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Abstract

We begin an investigation of inhomogeneous structures in holographic su-

perfluids. As a first example, we study domain wall like defects in the 3+1

dimensional Einstein-Maxwell-Higgs theory, which was developed as a dual

model for a holographic superconductor. In [1], we reported on such “dark

solitons” in holographic superfluids. In this work, we present an extensive nu-

merical study of their properties, working in the probe limit. We construct

dark solitons for two possible condensing operators, and find that both of them

share common features with their standard superfluid counterparts. However,

both are characterized by two distinct coherence length scales (one for order

parameter, one for charge condensate). We study the relative charge depletion

factor and find that solitons in the two different condensates have very distinct

depletion characteristics. We also study quasiparticle excitations above the

holographic superfluid, and find that the scale of the excitations is comparable

to the soliton coherence length scales.
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1 Introduction

The AdS/CFT correspondence [2–4] – or gauge-gravity duality, as its more phe-

nomenological incarnation is called – is being used as a tool to study an increasing

variety of strongly interacting systems. When the system is also ”close” to being con-

formal, it is natural to try to construct a holographic gravity dual model. The main

practical advantage of holography is that it allows a new, computationally simpler

framework to explore quantum systems which are outside the reach of conventional

perturbative techniques. The situation of interest in this document will be a system

in which a U(1) symmetry is spontaneously broken, as is relevant for superfluidity

and superconductivity.

Superfluidity may occur in a system at low temperatures when the ground state

becomes occupied by a macroscopic number of particles. This is known to occur in

both interacting bosonic systems (Bose-Einstein condensates, BEC) and interacting

fermions with Bardeen-Cooper-Schrieffer pairing (BCS). In fact, cold atomic systems

can display both BEC-like and BCS-like superfluidity and even a smooth transition

between them.

It is not at all obvious what kinds of superfluids may be realized holographically. A

prototype example is the recently constructed gravitational dual theory [6], building

on the model [7], for the purpose or modeling BCS superconductors [6,8] or relativis-

tic superfluids with a spontaneously broken global U(1) symmetry [9]. The model

was also extended to an effective theory for some properties of a class of quantum

Hall fluids [10]. Typically, in systems that are dual to AdS models, one finds both

fermionic and bosonic excitations. Thus, one might hope to be able to holographi-

cally model both BEC-like and BCS-like superfluidity, as well as more complicated

fluids with mixed behavior. For closer contact with real world cold atom systems, a

required ingredient would also be manifest non-relativistic symmetry, for which the

first holographic models were studied in [11,12]. In this paper, and in the associated

sequence of works to follow, we will focus on studying extended configurations in the

model [6], and we will find a richer variety of possibilities than previously expected.

Hydrodynamic properties of the relativistic holographic superfluid have been ex-

plored in [13,14] – the latter in particular argues that the superfluid does not obey the

Landau relationship between sound velocities. In [15], masses of quasiparticles were

determined analytically near Tc and substantially extended in [16] (to other values of

the mass of the bulk scalar field as well).

Another basic fact is that conventional superfluids are known to support long lived

spatially inhomogeneous configurations with nontrivial topology. An experimentally

and theoretically interesting class of defects, found in superfluids, are domain wall

like defects called dark solitons. A dark soliton is an interface of reduced (charge)

density between two superfluid phases, with the order parameter changing sign across

the interface. Holographic counterparts were recently reported by us in [1]. Apart
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from curiosity, there are several reasons to study such solitons, a primary one being

to explore their properties at strong coupling, a difficult problem using traditional

methods. Although the gravity dual has different symmetries and microscopic prop-

erties from the real life cold atomic systems, there may be some universal features. At

the very least it provides a “spherical cow” example allowing one to study properties

of a class of dark solitons at strong coupling.

The holographic dark solitons are also interesting solutions in their own right –

they turn out to reveal important information about the different ways of condensing

operators in [6] and about the nature of the holographic superfluid. First of all, we

find that the solitons have two distinct length scales: one for the charge density and

one for the order parameter. This behavior is in contrast to a single scale found in

simple solutions to the Gross-Pitaevskii equation for superfluids. Furthermore, by

studying the degree of charge density depletion we discover that the two different

choices for the condensing operator, discussed in [6], lead to different properties for

the associated superfluids. We will also compare the length scales as set by these

solitonic configurations with the microscopic masses of quasiparticles.

This document is organized as follows. We begin with a brief discussion of the

holographic description of a superfluid. The configurations of interest are obtained

by solving a system of partial differential equations in AdS space. These equations

and the boundary conditions – which sustain the soliton – are presented in Section 2.

However, the equations seem intractable analytically. We therefore have to numeri-

cally solve the equations. The discretization of the equations and the method we use

to solve the equations are presented in Section 3. In order to identify properties of

interest to be obtained from the numerical solutions, we will briefly discuss the Gross-

Pitaevskii equations in Section 4. We will then present our results for the holographic

dark solitons and conclude with a discussion of the results and future directions.

2 Holographic Description

An explicit holographic modeling of a superfluid system was constructed in [6] fol-

lowing the ideas in [7] (closely related ideas also appeared in [17]). One considers

a system consisting of a complex scalar field Ψ interacting with a U(1) gauge field

Fµν = ∂µAν − ∂νAµ in 3+1 dimensions in the presence of gravity with a cosmological

constant  L. The action for this system is

S =

∫

d3xdz
√
−g

[

1

2κ2
4

(R− 12Λ) +
1

q2

(

−1

4
FµνF

µν −m2ΨΨ̄ −DµΨDµΨ̄

)]

(1)

where the covariant derivative DµΨ = (∂µ − iAµ)Ψ and q may be identified with

the charge of the scalar field1. Focusing on just these degrees of freedom (rather

1We have rescaled the fields such that q only appears in front of the matter action.
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than keeping all the fields required for a UV complete gravity theory), amounts to

concentrating on the most relevant operators of the field theory. One could include

other fields (say, a fermion field which would be dual to fermionic quasiparticles).

In keeping with the usual terminology, we will refer to the fields of the gravitational

theory as the “bulk” fields in what follows.

The AdS/CFT correspondence [2] requires us to find solutions to the equations of

motion of the 4D-gravitating system, such that the metric is asymptotically AdS. The

properties of the dual field theory are then “read off” from the asymptotic behavior

of the various fields of this gravitating system ( [3, 4], see the review [5]).

In our case, since we are trying to study a spatially inhomogeneous configuration,

solving the full gravitating system is a difficult problem. Therefore, we consider a

limit in which the energy density in the complex scalar field and the Maxwell field

(in 4D) is scaled to zero. This may be achieved by taking κ4

q
→ 0 keeping the field

values Ψ, Aµ finite. In this limit (termed the probe limit in the AdS literature) the

metric is determined, independent of the matter fields, to be a 4-D planar AdS black

hole with a metric

ds2 = L2(−fdt
2

z2
+
dz2

fz2
+
d~x2

z2
), f(z) = 1 −

(

z

zT

)3

. (2)

The Hawking temperature of the black hole, TH = 3
4πzT

, is identified as the equilibrium

temperature of the dual field theory.

The complex scalar field and gauge field then propagate on this background and

their dynamics is determined by an action

S =

∫

d3xdz
√−g

(

−1

4
FµνF

µν −m2ΨΨ̄ −DµΨDµΨ̄

)

(3)

where the covariant derivative DµΨ = (∂µ − iAµ)Ψ and the various indices are con-

tracted using the metric given above.

If we rescale

(z, x) → zT (z, x) A→ A

zT

Ψ → Ψ

zT

, (4)

then the new co-ordinates z, x are dimensionless as are the new fields Ψ, A. Further,

all dependence on zT is also removed.

The equations of motion for this system are

0 =
1√−gDµ(

√
−gDµΨ) −m2Ψ (5)

0 =
1√−g∂µ

(√
−gF µν

)

+ i(Ψ∂νΨ̄ − Ψ̄∂νΨ) + 2AνΨΨ̄. (6)

In this work we will primarily be interested in studying static kink solutions in the field

theory and therefore the fields only have dependence on z and one spatial variable,
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x. In the gauge where Az = 0, the Az equation is satisfied if Ψ is taken to be real

and Ax = 0. We will assume translation invariance in the y-direction and set Ay = 0.

Then the only nonzero component of the gauge field is A0 = A(z, x)

It is important to note that, after gauge fixing, there is a residual Z2 symmetry

under which the scalar field changes sign. When studying dark soliton solutions to the

equations of motion, the scalar field changes sign as a function of x, limx→±∞ Ψ(x) =

±|Ψ(∞)|. One might think that this sign flip may also be gauged away, but this would

require a gauge transformation that is singular as the scalar field crosses through zero,

and hence is not an allowed gauge transformation.

It is convenient to redefine the field slightly, Ψ = zR̃/
√

2, and rewrite equations

of motion

fR̃′′ + f ′R̃′ − zR̃ + ∂2
xR̃ + R̃(

A2

f
) = 0 (7)

fA′′ + ∂2
xA− R̃2A = 0 (8)

2.1 Bulk-boundary dictionary

Typically, in AdS spacetimes, the solutions to the equations of motion may be segre-

gated into ”normalizable” and ”non-normalizable” parts determined by their leading

z behavior as one approaches the boundary. According to the AdS/CFT dictio-

nary [3–5] the two have different interpretations in the dual field theory. The bound-

ary values of the non-normalizable modes are interpreted as sources for the operators

of the dual field theory. The normalizable modes are then identified with the vacuum

expectation values of the corresponding operators sourced by the non-normalizable

modes [18]. The scaling behavior of the dual operator is also fixed and may be ex-

tracted from the asymptotic behavior of the normalizable modes as functions of z.

This is explicitly realized by identifying the generating functional of connected cor-

relation functions, W [J ], of the strongly coupled field theory with the on-shell action

for the bulk gravity theory (the bulk fields have boundary values φ∂ = J . ( [3, 4])

SGrav., O.S.

∣

∣

φ∂=J
= WQFT [J ]. (9)

One simple way to see the relationship between normalizable modes and expectation

values is to consider the change in the action of the gravity theory caused by infinites-

imal changes in the ”non-normalizable” gravity modes (field theory sources). Upon

partial integration and the inclusion of a suitable counterterm, the variation of the

action (1) in terms of the fields Ψ, A, becomes

δS = −
∫

d4x∂µ(δΨ
√
g∂µΨ) +

1

2
∂µ(

√
gδA F µ0) (10)

+

∫

d4xδΨ E(Ψ) +
1

2
δAν E(A)

+ terms higher order in the variations.
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We have grouped the equations of motions in (5) as E(Ψ) and E(A) for brevity.

Rewriting the surface terms as in the AdS prescription gives us

δS = −
∫

d3x[(δΨ
√
g∂zΨ) + (

√
gδA F z0)]

∣

∣

∣

z=0
(11)

+

∫

d4xδΨ E(Ψ) +
1

2
δA E(A)

+ terms higher order in the variations.

contributions only from the first line in the above.

As in [6], we shall take the scalar field to satisfy m2 = −2/L2. For this mass value,

there are two quantizations for scalar fields in any asymptotically AdS4 spacetime [19].

The two quantizations correspond to exchanging the role of source and expectation

value in the dual field theory.

More explicitly, it can be easily seen that, close to the boundary at z = 0, solutions

to the equations of motion must behave as

R̃ ∼ R̃(1) + zR̃(2) + ..., A ∼ A(0) + zA(1) + ... (12)

in an expansion of the Frobenius type along the z-direction. We can regard R̃(1) as

the source for a charged, dimension 2 operator

R̃(1) = zTJ
(2) R̃(2) = z2

T 〈O2〉 A
(0)
0 = zTµ A

(1)
0 = z2

Tρ. (13)

where 〈O2〉 is the charged operator, µ is the chemical potential, and ρ is the charge

density (all in the dual field theory). One could motivate the identification of the

asymptotic value A
(0)
0 = zTµ by noting that, in Euclidean space, a vev of A0 is

naturally interpreted as a chemical potential (since it minimally couples to a conserved

charge).

In the second quantization scheme, we identify R̃(2) as the source for a charged,

dimension 1 operator

R̃(1) = zT 〈O1〉 R̃(2) = z2
TJ

(1) A(0)
µ = zTµ A(1)

µ = z2
Tρ. (14)

(we will use ψ to denote the condensate in what follows). The various prefactors

come from the rescaling of z by zT so that the fields in the bulk are dimensionless.

Solutions to the gravitational equations of motion with nonzero non-normalizable

components are interpreted in the dual field theory as deforming the Hamiltonian,

δH ∼
∫

d3xJ (i)O(i) and would hence change the ground state of the theory.

To obtain a unique solution to the bulk equations of motion, we need to impose

boundary and regularity conditions. As in [6], we want to study the spontaneous

breaking of the U(1) symmetry unperturbed by any sources, so we will impose bound-

ary conditions such that in each quantization the source terms are turned off.
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In addition, we impose the following regularity conditions at the horizon (we

assume that R is regular at the horizon)

f ′R̃′ − zR̃ + ∂2
xR̃ = 0 A0(z = 1, x) = 0 (15)

(the condition on the gauge field has been argued to be a regularity condition [7]). Be-

cause the differential equations are elliptic (7) outside the horizon, Dirichlet/Neumann

boundary conditions along the boundary (at z = 0) and regularity (at the horizon)

are sufficient to fix a unique solution (a useful analogy is with Poisson equations).

2.2 Review of earlier results

One of the features of the AdS/CFT correspondence is that global symmetries of the

field theory system appear gauged in the gravitational theory. Given this, the U(1)

gauge symmetry in the gravitational Lagrangian (1) is interpreted as corresponding

to a global U(1) symmetry of the dual field theory system. And hence, the bulk

charged scalar field Ψ maps into a field theory operator Oi that is “charged” under

the global U(1). We can now study this system to see if it has ground states in

which these charged operators pick up nonzero vacuum expectation values (vevs) in

the limit where all external sources for charged operators are turned off.

In the works of [6], it was shown that for µ ≥ µc (or equivalently small T , since

there is only one independent parameter µ̃ = 3µ

4πT
), one can find nontrivial solutions for

the scalar field equations displaying spontaneous symmetry breaking in the dual field

theory. Thus, for low enough temperature (or large enough µ) we obtain superfluidity

(strictly, we have only argued for a condensate, that this is indeed a superfluid has also

been established by showing the existence of a hydrodynamic mode [9]). The critical

value of µ (or T ) depends on whether we consider R̃(1) or R̃(2) as our normalizable

mode (or equivalently, as the vev of the order parameter).

The graph of typical solutions look as in Fig. 1 wherein we plot the two solutions

obtained by condensing either operator O1 (dotted line) or O2(dashed line) We also

0.2 0.4 0.6 0.8 1.0
z

0.5
1.0
1.5
2.0
2.5

R

0.0 0.2 0.4 0.6 0.8 1.0
z

0.05
0.10
0.15
0.20
0.25

�����������
DA

Μ

Figure 1: Scalar field and Gauge field profile: The dotted line refers to O1 and the

dashed line to O2 type condensate

note that at any temperature (or chemical potential) we have a solution where the
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condensate is absent A(z) = µ̃(1 − z) and Ψ = 0. Such a solution is energetically

disfavored at low temperatures (T < Tc or µ > µc). [9]

The features in the bulk gauge field are highlighted better if we graph a subtracted

potential ∆A(z) = A(z)/A(0) − (1 − z) which may be interpreted as charge density

over and above the zero condensate value. It is seen in Fig. 1 that the bulk gauge

field profile is quite similar in the two cases. One feature of potential interest is that

the presence of the condensate changes the charge density by little (vide the range of

the vertical axis), at least for small chemical potentials.

We also plot the charge density and condensate as a function of the holographic

direction z. One of the interesting differences between the two types of solutions is

that when O2 condenses, the condensate always vanishes at a point z = zc. Beyond

this zc value the condensates is always monotonically decreasing as one approaches

the horizon. For O1 condensates, the condensate is monotonic as a function of z.

The Landau-Ginzburg approach suggests that the square of the condensate should be

0.2 0.4 0.6 0.8 1.0
z

1
2
3
4
5

Y

0.2 0.4 0.6 0.8 1.0
z

1
2
3
4
5
6

Ρ

Figure 2: The condensate and charge density profile: The dotted line refers to O1

and the dashed line to O2 type condensate

function of (µ− µc) (26). As can be seen from Fig. 3, for small values of (µ−µc)
µc

, the

curve may be approximated by a straight line. However, for somewhat larger values,

the slope changes - and the fitting functions require higher powers.

The equation of state for this system - namely the graph of the charge density

as a function of the chemical potential for fixed temperature looks as in the Fig. 4.

Close to the phase transition, the charge density and chemical potential are linearly

related, but near T = 0 (large µ), this is no longer true.

One could expect that the condensate should be a linear function of the charge

density - if one imagines that the microscopic system consists of fermions, then both

the charge density and the condensate are proportional to the vev of ψψ - where ψ is

the fermion many body wavefunction. The condensate is indeed a linear function of

the charge density at large values of the chemical potential (i.e., close to T = 0) but

near the phase transition it seems that increasing the condensate does not increase

the charge density by a considerable amount.
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Figure 3: The condensate as a function of the chemical potential: Upper curve is O2,

lower O1.
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0
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35

��������
Ρ
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Figure 4: The charge density vs. chemical potential: Upper curve is O2, lower O1.

3 Numerical Methods for Dark solitons

The bulk equations of motion (7) seem to be intractable even in the homogeneous case.

Therefore, we resort to numerical methods to solve them. Since we are interested in

inhomogeneous solutions, shooting methods become unwieldy (in this regard, see [33]

for a tour de force of numerical work in a closely related context). Therefore, because

the differential equations are elliptic outside the horizon, it is natural to use relaxation

methods to find solutions.

More precisely, to simulate the differential equations, we place the system in a

large box of size 1×Lx in the z and x directions respectively. We discretize this box

using a lattice, and then solve a discretized version of the differential equation on

the lattice using a Gauss-Seidel routine. The Gauss-Seidel strategy is to start with

a seed configuration which obeys appropriate boundary conditions. We can then use

a discrete representation of the differential equations to “relax” this configuration

towards a solution. If the lattice is sufficiently fine, the elliptic nature of the problem

implies that the seed configuration will flow to an exact solution to the differential

equation eventually.
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Figure 5: The condensate as a function of the charge density (upper curve is O1

condensate)

We set our conventions by labeling the z and x positions with i ∈ [0,M ] and

j ∈ [0, N ] respectively and use step sizes hz and hx. We will denote the lattice fields

as (R̃, A) → (R̃i,j, Ai,j).

The discretization of these equations (7) has to be done separately for the interior

of the lattice and the edges to at least second order in the lattice spacings. In the

interior, when i 6= 1,M j 6= 1, N , we can use the center difference formulae for the

derivatives,

∂f(x)

∂x

∣

∣

∣

x=xi

=
f(xi+1) − f(xi−1)

2hx

+ O(h2
x)

∂2f(x)

∂x2

∣

∣

∣

x=xi

=
f(xi+1) − 2f(xi) + f(xi−1)

h2
x

+ O(h2
x) (16)

and therefore we get the following algebraic equations

R̃00 =
(( f

h2
z

+ f ′

2hz
)R̃+0 + ( f

h2
z
− f ′

2hz
)R̃−0 + R̃0++R̃0−

h2
x

)

(z − A2
00

f
+ 2

h2
x

+ 2f

h2
z
)

(17)

A00 =

f

h2
z
(A+0 + A−0) + 1

h2
x
(A0+ + A0−)

(R̃2
00 + 2

h2
x

+ 2f

h2
z
)

(18)

The above equations are to be understood as follows. At a site i, j, the value of

the scalar field Ri,j which we label as R00 is determined in terms of its neighbors

Ri±1,j = R±0 etc by the above equations. In addition, z refers to the lattice value zi,

and f refers to f(zi) and f ′ must be replaced by the center difference formula at the

lattice site.

At the spatial edges (in the bulk) when x = ±Lx/2 and z 6= 0, 1, we simply

use one-sided representations of the finite difference derivatives and again impose the

equations of motion. We have also checked that one could also employ Neumann

boundary conditions at x = ±L
2

without changing the numerically determined solu-

tions, as long as L is sufficiently large.
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At the horizon, we impose regularity conditions (15) appropriately discretized. At

the boundary of AdS space, we have to numerically impose the boundary conditions

O1 case : A(z = 0, x) = µ = constant,
∂R̃

∂z
(z = 0, x) = 0 (19)

O2 case : A(z = 0, x) = µ = constant, R̃(z = 0, x) = 0.

By cycling through the lattice, imposing either the equations of motion, regularity,

or boundary conditions depending upon the position, an initial seed configuration

relaxes to a solution to the algebraic equations satisfying the appropriate boundary

conditions.

As a first check of our algorithm, we checked that we can obtain the symmetry

breaking solutions obtained by [6] that correspond to having a homogeneous phase

without any dark solitons. For the O2 condensate for instance, we set the chemical

potential at the boundary to a fixed value, and R̃(0, x) = 0, and allow fairly arbi-

trary seed field values in the bulk of the lattice (as well as at the horizon). Upon

subsequent iteration, we obtain a translationally invariant solutions that match the

numerical solutions obtained by solving the corresponding one dimensional problem

using Mathematica’s NDSolve to remarkable accuracy even on fairly modest lattices.

For the O1 condensate we enforced ∂zR̃(0, x) = 0 instead. Again, after iterating one

finds spatially homogeneous solutions which agree with [6].

3.1 Constructing Dark Solitons

The dark solitons were constructed, numerically, as follows. We first chose a seed

configuration that asymptotes to solutions in [6] far away from the interface. The

initial configuration is assumed to be odd in the x-direction. We then numerically

iterate the seed configurations until it relaxes to a stable configuration (we do this on

several lattice sizes for each soliton). In actual calculations, we are forced to use a

cutoff at a distance ǫ = 10−10 from the horizon at z = 1. We have checked that this

value of ε does not affect the results quoted.

A typical solution so obtained is shown in Fig. 6 for the O1 case. In the gauge

field plot, we have subtracted a linear part µ(1 − z). Since this is an O1 condensate,

the boundary values of the scalar field are non-vanishing. A corresponding typical

solution for the O2 case is shown in Fig. 7. In this case the boundary value of the

scalar field is zero and the derivative of the scalar field, ∂ZR̃, is identified with the

condensate. magnitude of

Further, starting with one such solution, we can perturb the solution by an arbi-

trary deformation that preserves the boundary values. We have seen that the per-

turbed configuration relaxes back to the original starting solution rapidly (in iteration

time). This is an indirect argument for the stability of the solution as well.
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Figure 6: O1 case: The bulk solution (Scalar field on the left and subtracted gauge

field on the right).

Figure 7: O2 case: The bulk solution (Scalar field on the left and subtracted gauge

field on the right).

3.2 Numerical Errors

There are two main sources of errors in the relaxation method described above. First,

there is the discretization error caused by using a lattice description. This may be

countered in two obvious ways. We could use discrete representations of derivatives

that are of higher order in hx and hz and/or use a finer lattice. We however resort

to a version of the multigrid method. That is to say, we first solve the numerical

system on a coarse lattice and then use this approximate solution to seed the starting

configuration on a finer lattice. This procedure converges much faster than naively

solving on the larger lattice. The second source of error is the degree to which we

solve the algebraic equations obtained after discretizing the differential equations.

The most obvious way to minimize the algebraic error is to simply let the system

relax over more iterations.

As a measure of the error in our numerical solutions, we define a quantity which
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we call equation error, E . This is the extent to which the numerically determined

solutions do not solve the equations of motion schematically written as

E.O.M(R̃num, Anum) = E . (20)

To evaluate E , we can again discretize the equations of motion by now using n-th order

representations for the various derivatives and evaluate Enum(n) = E.O.Mn(R̃num, Anum).

For a given numerical solution, we find that Enum(n) hardly changes for n > 5. We

may therefore use this numerically determined equation error (at large derivative

ordern > 5 ) as an approximation of the exact error in the numerical solution

E ∼ Enum(n)
∣

∣

∣

large n
. (21)

In order to reduce the discretization error we may pass numerically obtained solutions

obtained on coarse lattices on to finer lattices and repeat the process. In this manner

it is possible to systematically reduce the equation error, E . In principle this process

could be continued indefinitely, although in reality we are limited to lattices of size

less than 513 × 513 sites when using Mathematica on a desktop computer.

20 50 100 200 500 1000
Lattice Size

10-4

0.001

0.01

0.1

Eqn Error
Errors

Figure 8: Edis(7) as a function of lattice size. The dashed line is the maximum value

of the R̃ equation of motion evaluated on our numerical solution and the solid line is

the corresponding value for the gauge field

3.2.1 Uncertainty Analysis

Although we have introduced a measure of numerical error in the solutions, it would

be more insightful to have a measure of the error in physical quantities. One way

to do this comes from (11) which establishes the relationship between normalizable

modes and operator expectation values. Specifically, the error in the condensate and

charge density may be estimated by noting that since the equations of motion do not

13



actually evaluate to zero,

∆ (〈O2〉) ∼ 1

z2
T

∫

d4x
∣

∣

∣

δR̃

δR̃(1)

∣

∣

∣
|Enum(R̃)| +

1

2

∣

∣

∣

δA

δR̃(1)

∣

∣

∣
|Enum(A)| (22)

∆ (〈ρ〉) ∼
∫

d4x

f(z)

∣

∣

∣

δR̃

δA(0)

∣

∣

∣
|Enum(R̃)| +

1

2

∣

∣

∣

δA

δA(0)

∣

∣

∣
|Enum(A)| (23)

for the O2 condensate. Similar expressions may be obtained for the O1 condensate.

As a final input we need to evaluate the functional derivative of bulk fields with

respect to their boundary values. We will approximate the functional derivatives by

their values for the homogeneous solutions (as determined numerically using Mathe-

matica’s NDSolve routine). That is to say, we determine the change δR̃(z) when we

change the boundary values by δR̃(1). We have checked that this latter approxima-

tion is a good estimate of the actual functional derivative δR̃

δR̃(1) even if we use the full

inhomogeneous equations.

Such as they are, these error estimates do not represent upper bounds on the

total error on spatially inhomogeneous solutions, but we do believe that they are a

descriptive of the error in our numerical solutions.

4 Dark Solitons

In order to identify quantities of interest to be extracted from our numerical solutions,

we will attempt to compare our holographic solitons with the soliton solutions of

the Gross-Pitaevskii(GP) equation (the latter gives a coarse-grained description of a

superfluid valid at long wavelengths). However, we emphasize that we will only be

using the GP equation as a guide - the results indicate that the holographic solitons

are not the same as the solution of the GP equation. We also note that the description

of a superfluid system in terms of the GP equation alone is inadequate to capture

the effects of significant density depletion in the superfluid (perhaps due to strong

interaction effects) and also the effects of having a significant non-condensate fraction

(at say high temperatures). In our results, we find that both these contributions seem

to be present and significant in the holographic superfluids.

The order parameter of superfluidity is a complex scalar field (also called the

condensate wave function)- for which one can write down equation of motion called

the Gross-Pitaevskii equation

− 1

2mB

∂2ψ + (V − µ)ψ + gψ|ψ|2 = 0 (24)

(we have dropped the time dependence in the above since we are only interested in

static phenomena in this work).
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The dark soliton, in this language is a spatially varying solution of the GP equation

which interpolates between the potential minima

ψ(x→ ∞) = ∆ ψ(x→ −∞) = −∆ (25)

If we further assume translational invariance in the y-direction, the GP equations

(24) has a well known exact solution

ψ =

√

V − µ

g
tanh(x/ξ), (26)

which interpolates between the two minima at ψ = ±∆ =
√

V −µ

g
. The correlation

length (or the healing length) ξ, can then be written in a useful form in terms of the

parameters of the GP equation as

ξ2 =
1

2g∆2
=

1

(V − µ)mB

. (27)

Although the GP equation is really relevant for a nonrelativistic system, it will be

interesting to test these dependences of the coherence on the magnitude of the con-

densate and on the chemical potential. Finally, because the charge density is simply

related to the order parameter ρ ∼ |ψ|2, the solution (26) has vanishing charge density

at its core.

4.1 Holographic results

-20 20
X

-1.2

1.2

R
� 0

-20 20
X

1.4

1.7

Ρ

Figure 9: O1 Condensate and charge density as a function of x

From the numerical solutions (6,7) obtained by solving the bulk equations - we

can extract the boundary profiles of the charge density A(1) and the condensate R(1,2)

respectively. The plots as well as expectations from the GP equation suggest that the

condensate can be fitted by a tanh(x
ξ
) profile and hence plausibly, the charge density

can be fitted by a sech2( x
ξq

) profile. These data points along with the best fit curve are

shown in Fig. 9 for a typical O1 type of condensate. The results of a similar analysis

for the O2 system is shown in Fig. 10. The profiles of the boundary observables are
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Figure 10: O2 Condensate and charge density as a function of x.

equally well fit for both O1 and O2 cases. Using a least square fit, we then extract

the coherence length ξ from the condensate profile and ξq from the charge density. It

must be noted here that the fit value of ξ and ξq are quite sensitive to the accuracy of

the solutions. We have ensured that the equations are solved to an accuracy of 10−4

- that is to say, the maximum absolute value of the right hand side of the differential

equation is less that 10−4.

Following our earlier discussion of the GP-equation (27), we plot the behaviour

of the coherence length as a function of the condensate in Fig. 11. One of the first

surprises is that ξ is a linear function of the inverse condensate over a large range of

chemical potential, although there is no obvious reason for it in this context.

1 2 3 4 5
�����������
1

Ψ¥

5

10

15

20

Ξ

Figure 11: O2 Coherence length versus inverse condensate.

4.2 Two Length Scales

Secondly, again motivated by (27), we would like to determine the dependence of the

coherence lengths ξ on the chemical potential µ. This is shown in Fig. 12. It is seen

that for values of the chemical potential close to the critical value (i.e., T close to Tc),

these mass scales are linear functions of the chemical potential (in this manuscript,

we use the term mass scale interchangeably with inverse length scale). This is true for
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Figure 12: The coherence lengths as a function of the chemical potential (O1 on the

left and O2 on the right)

both the O1 and O2 solutions - but ξ and ξq have slightly different slopes as functions

of the chemical potential.

This is in sharp contrast to what one might have expected from either GP-equation

or even the bulk equations. The numerical solutions display different length scales

for the condensate and charge density (for µ > µc). We have confirmed that this is

not a numerical artefact in the following ways. As a first check, we plot the behavior

of the two length scales as we increase lattice size in Fig. 13. We see that the

100 200 300 400 500
0.31

0.32

0.33

0.34

0.35

Figure 13: The best fit valued for ξ (bottom) and ξq (top) vs. lattice size for an O2

condensate at µ

µc
= 1.03.

difference between the ξ’s saturates for large lattice sizes, indicating that errors due

to discretization will not swamp the difference between the two scales.

We also plot the relative difference between ξ and ξq as a function of the chemical

potential in Fig. 14. Following the earlier discussion on error estimate for the con-

densate and charge density profiles, we have determined error bars on these numbers

(which have also been indicated in Fig. 14). Since the error bars do not overlap with

zero (except close to Tc), it is clear that the difference in these length scales is not a

numerical artefact. A sharp difference between the two kinds of condensates is seen

in the observation that the length scale difference changes sign.
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The existence of two distinct length scales leads one to expect an interesting

layering effect as one nears the soliton’s core. Two length scales would indicate

that the relative fraction of charge density in the condensate versus non-condensate

degrees of freedom varies as a function of x. For O1 we find that the condensate’s

length scale is larger than that of the total charge density. As one approaches the

soliton from infinity, the O1 condensate starts to drops off before the total charge

density, therefore the non-condensate contribution to the total charge density must

be must be relatively over dense when compared to its asymptotic value. For O2,

the relative order of the length scales is reversed, implying that the density in the

non-condensate fraction must be relatively under dense near the dark soliton.

4.3 Depletion fraction

Another quantity of interest in these objects is the amount of density depletion at

the core of the soliton. This is illustrated in the left panel of Fig. 15 where we

plot the fractional density as a function of the distance from the core of the soliton

(for µ

µc
= 1.9). One sees that there is a striking difference in the amount of density

depletion at the core between O1 and O2 type of condensates. Fig. 15. In the

right panel, we plot the percentage density depletion at the core as a function of

the chemical potential for the two kinds of condensates. Firstly, the fact that this

depletion fraction is not 100% is an indicator that we are quite far away from the

solution (26) of the GP equation.

In [20], it was shown that the density depletion fraction, at zero temperature,

was directly related to whether the system was BEC-like (large depletion) or BCS-

like (small depletion) (for non-relativistic systems). It is interesting to note that the

density depletion for holographic solitons in Fig. 15 is strongly dependent on the type

of operator which condenses. The amount of density depletion for the O1 condensate

is likely to be quite large near zero temperature. By contrast, O2 type condensate
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Figure 15: Left: density depletion: O1 is blue and dotted. Right: density depletion

as a function of the temperature: O1 on the top and O2 on the bottom

seems to be saturating near 40% density depletion as we tend to zero temperature.

If one defines the type of superfluid (BEC or BCS) by the amount of density

depletion at the core [20], then Fig. 15 suggests that the O1 system is likely to be

BEC type. However, as we shall see later, it is to be emphasized that the comparison

with the BCS/BEC types of superfluids is perhaps an analogy only.

4.4 Comparison of solitons with quasiparticles

The dark soliton we have constructed is a “macroscopic” object in this system with

a characteristic length scale, namely the coherence length. On the other hand, we

also have quasiparticles which are massive. These are “microscopic” excitations, and

one could try to compare the inverse mass of the quasi particle with the coherence

length. In a sense, since linear response is controlled by the quasiparticle mass, it

will be interesting to wonder if the coherence length may be accounted for using some

heuristic based on linear response theory.

The quasiparticle mass can be determined by studying the two point functions

for fluctuations around the homogeneous condensate, and examining the fall-off as

a function of the spatial co-ordinate x (we define the quasi-particle mass this way).

The boundary conditions satisfied by the fluctuations in this case are “reflective”

regularity conditions at the horizon. This is different from the sound mode studies in

that the latter uses infalling boundary at the horizon as is appropriate for a black hole

quasi-normal mode (which represents a relaxation mode for the superfluid system).

Using the AdS/CFT dictionary, the boundary quasiparticle masses arise from the

poles in the bulk to boundary propagator in Euclidean AdS space [21]. Because we

want the lightest masses (largest length scales), it is only necessary to solve for the

lowest pole which has vanishing Matsubara frequency. Finding the lowest pole of the

bulk to boundary propagator reduces to finding the values of k2 for which one has a
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static solution to the linearized equation of motion satisfying the correct boundary

conditions (see below).

In detail, we can linearize (7) to find

fδR′′ + f ′δR′ − zδR − k2δR + δR(
A2

f
) +

2AR̃

f
δA = 0 (28)

fδA′′ − k2δA− R̃2δA− 2AR̃δA = 0 (29)

where k represents the (dimensionless) momentum of the particle in the x-direction

and we have dropped the tilde on the fluctuation δR̃(k, z) (R̃, A are solutions rep-

resenting the background). The presence of the interation term between δR̃ and δA

suggests that there is mixing between these two kinds of quasiparticles - very similar

to the mixing between axial and vector-mesons in models of AdS/QCD [22].

The boundary conditions at the horizon are again obtained by requiring regularity

of the solutions

− 3δR′(k, z = 1) = (1 + k2) δR(k, z = 1) δA(k, z = 1) = 0 (30)

One may understand this as a requirement that the excitation energy of the quasi-

particle over the ground state energy be finite.

In order to determine the boundary conditions to be imposed at the AdS boundary,

we again determine the behavior of the modes close to the boundary and require that

the corresponding “non-normalizable” modes are zero. This gives

δR(z = 0) = 0 δA(z = 0) = 0 (31)

We now solve the equations (29) subject to the above boundary condition as an

eigenvalue problem for M2 = −k2. For this value of k2 there will be a vanishing

eigenvalue for the linearized equations of motion, and hence a pole in the bulk to

boundary propagator. The resultant graph of quasiparticle mass vs. temperature is

shown in Fig. 16 along with the coherence lengths. It is interesting to note that for O2

the quasiparticle length scale tracks the soliton’s condensate length scale for µ

µc
< 1.2.

This is surprising in that one might have expected the lightest quasiparticle to follow

the largest length scale. This might be a sign that one should also include other fields

in the quasiparticle analysis (in the sense that one of the other fields has poles which

track the larger length scale). To date, our numerical accuracy is insufficient to see

if this is also true for O1.

5 Discussion

In this work, we have studied properties of one type of extended configuration allowed

in the holographic superfluids described in [6]. These superfluids support dark soliton
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Figure 16: Quasiparticle mass (magenta, dot-dashed) as a function of µ with ξ (blue)

and ξq (red, dashed)
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solutions which are characterized by a local depletion in the charge density. This paper

explored various features of these solitons as functions of the chemical potential and

condensate type using numerical simulations.

Although the system we actually solved is a Maxwell-Higgs system in the presence

of a black hole, the magic of the holographic AdS/CFT correspondence results in a

dark soliton with parallels to the soliton of the GP equation. In fact, we found that

the length scale associated with the soliton scales with the chemical potential as for

soliton of the GP equation.

However, we found that the variation in the order parameter occurs with a different

length scale than for the charge density. This is a feature for superfluids of both

〈O1〉 and 〈O2〉 types. The presence of these two length scales is a surprising result

which is not manifest in the original gravitational system nor was it predicted by

hydrodynamical studies.

A feature of these scales is that for the 〈O1〉 superfluid, the length scale associated

with the order parameter is larger than that associated with the total charge density.

As discussed in Section 4.2, this indicates an interesting spatial dependence of the

non-condensate fraction of the charge density. If we use the size of order parameter

as an indicator of the fraction of charge density which resides in the condensate itself,

we can conclude that the non-condensate fraction of the total charge density is over

dense near the dark soliton. For the 〈O2〉 superfluid, the relative size of the two length

scales is reversed and we find that the non-condensate fraction must be under dense

near the soliton core.

Spatial ordering in the components of the charge density will almost certainly

affect transport phenomena near the dark soliton. The presence of different spatial

orderings in the non-condensate charge density might allow one to test how the quasi-

particles see the condensate differently than the non-condensate matter, although it
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should be pointed out that the relative difference in the two length scales is small for

the chemical potentials discussed in this paper. This would be an interesting direction

to pursue in future work.

A second feature that we found is that, at finite temperature, the density deple-

tion in the core of the soliton is typically quite far from 100%. In this sense too,

the solitons of the GP equations are a bad guide. The actual value of the density

depletion fraction strongly depends upon the type of holographic superfluid studied.

For an 〈O1〉 condensate we find that the depletion fraction grows to near 100% for

low temperatures, whereas for an 〈O2〉 condensate the depletion fraction seems to

asymptote towards 40% for low temperatures.

These same gross features are known to exist in non-relativistic superfluids. In

the context of the BEC-BCS crossover, it is known that BEC dark solitons have near

100% depletion fractions, while BCS superfluids have depletion fractions less than

60% [20]. In that case, the difference is associated with the characteristic size of the

field which condenses. In the BEC regime it is a pointlike boson condensing while in

the BCS regime the condensate is comprised of large Cooper pairs.

It should be noted that in holographic superfluids, the precise microscopic de-

scription of the system is not known. In general, it may be expected that we can

construct both fermionic and bosonic quasiparticles. One could ask if an analogous

classification of the size of the quasiparticles (into tightly bound BEC atoms and

relatively large sized Cooper pairs) is possible in relativistic holographic superfluids.

Therefore, we could hope to realize features of both types of both BEC and BCS type

superfluids by tuning parameters of the gravitational description.

If we associate the depletion fraction of dark soliton with the scaling dimension of

the condensing operator, it is natural to imagine that one may change the depletion

fraction as one tunes the scalar mass in the gravitational action. In fact, in the works

of [16,23], the authors found a rich structure of ground states as the mass of the bulk

scalar varied away from L2m2 = −2. It would be quite interesting to explore how the

properties of the quasiparticles and solitons vary with m2 and whether one can find

a crossover analogous to what is found for non-relativisitc superfluids.

Of course, one of the important question to be answered before taking the analogy

to the BCS system seriously is whether there is a Fermi surface, or some aspect of

a Fermi surface in the dual system. There have been several explorations in this

regard and in fact, it has even been studied if one can realize a (non-)Fermi liquid

holographically [24–27,29, 30].

One potential shortcoming of our work is the fact that we do not have a smooth

limit to zero temperature. This is an artefact of the probe limit [31]. Therefore, a

numerically challenging problem which is potentially of much interest is to construct

the fully backreacted black hole with a dark soliton. Such a solution to the gravity

system would be very interesting in the sense that it would give this black hole rather

novel hair. For a recent discussion along this line see [32] (of course, in string theory
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contexts, such spatially inhomogeneous hair have a complex history).

We have observed (2.2) that the presence of the condensate perturbs the gauge

field background by little. Therefore, it might be interesting to explore a different per-

tubation expansion, by considering scalar fields in a charged black hole background.

This would amount to including the backreaction of the noncondensate part, and thus

correspond to an expansion in the superfluid density.

We also note that in recent works [33–35], several other extended solutions of

the gravitational system were studied. In these works, non-normalizable components

of some bulk fields were turned on and the solitons were then interpreted as being

vortices in a superconductor. In this sense, while these authors study the same set

of equations, their results are interpreted quite differently. In a subsequent work,

we will present numerical results about vortices in a supefluid. The main difference

with the previous work is the absence of any non-normalizable component to the bulk

magnetic field.

Finally, one would like to explore such phenomena in the context of non-relativistic

gauge gravity duals. In this way one might hope to model the experimentally observed

dark solitons much more closely.
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