ions. Instruments equipped with quadrupole mass analyzers, like the one used

in this study, cannot distinguish between different VOCs with the same nominal mass.

The better mass resolution of novel time-of-flight instruments enables separation of

some isobaric compounds (e.g. Blake et al., 2004, 2009).

Since the introduction of the first commercial instruments (Ionicon Analytik GmbH)

in the mid-nineties, PTR-MS has quickly become a popular tool in VOC measure-

ments. Its historical development, different instrument configurations, and various
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atmospheric applications have been reviewed by Lindinger et al. (1998a), de Gouw

and Warneke (2007), and Blake et al. (2009). For example, PTR-MS has been uti-

lized in ambient concentration measurements in urban, rural, and remote areas using

aircraft-, ship-, vehicle-, or ground-based platforms (Crutzen et al., 2000; Holzinger

et al., 2001; Wisthaler et al., 2002; Karl et al., 2003; de Gouw et al., 2004; Jiang et al.,

2005; Rinne et al., 2005; Warneke et al., 2006; Jordan et al., 2009; Kim et al., 2010), in

plant enclosure experiments to study shoot scale VOC emissions (Fall et al., 1999; Karl

et al., 2002a; Hayward et al., 2004; Ruuskanen et al., 2005; Vickers et al., 2009), in

micrometeorological flux measurements with eddy covariance techniques (Karl et al.,

2001, 2002b; Rinne et al., 2001; Warneke et al., 2002; Spirig et al., 2005; Brunner

et al., 2007; Langford et al., 2009; Müller et al., 2010), and in studies of VOC chem-

istry and aerosol particle formation, growth, and composition (Wisthaler et al., 2001;

Paulsen et al., 2005; Lee et al., 2006a,b; Vartiainen et al., 2006; Hellén et al., 2008;

Hao et al., 2009; Holzinger et al., 2010). Measurements of atmospheric sesquiterpene

concentrations (Kim et al., 2009) and a comparative method for determining the total

hydroxyl radical reactivity (Sinha et al., 2008, 2010) are examples of recent promising

applications. Over the years, the performance, sensitivity, and specificity of PTR-MS

have been well characterized (Hansel et al., 1997; Hayward et al., 2002; de Gouw et al.,

2003a,b; Tani et al., 2003, 2004; Warneke et al., 2003; Ammann et al., 2004; Steinbacher

et al., 2004; Inomata et al., 2008; Wisthaler et al., 2008; Ambrose et al., 2010; Jobson

and McCoskey, 2010; Jobson et al., 2010).

Exchange rates of VOCs, i.e. VOC fluxes, between vegetation and the atmosphere can

be measured with several methods which have been summarized by Dabberdt et al.

(1993). Enclosure (i.e. cuvette or chamber) methods give fluxes at the shoot, leaf, or

branch scale. Micrometeorological methods yield ecosystem scale fluxes by determining

the vertical turbulent transfer of VOCs, caused by turbulent eddies, above vegetation

in the atmospheric surface layer. Boundary layer mass balance and gradient methods

provide fluxes at the regional scale. Apart from isoprene studies (e.g. Guenther and

Hills, 1998; Pressley et al., 2005), micrometeorological VOC flux measurements with

the eddy covariance method have relied mainly on PTR-MS. Like the present work,

many of these measurements have been based on an approach called disjunct eddy

covariance (DEC; Rinne et al., 2001; Karl et al., 2002b).

DEC and the conventional eddy covariance (EC) method have the same basic princi-

ple. The flux is calculated as the covariance of the vertical wind speed and the VOC
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concentration. In the conventional approach, both variables are measured with fast re-

sponse instruments at a high frequency (10–20 Hz). In the disjunct version, short VOC

samples (0.1–0.5 s) are taken at intervals of several seconds, resulting in a disjunct time

series. The wind velocity is measured at a high frequency also in DEC. Theoretical

considerations and data simulations (Kaimal and Gaynor, 1983; Lenschow et al., 1994)

as well as field studies (Rinne et al., 2008; Turnipseed et al., 2009; Hörtnagl et al., 2010)

have shown that DEC is a reliable method for trace gas flux measurements. Since the

first application by Rinne et al. (2001), DEC measurements with PTR-MS have pro-

vided fundamental information on VOC emissions from various ecosystems (Karl et al.,

2002b; Warneke et al., 2002; Grabmer et al., 2004; Spirig et al., 2005; Holzinger et al.,

2006; Brunner et al., 2007; Davison et al., 2009; Bamberger et al., 2010; Holst et al.,

2010; Langford et al., 2010; Misztal et al., 2010).

In the research conducted for this thesis, the combination of DEC and PTR-MS was

used for VOC flux measurements above a boreal Scots pine dominated forest in south-

ern Finland. A substantial part of the work was related to quantitative measurement,

calibration, and concentration and flux calculation methods. An important challenge

in many DEC and some EC applications, the determination of the lag time between

wind and concentration measurements was addressed with a view to systematizing and

hastening DEC flux calculations. Fluxes of some oxygenated VOCs were measured to

broaden the general picture of ecosystem scale emissions from coniferous forests. The

division between the two origins of monoterpene emissions from Scots pine, specialized

storage pools and de novo biosynthesis, was estimated in order to provide new infor-

mation for emission algorithm development and evaluation. In summary, the main

objectives of this thesis included

1) developing measurement, calibration, and calculation procedures for long-term

VOC concentration and flux measurements with PTR-MS (Papers I–III),

2) assessing the performance of different methods for lag time determination in DEC

measurements with PTR-MS (Paper III),

3) comparing ecosystem scale emissions of three oxygenated VOCs (methanol, ac-

etaldehyde, and acetone) with monoterpene emissions from a boreal Scots pine

dominated forest (Paper II),

4) and estimating the role of de novo biosynthesis in monoterpene emissions from

Scots pine (Papers IV–V).
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2 Background

2.1 Disjunct eddy covariance (DEC)

DEC is based on the same principles as all micrometeorological flux measurement

methods (for a review, see Dabberdt et al., 1993). Measurements are performed above

the surface in the atmospheric surface layer. The vertical turbulent flux, defined as the

covariance of the vertical wind speed and the VOC concentration, represents the VOC

flux between the surface and the atmosphere:

F = w′c′ =
1

t2 − t1

∫ t2

t1

w′(t)c′(t)dt (1)

(e.g. Kaimal and Finnigan, 1994). Here w′ = w − w̄ is the momentary deviation of

the vertical wind speed from its average and c′ = c − c̄ is that of the VOC concen-

tration. The beginning and end of the flux averaging time are denoted by t1 and t2.

The micrometeorological convention is that upward (emission) fluxes are positive and

downward (deposition) fluxes are negative.

The assumption of the equality between the vertical turbulent flux at the measurement

height and the flux at the atmosphere–surface interface stipulates some requirements for

the measurement site, atmospheric conditions, and measured compounds. The surface

around the site has to be fairly flat and horizontally homogeneous in roughness and

source strength. Turbulence should be strong enough with quasi-stationary conditions,

i.e. the turbulence statistics should approach a stable value when the averaging time

is increased. In addition, the chemical degradation or production of the measured

compound should be much slower than the time scale of turbulent mixing (e.g. Paper

II). All these prerequisites result from the general scalar conservation equation (e.g.

Kaimal and Finnigan, 1994). In practice, their realization can be estimated with various

flux quality assessment methods (e.g. Foken and Wichura, 1996; Göckede et al., 2004;

Spirig et al., 2005).

The estimation of the flux source area (i.e. flux footprint) is part of the interpreta-

tion of measurements. The footprint is located mostly upwind from the measurement

point. Its size increases when the measurement height increases, the surface roughness

decreases, or when the atmospheric stability changes from unstable to stable. Also

chemical reactions affect the footprints of reactive trace gases (Strong et al., 2004).
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Fig. 1. Schematic figure of the sampling procedure in DEC. The wind velocity is measured

at a high frequency and short VOC samples are taken at intervals of several seconds, resulting

in a disjunct concentration time series.

Footprints can be calculated with analytic and stochastic models (e.g. Kormann and

Meixner, 2001; Markkanen et al., 2003; Strong et al., 2004).

Both DEC and the conventional EC method are direct methods. The measured flux

is derived from the covariance of the vertical wind speed and the VOC concentration

without any empirical coefficients, only the time integral in Eq. (1) is replaced with a

discrete sum:

F =
1

n

n
∑

i=1

w′(i)c′(i). (2)

Here n is the number of measurements during the flux averaging time. However, DEC

and EC differ in the sampling procedure. In the conventional approach, both variables

are measured with fast response instruments at a high frequency, normally 10–20 Hz.

In the disjunct version, short VOC samples of 0.1–0.5 s are taken at intervals of 1–30 s

(Fig. 1). The wind velocity is measured at a high frequency also in DEC.

DEC has the great advantage of enabling the use of slow response instruments, which

probably was the reason for its introduction into VOC flux measurements (Rinne et al.,
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Fig. 2. Schematic figure of the cospectrum of the vertical wind speed and the VOC con-

centration. The sampling interval, ∆t, determines the highest resolvable frequency fN. The

highest frequency contributing to a flux value measured with DEC, fmax, is determined by

the sampling time ts. Due to aliasing, the contribution of the frequencies between fN and

fmax (Area A) transfers to the resolvable frequencies (Area B).

2001). Slow response instruments can be used also in the gradient and eddy accumu-

lation methods. However, they are often more difficult to implement and, apart from

the true eddy accumulation method, rely on empirical coefficients (Dabberdt et al.,

1993). In DEC each short VOC sample can be first collected in an intermediate sam-

ple container and then analyzed during the long sampling interval (Rinne et al., 2001).

Due to the typical response times of less than 0.5 s, the present PTR-MS instruments

are adequate for multi-compound DEC measurements with a continuous sampling flow,

sometimes referred as virtual DEC (Karl et al., 2002b). In this case, several compounds

are measured successively, which results in a disjunct concentration time series for all

of them.

Figure 2 illustrates the principle of DEC with a schematic example of the cospectrum

of the vertical wind speed and the VOC concentration. The cospectrum gives the

contribution of each eddy frequency to the turbulent flux and hence the area under

13



the curve represents the total VOC flux (Kaimal and Finnigan, 1994). The sampling

interval, ∆t, determines the highest resolvable frequency, fN = 1/(2∆t), known as the

Nyquist frequency. The highest frequency contributing to the measured flux, fmax =

1/(2ts), is determined by the sampling time ts. The contribution of the frequencies

between fN and fmax (Area A) transfers to the resolvable frequencies (Area B) due to

aliasing (Kaimal and Finnigan, 1994). Thus the total area under the aliased cospectrum

is equal to the total area outlined by the true cospectrum and the maximum frequency

fmax.

Due to the short sampling time, DEC does not introduce a systematic error when

compared with EC. A flux measurement with DEC captures the same frequency range

as a conventional EC measurement, provided that the sampling time and the flux

averaging time do not differ between the methods. However, the random error is

higher in DEC. It increases when the sampling interval becomes longer, i.e. when the

number of measurements during the flux averaging time decreases (Lenschow et al.,

1994; Rinne et al., 2008; Turnipseed et al., 2009). Additional random errors caused by

DEC have typically been smaller than 15% (Lenschow et al., 1994; Karl et al., 2002b;

Turnipseed et al., 2009; Holst et al., 2010; Hörtnagl et al., 2010).

Although DEC and EC are direct methods, corrections to measured fluxes are advisable

to reduce systematic errors caused by instrument response times, instrument separa-

tion, signal processing, flux averaging times, and air density fluctuations (Dabberdt

et al., 1993; Lenschow et al., 1994; Aubinet et al., 2000; Massman, 2000; Ammann

et al., 2006). However, there is no established procedure for applying these corrections

to DEC measurements. The flux underestimation due to a PTR-MS response time of

1 s can be even 20–30% (Davison et al., 2009). Also the calibration of PTR-MS and

the determination of the lag time between wind and concentration measurements seem

crucial to the accuracy of DEC measurements with PTR-MS (Papers I, III).

2.2 Proton transfer reaction mass spectrometry (PTR-MS)

PTR-MS is an online technique for measuring VOC concentrations. Various instru-

ment configurations are currently available, including alternative ion sources and mass

analyzers (Blake et al., 2009). The VOC concentration measurements included in this

thesis were conducted with a commercial PTR-MS instrument featuring a quadrupole

14
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Fig. 3. Schematic illustration of the PTR-MS instrument used in this work (adapted from

Lindinger et al., 1998a). HC: hollow cathode, SD: source drift region, TMP: turbomolecular

pump, QMA: quadrupole mass analyzer, SEM: secondary electron multiplier.

mass analyzer (Ionicon Analytik GmbH). Several papers have discussed its develop-

ment and technical properties in detail (Hansel et al., 1995; Lindinger et al., 1998a,b;

de Gouw and Warneke, 2007; Blake et al., 2009).

In short, the instrument consists of four main components: an ion source, a drift tube,

a quadrupole mass analyzer, and an ion detector (Fig. 3). Primary ions (H3O
+) are

produced from water vapour within the hollow cathode discharge ion source. Proton

transfer reactions between the primary ions and VOCs take place in the drift tube,
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which is maintained at a pressure of about 2 hPa. An electric field is applied in the

axial direction of the drift tube and ambient air is pumped through continuously at a

flow rate of about 10 ml min−1. The primary and product ions are selected according

to their mass-to-charge ratios using the quadrupole mass analyzer and detected as

count rates by a secondary electron multiplier. As only a single mass can be selected

at a time, different masses must be measured successively. An integration (or dwell)

time can be chosen for each mass, enabling longer measurement times for VOCs at low

concentrations. The molecular ion, detected at the VOC mass plus one, is often the

dominant product ion as proton transfer is a soft ionization method, which typically

leads to low fragmentation of VOCs.

Due to their low proton affinities, the major components of air do not react with the

primary ions in the drift tube. However, VOCs having a proton affinity higher than

that of water (691 kJ mol−1) are ionized in proton transfer reactions:

H3O
+ + R → RH+ + H2O. (3)

The number concentration of RH+ ions produced in this reaction is given by

[RH+] = [H3O
+]0

(

1 − e−k[R]treact
)

≈ [H3O
+]k[R]treact (4)

(e.g. Lindinger et al., 1998a; de Gouw et al., 2003a; de Gouw and Warneke, 2007). Here

[H3O
+]0 is the number concentration of the primary ions injected from the ion source,

k is the proton transfer reaction rate coefficient, [R] is the number concentration of the

compound R in the drift tube, and treact is the reaction time.

Equation (4) is the basis for VOC concentration calculations. It shows that [RH+] is

linearly proportional to [R] and [H3O
+], the number concentration of the primary ions

at the end of the drift tube. The approximation is valid if only a small proportion

of the primary ions reacts in the drift tube, i.e. if [R] is not too high compared with

[H3O
+] (e.g. de Gouw et al., 2003a). A number of recommendations on how to derive

VOC concentrations starting from Eq. (4) has been given in previous studies (Lindinger

et al., 1998a; de Gouw et al., 2003a; Ammann et al., 2004; Steinbacher et al., 2004).

These guidelines, complemented with some minor modifications, were followed in the

concentration calculation procedure described in Sect. 3.4.

16



2.3 Origins of monoterpene emissions from Scots pine

Scots pine is one of the dominant evergreen tree species in Eurasian boreal forests.

Its monoterpene emissions have traditionally been assumed to originate as evaporation

from large pools in specialized storage structures such as resin ducts (e.g. Guenther

et al., 1991, 1993; Grote and Niinemets, 2008). Thus monoterpene emissions would de-

pend mainly on temperature. However, there is increasing evidence that a substantial

part of them originates directly from de novo biosynthesis in a light and temperature de-

pendent manner (Steinbrecher et al., 1999; Shao et al., 2001; Paper IV). Here de novo

emissions refer to emissions directly after monoterpene production (within minutes to

hours) without intermediate storage in specialized storage pools. Since monoterpene

production is closely linked to photosynthesis, the ratio of de novo emissions to total

emissions can be determined by applying 13CO2 fumigation and analyzing the monoter-

pene isotope fractions in the subsequent emissions with PTR-MS (see Paper IV).

In monoterpene emission modelling, semi-empirical algorithms have often been used to

describe emissions from specialized storage pools (e.g. Tingey et al., 1980; Guenther

et al., 1991, 1993). Process-based algorithms have been developed to take account of

various physiological, phenological, and biochemical details of monoterpene biosynthe-

sis (e.g. Niinemets et al., 2002; Bäck et al., 2005; Grote et al., 2006). The two origins of

monoterpene emissions have been combined in hybrid algorithms which describe both

pool and de novo emissions (e.g. Schuh et al., 1997; Shao et al., 2001; Spanke et al.,

2001; Haapanala et al., 2009; Schurgers et al., 2009; Paper IV).

The traditional pool algorithm developed by Guenther et al. (1991, 1993) has been

the established choice for Scots pine, especially when interpreting measurements (e.g.

Janson, 1993; Rinne et al., 2000; Ruuskanen et al., 2005; Tarvainen et al., 2005; Hakola

et al., 2006; Paper II; Räisänen et al., 2009). Hybrid algorithms, which now seem to

be biologically more realistic, have been used rather rarely (Steinbrecher et al., 1999;

Shao et al., 2001; Spanke et al., 2001; Papers IV–V). A description of the traditional

pool algorithm and the hybrid algorithm applied in this work is given in Sect. 3.6.
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3 Methods

3.1 Measurement site

The SMEAR II (Station for Measuring Ecosystem–Atmosphere Relations II) station

of the University of Helsinki served as the flux measurement site. It is located in the

south boreal vegetation zone at Hyytiälä, southern Finland (61◦51′ N, 24◦17′ E, 180 m

a.s.l.), about 200 km north-west of Helsinki. Detailed descriptions of the station have

been given by Vesala et al. (1998), Kulmala et al. (2001), and Hari and Kulmala (2005).

The measurement periods related to this thesis were 14–17 July 2005 (Paper II), 3–8

July 2006 (Paper IV), 27 March–26 April 2007 (Paper I), 9–14 August 2007 (Paper

III), and May–August 2007 (Paper V).

The station is situated at a rather homogeneous Scots pine (Pinus sylvestris) dominated

forest which was sown in 1962 after controlled burning and light soil preparation. The

forest had a relatively open canopy with a dry needle biomass density of 540 g m−2 (in

2005; Paper II) and an average tree height of 15–16 m. The stand also contained some

Norway spruce (Picea abies), silver and downy birch (Betula pendula and pubescens),

common aspen (Populus tremula), and grey alder (Alnus incana). The undergrowth

consisted mainly of cowberry (Vaccinium vitis-idaea), bilberry (Vaccinium myrtillus),

and mosses (Pleurozium schreberi, Dicranum polysetum). Of the area of 40 × 40 km2

around the station, spruce dominated forests covered 26%, pine dominated forests 23%,

mixed forests 21%, water bodies 13%, and agricultural land 10% (see e.g. Haapanala

et al., 2007). In addition to the ambient concentration and shoot and ecosystem scale

flux measurements with PTR-MS (Rinne et al., 2005; Ruuskanen et al., 2005; Papers

I–II; Eerdekens et al., 2009; Lappalainen et al., 2009; Papers III–V), several VOC

measurements have been conducted at the station using gas chromatographic methods

(e.g. Rinne et al., 2000; Janson and de Serves, 2001; Hakola et al., 2003, 2006; Tarvainen

et al., 2005; Hellén et al., 2006).

3.2 Measurement setup and procedure

The measurement setup consisted of a sonic anemometer (Gill Instruments Ltd., Solent

HS1199), a proton transfer reaction quadrupole mass spectrometer (Ionicon Analytik

GmbH), a sampling system, and a calibration system (Fig. 4; Papers I–II). The
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sampling system had three sampling heights: the lowest (4 m) in the trunk space

of the canopy, the middle one (14 m) in the crown space of the canopy, and the

highest (22 m) above the top of the canopy. The highest sampling line was used in

the DEC measurements. The horizontal displacement between its inlet and the sonic

anemometer was about 30 cm and the vertical about 5 cm. All sampling lines were 30 m

long, 8 mm in inner diameter, holding a continuous flow of 17.5 l min−1, and made of

Teflon (PTFE). They were heated a few degrees warmer than ambient air with Teflon-

coated heating cables. Until November 2006 (Papers II, IV), the setup featured five

sampling lines (also at 7 and 10 m), all non-heated, 32 m long, and operating at a flow

of 15 l min−1.

A side flow of 80–100 ml min−1 was taken from the sampling lines into the PTR-MS

through PTFE tubing, which was 1.3 m in length (1 m until November 2006) and 1.6

mm in inner diameter. The operating parameters of the PTR-MS were held constant

during the measurement periods, except for the detector voltage which was optimized

before every calibration (Paper I). The drift tube pressure, temperature, and voltage

were 2.0 hPa, 50 ◦C, and 450 V, respectively. The parameter E/N was about 106 Td

(1 Td = 10−17 V cm2) and the reaction time was about 120 µs.

The PTR-MS measurement procedure contained three hour-long sequences. Every

third hour was allocated for the DEC measurements. The other two sequences were

allocated for ambient concentration measurements at the different sampling heights and

for shoot scale flux measurements with a dynamic enclosure method. Before the start of

the shoot scale measurements in March 2007, the DEC measurements were performed

every second hour. The PTR-MS measurement cycle included 11–14 masses which

were measured successively (Table 1). This cycle was repeated for 48–49 min at a

time. The cycle length was 5.6–6.6 s and the integration time was 0.5 s for each VOC-

related mass. Zero air measurements, where VOC-free air was fed into the PTR-MS,

were conducted every second or third hour for 8–9 min within the DEC measurement

sequence to determine VOC background signals of the instrument.

The wind velocity was measured continuously at 10 Hz and the data were saved on a

different computer than the PTR-MS data. To synchronize the clocks of the computers,

the vertical wind speed was recorded also in the PTR-MS data (except in Paper II).

The time difference was determined from the sharp maximum of the autocorrelation

function of the vertical wind speed (Paper III).
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PTR-MS4 m14 m22 m Adjustablerotameters
Side 
hannelblower

Zero airbypassStandard gas
ylinder 0.4m 1.2 mZero airgenerator 3.3 lmin−10.6 mPump
T-
onne
tor (PTFE) Solenoid valve (ETFE) Needle valve (stainless steel)Filter (PTFE)PTFE tubing: �ow 17.5 lmin−1, inner diameter 8 mm, length 30 m from thesampling height to the T-
onne
torPTFE tubing: �ow 0.1 lmin−1, inner diameter 1.6 mm, length 1.3 m from theT-
onne
tor or the zero air bypass to the PTR-MS inlet

Fig. 4. Measurement and calibration setup for long-term VOC concentration and flux mea-

surements. The sampling line at 22 m was used in the DEC measurements and its inlet was

installed close to the sonic anemometer. The shown setup was in use from November 2006

(Papers I, III, V). Until then, the setup featured five sampling lines (also at 7 and 10 m),

all 32 m long and operating at a flow of 15 lmin−1 (Papers II, IV). The tubing length from

the T-connector or the zero air bypass to the PTR-MS inlet was 1 m and the zero air flow

was 1 lmin−1.
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Table 1. PTR-MS measurement cycles in the DEC measurements, the compounds con-

tributing to the measured masses, and the PTR-MS integration (or dwell) times. The cycle

length was 5.9 s (Paper II), 6.6 s (Papers III, V), or 5.6 s (Paper IV).

Protonated mass [amu] and Formula Dwell time [s]

contributing compound(s) II III and V IV

21 water H 18
2 O 0.2 0.1 0.1

25 (control mass) 0.2 – –

31 formaldehyde CH2O – 0.5 0.5

32 oxygen• O2 0.2 – –

33 methanol CH4O 0.5 0.5 0.5

37 water cluster (H2O)2 0.2 0.05 0.05

39 water cluster H2OH 18
2 O 0.2 – –

45 acetaldehyde C2H4O 0.5 0.5 0.5

55 water cluster (H2O)3 0.2 – –

57 water cluster (H2O)2H
18

2 O 0.2 – –

59 acetone C3H6O 0.5 0.5 0.5

69 isoprene C5H8 – 0.5 –

methylbutenol fragment

81 monoterpene fragments 0.5 0.5 0.5

hexenal fragment

87 methylbutenol C5H10O – 0.5 0.5

99 hexenal C6H10O 0.5 0.5 0.5

101 cis-3-hexenol C6H12O 0.5 0.5 0.5

hexanal C6H12O

113 – 0.5 –

137 monoterpenes C10H16 0.5 0.5 0.5

• molecular mass

The lag time method comparison presented in Paper III was partly based on simu-

lated DEC data derived from high frequency H2O concentration measurements with an

infrared gas analyzer (IRGA, LI-COR Inc., LI-6262). The H2O data were recorded at

10 Hz on the same computer as the wind data of the DEC measurements (for details,

see Keronen et al., 2003). This enabled conventional EC measurements of H2O fluxes

which served as a reference in the comparison.
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Table 2. Compositions of the PTR-MS calibration gas standards (Paper I). The standard

A was in use until 12 July 2007 and the standard B thereafter. The maximum uncertainty of

the volume mixing ratio (VMR) was 6% (Apel–Riemer Environmental, Inc.). The last column

contains the proton transfer reaction rate coefficients (k) reported by Zhao and Zhang (2004).

VOC and its protonated mass Formula VMR in A VMR in B k

[amu] [ppmv] [ppmv] [10−9 cm3 s−1]

33 methanol CH4O • 1.03 1.05 2.33

42 acetonitrile C2H3N • 1.08 1.01 4.74

45 acetaldehyde C2H4O • 1.06 0.99 3.36

47 ethanol C2H6O 1.06 –

59 acetone C3H6O 1.09 1.05

69 isoprene C5H8 1.09 1.02

71 methacrolein C4H6O • 1.08 – 3.55

71 methyl vinyl ketone C4H6O • 0.92 0.92 3.83

73 methyl ethyl ketone C4H8O • 1.08 1.06 3.48

79 benzene C6H6 • 1.07 1.03 1.97

93 toluene C7H8 • 1.07 1.04 2.12

101 cis-3-hexenol C6H12O 0.96 –

101 hexanal C6H12O 0.97 0.90

107 m-xylene C8H10 • 1.07 1.03 2.26

107 o-xylene C8H10 • 1.07 1.05 2.32

121 1,2,4-trimethylbenzene C9H12 • – 0.98 2.40

129 naphthalene C10H8 • – 1.00 2.59

137 α-pinene C10H16 1.05 0.93

182 1,2,4-trichlorobenzene C6H3Cl3 – 1.01

• These non-fragmenting compounds were taken into account in the determination of a

relative transmission curve.

3.3 PTR-MS calibrations

The PTR-MS calibration setup (Fig. 4; Paper I) consisted of a calibration gas stan-

dard (Apel–Riemer Environmental, Inc.) and a zero air generator (catalytic converter,

Parker Hannifin Corp., ChromGas Zero Air Generator 3501 (1001 until November

2006)). The calibration gas standard was replaced with a new one in July 2007. Both

standards contained 16 VOCs in nitrogen (Table 2).
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The PTR-MS was calibrated every or every other week. The optimal detector voltage

was checked before each calibration. The VOC concentrations in the standard gas were

diluted from about 1 ppmv (part per million by volume) to a concentration range of

15–50 ppbv (parts per billion by volume) using VOC-free air produced from ambient air

with the zero air generator. The standard gas flow and the zero air flow were measured

with a primary flow meter (Bios International Corp., DryCal DC-2M). The flows were

not changed during the calibration, so each calibration was performed at a single VOC

concentration. PTFE tubing (1.6 mm inner diameter) was used in the calibration lines

and the calibration system was connected to the PTR-MS in the same way as the main

sampling lines. The system was utilized also in the regular zero air measurements.

3.4 Concentration measurements with PTR-MS

3.4.1 Concentration calculation steps

A concentration calculation procedure for long-term VOC measurements, based on

Eq. (4) and guidelines given in previous studies (e.g. Lindinger et al., 1998a; de Gouw

et al., 2003a; Ammann et al., 2004; Steinbacher et al., 2004), was presented in Paper

I. The procedure took into account the following factors:

– Transmission (Eq. (3) in Paper I). The transmission coefficients for RH+ and

H3O
+ ions, T (RH+) and T (H3O

+), describe how effectively these ions are ex-

tracted from the drift tube into the mass spectrometer, guided through the

quadrupole mass analyzer, and detected by the secondary electron multiplier.

Their values range between zero and one. The transmission coefficients are mainly

mass dependent but vary also over time (de Gouw et al., 2003a; Ammann et al.,

2004; Steinbacher et al., 2004).

– Fragmentation (Eq. (4) in Paper I). Although PTR-MS uses a soft chemical ion-

ization method, several VOCs are known to fragment in the drift tube (e.g. Tani

et al., 2003; Warneke et al., 2003; de Gouw and Warneke, 2007). The fragmen-

tation coefficient, F (RH+), gives the proportion of RH+ ions to all product ions

(i.e. RH+ and fragment ions). For non-fragmenting compounds F (RH+) = 1.

– Water cluster ion formation (Eq. (4) in Paper I). The primary ions can clus-

ter with water molecules in the sampled air and the formed water cluster ions
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(H3O
+H2O, H3O

+(H2O)2, etc.) can ionize most VOCs via proton transfer and

ligand switching reactions (e.g. Warneke et al., 2001; Tani et al., 2004). Both frag-

mentation and cluster ion formation depend strongly on the parameter E/N , the

ratio of the electric field to the number density of the gas in the drift tube. Frag-

mentation increases and cluster ion formation decreases when E/N is increased.

Cluster ion formation depends also on the humidity of the sampled air (Warneke

et al., 2001; Ammann et al., 2006). A new approach to taking account of the

abundance of the water cluster ions was introduced in Paper I. The approach

relied on the ratio of the transmission coefficient for H3O
+H2O ions to that for

H3O
+ ions. The value of this ratio (α) was determined in every calibration.

– Subtraction of VOC background signals (Eq. (5) in Paper I). Significant back-

ground counts are usually observed for many VOC-related masses. They are most

likely caused by desorption of impurities inside the instrument and the sampling

system (Steinbacher et al., 2004). To take account of these VOC background

signals, the average of the ion count rates observed in the zero air measurements

was subtracted from the count rate observed in the actual measurements.

– Normalized ion count rate (Eq. (6) in Paper I). The normalized count rate of

RH+ ions, I(RH+)norm, enables the comparison of signals observed in different

measurements (de Gouw et al., 2003b; Tani et al., 2004). It is expressed in

normalized counts per second (ncps). The definition of the normalized count

rate, given in Paper I, takes into account changes in the primary and water

cluster ion signal and in the drift tube pressure.

After these steps, the number concentration of the compound R in Eq. (4) could be

converted into a volume mixing ratio, VMR, given in ppbv (10−9; Eq. (8) in Paper I):

VMR = 109 [R]

N
= 109 pdrift

Inormpnorm

µ0N0

kL

E

N2

T (H3O
+)

F (RH+)T (RH+)
I(RH+)norm. (5)

In this equation, pdrift is the drift tube pressure, µ0 is the normalized ion mobility of

the primary ions, N0 is the number density of air at the standard pressure (1013.25

hPa) and temperature (273.15 K), and L is the drift tube length. The normalization

constants are Inorm = 106 cps and pnorm = 2 hPa.
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3.4.2 Normalized sensitivities and relative transmission curves

The parameters and coefficients in Eq. (5) can be subsumed into a calibration coefficient

called the normalized sensitivity,

Snorm =
I(RH+)norm

VMR
, (6)

given in ncps ppbv−1 (e.g. de Gouw et al., 2003a). In Papers I, III, and V, the

concentrations for the compounds in the calibration gas standards were calculated using

this equation by first determining the normalized sensitivities from the calibrations and

then solving the equation for VMR. A similar equation (Eq. (2) in Paper II), although

based on a slightly different definition of the normalized ion count rate, was used in

Papers II and IV.

The concentrations for the compounds not present in the calibration gas standards

were calculated using relative transmission coefficients. For this purpose, a method for

determining a relative transmission curve for the mass range 19–170 amu was devel-

oped (Paper I). The method relied on direct calibrations and compounds that do not

fragment significantly. For these compounds F (RH+) = 1 and, according to Eqs. (5)

and (6), the relative transmission coefficient is

T (RH+)rel =
T (RH+)

T (H3O+)
= 109 pdrift

Inormpnorm

µ0N0

kL

E

N2
Snorm. (7)

Using the normalized sensitivities observed in the calibrations, these coefficients were

calculated for the masses related to the non-fragmenting VOCs in the gas standards

(Table 2). After each calibration, the relative transmission curve was determined by fit-

ting an interpolation function to six parameters derived from the calculated coefficients

(see Sect. 2.4.3 in Paper I).

Finally, to calculate the concentrations for the non-calibrated compounds, the values of

T (RH+)rel obtained from the relative transmission curves were substituted to Eq. (5).

The fragmentation coefficient was set to one as the non-calibrated compounds consid-

ered in this work did not fragment substantially. In general, the method can also be

applied to fragmenting compounds (Eq. (12) in Paper I).
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3.5 Flux measurements using DEC combined with PTR-MS

3.5.1 Covariance functions

The determination of the lag time between wind and concentration measurements is

a major challenge in DEC when measuring VOC fluxes near the detection limit. The

lag time, resulting from the sample transit time through the sampling line, has to

be determined before the wind and concentration time series can be synchronized.

The flux value is then given by the covariance derived from the matched time series.

Different methods for the lag time determination in DEC measurements with PTR-MS

were compared in Paper III.

In all DEC measurements, the lag time determination relied on covariance functions.

They were calculated for all VOC-related masses (Table 1) and the water cluster ions

detected at 37 amu (M37) and in Paper III also for H2O measured with the IRGA.

A covariance function gives the covariance of the vertical wind speed and the gas

concentration as a function of lag time (Fig. 5; e.g. Kaimal and Finnigan, 1994):

F (tlag) =
1

n

n
∑

i=1

w′(i − tlag/∆tw)c′(i). (8)

Here tlag is the lag time, w′ is the momentary deviation of the vertical wind speed from

its average, and c′ is that of the VOC mass concentration, the normalized M37 count

rate, or the H2O mass concentration. The sampling interval in the wind measurements,

∆tw, was 0.1 s and the number of measurements during the 45-min flux averaging time,

n, was 410–480 in DEC and 27000 in EC (Paper III). The lag time window was ±180 s

with a time resolution of 0.1 s.

Before the covariance function calculations, three-dimensional coordinate rotation and

linear detrending were applied to the data using established methods (Kaimal and

Finnigan, 1994). As the PTR-MS integration time was 0.5 s for each VOC-related

mass, five-point running averages of the vertical wind speed were used for them. To

make the covariance functions temporally concordant, the actual measurement time of

each mass within the PTR-MS measurement cycle was taken into account. Also the

flux error estimation was based on the covariance functions. The uncertainty of a flux

value was determined by calculating standard deviations from the lag time ranges −180

to −140 s and 140 to 180 s (−180 to −160 s and 160 to 180 s in Paper II; Wienhold
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Fig. 5. Covariance function of H2O calculated in the EC and DEC manner (9 August 2007

12:00–12:45). The sampling interval was 0.1 s in EC and 6.6 s in DEC. The comparison

illustrates how DEC increases the noise and thus the flux uncertainty. The shaded areas

show the lag time ranges used in the uncertainty estimation, which was based on the standard

deviations of the covariance function. EC fluxes of H2O were used as a reference in Paper

III.

et al., 1994; Spirig et al., 2005). The average of the standard deviations was multiplied

by 1.96 to get the 95% confidence interval for each flux measurement (Paper II).

3.5.2 Lag time methods

The theme of Paper III was the comparison of five lag time methods. One of them

relied on a theoretical constant value, while in the other methods lag times were de-

termined directly from the covariance functions. As the motivation was stand-alone

DEC measurements with PTR-MS, this straightforward procedure was deemed viable.

Also more complex and perhaps better alternatives have been proposed (e.g. Shaw

et al., 1998; Massman, 2000), but usually they require spectral analysis and hence high

frequency measurements, which makes them unsuitable for DEC.
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Fig. 6. Principles of the lag time methods illustrated with a covariance function of monoter-

penes (M137, 11 August 2007 12:00–12:45; Paper III). The calculated (CALC) and typical

(TYP) constant lag times were 7.1 and 9.9 s. In the maximum covariance method (MAX),

the lag time was 10.5 s. The averaging approach (AVG) yielded a lag time of 11.7 s, which

was determined from the maximum of the averaged covariance function. However, the final

flux value was derived from the original covariance function. The visual assessment method

(VIS) gave a lag time of 11.0 s.

The lag time methods were based on the following principles (Fig. 6):

– CALC: The lag time was calculated from the sampling flow and the sampling

line dimensions and was kept constant throughout the measurement period.

– TYP: The lag time represented a typical daytime value deduced from measure-

ments with distinct covariance function maxima. It was kept constant over the

measurement period. The objective was to illustrate consequences of considering

a limited number of measurements representative of the whole period.

– MAX: The lag time was determined from the maximum absolute value of the

covariance function within a given lag time window. This is the prevalent method

in EC (e.g. Aubinet et al., 2000).
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– AVG: In the new averaging approach, the covariance function was first aver-

aged using a five-second running average to make patterns more distinguishable

(Fig. 6). The lag time was derived from this averaged covariance function using

the MAX method. Although averaging was practised to aid the lag time identi-

fication, the final flux value was always determined from the original covariance

function at the indicated lag time. This ensured that no part of the real flux

signal was eliminated due to the averaging. The width of the averaging window

was deemed wide enough to allow a sufficient noise reduction but also narrow

enough to prevent a considerable shift in the covariance function maximum.

– VIS: The lag time was determined visually from a figure showing a covariance

function for the lag time range −180 to 180 s. This first view gave a general idea

of the function patterns and noise. It was zoomed in on the lag time window

used in MAX to look for a positive or negative peak with a minimum height

of about two times the noise and a minimum base width of about 2–3 s. The

lag time was derived from around the middle of the peak, i.e. not necessarily

from the maximum. If an unambiguous resolution was impossible, only the flux

uncertainty was calculated.

In Paper II, the lag time determination was based on the MAX method complemented

with visual verification. The VIS method was used in Paper IV and the AVG method

in Paper V.

3.6 Monoterpene emission algorithms

Two emission algorithms were applied to interpreting the DEC measurements of mono-

terpene emissions. The basis for the analysis in Paper V was the hybrid algorithm

formulated in Paper IV starting from the traditional pool and synthesis algorithms

developed by Guenther et al. (1991, 1993). The traditional pool algorithm was in use in

Paper II. It also served as a point of comparison for the hybrid algorithm in Papers

IV and V.

The hybrid algorithm assumes that the monoterpene emission, M , has two independent

origins, de novo biosynthesis and evaporation from specialized storage pools:

M = Msynth + Mpool = M0,synthCTCL + M0,poolγ. (9)
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Here M0,synth and M0,pool are the emission potentials for de novo and pool emissions.

The synthesis activity factors for temperature and light, CT and CL, are the same as

in the traditional synthesis algorithm (Guenther et al., 1991, 1993). They describe

the dependence of enzyme activity on temperature and the dependence of electron

transport rate on light. The temperature activity factor, γ, has the same form as in the

traditional pool algorithm (Guenther et al., 1991, 1993). It describes the dependence

of monoterpene saturation vapour pressure on temperature.

Equation (9) can be converted into the final hybrid formulation given in Paper IV:

M = M0[fsynthCT CL + (1 − fsynth)γ]. (10)

Here M0 = M0,synth +M0,pool is the total emission potential and fsynth = M0,synth/M0 is

the ratio of the de novo emission potential to the total emission potential. This hybrid

algorithm and the traditional pool algorithm, Mpool = M0,poolγ, were fitted to the

measured emissions using non-linear regression in the least squares sense. The fitting

procedure gave the values of M0, fsynth, and M0,pool. The values of the other parameters,

including the standard temperature and light (30 ◦C and 1000 µmol m−2 s−1) and the

temperature dependence coefficient in γ (0.09 ◦C−1), were taken from Guenther (1997).

Half-hour averages of air temperature and photosynthetically active radiation were used

as the input variables in the algorithms. They were acquired from a set of SMEAR II

routine measurements (Junninen et al., 2009).
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4 Results and discussion

4.1 Long-term VOC measurements with PTR-MS

PTR-MS was first advertised as a calibration-free technique (Ionicon Analytik GmbH),

meaning that VOC concentrations could be derived directly from the observed ion sig-

nals, the proton transfer reaction rate coefficients (e.g. Zhao and Zhang, 2004), the

reaction times, and the instrument parameters. It soon turned out that regular calibra-

tions were essential to achieve the accuracy needed in atmospheric VOC measurements

(de Gouw and Warneke, 2007). However, normalized sensitivities cannot always be

determined for all measured compounds due to lack of calibration standards. Hence

relative transmission coefficients and proton transfer reaction rate coefficients are still

often necessary in concentration calculations.

These facts led to the development of the measurement, calibration, and calculation

methods reported in Paper I. The goal was to design systematic and practical proce-

dures suitable for long-term, stand-alone field measurements with PTR-MS. A salient

point was the introduction of a novel method for determining both normalized sensi-

tivities and a relative transmission curve using information obtained from a calibration

with a gas standard. This curve enabled consistent concentration calculations for non-

calibrated VOCs.

As discussed in Paper I, the normalized sensitivity varied substantially between com-

pounds, increasing from less than 5 ncps ppbv−1 to around 40 ncps ppbv−1. It also

varied over time. Figure 7 shows an example of the considerable temporal variation

observed in 16 calibrations during May–August 2007. The interquartile range (from

the 25th to 75th percentile) was 26% of the median value for methanol, 27% for ac-

etaldehyde, 28% for acetone, and 27% for α-pinene. The actual sensitivity, which is

based on non-normalized count rates and hence strongly dependent on the primary

ion signal, naturally exhibited even larger variation (not shown). The proportions of

the interquartile ranges to the medians were 75, 77, 70, and 82%. Over the whole pe-

riod, the minimum value, 28 cps ppbv−1, was measured for α-pinene and the maximum

value, 600 cps ppbv−1, for acetone.

The conclusion is that regular calibrations and the use of the normalized sensitivity

and the normalized ion count rate are necessary to ensure a reasonable accuracy in
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Fig. 7. Normalized sensitivities determined from 16 calibrations during May–August 2007.

The shown values for α-pinene, which in this work proved to be a representative compound

for monoterpene calibrations (Paper I), were derived from the molecular ion signal at 137

amu. For an explanation of the box plot, see the legend of Fig. 9.

long-term PTR-MS measurements. Normalization has been long recognized as an im-

portant step in PTR-MS data analysis (e.g. Warneke et al., 2001; de Gouw et al.,

2003b). The definition of the normalized ion count rate in Paper I took account of

the abundance of the water cluster ions, which is related to the humidity of the sam-

pled air (Ammann et al., 2006). However, normalization procedures hardly remove the

effects of ambient humidity on the detection of several compounds, including monoter-

penes (Hansel et al., 1997; Warneke et al., 2001; Tani et al., 2004; Inomata et al.,

2008; Sinha et al., 2009; Jobson and McCoskey, 2010; Vlasenko et al., 2010). Hence

humidity dependent calibrations would be a good addition to the methods presented

in Paper I. The drawback is that humidity measurements should be carried out si-

multaneously with PTR-MS measurements, not only during the calibrations. Another

advisable improvement would be a multi-step calibration procedure using several VOC

concentrations to verify the linearity of the PTR-MS instrument.

The method for determining a relative transmission curve proved to be sensitive enough

to capture both mass and time dependent changes in the transmission (Fig. 8; Paper
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Fig. 8. Relative transmission curves for the mass range 19–170 amu derived from three cali-

brations in 2007 using the method described in Paper I. The relative transmission coefficient

for H3O
+ ions (19 amu) is one by definition (Eq. (7)).

I). The general level of the curve varied depending on the measured normalized sensitiv-

ities, but the shape of the curve remained rather constant. The maximum was around

85 amu, and the descending part of the curve above 100 amu was normally slightly

steeper than the ascending part. The maximum values were typically 60–130% higher

and the minimum values 25–50% lower than the relative transmission coefficient for the

primary ions. Similar results have been observed also for other quadrupole instruments

(Ammann et al., 2004; Steinbacher et al., 2004; Kim et al., 2009).

In general, concentration calculations using relative transmission coefficients and pro-

ton transfer reaction rate coefficients often result in lower accuracies than calcula-

tions with normalized sensitivities. This is due to the larger uncertainties in relative

transmission curves and proton transfer reaction rate coefficients (e.g. de Gouw and

Warneke, 2007). However, provided the relative transmission curve is carefully de-

termined, the accuracy can be reasonable, even for such reactive, heavy, and easily

fragmenting compounds as sesquiterpenes (204 amu; Kim et al., 2009). A better deter-

mination for masses beyond 130 amu should be the next step to improve the relative
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transmission curve fitting procedure described in Paper I. Still, the low transmission

inevitably reduces the sensitivity for heavy compounds, a limitation which is probably

overcome only by the better transmission characteristics of time-of-flight instruments

(e.g. Blake et al., 2009).

4.2 DEC measurements with PTR-MS

The results reported in Paper II demonstrated that the sensitivity of the flux mea-

surement setup was adequate for DEC measurements above a boreal forest. Although

the flux uncertainties were relatively large, significant emissions of methanol, acetalde-

hyde, acetone, and monoterpenes could be detected (see Sect. 4.3). The analysis with a

stochastic Lagrangian transport model showed that the effect of chemical degradation

on the measured fluxes of these compounds was negligible.

After the first measurements, the motivation in the DEC method development focused

on the determination of the lag time between wind and concentration measurements.

The lag time method comparison in Paper III was based on the DEC measurements

with the PTR-MS and simulated DEC data derived from the high frequency H2O

measurements with the IRGA. To increase noise, and thus improve the resemblance

of the IRGA and PTR-MS measurements, normally distributed random numbers were

added to the original H2O time series. This manipulated H2O signal (H2Onoise) was

then converted into a disjunct time series using the sampling interval of the actual

DEC measurements. The simulated DEC fluxes were evaluated against the EC fluxes

of H2O.

The DEC simulation results in Fig. 9 illustrate that each lag time method produced a

median flux for the six-day measurement period that was in agreement with the median

of the reference EC fluxes. In contrast, the error analysis exposed systematic differences

between the methods. The median errors of the new averaging method (AVG) and

the visual assessment method (VIS) did not differ statistically from zero at the 95%

confidence level. The constant lag time methods (CALC and TYP) underestimated

the absolute values of the fluxes and the maximum covariance method (MAX) was

prone to overestimation.

The MAX method is the conventional choice in EC (e.g. McMillen, 1988; Aubinet et al.,

2000). However, noisy covariance functions, common in DEC measurements, inflict
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Fig. 9. Lag time method comparison (Paper III). Panel (A) gives the statistics of the DEC

fluxes of H2Onoise and the EC fluxes of H2O. Panel (B) shows the error analysis. The DEC

fluxes were calculated using the five lag time methods (Sect. 3.5.2) and evaluated against the

reference EC fluxes (REF). The line in the middle of each box is the median with the 95%

confidence interval indicated by the notches. The lower and upper line are the 25th and 75th

percentile, the distance between them is the interquartile range. The error bars extend from

the 25th or 75th percentile to the furthest data value within 1.5 times the interquartile range.
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difficulties on its application. As demonstrated by the DEC simulation, a systematic

overestimation of the absolute flux is possible when the lag time is derived from the

maximum absolute covariance. Of course, this flaw can also afflict EC measurements,

but its impact is more harmful in DEC where the signal-to-noise ratio tends to be much

lower.

The feasibility of CALC and TYP was questionable due to the tendency to underesti-

mate the absolute fluxes and the observed lag time variation during the measurement

period (Paper III). This was somewhat expected as constant lag time methods are

often considered inadvisable (Massman, 2000; Shimizu, 2007), especially in long-term

measurements. In addition, the differences between the lag times of methanol, monoter-

penes, and the water cluster ions suggested that the lag time should be determined

individually for each compound. Such compound-specific behaviour has been observed

also in CO2 and H2O studies (e.g. Su et al., 2004; Ibrom et al., 2007), which probably

reflects the difference in the polarity between these compounds.

Based on the DEC simulation and the sensitivity analysis of the actual DEC fluxes

(Paper III), the new AVG approach appears a promising alternative for the lag time

determination in DEC measurements. Due to the averaging, it is less sensitive to the

maximum absolute covariance and thus less prone to a positive bias in the absolute

flux than the MAX method. Further, by making flux calculations more systematic and

less labour-intensive, AVG is a convenient alternative to VIS, which is rather ill-defined

and dependent on interpretation.

Despite the increasing number of DEC measurements in the past decade, the lag time

determination is still often a critical point in the automation of flux calculations. As

noisy covariance functions hinder the use of the MAX method, novel regimes are needed

to advance the DEC methodology (Hörtnagl et al., 2010; Paper III). The AVG ap-

proach is one such candidate, practically suitable for any EC application when mea-

suring fluxes near the detection limit. It should be scrutinized in further studies to

better assess its performance in different micrometeorological conditions.
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4.3 Ecosystem scale VOC emissions from a boreal Scots pine

forest

Besides the DEC and PTR-MS method development, this work aimed at broadening

understanding of ecosystem scale VOC emissions from a boreal Scots pine dominated

forest. One of the objectives of Paper II was to measure emissions of oxygenated

VOCs and to compare them with monoterpene emissions. The idea of Paper IV was

to determine the contribution of de novo biosynthesis to monoterpene emissions from

common boreal and alpine tree species using 13CO2 labelling. Considering this thesis,

the main results were the observed split between de novo and pool emissions for Scots

pine and the demonstrated ability of a hybrid emission algorithm to improve ecosystem

scale emission modelling. Paper V pursued the same matter and estimated the role

of de novo biosynthesis directly from the DEC measurements.

4.3.1 Oxygenated VOC and monoterpene emissions

One current challenge in the research on VOC emissions from Eurasian boreal ecosys-

tems is to quantify emissions of non-terpenoid compounds (Rinne et al., 2009). These

compounds include, inter alia, the oxygenated VOCs studied in this work: methanol,

acetaldehyde, and acetone. Their measurement has been greatly facilitated by the ad-

vent of PTR-MS, which enabled also the first ecosystem scale emission measurements

in the Eurasian boreal zone (Paper II).

Figure 10 offers a general idea of the VOC emissions, photosynthetically active radiation

(PAR, at 74 m), and air temperature (at 8.4 m) during the summer 2007. For instance,

the sudden rise in the emissions, PAR, and temperature in early June indicates the

correlation between these variables. As demonstrated in Paper V, the continuous

DEC measurements provided an indirect means of studying the biological mechanisms

controlling monoterpene emissions when combined with the hybrid emission algorithm

(Sect. 3.6). The interpretation is more challenging for oxygenated VOCs since the use

of emission algorithms can be complicated by deposition fluxes (e.g. Karl et al., 2005).

In fact, a significant number of negative fluxes, observed mainly at night, were excluded

from Fig. 10. Thus the possibility of intermittent deposition of both oxygenated VOCs

and monoterpenes seems to deserve more attention in VOC flux measurements and

modelling.
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Fig. 10. Photosynthetically active radiation (PAR), air temperature, and VOC emissions

during May–August 2007.
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Fig. 11. Monthly medians of VOC emissions during the summer 2007.

Figure 11 illustrates that the contribution of oxygenated VOCs to the total emissions

was substantial throughout the summer, ranging from 50 to 57% when calculated on

a mass basis from the monthly medians of all measurements. The proportion derived

from the measurements in July 2005 was 43% (Paper II). The highest oxygenated

VOC emissions were those of methanol, comprising 23–30% of the total, followed by

acetone with the shares of 14–19%. The acetaldehyde emissions were 7–11% of the

total.
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As discussed in Paper II, the oxygenated VOC and monoterpene emissions were

roughly comparable with the results of previous measurements at SMEAR II or in

other pine forest ecosystems. Although the emissions were deemed to have originated

mainly from the forest canopy, simultaneous DEC and enclosure measurements are

needed to better estimate the source distribution between the canopy, undergrowth,

and soil. The chemical production of oxygenated VOCs, for example in sesquiterpene

reactions, may cause positive biases to their fluxes, which further complicates the

interpretation of DEC measurements.

4.3.2 Role of de novo biosynthesis in monoterpene emissions

Monoterpene emissions from Scots pine are often assumed to originate as evaporation

from specialized storage pools and thus modelled with temperature dependent algo-

rithms (e.g. Tingey et al., 1980; Guenther et al., 1991, 1993). In the alternative view, a

significant part of these emissions is thought to originate directly from de novo biosyn-

thesis in a light and temperature dependent manner (e.g. Steinbrecher et al., 1999; Shao

et al., 2001). To elucidate this ambiguity, the proportion of de novo emissions to total

emissions was determined in the 13CO2 labelling study in Paper IV. It demonstrated

that this proportion can be over 50% for Scots pine saplings.

In Paper V, the simple hybrid algorithm describing both pool and de novo emissions

(Sect. 3.6) was used to interpret the DEC measurements. This method revealed two

interesting features of the monoterpene emissions (Fig. 12). First, the total emission

potential given by the hybrid algorithm had a decreasing summertime trend. A similar

decrease was observed in the pool emission potential determined with the traditional

pool algorithm. Second, the contribution of de novo biosynthesis to the ecosystem scale

emissions differed from zero throughout the summer.

The trend in the emission potential was statistically significant in both algorithms,

indicating that the potential of the forest to emit monoterpenes diminished over the

summer. This possibly reflected seasonal changes both in the monoterpene biosyn-

thesis and in the monoterpene diffusion rate from the pools into the atmosphere. A

similar decline in the pool emission potential has been observed also in shoot scale mea-

surements at the same site (Tarvainen et al., 2005; Hakola et al., 2006). For instance,

the results of Hakola et al. (2006) correspond rather well with the ecosystem scale

pool emission potential (Fig. 12a), which suggests that the ecosystem scale emissions
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Fig. 12. Interpretation of the monoterpene emissions measured during the summer 2007

(Paper V). (A) Monthly variation in the total emission potential and the pool emission

potential. The pool emission potentials based on measurements with two Scots pine branches

were derived from the results of Hakola et al. (2006) using a needle biomass density of 540

gm−2. (B) The ratio of the de novo emission potential to the total emission potential (fsynth).

The error bars represent the 95% confidence intervals.

originated mainly from the canopy.

The ratio of the de novo emission potential to the total emission potential varied

between 30 and 46% (Fig. 12b). The monthly changes were not significant at the 95%
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Fig. 13. Median daily cycles of the monoterpene emissions during the summer 2007 as given

by the DEC measurements and the two emission algorithms (Paper V).

confidence level and hence the seasonal variation in biosynthesis (Fischbach, 2001) could

not be determined. However, the ratio always differed statistically from zero, indicating

that de novo biosynthesis had a significant role in the ecosystem scale monoterpene

emissions. The percentages in Fig. 12b agree with the percentage of 58% found in

Paper IV when the uncertainties in both studies are taken into account.

The results of Paper V probably gave the first direct suggestion of the significance of

biosynthesis in ecosystem scale monoterpene emissions. Together with the findings of

Paper IV, they offered a guideline to follow when modelling emissions from Scots pine

dominated forests: the algorithm should describe emissions from both storage pools

and de novo biosynthesis. Figure 13 illustrates one consequence of the incorporation of

biosynthesis into the monoterpene emission algorithm (Paper V). It shows the median

daily cycle as given by the DEC measurements and the two algorithms. As noticed
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also in Paper IV, the hybrid algorithm reproduced the daily variation somewhat

better than the pool algorithm. Due to the light dependence of de novo emissions,

it reduced especially the night-time overestimation. However, the hybrid algorithm

should be contrasted with independent measurements to get more reliable estimates of

its performance. Also the partition between pool and de novo emissions is still poorly

known, even though Papers IV and V enhanced the knowledge considerably. Seasonal

changes in the partition as well as the detailed structure of a sound and practical hybrid

algorithm remain as important research objectives.
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5 Review of papers and the author’s contribution

Paper I presents the PTR-MS measurement, calibration, and concentration calcula-

tion methods used in the VOC flux measurements. It demonstrates the importance

of regular calibrations and introduces a new method for determining a relative trans-

mission curve, which enables consistent concentration calculations also for compounds

that are not calibrated directly.

Paper II describes the DEC measurement setup and reports the first DEC measure-

ments of methanol, acetaldehyde, acetone, and monoterpene emissions from a boreal

Scots pine dominated forest. The results show that the role of oxygenated VOCs in

the ecosystem scale emissions is significant. An analysis with a stochastic Lagrangian

transport model surveys the effects of chemical degradation on the measured fluxes.

Paper III addresses a major pragmatic challenge in DEC applications: the determi-

nation of the lag time between wind and concentration measurements. A comparison

of five lag time methods supports the use of a new averaging approach which is less

prone to overestimation of the absolute values of fluxes than the traditional choice, the

maximum covariance method.

Paper IV investigates the origin of monoterpene emissions from boreal and alpine tree

species using 13CO2 labelling. Contrary to the common assumption that monoterpene

emissions from Scots pine originate mainly as evaporation from specialized storage

pools, the results demonstrate the substantial contribution from de novo biosynthesis.

The inclusion of the observed division between pool and de novo emissions in a hy-

brid emission algorithm suggests a better description of ecosystem scale monoterpene

emissions.

Paper V proposes a novel approach to interpreting ecosystem scale emissions. The

analysis with the hybrid algorithm of Paper IV illustrates the evident role of de novo

biosynthesis in monoterpene emissions from a boreal Scots pine forest. Concordant

with previous shoot scale observations, the monoterpene emission potential exhibits a

decreasing summertime trend also on the ecosystem scale.

The author of this thesis contributed to the design, installation, and conduct of the

VOC concentration and flux measurements. He was responsible for the PTR-MS

data acquisition programs and the concentration and flux calculation procedures used
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throughout this work. He did a major part of the data analysis and writing in Papers

I, III, and V. In Paper II, he was responsible for the data analysis and figures related

to the VOC flux measurements and commented on the manuscript. In Paper IV, the

author did the data analysis related to the ecosystem scale emission measurements and

modelling. He also participated in the formulation of the hybrid emission algorithm

and commented on the manuscript.
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6 Conclusions

During the past decade, the combination of DEC and PTR-MS has emerged as a

popular technique for micrometeorological flux measurements of VOCs. Like the con-

ventional EC method, DEC is free from empirical parameterizations and thus, at least

in this sense, readily implementable. However, long-term DEC measurements with

PTR-MS still involve challenging issues related to the measurement, calibration, and

calculation methods. The first part of this thesis discussed some of these issues, in

particular the advancements in the calibration and lag time determination procedures.

The second part focused on the ecosystem scale emissions of oxygenated VOCs and

monoterpenes from a boreal coniferous forest in southern Finland. The specific interest

was the role of de novo biosynthesis in monoterpene emissions from Scots pine.

The main conclusions of this thesis are the following:

1) The combination of DEC and PTR-MS was well suited to the long-term VOC flux

measurements. The regular PTR-MS calibrations with the gas standards were

necessary to ensure a reasonable and invariable accuracy during the measure-

ment periods. The novel method for determining a relative transmission curve

provided a systematic means of calculating concentrations for the non-calibrated

compounds.

2) Due to noisy covariance functions, the lag time determination is often a critical

point in the automation of DEC flux calculations. The new averaging approach

based on running averaged covariance functions was less prone to overestimation

of the absolute values of fluxes than the maximum covariance method, which

is the traditional choice in conventional EC measurements. Thus the averaging

method seems an advisable option for DEC and EC applications when measuring

fluxes near the detection limit. More information on its performance in different

micrometeorological conditions is still needed.

3) The ecosystem scale emissions of methanol, acetaldehyde, and acetone were sub-

stantial. The contribution of these three oxygenated VOCs to the total emissions

was around 40–60%, with the rest comprised of monoterpenes. DEC measure-

ments of oxygenated VOCs may help to determine the relevance of these com-

pounds to plant physiology and tropospheric chemistry in more detail.
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4) As indicated by the 13CO2 labelling experiment and the DEC measurements,

the role of de novo biosynthesis in the monoterpene emissions was evident. This

implies that hybrid algorithms, describing both pool and de novo emissions, are

the appropriate choice when modelling monoterpene emissions from Scots pine

dominated forests. Seasonal variation in the monoterpene biosynthesis should be

determined in further studies.

In the most modernistic view, DEC measurements with PTR-MS may already be

considered obsolete as the novel PTR-MS instrument featuring a time-of-flight mass

analyzer has proven sensitive enough for conventional EC measurements. This fusion

of modern and classical admittedly has an overwhelming benefit. It enables simultane-

ous high frequency EC measurements of virtually all VOCs detected within the mass

range of the time-of-flight instrument. However, by virtue of being an established and,

thereby, cheaper option, DEC measurements with quadrupole instruments may still

remain indispensable for many years, hopefully profiting from the work conducted for

this thesis.

47



References

Allan, J. D., Alfarra, M. R., Bower, K. N., Coe, H., Jayne, J. T., Worsnop, D. R.,
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flux measurements at a high latitude wetland site, Atmos. Chem. Phys., 10, 1617–

1634, 2010.

Holzinger, R., Kleiss, B., Donoso, L., and Sanhueza, E.: Aromatic hydrocarbons at

urban, sub-urban, rural (8◦52′N; 67◦19′W) and remote sites in Venezuela, Atmos.

Environ., 35, 4917–4927, 2001.

Holzinger, R., Lee, A., McKay, M., and Goldstein, A. H.: Seasonal variability of

monoterpene emission factors for a Ponderosa pine plantation in California, Atmos.

Chem. Phys., 6, 1267–1274, 2006.

Holzinger, R., Williams, J., Herrmann, F., Lelieveld, J., Donahue, N. M., and
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Spanke, J., Rannik, Ü., Forkel, R., Nigge, W., and Hoffmann, T.: Emission fluxes and

atmospheric degradation of monoterpenes above a boreal forest: field measurements

and modelling, Tellus, 53B, 406–422, 2001.

Spirig, C., Neftel, A., Ammann, C., Dommen, J., Grabmer, W., Thielmann, A.,

Schaub, A., Beauchamp, J., Wisthaler, A., and Hansel, A.: Eddy covariance flux

measurements of biogenic VOCs during ECHO 2003 using proton transfer reaction

mass spectrometry, Atmos. Chem. Phys., 5, 465–481, 2005.

Steinbacher, M., Dommen, J., Ammann, C., Spirig, C., Neftel, A., and Prevot, A.

S. H.: Performance characteristics of a proton-transfer-reaction mass spectrometer

(PTR-MS) derived from laboratory and field measurements, Int. J. Mass Spectrom.,

239, 117–128, 2004.

Steinbrecher, R., Hauff, K., Hakola, H., and Rössler, J.: A revised parameterisation for
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