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1

Introduction

Computationalism: ontological & instrumental. The physical sym-
bol system hypothesis. Implementation. Synopsis.

According to one basic tenet of classical cognitive science, cognition is com-

putation, in one sense or another. This thesis of computationalism, or the

computational theory of mind, comes in many flavours. Common to all these

views is the idea that there is a class of natural systems to which the predicate

‘cognitive’ may be applied, and that in this application the notion of compu-

tation is essential. Usually, the class is taken to consist of human beings, some

animals, and perhaps certain artefacts, such as sufficiently complex robots.

Where the views differ is the precise way in which computation is thought

essential to the ascription of cognitive states to a natural system. According to

the most extreme view, advocated by Chalmers (1994b, 397–398) for instance,

the aforementioned systems have minds in virtue of their implementing cer-

tain computations. Weakening down this claim a bit, we arrive at a position

according to which those systems have cognitive (but not necessarily other

mental) states by virtue of their implementing certain computations. Both

of these views may properly be called ontological : they make an ontological

statement, a statement about how things stand in the world as far as cognitive

phenomena are concerned. In other words, they are both forms of the“thesis of

computational sufficiency” (Chalmers 1994a, 2): implementing a computation

is considered sufficient for the possession of cognitive states or even for the

possession of subjective qualitative features of conscious experience, or qualia.

1
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In contrast to such views there stands a more modest claim, according to

which a computational description may be applied, or to some extent has to be

applied, to systems that are cognitive. According to proponents of this claim,

such as Marr (1977; 1982, 19–31), the notion of computation will figure, as one

component, in the explanation of any cognitive phenomenon. However, the

thesis of computational sufficiency is not—or need not be—endorsed. Merely

implementing a computation is not considered sufficient for the possession of

the cognitive process that the computation in question explains—more may be

required of the system, such as a suitable neurophysiological make-up. Theses

of this kind I shall call instrumental—they are roughly equivalent to what

Chalmers (1994a, 2) calls the “thesis of computational explanation”.

One well-known computational claim, falling perhaps closer to the onto-

logical end of the computationalist spectrum, is the physical symbol system

hypothesis of Newell and Simon (1976). According to this hypothesis, a system

has the “means for general intelligent action” if, and only if, it is a “physical

symbol system” (Newell & Simon 1976, 116). Being a physical symbol system,

in turn, amounts to implementing certain computations. Precisely speaking, a

physical symbol system is a system, obeying the laws of physics, that consists

of symbol structures and processes operating on those structures. Symbols

are “physical patterns” out of which more complex symbol structures may be

constructed; the processes produce from symbols and symbol structures new

symbols and structures. The symbol structures may refer to objects in the

world and even to symbol structures within the system itself. In a word, a

“physical symbol system is a machine that produces through time an evolving

collection of symbol structures” (Newell & Simon 1976, 116).

Judging by the above descriptions, the notion of physical symbol system

has not been too rigorously defined by Newell and Simon (but see Newell

1980). Moreover, although all of this is meant to connect nicely with physics,

the details of this connection are never actually supplied. Perhaps it was
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consideration of just such shortcomings that led Searle to pronounce that

another stylistic feature of this literature is the haste and sometimes

even carelessness with which the foundational questions are glossed over.

What exactly are the anatomical and physiological features of brains

that are being discussed? What exactly is a digital computer? And

how are the answers to these two questions supposed to connect? (Searle

1992, 204–205.)

However, Newell and Simon (1976, 116) did remark that the notion of phys-

ical symbol system “bears a strong family resemblance to all general purpose

computers”, and Newell (1980) in fact went on to define physical symbol sys-

tems as general-purpose machines. In that case, the rather imprecise notion

of physical symbol system may be dispensed with in favour of the notion of

an implemented general-purpose (i.e., Turing-equivalent, see Chapter 2, be-

low) computational structure. This move has decided advantages, since the

notion of computational structure is rigorously defined and well understood

within the mathematical theory of computation. Because of this, the notion

of an implemented computational structure can be considered an explicatum

(“that-which-explicates”; see Carnap 1958, 2) of the concept of physical symbol

system. The physical symbol system hypothesis may then be reformulated as

follows.

Hypothesis 1.1. A system has the means for general intelligent action if, and

only if, it implements a Turing-equivalent computational structure.

Alternatively, the strict demand on Turing-equivalence may be waived, in

which case we get the following formulation.

Hypothesis 1.2. There is a class of computational structures, Cog, such that

a system has the means for general intelligent action if, and only if, it imple-

ments some structure from class Cog. If a system implements a computational

structure from class Cog, the system is called a cognitive system.
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It is clear that the latter hypothesis explicates the notion of an ontological

computationalist thesis discussed above.

The move from physical symbol systems to implemented computational

structures leaves us with the notion of implementation, demanding expli-

cation in its own right. Computations are specified at an abstract level—

computational structures, such as Turing machines, are mathematical objects

existing per se in only the sense that mathematical objects exist. These struc-

tures are realised by being implemented in physical systems—but what, ex-

actly, does it mean for a computational structure to be implemented in a

physical system? Under what conditions are we allowed to say that a given

physical system implements some computational structure, hence computes?

This question of the implementation of computation went unexamined for

quite some time: it was tackled in a systematic manner for the first time by

Chalmers (1994a). In light of the computational theory of mind, the late arrival

of a theory of implementation is not surprising: a classical cognitive scientist

simply does not need to bother with the problem of implementation, usually.

If the mind is to the brain as the program is to the computer hardware, it

seems clear that the study of the mind is to a considerable extent independent

of the study of the brain—and the connection between the program and the

implementing medium is as uninteresting as are the details of the medium

itself. Seated in this functionalist ivory tower, the cognitive scientist need not

bother with the brain any more than the computer scientist needs to bother

with transistors or silicon chips (cf. Putnam 1960/1975, 372–373).

The question of the implementation of computation was not seriously posed

until critics of computationalism brought forward certain arguments according

to which very many physical systems implement very many computations.

Such arguments have been presented by Putnam (1988, 121–125) and, most

notably, Searle (1992, ch. 9).1 According to Searle (1992, ch. 9), any sufficiently

1For reasons of historical accuracy, it should be noted that Searle presented his argument
in Searle (1990) already. In what follows I shall adopt the practice of citing Searle (1992,
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large physical object may be seen to implement any computation of whatever

complexity. Thus, for example, the walls in Searle’s office implement his word-

processing program (Searle 1992, 208–209). Since the physical description of an

object underdetermines its computational description in this way, computation

is deemed observer-relative (Searle 1992, 211).

This argument, if sound, may have devastating consequences for computa-

tionalist claims of the ontological kind. If arbitrary physical systems may be

seen to implement arbitrarily complex computations, it seems problematic to

assert that a system is cognitive (let alone that it has a mind, with a subjective

point of view, a conscious experience, and so on) in virtue of its implementing

certain computations, for fear of panpsychism. The argument may strike a

blow against instrumental computationalism as well, since it effectively broad-

ens the domain of cognitive explanation to cover the whole of natural systems,

thus possibly trivialising the notion of cognitive explanation. The inevitable

conclusion, according to Searle (1992, ch. 9), is that computation cannot serve

a foundational role in cognitive science. Putnam’s (1988, 121–125) argument

is similar in nature, although it does not afford quite as dramatic a conclusion.

Naturally, the arguments of Putnam (1988, 121–125) and Searle (1992,

ch. 9) have not been spared from criticism. Here the trend has been to argue

that the notion of implementation, implicit in the arguments, is ill-conceived.

Thus, according to Chalmers (1994a; 1994b; 1996)2 and Copeland (1996),

computationalism can be rescued if a realistic definition of the implementation

of computation is given.

In this thesis, after presenting some mathematical preliminaries and both

Searle’s (1992, ch. 9) and Putnam’s (1988, 121–125) arguments (Chapters 2

& 3), I examine Chalmers’s (1994b) and Copeland’s (1996) suggestions in

ch. 9) consistently. The presentations in Searle (1990) and Searle (1992, ch. 9) are for all
practical concerns identical.

2As with Searle, Chalmers’s argument appears in more than one source, all identical in
content as far as the relevant definitions are concerned. In the following I shall usually cite
Chalmers (1994b).
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detail (Chapters 4 & 5). My goal is to show that both of these accounts

of implementation—while important milestones on the road toward a gen-

eral theory of implementation—are in some respects inadequate. Although

Chalmers (1994b) has been able to give a definition of the implementation

of finite automata, his extension of this definition to the case of so-called

combinatorial-state automata is unsuccessful. Moreover, I shall argue that

Chalmers’s (1994b) notion of physical system is too vague to support a rigor-

ous theory of implementation. The problems with Copeland’s (1996) account

are of a similar nature: they have to do mainly with the fact that several of

the concepts upon which the theory is built are inadequately precise.

In Chapter 6, I sketch an alternative account of implementation that at-

tempts to avoid these shortcomings. I propose a definition for the implementa-

tion of Turing machines in dynamical systems and point out that the definition

is strong enough to block Searle’s (1992, ch. 9) relativistic claim. There re-

mains a kernel of relativity in implementation nonetheless, since physical sys-

tems may not admit of a canonical interpretation, as will be seen in Chapter 7.

The conclusion is, firstly, that the implications of implementational relativity

for ontological computationalism are unclear, so that the former cannot be

used to decide the fate of the latter, and secondly, that instrumental computa-

tionalism remains unaffected by Putnam’s (1988, 121–125) and Searle’s (1992,

ch. 9) critiques. These observations motivate a closer examination of the role

of computation as an explanatory notion in cognitive science. I will argue that

the notion has much value if construed as an instrumental concept, but that

there is little point in construing it as a foundational notion (as construed by

Chalmers 1994a, for instance).
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Mathematical Preliminaries

Set-theoretical notation. Groups & actions. The finite transducer.
The Turing machine. The Church–Turing Thesis.

The technical nature of the issue at hand necessitates a mathematical mode

of presentation. Due to restrictions on space, it will not be possible to review

the necessary mathematics here very thoroughly, however. Accordingly, I shall

assume throughout the thesis that the reader is acquainted with basic concepts

of and results in näıve set theory, first-order predicate logic, abstract algebra,

metric topology, computability theory, and the theory of automata and formal

languages. In this brief chapter only the most crucial definitions, as well as

some notational conventions and two important lemmas, are introduced.

As regards notation, the set of natural numbers is written N and is taken

to include zero; Z is the set of integers. The set of positive integers will be

denoted by the symbol Z+; i.e., Z+ = {1, 2, 3, . . .}. For every n ∈ Z+, we define

the set Jn by putting Jn = {z ∈ Z+ | z ≤ n}. The set of real numbers is R;

real intervals are referred to using brackets, e.g., [0, 1[ = {x ∈ R | 0 ≤ x < 1}.

For ordered pairs and tuples in general, ordinary parentheses are used. The

cardinality of set A is denoted by |A|; thus, |{0, 1}| = 2, for example.

Functions, or mappings, are treated extensionally, as subsets of Cartesian

products. If f : A → B is a function and X ⊆ A, then the symbol f(X) stands

for the image of X in the function f ; i.e.,

f(X) = {b ∈ B | b = f(x) for some x ∈ X}.

7
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Set A is countable if there exists a one-to-one onto mapping (a bijection) f :

A → N for some N ⊆ N; otherwise, A is uncountable. If there exists a one-to-

one onto mapping f : A → N, then A is said to be countably infinite. For all

n ∈ Z+, the symbol An refers to the n-dimensional Cartesian product of A. In

other words,

An = {(a1, . . . , an) | ai ∈ A for all i ∈ Jn}.

We also stipulate that A0 = {∅}.

The symbol Aω denotes the countably infinite Cartesian product of A. This

is defined as the set

Aω = {f | f : N → A is a function and f(n) ∈ A for all n ∈ N}.1

An element of Aω (an ω-tuple) is thus a function. In what follows, such ele-

ments are loosely referred to using the notation

(f(0), f(1), f(2), . . .).

This notation will be found useful for such a function f whose values are

constant from some n ∈ N onwards.

The following two lemmas will be of use later on. The first one is too

straightforward to require demonstration. A proof of the second one is given

in Appendix A.

Lemma 2.1. Let n ∈ N and let A be a finite set. Then the Cartesian product

An is finite as well.

Lemma 2.2. Let A be a set, finite or infinite. Then A has at least two elements

if and only if the countably infinite Cartesian product Aω is infinite.

Let A and M be sets and let f : M → M and ∗ : A×A → A be mappings;

let us write a ∗ b for the image ∗ ((a, b)) of (a, b) ∈ A × A. If f is one-to-one

1For a motivation for this rather cumbersome definition, see, e.g., Abian (1965, 161).
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and onto, it is called a transformation of the set M . The pair (A, ∗) is a group

if the following three conditions are met:

(G1) for all a, b, c ∈ A, a ∗ (b ∗ c) = (a ∗ b) ∗ c,

(G2) there exists an e ∈ A such that for all a ∈ A, e ∗ a = a ∗ e = a,

(G3) for each a ∈ A there exists an a−1 ∈ A such that a ∗ a−1 = a−1 ∗ a = e.

A linearly ordered group is a triple (A, ∗, <), where (A, ∗) is a group and < is

a linear order on A (i.e., < ⊆ A × A is such a relation that for all a, b ∈ A,

exactly one of the conditions a < b, b < a, and a = b holds). An action of the

group (A, ∗) on the set M is a set of mappings {fa : M → M | a ∈ A}, where

each fa is a transformation of the set M satisfying the following conditions:

(A1) for all a, b ∈ A, fa∗b = fa ◦fb (where ◦ signifies functional composition),

(A2) for each a ∈ A, fa−1 = f−1
a (where f−1 is the inverse of f).

A partition of a set A is any collection B = {B | B ⊆ A} of subsets of A

such that

(P1) B 6= ∅ for all B ∈ B,

(P2) B ∩ C = ∅ for all B,C ∈ B with B 6= C,

(P3)
⋃

B∈B B = A.

It follows from these properties that if x ∈ A, then x ∈ B for exactly one

B ∈ B. This set B is called the equivalence class of x in the partition B; it is

denoted by [x]B.

An alphabet is any finite, non-empty set. The elements of an alphabet are

called symbols. A string is an ordered tuple of symbols drawn from an alphabet.

Precisely speaking, if Σ is an alphabet and n ∈ Z+, then (a1, . . . , an) is a

string if and only if ai ∈ Σ for all i ∈ Jn. The more concise notation a1 . . . an

is usually used for strings. Strings can be concatenated : if u = a1 . . . an and

w = b1 . . . bm are strings, then uw is defined as the string a1 . . . anb1 . . . bm. If a
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is a symbol and n ∈ Z+, the notation an is used to signify the string obtained

by concatenating a n − 1 times to itself; in other words, an = a1 . . . an, where

ai = a for all i ∈ Jn. There is a special string called the empty string ; it

is denoted by ǫ and defined by setting ǫ = ∅. This can also be thought to

represent the concept of ‘empty symbol’. Also, for every symbol a of any

alphabet we stipulate that a0 = ǫ. The set of strings it is possible to draw

from an alphabet Σ is denoted by Σ∗; this set is defined as Σ∗ =
⋃

i∈N Σi (note

that Σ0 = {∅} so that ǫ ∈ Σ0 and consequently ǫ ∈ Σ∗). A language is any

subset L ⊆ Σ∗.

Throughout the thesis, the term computational structure is taken to refer

to any structure defined in the theory of computation (computability theory).2

Important examples are the finite transducer and the Turing machine.

Definition 2.1. A finite transducer is a quintuple (Q, Σ, Γ, δ, q0), where

(i) Q is a finite, non-empty set (called the set of states),

(ii) Σ is an alphabet (the input alphabet),

(iii) Γ is an alphabet (the output alphabet),

(iv) δ : Q×(Σ∪{ǫ}) → Q×(Γ∪{ǫ}) is a mapping (the transition function),

(v) q0 ∈ Q (the initial state).

Given a string u ∈ Σ∗ as input, the finite transducer reads one symbol of u at

a time, transits from state to state, and emits symbols from Γ∪ {ǫ} as output,

as determined by its transition function δ. The emitted symbols form a string

w ∈ Γ∗, not necessarily unique, so that the machine computes a relation in

Σ∗ × Γ∗.

This definition of the finite transducer differs somewhat from the more com-

mon Moore machine and Mealy machine studied in the theory of automata

(see Hopcroft & Ullman 1979, 42–45), since empty input and output (so-called

2For an introduction to computability theory, see, e.g., Hopcroft and Ullman (1979).
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“ǫ-moves”) are allowed. This adjustment is done so that the automaton need

neither always have input in order to behave nor produce output on all of its

moves. It may be noted that the adjustment results in a kind of nondetermin-

ism, since the automaton may follow more than one trace of state transitions

for a given input string, and consequently may emit several different output

strings for one input string.3

Definition 2.2. A Turing machine is an abstract device with an infinitely

extended ‘tape’, divided into countably infinitely many squares, together with

a ‘scanner’ that moves along this tape, reading and writing symbols on it by

certain rules. As input the machine is given a string u drawn from some

alphabet Σ; u is placed on the tape so that each square of the tape is occupied

by exactly one symbol. The machine has a finite non-empty set Q of states

and an auxiliary alphabet Γ, which is disjoint from Σ. Also, Γ contains a

distinguished symbol B called the blank symbol; initially (before u is placed on

the tape of the machine), all the squares of the tape carry the blank symbol.

The rules by which the machine performs operations on the tape are embodied

in the transition function

δ : Q × (Σ ∪ Γ) → Q × (Σ ∪ Γ ∪ {L,R}),

which is a partial function undefined on a single state h ∈ Q for all a ∈ Σ ∪ Γ

and defined on all q ∈ Q r {h} for all a ∈ Σ ∪ Γ. The elements L and R

signify movement of the scanner one square left or right, respectively; the state

h is called the halting state of the machine. An element ((q, a), (q′, a′)) ∈ δ of

the transition function is to be interpreted as follows: if in state q and reading

3For a simple illustration of this nondeterminism, consider the simple one-state transducer
({q0}, {1}, {0, 1}, {((q0, 1), (q0, 0)), ((q0, ǫ), (q0, 1))}, q0), shown below as a directed graph (an
edge labelled x/y means that x is the symbol read and y the symbol emitted):

q0ǫ/1 1/0

It is easily seen that this machine, if given as input the string 1, gives as output the language
{1m01n | m,n ∈ N}. Therefore, if we denote the relation computed by this transducer by
R, then (1, w) ∈ R for all w ∈ {1m01n | m,n ∈ N}.
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symbol a, transit to state q′ and replace the symbol a with the symbol a′ (in

case a′ /∈ {L,R}) or move the scanner left or right (in case a′ ∈ {L,R}).

Note the difference between the blank symbol B and the empty string or sym-

bol ǫ. If an automaton prints B, it really prints something—a symbol that

represents that the place the symbol occupies is to be considered ‘empty’. If

an automaton ‘prints’ ǫ, it really does not print anything at all.

A computational structure C is called Turing-complete if every Turing-

computable function is C-computable (i.e., is computable by C).4 C is Turing-

equivalent if it is Turing-complete and if every C-computable function is Turing-

computable. If C is Turing-complete but not Turing-equivalent, it is called hy-

percomputational (for a survey of hypercomputational structures, see Copeland

2002). The classical view, implying that hypercomputational structures are

not to be considered genuinely computational (or effective), is embodied in the

Church–Turing Thesis (see Church 1936/1965, sect. 7; Turing 1936–7/1965,

sect. 9):

Hypothesis 2.1 (Church–Turing Thesis). Any effective, mechanical procedure

can be carried out by some Turing machine. Equivalently, any procedure of this

kind can be recursively defined.

4In the case of structures which compute relations instead of functions thanks to non-
determinism, we adopt the following convention: if C is such a (nondeterministic) structure
and R is the relation computed by C, then a function f is C-computable if and only if f ⊆ R.



3

Arguments for Universal Implementation

Searle’s Thesis & Putnam’s Realisation Theorem. The meaning of
these.

With his Chinese Room argument, Searle (1980) attempted to show that syn-

tactic symbol manipulation (i.e., computation) does not suffice for the posses-

sion of mental states, thereby undermining the aims of what he calls “strong

artificial intelligence” (in our terminology, a variant of ontological computa-

tionalism). According to this argument, the fact that some system implements

some computation goes no way toward guaranteeing that the system has in-

tentionality, understanding, and so on. Another way of expressing the matter

is the dictum “semantics is not intrinsic to syntax” (Searle 1992, 210).

By contrast, Searle’s (1992, ch. 9) newer argument aims to demonstrate

that “syntax is not intrinsic to physics” (Searle 1992, 210). In other words, the

physical description of a system underdetermines its computational descrip-

tion: for any system there exist multiple computational descriptions that are

in principle compatible with its physical description. In yet other words, com-

putation is“observer-relative”(Searle 1992, 211). There is no fact of the matter

as to which computation a physical system implements; it will implement any

computation we may wish it to implement, as long as it has sufficiently many

discriminable parts.

Here is Searle’s own statement of his claim:

For any program and for any sufficiently complex object, there is some

description of the object under which it is implementing the program.

13
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Thus for example the wall behind my back is right now implementing

the Wordstar program, because there is some pattern of molecule move-

ments that is isomorphic with the formal structure of Wordstar. But if

the wall is implementing Wordstar, then if it is a big enough wall it is

implementing any program, including any program implemented in the

brain. (Searle 1992, 208–209.)

I shall henceforth refer to this claim as Searle’s Thesis.

Hypothesis 3.1 (Searle’s Thesis). For any program and for any sufficiently

complex (physical) object, there is some description of the object under which

it is implementing the program.

Searle appears to think that his thesis is an analytical truth, given the

way we have defined computation: “[i]f computation is defined in terms of the

assignment of syntax, then everything would be a digital computer, because

any object whatever could have syntactical ascriptions made to it”, and “[t]he

ascription of syntactical properties is always relative to an agent or observer”

(Searle 1992, 207–208). The universality of the thesis is then claimed to follow

from the immensely complex microstructure of physical systems. The assertion

that any (sufficiently complex) object implements any program of arbitrary

complexity seems, nevertheless, prima facie incredible—at least as long as

we are not provided with a constructive method whereby to effect such an

implementation or ascription of syntactical properties. Fortunately, Putnam

(1988, 121–125) has attempted something of the kind, so let us next turn to

his argument.1

In thermodynamics, the concept of open system refers to a system that can

exchange both energy and mass with its surroundings. According to Putnam

1Later, in Chapter 5, I shall examine Copeland’s (1996) analysis of Searle’s Thesis, which
does give a kind of method by which to implement arbitrary computations in arbitrary
systems. In the course of that examination, it will also be seen that Searle’s formulation of
his thesis is not entirely unambiguous, a point which is important as far as the implications
of Searle’s Thesis for different varieties of computationalism are concerned. I shall defer
discussion of this point until Chapter 5, taking Searle’s formulation (Hypothesis 3.1) at face
value for the moment.
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(1988, 121–125), every ordinary open system implements every finite automa-

ton without input and output. This implementation result is put forward as

a theorem, and Putnam offers a detailed proof. The proof is based on a lib-

eral grouping of the states of the open system under consideration so that the

evolution of the system is seen to exactly mirror the state transitions of the

automaton, and as it stands, the proof seems to be sound. The result has

received much attention (Chalmers 1994a; 1994b; 1996; Chrisley 1994; Cocos

2002; Scheutz 1999; Shagrir 2005), so much so in fact that it has even been

entitled “Putnam’s Realization Theorem” (Scheutz 1999, 162).2

In its original formulation the theorem states that “[e]very ordinary open

system is a realization of every abstract finite automaton”(Putnam 1988, 121).

This formulation is unfortunate, however, since the theorem does not cover

automata with input or output. A more honest formulation would be the

following.

Theorem 3.1 (Putnam’s Realisation Theorem). Every ordinary open system

implements every finite automaton without input and output.

Moreover, Putnam never defines explicitly the notion of ‘finite automaton with-

out input and output’. However, it is clear from his writing that he has the

following in mind:

Definition 3.1. A finite automaton without input and output is a triple

(Q, δ, q0), where

(i) Q is a finite non-empty set (the set of states),

(ii) δ : Q → Q is a mapping (the transition function),

(iii) q0 ∈ Q (the initial state).

The astute reader will notice that this sort of structure is actually unknown

to the theory of computation. I will have more to say about this later. But

2In line with standard functionalist vocabulary, Putnam (1988, 121–125) uses the term
‘realisation’ rather than ‘implementation’, but here the two terms are synonymous.
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first, let us sketch a proof of Putnam’s theorem to get a firmer grasp of what

is being claimed.

The proof of the theorem relies on two physical principles, the “Principle of

Continuity” and the “Principle of Noncyclical Behaviour” (Putnam 1988, 121).

The former is needed to ensure that the state transitions of the open system

are causal, the latter to guarantee the universality of the claim. According to

the Principle of Continuity, “[t]he electromagnetic and gravitational fields are

continuous, except possibly at a finite or denumerably infinite set of points”

(Putnam 1988, 121); the principle is assumed to have the status of a physical

law. The Principle of Noncyclical Behaviour, on the other hand, states that

the gravitational and electromagnetic fields are noncyclical at each point of

the boundary of the open system and at every point of the system sufficiently

close to the boundary (Putnam 1988, 121). In particular, this implies that the

system is in different maximal states at different times: that states are not

repeated during the system’s evolution. The principle is justified as follows:

This principle will hold true of all systems that can ‘see’ (are not shielded

from electromagnetic and gravitational signals from) a clock. Since there

are natural clocks from which no ordinary open system is shielded, all

such systems satisfy this principle. (Putnam 1988, 121.)

Letting S stand for an open system, the maximal state of the system at

time t, written m(t), is defined as “the value of all the field parameters at all

the points inside the boundary of S at t” (Putnam 1988, 122). In other words,

m(t) is a complete specification of the values of all the relevant variables of the

system S at time t. Maximal states are points in the phase space of S, which

will be denoted by the letter M . The symbol B(t) will stand for the maximal

state of the boundary of S at time t.

In proving the theorem itself, an auxiliary result will be needed:

Lemma 3.1. For any time instant t, the maximal state m(t) is the only max-

imal state of S compatible with B(t).
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Given the Principle of Continuity, this result is intuitive—if the open system

is required to be continuous at its boundary, then only one boundary state will

be compatible with the system’s inside once the system’s maximal state has

been fixed. Proving the lemma in a rigorous manner is, however, tedious, and

the proof is therefore relegated to Appendix A.

With Lemma 3.1 in hand, the theorem itself can be shown as follows. (The

following proof is, in effect, a notational variant of that given by Putnam 1988,

121–125.)

Proof of Theorem 3.1. Let S be an ordinary open system with phase space

M ; let m(t) and B(t) be the maximal states of the system and its boundary,

respectively, at time t. Let A = (Q, δ, q0) be a finite automaton without input

and output, where Q is a non-empty finite set of states, q0 ∈ Q is the initial

state, and δ : Q → Q is the transition function. Since our proof is constructive,

we may without loss of generality take the set of states to be Q = {q0, q1}, and

the transition function to be δ = {(q0, q1), (q1, q0)}. The automaton we will

consider is, in other words, a simple two-state oscillator.

We need to show that the system S implements the automaton A—in other

words, to show that S oscillates between two states over any desired real-time

interval. Let I ⊆ R then be an arbitrary closed real interval. Suppose we wish

to implement n state transitions of A; we then partition I by letting

I = [t1, t2[ ∪ [t2, t3[ ∪ . . . ∪ [tn, tn+1[ ∪ {tn+1},

where t1 < t2 < . . . < tn+1. Next, for each subinterval [ti, ti+1[ of I we define

an interval state si by setting

si = {m(t) | t ∈ [ti, ti+1[}.

Thus, each si is a subset of M and the system S is in state si if and only if

it is in one of the maximal states it assumes during the subinterval [ti, ti+1[.
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It follows from the Principle of Noncyclical Behaviour that the interval states

are distinct, or precisely speaking that si 6= sj for all i, j ∈ Jn with i 6= j.

Let us finally define two states of the system S, α and β, as follows:

α =
⋃
{si | i ∈ Jn and i odd}, and

β =
⋃
{si | i ∈ Jn and i even}.

This completes the construction. The system S now oscillates between two

states α and β during the interval [t1, tn+1[, and the right endpoint can be

easily included if desired. Moreover, state α corresponds to state q0 of the

automaton A, while state β corresponds to automaton state q1.
3

It remains to be shown that the state transitions of the system are causal:

that being in state α during the subinterval [t1, t2[ causes S to assume state

β during [t2, t3[ (and similarly for the other transitions). For this, take any

t ∈ [t1, t2[. By Lemma 3.1, m(t) is then the only maximal state compatible

with B(t), the maximal state of the boundary of S at t. Therefore, given

the information that the system S was in state α at time t, the boundary

condition B(t), and other laws of nature, the mathematically omniscient demon

of Laplace can determine the subsequent evolution of S—particularly, that it

assumes state β over the next subinterval, [t2, t3[.

We have shown that the system S implements the automaton A, and since

the construction would apply to any finite automaton without input and output

(the construction made no essential use of the particular set Q and function

δ), we derive the theorem by universal generalisation. Q.E.D.

The first thing to note about Putnam’s Realisation Theorem is that it holds

for the peculiar class of finite automata without input and output only. In spite

of this, several authors have placed much importance on the theorem. Here is

3Note that it is essential here that the interval states si are distinct. Otherwise S might
transit through for instance the sequence of states α, α, β, α, β, . . . instead of the desired
sequence α, β, α, β, . . ..
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Chalmers’s description of the situation:

If this is right, a simple system such as a rock implements any au-

tomaton one might imagine. Together with the thesis of computational

sufficiency, this would imply that a rock has a mind, and possesses many

properties characteristic of human mentality. If Putnam’s result is cor-

rect, then, we must either embrace an extreme form of panpsychism

or reject the principle on which the hopes of artificial intelligence rest.

(Chalmers 1996, 309–310.)

This remark is all the more surprising when one considers Putnam’s own dis-

cussion of the theorem’s domain of application:

If a physical object does not have motor organs or sensors of the specified

kind, then, of course, it cannot be a model of a description which refers

to a kind of automaton which, ex hypothesi, possesses motor organs

and sensors of that kind. And even if it does possess such ‘inputs’ and

‘outputs’, it may behave in a way which violates predictions which follow

from the description (e.g., print two ‘1’s in a row when it is a theorem

that the machine with the given description never does this). So there

is no hope that the theorem just proved will also hold, unchanged, for

automata which have inputs and outputs which have been specified (or

at least constrained) in physical terms. (Putnam 1988, 124.)

For the purposes of cognitive science, in particular, this means that Putnam’s

theorem—its mathematical sophistication notwithstanding—may not be terri-

bly consequential as far as the various formulations of computationalism are

concerned. One would not expect the class Cog (see Hypothesis 1.2) to include

finite automata without input and output.

In spite of this, however, Putnam’s Realisation Theorem does motivate

a thorough analysis of the notion of implementation, since it may well be

possible to restrict the theorem in some way to cover more interesting kinds

of automata. Furthermore, the threat posed by Searle’s (1992, ch. 9) more
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general (albeit less precise) claim still exists. In fact, as we will see in Chapter

5, Copeland (1996) has been able to give a constructive version of Searle’s

Thesis, and his construction parallels that of Putnam (1988, 121–125) to some

extent. There exists, then, a genuine theoretical motivation for a general theory

of the implementation of computation, and it is to the attempts to formulate

such a theory, and to their criticism, that we now turn.



4

Implementation: Combinatorial-State Automata

Implementation as state-to-state correspondence. Limitations of
finite automata. The combinatorial-state automaton. Limitations
of the latter. Critique of Chalmers’s theory of implementation.

Both Searle’s Thesis and Putnam’s Realisation Theorem indicate that if the

notion of implementation is not fixed in place in a restrictive enough manner,

counter-intuitive or otherwise unwanted consequences follow. If we do not wish

every open system to implement every finite-state automaton (without input

and output), we need to flesh out our concept of implementation, or realisation,

so that unwanted instances are exempted. In short, we need to define under

which conditions a physical system can be said to implement a computational

structure.

According to Chalmers (1994b, 392), a“physical system implements a given

computation when the causal structure of the physical system mirrors the

formal structure of the computation”. Elaborating on this further, he writes:

A physical system implements a given computation when there exists a

grouping of physical states of the system into state-types and a one-to-

one mapping from formal states of the computation to physical state-

types, such that formal states related by an abstract state-transition

relation are mapped onto physical state-types related by a corresponding

causal state-transition relation. (Chalmers 1994b, 392.)

When this idea is explicated in the formalism of finite transducers, we have the

following definition (the notation used here differs somewhat from that used

21
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by Chalmers 1994b; a difference in notation, naturally, implies no difference in

content):

Definition 4.1 (Chalmers 1994b, 392–393). Let S be a physical system, and

let M be the set of physical state-types of S, I the set of inputs to S, and O the

set of outputs of S. We assume the sets I and O may contain ‘empty’ input

and output, that is to say, those situations in which S is not given input or

does not produce output. Let A = (Q, Σ, Γ, δ, q0) be a finite transducer. Then

the system S implements the automaton A if and only if there is a one-to-

one mapping ϕ : (Q × (Σ ∪ {ǫ})) × (Q × (Γ ∪ {ǫ})) → (M × I) × (M × O)

(the implementation mapping) such that for every pair ((q, a), (q′, b)) ∈ δ, the

following conditional holds: if S is in state-type m ∈ M and is receiving input

i ∈ I, and ϕ((q, a), (q′, b)) = ((m, i), (m′, o)) for some m′ ∈ M and o ∈ O, this

reliably causes S to enter state-type m′ and produce output o.

Even though the definition is a bit involved, one can see that it satisfies the

central requirement discussed in the above quotation: the formal state tran-

sitions of the automaton are precisely mirrored by the causal transitions of

the implementing system. What is more, according to Chalmers (1994b), the

definition evades Searle’s Thesis by requiring the causal transitions of the im-

plementing system to be ‘reliable’. It is not enough to just pick some states

of the system and group them together conveniently to form state-types so

that suitable causal connections may be established between the state-types

(cf. the procedure used in the proof of Putnam’s Realisation Theorem, pp. 17–

18, above); rather, “the connection between connected states must be reliable

or lawful, and not simply a matter of happenstance” (Chalmers 1996, 313). I

will have more to say about this feature of the definition a little later.

Reflecting on this definition, Chalmers notes that

the relation between an implemented computation and an implementing

system is one of isomorphism between the formal structure of the former

and the causal structure of the latter. In this way, we can see that as far
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as the theory of implementation is concerned, a computation is simply

an abstract specification of causal organization. (Chalmers 1994b, 396.)

As Scheutz (2001) has pointed out, however, this is not strictly true—the math-

ematical definition of isomorphism between two structures (see, e.g., Väänänen

1987, 78) demands more than is spelled out by Chalmers’s (1994b) definition

of implementation. In a word, while Definition 4.1 does guarantee that every

state transition of the implemented automaton is mirrored in the implement-

ing system, it does not guarantee that every causal transition of the system

is mirrored in the implemented automaton. According to Scheutz (2001), this

leads to certain difficulties: under Definition 4.1 a physical system will im-

plement certain computations that one would not naturally regard as being

implemented. Accordingly, he has adjusted Chalmers’s (1994b) definition so

that full isomorphism between the computation and the implementing sys-

tem is guaranteed, and has refined the analysis further with the concepts of

‘characteristic automaton’ and ‘bisimulation’. I shall not pursue this line of

development here, however, as I think there are other problems, to be spelled

out in a moment, with the Chalmersian account of implementation.

In a certain sense, finite automata are an inappropriate formalism for cogni-

tive science. Computationally speaking, finite automata are markedly inferior

to for example Turing machines. For instance, it is well-known that no finite

automaton accepts the language {anbn | n ∈ Z+},
1 although it is compara-

tively easy to design a Turing machine to do this, and although it is a trivial

task for most humans. This fact is very relevant to cognitive science, since

it is one of the reasons that led Chomsky (1956) to abandon finite automata

as a model of natural language. It thus seems that we need a definition of

the implementation of computational structures that exceed finite automata

in their computational power.

In the case of the finite transducer it was fairly clear how a definition of im-

1This can be shown using the “pumping lemma” (Hopcroft & Ullman 1979, 55–56).
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plementation might be attempted, and the analysis is easily adapted to other

kinds of finite automata. This has to do with the simplicity of the compu-

tational structure in question and, more importantly, with the fact that the

structure quite closely resembles the behaviour we usually ascribe to physical

systems—the causal structure of the system mirrors the formal structure of the

computation, as the slogan goes. But how would one go about defining imple-

mentation conditions for, say, Turing machines? Surely it is unreasonable to

suggest that each physical system implementing some Turing machine should

literally contain a tape with symbols on it and a scanner scuttling back and

forth—if only for the reason that in the mathematical structure, the length of

the tape is unbounded. In this case, a definition of implementation that relies

on the notion of isomorphism seems, at least prima facie, not quite up to the

task.

Chalmers (1994b) attempts to overcome this difficulty by introducing a

new computational structure, one he calls the combinatorial-state automa-

ton. The formalism of combinatorial-state automata is put forward as a gen-

eral solution to the riddle of implementation: “[t]he theory of implementa-

tion for combinatorial-state automata provides a basis for the theory of im-

plementation in general” (Chalmers 1994b, 396). This claim is based on the

Turing-completeness of the combinatorial-state automaton formalism. Unfor-

tunately, Chalmers’s definition of the class of combinatorial-state automata

(see Chalmers 1994b, 394) is not very rigorous. I shall presently formulate

a rigorous definition of the automata in question, the upshot of this under-

taking being that each combinatorial-state automaton is seen to be either a

finite automaton with limited computational power, or an infinite automa-

ton with hypercomputational power. I shall then argue that for this reason,

combinatorial-state automata cannot provide a basis for the theory of imple-

mentation in general.

Let us then take a look at Chalmers’s description of combinatorial-state
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automata in order to flesh out the details. According to Chalmers (1994b,

394), these automata differ from finite automata in that their states, inputs,

and outputs are not monadic labels, but tuples. In fact, Chalmers calls them

vectors—however, he does not define the required operations of vector addi-

tion and scalar multiplication in the case under consideration (which is not

surprising, for what should one take the sum of two states of a computational

structure to mean?).2 It seems that what Chalmers has in mind here is one

special case of the concept of vector space, the Euclidean space R
n. However,

he never takes advantage of this assumption of three vector spaces with all the

structure the vector space axioms guarantee them. Thus we may do away with

the assumption and treat the states, inputs, and outputs simply as tuples.

Continuing with the description, then, we learn that the input and output

tuples of a combinatorial-state automaton are finite in length, but the state

tuples may be infinite (Chalmers 1994b, 394). However, the elements of the

tuples are drawn, in each case, from a finite set. If the state tuples of a

combinatorial-state automaton are finite in length, the automaton is said to

be finite; otherwise, it is infinite (Chalmers 1994b, 394).

Formalising this a bit, we have first of all three finite sets, from among

whose elements the tuples are drawn. That is, we have first of all a set of

“substates” Q from which the state tuples are constructed. Letting Q̂ stand

for the set of state tuples, we thus have that either Q̂ ⊆ Qi for some i ∈ Z+

(in case the automaton in question is finite) or Q̂ ⊆ Qω (if the automaton is

infinite). The set of input tuples Σ̂ is similarly constructed from an alphabet

Σ; thus, Σ̂ ⊆ Σj for some j ∈ Z+ (since input tuples are stipulated to be finite).

The set of output tuples Γ̂ is defined analogously. Although Chalmers (1994b)

never states it explicitly, it seems that the sets Q̂, Σ̂ and Γ̂ are assumed to

be non-empty. Since nothing of interest arises from empty sets of states and

empty alphabets, we may indeed assume these sets to be non-empty.

2For the rather elaborate definition of vector space, see, e.g., Burton (1967, 249–250).
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Since the sets Q, Σ and Γ have been stipulated to be finite, the sets Qi, Σi

and Γi are also finite for any i ∈ Z+ by Lemma 2.1. Since Q̂ ⊆ Qi, Σ̂ ⊆ Σj and

Γ̂ ⊆ Γk for some i, j, k ∈ Z+ if the automaton is finite, it follows that the sets

Q̂, Σ̂ and Γ̂ are finite as well. Hence, in the case of a finite combinatorial-state

automaton, the sets of state, input, and output tuples are all finite. However,

if the automaton is infinite, then Q̂ ⊆ Qω, which does not guarantee that Q̂ is

finite—for, by Lemma 2.2, Qω is almost always infinite in this case (it is finite

only in the trivial case that Q is either empty or a singleton). In sum, the set

of state tuples Q̂ of a finite combinatorial-state automaton is necessarily finite,

whereas the Q̂ of an infinite combinatorial-state automaton may be either finite

or infinite.

How is the transition function of a combinatorial-state automaton defined?

Chalmers writes:

State-transition rules are determined by specifying, for each element of

the state-vector, a function by which its new state depends on the old

overall state-vector and input-vector, and the same for each element of

the output-vector. (Chalmers 1994b, 394.)

While this is not quite as formal as one would wish it to be, it seems that

Chalmers has the following in mind: the state transition function takes each

pair of state tuple and input tuple to some state tuple and some output tuple.

In other words, the function is a mapping from the Cartesian product of the set

of state tuples and the set of input tuples to the Cartesian product of the set of

state tuples and the set of output tuples. In symbols, the transition function of

a combinatorial-state automaton is a mapping δ : Q̂×(Σ̂∪{ǫ}) → Q̂×(Γ̂∪{ǫ}),

supposing we include ǫ-moves.3

Drawing these considerations together, then, we have the following

3To be precise, Chalmers writes in the above block quotation of two functions, one for
the state tuples and another for the output tuples—that is to say, of two functions of the
forms δ1 : Q̂× (Σ̂∪{ǫ}) → Q̂ and δ2 : Q̂× (Σ̂∪{ǫ}) → Γ̂∪{ǫ}. However, such two functions
can trivially be coalesced into one function, as I have chosen to do. This is simply a matter
of notational convenience.
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leviathan of a definition.

Definition 4.2. A combinatorial-state automaton is an octuple

(Q, Σ, Γ, Q̂, Σ̂, Γ̂, δ, q0), where

(i) Q is a finite, non-empty set;

(ii) Σ and Γ are alphabets;

(iii) either Q̂ ⊆ Qi for some i ∈ Z+, or Q̂ ⊆ Qω;

(iv) Σ̂ ⊆ Σj for some j ∈ Z+;

(v) Γ̂ ⊆ Γk for some k ∈ Z+;

(vi) Q̂, Σ̂, Γ̂ are non-empty;

(vii) δ : Q̂ × (Σ̂ ∪ {ǫ}) → Q̂ × (Γ̂ ∪ {ǫ}) is the transition function;

(viii) q0 ∈ Q̂ is the initial state tuple.

If Q̂ ⊆ Qi for some i ∈ Z+, the automaton is called finite; if Q̂ ⊆ Qω, the

automaton is infinite.

The next result follows at once:

Theorem 4.1. Any combinatorial-state automaton whose set of state tuples

is finite is a finite transducer. In other words, if C = (Q, Σ, Γ, Q̂, Σ̂, Γ̂, δ, q0) is

a combinatorial-state automaton and Q̂ is finite, then C′ = (Q̂, Σ̂, Γ̂, δ, q0) is a

finite transducer.

Proof. It is routine to check that conditions (i)–(v) of Definition 2.1 are true

of C′:

(i) By Definition 4.2, Q̂ is non-empty. By hypothesis, it is finite.

(ii) By Definition 4.2, Σ is finite. Hence, Σi is also finite for any i ∈ Z+

by Lemma 2.1, and since Σ̂ ⊆ Σi, we have that Σ̂ is finite. Also, Σ̂ is

non-empty by Definition 4.2. Therefore, Σ̂ is an alphabet.

(iii) An analogous argument shows that Γ̂ is an alphabet.
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(iv) δ : Q̂ × (Σ̂ ∪ {ǫ}) → Q̂ × (Γ̂ ∪ {ǫ}) by Definition 4.2.

(v) Again, q0 ∈ Q̂ by Definition 4.2. Q.E.D.

As a corollary to this theorem, we get a result noted also by Chalmers (1994b,

395):

Corollary. Every finite combinatorial-state automaton is a finite transducer.

Proof. As we have seen, the set of state tuples of a finite combinatorial-state

automaton is finite. Q.E.D.

Intuitively, Theorem 4.1 holds because the “combinatorial” nature of the

states of a combinatorial-state automaton is not actually made use of in the

computation; the state transitions are determined solely by the tuples, not

by the elements of the tuples. This is reminiscent of Fodor and Pylyshyn’s

(1988; see also Fodor & McLaughlin 1990) critique of such neural network

architectures whose operations are insensitive to the inner structure of their

representations. Constituent structures (such as trees in natural language syn-

tax) are an extremely powerful way of representing the structure of the world

but, if the processes of the cognitive system cannot operate on those structures,

the structures are rendered useless.

However, the above theorem has nothing to say about such combinatorial-

state automata whose set of state tuples is infinite. Thus, Chalmers’s (1994b,

395) claim for the Turing-completeness of combinatorial-state automata may

well hold for this kind of automata.

And it does—in fact, an even stronger result holds for infinite

combinatorial-state automata. Brown (2004) has pointed out (though not

proved) that these automata are in fact too effective: they exceed Turing

machines in their computational power. Both classically computable and clas-

sically uncomputable functions are computable by infinite combinatorial-state

automata, so that the formalism is hypercomputational. Here is one way of

demonstrating the matter.
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Theorem 4.2. For any function f : N → N, there exists an infinite

combinatorial-state automaton that computes f .

Proof. Let f : N → N be arbitrary; we show how to construct the desired

automaton C = (Q, Σ, Γ, Q̂, Σ̂, Γ̂, δ, q0). Let Q = {a, b, c}, Σ = Γ = {1}, and

Σ̂ = Σ1 = Σ and Γ̂ = Γ1 = Γ. We define three mappings q, r, s : N → Qω as

follows: for each n ∈ N, we put

q(n) = (a, a, . . . , a︸ ︷︷ ︸
n+1 times

, c, c, c, . . .),

r(n) = (b, b, . . . , b︸ ︷︷ ︸
n+1 times

, c, c, c, . . .),

s(n) = (c, c, . . . , c︸ ︷︷ ︸
n+1 times

, a, a, a, . . .).

Then q, r and s are obviously one-to-one and, moreover, the images q(N), r(N)

and s(N) are pairwise disjoint. We set Q̂ = q(N) ∪ r(N) ∪ s(N) and q0 = q(0).

Next, we define the transition function δ : Q̂ × (Σ̂ ∪ {ǫ}) → Q̂ × (Γ̂ ∪ {ǫ})

as follows: for each n ∈ N, we put






δ(q(n), ǫ) = (r(n), ǫ),

δ(q(n), 1) = (q(n + 1), ǫ),

δ(r(n), ǫ) = (s(f(n)), ǫ),

δ(r(n), 1) = (s(f(n)), ǫ),

δ(s(n), ǫ) = (s(n − 1), 1), if n > 0,

δ(s(n), 1) = (s(n − 1), 1), if n > 0,

δ(s(0), ǫ) = (s(0), ǫ),

δ(s(0), 1) = (s(0), ǫ).

This completes the construction.

C is given input as follows: each n ∈ N is coded as the string

un = 11 . . . 1︸ ︷︷ ︸
n times

.
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Then, as can be checked from the above definition of δ, given un as input, one

of the output strings emitted by C will be the string

uf(n) = 11 . . . 1︸ ︷︷ ︸
f(n) times

,

in other words, the code of f(n). Writing R for the relation computed by C,

we therefore have that {(un, uf(n)) | n ∈ N} ⊆ R, so that the function f is

C-computable. Q.E.D.

Corollary. The formalism of (infinite) combinatorial-state automata is hyper-

computational.

Whether this state of affairs counts as for or against the formalism of

combinatorial-state automata depends, of course, on one’s philosophical com-

mitments: on whether one is willing to include hypercomputational structures

among computational entities. However it be, there are independent reasons

for discrediting infinite combinatorial-state automata. Namely, I shall next

argue that such automata cannot be implemented, in the way pictured by

Chalmers (1994b), in any reasonable physical system.

To see this, let us consider the implementation conditions of combinatorial-

state automata envisaged by Chalmers (1994b). Essentially, the definition of

the implementation of a combinatorial-state automaton is to be analogous to

that of the implementation of a finite transducer. The implementing system

is to mirror in its structure and function the logical structure and state tran-

sitions of the automaton. Hence, in order that a physical system S implement

a given combinatorial-state automaton, there has to be a decomposition of

the system into states that correspond to the state tuples of the automaton

(Chalmers 1994b, 394). In other words, there has to be a set of states M of

the system S so that the elements of M stand in a one-to-one relation to the

tuples in the set of state tuples Q̂ of the automaton. If the combinatorial-state

automaton in question has a finite set of states, there is no problem in princi-
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ple. We simply find out whether it is possible to partition the physical system

so that the requisite number of states can be found, and so that the causal

transitions between these states mirror the abstract state-transition relations

of the automaton ‘reliably’.

But suppose the automaton we wish to implement has an infinite set of

state tuples. In this case, in order for the physical system S to implement

the automaton, it is necessary that the system’s state space be infinitely di-

visible. This is problematic, since it is highly unclear whether relevant state

spaces admit of such division without bound. For instance, as far as we know,

any given brain has only finitely many computationally relevant states—states

that matter from an information-processing point of view. Thus, it is unclear

whether combinatorial-state automata with an infinite set of state tuples are

in fact implementable in the physical systems cognitive science is interested in.

On the other hand, the fact that combinatorial-state automata with a finite

set of state tuples are implementable in principle in such systems is not of

much help, since we saw such automata to be nothing but finite transducers

(Theorem 4.1). It is therefore questionable whether “[t]he theory of imple-

mentation for combinatorial-state automata provides a basis for the theory of

implementation in general” (Chalmers 1994b, 396).4

Nor is this all. As we saw with Definition 4.1, Chalmers’s account of im-

plementation rests on a notion of ‘reliable causation’:

What is required is not just a mapping from states of the system onto

states of the [automaton . . . ]. The added requirement that the mapped

states must satisfy reliable state-transition rules is what does all the

work. (Chalmers 1994b, 396.)

While the requirement is perfectly intuitive, it suffers from a lack of rigour that

renders the theory less attractive than at first seemed. If all we can say of the

4As an interesting aside, we may note that Turing (1936–7/1965, 136) argued against an
infinite number of states in the context of computing machines on the grounds that if an
infinite number of states be allowed, “some of them will be ‘arbitrarily close’ and will be
confused”.
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implementation relation is that it needs to be one-to-one and ‘reliable’, how

much does this explicate and expand upon our pre-theoretic, intuitive notion

of implementation? The technical formalism of combinatorial-state automata

loses much of its appeal, and much of its utility, if the best we can do is conjoin

it with the untechnical, imprecise notion of ‘reliable causation’.

A further difficulty is generated by a relativity inherent in Chalmers’s def-

inition, as Scheutz (1999; 2001) has pointed out. Recall that the definition

requires, for an implementation relation to hold, that the states of the com-

putational structure be in a certain correspondence with “state-types” of the

physical system. But just what are these state-types, and how are they to be

individuated? Are they dictated to us by some physical theory? If so, what

is that theory? If not, we are free to define these state-types at will. And

while such a move may evade the Scylla of having to identify a physical theory

which can give us the “correct” state-types, it seems to drive us straight into

the Charybdis of Searle’s Thesis. I shall return to this topic in Chapter 7,

since it plagues other theories of implementation as well.

In conclusion, I list the following problems with Chalmers’s (1994b) account

of implementation. Firstly, the formalism of combinatorial-state automata,

at least in its present state, offers no improvement upon classical computa-

tional structures. Finite combinatorial-state automata are nothing but finite

transducers (Theorem 4.1); most infinite combinatorial-state automata are hy-

percomputational (Theorem 4.2) and possibly non-implementable. Secondly,

although Chalmers’s definition of implementation (Definition 4.1) seemingly

blocks Searle’s Thesis (and Putnam’s Realisation Theorem) by requiring the

causal transitions of the implementing system to be reliable, this notion of “re-

liable causation” is yet too underspecified and imprecise to support a general

theory of implementation. Finally, there is a problem with the individuation

of physical systems inherent in Chalmers’s account: how exactly is a physical

system to be divided into state-types?



5

Implementation: A Model-Theoretic Approach

Functions & algorithms. The model-theoretic view of implementa-
tion. Explication of Searle’s Thesis. The problem of vague notions.

The main problem with Definition 4.1 was its specificity to one computational

formalism, one that moreover seems inadequate for the purposes of cognitive

explanation. On the other hand, Chalmers’s (1994b) idea of a general theory

of implementation, to be couched in the formalism of combinatorial-state au-

tomata, was found wanting. Is there, then, any prospect of a general theory

of implementation?

One possibility is to abandon the notion of computation altogether and

explore the related question, “Under what conditions does a physical system

realise a given function?” This is the strategy adopted by Scheutz (1999),

and it has the advantage of abstracting away from the details of any specific

computational structure, thus seemingly offering a general definition of when a

system can be said to be embodying a function. However, for the purposes of

cognitive science, at least as classically conceived, this will not do. To abandon

computation in favour of functional realisation is to take a backward step from

computationalism to behaviourism.

To see this, we need only consider that to realise or embody a function, it

suffices for a physical system to get the input–output pairings, defined by the

function, right. To compute that function the system needs to do more, since

any computational structure specifies not just a function, but an algorithm

for arriving at the values of the (computable) function. By the same token, a

33
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physical system that implements some computational structure will not realise

the functions computed by the structure in just any old way—the system has

to, in one way or another, respect the algorithm by which the function is

computed by the computational structure.

Therefore, the notion of algorithm cannot be done away with. Let us now

turn to Copeland’s (1996) account of implementation, which respects this in-

tuition and builds upon the notion of computations as formal specifications of

algorithms. Copeland (1996, 337) notes that an algorithm is always specific

to some computational architecture: the algorithm calls for certain primitive

operations of the architecture that may not be available in another architec-

ture.1 On the other hand, it is possible to provide a formal specification of

any algorithm and the architecture that supports this algorithm. This formal

specification may be thought of as a set of axioms specifying the behaviour of

the architecture in question (Copeland 1996, 337–338).

In order that an entity can be said to compute it is first of all necessary

to “label” that entity (Copeland 1996, 338). A labelling scheme for an entity

is a “designation of certain parts of the entity as label-bearers” (Copeland

1996, 338). Moreover, it is required of the labelling that there be a “method

for specifying the label borne by each label-bearing part at any given time”

(Copeland 1996, 338). The purpose of the labelling scheme is to associate

parts of the entity with elements of the formal specification of the algorithm-

architecture pair. As such, the labelling scheme performs the same duty as the

implementation mapping ϕ of Definition 4.1.

Let f be a function and αf an algorithm that takes the arguments of f

as input and delivers the values of f as output (or, more generally, takes

encodings of the arguments of f as input and delivers encodings of the values

of f as output). Let S(A, αf ) be a formal specification of αf and its supporting

1Copeland (1996) uses the term ‘architecture’ in place of the term I have been using
throughout this thesis, ‘computational structure’. The terms are synonymous, and for the
purposes of the present chapter, I shall adopt Copeland’s terminology, using it side by side
with mine.
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architecture A. Let e be an entity and L a labelling scheme for that entity.

Then the ordered pair (e, L) is said to be a model of S(A, αf ) if and only if the

axioms of S(A, αf ) are true of e under the labelling L (Copeland 1996, 338).

With this notion in hand, we may define:

Definition 5.1 (Copeland 1996, 338). An entity e computes a function f

if and only if there exist a labelling scheme L for that entity and a formal

specification S(A, αf ) such that (e, L) is a model of S(A, αf ).

Note that this definition is perfectly general: no restrictions are placed on

the nature of the entity e. The conditions for when a physical system is com-

puting a given function are thus couched in a general account of computation.

The sense in which a computational structure (such as a Turing machine)

computes differs, however, from the sense in which a physical object (such

as a desktop computer) computes. The former computes by virtue of being

a computational structure—in fact, ‘computation’ itself is defined relative to

computational structures. The latter, in contrast, computes by virtue of being

a model—under some or other labelling scheme—of a computational structure.

Thus, computation within A must not be confounded with computation within

e; the word ‘computation’ is being used homonymously.

More importantly, however, the definition is general in the sense that it is

not specific to any computational structure, such as the finite transducer or

the Turing machine. It is because of this universality that the definition may

be considered a general definition of implementation.

Despite this generality, and despite its intuitive appeal, Definition 5.1 will

however not do, according to Copeland (1996). The problem is that the def-

inition is open to Searle’s Thesis. Here it is cast in the terms of the present

account of implementation, and in Copeland’s (1996) notation:

For any entity x (with a sufficiently large number of discriminable parts)

and for any architecture-algorithm specification y there exists a labelling

scheme L such that 〈x, L〉 is a model of y. (Copeland 1996, 343.)
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We need to be careful here to interpret the small print, “with a sufficiently

large number of discriminable parts”, the right way. Two interpretations, in

fact, suggest themselves. On one, Searle’s Thesis is taken to claim that there

is some preset number p of discriminable parts that it suffices for an entity

to have in order for it to model any formal specification whatsoever—in other

words, to implement each and every computation. On another, Searle’s Thesis

is taken to claim that for each formal specification there exists a number p of

discriminable parts that it suffices for an entity to have in order to model this

specification. Thus, the order of quantifiers varies, as can be readily seen in

the following explications of these two interpretations:

Hypothesis 5.1 (Searle’s Thesis, First Interpretation). There is a p ∈ Z+

such that: for any entity e with at least p discriminable parts, for any

architecture-algorithm specification S(A, αf ), there is a labelling scheme L such

that (e, L) is a model of S(A, αf ).

Hypothesis 5.2 (Searle’s Thesis, Second Interpretation). For any finite

architecture-algorithm specification S(A, αf ), for any entity e, there is a p ∈ Z+

such that: if e has at least p discriminable parts, then there is a labelling L of

e such that (e, L) is a model of S(A, αf ).

In Hypothesis 5.2, I have added the requirement that the architecture-

algorithm specification must be finite; the reason for this adjustment will be-

come evident shortly.

It is unclear which of these interpretations Copeland (1996) has in mind.2

However, it is easy to show that, on the first interpretation (Hypothesis 5.1),

Searle’s Thesis does not hold. On the second interpretation (Hypothesis 5.2),

on the other hand, the thesis does hold, and consequently becomes a theorem

of Copeland’s account of implementation. Indeed, Copeland (1996, 339) calls

2The same goes for Searle—cf. his original formulation of his thesis: “[f]or any program
and for any sufficiently complex object, there is some description of the object under which
it is implementing the program” (Searle 1992, 208). Again, it is hard to tell the order of the
quantifiers in this statement.
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the result “Searle’s Theorem”, and gives a rather thorough proof (Copeland

1996, 343–346). Without going into its intricate details, I shall next recount

the essentials of Copeland’s proof in order to establish the truth of Hypothesis

5.2, on the one hand, and the falsity of Hypothesis 5.1, on the other.

The proof proceeds from consideration of an example of a formal specifica-

tion, that of a very simple register machine M , and a sufficiently large entity e,

namely, one of the walls in Searle’s office. The architecture of M is as follows.

It consists of three 8-bit registers: an instruction register I, a data buffer D,

and an accumulator A. That is to say, any one of these registers is capable

of containing a representation of an 8-bit binary number, such as 00000010.

Like any computational structure, M has some primitive operations, such as

adding the contents of D to the contents of A and storing the result in A. The

operation to be performed is determined by the contents of the instruction reg-

ister I. The formal specification S(M,αf ) of M , where f is the function under

consideration and αf its associated algorithm, is then a finite set of axioms of

the form “if the contents of I are such-and-such, ACTION-IS(I,D,A)”, where

ACTION-IS(I,D,A) specifies the action to be taken by the machine—what to

do with its registers (Copeland 1996, 341).

Copeland then proceeds to show how it is possible to give a labelling of the

wall so that the wall is a model of S(M,αf ) under this labelling. The labelling

itself hinges upon a procedure Copeland (1996, 344) calls “Searlification”. This

consists in picking out regions of the wall to represent 8-bit binary numbers in

a convenient manner so that the axioms of S(M,αf ) can be seen to be true of

the wall under this labelling. Since the microstructure of a wall is constantly

evolving, there is no hope of carving out fixed regions of the wall to represent

the registers of M in a time-invariant way; rather, the locus of a register-label in

the wall may change as the computation proceeds. Copeland then shows that

the axioms of S(M,αf ), when interpreted as material implications quantified

over any desired time interval, are true of the wall under such a Searlified
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labelling. I shall not recite the details of this process here; the interested

reader may find them in Copeland (1996, 343–346).

With the procedure of Searlification, the axioms of the particular

architecture-algorithm specification S(M,αf ) are seen to be true of Searle’s

wall e. The truth of Hypothesis 5.2 then follows by universal generalisation,

since a similar procedure of Searlification could be applied to any specification

and any entity (Copeland 1996, 343). Hypothesis 5.2 becomes Theorem 5.1:

Theorem 5.1. For any finite architecture-algorithm specification S(A, αf ),

for any entity e, there is a p ∈ Z+ such that: if e has at least p discriminable

parts, then there is a labelling L of e such that (e, L) is a model of S(A, αf ).

I shall return to an examination of the consequences of this result in a moment.

First, however, let us see why Copeland’s argument is insufficient to derive

Hypothesis 5.1, the stronger interpretation of Searle’s Thesis.

To see this, we need only take heed of the fact that according to Hypoth-

esis 5.1, there is a certain preset number p ∈ Z+ of parts that it suffices for

an entity to have in order to constitute a model of any formal specification

S(A, αf ), under some labelling. But now, however large this p may be, it is

possible to define an architecture A′ and an algorithm α′

f in such a way that

the architecture-algorithm specification S(A′, α′

f ) requires p′ parts of an en-

tity, with p′ > p, if that entity is to constitute a model of S(A′, α′

f ), under

any labelling. For instance, if A is a register machine, we may simply define

the machine A′ to have registers that can store so large binary numbers that

no entity with exactly p or less parts could be a model of S(A′, α′

f ) under

any Searlified labelling. This possibility is afforded by the fact that the set of

natural numbers is not bounded from above; there is no greatest number; for

any number, we can find one that is even greater. It is then not true that any

entity with p discriminable parts will be a model of S(A′, α′

f ) under a Searlified

labelling L. Hence, Hypothesis 5.1 fails. The above reasoning also establishes

why Hypothesis 5.2 (or Theorem 5.1) requires the architecture-algorithm spec-
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ification to be finite. If infinite registers, for instance, were allowed, then it

would not be possible to establish a fixed number p ∈ Z+ of discriminable

parts it would suffice an entity to have in order to constitute a model of the

specification.3

How about Theorem 5.1, then? Although much weaker than Hypothesis

5.1, it is still strong enough to be unsettling to the computationalist. Accord-

ing to a computationalist of the ontological variety, there are computations

whose implementation guarantees the possession of cognitive (or other men-

tal) states. By Theorem 5.1, it follows that merely possessing sufficiently many

discriminable parts suffices for the possession of mental states.4 So, at least by

the computationalist’s lights, Definition 5.1 is unsatisfactory. Why exactly?

In Copeland’s (1996) diagnosis, the Searlified labelling scheme used in proving

Theorem 5.1 constitutes a nonstandard interpretation. Accordingly, he pro-

poses to modify the definition so that only standard, or “honest”, models are

accepted:

Definition 5.2 (Copeland 1996, 348). An entity e computes a function f

if and only if there exist a labelling scheme L for that entity and a formal

specification S(A, αf ) such that (e, L) is an honest model of S(A, αf ).

What, then, does standardness or honesty consist in? Copeland proposes

two criteria: “[f]irst, the labelling scheme must not be ex post facto”, and

“[s]econd, the interpretation associated with the model must secure the truth

of appropriate counterfactuals concerning the machine’s behaviour” (Copeland

1996, 350–351).

As to the first criterion, recall that the labelling used in proving Theo-

rem 5.1 was constructed, by the procedure of Searlification, after the formal

3It is true, though, that this problem may be sidestepped by assuming physical space
to be infinitely divisible (i.e., divisible without bound). However, I shall here assume, with
Turing (see footnote 4, p. 31, above), that infinite divisibility implies, if nothing else, at least
a topological inconvenience.

4I assume the class Cog (see Hypothesis 1.2) to include such structures whose formal
specifications are finite, so that Theorem 5.1 applies. This assumption will hardly be denied
by anyone, seeing that a Turing machine, whose tape has been truncated to a length k, can
be finitely specified for any arbitrarily large k ∈ N.
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specification of the architecture-algorithm pair S(M,αf ) had been fixed. This

method parallels the construction used in proving Putnam’s Realisation The-

orem, in which the states α and β of the open system were defined after a

particular automaton had been fixed (see pp. 17–18, above). Copeland (1996,

348) expresses the point rather eloquently: “all the computational activity

occurred outside the wall”. Apparently, a non ex post facto labelling (or

definition of system states) would then be one defined independently of the

architecture-algorithm specification (or computation) in question.

As to the second criterion, Copeland (1996, 349–350) stresses the point

that, in the case of his register machine M , the procedure of Searlification

proceeded by interpreting the axioms of S(M,αf ) as material implications.

However, the ACTION-IS statements of S(M,αf ) are supposed to support

suitable counterfactuals concerning the machine’s behaviour (Copeland 1996,

341–342). When interpreted as material implications with the procedure of

Searlification, the statements lose their counterfactual-supporting force. For

example, since any material implication with a false antecedent is true, a whole

host of such implications are true of Searle’s office wall, but none of these

conditionals give any “guidance as to how M is designed to behave” (Copeland

1996, 342). An honest or standard interpretation of S(M,αf ), in contrast to

a Searlified one, would have support the necessary counterfactuals (whatever

they be). As an analogue of Searlified labellings, Copeland (1996, 347–348)

cites the model-theoretic Löwenheim–Skolem Theorem, from which the prima

facie paradoxical situation follows that the statement “|N| < |R|” is true in a

model which includes only natural numbers and sets of natural numbers. He

points out that in the nonstandard model the statement, while true, is not

about real numbers in the way it is about them if considered in a standard

model that includes real numbers. Similarly, while the axioms of S(M,αf ) are

true of Searle’s wall, this fact

goes no way toward showing that the wall acted in accordance with the



5 Implementation: A Model-Theoretic Approach 41

instructions in the algorithm. The wall so acted only if the referent of

‘R’ in Skolem’s countable model is uncountable! (Copeland 1996, 348.)

While this is all very well, the suggestion that an honest model of a comput-

ing machine must “secure the truth of appropriate counterfactuals concerning

the machine’s behaviour” (Copeland 1996, 350–351) is, at the end of the day,

quite vague. What we need is a general formulation of this requirement for all

types of entity and all types of architecture-algorithm specification, but as far

as I can see, Copeland has not provided such a general formulation. Similar

remarks apply to the notions of ‘entity’ and ‘formal specification’. They pur-

port to offer a general analysis of implementation, but their generality comes

at the expense of rigour and precision. However, if we are to tackle the issue

of implementation, and find out whether implementation of computation is

observer-relative or not, we need a theory which is both general and exact, so

that the discussion may proceed on clear terms. In the next chapter, I shall

sketch an account of implementation that tries to avoid these problems caused

by intuitive yet imprecise notions, by replacing those notions with other, pre-

cise (yet hopefully none the less intuitive) notions. The driving idea will still

be to construe implementation as a model-theoretic relation; however, my goal

is to give a definition of the standardness of interpretation that does not rely

on counterfactuals.
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Implementation: Dynamical Systems

Classicism, connectionism, & dynamicism. Definition of the imple-
mentation of Turing machines in dynamical systems. Demonstra-
tion that the definition does not imply Searle’s Thesis. Discussion
of the definition.

At this point, our quest for a definition of implementation has become more

philosophical than cognitive-scientific. Starting with rather innocent notions

from the theory of automata and computation, we have been led to ponder

divisibility issues and the peculiarities of the infinite—classical metaphysical

riddles already tackled by the philosophically minded Greeks. From an aporia

such as this it is natural to seek a way out. In this chapter, I propose to do

away with the problematic notion of ‘physical system’, giving a definition of the

implementation of Turing machines in dynamical systems. I shall demonstrate

that the new definition does not imply Searle’s Thesis, although it may still

imply weaker kinds of relativistic claims.

It has become customary to distinguish three paradigms within contempo-

rary cognitive science: classicism, connectionism, and dynamicism. Classicism,

standing on the foundation provided by computationalism, assumes that the

most fruitful way of explaining cognitive phenomena is to explain them using

symbolic computational frameworks—at the end of the day, a classicist ex-

planation of a cognitive phenomenon amounts to picking out, among all the

structures of the class Cog (see Hypothesis 1.2), the one that correctly mir-

rors the phenomenon in question. To this style of explanation the connectionist
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paradigm is much opposed, devising as it does cognitive models inspired by

neuroscience. The more recent dynamicist paradigm (e.g., van Gelder 1998)

relies on the concept of dynamical system as the proper explanatory framework

for the study of cognition.

As far as sundry details and minutiae are concerned, the three paradigms

often seem opposed to each other—the infamous debate between Smolensky

(1988) and Fodor and McLaughlin (1990) is a case in point. At bottom, how-

ever, the paradigms share many assumptions. For one, each paradigm is com-

mitted to mechanism, the belief that the mind is a mechanical device whose

operations can be explained by mechanical laws of one form or another. More-

over, the oft-quoted difference between classicism and connectionism, that arti-

ficial neural networks are not Turing-equivalent, is simply false (see Siegelmann

& Sontag 1995). Thus, even though at surface the three paradigms are much

unlike one another, at bottom they agree to a great extent. One of the aims

of the present chapter is to show how the dynamicist and classicist paradigms

can be brought to bear on each other.

Perhaps the most important single fact concerning Turing machines is that

they are syntactic beings: as Fodor and Pylyshyn (1988) have stressed, the

strings with which a Turing machine operates have the potential of having an

inner structure to which the machine’s operations are sensitive. I shall now

sketch a theory that attempts to show how this syntactic nature of classical

computing machines can be recast in terms of dynamical systems theory. The

outcome is an account of implementation that hopefully avoids the problems I

have previously identified with the Chalmersian and Copelandian positions. In

this undertaking, I propose to replace the vague notions of ‘physical system’

and of ‘entity’ with the precise notion of dynamical system, and the notion

of ‘formal specification’ with the concept of Turing machine. These choices,

naturally, restrict the resulting analysis in certain ways; their justification lies

in their facilitating discussion in precise, unambiguous terms. The account
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to be sketched gives, moreover, a rigorous definition for the standardness of

interpretation, something that was found lacking in Copeland’s (1996) theory

of implementation.

The concept of dynamical system embodies the notion of a system, capable

of assuming several different states, evolving over time. In its most general

formulation, a dynamical system consists of a phase space together with an

action of a group on this space (see, e.g., Arnol’d 1992, 13–16, 57–61):

Definition 6.1. A dynamical system is a triple (M, (T, +, <), {ft}) (or

(M,T, {ft}) for short), where M is a set, (T, +, <) is a linearly ordered group,

and {ft} = {ft is a transformation of M | t ∈ T} is an action of (T, +, <) on

M .

The set M is the phase space of the system. For each t ∈ T , the action of the

group (T, +, <) defines a transformation ft : M → M of the phase space M ;

for any m ∈ M , ft(m) is the state of the system at time t, with initial state

m. A dynamical system will be called noncyclical, if ft(m) 6= fu(m) for all

m ∈ M and t, u ∈ T with t 6= u. If a dynamical system is not noncyclical, it is

called cyclical. Any subset F ⊆ M is called a phase. The trajectory of a point

m ∈ M in phase space is the set ξ(m) = {ft(m) | t ∈ T}.

Note that by this definition, the phase space of a dynamical system need

not be a metric space or even a topological space—indeed, it needs be only a

set. For most systems of interest, the phase space of course has a metric struc-

ture, often Euclidean. Moreover, time in these systems is usually represented

by the group of real numbers, rather than by any arbitrary linearly ordered

group. As van Gelder (1998) has argued, such systems are of great interest

to cognitive science primarily for two reasons. Firstly, they allow us to make

quantitative statements concerning the relations between their states, thanks

to their metrics. Secondly, they capture the dynamic “flow” of time, thanks

to time being represented by the reals—thereby forcing us to focus our atten-

tion on the nature of state transitions, rather than on the nature of the states
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themselves. Such dynamical systems, when taken as explanations or models of

cognitive phenomena, stand in opposition to classical Turing-machine explana-

tions in both these respects. However, as I shall next argue, the two paradigms

do have a common ground, or an interface, since Turing machines can readily

be conceived as dynamical systems.

Let D = (M, (T, +, <), {ft}), then, be a dynamical system. In order that D

can be seen to implement a computational structure, it has to be “discretised”

in one way or another. Strictly speaking, such a procedure is only needed if M

is uncountable, but in the case of systems with a countable phase space we may

always take the operation of discretisation to be the identity mapping. Note

that a sort of discretisation was performed in the proof of Putnam’s Realisation

Theorem when the interval states were defined; what follows is, in effect, an

extension of this Putnamian procedure, or “Putnamification”.

Any countable partition F of the phase space M will be called a grouping

of D. A grouping forms the basis for the procedure of discretising D: it will

function as the phase space of the resulting discrete system. The next step is to

define an action {gt} of the group (T, +, <) on this phase space. In order that

the resulting discrete system can be called a discretisation of D, we need to

ensure that the evolution of the former honours or mirrors that of the latter;

we need to define the transformations gt : F → F in a ‘natural’ way. This

corresponds to defining the gt so that the discrete process is in state [m]F at

time t exactly when D is in state m at time t. Setting gt([m]F) = [ft(m)]F for

all t ∈ T and for all m ∈ M gives the desired result.1

Putting all this together, now, we have the following definition.

Definition 6.2. The discretisation of a dynamical system D = (M,T, {ft}) by

its grouping F, written D|F, is the triple (F, T, {gt}), where {gt} is an action

1Note that [m]F ranges over all sets F ∈ F as m ranges over the phase space M .
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of (T, +, <) on F defined as follows: for each t ∈ T and m ∈ M ,

gt([m]F) = [ft(m)]F. (∗)

Figuratively speaking, the procedure of discretisation prepares the system un-

der consideration for purposes of syntactic interpretation. Hence, the operation

could also be described as the ‘syntactification’ of the system.

Consider next a Turing machine M. At any step of its computation, the

contents of the machine’s tape can be described as an infinite sequence

. . . , x−2, x−1, x0, x1, x2, . . .

of symbols, the tape squares being indexed by the integers. Since only a finite

number of computation steps have elapsed since the computation commenced,

all tape symbols are blank from some square onwards, in both directions.

Formally speaking, there exist nB,mB ∈ Z such that for all n ∈ Z, if n > nB

or n < mB, then xn = B.2 The squares with n > nB or n < mB are then

irrelevant as far as the machine’s present configuration is concerned. Hence,

the total configuration of the machine is represented by a finite tuple of the

form

(xmB
, xmB+1, . . . , xk−1, q, xk, xk+1, . . . , xnB−1, xnB

),

where q is the current state of the machine and xk is the symbol currently in the

scanner. Following Turing (1936–7/1965, 118), I shall call a description of this

kind a complete configuration of M.3 The complete configuration is a function

of the input string given to the machine and the current step of computation;

the complete configuration of M at step s ∈ N with input w ∈ Σ∗ will be

denoted by the expression Cw,s. Note that Cw,0 = (q, x0, x1, . . . , xn), where

2Recall that the letter B is used to signify the blank symbol. For other notational
conventions, consult Definition 2.2.

3Another term that appears in the literature is ‘instantaneous description’ (see, e.g.,
Hopcroft & Ullman 1979, 148).
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x0x1 . . . xn = w.

The set of complete configurations of M will be denoted by C(M); thus

C(M) = {Cw,s | w ∈ Σ∗, s ∈ N}. (In the case of halting machines, we adopt

the convention that if the machine goes into the halting state at computation

step sh, then Cw,s is constant for all s > sh.) If Cw,s ∈ C(M) and n ∈ N, then

cn(Cw,s) denotes the unique complete configuration Cw,s+n.

The idea now is to map the complete configurations of M to states of a

discretisation D|F of the dynamical system D, and to map system-time to

discrete machine-time.

Definition 6.3. Let M be a Turing machine and D|F = (F, T, {gt}) a discreti-

sation of a dynamical system D. An interpretation of M is any pair (ϕ, τ) of

mappings ϕ : C(M) → F and τ : T → N.

For the standardness of interpretation I propose the following criterion, or

definition:

Definition 6.4. An interpretation (ϕ, τ) of M is standard if the following

conditions are met:

(i) ϕ is one-to-one,

(ii) for all t ∈ T and for all C,D ∈ C(M),

ϕ(C) = gt(ϕ(D)) if and only if C = cτ(t)(D).

Standardness, then, consists in a sort of homomorphism between the discreti-

sation and the Turing machine. Condition (i) states that the interpretation is

not haphazard, in the sense that distinct complete configurations are required

to map to distinct states of the discretisation. Condition (ii), in turn, asserts

that the evolution of M mirrors the evolution of D|F, and vice versa.

If the pair (ϕ, τ) is a standard interpretation, D|F is said to be a model

of M, written D|F |= M. The present account of implementation is then

summarised by the next definition.



6 Implementation: Dynamical Systems 48

Definition 6.5. Let D be a dynamical system and let M be a Turing machine.

Then D implements M if and only if there exists a grouping F of D so that

D|F |= M.

In the general case, Definition 6.5 does not support Searle’s Thesis. To

see this, consider the following reductio. Take a stationary system D =

(M,T, {ft}), that is, a system for which ft(m) = m for all m ∈ M , t ∈ T .

Let F be any grouping of D and consider the discretisation D|F = (F, T, {gt}).

Since D is stationary, it follows from condition (∗) of Definition 6.2 that D|F

is stationary as well. Next, take a Turing machine M, with input alphabet

Σ = {0, 1}, that replaces all occurrences of 0 with 1 and all occurrences of 1

with 0. We may define a machine of this kind so that it satisfies the condition

Cw,0 6= Cw,1 for all w ∈ Σ∗. Next, consider an interpretation (ϕ, τ) of M;

suppose it is standard. Since Cw,0 6= Cw,1, it follows by condition (i) of Defi-

nition 6.4 that ϕ(Cw,0) 6= ϕ(Cw,1). On the other hand, since Cw,1 = c1(Cw,0),

it follows by condition (ii) of said definition that ϕ(Cw,1) = gτ−1(1)(ϕ(Cw,0)).

Putting these together, we have that gτ−1(1)(ϕ(Cw,0)) 6= ϕ(Cw,0). In other

words, D|F is not stationary—a contradiction—and we have the following re-

sult:

Observation 6.1. Definition 6.5 does not imply Searle’s Thesis.

This counter-example demonstrates the way conditions (i) and (ii) of Defi-

nition 6.4 work together to ensure that not everything implements every com-

putation. The implementing system has to reflect the structure and evolu-

tion of the system implemented. Of course, it may still be possible to derive

counter-intuitive results from this definition, in which case the definition is to

be modified or altogether rejected. This is however not the place for a thor-

ough study of the theorems Definitions 6.4 and 6.5 derive or fail to derive.

For present purposes it is most important that the definitions do not derive

Searle’s Thesis in its most universal formulation, and that they offer a starting

point from which to develop the theory further.



6 Implementation: Dynamical Systems 49

For purposes of illustration, though, consider the following. One might

be tempted to attempt a generalisation of Putnam’s Realisation Theorem by

mapping the initial complete configurations Cw,0 of a Turing machine M to

points of the phase space of a dynamical system D = (M,T, {ft}) in a one-

to-one manner. Then, assuming that the system is noncyclical, it would seem

possible to form a grouping F in a cunning way (cf. the definition of the states

α and β in the proof of Putnam’s Realisation Theorem, pp. 17–18, above)

so that D|F would be seen to be a model of F. If, as Putnam (1988, 121–

125) contends, every open system is in fact noncyclical, this procedure would

show that every open system implements every Turing machine. The reasoning

here is, however, fallacious; the argument tacitly supposes that the system D

has a countable infinity of trajectories. For, if two different initial complete

configurations Cw,0 are mapped to states that belong to the same trajectory,

then it will not be possible to define an interpretation of M that is standard—

the condition of standardness will be broken in the same way as in the above

counterexample. Therefore, in addition to the assumption of noncyclicality we

need to assume (at least) that the phase space M of D is partitioned by an

infinite set of trajectories, and so we are far from universal realisation.

It is an advantage of the present definition of implementation that it is,

like Copeland’s (1996) definition, very general. The dynamical system under

consideration may be of any sort: it need not be a physical system, with its

phase space and state transformations described by a physical theory, at all.

For this reason, Definition 6.5 gives a criterion for studying the computational

nature of any dynamical system whatsoever, be it physical, cognitive, social,

or what have you.

On another level, the suggested definition is general in the sense that it lays

down conditions for the implementation of Turing machines, the formalism un-

der which all classical computational formalisms can be subsumed. Moreover,

if the Church–Turing Thesis (Hypothesis 2.1) is endorsed, the definition gains
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further support. Of course, the definition has nothing to say about hypercom-

putational structures. If the latter are accepted as genuinely computational

(pace the Church–Turing Thesis), then the definition can be considered only

approximatively useful, since our desideratum is a general theory of implemen-

tation of all kinds of computational structures.

At any rate, the suggested definition of implementation has virtue in that it

dispenses with the vague notions of ‘entity’, ‘formal specification of computa-

tional architecture and algorithm’, and ‘reliable causation’. The latter one was

seen to be an integral part of Chalmers’s (1994b) account of implementation

(Definition 4.1); however, unless the meanings of both causation and reliability

are significantly explicated, the idea remains obscure. The move to dynamical

systems has the benefit that the problematic notion of causation is not needed

at all. The requirement of reliability, on the other hand, is built into condition

(ii) of Definition 6.4: the implementing system will transit from state to state

reliably, in the sense that its evolution mirrors that of the implemented com-

putation. What is more, this reliability is preserved from input to input: a

standard interpretation is required to map all initial complete configurations of

the Turing machine and, ipso facto, all possible traces of computation, in the

required manner. There is no need of considerations pertaining to ‘appropriate

counterfactuals’ of any sort.
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Computation and Cognition

The problem of ϕ-groupings. Implications for ontological computa-
tionalism. Implications for instrumental computationalism. Argu-
ment for a pluralist conception of science, in general, & of cognitive
science, in particular. Concluding remarks.

Having said all that, a potentially uncomfortable issue still remains with the

account of implementation sketched in the previous chapter. In fact, this

problem is in no way peculiar to that account, but plagues Chalmers’s (1994b)

and Copeland’s (1996) theories as well. The problem has to do with the issue

of how physical systems are to be interpreted.

Scheutz (1999; 2001) has already identified this trouble and has placed

it under due scrutiny. In his terminology, the problem has to do with “ϕ-

groupings”, a ϕ-grouping being a division of a physical system into parts that

together make up the whole system. An example of such a grouping is afforded

by Chalmers’s (1994b) definition of implementation (Definition 4.1), where

the physical system S is divided into state-types. Likewise, Copeland’s (1996)

theory of implementation hinges upon this sort of division, as evidenced by

the necessity of dividing an entity into parts that can then be labelled, or

“Searlified”. Finally, the account sketched in the previous chapter depends

crucially on the notion of grouping (understood here in the technical sense

given to that term therein).

The problem then, as Scheutz (1999; 2001) has pointed out, is that a ϕ-

grouping such as any one of these is more or less arbitrary. The definitions of
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implementation, in and of themselves, place no restrictions on the formation

of the grouping; nor are such restrictions suggested by physical theory. This

implies that implementation of computation is a relative matter after all, since

no physical system has a canonical ϕ-grouping. Even if a non-relative definition

of implementation could be fashioned in the sense that it would be seen that

any one ϕ-grouping can implement at most one computation, this would appear

to be to no avail, since any physical system can be ϕ-grouped in a number of

ways.

According to Scheutz (1999; 2001), the problem of ϕ-groupings is the

severest problem threatening the ambitions of any non-relativist theory of im-

plementation. Worse still, if ϕ-groupings are to be de-relativised, this de-

relativisation must come from the level of physical theory, argues Scheutz

(1999; 2001). A de-relativisation attempt at the level of computability the-

ory would certainly result in a circular argument.

But what is the bearing of all this on cognitive science? More explicitly, how

do the accounts of implementation previously investigated, and the relativity

of ϕ-groupings, relate to the two brands of computationalism identified at the

beginning of this thesis, ontological and instrumental computationalism? I

shall next examine the two in turn.

It is clear that Searle’s Thesis, if true, leads the ontological computationalist

to panpsychism. However, as we have seen, all accounts of implementation here

studied appear strong enough to refute Searle’s Thesis. Chalmers’s (1994b) ac-

count evades the thesis by requiring that the implementing system be reliable

in its causal ‘mirroring’ of the computation in question. Copeland’s (1996)

theory counters Searle’s Thesis with the notion of model honesty. And, the

account sketched in the previous chapter demonstrably does not suffer from

the thesis, as shown by the counter-example produced in that chapter. On

the other hand, all three accounts of implementation may be open to relativis-

tic claims weaker than Searle’s Thesis. For instance, we saw that Copeland
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(1996) countered Theorem 5.1 by requiring the modelling relation between the

implemented computation and the implementing entity to be ‘honest’. How-

ever, as long as we do not possess a rigorous definition of this ‘model honesty’,

relativistic claims may enter through the back door.

But even if this were the case—even if it were a theorem of our chosen

account of implementation that some physical system implements more than

one computation—what would this imply from the point of view of ontological

computationalism? The implications seem difficult to state. Even if a physical

system implements multiple computations, not all of these need belong to

the class Cog of ‘cognitive computations’ (see Hypothesis 1.2). Moreover, at

least prima facie there seems to be no reason to exclude the possibility that a

physical system could be implementing several computations from Cog at the

same time, as has been pointed out by Chrisley (1994, 405). The ontology of

the mental being as ill-understood as it is, it is not necessarily impossible that

a physical system could, at a single instant of time, possess several states of

mind (as long as it does not possess all states of mind).

However, the observer-relativity of ϕ-groupings may still pose a threat to

ontological computationalism, even if multiple simultaneous mental states are

not deemed an impossibility. For, if the selection of a ϕ-grouping for a physical

system is subjective in the sense that groupings do not arise from physical the-

ory, but may be arbitrarily defined by the observer, the system will gain and

lose mental states at the observer’s whim, according to his or her idiosyncratic

ways of “carving Nature”. This is an absurd situation, for we would not natu-

rally expect the existence of mental states to be observer-dependent. Rather,

we would expect that Nature has to be carved at her joints, if meaningful (not

to mention true, or truth-approaching) ontological statements are to be made.

Therefore, if we accept the relativity of ϕ-groupings as a substantial property

of the relation of implementation, it seems that ontological computationalism

will lose much of its attractiveness. If, on the other hand, we wish to retain
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our belief in ontological computationalism, we had better find a way of de-

relativising ϕ-groupings. Of course, nothing in our present state of knowledge

precludes the possibility of de-relativisation. A more sophisticated future the-

ory of implementation may very well be able to tie computations to physical

systems in such a way that the observer-relativity of ϕ-groupings vanishes.

It is therefore unclear what implications, exactly, the issue of implemen-

tation has for ontological computationalism. The fact that a system may

implement several simultaneous computations need not, in principle, discredit

ontological computationalism. On the other hand, it seems that ϕ-groupings

need to be de-relativised, if the ism of ontological computationalism is to retain

its modifier ‘ontological’. How about instrumental computationalism, the the-

sis that computational notions play an important instrumental role in cognitive

explanation? I shall next argue that the relativity of ϕ-groupings need not pose

any serious threat to this variety of computationalism, and that computational

notions are important, if not indispensable, for cognitive explanation, in the

present state of inquiry at least.

My ultimate aim in presenting this argument is to suggest that it may

be more fruitful to construe implementation as a relation between theories

than as a relation between ontologies. Before going into the details, I shall

take a moment here to define some key concepts. By ‘physical theory’, I

shall refer collectively to those empirical theories which fall under the heading

‘physics’. Physical theory, then, contains such theoretical terms as ‘electric

charge’, ‘momentum’, ‘energy’, and so on. By ‘empirical theory’, in its most

general sense, I mean a syntactic-semantic structure which is linked, in one

way or another, to “the phenomena”. I assume theories to have an amount of

empirical content in the sense that there have to be some procedures which

link theoretical terms to observational practices. However, not all terms of

a theory need have empirical content in this sense. Rather, the meaning of

many (if not most) theoretical terms may be determined in a holistic manner



7 Computation and Cognition 55

through the meanings of other theoretical terms, or at least it may be the case

that “theoretical sentences have their evidence not as single sentences but only

as larger blocks of theory” (Quine 1969, 80–81). Regardless of how exactly the

semantics of a given theory is fixed in place, it is the semantics that links the

theory to reality, and the latter I assume to be the same for all theories. It

follows that physics, for example, is not a theory which explains how “physical

things” behave, but a theory which explains how things behave from one point

of view, the physical point of view (cf. Mach 1897, ch. 1). In other words,

substances are not inherently physical—the meaning of the adjective ‘physical’

is dependent on the structure of those particular theories which we have (due

to historical reasons, inter alia) come to call physical theories.

These remarks do not apply in toto to non-empirical or analytical theories,

such as those of pure mathematics, whose semantics need not be at all deno-

tative of some outside reality.1 Computability theory, in particular, is not an

empirical theory in our sense. However, concepts developed within computabil-

ity theory can be—and have been—utilised and applied in certain empirical

theories, which is why we label these theories ‘computational’. Well-known

examples of computational theories in this sense, whether classical or connec-

tionist, include the GPS (Newell & Simon 1963/2000), SHRDLU (Winograd

1973/2000), and NETtalk (Sejnowski & Rosenberg 1987). In what follows, I

shall rely more on Marr’s (1982) computational theory of vision, but in prin-

ciple any one of these theories, or models, may be taken as an exemplar of

computational explanation in cognitive science. My purpose in the following

argument, then, will be to defend the claim that the aim of the theory of imple-

mentation is to explicate the relation between ‘physical’ and ‘computational’

theories, understood in these senses.

Prima facie, the relativity of ϕ-groupings does seem to pose a challenge

1Unless we embrace Platonism, that is. But even if we did, analytical theories would be
denotative of a reality different from the reality of empirical theories, so that a distinction
would remain between the two kinds of theory.
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to instrumental computationalism, as well. If, given a physical system S, we

are free to select a ϕ-grouping for it at will in order to see that it implements

some or other computation, does this not imply that this sort of cognitive

explanation is thoroughly subjective? Does it not show that the hope of an

objective computational cognitive science is a forlorn one?

This is precisely the core of Searle’s (1992, ch. 9) critique of computational

cognitive science. At the end of the day, he says, the problem with computa-

tionalism is that “[c]omputational states are not discovered within the physics,

they are assigned to the physics” (Searle 1992, 219). Again,

[t]he multiple realizability of computationally equivalent processes in

different physical media is not just a sign that the processes are abstract,

but that they are not intrinsic to the system at all. They depend on

an interpretation from outside. We were looking for some facts of the

matter that would make brain processes computational; but given the

way we have defined computation, there never could be any such facts

of the matter. We can’t, on the one hand, say that anything is a digital

computer if we can assign a syntax to it, and then suppose there is

a factual question intrinsic to its physical operation whether or not a

natural system such as the brain is a digital computer. (Searle 1992,

209–210, emphasis omitted.)

In other words, computational characterisations do not provide true explana-

tions of the explananda, by Searle’s lights:

As simulations go, the word processing program simulates a typewriter

better than any AI program I know of simulates the brain. But no

sane person thinks: ‘At long last we understand how typewriters work,

they are implementations of word processing programs.’ It is simply

not the case in general that computational simulations provide causal

explanations of the phenomena simulated. (Searle 1992, 218.)

Or, more succinctly: “once you understand how the frog’s visual system actu-

ally works, the ‘computational level’ is just irrelevant” (Searle 1992, 218).
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While I would agree with Searle that computational states are not discov-

ered within the physics but are assigned to it, I think a case can be made for

the usefulness, perhaps even necessity, of computational theories in cognitive

explanation. Computational states are not discovered within the physics, but

whom does this really surprise, given the fact that physical theory is not at all

concerned with computation, and does not even contain the relevant terminol-

ogy and theoretical concepts? To form an analogy, states of society (something

we might call “social states”) are not discovered within the physics either, but

this does not imply that social science is “observer-relative”, or that the socio-

logical level of explanation is “just irrelevant”. This is certainly the case if you

are not a reductionist, but even if you are, an eliminativist picture, whereby

the upper-level theory is viewed as completely superfluous and reducible to

the underlying theory in a straightforward manner, is no longer very attrac-

tive (Churchland 1986, ch. 7). In short: if you resolve to reduce present-day

sociology, you end up reducing the wrong theory, since present-day sociology is

hardly the final word in its domain. If, on the other hand, you admit that the

theory to be reduced is some more sophisticated future version of sociology,

you effectively concede that the present-day theory cannot be eliminated (that

it is not “just irrelevant”), but must be allowed to co-evolve with the reduc-

ing theory until a meaningful reduction, not just a blind elimination, can be

effected.

Pace Searle, it seems that you cannot understand the visual system, for

instance, without making use of some sort of computational theory. “Almost

never can a complex system of any kind be understood as a simple extrapo-

lation from the properties of its elementary components” (Marr 1982, 19). To

understand what the physical object is doing and why, it does not suffice to

measure frequencies of action potentials, concentrations of potassium ions, or

whatever Searle has in mind when speaking of “the physics”.2 Nor do you get

2It is to be noted that these things do not, properly speaking, belong to physics, but to
physiology. However, if examination of, say, action potentials does not guarantee an under-
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a feeling for how the object is doing whatever it is doing by focusing on small-

scale details. The details are simply too staggering. If computational states

are not discovered within the physics, then too bad for the physics, since com-

putational states (or processes) are what you want. And so you assign them,

hoping that the subsequent evolution of theories on all levels will eventually

establish why some assignments are better than others.

Thus, while it may be the case that “once you understand how the frog’s

visual system actually works, the ‘computational level’ is just irrelevant”(Searle

1992, 218), it appears at least as likely that you will not reach that state of

understanding without first doing some computational thinking, and without

doing it well, too. It would seem unlikely for anyone to be able to make

much sense of the role of the cells of the lateral geniculate nucleus in visual

processing, for example, if some preliminary answers had not first been given

to such questions as: What is the system doing? and How could it do it? The

genius of Marr was to fashion a higher-level theory of vision that addressed

precisely these kinds of questions, using concepts borrowed from computability

theory. Only then was it possible to give a meaningful and theoretically fruitful

interpretation of certain low-level physiological findings (see Marr & Hildreth

1980; Marr 1982, ch. 2) and thereby, we may suppose, to come to understand

how the system “actually works”.

I have rehearsed these Marrian remarks to such an extent to lend support

to a more general call for a more pluralist conception of science, intertheoretic

reduction, and the co-evolution of theories. In such a conception, no theory

is regarded as metaphysically superior to the rest (although some may be em-

pirically superior, in the sense that they explain more observations than do

the others, or do this better in one sense or another). Nor is any theory im-

mune to revisions occasioned not just by facts (observations), but by other

theories as well. This is meant to apply both within levels and between levels.

standing of the system’s large-scale behaviour, then, a fortiori, neither does examination of,
say, electric fields or atomic structure guarantee such understanding.
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In particular, there is no principle—apart from a metaphysical prejudice of a

physicalist slant—that renders physical theory immune from criticisms occa-

sioned by some higher-level theory. The currently favoured theory of informa-

tion processing in the brain, for example, is based on a model of the neuron

which is, in all essential respects, similar to the units studied by McCulloch

and Pitts (1943/1965). Is it not at least conceivable that major physiological

advances may in the future be influenced by higher-level theories, considering

that McCulloch and Pitts’s (1943/1965) achievement was of precisely this kind

(see Piccinini 2004)? Surely the computational level is not irrelevant.3

To adopt too reductionist a picture of the scientific enterprise is to miss

the important instrumental, heuristic, or propaedeutic value of research con-

ducted on multiple levels, with theories influencing each other both within and

between levels. The reductionist picture also tends to lead to metaphysical

chauvinism: the elevation of some one theory, above the rest, to an ontolog-

ically and epistemologically superior position. For present-day materialists,

hence for most of those who have contributed to the debate surrounding im-

plementation, this metaphysically superior theory is the physical theory. Con-

sequently, implementation of computation comes to be construed as an asym-

metric, irreversible relation. One kind of stuff, somehow ephemeral, is said

to be implemented or realised in another kind of stuff, somehow more secure.

However, physics is itself an evolving branch of natural science, and not a First

Philosophy. Therefore, it may be more fruitful to regard implementation not

as a relation between mathematical objects and physical objects, but as a re-

lation between theories, the implication being that a theory of implementation

itself cannot be given a priori, but must be subjected to continual development

as the two theories joined by the relation co-evolve. This does not mean that

3A pluralist conception of science such as this can be argued for by means of other histor-
ical examples as well. See, e.g., Feyerabend’s (1975, chs. 6–12) case study of Aristotelianism
and Copernicanism at the time of Galileo. Although Feyerabend (1975) does not address
the issue of computational explanation, I am, in my defence of “pluralist cognitive science”,
much indebted to his “epistemological anarchism”.
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the theory of implementation cannot be cast in precise, mathematical terms,

or that its ultimate aim could not be the formulation of mappings or interpre-

tations which relate computational structures to physical structures. However,

these structures themselves have to be suggested by computational theories,

and by physical theories. The concept of physical system, in particular, has no

meaning over and above that given it by physical theory, so that an analysis of

implementation that relies on entirely armchair-sprung, pre-theoretic notions

of “physical systems” is bound to be wide of the mark.

The reductionist picture has led Chalmers (1994a), for instance, to look

for a “computational foundation for the study of cognition”—an account of

implementation which would secure the fundamental role of computation in

cognitive explanation by tying computations to bona fide physical stuff. My

aim in this final chapter has been to argue that the study of cognition needs no

foundation, although it does need what Kuhn (1964) called ‘paradigms’. It also

needs, or at least can profit from, a rich network of theories on various levels,

theories which interact and do not assume immunity from pleas of revision by

their fellow theories. The theory of implementation, in particular, is one theory

among many. Analyses of implementation, then, are valuable not because

they demonstrate how and why “stuff” of one kind is realised in “stuff” of a

more fundamental kind, but because they clarify intertheoretic relations and

serve the important heuristic, or instrumental, value of conducting research on

multiple levels at the same time.

In conclusion, the development of theories of the implementation of com-

putation has been able to dissolve some fears relating to the possible observer-

relativity of computation (Searle’s Thesis). On the other hand, each account

of implementation here studied is incomplete and suffers from some problems.

There is, then, motivation for refinement of theory. Finally, analysis of the

notion of implementation seems to show that the implications for ontological

computationalism are difficult to state, so that the fate of this thesis cannot be
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decided by any of the theories of implementation currently available. On the

other hand, a relativity in implementation need not threaten the ambitions of

instrumental computationalism, which, I have argued, remains a viable atti-

tude to explanation in cognitive science.



A

Proofs

Lemma 2.2 (p. 8). Let A be a set, finite or infinite. Then A has at least two

elements if and only if the countably infinite Cartesian product Aω is infinite.

Proof. If A is empty or its cardinality is 1, it is plain that Aω has only finitely

many elements.

Suppose then that |A| = p for some p ≥ 2. Assume, for a reductio ad

absurdum, that there exists a k ∈ N such that |Aω| = k. Then by definition k

is the number of such functions f : N → A that satisfy the condition

f(i) ∈ A for all i ∈ N. (∗)

Because N is infinite, there is a subset J = {j1, . . . , jk} ⊆ N having k elements.

Similarly, by assumption the set A contains at least two elements, so there is

a subset B = {x, y} ⊆ A.

Let us now investigate the number of functions g : J → B that satisfy

g(i) ∈ B for all i ∈ J.

Let the set of these functions be G. If g ∈ G, the value of the function g, g(i),

for arbitrary i ∈ J , can be either x or y. By elementary combinatorics, the set

G thus contains

2 · 2 · . . . · 2︸ ︷︷ ︸
k times

= 2k

functions; in other words, |G| = 2k.

62
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Let us next expand each function g ∈ G to a function g′ : N → A by setting

g′(i) =






g(i), if i ∈ J,

x, if i ∈ N r J.

The number of these functions g′ is precisely the cardinality of the set G, that

is to say, 2k. On the other hand, each function g′ satisfies condition (∗), that

is to say belongs to the set

Aω = {f | f : N → A and f(i) ∈ A for all i ∈ N}.

Hence, |Aω| ≥ 2k. But this is contrary to our assumption that |Aω| = k, for it

can be shown that k < 2k for all k ∈ N. Contradiction. Q.E.D.

Lemma 3.1 (p. 16). For any time instant t, the maximal state m(t) is the

only maximal state of S compatible with B(t).

Proof. The strategy is to show that, given the Principle of Noncyclical Be-

haviour, any other maximal state would lead the system S to violate the Prin-

ciple of Continuity. In outline, the following argument is similar to the one

whereby Putnam (1988, 121–125) argues for the claim, though the presentation

here is more formal.

Classically, S will be embedded in the Euclidean space R
3; let us denote

the metric (the distance function) of this space by d. Considered as a spatial

object, S is then a bounded region of R
3. Let us denote by S (note typeface)

the set of interior points of this region, so that S is an open subset of R
3. The

boundary of the system is then simply the topological frontier ∂S of S. Let

Ft : S∪∂S → R
3 be the gravitational field associated with S and its boundary,

at time t. In other words, the vector Ft(x) gives the strength of the field at

the point x, for all x ∈ S ∪ ∂S.

(In fact, nothing in what follows turns on our using the Euclidean space

R
3 for the embedding space and for the vector space that is the range of the
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gravitational field. The proof will go through without problem with more

general vector spaces, or even with metric spaces, although from the point of

view of physics the spaces of course have the structure of a vector space.)

Let t′ be an instant of time with t′ 6= t. To show that m(t′) is incompatible

with B(t), it suffices to show that the mapping Gt : S ∪ ∂S → R
3, defined by

Gt(x) =






Ft(x) if x ∈ ∂S

Ft′(x) if x ∈ S
,

is discontinuous at nondenumerably many points. The mapping Gt, in other

words, is the “counterfactual gravitational field” of S and its boundary, assum-

ing that the maximal state of the boundary is B(t) and that the maximal state

of the system itself is m(t′).

By the Principle of Noncyclical Behaviour, the gravitational field is non-

cyclical at each point of the boundary of S, as well as at each point of S lying

sufficiently close to the boundary. Formally: there is an ǫ > 0 such that for

each x ∈ S ∪ ∂S, if d(x, ∂S) < ǫ, then Ft(x) 6= Ft′(x) for all times t, t′ with

t 6= t′. (Here d(x, ∂S) is the distance of the point x from the set ∂S; it is

defined as usual as the number d(x, ∂S) = inf{d(x, y) | y ∈ ∂S}.) Now let

Ct(∂S) be the set defined by

Ct(∂S) = {b ∈ ∂S | Ft is continuous at b};

by the Principle of Continuity, this set is nondenumerable for all times t. Like-

wise, for all b ∈ ∂S, define the set b(ǫ) by putting

b(ǫ) = {x ∈ S | d(x, ∂S) < ǫ}.

Now let b ∈ Ct′(∂S) and x ∈ b(ǫ) be arbitrary. Then Ft′ is continuous at b,
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so that

lim
x→b

x∈b(ǫ)

Ft′(x) = Ft′(b).

Then, since Gt(x) = Ft′(x) for all x ∈ S and hence for all x ∈ b(ǫ), we have

lim
x→b

x∈b(ǫ)

Gt(x) = Ft′(b).

However, by the Principle of Noncyclical Behaviour Ft′(b) 6= Ft(b), so that

lim
x→b

x∈b(ǫ)

Gt(x) 6= Gt(b),

since Gt(b) = Ft(b). Hence, Gt is not continuous at b. Since b ∈ Ct′(∂S)

was chosen arbitrarily and since Ct′(∂S) is nondenumerable, we have shown

that Gt is discontinuous at nondenumerably many points. Thus, S will violate

the Principle of Continuity in its gravitational field if m(t′) is substituted for

m(t). Q.E.D.



References

Abian, A. (1965). The theory of sets and transfinite arithmetic. Philadelphia:

Saunders.

Arnol’d, V. I. (1992). Ordinary differential equations (R. Cooke, Trans.).

Berlin: Springer.

Brown, C. (2004). Implementation and indeterminacy. In J. Weckert &

Y. Al-Saggaf (Eds.), Conferences in research and practice in information

technology (Vol. 37). Retrieved May 2007, from http://www.crpit.com/

confpapers/CRPITV37Brown.pdf.

Burton, D. M. (1967). Introduction to modern abstract algebra. Reading, MA:

Addison-Wesley.

Carnap, R. (1958). Introduction to symbolic logic and its applications

(W. H. Meyer & J. Wilkinson, Trans.). New York, NY: Dover.

Chalmers, D. J. (1994a). A computational foundation for the study of cog-

nition. Retrieved May 2007, from http://consc.net/ai-papers.html.

Unpublished manuscript.

Chalmers, D. J. (1994b). On implementing a computation. Minds and Ma-

chines , 4, 391–402.

Chalmers, D. J. (1996). Does a rock implement every finite-state automaton?

Synthese, 108, 309–333.

Chomsky, N. (1956). Three models for the description of language. IRE

Transactions on Information Theory , 2 (3), 113–124.

Chrisley, R. L. (1994). Why everything doesn’t realize every computation.

Minds and Machines, 4, 403–420.

Church, A. (1936/1965). An unsolvable problem of elementary number theory.

66



References 67

In M. Davis (Ed.), The undecidable: Basic papers on undecidable proposi-

tions, unsolvable problems and computable functions (pp. 89–107). Hewlett,

NY: Raven Press.

Churchland, P. S. (1986). Neurophilosophy: Toward a unified science of the

mind-brain. Cambridge, MA: MIT Press.

Cocos, C. (2002). Computational processes: A reply to Chalmers and

Copeland. Sats — Nordic Journal of Philosophy , 3, 25–49.

Copeland, B. J. (1996). What is computation? Synthese, 108, 335–359.

Copeland, B. J. (2002). Hypercomputation. Minds and Machines, 12, 461–

502.

Feyerabend, P. (1975). Against method. London: NLB.

Fodor, J. & McLaughlin, B. P. (1990). Connectionism and the problem of

systematicity: Why Smolensky’s solution doesn’t work. Cognition, 35,

183–204.

Fodor, J. A. & Pylyshyn, Z. W. (1988). Connectionism and cognitive archi-

tecture: A critical analysis. Cognition, 28, 3–71.

Hopcroft, J. E. & Ullman, J. D. (1979). Introduction to automata theory,

languages, and computation. Reading, MA: Addison-Wesley.

Kuhn, T. S. (1964). The structure of scientific revolutions. Chicago, IL:

University of Chicago Press.

Mach, E. (1897). Contributions to the analysis of the sensations

(C. M. Williams, Trans.). Chicago, IL: Open Court.

Marr, D. (1977). Artificial intelligence—a personal view. Artificial Intelligence,

9, 37–48.

Marr, D. (1982). Vision. New York, NY: Freeman.

Marr, D. & Hildreth, E. (1980). Theory of edge detection. Proceedings of the

Royal Society of London B , 207, 187–217.

McCulloch, W. S. & Pitts, W. H. (1943/1965). A logical calculus of the ideas

immanent in nervous activity. In W. S. McCulloch, Embodiments of mind



References 68

(pp. 19–39). Cambridge, MA: MIT Press.

Newell, A. (1980). Physical symbol systems. Cognitive Science, 4, 135–183.

Newell, A. & Simon, H. A. (1963/2000). GPS, a program that simulates

human thought. In R. Cummins & D. D. Cummins (Eds.), Minds, brains,

and computers: The foundations of cognitive science: An anthology (pp.

84–94). Malden, MA: Blackwell.

Newell, A. & Simon, H. A. (1976). Computer science as empirical inquiry:

Symbols and search. Communications of the ACM , 19, 113–126.

Piccinini, G. (2004). The first computational theory of mind and brain: A

close look at McCulloch and Pitts’s “Logical calculus of ideas immanent in

nervous activity”. Synthese, 141, 175–215.

Putnam, H. (1960/1975). Minds and machines. In Mind, language and re-

ality: Philosophical papers (Vol. 2, pp. 362–385). Cambridge: Cambridge

University Press.

Putnam, H. (1988). Representation and reality. Cambridge, MA: MIT Press.

Quine, W. V. (1969). Epistemology naturalized. In Ontological relativity and

other essays (pp. 69–90). New York, NY: Columbia University Press.

Scheutz, M. (1999). When physical systems realize functions. Minds and

Machines, 9, 161–196.

Scheutz, M. (2001). Computational versus causal complexity. Minds and

Machines, 11, 543–566.

Searle, J. R. (1980). Minds, brains, and programs. Behavioral and Brain

Sciences , 3, 417–424.

Searle, J. R. (1990). Is the brain a digital computer? Proceed-

ings and Addresses of the American Philosophical Association, 64, 21–

37. Retrieved May 2007, from http://users.ecs.soton.ac.uk/harnad/

Papers/Py104/searle.comp.html.

Searle, J. R. (1992). The rediscovery of the mind. Cambridge, MA: MIT Press.

Sejnowski, T. J. & Rosenberg, C. R. (1987). Parallel networks that learn to



References 69

pronounce English text. Complex Systems , 1, 145–168.

Shagrir, O. (2005). The rise and fall of computational functionalism. In Y. Ben-

Menahem (Ed.), Hilary Putnam (pp. 220–250). Cambridge: Cambridge

University Press.

Siegelmann, H. T. & Sontag, E. D. (1995). On the computational power of

neural nets. Journal of Computer and System Sciences, 50, 132–150.

Smolensky, P. (1988). On the proper treatment of connectionism. Behavioral

and Brain Sciences , 11, 1–23.

Turing, A. M. (1936–7/1965). On computable numbers, with an application

to the Entscheidungsproblem. In M. Davis (Ed.), The undecidable: Basic

papers on undecidable propositions, unsolvable problems and computable

functions (pp. 116–151). Hewlett, NY: Raven Press.

van Gelder, T. (1998). The dynamical hypothesis in cognitive science. Behav-

ioral and Brain Sciences, 21, 615–628.

Väänänen, J. (1987). Matemaattinen logiikka [Mathematical logic]. Helsinki:

Gaudeamus.

Winograd, T. (1973/2000). A procedural model of language understanding.

In R. Cummins & D. D. Cummins (Eds.), Minds, brains, and computers:

The foundations of cognitive science: An anthology (pp. 95–113). Malden,

MA: Blackwell.


