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75205 Paris Cedex 13, France
10 Space Sciences Laboratory, University of California Berkeley, Berkeley CA 94720, U. S. A.
11 INAF-IASF Bologna, Istituto di Astrofisica Spaziale e Fisica Cosmica di Bologna Istituto Nazionale di Astrofisica, via Gobetti

101, I-40129 Bologna, Italy
12 Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029 Blindern, N-0315 Oslo, Norway
13 Centre of Mathematics for Applications, University of Oslo, P.O. Box 1053 Blindern, N-0316 Oslo, Norway
14 INFN, Sezione di Bologna, Via Irnerio 46, I-40126 Bologna, Italy
15 INAF-OAB, Osservatorio Astronomico di Bologna Istituto Nazionale di Astrofisica, via Ranzani 1, I-40127 Bologna, Italy
16 Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena CA 91109, U. S. A
17 Warsaw University Observatory, Aleje Ujazdowskie 4, 00478Warszawa, Poland
18 Institut d’Astrophysique de Paris, 98 bis Boulevard Arago,75014 Paris, France
19 Department of Physics, Blackett Laboratory, Imperial College London, South Kensington campus, London, SW7 2AZ, United

Kingdom.
20 INFN, Sezione di “Tor Vergata”, Via della Ricerca Scientifica 1, I-00133 Roma, Italy
21 Instituto de Fisica de Cantabria, CSIC-Universidad de Cantabria, Avda. Los Castros s/n, 39005 Santander, Spain
22 ASI Science Data Center, c/o ESRIN, via G. Galilei snc, I-00044 Frascati, Italy
23 INAF-Osservatorio Astronomico di Roma, via di Frascati 33,I-00040 Monte Porzio Catone, Italy

Received date/ Accepted date

Abstract

Context. Cosmic microwave background (CMB) data analysis
Aims. Develop and validate tools to estimate residual noise covariance in Planck frequency maps. Quantify signal error effects and
compare different techniques to produce low-resolution maps.
Methods. We derive analytical estimates of covariance of the residual noise contained in low-resolution maps produced using a
number of map-making approaches. We test these analytical predictions using Monte Carlo simulations and their impact on angular
power spectrum estimation. We use simulations to quantify the level of signal errors incurred in different resolution downgrading
schemes considered in this work.
Results. We find an excellent agreement between the optimal residual noise covariance matrices and Monte Carlo noise maps.
For destriping map-makers, the extent of agreement is dictated by the knee frequency of the correlated noise component and the
chosen baseline offset length. The significance of signal striping is shown to beinsignificant when properly dealt with. In map
resolution downgrading, we find that a carefully selected window function is required to reduce aliasing to the sub-percent level at
multipoles,ℓ > 2Nside, whereNside is the HEALPix resolution parameter. We show that sufficient characterization of the residual noise
is unavoidable if one is to draw reliable contraints on largescale anisotropy.
Conclusions. We have described how to compute the low-resolution maps, with a controlled sky signal level, and a reliable estimate
of covariance of the residual noise. We have also presented amethod to smooth the residual noise covariance matrices to describe the
noise correlations in smoothed, bandwidth limited maps.

Key words. cosmic microwave background — Cosmology:observations — Methods:data analysis — Methods:numerical

1. Introduction

Over the last two decades observations of the cosmic microwave background (CMB) have led the way towards the high precision
cosmology of today — a process best emphasized recently by the high quality data set delivered by the WMAP satellite. The next
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major and nearly imminent step in a continuing exploitationof the CMB observable will be data analysis of data sets anticipated
from another satellite mission, Planck. Planck will observe the entire sky in multiple frequency channels,promising to improve
over the recent WMAP constraints on many fronts. In particular Planck, as a satellite, will provide us with a unique access to the
largest angular scales, in which the total intensity has proven controversial and difficult for theoretical interpretation and is still
poorly measured and exploited in the polarization. Planck will be the only CMB satellite deployed in the next decade. Itis therefore
particularly important that the constraints at large angular scale derived from the anticipated Planck data are not only robust but
also efficiently exploit the information contained in them. This will be certainly necessary if Planck is to set strong constraints on
the CMB B-mode power spectrum (Efstathiou et al. 2009) — one of the most attractive potential science targets of the mission.

The analysis of constraints on the largest angular scales requires robust statistical estimators accounting for a proper description
of the statistical properties of the sought-after sky signal, instrumental noise and other residuals due to the instrument, astrophysical
signals and/or data processing. This paper focuses on two of those ingredients — instrumental noise and so-called pixel noise, the
latter due to residual sky power on sub-pixel scales. In the standard data analysis pipeline the measured time ordered data are first
projected onto the sky, an operation called map-making, producing map-like estimates of the sky signal, which are subsequently
analyzed, e.g., in order to derive constraints upon the power spectrum. The map-making process is usually understood tobe a linear
operation on the input, measured data and therefore a statistical uncertainty of the produced sky maps can be straightforwardly
obtained given known characteristics of the time-domain data. Those also usually involve assumptions about piece-wise stationarity
of the instrumental noise, assumed to conform with Gaussianstatistics. In the realm of the Planck analysis such a straightforward
route is not however plausible. This is because of the high resolution of the Planck instruments, the full sky coverage and length of
the mission combined with the high sampling rate of the sky signals. That leads to the data set which is large in terms of thenumbers
of both the sky pixels contained in the maps and the directly registered measurements. The map-making procedures developed in the
context of Planck (Poutanen et al. 2006; Ashdown et al. 2007a,b, 2009) have been demonstrated to be capable of dealing with the
expected volumes of the data, producing high-quality maps;nevertheless the calculation or even just storage of their respective noise
covariance matrices at their full resolution is beyond the limits of even the largest currently available supercomputing facilities. This
is because, unlike maps — sizes of which scale linearly with anumber of pixels,Npix,— the noise covariance matrices scale as a
square of it and their inversion involvesO(N3

pix) floating point operations. We emphasize that due to a combination of its scanning
strategy and noise-like contributions correlated over long periods of time, we expect that non-negligible large scalenoise correlations
will be present in the maps derived from the Planck data and will be particularly important in the analysis of the polarized signals
given their lower amplitudes.

In this paper we develop tools necessary for the statistically sound analysis of constraints on large angular scales. These include
robust approaches to producing low-resolution maps and techniques for estimating pixel-pixel correlations due to their residual
noise. The low-resolution maps are expected to compress nearly all the information relevant to the large angular scale in fewer
pixels and are therefore more readily manageable. Given ourGaussian noise assumption the full statistical description of the map
uncertainty is given by its pixel-pixel noise covariance matrix (NCM). This is defined as

N =
〈
(ŝ − s) (ŝ − s)T

〉
, where 〈(ŝ − s)〉 = 0, (1)

and s is the 3Npix input sky map of Stokes I, Q, and U parameters and ˆs is our estimate ofs. In the absence of signal errors, the
difference,(ŝ − s), contains only instrument noise. We note thatN is a symmetric and usually dense matrix, which in general will
depend on the map-making method that produced the estimate.In the following we will consider a number of numerical approaches
to calculate such a matrix for each of the studied low-resolution maps and then test their consistency with the actual noise in the
derived maps.

The full noise covariance matrices have been commonly computed and used in the analysis of the small-scale balloon-borne,
(e.g. Hanany et al. 2000; de Bernardis et al. 2000) and ground-based experiments, (e.g., Kuo et al. 2004). The COBE-DMR team
also used them to derive low-ℓ constraints, ( e.g., Górski et al. 1996; Wright et al. 1996). In all those cases, however, no resolution
downgrading has been required, unlike with Planck, as the calculations for those experiments could be done at afull resolution.
To this date, only the WMAP team has encountered a similar problem. The instrument noise model employed by them is in fact
similar to the one used for Planck. It is parametrized, however, in the time domain rather thanin the frequency domain (Jarosik et al.
2003, 2007). Calculation of the WMAP NCM is formulated in exactly the same manner as for our optimal map-making method
and the WMAP likelihood code1 ships with an NCM very similar to what we present here, although without the II, IQ and IU
covariance blocks. The simplification is motivated by the high S/N ratio of the low temperature multipoles and weak coupling
between temperature and polarization pixel noise.

Our analysis is made unique by the differences in the experiment design: WMAP pseudo-correlationreceivers are differencing
assemblies (DA) with two mirrors, whereas Planck will use a single mirror design (HFI, the high frequency instrument) or has
a reference load in place of the second mirror (LFI, the low frequency instrument) (Planck Collaboration 2005). Betweenthese,
the pixel-pixel correlations are different. In principle the balanced load systems of COBE and WMAP should bring less correlated
noise than the unbalanced Planck LFI. On the other hand, differencing experiments generate pixel-pixel noise correlations even
from white noise, whereas in Planck they originate from the correlated noise alone. In additionwe also study here the so-called
destriping algorithms, which have been proposed as a Planck-specific map-making approach (Delabrouille 1998; Maino etal. 2002;
Keihänen et al. 2004; Keihanen et al. 2005).

Residual noise covariance for Planck-like scanning and instrument noise has been studied before, either via some simplified
toy-models (Stompor & White 2004) or in more realistic circumstances (Efstathiou 2005, 2006). Those studies approached the
problem in a semi-analytic way and thus needed to employ somesimplifications, which we avoid in our work. They were also based

1 http://lambda.gsfc.nasa.gov/
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solely on the destriping approximation, assuming that noise can be accurately modeled by relatively long (one hour) baseline offsets
and white noise, and did not consider any other approaches. In this work we extend those analyses into cases where modeling the
noise correlations requires shorter baselines and comparethose with optimal solutions.

2. Algebraic background

2.1. Maps and their covariances

To formulate map-making as a maximum likelihood problem we start with a model of the timeline:

d = As + Bx + n, (2)

where the underlying microwave sky signal,s, is to be estimated. HereA is the pointing matrix, which encodes how the sky is
scanned andn is a Gaussian, zero mean noise vector.x denotes some extra instrumental effects, usually taken hereafter to be
constant baseline offsets, which we will use to model the correlated part of the instrumental noise andB — a ‘pointing’ matrix forx
describing how it is added to the time domain data. Convolution with an instrumental beam, assumed here to be axially symmetric,
is already included ins.

The signal part of the uncalibrated data vector,d, is the detector response to the sky emission observed in thedirection of pixel
p. For a total power detectors, e.g., the ones on Planck, it is a linear combination of polarized and unpolarized contributions:

dt = K
{
(1+ ǫ)spI + (1− ǫ)

(
spQ cos(2χt) + spU sin(2χt)

)}
+ nt, (3)

where it is implied that samplet is measured in pixelp andχt is a detector polarization angle with respect to the polarization basis
and we have dropped the baseline term for simplicity. Eq. 3 includes an overall calibration factorK , and a cross polar leakage
factorǫ, however, in what follows, we only consider the case of perfect calibration, settingK = 1 with no loss of generality, and no
leakage,ǫ = 0.

To simplify future considerations we introduce a generalized pointing matrix,A′, and a generalized map,s′. They are defined
as

A′ ≡ [ A, B] , and s′ ≡
[

s
x

]
. (4)

Using those we can rewrite our data model in a more common form,

d = A′s′ + n. (5)

The detector noise has a time-domain covariance matrixN = 〈nnT〉 and the probability for the observed timeline,d, becomes the
Gaussian probability of a noise realizationn = d − A′s′:

P(d) = P(n) =
[
(2π)dimn detN

]−1/2
exp

(
−1

2
nTN−1n

)
P (x) , (6)

where the last factor is a prior constraint on the noise offsets,x, which hereafter we will take to be a Gaussian with a zero meanand
some correlation matrix,P, i.e.,

P (x) ∝ exp

(
−1

2
xTP−1x

)
(7)

By maximizing this likelihood with respect to the sky signaland baselines contained ins′, we find an expression for a maximum
likelihood estimate which reads,

ŝ′ =
(
R−1 + A′TN−1A′

)−1
A′TN−1d, (8)

whereR−1 is defined as,

R−1 ≡
[

0 0
0 P−1

]
(9)

The first part of the vector ˆs′ is an estimate of the actual sky signal, ˆs, while all the rest is an estimate of the baseline offsets,x̂. The
mapA′TN−1d is called the noise-weighted map. In case of flat prior forx, expressions identical to Eq. (8) can be also derived from
minimum variance or generalized least square considerations and we will refer to ˆs as either a minimum variance or optimal map
in the future. We note that we have ignored here any pixelization effects that cause differences betweend andA′s′ even for a noise
free experiment. This is usually true in the limit of the pixel size significantly smaller than the beam resolution of the instrument. If
this condition is not fulfilled, the pixelization effects may be important and special methods may be needed to minimize them. We
discuss specific proposals in Sect. 2.3. In the absence of such effects, the difference between a map estimate, ˆs′, and the input map,
s′, is calledresidual pixel domain noise.
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Let us now consider first the prefactor matrix in Eq. (8),

M′ ≡
(
R−1 + A′TN−1 A′

)−1
, (10)

a weight matrix combining both the baseline prior and the noise variance weights. It acts on the generalized noise-weighted map,
producing estimates of the pixels and baselines.

Given that our generalized map is made of two parts: the actual sky signal and the baseline offsets, the matrixM′ has four
blocks: two diagonal blocks, denotedM and Mx, and two off-diagonal blocks, each of which is a transposed version of the other
and one of which is referred here to asMo. Using inversion by partition we can write an explicit expression for each of these blocks.
For example, for the sky-sky diagonal blocks we get,

M =

[
ATN−1 A −

(
ATN−1B

) (
P−1 + BTN−1B

)−1 (
ATN−1B

)T
]−1

(11)

=
(
ATN−1 A

)−1
+

(
ATN−1 A

)−1 (
ATN−1B

)
Mx

(
ATN−1B

)T (
ATN−1 A

)−1
, (12)

while for the offset-offset part,

Mx =

[
P−1 + BTN−1B −

(
BTN−1 A

) (
ATN−1A

)−1 (
BTN−1 A

)T
]−1
. (13)

With help of these equations we can now write explicit separate expressions for the estimated sky signal and offsets. The former is
given by,

ŝ =
(
MAT + MoBT

)
N−1d (14)

while the latter,

x̂ =
(
MT

o AT + MxBT
)
N−1d. (15)

We can also combine these two equations to derive an alternative expression for the sky signal estimate, which makes a direct use
of the offsets assumed to be estimated earlier,

ŝ =
(
ATN−1 A

)−1 (
ATN−1d − ATN−1Bx̂

)
(16)

If the assumed data model, Eq. (2), and the time domain noise and baseline covariances are all correct, then the covariance of
the residual pixel domain noise is

N′ = 〈(ŝ′ − s′)(ŝ′ − s′)T〉 = M′. (17)

In particular, Eq. (1), the pixel-pixel residual noise covariance matrix,N, is equal toM and given by Eq. (12).
We note that a sufficiently high quality estimate of the inverse time domain correlations,N−1, is required in order to calculate

both the minimum-variance map and its noise covariance. If it is misestimated the map estimate will still be unbiased, though not
any more minimum variance or maximum likelihood, and its covariance will not be given any more by Eq. (17).

For example for computational reasons we will find later thatusing some other matrix, denoted here asM−1, rather than the
actual inverse noise covariance,N−1, in the calculation of the map estimates in Eq. (8) can be helpful. The corresponding noise
correlation matrix for such a map is then given by (Stompor etal. 2002, ungeneralized case)

N′ = 〈(ŝ′ − s′)(ŝ′ − s′)T〉 =
(
R−1 + A′TM−1A′

)−1 (
R−1RNR−1 + A′TM−1NM−1 A′

) (
R−1 + A′TM−1A′

)−1
, (18)

whereM andR define our map-making operator, whereasN andRN are the true noise properties. This expression is significantly
more complex and computationally involved than Eq. (17). Fortunately, as we discuss in the following, in many cases of interest,
the latter expression turns out to be a sufficiently good approximation of the former withN−1 replaced byM−1 at least for some of
the potential applications.

The PlanckWorking Group 3 (CTP) has performed extensive studies of different map-making approaches (Poutanen et al. 2006;
Ashdown et al. 2007a,b, 2009). They have been shown to produce different residual noise structures in the computed maps studied
in detail in those papers. A map-making method should only beconsidered complete once the residual noise covariance associated
with it can be understood and sufficiently well characterized.

The map-making methods considered for Planck fall into two general classes both of which are described by the equations
derived above. The first class, called optimal methods, assumes the sufficient knowledge of the time domain noise correlations, does
not introduce any extra degrees of freedom,x, (or alternately assumes a prior for them withP vanishing). In this case one can derive
from Eqs. (16) & (12),

ŝ =
(
ATN−1 A

)−1
ATN−1d, (19)

N =
(
ATN−1 A

)−1
(20)

where the latter is a covariance of the residual noise of the former.
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Figure 1. Noise model (dashed lines) and the
spectra of simulated noise (solid lines). The two
sets of curves correspond to the two considered
knee frequencies withfmin = 1.15× 10−5 and
α = 1.7.

The second class of methods introduces a number of baseline offsets with a Gaussian correlated (so-called generalized destripers)
or uncorrelated (standard destripers) prior on them and describe the noise as an uncorrelated Gaussian process. The destriper maps
are evaluated via Eq. (14) or Eq. (16), withN assumed to be diagonal. Clearly on the time-domain level thedestriper model is just
an approximation, therefore at leasta priori we should use the full expression in Eq. (18) to estimate its covariance. The CTP papers
have shown that for Planck the two methods produce maps which are very close to one another. Moreover, they have shown that
using a generalized destriper, the derived maps eventuallybecome nearly identical to those obtained with the optimal methods, if an
appropriate length of the baseline and a number of the baseline offsets is adopted together with a consistently evaluated prior. This
motivates using the simplified Eq. (12) as an approximation for the noise covariance of the destriped maps, i.e.,N = M. We will
investigate the quality and applicability of this approximation later in this paper.

In this paper we extend the analysis presented in those earlier CTP papers. We first study the covariances derived for the different
map-making algorithms using Eq. (12), compare their properties and test how well they describe the residual noise in theactual
maps. As all those calculations can not be performed at the full instrumental resolution, we also discuss methods of producing the
low-resolution version of the maps.

2.2. Time domain noise

We assume that the time domain noise is a Gaussian process andfor the simulations we take the noise power spectral densityto
have the form

P( f ) =
σ2

fsample
·

f αmin + f α

f αknee+ f α
, (21)

where the shape is defined by the slope, minimum and knee frequencies (α, fmin and fknee respectively) and the scaling by the
white-noise sample variance and sampling frequency (σ and fsample). Two examples of the theoretical and simulated noise spectra
can be seen in Fig. 1.

In the calculations of the maps using the optimal algorithmsor generalized destripers we will assume that noise power spectrum
is known precisely. As the noise simulated in the cases analyzed here is piece-wise stationary, with no correlations allowed between
the data in the different pieces (see Sect. 5) the respective noise correlationmatrix,N, is block Toeplitz with each of the blocks,
describing the noise correlations of one of the stationary pieces, defined by the noise power spectrum. Given that we willapproximate
the inverse ofN as also a block Toeplitz matrix with each blocks given by an inverse noise power spectrum. Though this is just an
approximation it has been demonstrated in the past that it performs exquisitely well in particularly in the cases with long continuous
pieces of the stationary noise (Stompor et al. 2002), as it isa case in all simulations considered here.

2.3. Low-resolution maps

Planck will produce maps with resolution of∼ 5 arc minutes at frequencies of 217 GHz and above, and≤ 13 arc minutes from
70–143 GHz. The sky maps pixelized at the full available resolution will therefore include as many asO

(
107

)
pixels per Stokes

parameter. Though it has been demonstrated in previous CTP papers that a calculation of such maps is feasible, the computations
of the covariances of such maps is clearly well beyond the reach of the current and near-future supercomputers. At the same time
production of low-resolution maps from data of a high-resolution experiment is not a straightforward task, which in theCMB
context is made even more difficult due to a disparity in amplitudes of the total intensity anisotropies on the one hand and Q and
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U Stokes parameters (or E and B polarization modes) on the other. As we emphasized earlier the map-making methods described
in the previous sections work very well but only in the limit of sufficiently small pixels. Those need to be much smaller than the
typical variability scale of the considered sky signal, which is usually set by the experimental resolution. Such an assumption is
clearly not fulfilled in the case of the low-resolution map-making. We therefore expect that the pixel effects are non-negligible in
this latter case. Moreover as we solve simultaneously for all three Stokes parameters even relatively mild pixel effects present in the
total intensity maps may have significant consequences for the Q and U Stokes parameter maps.

In this Section we define three alternative methods of producing low-resolution maps from high-resolution observations. The
first two, direct and (inverse) noise weighting methods, have already been used in the WMAP analysis (Jarosik et al. 2007). As the
third option we consider at the end smoothed (low-pass-filtered) maps and their noise covariance.

2.3.1. Direct method

The most straightforward method to produce a low-resolution map is to project the detector observations directly to thepixels of the
final target resolution. Hereafter we will refer to it as the direct method.

The direct method is clearly the best choice as far as the described noise covariance is concerned. However, it does not pay any
particular attention to minimizing the pixel effects. In particular, it may lead to a position-dependent signal smoothing due to a non-
uniform sampling of the low-resolution pixels — an effect which may further cause aliasing problems at the, for example, power
spectrum estimation stage. Moreover, for the destripers the direct method means that the baseline offsets are solved at the low target
resolution. If the subpixel structure of the pixels can be neglected, this will lead to a better determination of the baseline offsets,
and less residual noise, as the number of crossing points between baselines increases (Ashdown et al. 2007a). If, however, sub-pixel
power is present, it may affect adversely the offset estimation, with magnitude of the effect increasing with the pixel resolution.
None of the discussed map-making methods is designed to correct for subpixel structure. Therefore the direct method canbe taken
to regard the sky as already smoothed to eliminate the subpixel structure within the large, low-resolution pixels.

In Sect. 6.3 we quantify the signal error for the different low-resolution maps and map-makers.
The noise covariance matrices for such low-resolution mapscan be computed directly using formalism presented in Sect.2.1,

for example, Eqs. (17) and (18).
Hereafter, we will use the direct method as a reference with respect to which we compare the other approaches.

2.3.2. Inverse noise weighting (INW)

In the case of nested pixelization schemes, such as HEALPix (Górski et al. 2005) used in this paper, to downgrade a temperature
only map, one may compute a weighted average of the subpixel temperatures. A natural choice are the optimal weights, where
the temperature of a small pixel is weighted with the inverseof its noise variance (or with its hit count provided that thedetectors
have equal noise equivalent temperatures). This weightingleads to the lowest noise of the large pixel in the absence of pixel-pixel
correlations. We will refer to these maps as inverse noise weighted (INW) maps.

A similar weighting scheme exists for the polarized data as well. The procedure goes as follows: first the estimated high-
resolution maps are noise-weighted, then their resolutionis downgraded, and the resulting low-resolution, noise-weighted maps are
subsequently multiplied by the low-resolution noise covariance, which needs to be estimated in parallel. Algebraically, the entire
procedure can be summarized succinctly on the map level as,

ŝ′ =W′′ X W ŝ, (22)

whereW andW′′ are weight matrices for the high and low resolution maps, respectively. They depend onA andA′′ — the pointing
matrices at high and low resolution.X simply sums the pixels in resolutionNpix to resolutionN′pix,

Xqp =

{
1, p subpixel ofq
0, otherwise (23)

In the following we will assume either block-diagonal or diagonal weighting. In the former case the weights are given by,

W′′ =
(
A′′TN−1

u A′′
)−1
, (24)

W =
(
ATN−1

u A
)−1
, (25)

while in the latter case they are made of the diagonal elements of the above matrices. MatrixNu is the time domain covariance
matrix of the uncorrelated part of the noise,n. In the block-diagonal case the noise weighting mixes different Stokes parameters,
while in the diagonal one each Stokes parameter map resolution is downgraded independently. Throughout this work we will use
only the block diagonal weighting which, in the cases studied here, turns out to be very close to the diagonal one.

The covariances for the maps obtained via such a procedure can be derived from Eq. (22) and the expressions described in
Sect. 2.1.

For the destriper technique there is one more extra factor which makes this manner of resolution downgrading differ from the
direct method of the previous Section. As the maps outputteddirectly by a destriper code are of a high resolution, the baseline offsets
are also determined at that resolution. If the block-diagonal weighting is then used to downgrade the map, the result is equivalent to
the direct calculation of the low-resolution map with the baselines determined from the high-resolution analysis, Eq.(16).
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Noise weighting reduces signal errors by first solving the map at a resolution where subpixel structure is weak. In comparison
to the direct method, the more accurate signal is gained at the cost of higher noise. Like the direct method, INW also disregards any
subpixel structure but at high resolution. In this case the instrument beam naturally smoothes out small scale structure causing the
approximation to hold.

2.3.3. Harmonic smoothing

Both methods described above may result in the signal smoothing (or its band-width) being position-dependent as it is achieved
via averaging of theobserved high-resolution pixel amplitudes contained within each low-resolution pixel. This may result in the
aliasing of sky power.

Applying a smoothing operator to each of the high-resolution maps prior to resolution downgrading could alleviate sucha
problem. The smoothing operation needs to take care properly of the high frequency power contained in the maps avoiding thus
its being aliased to the power at the scales of interest. As the smoothing operation is usually performed in the harmonic domain it
requires that the high-resolution map is first expanded in spherical harmonics. If the map has unobserved pixels, they will induce
undesired mode coupling. For sufficiently complete sky coverage we can “patch” the high-resolution map by adding averages of
the neighbouring pixels into blank pixels. If the coverage is more incomplete, the missing pixels can be replaced by a constrained
realization of signal and noise, such methods are used for example in the so-called sampling techniques (e.g., Jewell etal. 2004),
which have been successfully applied to simulated Planck data. Simple patching will clearly affect only very small scale statistical
properties. If a constrained realization is applied, the spherical expansion will depend on the input model. In this work we only deal
with a complete sky coverage leaving an investigation of those effects to the future work.

To suppress small angular scale power the expansion is convolved with an axially symmetric window function (e.g. a symmetric
Gaussian window function (Challinor et al. 2000)),

ãT
ℓm = Wℓa

T
ℓm, Wℓ = e−

1
2 ℓ(ℓ+1)σ2

(26)

ãE
ℓm = 2Wℓa

E
ℓm, 2Wℓ = e−

1
2 [ℓ(ℓ+1)−4]σ2

, (27)

chosen to leave only negligible power at angular scales thatare not supported by the low target resolution. Finally the regularized
expansion is synthesized into a low-resolution map by sampling the expansion values at pixel centers. We conduct most ofour
studies using a beam having a full width at half maximum (FWHM) of twice the average pixel side. For theNside = 32 resolution
this is approximately 220′ (3.◦7). Whenever transforms between harmonic and pixel space are conducted, it is important to consider
the range of multipoles included in the transformation. We advocate using such an aggressive smoothing that the harmonic expansion
has negligible power beyondℓ = 3Nside and results are stable for anyℓmax beyond this. For completeness we have setℓmax = 4Nside
but stress that any residual power beyondℓ = 3Nside will lead to aliasing.

The smoothing window does not need to be a Gaussian but it is preferable to avoid sharp cut-offs that may induce “ringing”
phenomena. Benabed et al. (2009) suggest a window function that preserves the signal basically unchanged until a chosenthreshold
and then smoothly kills all power quickly above that angularresolution. Their window is

Wℓ =



1, ℓ ≤ ℓ1
1
2 [1 + cos((ℓ − ℓ1)π/(ℓ2 − ℓ1))] , ℓ1 < ℓ ≤ ℓ2

0, ℓ > ℓ2

(28)

with the typical choiceℓ1 = 5Nside/2 andℓ2 = 3Nside.
This method can be considered optimal from the (large-scale) signal viewpoint; however it may be suboptimal as far as thenoise

is concerned, in particular in cases with a strongly inhomogeneous noise distribution on the observed sky. The noise covariance
matrices described in Sec. 2.1 need to be amended to accurately characterize the residual noise of the smoothed maps and thus we
need to smooth the matrices as well.

Smoothing of a map is a linear operation. For any linear operator, L, acting on a map,m, we can compute its covariance as

〈(Lm)(Lm)T〉 = L〈mmT〉LT = LNLT =
∑

i

λi Lêi · (Lêi)T, (29)

whereλi andei stand for eigenvalues and eigenvectors of the noise covariance,N, i.e., N =
∑

i λîeîe
T
i , andm is understood here

to contain the noise only. We note that in general one should replicate the same processing steps as are to be applied to maps
and therefore the smoothing operation should be applied to the noise covariance of the high-resolution map and its resolution
downgraded later. All these steps are described by the operator L introduced above. In this caseL is a rectangular matrix with many
fewer rows (given by the number of low-resolution pixels) than columns (the number of high-resolution pixels). In such acase
rather than performing the eigenvalue decomposition as suggested by the right-most term of Eq. (29), which would require as many
operation as the cube of the number of high-resolution pixels, it may be more efficient to perform the matrix-matrix multiplications
in Eq. (29) explicitly. In fact in the latter approach one could rephrase the problem as a series of PCG solutions of a map-making
type, each of which would result in the computation of the high-resolution covariance,N, times one of the columns of the smoothing
operator,LT. This could bring the cost of the covariance smoothing down to that comparable with actual map-making operation
repeated for each of the low-resolution pixels. Though thismay be in a realm of capabilities of the present day supercomputers it is
certainly a huge effort not warranted at the present stage of this investigation.

Alternately, one may choose to commute the order of the smoothing and downgrading operations as highlighted above. Though
these two operations are clearly not exchangeable on the maplevel, due to the potential presence of the sub-pixel power,such an
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approach can be more justifiable for the noise covariances. In this case we can explicitly compute the low-resolution unsmoothed
covariance matrices directly and subsequently smooth themwith the signal smoothing kernel. One side advantage of thisapproach
is that the low-resolution maps are more likely to be genuinefull-sky maps than their high-resolution counterparts. Applying the
smoothing is therefore less likely to require any additional pre-processing.

In the following we will apply the smoothing technique to both high and low resolution maps already downgraded using some
of the other approaches. We will demonstrate that such a combined approach results in controllable properties of the residual noise
on the one hand and well defined sky signal bandwidth on the other. Unlike both the direct and INW methods, the low-resolution
maps are actually solved from a signal that lacks subpixel structure.

3. Numerical calculations of residual noise covariance

This section presents numerical methods to compute the residual noise covariance matrix and describes briefly their implementa-
tions corresponding to three different map-making methods, the optimal method (MADping and ROMA implementations) and the
generalized (Madam) and classical destriping (Springtide) methods.

3.1. Optimal map covariance

The noise covariance for the maps computed by optimal algorithms using true time domain correlations is given by Eq. (20). The
calculation of such a matrix proceeds in two steps and two different implementations have been developed in the course of the
work described here. During the first step the inverse covariance matrix,ATN−1 A needs to be assembled and subsequently inverted.
Given that the matrix can be singular the latter step needs tobe taken with care and a pseudo-inverse may need to be computed. The
computation of the latter involves a eigenvalue decomposition of the inverse noise matrix. Because the noise matrix is symmetric
and in principle non-negative definite, its eigenvalues arereal and non-negative (λi ≥ 0), and its eigenvectors form a complete
orthogonal basis. This allows us to expand the matrix as

N−1 = UΛUT =
∑
λi êiêT

i . (30)

Hereλi are the eigenvalues and ˆei are the corresponding eigenvectors of the matrixN−1. We can now invertN−1 by using its
eigenvalue decomposition,

N =
∑

i

λ−1
i êiêT

i , (31)

and controlling the ill-conditioned eigenmodes. Any ill-conditioned eigenmode will have an eigenvalue several orders of magnitude
smaller than the largest eigenvalue. By including in the sumonly the well-conditioned eigenmodes we effectively project out the
correlation patterns that our methods cannot discern. Thisway of calculating the noise covariance is implemented in the ROMA and
MADping codes.

MADping is one of the codes of the MADCAP2 suite of CMB analysis tools. The code is parallelized using MPI and all the
operations are distributed across multiple processors (Borrill 1999). It uses the M3 library mentioned in (Cantalupo et al. 2009)
for data reading and time-domain noise correlation generation. Load balancing is performed based on both the number of pixels
per processor and the number of time samples falling into those pixels. Each processor scans through its sections of time-ordered
data (correctly handling overlap with other processors’ data) and accumulates its local piece of the inverse noise covariance. These
pieces are then gathered and written to disk. The scaling of this technique is

Nflops ∼ O
(
nsamples · ncorrelation

)
, (32)

wherencorrelationis the filter length set by the noise autocorrelation length.
For a Planck-sized, full-sky dataset and using a reasonable pixel resolution (half a degree), the construction of the inverse

noise covariance dominates over the computational cost of inverting this matrix. Nevertheless, inversion methods as well as the
eigendecomposition scale asO(N3

pix).
In order to correctly treat the signal component of the data map in Eq. (8), we must apply our low-resolution noise covariance to

a noise-weighted map which has been downgraded from higher resolution. This downgrading process is equivalent to the technique
discussed in Sect. 2.3.2, and ensures that signal variations inside a low-resolution pixel are accounted for. The high-resolution noise-
weighted map consistent with the above formalism is constructed as the first step of the map-making carried out by the MADmap
program (Cantalupo et al. 2009). The matrix eigenvalue decomposition is done using a ScaLAPACK3 interface that allows efficient
parallel eigenvalue decomposition of large matrices usinga divide and conquer algorithm.

The ROMA code (Natoli et al. 2001; de Gasperis et al. 2005) is an implementation of the optimal GLS iterative map making
specifically designed for Planck, but also successfully used on suborbital experiments suchas BOOMERanG (Masi et al. 2006). To
estimate noise covariance as in Eq. (17) we start by calculating row i of its inverse,N−1, by computing its action on the unit vector
along axisi:

(N−1)i: = (ATN−1 A) · ei . (33)

2 http://crd.lbl.gov/∼borrill/cmb/madcap/
3 http://www.netlib.org/scalapack/scalapack home.html

http://crd.lbl.gov/~borrill/cmb/madcap/
http://www.netlib.org/scalapack/scalapack_home.html
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This calculation is implemented as follows: i) projecting the unit vector into a TOD by applyingA on êi; ii) noise-filtering the
TOD in Fourier space; iii) projecting the TOD into a map by applying AT. By computing each column independently we reduce
memory usage because we allocate memory only for one map instead of allocating memory for the full matrix. The computational
cost of the full calculation is dominated by FFTs that are repeated as many times as the number of columns, hence the scaling can
be expressed as:

Nflops ∼ O
(
nsamples· log2(nfilter) · npix

)
. (34)

Once the inverse noise matrix is assembled it is inverted in afashion similar to the one described above. We note that the resulting
covariance matrix has to be symmetric. Though this is nota priori ensured by the algorithm it is the case within expected numerical
errors. To ameliorate any effect we symmetrize the result by averaging the matrix with itstranspose.

Alternately, we can compute the NCM column-by-column with help of multiple map-making-like operations, i.e.,

yi: = (ATN−1 A)−1 · ei, (35)

whereêi is a unit vector as defined above andyi stands for a column ofN. We rewrite the above equation as

(ATN−1 A) · yi = ei, (36)

and solve it using the standard PCG map-making solver. We note that in such a case there is no need to store a full inverse noise
covariance matrix in a memory of a computer at any single timeas the operations on the left hand side can be performed from right
to left. As a result this approach can be applied also for high-resolution cases for which the direct method described above would
not be any more feasible.

We note that unlike in the previous approaches based on the direct matrix inversion in the latter case there is no special care
taken of potential singularities. Though the presence of those does not hamper the PCG procedure (e.g., Cantalupo et al.2009),
nonetheless care must be taken while interpreting its results.

3.2. Destriped map covariance

In the destriping approach to map-making, we model all noisecorrelations by baseline offsets. Thus we write Eq. (2) as

d = As + Bx + nu, (37)

wherenu is a vector of uncorrelated white noise samples. Accordingly, we must replace the time-domain noise covariance matrix,
N, by a diagonal matrix,Nu. All noise correlation is then included in the prior baseline offset covariance matrix,P.

If we now apply the destriping approximation to Eqs. (11) we find for the pixel-pixel residual noise covariance matrix:

M−1 = ATN−1
u A − ATN−1

u B
(
P−1 + BTN−1

u B
)−1

BTN−1
u A . (38)

The first term on therhs is the binned white noise contribution (a diagonal or block-diagonal matrix for temperature-only and
polarized cases respectively) and the second term describes the pixel-pixel correlations due to errors in solving for the baselines,
i.e., the difference between the solved and actual baselines (Kurki-Suonio et al. 2009).

When making a map using destriping, one can use high resolution to solve for baselines and still bin the map at low resolution.
Since this is equivalent to producing first a high-resolution map and then downgrading through inverse noise weighting,we will
always assume the same pixel size for both of these steps.

3.2.1. Conventional destriping

Springtide (Ashdown et al. 2007b) is an implementation of the conventional destriping approach which solves for one baseline per
pointing period. Since the baselines are so long, it allows for a number of optimizations in the handling of the data. During one
pointing period, the same narrow strip of sky is observed many times, so the time-ordered data are compressed into rings before
doing the destriping. Another effect of the long baselines is that the prior covariance matrixof the baselines,P, is strongly diagonal-

dominant, so to a very good approximation can be assumed to bediagonal. As a consequence, the matrix
(
P−1 + BTN−1

u B
)−1

that
appears in the expression for the inverse map covariance matrix (38) is also diagonal. Thus the number of operations taken to
compute (38) is

Nflops ∼ O(nbase(npix/base)2). (39)

The number of baselines is small compared to the generalizeddestriping approach, so another method of computing the noise
covariance matrix of the map becomes feasible. It is possible to compute the inverse posterior covariance matrix of the baseline
offsets explicitly, to invert it and use it to compute the map covariance matrix. This method has the advantage that the resolution
at which the destriping is performed is not constrained to bethe same as the resolution of the final map covariance matrix.The
destriping can instead be done at the natural resolution of the data to avoid subpixel striping effects. The inverse of the posterior
baseline error covariance matrix can be calculated using Eq. (13) and the corresponding map covariance matrix is given by Eq. (12).
However, the pointing matrices,A, need not be for the same resolution in both steps.

The structure of the inverse posterior baseline covariancematrix, Eq. (13), depends on the scanning strategy, but it isin general
a dense matrix. Inverting the matrix and using it to compute Eq. (12) involves dense matrix operations, so this method is computa-
tionally more demanding than the other approach described above. However, the posterior baseline covariance matrix needs only to
be computed once and stored, and then can be used many times tocompute the map covariance matrix for any desired resolution. It
is also possible to use Eq. (12) to compute the residual noisecovariance matrix for a subset of the pixels in the map.



10 R. Keskitalo et al.: Residual noise covariance for Planck low-resolution data analysis

Table 1.Pixel side to baseline length at 1 rpm spin rate

Nside

√
pixel area Npix tbase

4 14.◦658 192 2.443s
8 7.◦329 768 1.222s

16 3.◦665 3,072 0.611s
32 1.◦832 12,288 0.305s
64 0.◦916 49,152 0.153s

128 0.◦458 196,608 0.076s

3.2.2. Generalized destriping

Madam (Keihanen et al. 2005; Keihänen et al. 2009) is an implementation of the generalized destriping principle. It is flexible in
the choice of baseline length and makes use of prior information of baseline covariance (P is not approximated to be diagonal).

Even for a generalised destriper, all the matrices in Eq. (38) are extremely sparse. Most of the multiplications only require

operations proportional to the number of pixels, baselinesor samples. The matricesP−1 and
(
P−1 + BTN−1

u B
)−1

are approximately
circulant, band-diagonal matrices whose width is determined by the noise spectrum. For all cases studied in this paper,the latter
matrix is limited to the order of 103 non-negligible elements per row. We call this width thebaseline correlation length, ncorr, and
includes the white-noise contribution as well.ncorr corresponds to a few hours of samples and is inversely proportional to baseline
length,nbl.

We evaluate the prior baseline offset matrix from the power spectral density of the correlatednoise,P( f ), by Fourier transforming
the baseline PSD,Px( f ), into the autocorrelation function. The baseline PSD is evaluated as (Keihänen et al. 2009):

Px( f ) =
1

tbase

∞∑

m=−∞
P( f + m/tbase)g( f tbase+ m), where g(x) =

sin2 πx
(πx)2

. (40)

The sum converges after including only a fewm around the origin. For stationary noise, any row ofP−1 can then be evaluated as a
cyclic permutation ofF −1[1/Px( f )].

We evaluate (38) after computing (40) by approximating the inner matrix,
(
P−1 + BTN−1

u B
)−1

, as circulant. This allows us to
invert thenbase× nbaseband diagonal matrix by two short Fourier transforms. It turns out that the matrix multiplications are most
conveniently performed by first evaluating the sparseATN−1

u B matrix and then operating with it on the inner matrix from both sides.
In effect the inverse covariance matrix gains a contribution fromall quadruplets (xi, x j, p, q), where baselinesxi andx j are within

baseline correlation length and hit pixelsp andq. The number of operations required to complete the estimateis then proportional
to

Nflops ∼ O
(
nbase· ncorr · (npix/base)2

)
, (41)

wherenbaseandncorr, the number of baselines per survey and correlation length respectively, are inversely proportional to the length
of a baseline. In contrast,npix/base, pixels per baseline, is proportional to baseline length. For short baselines and low-resolution maps,
the magnitude ofnpix/baseis close to unity. Table 1 lists low-resolutionNside parameters and the baseline lengths that correspond to
average pixel sizes. It can be used to estimatenpix/baseand shows that, for example, 1.25 s baseline offset atNside = 32 resolution
covers approximately 4 pixels. The success of this approachis to replacen2

bl in the computation complexity byn2
pix/base.

3.3. Smoothed covariance matrices

In order to apply the smoothing operator to the low-resolution noise covariance matrices,N, (Eq. (29)), we assume that low-
resolution maps, and thus also their covariance matrices, are expected to cover the entire sky. We can also use the eigen-
decomposition of the noise covariance matrices as it is available from the matrix inversion procedure described earlier. Consequently,
we perform the smoothing to the eigenvectors of the noise covariance matrix, Eq. (29).

Each eigenvector is a 3Npix map itself (I, Q, U map) and it has therefore an expansion in the spherical harmonic domain with a
set of coefficientsai

ai = Yêi. (42)

HereY is the matrix that performs the transformation. It is made ofspin-0 and spin-2 spherical harmonic functions. The coefficients
shall now be smoothed with the same window function that we used on the high-resolution map:

ãi =Wai. (43)

Next we turn the smoothed coefficients back to a map

ẽi = Y−1ãi (44)

and compose the smoothed matrix

Ñ =
∑
λi ẽi · ẽT

i . (45)
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We note that becausẽN is symmetric, its eigenvalues are real and its eigenvectorsmake an orthogonal system. However,λi and̃ei are
not in general the eigenvalues and eigenvectors of the smoothed matrixÑ. This is particularly important whenever the unsmoothed
noise covariance matrix,N, is singular and therefore its calculation needs to be regularized, as described in Sect. 3.1. In such cases,
special care may need to be taken to account for effects of such singularities on the smoothed covariance. As wepoint out in the
next Section, the unsmoothed covariance is indeed commonlyexpected to be singular or nearly so and therefore a general procedure
of treating singular cases is needed. We will discuss a proper way of dealing with such an issue in Sect. 6.2.

In addition, the smoothing procedure on its own will often lead to singular eigenvectors of the smoothed covariance matrix,
with the eigenvalues corresponding to those close to zero. Though at a first glance such eigenvectors may look like being strongly
constrained by the data, their actual value in the analysis is negligible as the sky signal in those modes is also smoothed. The
nearly vanishing variance of those modes will often spuriously exaggerate the smoothing and map-making artifacts likely present
whenever any inverse noise weighting needs to be applied. Toavoid such problems hereafter we compute the inverse of the smoothed
covariance via its eigenvalue decomposition and set the eigenvalues of all the nearly singular modes to zero. The criterion for
selecting the nearly singular modes will in general depend on the case at hand.

In some cases the eigenvalue decomposition of the smoothed matrix may not be readily available or its computation not desirable.
We can then regularize the inversion ofÑ by adding some low level of the pixel-independent uncorrelated noise. For consistency,
a random realization of such noise should also be added to thecorresponding maps. We note that both approaches are effectively
equivalent and that the choice of the singularity thresholdneeded to select the singular eigenmodes corresponds roughly to the
choice of the noise level to be added. We will commonly use thelatter approach in some of the power spectrum tests discussed later.

3.4. Singularities

As we have pointed out in Sect. 3.1, the inversion of the inverse noise covariance matrix,N−1, Eqs. (20) & (11), often needs to be
regularized due to the presence of singular or numerically singular modes. In this Section we discuss the origin of such modes.

We first note that in all cases considered here the inverse covariance can be expressed as

N−1 = ATM−1 A, (46)

whereM−1 is defined to be,

M−1 ≡

N−1, for the optimal maps;

N−1
u − N−1

u B
(
P−1 + BTN−1

u B
)−1

BTN−1
u , for the destriped maps.

(47)

We assume that the pointing matrix,A, has full column rank, and thusAx = 0⇒ x = 0. This is equivalent to an assumption that the
sky signal can indeed be estimated from a given data set. Though this may not be always the case, in particular for the polarization
sensitive experiments, it can usually be achieved if some ofthe ill-constrained pixels are removed from consideration. Given this
assumption, the problem of the singular modes ofN−1 becomes that of the matrix,M−1, defined above.

Let us consider the optimal map case first. The matrixM−1 is equal to the inverse of the time-domain noise covariance,N−1.
The latter, Sect. 2.2, is a block Toeplitz matrix with each block defined by an inverse of the noise power spectrum, Eq. (21). Each
of those blocks describes the noise properties of one of the stationary data segments assumed in the simulations. For each block the
eigenmodes corresponding to the lowest frequencies as permitted by the length of the segment have eigenvalues vastly smaller than
the high frequency modes. These modes can therefore lead to near singularities. This is specifically true for zero-frequency modes
corresponding to an offset of each of the stationary data segments. The (near) null space of the full matrix will be therefore spanned
by all such vectors corresponding to each of the segments.

Due to projection effects, not all of those modes result in singular modes of the final pixel domain noise covariance. However, if
for a mode,t, from the null space ofN−1, there exists a pixel domain vector,x, such ast = A x, the inverse noise covariance will
be singular with eigenvector equal tox.

In the studied case, the scanning strategy is such that the sky areas observed in each of the stationary periods overlap, which
efficiently removes most of the potential degenerate vectors. In fact only a single pixel-domainIQU vector of which theI part is
one and all the others zero, called hereafter a global offset, can potentially be singular. We will indeed confirm these expectations
via numerical results later4.

In the case of the maps produced with the destriper codes in the absence of any priors, i.e.,P−1 = 0 theM−1 matrix has as
many singular vectors as the baseline offsets defined by the columns of the offset ‘pointing’ matrix,B. However, as long as all of
the offsets cross on the sky the only singular vector of the pixel-domain covariance will again correspond to the global offset vector
as in the optimal map case. We note however that unlike in thatcase, this time this vector is exactly singular. If a prior isemployed,
as is the case in both the classical and generalized implementations of the destriper technique discussed here, the columns of the
matrix B are no longer singular vectors of the matrixM−1, nor is the global offset vector a singular vector ofN. Nevertheless, at
least for some common choices of the prior the global offset vector remains nearly singular.

4 We note that in the argument presented here the global offset mode is only nearly singular. This is due to our assumed noise power spectrum,
which is finite at zero frequency. In a more realistic case theoffsets of the stationary segments will be however unknown, corresponding to an
infinite amplitude at zero frequency. The noise covariance in such cases should be therefore considered to be strictly singular with the global
offset being the singular eigenvector. In such cases the noise weighting on the right term of the map making equation, Eq. 19,will force the offset
of each of the stationary data segments to be strictly zero. This may not be a sufficiently good approximation in particular for short stationary
time segments. This could, however, be alleviated by introducing the segment offsets as extra degrees of freedom contained in the vector,x, (e.g.
Stompor et al. 2002).
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4. Numerical tests and comparison metric

This paper has two main goals. On the one hand we propose and compare various methods devised to produce the low-resolution
maps, searching for the map-making method which leads to low-resolution maps virtually free of artifacts such as those due to sub-
pixel power aliasing. In parallel we develop the tools to estimate residual noise covariance for such maps, which properly describe
the error of the estimated maps due to residual noise. The numerical results presented in the subsequent sections of the paper aim
therefore at comparing and validating the algorithms whichwe have presented earlier. The discussed comparisons involve standard
statistical tests, such Kolmogorov-Smirnov,χ2, etc. and ones which are specifically devised in the light of the anticipated future
applications of the maps and their covariances. We describesuch tests in this Section.

4.1. Quadratic maximum likelihood power spectrum estimation

One of the main applications for the low-resolution noise covariance matrices we envisage is to the estimation of power spectra,Cℓ.
This is often separated into the estimation of large and small angular scales, usually associated with high and low signal to noise
regimes. The methods discussed here are relevant for large angular scales. The successful estimation of the underlyingtrue power
spectrum of the sky signal sets demanding requirements for the quality of the maps produced for such a purpose as well as the
consistency of the estimated noise covariance and the actual noise contained in the map. For this reason we will use hereafter power
spectrum estimation as one of the metrics with which to evaluate the quality of the proposed algorithms.

We will use the Quadratic Maximum Likelihood (QML) method for the power spectrum estimation as introduced in (Tegmark
1997) and later extended to polarization in (Tegmark & de Oliveira-Costa 2001). Given a map in temperature and polarization
m = (T,Q,U), the QML provides estimates of the power spectra, that read,

ĈX
ℓ =

∑

ℓ′ ,X′
(F−1)X X′

ℓℓ′

[
mTEℓ

′

X′m− tr(NEℓ
′

X′)
]
. (48)

Here,ĈX
ℓ

is an estimated power spectrum,X = TT,EE,TE,BB,TB, or EB, andFℓℓ
′

XX′ is the Fisher matrix defined as

Fℓℓ
′

XX′ =
1
2

tr
[
C−1 ∂C
∂CX
ℓ

C−1 ∂C
∂CX′
ℓ′

]
. (49)

TheE matrix is given by

EℓX =
1
2

C−1 ∂C

∂CX
ℓ

C−1, (50)

whereC = S(Cℓ) + N is the covariance matrix (signal plus noise contribution) of the map,m. HereCℓ is a fiducial power spectrum
needed for the calculation of the signal part of the covariance. In this paper we will take it to be given by the true power spectrum
as used to produce the simulated skies. Though this would be an unfair assumption, while testing the performance of this power
spectrum estimation technique, it is justified in our case, where the fact that it leads to the minimal estimation uncertainties increases
the power of our test. (Indeed the QML estimator is in fact also known to be equivalent to a single iteration of a quasi-Newton-
Raphson procedure to search for the true likelihood maximum(Bond et al. 1998).)

More details about the QML method can be found elsewhere (e.g. Tegmark 1997; Tegmark & de Oliveira-Costa 2001; Efstathiou
2006). Gruppuso et al. (2009) describes the specific implementation of the method, nicknamed Bolpol, as used in this workand
discusses its performance in the application to the WMAP 5 year data.

Hereafter, we neglect any systematic effects of either instrumental and/or astrophysical origins. Nevertheless we note that if
the final CMB map is obtained via some linear cleaning procedure involving maps computed either for different detectors and/or
frequency channels, the results of this paper will be still relevant and the noise covariance of the ‘cleaned’ CMB map canbe
computed via a linear combination of the single map covariances calculated in turn with help of the procedure discussed here.

4.2. Noise bias

In the map-making methods considered in this paper residualnoise in the maps is independent of the sky properties and completely
defined by the time-domain noise properties and the scanningstrategy. The noise present in the maps contributes to the power
spectrum estimates of the map signal. We will therefore refer to this contribution as the noise bias and use it to quantifythe noise
level expected in the maps of our different methods in a manner more succinct and manageable than the full noise covariance.

The noise bias is defined to be the expectation value for angular power spectrum in the noise-only case

NXY
ℓ = 〈C

XY,noise
ℓ

〉, (51)

where X and Y stand for T, E and B. In the general case of a quadratic estimator, such as QML, Eq. (48),
(Tegmark & de Oliveira-Costa 2001), the power spectrum estimates are given as a quadratic form of the input map,m,

CXY
ℓ = mTQXY

ℓ m = tr QXY
ℓ mmT. (52)

By takingm to be noise-only, the noise bias can be expressed as

NXY
ℓ = 〈C

XY,noise
ℓ

〉 = tr QXY
ℓ N. (53)



R. Keskitalo et al.: Residual noise covariance for Planck low-resolution data analysis 13

Table 2.Frequently used symbols in this paper.

Symbol Definition
C pixel-pixel covariance matrix
N noise covariance, map domain
N noise covariance, time domain
N ′ correlated (1/ f ) noise covariance, time domain
M−1 white noise covariance, map domain
Nu white noise covariance, time domain
Mp 3× 3 observation matrix
P prior baseline offset covariance
A detector pointing matrix
B offset-to-TOD matrix
x baseline offset vector
m 3Npix Stokes I,Q,U map vector
ŝ map estimate
n noise vector
n′ correlated noise vector
nu white noise vector
d TOD vector
s sky map
ei Cartesian unit vector along thei:th axis

Given the eigenvalue decomposition of the noise covariancematrix, N =
∑

i λiêiêT
i , we can evaluate the noise bias as

NXY
ℓ =

∑

i

λiêT
i QXY
ℓ êi. (54)

In the following we will validate the noise covariance matrices, estimated for the recovered sky maps, with the help of their respective
noise biases, which we will compare to results of Monte Carlosimulations. In this context it is particularly useful to consider a
pseudo-Cℓ estimator that assumes uniform pixel weights and full sky. For this estimator, the operatorQXY

ℓ
is

QXY
ℓ =

1
2ℓ + 1

(
YX
ℓ

)†
YY
ℓ , (55)

whereYX
ℓ

has 2ℓ + 1 rows that are maps of the appropriate spherical harmonics.It maps a map vector into a vector of spherical
harmonic expansion coefficients{aX

ℓm} wherem = −ℓ . . . ℓ.
The procedure we implement here involves two steps. First for every estimated noise covariance we compute analytically

the noise bias using Eqs. (54) and (55). Second, we compute the bias using Monte Carlo realizations of the noise-only mapspro-
duced using the corresponding map-making procedure. The multiplicationsYX

ℓ
ui are conveniently implemented using the HEALPix

(Górski et al. 2005) Fortran 90 subroutinemap2alm. We note that as we consider hereafter only full-sky cases, the noise biases we
compute as described above would be equal to those expected in the Maximum Likelihood estimates of the sky power spectrum,
were it not for the imperfection of the sky quadrature due to pixelization effects (Górski et al. 2005).

5. Simulation

5.1. Scanning strategy

In this study the Planck satellite orbits around the second Lagrangian point (L2) ofthe Earth-Sun system (Dupac & Tauber 2004).
The spin axis lies near the ecliptic plane, precessing around the anti-Sun direction once every six months with an amplitude of 7.◦5.
The telescope line-of-sight forms an 85◦ angle with the spin axis. In addition to these modes, we include a nutation of the spin axis
and slight variations to the 1 rpm spin rate. Details of the scanning simulation can be found from Ashdown et al. (2009) where it
was used in a map-making study.

5.2. Planck detectors

In this Paper we study residual noise in the Planck 70 GHz frequency maps. Planck has twelve detectors at 70 GHz. In the focal
plane they are located behind six horn antennas, a pair of detectors (“Side” and “Main” detectors5) sharing a horn. A pair of
detectors measures two orthogonal linear polarizations. The horns are split in two groups (three horns in a group). The Side and
Main polarization sensitive axes of a group are nearly aligned and the polarization directions of the second group differ from the
first group nominally by 45◦. Two horns from the different groups make a polarization pair that follows the same scan path in the
sky (three pairs in total with slightly different scan paths). As a minimum the observations of a polarization pair are required to
build a polarization map. Due to implementation restrictions the Side and Main polarization axes are not fully orthogonal and the

5 Side and Main refer to two detector branches downstream fromthe orthomode transducer that separates the two orthogonallinear polarizations.
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polarization direction differences between the groups are not exactly 45◦, but the deviations from these nominal values are small
(. 0.◦2). The Side polarization axes of the two groups differ by+22.◦5 and−22.◦5 from the scan direction.

The beams of the detectors were assumed circularly symmetric with a 14′ FWHM (full width half maximum) beam width.
The beams do not impact the residual noise maps or covariancematrices. None of the map-making methods studied here make an
attempt to correct for beam effects in the maps.

5.3. Time ordered data

We computed the NCM’s of our three map-making methods using our noise model spectrum and the one year pointing data of
twelve 70 GHz detectors. We produced NCM’s for bothNside = 8 andNside = 32 pixel sizes. We wanted to compare these NCM’s
to the noise maps made by the same map-making methods. For that purpose we simulated 50 noise-only timelines and made maps
from them. Our correlated noise streams were simulated in six day chunks by inverse Fourier transforming realizations of the
noise spectrum (Natoli et al. 2002). We assumed an independence between the chunks and between the detectors. Fig. 1 contains a
comparison between the power spectra of the generated noisestreams and the model spectra.

Twenty-five of the surveys featured a relatively high 1/ f contribution having the knee frequency,fknee, set to 50 mHz. The other
half was simulated to have a more favorablefknee= 10 mHz. It should be noted that these frequencies have been chosen above and
below the satellite spin frequency, 1 rpm≈ 17 mHz. The slope of the 1/ f noise power spectrum wasα = −1.7. The correlation
timescale of the 1/ f noise was restricted to about one day. This made our noise spectrum flat at low frequencies (below a minimum
frequencyfmin = 1.15× 10−5 Hz ≈ 1/24 h). As we described earlier, it is the minimum frequency that determines the correlation
length of the noise filter in the optimal map-making. In the noise covariance matrix of the generalized destriping, the baseline
correlation length is, however, determined by the knee frequency.

We used a uniform white noise NET of 204µK
√

s for all detectors6. We chose this NET because we wanted to produce noise
maps and covariance matrices whose noise levels are compatible with another CTP study (Jaffe et al. 2009). In all map-making and
NCM computations we assumed a perfect knowledge of the detector noise spectrum.

The noise timelines were processed directly into both low-resolution (Nside= 32) and high-resolution (Nside= 1024) HEALPix
maps using the discussed map-making codes. In theNside = 1024 temperature and polarization maps the mean standard deviations
of white noise per map pixel were 44 and 63µK (Rayleigh-JeansµK). For Nside = 32 maps the corresponding values were 1.4 and
2.0µK.

The high-resolution maps were in turn downgraded to the low target resolution using the schemes detailed in Sect. 2.3.
For the signal error studies described in Sect. 6.3, we scanned simulated foreground maps into signal-only timelines. These

we processed into low-resolution (Nside = 8) maps using the same methods as for theNside = 32 (both directly and through high
resolution). We then extracted the signal error part by subtracting a binned map from the destriped map. The foreground signal
errors were summed with a CMB map to provide a worst case scenario of signal striping in otherwise perfectly separated CMB
map.

5.4. Input maps

To study bandwidth limitation with respect to downgrading we simulated 117 high-resolutionNside=1024 CMB skies corresponding
to the same theoretical spectrum,Cℓ. These maps were smoothed and downgraded toNside=8 using three different Gaussian beams
of widths 5◦, 10◦, 20◦ and three apodized step functions with the choices of (ℓ1, ℓ2) being (20, 24), (16, 24) and (16, 20). A seventh
set of downgraded maps was produced by noise weighting according to the scanning strategy. To comply with this last case,the
smoothing windows include also theNside=8 pixel window function from the HEALPix package.

For the signal error exercise we used the Planck sky model, PSM7 version 1.6.3, to simulate the full microwave sky at 70 GHz.
For diffuse galactic emissions we included thermal and spinning dust, free-free and synchrotron emissions. We then added a
Sunyaev-Zeldovich map and finally completed the sky with radio and infrared point sources. The combinedNside=2048 map was
smoothed with a symmetric Gaussian beam and scanned into a timeline according to the scanning strategy.

For final validation the noise covariance matrices were tested in power spectrum estimation. Each noise map was added to a
random CMB map drawn from the theoretical distribution defined by a fixed theoretical CMB spectrum. The theoretical spectrum
is the WMAP first-year best fit spectrum and has zero BB mode.

All maps in this work are presented in the ecliptic coordinate system. This choice is useful for Planck analysis since the scanning
circles and many map-making artifacts form circles that connect the polar regions of the map. In this coordinate system the galaxy
is not positioned in the ecliptic plane but forms a vertical horse shoe shape around the center of the map (see Fig. 16).

6. Results

In this Section we first focus on the noise covariance matrices computed using different map-making techniques. We discuss and
compare the overall noise patterns implied by such matricesand test the quality of the destriper approximation as applied to the noise
covariance predictions. In the second part of the Section wediscuss the low-resolution maps and evaluate their qualityin the light
of their future potential applications, such as those to thelarge angular scale power spectrum estimation. Due to the computational
resource restrictions the low-resolution results presented here are obtained either with the HEALPixNside= 8 — in particular tests
in Sect. 6.3 and power spectrum estimation tests in Sect. 6.2.3 — orNside= 32 — in most of the other Sections.

6 σ = NET
√

fsample, whereσ and fsamplewere defined in Eq. (21). The 70 GHz detectors hadfsample= 76.8 Hz.
7 seehttp://www.apc.univ-paris7.fr/APC CS/Recherche/Adamis/PSM/psky-en.php

http://www.apc.univ-paris7.fr/APC_CS/Recherche/Adamis/PSM/psky-en.php
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Figure 2. Eigenspectra of the inverse covariance matricesN−1.
MADping, ROMA and Madam results forfknee=50 mHz over-
lap completely. Springtide results are for 10 mHz.

6.1. Noise covariance matrices

First we discuss the noise covariance matrices computed forthe low resolution maps of the direct method. As explained inSect. 2.3
we compute from these matrices the noise covariances of the other downgrading techniques. In the following we consider noise
covariance calculated using 4 different ways. In the first way we compute the noise covariance using the optimal algorithm. For
this purpose we have developed two codes MADping or ROMA, which are described in Sect. 3.1. However, as they are just two
different implementations of the same algorithm, we derive mostof the results presented in the following and involving the optimal
covariance using MADping. We note that whenever results from the both codes are available they have turned out to be virtually
identical within the numerical precision expected from this kind of calculations. The optimal noise covariance matrices are expected
to provide an accurate description of the noise level found in the actual optimal maps. We will test this expectation in the following
and use the optimal results as a reference with which to compare the destriping results.

The three remaining computations of the noise covariance are based on the destriping approach and correspond to different
assumptions about the offset prior as well as baseline length. We consider the following specific cases: a classical destriper calcula-
tion with a baseline of 3600 s (Springtide) and two generalized destriper computations with a baseline of 1.25,s and 60 s (Madam).
For each of these cases we will compare the covariance matrices with each other, with the optimal covariances and then test their
consistency with the noise found in the simulated maps. We note again that this last property is not any more ensured giventhe
approximate character of the destriper approach.

Fig. 2 shows the eigenvalue spectra of some inverse NCMs. We note that all matrices possess a positive semi-definite eigen-
spectrum as is required for any covariance matrix, yet at thesame time they all have one nearly ill-conditioned eigenmode8 , which
renders the condition number, i.e., the ratio of the largestand smallest eigenvalue, very large. This is in agreement with our expec-
tations as described in Sect. 3.4. Indeed the peculiar eigenmodes corresponding to the smallest eigenvalues of the inverse matrices
are also found to be non-zero and constant for theI part of the vector and nearly zero for its polarized components, and thus close to
the global offset vector discussed in Sect. 3.4. The small deviations, on the order of 10−3, exist, as expected, as none of the peculiar
modes is in fact truly singular. We note that the MADping and ROMA results, both computed in this test, are seen in the figureto be
indistinguishable. They also coincide very closely with the Madam results computed for the samefknee = 50 mHz. The Springtide
results, computed withfknee = 10 mHz are close to, though not identical with, the Madam results for the very same value offknee
when a longer (60 s) baseline is used for Madam.

Fig. 3 depicts the estimated Stokes I, Q and U pixel variancesas well as the covariance between them. These quantities are
dominated by the white noise contribution and all methods describe white noise in the same manner. The top right-most panel
shows the reciprocal condition number (1/condition number) of the 3× 3 blocks of the matrixATN−1

u A for each of the sky pixels.
These numbers define our ability to disentangle the three Stokes parameter for each of the pixels. Whenever they are equalto 1/2
the parameters can be not only determined but their uncertainties will not be correlated. If the reciprocal condition number for a
selected pixel approaches 0, the Stokes parameters can not be constrained. In the cases considered here, the Stokes parameters can
clearly be determined for all the pixels.

Fig. 3 shows a strong asymmetry between the IQ and IU blocks. The fact that the polarization axes of the two detectors of a
horn are not fully perpendicular makes the I noise of a pixel correlate with the Q and U noises of the same pixel. We can imagine an
instrument basis, where one group of three horns measures the Q of this basis and the other group measures the U of the same basis.
Because Side and Main polarization axis deviations from theorthogonality have similar magnitudes in the two groups, weexpect
the diagonals of IQ and IU blocks to be similar (symmetric in IQ and IU) in the instrument basis. In the map we use a different

8 A double precision (64 bit) matrix is numerically ill-conditioned when the condition number exceeds approximately 1012 (Press 1992). For
our matrices the situation is not as dire but the first eigenmode still deserves special attention.
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polarization basis9. Building the noise weighted map (in the map-making) rotates the Q and U from the instrument basis to the map
basis. The IQ and IU blocks become asymmetric in this rotation.

Figure 3. Top: MADping pixel variances for temperature and polarization and the reciprocal condition number of the pixel observa-
tion matrices.Bottom: Correlation coefficient×103 between I-Q, I-U and Q-U pixels. This part of the noise covariance is dominated
by white noise which is modelled equivalently in all three paradigms. Hence, MADmap, ROMA, Madam and Springtide resultsare
nearly identical. Maps are rotated into galactic coordinates to show the structure near the ecliptic poles.

Figs. 4–5 show plots of a single column of the noise covariance matrix. The column corresponds to reference pixel number
0. In the HEALPix nested pixelization scheme forNside = 32 resolution, pixel 0 is located at the equator. In the plotseach pixel

has the value〈mpmq〉 normalized by
√
〈m2

p〉〈m2
q〉. Thus the pixel values of the plots represent correlation coefficients. Due to this

normalization, the reference pixel automatically gets unit value and is later set to zero in order to bring out smaller features of the
other elements of the columns.

The sky is scanned from one ecliptic pole to the other. The NCMcolumn maps are characterized by bands of correlation along
the scanning rings. Pixels near the equator, such as the reference pixel 0, are only observed during a few-hour window as the
satellite scanning ring is rotated over the course of the survey. The two crossing bands of higher correlation correspond to two
pointing periods half a year a part that observe the reference pixel 0.

For both generalized destriping and optimal map-making, there is a visible gradient in the correlation along the scanning ring.
Pixels that are observed immediately before or after the reference pixel have the strongest correlation. The conventional destriping
with its hour long baselines assumes constant correlated noise over the scanning ring and does not, therefore, show thisfeature.

Figs. 4 and 5 show that the strongest cross-correlations (∼ 1%) exist between Q and U noise maps. Side and Main polarization
sensitive directions differ slightly from 90◦ and, as a result, small (∼ 10−4%) IQ and IU correlations remain.

Figs. 6-7 show plots of the NCM columns of another reference pixel (number 2047). This pixel is located at the northern ecliptic
pole region and it exhibits a very different correlation pattern compared to the previous case. Since the pole is visited frequently
through the course of the survey, it becomes correlated withthe rest of the map as a whole. Correlation amplitude is increased by a
factor of 3 from the equator pixel case (the increase can be seen from the color bar ranges) and there is now a distinct asymmetry
between northern and southern hemispheres. As one expects,the asymmetry only appears in optimal and generalized destriping
estimates.

6.2. Noise covariance validation

In this Section we report the results of three different validation tests. We performed aχ2 test, compared the noise biases computed
from the matrices and corresponding Monte Carlo maps and finally used the matrices and Monte Carlo maps as inputs to angular
power spectrum estimation.

6.2.1. By χ2

Residual noise expected in the recovered maps is Gaussian due to the linear character of all the map-making methods considered
here. Thus the noise is completely described by its covariance matrix. More specifically, in the absence of any singular modes of

9 In a HEALPix map the Stokes parameters Q and U at a point in the sky are defined in a (x,y,z) reference coordinate, where the x-axis is along
the meridian and points to south, the y-axis is along the latitude and points to east, and the z-axis points to the sky (Górski et al. 2005).



R. Keskitalo et al.: Residual noise covariance for Planck low-resolution data analysis 17

Figure 4. A single column of the MADping covariance matrix corresponding to a pixel at the ecliptic equator. For both ROMA and
Madam 1.25 s baseline counterparts all visible characteristics remain unchanged. We plot the value of the correlation coefficient,R,
multiplied by 103. In order to enhance the features, we have halved the range ofthe color scale.

Figure 5. A single column of the Springtide covariance matrix corresponding to a pixel near the ecliptic equator. For descriptionof
the normalization, see text.
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Figure 6. A single column of the MADping covariance matrix corresponding to a pixel at the ecliptic pole. For both ROMA and
Madam 1.25 s baseline counterparts all visible characteristics remain unchanged. We plot the value of the correlation coefficient,R,
multiplied by 103. In order to enhance the features, we have halved the range ofthe color scale.

Figure 7. A single column of the Springtide covariance matrix corresponding to a pixel near the ecliptic north pole. For description
of the normalization, see text.
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the estimated residual covariance,N, the residual maps,m = ŝ − s, are drawn from a multivariate Gaussian distribution defined by
N. Therefore, theχ2 statistic, defined as,χ2 = mTN−1m, is drawn from aχ2 distribution with 3Npix degrees of freedom (dof).

If any singular mode is present we simply replace the matrix,N−1, in the definition ofχ2, by a matrix,N′−1, which is likeN−1

in all respects but has the eigenvalue corresponding to the singular vector set to 0. We note that if the eigenvalue decomposition of
the matrixN−1 is not available or too costly to compute, we can achieve numerically the same effect by definingN′ = N + η2 vvt,
wherev is a singular vector we want to project out andη2 is a large positive number for which however inversion ofN′ is still stable
(e.g. Bond et al. 2000). As we subtract one degree of freedom corresponding to the excluded, ill-conditioned eigenmode we expect
that there are in total 3Npix − 1 degrees of freedom left in our maps

We can apply the analogous test to the smoothed noise covariance. Theχ2 statistic is defined as before with the smoothed
covariance matrix as well as residuals used now in place of the respective unsmoothed objects. As we commented on that in
Sect. 3.3, the inverse of the smoothed covariance has to be appropriately regularized, to avoid the results of the test being biased
by the artifacts potentially present at the scales smaller than the smoothing kernel and therefore not containing any cosmologically
useful information. The effective number of degrees of freedom left in the data will coincide then with the number of eigenvalues
which have not been set to zero in the regularization process. Alternately, if the preferred regularization approach involved adding
some low level of the white noise, Sect. 3.3, the number of thedegrees of freedom is equal to 3Npix.

In addition, one needs to take care of the singularity of the unsmoothed noise covariance. This has to be done explicitly if
the smoothed version of the ill-conditioned eigenmode,v, does not belong to the null space of the inverse smoothed NCM, i.e.,
Ñ−1 (Lv) ; 0. To do so, we employ the same approach as before, replacing the regularized inverse of the smoothed covariance
matrix, Ñ−1, by,

Ñ
−1→

[
Ñ + η2 Lv (Lv)T

]−1 η2→∞
−→ Ñ−1 −

(
Ñ−1 Lv

) [
(Lv)t Ñ−1 (Lv)

]−1 (
Ñ−1 Lv

)T
(56)

where L is a smoothing operator, Eq. (29), and the last expression follows from the Sherman-Morrison-Woodbury for-
mula (Woodbury 1950). This last operation additionally reduces the number of degrees of freedom by 1 (or whatever number
of modes,v is to be projected out).

The Kolmogorov-Smirnov test can be used to test whether a setof samples conforms to some theoretical distribution. The test
estimates the probability of the maximal difference between theempirical distribution function,

Fn(x) =
1
n

n∑

i=1

Θ(xi), (57)

of the observationsxi (in our case the individualχ2) and the theoretical cumulative distribution function.Θ(x) is the Heaviside step
function. We note that in this work we take an advantage of thefact that we can simulate the residual noise directly. Though this is
clearly not the case when real data are considered, the testsdescribed here can be applied to a difference of two sky maps produced
by disjoint sets of detectors operating at the same frequency and can therefore be a useful test of the real life data processing integrity
(e.g. Stompor et al. 2002).

Figs. 8–10 show the two cumulative distribution functions for 25 noise maps in the case of the direct method. Reportedp-
values are the probabilities of observing this level of disagreement even if the noise description was exact. Conventionally, the level
p < 0.05 is considered to be enough to reject the null hypothesis that the distributions match.

We then proceed to study the agreement between downgraded noise maps and the noise covariance matrices. As a test case,
we use the Madam NCM for 10 mHz knee frequency, 1.25 s baselines. We smoothed the covariance matrix using an apodized
window function, setting the thresholds to 2Nside and 3Nside respectively. As expected, the smoothed matrix is extremely singular.
We compute its inverse by including only the eigenvalues that are greater than 10−2 times the largest eigenvalue, including 20, 882
of the 36, 864 available modes.

Fig. 11 shows the empirical distribution functions of theχ2. Even though the matrix is computed for the direct method, the
inverse noise weighted (INW) maps conform well to it. However, when we apply the smoothing kernel to the high-resolutionmaps,
there is a clear disagreement. This stems from the fact that in this downgrading the high resolution pixels are not correctly (inverse
noise variance) weighted when we compute the low-resolution map. If we first produce a low-resolution direct method or INW map
and then smooth it, the agreement is much better. This is shown in the bottom row of Fig. 11.

In the case of the direct method maps our results show that only optimal (noise) maps and their respective noise covariance
are mutually consistent in the light of theχ2 statistics. The good statistical agreement in this case does not depend on the time
domain noise characteristics nor map resolution. This is expected given that the noise covariance estimator implemented in the
optimal codes, Eq. (20), is an exact expression describing the noise properties in the pixel domain, and that we have assumed
perfect knowledge of the time domain noise.

The level of consistency found in the destriping cases varies depending on the underlying time domain properties, i.e.,fknee, and
on the assumed baseline length. In the case offknee= 50 mHz, we have not found a satisfactory agreement in any of the considered
destriping cases. For the lowerfknee= 10 mHz the results obtained with the generalized destriper,Madam, are satisfactory for the
short, 1.25 s, baseline choice, and marginal for the long one, 60 s. Thelatter result is consistent also with that obtained using the
classical destriper, Springtide.

In the case of direct low-resolution map-making, the discrepancy between the noise maps and the noise covariance matrixstems
from the destriping approximations. Both destriping approaches assume that the correlated part of the noise is perfectly modelled
by a set of baseline offsets. Correlated noise occurring at frequencies higher than what the baselines can model is not removed from
the TOD and therefore is binned onto the map For short baselines or low knee frequencies the unmodelled noise manifests asa
relatively small angular scale correlation and does not bias the power spectrum estimates at lowℓ.
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Figure 8. MADping empirical χ2 distribution
function from the 25 residual noise maps com-
pared with the theoretical cumulative probabil-
ity density. The black stair line is the empiri-
cal distribution function, the blue solid line is
the theoreticalχ2 distribution for 3Npix − 1 =
36, 863 degrees of freedom. It is the same for
all direct method maps in Figs. 8–10. The red
dashed line is the least squares fit of theχ2 dis-
tribution to the experimental distribution (dof
being the fitting parameter). The horizontal axis
is translated to the expected center of the distri-
bution,〈χ2〉 = dof = 36, 863, and scaled by the
expected deviation,σχ2 =

√
2dof.

Figure 9. Madam empirical χ2 distribution
functions from the 25 residual noise maps com-
pared with the theoretical cumulative probabil-
ity density.

Figure 10. Springtide empiricalχ2 distribution
functions from the 25 residual noise maps com-
pared with the theoretical cumulative probabil-
ity density.Left: direct method.Right: INW.

We conclude that the noise covariance of the low-resolutionmaps produced by the destriping algorithm needs to be used with
care. The flexibility of the generalized destripers permitting them to use different baseline lengths makes them in this context the
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Figure 11. Madam empiricalχ2 distribution functions from 60 residual noise maps compared with the theoretical cumulative
probability density. For a smoothed map, we count the degrees of freedom as the number of included eigenmodes in the inverse
NCM. Top: Three sets of low-resolutions maps using just one of the low-resolution methods at a time. The high-resolution maps
for INW and smoothing methods hadNside= 1024.Bottom: Since it is suboptimal to compute a low-resolution spherical harmonic
expansion from a noisy high-resolution map, we test how wellthe smoothing approach worksin conjunction with the two pixel-
based downgrading methods.

preferred choice. We emphasize however that, if the accuracy of the noise description is the major concern, then only theoptimal
techniques are suitable. In the next Sections we will reconsider all these low-resolution map-making techniques in thecontext more
specific to the large angular scale power spectrum estimation work, which is envisaged as the main application of the low-resolution
maps and their covariances.

6.2.2. By noise bias

In this Section we describe the calculation of the average angular power spectrum of noise maps, i.e., the noise bias — seeSect. 4.2,
using a pseudoCℓ estimator for which both the NCM estimate and the Monte Carlomap averages are feasible to compute. Testing
the noise covariance matrix by comparing estimated and measured noise biases can be viewed as complementary to theχ2 tests
described in the previous Section. It can certainly providemore information than the plainχ2 test, as instead of simple pass or fail
indicator, the noise bias comparison will tellat which angular resolution the noise model agrees with the data. At the same time,
the noise bias is less sensitive to the anisotropic featurespresent in the residual noise. The noise bias test is clearlymore directly
relevant for power spectrum estimation.

Figs. 12–14 compare noise bias averages from 25 noise realizations of the maps of the noise residuals to the analytical estimates,
Eq. (54), based on the estimated noise covariance matrix. Map spectra are computed using the HEALPixanafast utility and the
estimated noise biases using the correspondingmap2alm subroutine. We only show the autospectra, TT, EE and BB, as the scanning
has decoupled the modes to large extent and only minimal coupling between the modes exist.

The error band around the averages is the standard deviationof the individualCℓ values divided by
√

25. Each plot exhibits up
to five curves: direct, noise weighted and harmonic smoothednoise biases, and two analytical estimates.

The results derived for the case of the Madam runs with the short baseline, 1.25 s, and the high knee frequency, 50 mHz, as
shown in Fig. 12, agree now very well with the MADping results. This is unlike in thechi2 test discussed earlier, indicating that
those were the anisotropic features responsible for the latter disagreement. The numerical calculations of the noise bias are in this
case agree very well with the analytic predictions, Sect. 4.2. Both these facts validate the destriper approximation tothe noise
covariance in the light of this test, which is found to describe sufficiently precisely noise in the low-resolution map. This conclusion
agrees with those derived using theχ2 test earlier.

The long baseline case is shown in Fig. 13 forfknee = 50 mHz and computed using the generalized destriper, and in Fig. 14
for the low value of the knee frequency, 10 mHz, and based on Springtide results. We find that in the high knee frequency case
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the prediction and numerical results differ rather dramatically, highlighting the failure of the destriper approximation in such case
already seen with theχ2 test. We note here that the failure seems to be affecting the largest angular scales as both the numerical
and analytical results tend to converge at the highestℓ end considered in this analysis. Similar results are found for the classical
destriper maps and covariances. For the lowfkneecase the agreement is found to be marginal, with visible deviations seen generally
at ℓ . 5 and are the most significant in the case of the BB mode spectrum. The results obtained using Madam in the analogous case
are nearly indistinguishable.

We note that our analytic prediction are well in line with WMAP findings (Hinshaw et al. 2007; Page et al. 2007) and studies of
the destriping framework (Efstathiou 2005, 2006).

Figure 12. Analytical and mean Monte Carlo noise biases from Madam runsat fknee= 50mHz using a short 1.25 s baseline. Grey
band is the 1-σ region for the average, computed by dividing the sample variance by

√
25.

Figure 13. Analytical and mean Monte Carlo noise biases from Madam runsat fknee = 50 mHz using a long 60 s baseline. Grey
band is the 1-σ region for the average, computed by dividing the sample variance by

√
25. Long baselines clearly fail to model the

correlated noise.

Figure 14. Analytical and mean Monte Carlo noise biases from Springtide runs atfknee= 10 mHz.

Averaged noise biases conform to the analytical estimates on almost all accounts and deviations are small compared to the
absolute noise bias. As a warning example we include the results of modelling residual noise from thefknee = 50 mHz timelines
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Table 3. Comparison of TT power (rms) in the stripe maps atNside= 8

CMBa Foregroundsb

Map-maker Direct Averaged Smoothed Direct Averaged Smoothed
Madam, 1.25s 5.44µK 7.29 nK 5.20 nK 9.46µK 4.67 nK 2.14 nK
Madam, 60s 2.07µK 3.31 nK 1.98 nK 3.81µK 3.21 nK 2.23 nK

a Binned CMB map rms is 37.34µK
b Binned foreground map rms is 196.3 µK

using 60 s baseline offsets. This leaves more noise in the maps but the corresponding analytical estimate is actually lower, since
noise not modelled by the baseline offsets is neglected.

At 10 mHz the Madam results for long 60 s baselines are equivalent with Springtide results: both succeed to estimate noisebias
at low knee frequency but should not be used for high knee frequencies as such.

Our noise bias estimates for EE and BB spectra are equal, but the averaged spectra for the Monte Carlo maps appear visually
different in this respect. To ensure that this is only due to MonteCarlo noise we ran Madam in Monte Carlo mode, simulating noise
on the fly and avoiding the costs associated with storing of the time ordered data. After averaging over 117Nside = 8 noise map
spectra we found that the differences between EE and BB noise map spectra were at most 10%.

In the Appendix A.1 we replot some of these figures after subtracting the analytical bias and dividing by the Monte Carlo sample
deviation to highlight the differences between the analytical and numerical results.

6.2.3. By power spectrum estimation

Our final validation procedure for the noise covariance matrices was to use them inCℓ estimation. Due to resource constraints this
exercise was conducted at a lowerNside= 8 resolution. All three map-making codes produced maps fromthe 25 noise realizations.
Each realization was paired with an independent realization of the CMB sky and the co-added maps were processed using theBolpol
code, an implementation of the QML estimator described in Sect 4.1. The 25 power spectrum estimates for each multipole were
then averaged over and the Bolpol-determined error bars were accordingly divided by

√
25.

The example of the results is shown in Fig. 15. These estimates were obtained for the case with the low knee frequency,
fknee = 10 mHz, using the conventional destriper, Springtide. We note they do not hint unambiguously at any problem with the
estimated covariance, even if theχ2 (strongly) and the noise bias (mildly) tests may indicate otherwise. This is likely in part due to
a lower sensitivity of the power spectrum test on the one handand on the other due to the fact that the lower resolution has been
used in this last case.

Similar statistically good agreements can also be seen in the case of the higher value offknee, if the covariance is computed
using either the optimal or generalized destriping technique with the short baselines of 1.25s. If longer baselines are used, i.e., 60s,
the estimates of the polarized spectra, both E and B, are visibly discrepant with the assumed inputs. Similar disagreement can be
seen if the off-diagonal elements of the covariance matrices are neglected. In both of these cases, no particular effect on the total
intensity spectrum can be noticed in the range of investigated angular scales. We illustrate all these statements in Appendix A.2.
These observations emphasize the importance of precise estimation of the noise covariance in particular for the polarized power
spectra.

6.3. Low-resolution maps

In the previous sections we have discussed our ability to estimate correctly the properties of the noise present in the low-resolution
maps. We have demonstrated that this is indeed the case for all considered resolution downgrading strategies and both optimal
and destriper maps. Though in the latter case a baseline length needs to be carefully chosen depending on the time domain noise
characteristic.

In this Section we focus on the low-resolution maps themselves. We will look at them from three different perspectives, evalu-
ating the level of the map-making artifacts left in the maps,the properties of the sky signal and the level of the noise.

In Fig. 16 we show the differences of the noise-free low resolution maps computed using different downgrading approaches
discussed earlier and the input map used for the simulations. The reference low resolution version of the input map has been
obtained via simple binning of the sky signal directly into low-resolution pixels.

In the case of the direct method we see clearly the extra powerspread all over the sky in all three Stokes parameters. Any other
proposed approach clearly fares much better leading to a substantial decrease of the level of the observed artifacts. This is quantified
with the help of the pseudo-spectra in Fig. 17 and in Table 3, where we have collected the root mean square estimates for thesignal
residual maps.

The CMB part of the low-resolution maps also depends on the downgrading technique. These attempt to suppress the high-ℓ
(subpixel) power and therefore can potentially affect the CMB angular power spectrum even within the band of interest. Fig. 19
shows the full-sky pseudo-Cℓ spectra averaged over 117 CMB realizations, downgraded using inverse noise weighting and a number
of smoothing kernels. Comparison of the spectra shows that it is hard to attain sub-percent bias even atℓ = 2Nside. If these were
estimates from an actual power spectrum estimation code with correlated noise and a sky cut, the smoothed covariances would,
however, be regularized by adding white noise effectively leading to a considerable uncertainty already at that multipole due to
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Figure 15. Averaged power spectrum estimates over 25 noise and CMB realizations. The noise has a 10 mHz knee frequency.
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Figure 16. Examples of signal striping. We show the difference between a binned and destriped signal-only maps. Rows correspond
to direct Madam results, 1.25 s and 60 s, and inverse noise weighted 1.25 s baseline case respectively.

Figure 17. Comparison of CMB and stripe power spectra reveals that the striping can significantly bias the EE and BB power
spectrum estimates. Stripe map spectra are computed from maps shown in Fig. 16.

white noise and a sky cut. Methods that produce less than 5% bias forCℓ estimates atℓ = 2.5Nside are the Gaussian 10◦ symmetric
beam and the apodized step function for (ℓ1, ℓ2) = (2 or 2.5Nside, 3Nside).

In Fig. 18 we show the actual sky signal spectra estimated forthe low-resolution, noiseless maps. It can be seen that the
estimated band powers are not drastically affected with respect to the estimates coming from the binned maps. Nevertheless, the
case of estimates coming from the direct low-resolution maps show some deviation from the binned case. The bias is most prominent
in the BB low multipole estimates. We note that since the the signal covariance matrix is ill-conditioned it was regularized by adding
a small white NCM (σ ≃ 1µK) and each signal map received a noise realization consistent with this white NCM.

None of the proposed downgrading approaches can yield a noise level better than the direct method. This is because noise-
weighted downgrading or smoothing both introduce departures from the optimal weighting of the noise present in the data. The
expected level of the noise is therefore an important metricwith which to compare the different downgraded maps. Fig. 20 shows
the analytical noise biases evaluated from anNside=8 Madam noise covariance matrix after smoothing using the 6 different beam
window functions defined in Sect. 5.4 and the unsmoothed casethat is a close match to the noise weighted maps. The narrowest
Gaussian window function having an FWHM equal to 5◦, slightly less than average pixel width, appears pathological due to aliasing
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Figure 18.Band power estimates of CMB with CMB and foreground stripes.
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RawCℓ Deconvolvedℓ(ℓ + 1)Cℓ Fractional difference

Figure 19. Bandwidth limiting the signal using various window functions. In the QML method the quadratic map function is
multiplied with the inverse Fisher matrix to produce the QMLpower spectrum estimate (see Sect. 4.1). The inverse Fishermatrix
can correct some of the aliasing effects that cause bias in the power spectra. For this figure the pseudo-Cℓ spectra were computed
from the full sky CMB maps. To simulate the effect of the inverse Fisher in QML we deconvolved our pseudo spectra with a
mode coupling kernel that we computed from a map of ones. The three panels show the same curves first as raw estimates, then
after deconvolving the smoothing and pixel windows and finally after subtracting and dividing by input model. The apodized step
window functions (“cosine”) correspond to choices of the thresholds (ℓ1, ℓ2) as (20, 24), (16, 24) and (16, 20) respectively. Here,
solid lines are for Gaussian windows and dashed lines for theapodized step functions. Note that the noise weighting and direct
low-resolution map-making produce similar aliasing effects.

effects. The rest of the test cases are more stable but feature a non-negligible amount of aliased power for multipole moments beyond
ℓ = 3Nside (theCℓ are not normalized with the conventionalℓ(ℓ + 1)/2π).

Figure 20. TT noise bias computed from smoothed covariance matrices. Solid lines correspond to the Gaussian window functions
and the dashed ones to apodized step functions.Left: Linear vertical scale.Right: Logarithmic vertical scale.

6.4. Resource requirements

Table 4 lists some CPU time costs for variousNside, baseline length and knee frequency combinations. Being a considerably ex-
pensive operation, we have not tested the scaling of the optimal calculation for this particular exercise. See Borrill (1999) for more
discussion of scaling. The Madam resource cost scales roughly linearly with respect to the number of pixels and the so-called
baseline correlation length.

Resource requirements of the three approaches vary. As withmap-making, the destriping problem size is related to the chosen
baseline offset length. The same consideration applies also for noise covariance estimation. Both the Madam generalized destriper
and the MADping covariance calculations scale by the lengthof the noise filter. ROMA does the calculation in Fourier space and as
a results scales as the the logarithm of the noise filter length. The MADping algorithm has no dependency (ignoring communication
and final file writing) on the number of pixels being used. Although the computation prefactors are not specified, we can seethat at
Nside= 32, MADping is already more resource efficient than ROMA (cf. rows two and three).
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Table 4. CPU time costs for 12 70GHz detector years= 3 · 1010 samples. Calculations are done on 2.6GHz Quad-core Opterons.

Case Nside wcorr
a PEs CPUh

MADping 32 131,073 14,000 80, 000b

MADping 32 4,097 14,000 7,525
ROMA 32 4,097 512 25,000
ROMA 4 16,385 256 480
ROMA 4 4,097 256 410
Madam 1.25s, 50c 64 1,759 1,024 901
Madam 1.25s, 50 32 1,759 512 114
Madam 1.25s, 10 32 8,285 512 438
Madam 10s, 50 32 289 128 42
Madam 60s, 50 32 84 64 34
Madam 1.25s, 50 16 1,759 256 34
Springtide, 10 32 1 1,024 256
Springtide, 10 16 1 1,024 51

a The filter or baseline correlation length
b performed on an earlier, dual-core version of the machine
c 10 and 50 refer to 1/ f knee frequencies in mHz

7. Conclusion

We have presented the formalism and tools to compute the residual noise covariance matrix for three map-making paradigms studied
for Planck (an optimal method and two destriping methods). The structure of these matrices follows from the scanning strategy but
is modulated by the underlying noise model that defines the map-making method. The matrices were tested against Monte Carlo
noise maps that were processed from correlated noise streams into maps using MADmap, Madam and Springtide map-making
codes.

The most accurate correspondence between the covariance matrix and the noise maps is, as expected, between the optimal
map-makers, MADmap and ROMA, and their covariance matricesand the two codes produce nearly identical matrices. Both the
generalized (Madam) and classical (Springtide) destripers are shown to disregard some medium frequency correlated noise that
cannot be modelled by the chosen baseline offset length. It is shown that for a low knee frequency, 10 mHz, the Springtide baseline
length of 1 hour is sufficient to model the correlated noise and compute the residualnoise covariance. For a high knee frequency,
50 mHz, even the Madam 60 s baselines are too long to suffice. However, using a short 1.25 s baselines (just 96 samples) the Madam
results are extremely close to optimal results even for the high knee frequency.

As a concluding test we used the matrices in actual power spectrum estimation and verified that all methods model residual
noise adequately when the noise approximation (baseline length) is short enough to model the correlated noise.

Resource costs of the methods vary greatly. Although both MADping and ROMA arrive at the same result, the implementations
differ and the ROMA result scales with the resolution of the map. Both optimal implementations are extremely resource intensive.
The Madam method can be used to produce good approximations of the optimal covariance matrices at a fraction of their cost. The
covariance matrices for these tests were evaluated for two low resolutions,Nside = 8 andNside = 32. It is possible to compute the
matrices up toNside = 64 (already 162 gigabytes) or even up toNside = 128 (2.6 TB) but the computational scaling of the methods
using the matrices will likely set limits to the usefulness of such resolutions.

We studied two classes of downgrading strategies, those that make an attempt to limit the signal bandwidth and those thatdo
not. The choice of the best downgrading approach depends on both the accuracy of the resulting noise and signal models. First
measuring our ability to compute an accurate noise covariance matrix and the second describing our ability to control signal effects
such as striping and aliasing.

All methods to produce low-resolution maps have their drawbacks. Direct map-making at low resolution produces an unaccept-
able level of signal striping that is caused by subpixel structure. Downgrading by noise weighting biases the power spectrum through
aliasing effects. The frequently used Gaussian beam smoothing has a significant drawback of suppressing the signal at otherwise
useful angular resolutions. We find that an apodized step function is able to retain a great deal of signal power up toℓmax = 2Nsidebut
even then the power spectrum estimates will be biased beyondℓ = 2.5Nside. However, to accurately evaluate the noise covariance
matrix for a smoothed map, we would need to compute an usmoothed covariance matrix at the high map resolution and then apply
the same smoothing kernel to both the matrix and the map. Disregarding this requirement leads to disagreement between the map
and the matrix that can be alleviated by combining two or moreof the downgrading methods.

Of the downgrading methods considered, we consider smoothing, with a suitable choice of the window function and possibly
a intermediate downgrading step by inverse noise weighting, to produce the best possible low-resolution maps for powerspectrum
analysis.

We presented in this work a method to compute the residual noise covariance of a smoothed, bandwidth-limited map. The
method was shown to produce an accurate description of the noise in the smoothed maps when both the map and the matrix agree
prior to smoothing. Our method of smoothing the covariance matrix makes it possible to consider bandwidth limited low-resolution
maps and produce sub-percent level unbiased power spectrumestimates up toℓ = 2.5Nside.

In this work we have assumed a single frequency channel, uncorrelated noise between detectors, noise that is white at high
frequencies and full sky coverage. In further work any of these constraints can be lifted. The only application that we used the
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covariance matrix was in power spectrum estimation. The downgrading methods that suit power spectrum analyses best maynot be
optimal for different low-resolution analysis, e.g., study of large scale topology. A relevant future direction to explore is the use of
the covariance matrices as inputs in a likelihood code for cosmological parameters.
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Appendix A: Additional material

A.1. Noise biases

For completeness, we present in Fig. A.1 the noise bias computed from the MADmap NCM and the 25 corresponding noise maps
and in Fig. A.2 the Madam bias forfknee= 10 mHz and 60 s baseline.

To highlight differences between the estimates and simulated noise maps we also show the fractional differences in Figs. A.3–
A.5. These plots complete the ones presented in Sect. 6.2.2.

A.2. Power spectra

Here we present another successful test of the covariance matrix used in power spectrum estimation, Fig. A.6. We also show how
the power spectrum estimates can be used to pick out inaccurate residual noise covariances in Fig. A.7.

http://camb.info
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Figure A.1. Analytical and mean Monte Carlo noise biases from MADmap runs at fknee= 50mHz. Grey band is the 1-σ region for
the average, computed by dividing the sample variance by

√
25. Like the TE, TB and EB biases are both consistent with zeroand

are not shown here. The analytical bias corresponds to the unsmoothed case presented in Sect. 6.3.

Figure A.2. Analytical and mean Monte Carlo noise biases from Madam runsat fknee= 10 mHz.

Figure A.3. Averaged noise biases after subtracting the analytical estimate and normalizing with the standard deviation. This plot
contains the same curves as Fig. A.1.

Figure A.4. Averaged noise biases after subtracting the analytical estimate and normalizing with the standard deviation. This plot
contains the same curves as Fig. 12.



R. Keskitalo et al.: Residual noise covariance for Planck low-resolution data analysis 31

Figure A.5. Averaged noise biases after subtracting the analytical estimate and normalizing with the standard deviation. This plot
contains the same curves as Fig. 14.
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Figure A.6. Averaged power spectrum estimates over 25 noise and CMB realizations. The noise has a 50 mHz knee frequency.
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Figure A.7. Averaged power spectrum estimates over 25 noise and CMB realizations. The noise has a 50 mHz knee frequency.
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