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A density-functional approach on the hexagonal graphene lattice is developed using an exact
numerical solution to the Hubbard model as the reference system. Both nearest-neighbour and up
to third nearest-neighbour hoppings are considered and exchange-correlation potentials within the
local density approximation are parameterized for both variants. The method is used to calculate
the ground-state energy and density of graphene flakes and infinite graphene sheet. The results are
found to agree with exact diagonalization for small systems, also if local impurities are present. In
addition, correct ground-state spin is found in the case of large triangular and bowtie flakes out of
the scope of exact diagonalization methods.

I. INTRODUCTION

Density-functional theory (DFT) is one of the most
widely-used tools in the field of electronic structure sim-
ulations. Based on the Hohenberg-Kohn theorems1 and
Kohn-Sham equations,2 it allows one to treat interacting
many-body problems as a collection of one-body prob-
lems with an effective potential. The many-body effects
are taken into account through this exchange-correlation
potential, whose functional form is not known exactly.

Despite its apparent simplicity, the Hubbard model,
containing only the on-site contribution of the Coulomb
interaction, has been found to describe a wide range of
correlated materials and phenomena.3 As the model can-
not be solved analytically above one dimension, numer-
ical or approximative methods, such as exact diagonal-
ization (ED) on small systems, quantum Monte Carlo or
perturbation theory, have to be applied. For example in
transport calculations on graphene, the mean-field ap-
proximation has succesfully been applied to allow treat-
ment of systems consisting of few hundreds of atoms.4

The DFT and the Hubbard model can be combined
in several ways.5 The most obvious choices are either to
determine the model parameters based on first principles
calculations or to incorporate a Hubbard-type interaction
into the DFT exchange-correlation functional, resulting
in the so-called DFT+U method.6 The model, however,
can also be considered as an interesting system on its own
and studied using DFT in a lattice formulation. This
approach has previously been chosen by, for instance,
Capelle et al. (named BA-LDA),5,7 and Gunnarsson and
Schönhammer (named SOFT)8–10 and Schindlmayr and
Godby.11

The exchange-correlation (XC) functional, the core of
the many-body treatment in DFT, is naturally needed
also in the lattice formulation. In the case of the one-
dimensional Hubbard model, an exact analytical solution
based on the Bethe Ansatz is known12 and it can be used
to parameterize the XC functional.7 One-dimensional
Hubbard chains have been widely studied within this
framework.7–11,13 The method has been found to accu-
rately reproduce the exact ground-state energy, also in
the presence of impurities modelled as on-site energies.7

Also a related method, density matrix functional the-
ory, has been applied on the Hubbard model, not only
for the 1-dimensional chain but also for small clusters
and square lattice in two and three dimensions.14–16 The
functional in this approach has been based on quantum
Monte Carlo reference data. In general, the density ma-
trix functional theory has shown a great potential, be-
ing applicable even in strongly correlated quantum Hall
droplets.17

To the best of our knowledge, no lattice density-
functional theory (LDFT) studies have previously been
performed on the two-dimensional hexagonal lattice, or
in dimensions above one, in general. The LDFT method
could be used in transport calculations on graphene in-
stead of the usual mean-field treatment, thus improving
the description of correlations for large graphene systems.
It would also enable one to study dynamic phenomena in
large systems in the form of time-dependent LDFT.

Graphene nanoflakes, or graphene quantum dots have
been proposed as elements of future nanoelectronics de-
vices. Especially triangular nanoflakes have been a sub-
ject of recent research interest. Zigzag-edged flakes have
been found to show non-trivial spin order and they
have been proposed to function for instance as logic
devices in nanoelectronics.18–20 Also the effect of edge
termination on their transport properties has recently
been studied, spin valve and spin rectification prop-
erties being reported.21 The transmission through tri-
angular junctions was found tunable through holes in
the triangular flakes forming the junction.22 They do
exhibit spin-polarized ground-states, both in density-
functional theory calculations18–20 and in theoretical con-
siderations within the nearest-neighbour tight-binding
scheme in the absence of interactions.23,24 Our pur-
pose is to apply the Hubbard-based LDFT method
on large trianglar nanoflakes, also including the up to
third nearest-neighbour hopping neglected in the earlier
calculations,24–27 and show that our method captures the
essentials of these phenomena.
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II. LATTICE DENSITY-FUNCTIONAL

THEORY

In DFT, density is the main variable instead of the
wave function. In the lattice formulation, the discrete
density {ni}, also called the site occupations, takes this
place. The Hohenberg-Kohn theorems apply also in
the discrete formulation11 and the Kohn-Sham equations
read

ĤKSψi = ǫiψi, (1)

where ĤKS , the Kohn-Sham Hamiltonian, is

ĤKS = T̂ + V̂ext + V̂H + V̂xc. (2)

In these equations, ψi and ǫi are the Kohn-Sham eigen-
states and -energies, respectively, T̂ is the kinetic energy
operator, V̂ext the external potential, V̂H the Hartree po-
tential and V̂xc the exchange-correlation potential. These
are simply defined on the set of lattice sites, instead of
as a continuous function of the position variable, in the
discrete formulation. As the exchange-correlation poten-
tial is density-dependent, V̂xc({ni}), Eqs. (1) have to be
solved self-consistently. Inclusion of spin in the model
leads to separate Kohn-Sham equations for each spin
species that are coupled through V̂xc.
The Hubbard model is given by

Ĥ =
∑

〈i,j〉,σ

(tij ĉ
†
iσ ĉjσ + t†ij ĉ

†
jσ ĉiσ) + U

∑

i

n̂i↑n̂i↓, (3)

where ĉiσ (ĉ†iσ) are the usual annihilation (creation) op-

erators for spin σ, n̂iσ is ĉ†iσ ĉiσ, tij is the hopping am-
plitude between sites i and j and U is the strength of
the on-site interaction between opposite spins. The set
of hopping amplitudes {tij} determines the geometry of
the system. In the case of graphene, hoppings up to the
first or third neighbour on the hexagonal lattice are rou-
tinely included, given by either t1 = −2.7 eV in the case
of nearest-neighbour hopping or t1 = −2.7 eV, t2 = −0.2
eV and t3 = −0.18 eV in the case of up to third-nearest
neighbour hopping.4,28 In this work, we choose our unit
of energy to be t = −t1, scaling the other hopping am-
plitudes accordingly.
The kinetic term T̂ of Eq. (2) is given in our lattice for-

mulation by the hopping term of the Hubbard Hamilto-
nian. The Hartree potential V̂H , of which only the on-site
contribution is taken into account in the Hubbard model,
is considered in the sense of the mean-field Hartree-Fock
approximation (HF), and the corresponding Hamiltonian
is

ĤHF =
∑

〈i,j〉,σ

tij(ĉ
†
iσ ĉjσ + ĉ†jσ ĉiσ) + U

∑

iσ

n̂iσni−σ, (4)

where niσ the electron density of electrons with spin σ
on the site i. The second term in Eq. (4) gives the
interaction contribution.

(a) (b)

FIG. 1. (a) The 12-atom supercell of the infinite graphene
sheet, chosen for the determination of the exchange-
correlation energy and potential. The dashed lines show the
connections over the periodic boundaries. (b) A C16 flake
chosen as the first test system of our LDFT method.

We assume V̂xc to depend only on the total density
ni = ni↑ + ni↓ and not separately on the spin-resolved
densities. In the LDFT calculation, the Kohn-Sham or-
bitals ψiσ are solved from Eq. (1) and the new density is
calculated from the occupied orbitals of each spin species,

niσ =
∑

jσ∈occ

|ψjσ
iσ |

2. (5)

The new XC potential is then determined based on the
occupations and the system is iterated until convergence
of the site occupations {niσ}. If necessary, the conver-
gence may be facilitated using a standard mixing proce-
dure in which the new density is calculated as a linear
combination of the current and old density. After con-
vergence, the total energy of the ground-state is obtained
from the Kohn-Sham eigenenergies and density as29

E =
∑

j∈occ,σ

ǫiσ + Exc({ni}, U)

−
∑

i

niV̂xc(ni, U)− U
∑

i

ni↑ni↓. (6)

III. DETERMINING THE XC FUNCTIONAL

The exchange-correlation energy and functional con-
tain the many-body effects of the original problem. In
the spirit of the XC functional for the 1D Hubbard chain
by Lima et al.,5,7 we choose to determine the functional
within the local density approximation, first introduced
by Schönhammer et al. in Ref. 10. The XC energy and
potential on a given site thus depend only on the local
density at that site and not, for example, on the density
difference between the site and its neighbours. The to-
tal XC energy of the system is then simply obtained by
summing over the contributions on each of the sites,

Exc(ni, U) =
∑

i

exc(ni, U), (7)

where exc(ni, U) is the XC energy for a homogeneous
reference system, defined as
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FIG. 2. (Color online) The XC energy and potential fitted to the infinite graphene sheet with nearest-neighbour hopping for
Sz = 0. Top row: 1NN hopping, bottom row: 3NN hopping (a/e) and (c/g): numerical XC energy and potential from ED
(b/f) and (d/h): fitted analytic functions of form Eq. (9).

exc(n, U) =
E(n, U)− EHF (n, U)

Ns

. (8)

Here, Ns is the number of sites in the reference system,
E(n, U) is the exact reference energy given in our case
by the exact diagonalization of the Hubbard Hamiltonian
at filling n = (N↑ +N↓)/Ns, where Nσ is the number of
electrons of the spin species σ, and EHF (n, U) is the
energy of the same system calculated using the Hartree-
Fock Hamiltonian, Eq. (4). For each number of electrons
N↑+N↓, multiple values for the z-projection of the spin,
Sz = 1

2 (N↑ −N↓), were considered. More details on the
exact diagonalization technique can be found in Refs. 30
and 31.
As the Hubbard model is numerically exactly diago-

nalizable only up to approximately 16-sites on present
computers in the general nonsymmetric case, we chose a
12-atom supercell of the infinite graphene sheet as our
reference system, shown in Fig. 1. As graphene flakes
were thought to be the first system to apply the method
to, no k-dependence was taken into account in the func-
tional and the calculations were performed at the Γ point

with ~k = 0, introducing no phase shift to the wave func-
tion when crossing the supercell boundary.
The Hubbard model was solved for all combinations

of N↑ and N↓ for U = 0 − 4t both by exactly diag-
onalizing the many-body Hubbard Hamiltonian in the
Fock basis, and in the single-electron framework using
the the Hartree-Fock Hamiltonian. The range of the U
values was chosen to be moderate but to well extend over
the range ≈ t relevant for graphene calculations.4 Fig. 2
shows the numerical data and the fit for the Sz = 0 case

both for the XC energy and potential, on the top row for
nearest-neighbour hopping and on the bottom row for up
to third-nearest neighbour hopping. The XC energy was
fitted to a function of form

exc(n, U) = α1(e
−α2U

2

− 1)e−(α3|n−1|−α4)
2

. (9)

The values for the coefficients αi are given in Table I,
both in the case of nearest-neighbour and up to third
nearest-neighbour hopping. The XC potential was then
obtained as

vxc =
∂exc
∂n

. (10)

To be rigorous, a functional derivative should be taken
from exc. In this case, however, this reduces to the usual
derivative. In general the fit is very good, although we
note that the largest deviations occur for U > 3t near and
at half-filling, n = 1. We also note that the derivative
discontinuity of the XC energy, seen also in Fig. 2cdgh,
is correctly contained in our functional.
The inclusion of the up to third-nearest neighbour

(3NN) hopping changes the form of the XC energy sur-
face only slightly (Fig. 2, bottom row). The particle-
hole symmetry of the nearest-neighbour (1NN) Hubbard
model is lost through the inclusion of the further hop-
pings. This causes the XC energy surface to be no longer
symmetric about n = 1, leading to a separate set of coef-
ficients αi for n < 1 and n > 1. The coefficients for n > 1
are given in Table I as α∗

i . Comparing the coefficients for
the 1NN and 3NN cases, we see that the magnitude of
the XC energy is slightly smaller for 3NN hopping as the
coefficient α1 mainly determines this magnitude. Also,
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TABLE I. The coefficients αi for Eq. (9). 1NN stands for
nearest-neighbour hopping and 3NN for up to third nearest-
neighbour hopping. In the 3NN case the coefficients are given
separately for n < 1 (αi) and n > 1 (α∗

i ). Coefficients based
on both Sz = 0 and Sz = 1

2
reference data are given. See text

for details.
1NN
Sz = 0

1NN
Sz = 1

2

3NN
Sz = 0

3NN
Sz = 1

2

α1 0.22554 0.24732 0.17094 0.15972

α∗
1 - - 0.17458 0.15071

α2 0.05776 0.04919 0.08322 0.09122

α∗
2 - - 0.08657 0.10440

α3 2.67381 2.70556 2.77940 2.98123

α∗
3 - - 2.73657 2.82716

α4 2.02445 2.22949 2.09609 2.26728

α∗
4 - - 2.02992 2.10459

for 3NN hopping the values of the coefficients for n < 1
and n > 1 are very close to each other.
The XC energy surfaces for higher values of Sz =

1
2 , 1,

3
2 , · · · were also calculated. As the number of ac-

cessible density values and thus reference data points de-
creases with increasing Sz due to the finite supercell, the
fitting of the XC energy surfaces become more and more
ambiguous. In addition, in Section IV we demonstrate
that our approach captures well locally spin-polarized
systems using only the Sz = 0 potential, although the
parameters for the Sz = 1

2 potential were also determined
and are shown in Table I.

IV. RESULTS

A. Comparing LDFT to exact diagonalization

As a first test for our functional, we compare the
ground-state energy of a 16-atom graphene flake (Fig. 1)
calculated by exactly diagonalizing the Hubbard Hamil-
tonian, from the self-consistent solution of the Hartree-
Fock Hamiltonian, Eq. (4), andusing our LDFT method.
We calculate the system at three different fillings: at
quarter-filling (N↑ = N↓ = 4), slightly off quarter-filling
(N↑ = 6, N↓ = 5) and at half-filling (N↑ = N↓ = 8),
including only the nearest-neighbour hopping. Two dif-
ferent Sz states, Sz = 0 and Sz = 1

2 are thus included in
this comparison. Additionally, we perturb the system by
adding an on-site energy of magnitude ǫ = −|t| on the
two middle sites of the structure. In general, introduc-
tion of the on-site energies gives to Eqs. (3) and (4) a
term of the form

V̂ext =
∑

kσ∈{on−site}

ǫkt
†
kσtkσ, (11)

where the sum runs over the site with an on-site energy
and ǫk gives the magnitude of this energy.
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FIG. 3. (Color online) A comparison between the ED, HF
and LDFT ground-state energies of the C16 flake (Fig. (1).
(a) At quarter-filling. (b) With Sz = 1

2
(N↑ = 6, N↓ = 5).

LDFT calculation performed both using a potential fitted for
Sz = 0 and Sz = 1

2
reference systems. (c) At quarter-filling

with an added on-site impurity potential ǫ = −|t| on the two
middle sites of the structure (d) At half-filling. The insets
show the relative errors (in percentage) with respect to the
ED energy.
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Fig. 3 shows the ground-state energy as a function of
U calculated using the three methods. The agreement
between the LDFT and ED, apart from the half-filled
case, is very good. This is also illustrated in the insets,
which show the relative error in percentage with respect
to the ED energy that is below 1 % away from half-filling.
At half-filling the agreement is worst, the relative error
being ≈ 6 %, at U ≈ 3t. This disagreement is partly
due to the worse fit of the XC energy at half-filling. It
is also worth noting that the difference between the two
parameterizations of the potential for Sz = 0 and Sz = 1

2
systems is actually in favour of using the Sz = 0 potential
for the Sz = 1

2 test system (see Fig. 3b) but this is likely
to be due to a coincidental cancellation of errors. On the
other hand, this agreement is also to be expected as the
V̂xc fits are very close to each other for these two spin
states, see Table I.

A comparison of the ground-state densities further re-
solves the issue of poorer results at half-filling. For the
system without any on-site impurities, the exact den-
sity is uniform also for non-zero U . The Hartree-Fock
solution, on the other hand, has an antiferromagnetic
ground-state density with local spin polarizations. This
characteristic of the Hartree-Fock solution is also con-
tained in the LDFT density. In the half-filled case at
U = 3t, the spin-resolved LDFT density ranges from
0.20 to 0.80 with the maximal local spin polarization
Si,max
z = 0.3 for both spin up and spin down species.

This separation of spin up and spin down densities is
also seen in the quarter-filled case but with a smaller
amplitude due to the lower average density. Thus, al-
though the LDFT method corrects the ground-state en-
ergy quite accurately, the method fails to reproduce the
homogenous ED density. This problem is due to the
single-configuration wave functions in DFT.32

The effect of local spin polarizations can be studied by
introducing a spin-dependent on-site energy as a pertur-
bation to the model. This causes the ground-state den-
sity of the ED solution to become non-uniform. In the
case of a quarter-filled infinite sheet with the 12-atom
supercell (Fig. 1), N↑ = N↓ = 3, calculated including up
to third nearest-neighbour hoppings with an on-site en-
ergy ǫ0 = −2|t| applied on a single site for only the spin
up species, the ED ground state exhibits spin-dependent
occupations ranging from 0.14 to 0.60 at U = 0 and from
0.13 to 0.63 at U = 3t. As also the ED density is stag-
gered, the LDFT density agrees better with it, the LDFT
density varying at U = 3t from 0.11 to 0.65. Fig. 4a
shows the energy as a function of U at two values of the
on-site energy, and Fig. 4b the ground-state energy as a
function of the on-site perturbation strength at two dif-
ferent non-zero values of U . The LDFT energies agree
again very well with the exact solutions.

To conclude this discussion, we note that the compu-
tational effort of LDFT is roughly the same as HF. In
comparison to ED, LDFT scales polynomially instead of
exponentially with the system size.
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FIG. 4. (Color online) The ground-state energy of an in-
finite graphene sheet (12-atom supercell) at quarter-filling,
perturbed with a single spin-dependent on-site energy, using
ED (full line), HF (dashed line) and third-nearest-neighbour
LDFT (dash-dotted line). In (a) the strength of the on-site
energy ǫ0 is varied at fixed U and in (b) the on-site energy is
fixed and U varied.

B. Triangular flakes

Proceeding away from the simple, exactly solvable sys-
tems, we apply the LDFT method on triangular graphene
nanoflakes. First we study a still small triangle consist-
ing of 22 sites that has Sz = 1 in its ground-state at
half-filling.23,24,33 As a reference, we compare our LDFT
calculation to a method we call “partial diagonalization”
(PD) in which instead of diagonalizing the many-body
Hamiltonian Eq. (3) in the full Hilbert space, we only
use the space spanned by the non-interacting ground-
state and its up to double excitations. This method is
thus equivalent to the singles-doubles configuration inter-
action method used in quantum chemistry. We calculate
the non-interacting eigenstates of the system and occupy
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them according to the filling of the flake. We then singly
and doubly excite the the system and calculate the ele-
ments of the Hamiltonian in the set of many-body states
formed by the non-interacting ground-state and its exci-
tations. This method is accurate at low values of U up to
U ≈ 2t, ensured by comparing to ED calculations for 6-
and 10-atom flakes. Flake sizes up to approximately 40
sites are easily accessible within this method. It should,
however, be noted that the accuracy of PD at a fixed
number of included excitations is expected to be reduced
for larger systems as the correlation energy does not grow
linearly with the system size.

Fig. 5 compares the ground-state energy of the dif-
ferent Sz states of the triangular C22 flake calculated
using PD and nearest-neighbour LDFT using only the
Sz = 0 potential. In Fig. 5a, we see that despite the
use of the Sz = 0 potential, LDFT yields the correct Sz

value for the lowest-energy state at all values of U . The
inset shows the deviation in percentage from the Sz = 0
state calculated using PD. At U > 3t the PD energy be-
comes nearly linear in U and we expect the LDFT energy
to better describe the physics of the system, as for very
large U the ground-state should exclude doubly-occupied
sites and the energy should saturate.3 This linearity in
the PD solution at larger U leads also to apparently large
deviations in the inset of Fig. 5a. Figs. 5b and 5c show
the ground-state density from PD and LDFT, respec-
tively, for the lowest-energy state (Sz = 1) at U = t and
Figs. 5d and 5e at U = 2.8t. The excess spin is local-
ized on one of the sublattices and mostly on the outmost
zigzag sites, a feature correctly captured by the LDFT
solution and also reported in DFT calculations.18–20 For
U = t, the deviation from the PD density is hardly no-
ticeable, whereas for U = 2.8t the deviation is clearly
seen. Even at strong interaction, however, the qualitative
features of sublattice-dependent polarization and spin lo-
calization on the outmost sites still remain.

In the 3NN triangular flakes, unlike the 1NN
case,23,24,33 there are no general predictions for the
ground-state spin. As the hopping within the sublat-
tice is relatively weak (t2 ≈ 0.07t), it is not likely that
the situation changes drastically from the system with
only nearest-neighbour hopping. Third-nearest neigh-
bour hopping again connects the two sublattices. Ac-
cording to a theorem by Lieb,33 valid for Hubbard mod-
els on bipartite lattice with a repulsive interaction at
half-filling, a 286-atom zigzag-edged triangle having 15
hexagons in the base row should have Sz = 7 in its
ground-state. The spin is given by the sublattice inbal-
ance, Sz = 1

2 |NA−NB|, whereNA(B) signifies the number
of sites on sublattice A(B). This is due to the fact that
in the absence of interaction, the highest occupied single-
electron state is 14-fold degenerate. Our LDFT approach
indeed finds the state Sz = 7 to be of lowest energy for
U > 0.6t. Due to the degeneracy, however, convergence
problems are encountered at U < 0.4t as the numerical
solution is very unstable for the open shell iteration for
lower values of Sz, and the lower-spin states appear to
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FIG. 5. (Color online) Comparison of PD and LDFT within
the nearest-neighbour hopping approach for the C22 flake hav-
ing a spin-polarized ground-state at half-filling. In (a) the
comparison of the ground-state energy for different values of
Sz. Solid line: LDFT, dotted line: PD. The inset shows the
deviation in percentage from the PD Sz = 0 energy. In (b)
and (c), the ground-state density at U = t from PD and
LDFT, respectively. In (d) and (e), the density at U = 2.8t.
Red (light grey) and blue (dark) signify the up and down spin
densities, respectively. Half-filling corresponds to the radius
of the blue circles in the lower left corner in (b) and (d) and
to the single black circle in (c) and (d), drawn to facilitate
comparison.

be energetically more favourable.

In Fig. 6, we show the energy gap at U = t between the
lowest-energy state of the 286-atom flake and the other
Sz values at and slightly below half-filling, the total num-
ber of electrons ranging from 273 to 286. The value of U
was chosen to be relevant to graphene calculations.4,28 At
half-filling, the Sz = 7 has the lowest energy as expected
from the Lieb theorem. Slightly off half-filling the ener-
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FIG. 6. The energy gap between the lowest-energy state and
the other Sz states for the 286-atom triangular graphene flake
at U = t with different total numbers of electrons, Nel =
N↑ +N↓. As the gap jumps when crossing the diagonal, the
gap is shown only up to the Sz value with minimal energy.
The x-axis shows the difference in Sz from the minimal spin,
Sz,min = 0 for even Nel and Sz,min = 1/2 for uneven Nel.

getically favourable Sz decreases linearly with the total
number of electrons but at the same time the magnitude
of the gap decreases. Even though the states seem to lie
very close to each other in energy, the order of magnitude
of the gap at half-filling, 0.1t ≈ 0.27eV, transformed into
temperature, ≈ 3100K, is high enough for us to predict
that the high-spin ground-state should be observable in
room temperature. Away from half-filling, on the other
hand, the gap magnitude in temperature is of the or-
der of room temperature, making the system an unlikely
candidate for practical spintronics applications.

An estimate for the accuracy of LDFT in determining
the gap magnitude is obtained by considering the gap in
C22 (Fig. 5). The gap between the Sz = 1 and Sz = 0
ground-states is 0.13 eV in PD and 0.06 eV in LDFT.
LDFT thus seems to somewhat underestimate the gap
but this only supports the conclusion on the rigidity of
the ground-state against thermal fluctuations. As the
C22 is the smallest flake that has non-minimal spin in
its ground-state, the accuracy of the LDFT predictions
in these systems can not be compared to ED. To com-
pare the gap in a diagonalizable system, the gap between
the two lowest states (Sz = 1/2 and Sz = 3/2) in the
smallest triangular flake, C13, at half-filling was calcu-
lated using ED, PD, and LDFT at U = t including up
to third-nearest neighbour hopping. The gap magnitude
in ED, 1.52 t, is thus an order of magnitude larger than
in the spin-polarized flakes, and both PED and LDFT
overestimate it but only by 3.3% and 4.2%, respectively.

In order to show that the LDFT method is able to pre-
dict the spin densities also for more complex geometries,
Fig. 7 shows the ground-state density of a bowtie-shaped
flake obtained by combining two triangular flakes. Hop-

FIG. 7. (Color online) The ground-state density (Sz = 0)
of a 78-atom bowtie flake at half-filling, previously studied by
Wang et al. in Ref. 18. Up to third nearest-neighbour hopping
is included and the value of U is t. Red (light grey) and
blue (dark) correspond to spin up and spin down densities,
respectively.

ping up to third-nearest neighbours is included and the
flake is calculated at half-filling and U = t. Unlike in
the triangular flakes, the sublattice imbalance is zero in
these structures and thus the ground-state has Sz = 0.
Nevertheless, the spin structure is nontrivial as the spin
up and spin down densities concentrate on the opposite
sides of the structure. These structures have been previ-
ously proposed to function as spin logic devices by Wang
et al.,18 and a comparison with their density-functional
calculation shows that LDFT indeed captures this non-
trivial spin order.

Based on the results of this section, we conclude that
the LDFT approach captures also the essential features
of systems with a non-zero total spin in the ground-state
or with large local spin polarizations.

V. CONCLUSIONS

Lattice-density functional theory is a promising candi-
date to be used instead of the mean-field Hartree-Fock
approximation for graphene systems too large for ex-
act methods. The exact ground-state energies are accu-
rately reproduced, and correct spin properties for large
graphene flakes are found. Local density approximation
(LDA) is enough to capture these spin properties and
no need for an explicitly spin-dependent potential was
found. The ground-state densities are antiferromagnetic
with local spin-polarization like the HF solution and the
computational effort is of the same order as in the mean-
field Hartree-Fock approximation.

The method could be applied to transport calculations,
for instance for graphene nanoribbons. Also, the method
could be extended into time domain in the form of an
adiabatic time-dependent lattice density-functional the-
ory and used to study dynamic phenomena such as the
possibility of spin-charge separation above one dimen-
sion.
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14 R. López-Sandoval and G. M. Pastor, Phase Transitions,

78, 839 (2005).
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