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1 Introduction

We present an assignment model of house price determination where houses are heterogeneous

by quality and households are heterogeneous by income. Our main purpose is to study the rela-

tion of the distributions of income and house prices. A central motivating question is the impact

of income inequality on the distribution of housing prices. It has been argued that the increase

in consumption inequality has been less than the increase in income inequality because as the

rich get richer they bid the prices of best locations ever higher. According to our theoretical

results the impact of increased income inequality on top house prices is ambiguous. In our

empirical application we estimate that the aggregate impact of recently increased inequality on

house prices in the US has been negative, and positive only within the top decile.

From a distributional perspective, a central feature of the housing market is that housing is

not a fungible commodity but comes embedded in indivisible and heterogeneous units. What

we refer to as “houses,” for brevity, are really bundles of land and structures (including homes in

multi-unit dwellings). The quality of land is inherently heterogeneous because locations differ

in their attractiveness due to factors such as distance from the center and view of the sea. The

supply of structures is more or less fixed in the short term, although adjustable in the long run.

(Qualify of structures can also have a fixed component, due to zoning restrictions or the scarcity

value of vintage architecture.) Another key feature of housing is that it takes up a large part of

household expenditure, so income effects may be quite significant. Our modeling approach is

based on an assignment model with non-transferable utility, which allows for income effects.

We consider a single metropolitan region, where the set of households is fixed. The distri-

butions of income and house quality are exogenous, while the distribution of house prices is

endogenous, with the exception of the cheapest or “marginal” house. The market does not con-

sist of initially distinct classes of buyers and sellers but, rather, of a population of households

who each own one house and each wish to live in one house. In general, the joint distribution of

houses and income is arbitrary, which results potentially in a lot of trading between households.

Equilibrium prices depend on the joint distribution of endowments, not just on the marginal

distributions of income and house quality.

With an arbitrary initial endowment the equilibrium conditions in our setup would be quite
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complicated. However, we focus on the equilibrium prices that emerge after all trading op-

portunitieshave been exploited. In empirical terms, we assume that all households prefer to

live in their current house. Under this “post-trade” assumption we can ask what distribution of

unobserved house quality, together with the observed distribution of incomes, would give rise

to the observed price distribution as the equilibrium outcome of our model. We also find that

a suitably parametrized CES utility function allows us to match the change in the price distrib-

ution under the assumption that it was caused by the change in incomes while house qualities

remained unchanged. We then use the inferred distribution of house qualities and our preferred

utility parametrization to generate counterfactuals that measure the impact of the changes in

income inequality on house prices.

In most assignment models a productive complementarity makes it efficient to match “the

best with the best,” i.e., total output is maximized by Positive Assortative Matching (PAM). Our

setup is a pure exchange economy, but there is another driving force towards PAM, namely the

diminishing marginal rate of substitution. The wealthy must live in the most desirable locations

and have the highest levels of non-housing consumption, or else there would be unrealized gains

from trade. Indeed, in our model, the only reason why the wealthy inhabit the best houses is

that they can best afford them. In order to focus on the impact of changes in income distribution

we assume homogeneous preferences, so the ordering of houses by market price is also the

ordering by quality.

In our empirical application we use data from all six metropolitan regions that were covered

by the American Housing Survey (AHS) both in 1998 and 2007. We consider counterfactual

income distributions for 2007 where all incomes grow uniformly since 1998 at the same rate as

the actual mean income in the city. (I.e. the shape of the counterfactual distribution is the same

as the actual shape in 1998). This counterfactual generates house prices that are on average

0 � 10% higher, depending on the city. (Due to top coding, all results omit the top3% of the

price distribution). This implies that the increase in inequality has resulted in lower prices on

average than would have prevailed under uniform income growth. The contribution of uneven

income growth on house prices has been positive only within the top decile, with magnitudes

of up to12%.

The reason why the counterfactual of uniform income growth would have lead to higher
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prices at the bottom of the quality distribution is intuitive: if low-income households had higher

incomesthey would use some of it to bid for low-quality houses. However, in a matching

market with positive sorting, any changes in prices spill upwards in the quality distribution.

This is because the binding outside opportunity of any (inframarginal) household is that they

must want to buy their equilibrium match rather than the next best house. The equilibrium price

gradient—the price difference between two "neighboring" houses in the quality distribution—

is pinned down by how much the households at the relevant part of the income distribution are

willing to pay for the quality difference. The price level of any particular house is then given by

the summation of all price gradients below, plus the price of the marginal house. Conversely,

after an increase in income inequality, downward pressure on prices from the bottom of the

distribution counteracts the local increase in willingness-to-pay among better-off households

whose incomes are now higher. In principle, it is possible for all house prices to go down in

response to an increase in inequality (but we don’t find this to be the case in any of the six cities

in our data).

In the next section we discuss related literature. In Section 3 we present the model and

our theoretical results. In Section 4 we show how the model can be used for inference and

counterfactuals. Our empirical application is presented in Section 5, and Section 6 concludes.

2 Related Literature

Our model is an assignment model with non-transferable utility. Assignment models are models

of matching markets that focus on the combined impact of indivisibilities and two-sided het-

erogeneity; for a review see Sattinger (1993). All other frictions, such as imperfect information

or transaction costs, are assumed away. Both sides of the market are assumed to have a contin-

uum of types, so there is no market power or "bargaining" as all agents have arbitrarily close

competitors. Assignment models typically include an assumption of a complementarity in pro-

duction, which results in assortative matching and equilibrium prices that depend on the shapes

of the type distributions on both sides of the market but in a reasonably tractable way. Assign-

ment models have usually been applied to labor markets, where the productive complementarity

is between job types and worker types, as in Sattinger (1979) and Teulings (1995), or between
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workers themselves in a team production setting, as in Kremer (1993). In our setup there is no

complementarityin the usual sense, but equilibrium nevertheless involves assortative matching

by wealth and house quality, essentially because housing is a normal good. We don’t restrict

the shapes of the distributions, and our nonparametric method for inferring the unobserved type

distribution and for constructing counterfactuals is similar to Terviö (2008).

The closest existing literature to our paper is concerned with the dispersion of house prices

between cities, while abstracting away from heterogeneity within cities. Van Nieuwerburgh and

Weill (2010) study house price dispersion across US cities using a dynamic model, where there

is matching by individual ability and regional productivity. Within each city housing is produced

with a linear technology, but there is a city-specific resource constraint for the construction of

new houses. This causes housing to become relatively more expensive in regions that experience

increases in relative productivity. Houses are non-tradable across cities while labor is mobile,

so intuitively this result is similar to the Balassa-Samuelson effect in trade theory. In their

calibration Van Nieuwerburgh and Weill find that, by assuming a particular increase in the

dispersion of ability, they can reasonably well generate the observed increase in wage dispersion

and the (larger) increase in the house price dispersion across cities. Gyourko, Mayer, and Sinai

(2006) have a related model with two locations and heterogeneous preferences for living in one

of two possible cities. One of the cities is assumed to be a more attractive “superstar” city in

the sense that it has a binding supply constraint for land. An increase in top incomes results in

more competition for scarce land, thus leading the price of houses in the superstar city to go

up. In Ortalo-Magne and Prat (2010) household location choice between regions is modeled as

part of a larger portfolio problem, where each region has a fixed amount of (infinitely divisible)

housing capital. Different regions offer different income processes, so location decisions as

well as house prices are affected by hedging considerations.

Moretti (2010) has argued that the recent increase in income inequality in the US overstates

the actual increase in consumption inequality, due to changes in house prices between cities. He

considers a two-city model with two types of labor, where changes in relative housing prices

between cities can be affected by productivity (demand for labor) and amenities (location pref-

erence). Worker utility is linear but there is heterogeneity by location preference, in equilibrium

the marginal worker within each skill group has to be indifferent between cities. Moretti finds
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that a fifth of the observed increase in college wage premium between 1980 and 2000 was ab-

sorbedby higher cost of housing, and that the most plausible cause for this is an increase in

demand for high-skill workers in regions that attracted more high-skill workers.

Most dynamic macroeconomic models with housing assume that housing is a homogenous

malleable good. In any given period, there is then just one unit price for housing. An exception

is the property ladder structure that is used by Ortalo-Magne and Rady (2006) and Rios-Rull and

Sanchez-Marcos (2008), where there are two types of houses: relatively small “flats” and bigger

“houses”. For our purposes, such a distribution would be far too coarse. In general, the macro

literature focuses on the time series aspects of a general level of housing prices, and abstracts

away from the cross-sectional complications of the market. We focus on the cross-sectional and

distributional aspects of the housing market, and abstract away from the time-series aspect.

One step in our empirical application is that we estimate the elasticity parameter of a con-

stant elasticity of substitution utility function for housing and other consumption. This links our

paper to a literature that uses structural models to estimate that parameter; two recent papers are

by Li, Liu and Yau (2009) and Bajari, Chan, Krueger and Miller (2010). These studies estimate

the elasticity parameter within a life cycle model using household level data from the US. How-

ever, as far as we know, we are the first to exploit changes in the cross-sectional distribution

of housing prices to estimate household preference parameters. This is possible in our model

because housing prices are in general a non-linear function of housing quality.

There is a long tradition in explaining heterogeneous land prices in urban economics, going

back to the classic Von Thünen model, and Alonso (1964). In urban economics models the

exogenous heterogeneity of land is due to distance from the urban center. The focus is on

explaining how land use is determined in equilibrium, including phenomena such as parcel size

and population density. In modern urban economics1 there are also some models with income

effects. Heterogeneity of land is modeled as a transport cost, which is a function of distance

from the center, and price differences between locations are practically pinned down by the

transport cost function.

Models with heterogeneous land have been used in urban economics in connection with

endogenous public good provision, in the tradition of Tiebout (1956). Epple and Sieg (1999)

1See,for example, the textbook by Fujita (1989).
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estimate preference parameters in a structural model where the equilibrium looks like assorta-

tive matching by income and public good quality, although the latter is a choice variable at the

level of the community. Glazer, Kanniainen, and Poutvaara (2008) analyze the effects of income

redistribution in a setup where heterogeneous land is owned by absentee landlords. They show

that the presence of (uniformly distributed) heterogeneity mitigates the impact of tax competi-

tion between jurisdictions because taxation that drives some of the rich to emigrate also leads

them to vacate high-quality land, allowing the poor to consume better land than before.

Matching models have long been applied to the housing market from a more theoretical

perspective, although it is perhaps more accurate to say that housing has often been used in

theoretical matching literature as the motivating example of an indivisible good that needs to

be “matched” one-to-one with the buyers. The classic reference is Shapley and Scarf (1974),

who present a model where houses are bartered by households who are each endowed with

and each wish to consume exactly one house. They show that, regardless of the preference

orderings by the households, there always exists at least one equilibrium allocation. Miyagawa

(2001) extends the model by adding a second, continuous good, i.e., “money.” He shows that

the core assignment of houses can be implemented with a set of fixed prices for the houses. In

Miyagawa’s model utility is quasilinear, so there is no potential for income effects. The results

obtained in this literature are not directly applicable in our setup, as we have both indivisible

and continuous goods and utility is concave in the continuous good.

There exists also a large literature on two-sided assignment, where two ex ante distinct

classes of agents, "buyers" and "sellers," are matched, but these are further from our setup as

we have no such distinction.2 In our one-sided setup the reservation price of a seller depends

on the opportunities available to her as a buyer.

3 Model

We begin by introducing our setup in the context of an arbitrary initial endowment, which here

consists of a house of a particular level of quality and a level of income for every household.

We then restrict the possible endowments to "post-trade" allocations, that is, we assume that all

2See,for example, Legros and Newman (2007) and Caplin and Leahy (2010).
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mutually beneficial trades have already been made, so the role of equilibrium prices is merely

to enforce the no-trade equilibrium. The post-trade case is not only tractable but also empiri-

cally useful. Our interpretation of cross-sectional data is that, at current prices, each household

wishes to live in its current house.

Consider a one-period pure exchange economy, where a unit mass of households consume

two goods, housing and a composite good. Preferences are described by a utility functionu,

same for all households. Houses come in indivisible units of exogenous quality, and utility

depends on the quality of the house, denoted byx. Preferences are standard:u is strictly in-

creasing, differentiable, and quasi-concave. Every household is endowed with and wishes to

consume exactly one house. A household’s income, denoted by�, is interpreted as its endow-

ment of the composite goody. There are no informational imperfections, or other frictions

besides the indivisibility of houses.

A household endowment (x; �) can be described by a point in[0; 1] � R+, where in the

horizontal dimensioni = Fx (x) represents the quantile in the distribution of house quality, and

the vertical dimension represents the amount of composite good. As preferences are homoge-

neous, the same indifference map applies to all households. Figure 1 depicts this economy. An

allocation is a joint distribution (of the unit mass of households) over the endowment space.

Assume that households are initially distributed smoothly over the endowment space so that

there are no atoms and no gaps in the support of either marginal distribution, and both means

are finite. The indivisibility of houses means that the resource constraint forx is rather stark:

the marginal distribution ofx cannot be altered by trading. For the continuous good, only the

mean of consumption must match the mean of the endowments (Ey= E�) which is assumed

strictly positive but finite.

Equilibrium consists of a price functionp for houses and a matching of households to

houses; the composite good is used as the numeraire. Budget constraints are downward sloping

curves, because house prices must be increasing in quality (by the monotonicity ofu). Figure 1

depicts the budget curve of a household endowed with income~� and a house of quality~x, it is

defined by~� + p (~x) = y + p (x), where the right side is the cost of consumption. We refer to

the left side of the budget constraint as the household’s wealth. Wealth is endogenous because

it depends on the market value of the house that one is endowed with. However, households are
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atomistic, so from their point of view wealth and prices are exogenous.

[ Figure 1 here ]

The initial endowment is described by a distribution of households over the consumption

space, where house quality is on horizontal and composite good (“money”) on vertical axes.

Indifference curves are depicted in gray, while the red curve depicts the budget curve of a

household endowed with income~� and a house of quality~x. The shape of the budget curve

depends on the price functionp.

All households with an endowment on the same budget curve trade to the point where the

budget curve is tangent to an indifference curve. In terms of Figure 1, the resource constraint

requires that the proportion of households with an endowment located below the budget curve

that containsfi; ��g is equal toi, the proportion of houses that are of qualityx(i) or less. In

general, the resource constraints lead to rather complicated integral equations, although, by dis-

cretizing the house types, the equilibrium can be solved numerically using standard recursive

methods. However, we focus on the post-trade allocation, which simplifies the analysis con-

siderably. We don’t need to know whether an arbitrary initial endowment is associated with a

unique equilibrium. What we need is the following lemma.

Lemma 1 In equilibrium there is positive assortative matching (PAM) by household wealth

and house quality.

That is, in equilibrium, the ranking of households by wealth and by house quality must be

the same. The proof is in the Appendix. In short, the diminishing marginal rate of substitution

guarantees PAM: of any two households, the wealthier must live in the better house, or else the

two could engage in mutually profitable trade. The twist here is that the ordering by wealth

is not known beforehand, because the value of the house is endogenous. So, despite PAM,

the equilibrium allocation is not obvious and depends on the shape of the joint distribution of

fx; �g. The benefit of Lemma 1 is that it guarantees that the equilibrium allocation is essentially

one-dimensional, so we can index both households and houses by the house quality quantilei.
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Lemma 2 In equilibrium all householdsi 2 [0; 1] are located on a curvefx(i); y�(i)g in the

endowment space that is continuous almost everywhere. If there are jumps they are upwards.

This follows directly from Lemma 1: as wealth and therefore utility are increasing ini,

downward jumps iny� (as a function ofi) are ruled out. Similarly, allocations supported over

any thick region in endowment space would violate PAM. Only upward jumps iny� are not ruled

out, but there can only be a countable number of them or elsey� would not stay finite. Hencey�

is continuous almost everywhere. However,y� does not have to be increasing; indeed, in Section

3.5 we will construct a (somewhat contrived) example wherey� is strictly decreasing. We prove

the existence of an equilibrium allocation in the Appendix under a finite (but arbitrarily large)

number of house types. The equilibrium is associated with unique prices, up to a constant that

can be interpreted as the opportunity cost of the worst house.

The increasing curve in Figure 2 depicts the equilibrium allocation for one a particular ex-

ample. Households below the curve are the net suppliers of quality: they are endowed with a

relatively high quality house and trade down in order to increase their consumption of the com-

posite good. Households endowed with a house of qualityx(i) and income level�(i) = y�(i)

do not trade. Assuming a full support[x0; x1]� [�0; �1] for the distribution of endowments, the

end points of the equilibrium curve are necessarilyfx0; �0g andfx1; �1g, the endowments of

the unambiguously poorest and richest households in this economy, who have either nothing to

offer or gain in exchange.

We have now characterized what the allocation must look like after all trading opportunities

have been exhausted. From now on we will restrict our analysis to this post-trade world. In a

pure exchange economy, the post-trade allocation can be interpreted as just another endowment.

For notational convenience we will be referring to this “endowment” of the composite good as

�:

[ Figure 2 here ]

Under equilibrium prices, all households must be located on a curve (depicted blue in this

example) where they reach the highest possible utility along their budget curve.
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3.1 Equilibrium price gradient

Supposethat all trading opportunities have been exhausted, so that the current allocation is an

equilibrium allocation. Let’s denote by� (i) the observed allocation of composite good for

owners of houses of qualityx(i). Now, by definition, equilibrium pricesp must result in every

household preferring to live in its own house, so that

i = arg max
j2[0;1]

u (x (j) ; � (i) + p(i)� p (j)) (1)

holds for alli 2 [0; 1]. Since households are atomistic, they takep as given. When the associated

first-order condition,uxx0� uyp0 = 0; is evaluated at the optimal choicej = i the prices cancel

out inside the utility function. (That this optimum is global is guaranteed by Lemma 1.) Solving

for p0 we obtain an equation for equilibrium prices:

p0 (i) =
ux (x (i) ; � (i))

uy (x (i) ; � (i))
x0 (i) . (2)

This price gradient isthekey equation of our model. Combined with the exogenous boundary

condition p (0) = p0 it can be solved for the equilibrium price functionp. The boundary

condition can be interpreted as the opportunity cost for the lowest-quality house, or as the

reservation price for the poorest household stemming from some exogenous outside opportunity

(such as moving to another region). The continuity ofu andx implies thatp is continuous.3

The intuition behind the price gradient (2) is that the price difference between any neigh-

boring houses in the quality order depends only on how much the relevant households—at that

particular quantile of the wealth distribution—are willing to pay for that particular quality dif-

ference. This depends on their marginal rate of substitution between house quality and other

goods, which in general depends on the level of wealth. The price level at quantilei is the sum

of the outside pricep0 and the integral over all price gradients (2) belowi. This is our next

proposition.

Proposition 3 Suppose� is an equilibrium allocation. The equilibrium price function is then

unique up to an additive constantp0 and given by

p (i) = p0 +

Z i

0

ux (x (j) ; � (j))

uy (x (j) ; � (j))
x0 (j)dj. (3)

3If � hasa discontinuity, as is allowed by Lemma 2, thenp has a kink.
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Note that the equilibrium price at any quantilei dependson the distributions of housing

quality and income at all quantiles belowi. Hence changes at any part of the price distribution

spill upwards but not downwards. Loosely speaking, in terms of a discrete setup, this asymmetry

in the direction of price spillovers can be understood by considering the problems faced by the

richest and poorest households. If the richest household were to get even richer this would

have no implication on prices, as it would not make the second richest household willing to

pay more for the best house. By contrast, were the poorest household to increase its income

slightly (but so that it still remained the poorest), this would increase its willingness to pay

for the second worst house, thus increasing the second poorest household’s opportunity cost of

living in its house. This, in turn, will increase the second poorest household’s willingness to pay

for the third worst house, and so on, causing the local price increase at the bottom keep spilling

upwards in the distribution.

3.2 Comparative statics

In this section we analyze the comparative statics of equilibrium prices with respect to changes

in income distribution. Here we assume that the economy begins in an equilibrium where there

is a strictly positive relation between income� and house quality. For brevity, we call this a

"regular" equilibrium.

Definition. A regular equilibrium allocationis one where there is a strictly monotonic

increasing relation between household income and house price.

This, in our model, is equivalent to the case where income and wealth are perfectly rank

correlated. As explained earlier, the equilibrium in our setup has to satisfy perfect rank corre-

lation between wealth and house price, which is a weaker requirement.4 The purpose of this

simplification is to make sure that the analytics of the no-trade equilibrium can be used even un-

der changes in income distribution, as order-preserving changes in incomes are then guaranteed

to keep the ranking of households by wealth unchanged. A change in the ordering by wealth

would generate trading and would thus not fall within the scope of the no-trade case.

4In our data the monotonic relation between income and house prices emerges very naturally as a "side-effect"

of kernel smoothing the data under the minimal assumptions needed to make wealth monotonic in house price.
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It is worth noting that, in the light of our model, the claim that an increase in income in-

equalitymust lead to an increase in the prices of best houses is incorrect.

Proposition 4 Suppose that the endowments form a regular equilibrium allocation, and that the

income distribution experiences a mean-preserving and order-preserving spread where incomes

decrease below quantileh 2 (0; 1) and increase aboveh. Then housing prices will either i)

decrease everywhere or ii) decrease everywhere except at quantiles(h0; 1], whereh0 > h.

Proof. Denote the new distributions by hats. By definition, the new income distribution satisfies

�̂(i) < �(i)

�̂(i) > �(i)

for i 2 [0; h),

for i 2 (h; 1],Z 1

0

�
�̂(j)� �(j)

�
dj = 0.

Applying (3), the change in prices at anyi 2 [0; 1] is

p̂ (i)� p (i) = p0 +

Z i

0

ux(x (j) ; �̂ (j))

uy(x (j) ; �̂ (j))
x0 (j)dj�

�
p0 +

Z i

0

ux (x (j) ; � (j))

uy (x (j) ; � (j))
x0 (j)dj

�
=

Z i

0

 
ux(x (j) ; �̂ (j))

uy(x (j) ; �̂ (j))
� ux (x (j) ; � (j))

uy (x (j) ; � (j))

!
x0 (j)dj. (4)

The inverse of the marginal rate of substitution betweeny andx; ux (x; �) =uy (x; �) ; is increas-

ing in �, andx0 > 0, so the integrand in (4) is negative at allj where�̂ (j) < � (j), i.e., for

j < h. Similarly, the integrand is positive forj > h. The definite integral in (4) must therefore

be strictly negative ati = h, where it reaches its minimum, and increasing aboveh. If, at some

h0 > h the definite integral reaches zero then it will be positive at alli > h0, but it might not

reach zero beforei = 1, in which case the price change is negative at alli 2 (0; 1].

Intuitively, if income is redistributed from poor to rich, this will increase the local price

gradient(2) at the top quantiles, as the willingness-to-pay for extra quality goes up for the

rich. But, for the same reason, the price gradient at bottom quantiles goes down. Aboveh, the

change in price gradient is positive, but the negative spillover from below will dominate until

someh0 > h, and it can be that the cumulative impact of positive gradients is not enough to

overtake the negative impact. It is therefore possible for all house prices to go down in response

to an increase in inequality. This would happen, for instance, if the quality differences between
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best houses are relatively small so that the rich are less inclined to use income growth to bid up

theprice of the next better house.

The impact of a simple increase in income levels is characterized by the next Proposition.

Proposition 5 Suppose the endowments form a regular equilibrium allocation. If all incomes

rise in an order-preserving manner, then housing prices will increase at all quantilesi 2 (0; 1]

and this increase is increasing ini.

The reasoning is similar as in the Proof of Proposition 4, but even simpler because the new

price gradient is greater than the original gradient at all quantiles.

As an immediate corollary, an increase in income levels will also increase the variance of

house prices. A simple extreme case is where all incomes catch up with the highest income

level. Proposition 4 tells us that such a complete elimination of income inequality would in-

crease both the levels and the dispersion of house prices. Intuitively, all households would then

be competing for the best houses and the price difference between a low quality and a high

quality house must become relatively large to make some household willing to hold the low

quality house.

The exogenous bottom pricep(0) is held constant under comparative statics, so the price

distribution we are really referring to is for quantiles(0; 1]. A change in the lowest price,p0,

would cause all prices to change by that same amount. As the model does not include the pos-

sibility to move out of the market, the level of the constant is irrelevant for the attractiveness of

any trade: it increases both the buying and selling prices, and thus washes out of all transactions.

3.3 Absentee landlords: a digression

In urban economics models with heterogeneous land it is standard to assume that all land is

initially owned by competitive outside sellers or “absentee landlords.” This is similar in spirit

to two-sided matching in that, by construction, sellers’ reservation prices can be considered

exogenous to the problem. The absentee landlord assumption can be introduced to our model

by assuming that the revenue from house sales goes to atomistic outside agents who are not

buyers in this market and have no market power as sellers.
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Consider the household at quantilei of the income distribution. Again, by Lemma 1, equilib-

rium must involve positive assortative matching by wealth, which now consists only of income

�, and house quality. Thusp must result in every household buying a house of the same quality

rank as is their rank in the wealth distribution.

i = arg max
j2[0;1]

u (x (j) ; � (i)� p (j)) for all i 2 [0; 1] (5)

Here the price of the house actually chosen is not part of household wealth and so it does not

cancel out of the price gradient. As a result, equilibrium prices are now defined as a nonlinear

ordinary differential equation:

p0 (i) =
ux (x (i) ; � (i)� p (i))

uy (x (i) ; � (i)� p (i))
x0 (i) . (6)

Combined with a boundary condition this can still be solved for the equilibrium price function

p. Now the boundary condition must satisfyp0 � � (0), or else the poorest household cannot

afford to live anywhere.

If all houses were owned by an absentee monopolist, then the self-selection constraint (6)

would still have to hold, but the seller could restrict the quantity sold. This would require the

monopolist to be able to credibly commit to not selling the lowest quality houses up until some

quantilem 2 (0; 1). The lowest pricep(m)would then have to be pinned down by some outside

opportunity for the buyers (e.g. an exogenous utility level from living in another region).

3.4 The case with CES

For the empirical application we assume CES utility,

u (x; y) = (�x� + (1� �) y�)
1
� , where� < 1 and� 2 (0; 1), (7)

with Cobb-Douglas utility defined in the usual fashion at� = 0. If wealth is just equal to income

� (as in the absentee landlord setup above), then the equilibrium price gradient (6) is

p0 (i) =
�

1� �

�
� (i)� p (i)

x (i)

�1��
x0 (i) . (8)

Under the post-trade assumption, where wealth is equal to the sum of income and the equilib-

rium value of one’s house,�(i) + p(i), the prices cancel out in the right-hand side and this can
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be solved as

p (i) = p0 +
�

1� �

Z i

0

�
� (s)

x (s)

�1��
x0 (s)ds. (9)

Whenp and� are observed, thenx can be solved for under a given elasticity parameter�. The

other preference parameter,�, is absorbed by the units ofx and can then be normalized at, say,

one half.

Example: Pareto distributions Equilibrium prices have a closed-form solution in our model

only under specific assumptions. Our empirical applications do not require such a solution, but

they are useful for theoretical insights. Here we present an example with a closed-form solution.

Assume that both income and house quality follow Pareto distributions, so that�~Pareto(�0; �)

and x~Pareto(x0; ), wherew0 > p0 and �;  > 2. The associated quantile functions are

� (i) = �0 (1� i)�
1
� andx (i) = x0 (1� i)�

1
 . If utility takes the CES form (7) then, under the

post-trade interpretation, the equilibrium prices (9) can be solved in closed form:

p (i) = p0 +
�

1� �

�


�1��0 x�0

�
(1� i)�

1
� � 1

�
(10)

where� � �
1��(1��=) . This means that prices are distributed according to a Generalized Pareto

Distribution. The expenditure share of housinga (i) � p (i) = (p(i) + � (i)) can be shown to

have a limiting value at1 if � > 0 and at0 if � < 0. (This expenditure share is really the share

of housing out of total wealth, which includes lifetime permanent income.) In the knife-edge

Cobb-Douglas case it is

a (1) =
��

�� + (1� �) 
. (11)

The expenditure sharea is then everywhere increasing ifa (1) > a0 � p0= (p0 + �0) (decreasing

if a (1) < a0). If housing at the extensive margin can be created at constant marginal cost then

the poorest household faces in effect linear prices and it is reasonable to assume thata (0) = �.

In this case the expenditure share of housing is strictly increasing in income if and only if� > ,

i.e., when the variance of wealth is lower than the variance of house quality.

This example illustrates how one cannot expect the expenditure shares to be constant across

income levels, even if utility function takes the Cobb-Douglas form. The expenditure share

of housing is not directly given by preferences because the prices faced by the consumers are
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nonlinear. The standard CES result that expenditure shares are independent of income is based

onall goods being fungible, so that there is essentially just one type of housing.

Example: Degenerate wealth distribution Suppose all households have the same wealth

level �w and preferences are Cobb-Douglas. Now prices must make every household indifferent

between every housing unit. Then (8) reduces to

p (i) = �w � ( �w � p0)

�
x0
x (i)

� �
1��

(12)

where �w > p0 must be assumed. This extreme example provides the simplest demonstration of

why the expenditure share of housing cannot be expected to be constant even if preferences are

the same for all – some households simply must end up with the lower quality houses and for

this they must be compensated with higher consumption of other goods.

3.5 Planner’s problem: another digression

Suppose a social planner decided on the allocation, with the objective of maximizing average

utility. (Equivalently, suppose the households were allowed to agree on the allocation behind

a veil of ignorance.) The fixed distribution of house quality forces the planner to impose the

unequal distribution ofx on the households. The planner’s problem consists of dividing the total

endowment of the composite good between the households according to some positive function

y, subject to budget constraint.

max
y�0

Z 1

0

u (x (i) ; y (i))di st.
Z 1

0

y (i) di = ��. (13)

Pointwise maximization reveals that it is optimal to equate the marginal utility of the composite

good across households

uy (x(i); y
� (i)) = � for all i; (14)

where the constant� > 0 is determined by the resource constraint. By differentiation of (14)

we see that

dy�=dx = �uxy=uyy; (15)
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so if uxy < 0 then those who are given better houses are given less money. In such a case

the planner’s allocation would also be an example of an equilibrium allocation where there is a

strictly negative relation between non-housing consumption and house quality.

Example. CES-utility.

For CES utility�uxy=uyy = y=x, so, by (15), the solution must be of the form

y� = kx. (16)

The constantk > 0 is determined by the resource constraint:

k = ��=

Z 1

0

x(i)di. (17)

Under CES utility the goods are complementary in the sense that, behind a veil of ignorance,

an individual would prefer to allocate more money for the states of the world where she has a

better house (this already follows fromuxy > 0).

The planner’s solution under CES preferences is intuitively unappealing, because CES ex-

hibits risk neutrality with respect to wealth. In a setup with aggregation over states of the world

a more general utility function is needed.

Example. CRRA-CES utility is defined asv(x; y) = 1
 
u(x; y) ; whereu is the ordinary

CES-utility (7) and � 1 captures relative risk aversion. The expression (15) is now, after

some simplification,

dy�=dx =
�x��1y�

�(1� �)x� + (1� �)(1�  ) (y�)�
( � �) . (18)

Thusdy�=dx > 0 if and only if  > �. Under CRRA-CES utility there is tension between the

complementarity of consumption between the two goods, which is decreasing in�, and between

the risk aversion, which is decreasing in . The complementarity drives the planner to allocate

more non-housing consumption to households who get better houses, while risk aversion drives

to the opposite direction. When complementarity dominates (� <  ), as is necessarily the case

under standard CES ( = 1) the planner will allocate more money to the lucky recipients of the

better houses.

Naturally, risk aversion over wealth would make no difference in our main model as there is

no uncertainty. Any positive monotone transformation ofu cancels out of individual optimiza-

tion and market equilibrium conditions, leaving (1) and (2) unaffected.
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4 Inferring quality and computing counterfactuals

In the empirical application we assume that observed prices correspond to the equilibrium prices

that emerge after all trading opportunities have been exhausted. We think this is a reasonable

interpretation of cross-sectional data because, at any point in time, only a small fraction of

households trade houses. Under this assumption we can infer the unobserved distribution of

house qualities from the observed relation between household income and house prices. That

is, for given distributionsp and�, and for a given utility functionu, we can infer the distribution

of x. (We discuss the inference of preferences in the next section.) This can be done by treating

x as the unknown in the differential equation (2), while normalizing the boundary condition

x(0) = x0 at any positive value.

Having inferred the distribution ofx based on the observed distributions of� andp, we can

then posit a counterfactual income distribution�̂ and generate the implied counterfactual distri-

bution of house prices, by combininĝ� andx in the (discrete equivalent of) equilibrium price

relation (9). Note, however, that asp0 is exogenous, our model only explains the differences in

prices relative to the marginal unit of housing,p� p0. In the counterfactuals the lowest price is

always taken to be the lowest price in the data.

We now discretize the model and assume CES utility. In each market, we have data on prices

(house values)p0 < p1 < � � � < pN and the associated household incomes�h. The minimal

requirement for the data to be consistent with the model is that observed wealthp + � must be

in strictly positive relation withp (Lemma 1). This relation is, of course, not perfect in reality,

but it emerges very naturally in our data with some smoothing (details will be explained later).

The basis for inference is the "incentive compatibility" condition that makes householdh

want to buy its equilibrium match—which is househ—instead of any other househ0. For CES

utility, these conditions are

(�x�h + (1� �) (�h)
�)

1
� � (�x�h0 + (1� �) (�h + ph � ph0)

�)
1
� , for all h; h0 2 f0; : : : ; Ng.

(19)

Thanks to PAM, we can ignore this constraint for all other household pairs except for those who

are "neighbors" in the rank by house quality, (h0 = h � 1). For convenience, we assume that
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these constraints hold as an equality, and we obtain a discrete equivalent of the price gradient.5

ph = ph�1 +

�
(�h)

� +
�

1� �

�
x�h � x�h�1

�� 1
�

� �h (20)

Equivalently, solving forxh yields the inference formula

xh =

�
x�h�1 +

1� �

�
[(�h + ph � ph�1)

� � (�h)�]
� 1

�

. (21)

Note that the value of� 2 (0; 1) is without consequence whenx is unobserved, because chang-

ing � is equivalent to changing the units ofx. We set� = 1=2. (The levels ofx are not

themselves useful, and this normalization is without loss of generality for the counterfactuals

that we are interested in). Denotingx̂ = x�, (21) can now be solved as

x̂h = x̂0 +
hX
j=1

[(�j + pj � pj�1)
� � (�j)�] ; (22)

which includes an undefined constant of integrationx̂0, i.e. the quality of the worst occupied

house.

Our main empirical interest is in constructing prices under counterfactual income distrib-

utions. Conceptually this is easiest to understand as combining inferredx̂h; observedp0, and

posited counterfactual̂�h in the discrete price formula (20), to obtain counterfactual pricesp̂h.

In the CES case the steps can be combined to yield the counterfactual prices directly as

p̂h = p̂h�1 +
�
(�h + ph � ph�1)

� � (�h)� +
�
�̂h

��� 1
� � �̂h. (23)

5 Empirical application

5.1 Data and smoothing

We use income and price data from the American Housing Survey (AHS) for six metropolitan

areas (MA, or "city"): Baltimore, Boston, Houston, Minneapolis, Tampa, and Washington. The

choice of MAs was strictly determined by the availability of data. The most populous MAs are

5In the discrete setup there is a match-specific rent that the "neighbors" could bargain over. Here we in effect

assume that "sellers" have all bargaining power. Making the opposite assumption makes virtually no difference to

the empirical results.
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covered only in national-level data (the National Surveys), where house prices are top coded

at a common national threshold. This results in a disproportionate censoring of observations

in the largest MAs. Furthermore, in those MAs where the national data is not decimated by

top coding it suffers from small sample size, which unfortunately renders the national surveys

useless for our purposes. Fortunately, certain mid-size cities are covered in separate "Metro

surveys," which have been conducted at irregular intervals, but are less affected by the top-

coding problem because it is done at city-level. Our sample includes all MAs from which there

is metro survey data both in 2007 (the most recent year) and 1998 (the second most recent year

for the MAs surveyed in 2007).

In the AHS metro survey data, the house prices have been censored separately at each MA

at the97% percentile. Thus we have to exclude the top3% from our analysis. Furthermore,

there are apparently significant data quality issues at the bottom of the price distributions, with

many house prices observed in the range of a few hundred or thousands of dollars. For this

reason we drop the bottom5% of houses in each MA, and so the5th percentile price will be the

lowest (and thus exogenous) house price in our analysis. All of our results refer to this restricted

sample, except where otherwise mentioned.

Our income measure is total disposable income, including taxes and transfers, during the last

year. House price is based on the survey question where respondents were asked to estimate the

current market value of their house. We consider only homeowners, which amounts to assuming

that rental housing forms an entirely separate market.

We also need to set an interest rater to make the units of yearly income compatible with

the house price: income� is measured as annual income divided by the interest rate. (In effect,

we assume that households face an infinite time-horizon, and expect no changes in the future.)

We fix the interest rate atr = 0:05. Changingr over a reasonable range (2� 8%) makes little

difference to our inferred elasticity parameter� or the results of the counterfactual experiments

that we present below.

We observe the joint distribution of income� and house pricep in each of the six MAs for

both 1998 and 2007. To be consistent with the equilibrium of our model, the levels of observed

wealthw = � + p should be perfectly rank correlated with house valuep (recall Lemma 1). To

achieve this, we first reduce the relation of income and house price into a curve, by using kernel
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regression to estimate� (i) asE[�jFp (p) = i], whereFp is the empirical CDF ofp. Figures 3

and 4 display the actual and kernel smoothed incomes relative to the quantile by house price.

There is a strong positive relationship between house value and income.6 Rank correlation

between income and house price is between0:38 (Boston) and0:52 (Houston) We denote the

distributions for yearst 2 f98, 07g by f�t; ptg, where�t is smoothed andpt is raw data.

[ Figures 3 and 4 here ]

Actual and kernel smoothed household income plotted against house value quantile by

metropolitan area and year. Gray dots depict excluded or top-coded data.

Table 1 displays Gini coefficients for our estimated permanent income (i.e. smoothed in-

come), annual income, and house value. All MAs feature an increase in income inequality

from 1998 to 2007. Housing values show no such systematic pattern. Figure 5 displays the

distributions of smoothed income relative to its mean in 1998 and 2007. The only apparently

exceptional case is Houston where lowest incomes have grown faster than the mean.

Permanent income Income House value Rank correlation

1998 2007 1998 2007 1998 2007 1998 2007

Baltimore 0.16 0.17 0.37 0.40 0.27 0.28 0.38 0.48

Boston 0.13 0.17 0.36 0.44 0.25 0.23 0.48 0.46

Houston 0.18 0.20 0.39 0.41 0.30 0.27 0.53 0.52

Minneapolis 0.14 0.16 0.33 0.36 0.23 0.23 0.50 0.49

Tampa 0.19 0.23 0.41 0.52 0.29 0.31 0.52 0.48

Washington 0.14 0.17 0.33 0.39 0.25 0.23 0.50 0.49

Table 1. Summarystatistics for inequality (Gini coefficient) of permanent income, income,

and house value, and for the Spearman rank correlation between income and house value.

"Permanent income" is income kernel smoothed relative to house price.

[ Figure 5 here ]

Distribution of permanent income relative to mean by city and year.

6We use the Epanechnikov kernel and a bandwidth of9%, except in Tampa where a bandwidth of11% is

required for the smoothed data to conform to assortative matching by wealth and house price.
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In reality the value of the house consists of the value of land and the value of structures.

It is, of course, possible to adjust the quality of the structures to some extent. We abstract

away from adjustable quality and concentrate on relatively short term variation in our empirical

application. However, even in the long term, according to Davis and Heathcote (2007), most

growth and volatility in U.S. house prices has been due to variation in land values.7

5.2 Inferring preferences

We now impose the CES-utility function specified in (7) and infer the elasticity parameter�.

We infer� both separately for each MA while restricting it to be the same at all MAs. Given

� andf�98; p98g, we first infer the quality distribution in 1998, denoted byx98, using the infer-

ence formula in (22). Having inferredx98 from 1998 data, we then use the equilibrium price

formula—the discretized equivalent of (9)—to predict the 2007 housing price distribution given

actual observed wealth in 2007 (�07 + p07) andx98. In other words, assuming that the quality

distributionx is fixed, we ask what would be the predicted price distribution in 2007 given the

observed 2007 income distribution. We denote this prediction byp̂07. We set the price of the

lowest quality house (5th percentile in the full sample) equal to the actual value, again because

the model does not explain the absolute price level but rather the difference over the lowest

quality house. We also have to implicitly assume that the ranking of households by income has

not changed, as we apply a static model in both years.

We compare the model’s predicted price distribution to the empirical 2007 distribution for

a range of values for�, where each comparison involves the entire procedure described above.

Figure 6 illustrates this for the cases of Boston and Tampa. It shows the observed 2007 housing

price distribution as well as the predicted housing price distributions under various values for�.

Notice how assuming Cobb-Douglas preferences (� = 0) would result in systematic underpre-

diction of the prices. Our preferred elasticity parameter is the one where the mismatch between

the empirical and predicted 2007 housing price distribution is the smallest. Formally, we pick

� in order to minimize the mean of absolute percentage errors (MAPE), i.e. the mean value

of jlog(p07(i))� log(p̂07(ij�))j. Thus we are trying to match the entire 2007 price distribution

7Davis and Palumbo (2008) estimate the share of land in house values for detached single-family homes; in our

sample cities it ranges between31% (Houston) and76% (Boston) in 2004.
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with just two parameters, the other being the bottom pricep0 which we match exactly by con-

struction. In the case where� is restricted to be the same in all MAs, it is chosen by minimizing

the unweighted average of MAPE across the six MAs.

[ Figure 6 here]

Actual and predicted price distributions under various values of� in two example cities.

Table 2 shows for each MA the number of observations by year, the inferred value for the

elasticity of substitution, and the minimized value of MAPE. The last row corresponds to the

case where the elasticity parameter is restricted to be common for all MAs. The common

preferences case results in elasticity of0:50, which is in the middle of the MA-specific elastic-

ities which are also relatively close to each other, ranging from0:32 to 0:89. (We discuss the

meaning of income elasticity in this context below.) The measure of fit varies substantially over

different MAs. The fit is clearly better in Boston, Houston, and Minneapolis than in Tampa or

Washington.

Figure 7 shows the relative price error,log(p07=p̂07), by quantile of house value. Our simple

model seems to provide a reasonable fit in most cities. The exceptions are Tampa and Wash-

ington. According to the model, the prices of the best houses should have increased much more

there than they actually did. It may be that the supply of top quality housing is relatively elastic

in these two cities, whereas we assume a fixed quality distribution. At least for Tampa, it seems

plausible that there are relatively attractive undeveloped locations, while in a city like Boston

the best locations are mostly already either built up or protected from development. Elastic

housing supply is also an example of an omitted factor that would bias our estimate of the elas-

ticity parameter. However, as we show below, the results of our main counterfactual experiment

are, in the end, relatively insensitive to the value of the elasticity parameter.
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N98 N07 1=(1� �) MAPE

Baltimore 2306 1211 0.42 4.6

Boston 1960 1075 0.63 2.8

Houston 1963 1105 0.89 2.3

Minneapolis 2741 1524 0.48 2.6

Tampa 2106 1255 0.49 8.3

Washington 2356 1315 0.32 9.1

All 13432 7485 0.50 12.2

Table 2. Numberof observations by year, estimated elasticity of substitution, and the min-

imized mean absolute percentage error (MAPE) for the predicted price in2007. "All" refers to

the case where preference parameter (�) is restricted to be the same in all cities.

[ Figure 7 here ]

Errors in predicted 2007 house prices by metropolitan area. Solid blue line refers to the

baseline case, where preferences are estimated separately in each MA, and dashed red line to

the case where preferences are restricted to be the same everywhere.

5.3 Income elasticity of housing expenditure

The inferred elasticities in Table 2 are in line with many studies that use household data (see

e.g. Li et al., 2009, and the references therein). However, as always in structural estimation,

the interpretation of the parameters depends on the specifics of the model. Our estimates are

not directly comparable with those obtained in studies that do not take into account the friction

arising from the indivisibility of houses. In our setup, the effective income and price elastici-

ties of housing demand are not determined solely by assumptions about preferences, because

prices are a nonlinear function of quality. This nonlinearity also implies that income and price

elasticities of housing expenditure will vary across income levels (despite CES utility).

In order to illustrate these features, let us define income elasticity of housing demand at

quantile i using a counterfactual increase in housing expenditure that would result if a sin-

gle household were to alone experience a change in income. Following a4 percent change
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in income at quantilei, the household will reoptimize its consumption. Housing expenditure

changes fromp(i) to p(j), where

j = arg max
s2[0;1]

(u(x(s); (1 +4)�(i) + p(i)� p(s)) (24)

is the household’s new quantile in the distributions of wealth and housing quality, given that

everyone else’s incomes stay the same.

In equilibrium, this elasticity can be determined just from current prices and incomes. Since

there is positive assortative matching by housing quality and wealth, we can find the new hous-

ing expenditurep(j) simply by finding where the household will be located in the wealth distri-

bution after its income is changed. Thusj from (24) solves(1 +4)�(i) + p(i) = �(j) + p(j).

The change in wealth position is independent of the utility function (as long as it exhibits the di-

minishing MRS required for positive sorting). In the end, this result stems from the assumption

that houses are indivisible and have fixed qualities.

Figure 8 shows the income elasticity of housing expenditure in each MA. For each quantile

i, the elasticity is computed as the midpoint arc elasticity around�07(i) with a 10% income

change.8 We can calculate this elasticity only up to the point where the hypothetical income

increase would lift the households outside our data range, which at the top is the top-coding

threshold. Figure 8 reveals how income elasticity varies quite substantially over the distribu-

tion. Intuitively, how much more one would spend on housing following an increase in income

depends on the increase in housing quality that would be available. In this model, the housing

quality that one extra dollar can buy varies over the distribution, as it depends on the shape of

the quality distribution and on the incomes of competing buyers.

[ Figure 8 here]

Estimated income elasticity of housing expenditure by quantile in the distribution of wealth.

Given that there is assortative matching, the shape of the utility function matters only when

there are aggregate changes. The counterfactual embedded in the individual household’s de-

mand elasticity holds prices constant because one household has a vanishingly small impact on

8Usinga smaller� results in otherwise similar but more "erratic" elasticity curves. This is because the distrib-

ution of prices has not been smoothed, so small changes ini can result in large changes inp(i):
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prices. By contrast, if all household incomes go up by4 percentthen prices react; by how

much depends on preferences. (Now no one will actually move, because everyone’s rank in

wealth distribution stays the same.) By substituting into (9), we see that under CES utility all

price differences (p� p0) blow up by a factor of(1 +4)1��.

The observation that the elasticity of demand varies substantially over the distribution sug-

gest that estimating household preferences without taking into account the indivisibility and

heterogeneity of houses is problematic. For instance, the effects of a given change in aggregate

income on aggregate housing demand can depend on the associated changes in the distribution

of income. This is also illustrated by the following counterfactual experiments.

5.4 Counterfactuals

The empirical question we set out to answer was how changes in income distribution influence

housing prices. We now apply our methodology to a specific data set to compute the impact of

increased income inequality between 1998 to 2007 on housing prices in six US metropolitan

areas. Specifically, given the inferred values for� (see Table 2) and the quality distributions

x98 in each MA, we compute the predicted price distributions in 2007 under a counterfactual

income distribution that has the same shape as in 1998 but the same mean as in 2007. (The

counterfactual income distribution is also assumed to preserve the ranking of households by

income.) We then compare this counterfactual price distribution with the fitted price distribution

that is obtained by plugging in the actual 2007 income distribution; the difference between the

two is the impact of increased inequality. When interpreting these results it is important to keep

in mind that we keep all other things, including the supply of housing, fixed.

Results are shown in Figure 9. It displays the relative difference between counterfactual

and empirical housing prices. Our benchmark case is the one where the elasticity parameter

is estimated separately for each MA. In addition, we consider the case where the elasticity

parameter is restricted to be the same for all MAs.

Consider first the benchmark case. The impact of increased income inequality is qualita-

tively similar in all but one MA: it has lowered housing prices until about 80-90th percentile
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and increased prices in the upper tail.9 Theexception is Houston, where changes near the bot-

tom of the income distribution work to increase the prices of the lowest quality houses. This

reflects the fact, visible in Figure 5, that in Houston, unlike in the other MAs, the lowest incomes

have increased relative to the mean income, even though the Gini coefficient has increased there

as in other MAs.

By and large, the results are similar in the case where the elasticity parameter is the same for

all MAs. In particular, the point at which the price effect turns from negative to positive is almost

the same in both specifications. Also the increase in the price of even the best houses (those at

the97th percentile) is always moderate. Intuitively, the increase in income inequality results in

lower incomes at the bottom of the distribution relative to the counterfactual of uniform income

growth. This works to lower the prices of the lowest quality houses. As explained in Section

3.2, this negative price impact at the bottom spills upwards in the quality distribution. This

effect counteracts the local increase in willingness-to-pay among the lower part of the better-off

households who in actuality saw their incomes rise faster than the mean.

[ Figure 9 here]

The impact of increased income inequality on housing prices.

The average price changes are shown in Table 3. The first two columns display the mean

relative effect of the change in the shape of the income distribution on house prices for the

MA-specific and common preference specifications. The third column displays the absolute

price change in the benchmark case. The mean impact of change in income inequality in the

benchmark specification varies from�10:1% in Tampa to0:2% in Houston.

More speculatively, we also consider the impact of the overall income inequality on housing

prices by computing the equilibrium prices (again, given the same estimated quality distribution

x98) while assuming that all households have the mean income observed in2007. The last

two columns in Table 3 display the mean effects of this radical counterfactual. According

to the model, overall income inequality lowers housing prices by19 � 52% relative to the

counterfactual of total income equality.

9Recallthat our income measure is an estimated permanent income.
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Change (%) Change ($k) Total (%) Total ($k)

benchmark common� benchmark benchmark benchmark

Baltimore -4.4 -3.6 -16.0 -43 -270

Boston -4.5 -5.9 -23.3 -20 -123

Houston +0.2 +0.6 +2.7 -19 -35

Minneapolis -2.6 -2.5 -7.7 -26 -102

Tampa -10.1 -9.9 -27.6 -52 -266

Washington -6.6 -4.0 -36.7 -47 -460

Table 3. Change:The impact of the change in the shape of the income distribution on house

prices between 2007 and 1998, relative to what house prices would have been under uniform

income growth. Total: The impact of income inequality on house prices in 2007, relative to

what house prices would be under equal income.

6 Conclusion

We have presented a new framework for studying the relationship between the income distribu-

tion and the housing price distribution. In the model houses are heterogeneous and indivisible.

The key element is that all houses are owned by the households, and, due to concave utility, their

reservation prices as sellers depend on the opportunities available to them as buyers, which in

turn depend on their incomes and on the prices of other houses. Thus, our model provides a

framework for analyzing how income differences get capitalized into house prices. The equi-

librium is tractable under the assumption that households prefer to live in their current house.

The equilibrium can be understood intuitively by considering the price gradient, which is,

loosely, the price difference between “neighboring” houses in the quality distribution. The price

gradient expresses how much households that inhabit a particular part of the quality distribution

in equilibrium are willing to pay for the quality difference over next best house. This depends

on their marginal rate of substitution between house quality and other goods, which in general

depends on their level of wealth. The price level at any quantile in the distribution is the sum

over all price gradients below.
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The natural comparative static in our setup is order-preserving changes in income distribu-

tion, as these have an impact on prices without generating trading. The model yields a number

of theoretical implications about the relation of income and house price distributions. Any

increase in income levels will increase both the level and dispersion of house prices, but an

increase in income inequality will decrease house prices except (possibly) in a segment adja-

cent to the top. House prices at the top can go either way in response to an increase in income

inequality, depending on the details of both supply and demand sides of the market.

The equilibrium conditions enabled us to estimate the housing quality distribution without

imposing restrictions on the shapes of the distributions. As our main empirical application we

analyzed housing prices in six US metropolitan regions. We obtained a theory-driven estimate

for the impact of recent increases in income inequality on house prices. Specifically, we asked

how the 2007 price distribution would differ from the actual price distribution if income of every

household would have grown at the actual mean rate since 1998. We found that the impact of

increased inequality on prices has been modest but negative on average, and positive only at

the top decile. This is because the cumulative impact of reductions in the price gradient at the

bottom households, whose income growth did not keep up with the mean growth, dominates

the positive effects almost all the way to the top of the distribution.

Our model opens the possibility for other applications. Most directly, it is a natural frame-

work for studying how various housing and income subsidy schemes impact housing prices.

The intuition of the price gradient makes it clear why housing subsidies targeted for the poor

will not merely be capitalized into prices of low-quality housing but will spill upwards in the

quality ladder. A serious empirical analysis of this issue will require the inclusion of non-owner-

occupied housing.

The counterfactuals presented in this paper took the form of order-preserving changes in the

exogenous income distribution. This was crucial for being able to apply the formulae derived

under the assumption of no-trade equilibrium. The lack of trading also meant that price changes

do not have welfare effects–they are merely changes in paper wealth. In order to have welfare

effects, price changes have to generate trading. One interesting and challenging topic for further

study is the welfare effects of regulations, for instance transaction taxes, which can be expected

to distort the matching of houses and households. A particularly policy-relevant issue is the
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impact of repealing rent control, which would result in a simultaneous supply and demand

shock.Again, the impact on the entire distribution of housing prices is likely to be nontrivial.

Our characterization of the (no-trade) equilibrium should be helpful even in applications that

involve trading, although these will require more involved numerical methods.

7 Appendix

Proof: Lemma 1 Positive assortative matching (PAM) by wealth and house quality.

Define the reservation price�(x0jx; y) by

u(x; y) = u(x0; y ��); (25)

so that� is the maximum price that a household with endowment(x; y) 2 R2+ is willing to pay

to switch into a house of typex0. Thusfx0; y + �(x0jx; y)g traces an indifference curve that

goes through the endowment(x; y); it is strictly decreasing, and� changes sign atx0 = x: The

reservation price of switching into a worse house is negative.

Consider two households,h = 1; 2, endowed with housesx1 < x2. There is trade between

them if and only if their reservation prices for the trade sum up to something positive, i.e., if

S(x1; y1; x2; y2) := �(x2jx1; y1) + �(x1jx2; y2) > 0. (26)

The wealthier household has a larger budget set, so PAM by wealth and house quality is

equivalent with PAM by utility and house quality. We want to show that ifx1 < x2 and

u (x1; y1) > u (x2; y2) then there must be trade, as this rules out any violations of PAM in

equilibrium.

Consider a pointfx2; y02gwherey02 = y1��(x2jx1; y1). This is along the indifference curve

going through(x1; y1) and vertical in relation to(x2; y2): Swapping positions between(x2; y02)

and (x1; y1) does not change utility so ify2 = y02 then�(x1jx2; y02) + �(x2jx1; y1) = 0: If

�(x1jx2; y) is strictly decreasing iny then there will be trade if and only ify2 < y02, which is

equivalent tou(x1; y1) > u(x2; y2). Differentiating (25) we obtain

d�

dy
= 1� uy (x2; y)

uy (x1; y ��)
. (27)
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We know thatuy is positive and decreasing for a fixedx, but now the comparison is at two

different levels ofx, yet on the same indifference curve. Use~y(x) to denote the indifference

curve. Thus (27) is negative if

d

dx
(uy (x; ~y(x))) = uxy + uyy

�
d~y(x)

dx

�
= uxy � uyy

�
ux
uy

�
� 0 (28)

This is just the condition for diminishing marginal rate of substitutionMRSyx to be decreasing

in y (i.e., forMRSxy to be increasing iny), which holds for any quasi-concave utility function.

Proof: Existence of equilibrium Let’s now discretize the house types, so that0 < x0 <

� � � < xN < 1. For brevity, we will refer to households endowed with a type-khouse as

households of typek. Denote the mass of type-khouseholds with income equal or lower than

� by Fk (�). We assume that all of these conditional income distributions are continuous with

full support [�; ��], where0 < � < �� < 1. The mass of type-khouseholds ismk > 0, so

Fk
�
��
�
= mk. Recall that we have normalized the total mass at

P
mk = 1.

With discretized house types we require an additional assumption:

u(xk�1; ��) > u(xk; �) for all k = 1; : : : ; N: (29)

This means that distribution of autarky utility has overlap between neighboring household types.

Together with Lemma 1, this implies that there must be trade between them, which in turn will

guarantee that price increments are uniquely determined.

Lemma 1 shows that equilibrium utility is increasing in the quality of the house consumed.

The full support of incomes and the overlap of autarky utilities imply that the consumption

levelsy of households that consume a house of typek must be distributed with full support on

some interval[y
k
; �yk] 2 [�; ��]. The unequivocally poorest and richest households do not have

anyone to trade with, soy
0
= � and�yN = ��.

Thewealthiest household that consumes a type�khouse must be indifferent between trading

up to the next house type. This indifference condition defines the price increments�k =

pk � pk�1 as functions of upper bounds�yk,

 (�ykjxk; xk+1) = f�k+1 : u (xk; �yk) = u (xk+1; �yk ��k+1)g for all k = 0; : : : ; N � 1. (30)

Note that is single-valued for all�yk 2 [�; ��], with image in(0; �yk).
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The same indifference conditions can also be described in terms of the lower bounds of the

consumptionintervals, withu(xk; yk+1 +�k+1) = u(xk+1; yk+1), so

y
k+1

= �yk ��k+1 = �yk �  (�ykjxk; xk+1) . (31)

Thus the lower bounds as well as the price increments are uniquely determined by the upper

bounds, so the equilibrium allocation can be described in terms of the�yk alone, wherek =

0; : : : ; N � 1.10

Demand for type-khouses is the sum of demands from each household type. Consider

type�jhouseholds endowed with income�. They will consume a type-khouse if their wealth

is in the same range as of those type�khouseholds who consume their endowment:pj + � 2

[pk + y
k
; pk + �yk]: The bounding inequalities for these intervals can be written as

� � �yk + pk � pj

� � y
k
+ pk � pj = �yk�1 + pk�1 � pj (32)

for k = 0; : : : ; N � 1. (Recall that�yN = ��.) Total demand for type�khouses is

Qk (�y) =
NX
j=0

[Fj (�yk + pk � pj)� Fj (�yk�1 + pk�1 � pj)] (33)

=
k�1X
j=0

[Fj (�yk + (�j+1 + � � �+�k))� Fj (�yk�1 + (�j+1 + � � �+�k�1))]

+Fk (�yk)� Fj (�yk�1 ��k)

+

NX
j=k+1

[Fj (�yk � (�k+1 + � � �+�j))� Fj (�yk�1 � (�k + � � �+�j))] , (34)

where�k are functions of�y as defined by (30) and (31). Define the excess demand functions as

Zk (�y) = max f0; Qk (�y)g �mk, (35)

where the infeasible negative demands allowed by (33) are removed. The nonnegativity con-

straint is binding if the upper bound�yk is below the lower boundy
k

impliedby �yk�1.

10Equivalently, the allocation can be described in terms of the lower boundsy
k

or prices�k, wherek =

1; : : : ; N . This choice of independent variables is a matter of convenience.
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Each household has zero net demand for housing units, because not trading amounts to

demandingyour own house. ThusZN (�y) = �
PN�1

k=0 Zk (�y) and market equilibrium can be

defined as

Zk (�y) = 0 for k = 0; : : : ; N � 1, (36)

or, in vector form,Z (�y) = 0. This is a system ofN equations inN unknowns.

Consider the best response of an imaginary "player" who attempts to minimize the absolute

value of excess demand for type�khouses with the sole instrument of choosing the upper bound

�yk. (The top house type, where�yN = �� by construction, does not have a "player" representing

it.) Use�y�k to denote the vector�y without thek:th element. The best response function is

ak (�y�k) = arg min
a2[�;��]

jZk (aj�y�k)j . (37)

It is straightforward to show thatZk is continuous and increasing ina, but there may be a flat

region. This happens whena is below the lower boundy
k

determinedby �y�k. Then demand

for k�type houses is zero, andZk (aj�y�k) = �mk. However, the highest possible lower bound

is strictly below��, by (31) it is�� � 
�
��jxk�1; xk

�
, soZk must be strictly increasing in some

interval[�; ��]. There are two possibilities

ak (�y�k) =

8<: ��; Zk
�
��j�y�k

�
� 0

�; Zk (�j�y�k) = 0
, (38)

where� 2 (�; ��). Thusak is single-valued but may not be able to eliminate excess supply for

k. Hencea (�y) = (a0 (�y�0) ; : : : ; aN�1
�
�y�(N�1)

�
) defines a continuous vector-valued function

from [�; ��]N to itself. Thus, by Brouwer Fixed Point theorem, there exists a fixed pointy� =

a (y�).

Next we prove, by contradiction, that a fixed point must be a market equilibrium. Suppose

thaty� = a (y�) butZk(y�) < 0 for somek, soy�k = ��: Now consider the highest suchk, so that

Zh (y
�) = 0 for all higher typesh 2 fk + 1; : : : ; N � 1g. Sincey

k+1
= ��� 

�
��jxk; xk+1

�
> �

(due to overlap of autarky utilities) at least somek + 1-types are trading down, while no one

among typesk or lower is trading up to houses abovek. HenceZh > 0 for at least oneh < k, a

contradiction with (38). Intuitively, all demand for housesk+1 and higher would have to come

from households endowed with those houses. Since some of them are trading down, there must

be excess demand for someh > k.
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Thus any fixed point ofZ indeeddefines an equilibrium allocation of our model. Finally,

since is strictly increasing, the equilibrium allocation is associated with unique price incre-

ments�k, so associated equilibrium pricespk are unique up to an additive constant. (However,

we have not shown that there is a unique equilibrium allocation).
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