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Abstract

Context. Cosmic microwave background (CMB) data analysis

Aims. Develop and validate tools to estimate residual noise cavee in Ranck frequency maps. Quantify signal errdfexts and
compare dierent techniques to produce low-resolution maps.

Methods. We derive analytical estimates of covariance of the residoise contained in low-resolution maps produced using a
number of map-making approaches. We test these analytiedictions using Monte Carlo simulations and their impataagular
power spectrum estimation. We use simulations to quartidylével of signal errors incurred inftBrent resolution downgrading
schemes considered in this work.

Results. We find an excellent agreement between the optimal residniakrcovariance matrices and Monte Carlo noise maps.
For destriping map-makers, the extent of agreement istditthy the knee frequency of the correlated noise componahtiee
chosen baselinefiset length. The significance of signal striping is shown tartsggnificant when properly dealt with. In map
resolution downgrading, we find that a carefully selecteddesiv function is required to reduce aliasing to the sub-@artevel at
multipoles,f > 2Ngqe, WhereNgqe is the HEALPIX resolution parameter. We show thdfisient characterization of the residual noise
is unavoidable if one is to draw reliable contraints on lasgale anisotropy.

Conclusions. We have described how to compute the low-resolution magh,avontrolled sky signal level, and a reliable estimate
of covariance of the residual noise. We have also presentegttzod to smooth the residual noise covariance matricesseridbe the
noise correlations in smoothed, bandwidth limited maps.
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1. Introduction

Over the last two decades observations of the cosmic mismwackground (CMB) have led the way towards the high precisi
cosmology of today — a process best emphasized recentlyeblyidin quality data set delivered by the WMAP satellite. Thgtn
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major and nearly imminent step in a continuing exploitatdéthe CMB observable will be data analysis of data sets ipatied
from another satellite missionp.Rick. PLanck will observe the entire sky in multiple frequency channgigmising to improve
over the recent WMAP constraints on many fronts. In pardcélanck, as a satellite, will provide us with a unique access to the
largest angular scales, in which the total intensity hasgmaontroversial and flicult for theoretical interpretation and is still
poorly measured and exploited in the polarizatiannNex will be the only CMB satellite deployed in the next decadés therefore
particularly important that the constraints at large angstale derived from the anticipatedsRck data are not only robust but
also dficiently exploit the information contained in them. This Mik certainly necessary ifiRnck is to set strong constraints on
the CMB B-mode power spectrum (Efstathiou et al. 2009) — drithe@most attractive potential science targets of the mwissi

The analysis of constraints on the largest angular scalgsres robust statistical estimators accounting for a @rdgscription
of the statistical properties of the sought-after sky signatrumental noise and other residuals due to the ingnipastrophysical
signals angbr data processing. This paper focuses on two of those ifggrsd— instrumental noise and so-called pixel noise, the
latter due to residual sky power on sub-pixel scales. In téedard data analysis pipeline the measured time ordetadchdafirst
projected onto the sky, an operation called map-makingjyeimg map-like estimates of the sky signal, which are sybsetly
analyzed, e.g., in order to derive constraints upon the pepectrum. The map-making process is usually understobe ¢dlinear
operation on the input, measured data and therefore atis@tisncertainty of the produced sky maps can be straightfadly
obtained given known characteristics of the time-domata.dehose also usually involve assumptions about piece-stiionarity
of the instrumental noise, assumed to conform with Gausstistics. In the realm of theLck analysis such a straightforward
route is not however plausible. This is because of the higblu¢ion of the Panck instruments, the full sky coverage and length of
the mission combined with the high sampling rate of the sggalis. That leads to the data set which is large in terms afuhgbers
of both the sky pixels contained in the maps and the direetfjstered measurements. The map-making procedures gedeiothe
context of Ranck (Poutanen et al. 2006; Ashdown etlal. 2007a,b, 2009) have demonstrated to be capable of dealing with the
expected volumes of the data, producing high-quality mageertheless the calculation or even just storage of tesjyactive noise
covariance matrices at their full resolution is beyond thiit of even the largest currently available superconmuufacilities. This
is because, unlike maps — sizes of which scale linearly witluraber of pixelsNpix, — the noise covariance matrices scale as a
square of it and their inversion involve)(NSix) floating point operations. We emphasize that due to a caatibim of its scanning

strategy and noise-like contributions correlated oveglperiods of time, we expect that non-negligible large soalse correlations
will be present in the maps derived from thesiek data and will be particularly important in the analysis of tholarized signals
given their lower amplitudes.

In this paper we develop tools necessary for the statitisalind analysis of constraints on large angular scalessd clude
robust approaches to producing low-resolution maps arthigaes for estimating pixel-pixel correlations due toithiesidual
noise. The low-resolution maps are expected to comprestyradhthe information relevant to the large angular scaldawer
pixels and are therefore more readily manageable. GiveGaussian noise assumption the full statistical descnpgfathe map
uncertainty is given by its pixel-pixel noise covariancetrixg NCM). This is defined as

N = ((é— s (5- s)T>, where ((3-19) =0, (1)

andsis the Npix input sky map of Stokes |, Q, and U parameters afsldur estimate o6. In the absence of signal errors, the
difference(5 - s), contains only instrument noise. We note thiis a symmetric and usually dense matrix, which in generdl wil
depend on the map-making method that produced the estimaie following we will consider a number of numerical apacbes

to calculate such a matrix for each of the studied low-rasmiumaps and then test their consistency with the actualenioi the
derived maps.

The full noise covariance matrices have been commonly ctedpand used in the analysis of the small-scale balloondyorn
(e.g..Hanany et al. 2000; de Bernardis et al. 2000) and grbaseéd experiments, (e.g., Kuo etial. Z004). The COBE-DMifte
also used them to derive lofeonstraints, ( e.g., Gorski etlal. 1996; Wright et al. 1996 xll those cases, however, no resolution
downgrading has been required, unlike wittniRk, as the calculations for those experiments could be dondudk @esolution.

To this date, only the WMAP team has encountered a similabolpno. The instrument noise model employed by them is in fact
similar to the one used fonkxck. Itis parametrized, however, in the time domain rather thahe frequency domain (Jarosik et al.
2003,20057). Calculation of the WMAP NCM is formulated in ettp the same manner as for our optimal map-making method
and the WMAP likelihood codeships with an NCM very similar to what we present here, algiowithout the 11, I1Q and 1U
covariance blocks. The simplification is motivated by thghh§N ratio of the low temperature multipoles and weak coupling
between temperature and polarization pixel noise.

Our analysis is made unique by thdfdrences in the experiment design: WMAP pseudo-correlagiogivers are dlierencing
assemblies (DA) with two mirrors, whereasaRck will use a single mirror design (HFI, the high frequency ingtent) or has
a reference load in place of the second mirror (LFI, the loggirency instrument) (Planck Collaboration 2005). Betwibeise,
the pixel-pixel correlations are fiiérent. In principle the balanced load systems of COBE and WNAould bring less correlated
noise than the unbalancedsRck LFI. On the other hand, fferencing experiments generate pixel-pixel noise coioglateven
from white noise, whereas inLkck they originate from the correlated noise alone. In additi@nalso study here the so-called
destriping algorithms, which have been proposed asadR-specific map-making approach (Delabroliille 1998; Mainal €2002;
Keihanen et al. 2004; Keihanen etlal. 2005).

Residual noise covariance forA&ck-like scanning and instrument noise has been studied hefither via some simplified
toy-models |(Stompor & White 2004) or in more realistic cimstances_(Efstathiou 2005, 2006). Those studies apprdahke
problem in a semi-analytic way and thus needed to employ sir@ifications, which we avoid in our work. They were alseba

1 http://lambda.gsfc.nasa.gov/
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solely on the destriping approximation, assuming thateno#n be accurately modeled by relatively long (one houglbesdisets
and white noise, and did not consider any other approacheiid work we extend those analyses into cases where mgdakn
noise correlations requires shorter baselines and contipase with optimal solutions.

2. Algebraic background
2.1. Maps and their covariances

To formulate map-making as a maximum likelihood problem teetsvith a model of the timeline:
d= As+ Bx+n, )

where the underlying microwave sky signal,is to be estimated. HerA is the pointing matrix, which encodes how the sky is
scanned andh is a Gaussian, zero mean noise vectodenotes some extra instrumentéieets, usually taken hereafter to be
constant baselinefisets, which we will use to model the correlated part of therumsental noise an8 — a ‘pointing’ matrix forx
describing how it is added to the time domain data. Convautiith an instrumental beam, assumed here to be axially gtrion
is already included irs.

The signal part of the uncalibrated data vecthiis the detector response to the sky emission observed tlirdagtion of pixel
p. For a total power detectors, e.g., the ones o, it is a linear combination of polarized and unpolarizedtdbntions:

dh = K {(1+ €)sp + (1 - €) (Spq COS(A) + Spu Sin(2et))} + e, ©)

where it is implied that sampleis measured in pixgb andy; is a detector polarization angle with respect to the paddion basis
and we have dropped the baseline term for simplicity.[Eq.cBigles an overall calibration factd¢, and a cross polar leakage
factore, however, in what follows, we only consider the case of prfalibration, setting¢ = 1 with no loss of generality, and no
leakagege = 0.

To simplify future considerations we introduce a genesdlipointing matrix,A’, and a generalized mag, They are defined
as

A =[A.B], and gz[f( . @)
Using those we can rewrite our data model in a more common,form
d=AS +n. (5)

The detector noise has a time-domain covariance mafrix (nn") and the probability for the observed timelirtg,becomes the
Gaussian probability of a noise realizatior- d - A’S':

P(d) = P(n) = [0 ™" detn] exp(—:—zl nTN-ln) P(x), ©6)

where the last factor is a prior constraint on the noi$gats,x, which hereafter we will take to be a Gaussian with a zero naeain
some correlation matrix?, i.e.,

P (X) exp(—%xTP‘lx) (7)

By maximizing this likelihood with respect to the sky sig@ald baselines contained & we find an expression for a maximum
likelihood estimate which reads,

¥ = (RE+ ATNIA) AT, ®)
whereR 1 is defined as,

R_l = |: 8 qu :| (9)

The first part of the vectas is an estimate of the actual sky signglwhile all the rest is an estimate of the baseliftsets,X. The
mapA’"N-1dis called the noise-weighted map. In case of flat priondoexpressions identical to E@I(8) can be also derived from
minimum variance or generalized least square considesatiod we will refer tasas either a minimum variance or optimal map
in the future. We note that we have ignored here any pixétina#Tects that cause filerences betweethand A’s' even for a noise
free experiment. This is usually true in the limit of the digze significantly smaller than the beam resolution of tigrument. If
this condition is not fulfilled, the pixelizationfiects may be important and special methods may be needed itmizgrthem. We
discuss specific proposals in Séct] 2.3. In the absence bfefiects, the dierence between a map estimafe ahd the input map,

S, is calledresidual pixel domain noise.
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Let us now consider first the prefactor matrix in Eg. (8),
-1
M’ = (R‘l + A’TN‘lA') , (10)

a weight matrix combining both the baseline prior and thes@eariance weights. It acts on the generalized noise-watighap,
producing estimates of the pixels and baselines.

Given that our generalized map is made of two parts: the hskyasignal and the baselindfsets, the matrixM’ has four
blocks: two diagonal blocks, denoté&d and M, and two df-diagonal blocks, each of which is a transposed versionebther
and one of which is referred here tolslg. Using inversion by partition we can write an explicit exgsion for each of these blocks.
For example, for the sky-sky diagonal blocks we get,

M = [ATN A= (AT B) (P + BTN‘lB)fl(ATN‘lB)T]il (12)

(ATAA) "+ (ATAEA) T (ATAIB) M (ATAB) (ATARA) (12)

while for the dfset-dfset part,

M =[P+ BTAB - (BTA1A) (ATA ) (BTN’lA)T]_l. (13)

With help of these equations we can now write explicit sefgagapressions for the estimated sky signal affiskeds. The former is
given by,

3= (MAT + MOBT)N’ld (14)
while the latter,
%= (MgAT + MBT)Nd. (15)

We can also combine these two equations to derive an aliegretpression for the sky signal estimate, which makesexctlirse
of the dfsets assumed to be estimated earlier,

5= (ATNA) T (ATV I - ATAIBR) (16)

If the assumed data model, EQl (2), and the time domain nadéaseline covariances are all correct, then the covariahc
the residual pixel domain noise is

N =(%-9)F-9))=M. (17)

In particular, Eq.[(IL), the pixel-pixel residual noise coaace matrix N, is equal toM and given by Eq[(12).

We note that a diiciently high quality estimate of the inverse time domairretations N1, is required in order to calculate
both the minimum-variance map and its noise covarianceidfmisestimated the map estimate will still be unbiasedugfh not
any more minimum variance or maximum likelihood, and itsariance will not be given any more by EQ.{17).

For example for computational reasons we will find later thsihg some other matrix, denoted hereAds?, rather than the
actual inverse noise covariang¥;?, in the calculation of the map estimates in Hd. (8) can beftklfhe corresponding noise
correlation matrix for such a map is then given by (Stompai €2002, ungeneralized case)

N =(F-8)F-9))=(R"+ ATMA) ! (RIRART+ ATMINMTEA) (R + ATMIA) ' (18)
whereM andR define our map-making operator, wherddandRy, are the true noise properties. This expression is significan
more complex and computationally involved than Eq] (17)tdrmately, as we discuss in the following, in many cases tefrést,
the latter expression turns out to be #siently good approximation of the former witki—* replaced byM~? at least for some of
the potential applications.

The Ranck Working Group 3 (CTP) has performed extensive studiesfiéidint map-making approaches (Poutaneniet all 2006;
Ashdown et al. 2007g,0, 2009). They have been shown to peadifierent residual noise structures in the computed maps studie
in detail in those papers. A map-making method should onlgdresidered complete once the residual noise covarianoeiated
with it can be understood andfigiently well characterized.

The map-making methods considered faaRRk fall into two general classes both of which are describedheyequations
derived above. The first class, called optimal methods nassithe sfiicient knowledge of the time domain noise correlations, does
not introduce any extra degrees of freedeur(pr alternately assumes a prior for them witlvanishing). In this case one can derive

from Eqgs. [16) &[(1D),
5= (ATN1A) T ATN N, (19)
N = (ATAIA) (20)

where the latter is a covariance of the residual noise ofdimadr.
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The second class of methods introduces a number of baséigms¢sowith a Gaussian correlated (so-called generalizédpkss)
or uncorrelated (standard destripers) prior on them andritbesthe noise as an uncorrelated Gaussian process. Tipeesaps
are evaluated via EJ.{114) or EQ.{16), withassumed to be diagonal. Clearly on the time-domain leveddisériper model is just
an approximation, therefore at leagtriori we should use the full expression in Hqg.](18) to estimateotgdance. The CTP papers
have shown that foriRRnck the two methods produce maps which are very close to one emdloreover, they have shown that
using a generalized destriper, the derived maps eventuatigme nearly identical to those obtained with the optimethwmds, if an
appropriate length of the baseline and a number of the Ip&seiisets is adopted together with a consistently evaluated. s
motivates using the simplified Ed._(12) as an approximatartHe noise covariance of the destriped maps, Nes M. We will
investigate the quality and applicability of this approxition later in this paper.

In this paper we extend the analysis presented in thosee@fiP papers. We first study the covariances derived forifferent
map-making algorithms using Ed.{12), compare their prigernd test how well they describe the residual noise iratheal
maps. As all those calculations can not be performed at thm&trumental resolution, we also discuss methods of pcoty the
low-resolution version of the maps.

2.2. Time domain noise

We assume that the time domain noise is a Gaussian procedsrahed simulations we take the noise power spectral demsity
have the form
o2 fon+ ¢ (21)

. 5
fsample le]ee"' fe

P(f) =

where the shape is defined by the slope, minimum and kneednetgs &, fnin and fynee respectively) and the scaling by the
white-noise sample variance and sampling frequeoacsr(d fsampid. Two examples of the theoretical and simulated noise spect
can be seenin Fig] 1.

In the calculations of the maps using the optimal algoritbomgeneralized destripers we will assume that noise powestgmm
is known precisely. As the noise simulated in the cases aadlljere is piece-wise stationary, with no correlatiorsadd between
the data in the dierent pieces (see Sekt. 5) the respective noise correlationx, N, is block Toeplitz with each of the blocks,
describing the noise correlations of one of the stationerygs, defined by the noise power spectrum. Given that wapglfoximate
the inverse ofV as also a block Toeplitz matrix with each blocks given by areise noise power spectrum. Though this is just an
approximation it has been demonstrated in the past thatfiiqmes exquisitely well in particularly in the cases withnpcontinuous
pieces of the stationary noise (Stompor et al. 2002), asit&se in all simulations considered here.

2.3. Low-resolution maps

Pranck will produce maps with resolution of 5 arc minutes at frequencies of 217 GHz and above,<aid@® arc minutes from
70-143 GHz. The sky maps pixelized at the full available ItegBm will therefore include as many z@(107) pixels per Stokes
parameter. Though it has been demonstrated in previous @pé&pthat a calculation of such maps is feasible, the catipns

of the covariances of such maps is clearly well beyond thetrefithe current and near-future supercomputers. At thessame
production of low-resolution maps from data of a high-retioh experiment is not a straightforward task, which in @B
context is made even morefficult due to a disparity in amplitudes of the total intensitysatropies on the one hand and Q and
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U Stokes parameters (or E and B polarization modes) on trex.cAls we emphasized earlier the map-making methods deskcrib
in the previous sections work very well but only in the limftufficiently small pixels. Those need to be much smaller than the
typical variability scale of the considered sky signal, @rhis usually set by the experimental resolution. Such anmagson is
clearly not fulfilled in the case of the low-resolution magking. We therefore expect that the pixéleets are non-negligible in
this latter case. Moreover as we solve simultaneously fahade Stokes parameters even relatively mild pixides present in the
total intensity maps may have significant consequences#o@tand U Stokes parameter maps.

In this Section we define three alternative methods of priodulow-resolution maps from high-resolution observasionhe
first two, direct and (inverse) noise weighting methods ghalveady been used in the WMAP analysis (Jarosikiet al. 2@G7he
third option we consider at the end smoothed (low-pasgdilfemaps and their noise covariance.

2.3.1. Direct method

The most straightforward method to produce a low-resatutiap is to project the detector observations directly tqtkels of the
final target resolution. Hereafter we will refer to it as thieedt method.

The direct method is clearly the best choice as far as theibesmoise covariance is concerned. However, it does noapg
particular attention to minimizing the pixeffects. In particular, it may lead to a position-dependemtaigmoothing due to a non-
uniform sampling of the low-resolution pixels — affect which may further cause aliasing problems at the, fomgte, power
spectrum estimation stage. Moreover, for the destriperdittect method means that the baseliffseis are solved at the low target
resolution. If the subpixel structure of the pixels can bgleeted, this will lead to a better determination of the tiaseoffsets,
and less residual noise, as the number of crossing poiniebatbaselines increases (Ashdown et al. 2007a). If, hawaue-pixel
power is present, it mayfi@ect adversely theftset estimation, with magnitude of th&ect increasing with the pixel resolution.
None of the discussed map-making methods is designed teatdor subpixel structure. Therefore the direct methodtmataken
to regard the sky as already smoothed to eliminate the sebgiixicture within the large, low-resolution pixels.

In Sect[6.8 we quantify the signal error for théfdient low-resolution maps and map-makers.

The noise covariance matrices for such low-resolution ntapsbe computed directly using formalism presented in 2e8t.
for example, Eqs[(17) and (18).

Hereafter, we will use the direct method as a reference wipect to which we compare the other approaches.

2.3.2. Inverse noise weighting (INW)

In the case of nested pixelization schemes, such as HEAIGHxsKi et all 2005) used in this paper, to downgrade a teatyier
only map, one may compute a weighted average of the subgirgddratures. A natural choice are the optimal weights, evher
the temperature of a small pixel is weighted with the invarfsiés noise variance (or with its hit count provided that tetectors
have equal noise equivalent temperatures). This weightizds to the lowest noise of the large pixel in the absenceéxef-pixel
correlations. We will refer to these maps as inverse noisghted (INW) maps.

A similar weighting scheme exists for the polarized data a#l. \Whe procedure goes as follows: first the estimated high-
resolution maps are noise-weighted, then their resolusidowngraded, and the resulting low-resolution, noisgghited maps are
subsequently multiplied by the low-resolution noise c@amee, which needs to be estimated in parallel. Algebrigichle entire
procedure can be summarized succinctly on the map level as,

§ =W"XWS5, (22)
whereW andW” are weight matrices for the high and low resolution mapgeetvely. They depend oA and A” — the pointing
matrices at high and low resolutioX.simply sums the pixels in resolutid¥px to resolutiorNE)ix,
_ | 1, psubpixel ofq

Kap = { 0, otherwise (23)
In the following we will assume either block-diagonal orglimal weighting. In the former case the weights are given by,
W’ = (A//TNJlA//)fl , (24)

W = (ATNGIA) (25)

while in the latter case they are made of the diagonal elesnanthe above matrices. Matrik/, is the time domain covariance
matrix of the uncorrelated part of the noise,In the block-diagonal case the noise weighting mixégedint Stokes parameters,
while in the diagonal one each Stokes parameter map resolistdowngraded independently. Throughout this work we wegé
only the block diagonal weighting which, in the cases stddiere, turns out to be very close to the diagonal one.

The covariances for the maps obtained via such a procedarbec@erived from Eq[{22) and the expressions described in
Sect[2.1.

For the destriper technique there is one more extra factachwhakes this manner of resolution downgradingjedtifrom the
direct method of the previous Section. As the maps outpditedtly by a destriper code are of a high resolution, thelas dfsets
are also determined at that resolution. If the block-diajareighting is then used to downgrade the map, the resulfuivalent to
the direct calculation of the low-resolution map with theélines determined from the high-resolution analysis (E).
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Noise weighting reduces signal errors by first solving th rasa resolution where subpixel structure is weak. In commpar
to the direct method, the more accurate signal is gainecatdht of higher noise. Like the direct method, INW also djards any
subpixel structure but at high resolution. In this case tistrument beam naturally smoothes out small scale steicausing the
approximation to hold.

2.3.3. Harmonic smoothing

Both methods described above may result in the signal srimgpgbr its band-width) being position-dependent as it isiewed
via averaging of th@bserved high-resolution pixel amplitudes contained within each-f@solution pixel. This may result in the
aliasing of sky power.

Applying a smoothing operator to each of the high-resotutizaps prior to resolution downgrading could alleviate sach
problem. The smoothing operation needs to take care psopéthe high frequency power contained in the maps avoiding t
its being aliased to the power at the scales of interest. Astoothing operation is usually performed in the harmoaroain it
requires that the high-resolution map is first expanded Iresgpal harmonics. If the map has unobserved pixels, théyindiuce
undesired mode coupling. ForfBaiently complete sky coverage we can “patch” the high-nesmh map by adding averages of
the neighbouring pixels into blank pixels. If the coverageniore incomplete, the missing pixels can be replaced by sticoned
realization of signal and noise, such methods are used fimple in the so-called sampling techniques (e.g., Jewall @004),
which have been successfully applied to simulatedi€k data. Simple patching will clearlyfizct only very small scale statistical
properties. If a constrained realization is applied, tHeesigal expansion will depend on the input model. In thiskuwee only deal
with a complete sky coverage leaving an investigation oféhefects to the future work.

To suppress small angular scale power the expansion is b@aith an axially symmetric window function (e.g. a syntnie
Gaussian window function (Challinor et al. 2000)),

gl}—m = W[a}m, W, = e—%f(ﬁl)o—z (26)
~ _1 —40-2
all’zm = ZWfa[I;mv ZW[ =€ 2[€(€+1) A ) (27)

chosen to leave only negligible power at angular scalesatteahot supported by the low target resolution. Finally ggutarized
expansion is synthesized into a low-resolution map by semgphe expansion values at pixel centers. We conduct mostiof
studies using a beam having a full width at half maximum (FWHi¥itwice the average pixel side. For thigige = 32 resolution
this is approximately 22q3:7). Whenever transforms between harmonic and pixel spacecaducted, it is important to consider
the range of multipoles included in the transformation. \eogate using such an aggressive smoothing that the hacexqpansion
has negligible power beyorid= 3Nsiqe and results are stable for afiyj.x beyond this. For completeness we havelsgt = 4Nsige
but stress that any residual power bey@nrd 3Nsige Will lead to aliasing.

The smoothing window does not need to be a Gaussian but iefenable to avoid sharp cutfe that may induce “ringing”
phenomena. Benabed et al. (2009) suggest a window funtigdpteserves the signal basically unchanged until a citbseshold
and then smoothly Kills all power quickly above that anguéesolution. Their window is

1, <1
W, =4 3 [1+cos((t - t)n/(La—L2))], La<E< by (28)
0, >t

with the typical choic&; = 5Nsjge/2 andfz = 3Nsige-

This method can be considered optimal from the (large-ssajaal viewpoint; however it may be suboptimal as far agibise
is concerned, in particular in cases with a strongly inhoemegpus noise distribution on the observed sky. The noisarizmce
matrices described in Sdéc. P.1 need to be amended to adguradeacterize the residual noise of the smoothed mapsharsine
need to smooth the matrices as well.

Smoothing of a map is a linear operation. For any linear dpena, acting on a mapn, we can compute its covariance as

(Lm(Lm)™y = L4mmHLT = LNLT = Z ALE-(Ly), (29)

where; andeg stand for eigenvalues and eigenvectors of the noise covajll, i.e., N = >, /liEET, andm is understood here
to contain the noise only. We note that in general one shapticate the same processing steps as are to be applied ® map
and therefore the smoothing operation should be applieidmbise covariance of the high-resolution map and its uésol
downgraded later. All these steps are described by the mpérintroduced above. In this cages a rectangular matrix with many
fewer rows (given by the number of low-resolution pixelsrihcolumns (the number of high-resolution pixels). In suctase
rather than performing the eigenvalue decomposition agestgd by the right-most term of E.129), which would regais many
operation as the cube of the number of high-resolution pjieinay be moreféicient to perform the matrix-matrix multiplications
in Eq. (29) explicitly. In fact in the latter approach one brtephrase the problem as a series of PCG solutions of a nadgmm
type, each of which would result in the computation of thénkigsolution covariancé, times one of the columns of the smoothing
operator,LT. This could bring the cost of the covariance smoothing dawthat comparable with actual map-making operation
repeated for each of the low-resolution pixels. Thoughitieg be in a realm of capabilities of the present day superctenpit is
certainly a hugefort not warranted at the present stage of this investigation

Alternately, one may choose to commute the order of the smmmpand downgrading operations as highlighted above. hou
these two operations are clearly not exchangeable on thdewalp due to the potential presence of the sub-pixel posterh an
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approach can be more justifiable for the noise covarianoabid case we can explicitly compute the low-resolutionnuosthed
covariance matrices directly and subsequently smooth thiginthe signal smoothing kernel. One side advantage ofahpsoach
is that the low-resolution maps are more likely to be gentiitiesky maps than their high-resolution counterpartspig the
smoothing is therefore less likely to require any additlgma-processing.

In the following we will apply the smoothing technique to bdtigh and low resolution maps already downgraded using some
of the other approaches. We will demonstrate that such a icaulapproach results in controllable properties of thelted noise
on the one hand and well defined sky signal bandwidth on ther.dtinlike both the direct and INW methods, the low-resoluiti
maps are actually solved from a signal that lacks subpiretsire.

3. Numerical calculations of residual noise covariance

This section presents numerical methods to compute théuasnoise covariance matrix and describes briefly theilementa-
tions corresponding to threeftirent map-making methods, the optimal method (MADping a®#/R implementations) and the
generalized (Madam) and classical destriping (Springtigethods.

3.1. Optimal map covariance

The noise covariance for the maps computed by optimal dlgos using true time domain correlations is given by Eql.(Zég
calculation of such a matrix proceeds in two steps and tMiermdint implementations have been developed in the courdeeof t
work described here. During the first step the inverse camag matrix A" N1 A needs to be assembled and subsequently inverted.
Given that the matrix can be singular the latter step neelds taken with care and a pseudo-inverse may need to be campbe
computation of the latter involves a eigenvalue decomjuosif the inverse noise matrix. Because the noise matriynsnsetric

and in principle non-negative definite, its eigenvaluesras and non-negativel( > 0), and its eigenvectors form a complete
orthogonal basis. This allows us to expand the matrix as

N =UAUT = > 468 (30)

Here A; are the eigenvalues argl dre the corresponding eigenvectors of the maliix. We can now inverN~! by using its
eigenvalue decompoasition,

N = Z/li_léél-r’ (31)

and controlling the ill-conditioned eigenmodes. Any itiralitioned eigenmode will have an eigenvalue several srofemagnitude
smaller than the largest eigenvalue. By including in the sunty the well-conditioned eigenmodes weegtively project out the
correlation patterns that our methods cannot discern.Wéwsof calculating the noise covariance is implementedéRODMA and
MADping codes.

MADping is one of the codes of the MADC/&Rsuite of CMB analysis tools. The code is parallelized usirgl Mnd all the
operations are distributed across multiple processorsrifBBb999). It uses the M3 library mentioned in_(Cantalug@k|2009)
for data reading and time-domain noise correlation geimratoad balancing is performed based on both the numbeixefy
per processor and the number of time samples falling inteehpixels. Each processor scans through its sections ofdidered
data (correctly handling overlap with other processorgafland accumulates its local piece of the inverse noiserizmaee. These
pieces are then gathered and written to disk. The scaling®fe¢chnique is

Nﬂops ~0 (nsamples' ncorrelation) s (32)

wherengorrelationis the filter length set by the noise autocorrelation length.

For a Ranck-sized, full-sky dataset and using a reasonable pixel uésaol (half a degree), the construction of the inverse
noise covariance dominates over the computational costvefting this matrix. Nevertheless, inversion methods a8 as the
eigendecomposition scale ééNgix).

In order to correctly treat the signal component of the data im Eq. [8), we must apply our low-resolution noise covareto
a noise-weighted map which has been downgraded from higkelution. This downgrading process is equivalent to tblertejue
discussed in Se¢t. 2.3.2, and ensures that signal varatiside a low-resolution pixel are accounted for. The higgnlution noise-
weighted map consistent with the above formalism is congtdias the first step of the map-making carried out by the MApm
program|(Cantalupo et'al. 2009). The matrix eigenvalue agasition is done using a ScaLAPABIterface that allowsféicient
parallel eigenvalue decomposition of large matrices ugidiyide and conquer algorithm.

The ROMA code|(Natoli et al. 2001; de Gasperis et al. 2005higglementation of the optimal GLS iterative map making
specifically designed foriRnck, but also successfully used on suborbital experimentsas@OOMERanG (Masi et al. 2006). To
estimate noise covariance as in EqJ](17) we start by calagladwi of its inverse N=1, by computing its action on the unit vector
along axig:

(N = (ATNTA) & (33)

2 |http://crd.1bl.gov/~borrill/cmb/madcap/
3 http://www.netlib.org/scalapack/scalapack_home.html
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This calculation is implemented as follows: i) projectitg tunit vector into a TOD by applying on &; ii) noise-filtering the
TOD in Fourier space; iii) projecting the TOD into a map by jmg AT. By computing each column independently we reduce
memory usage because we allocate memory only for one magathsf allocating memory for the full matrix. The computatib
cost of the full calculation is dominated by FFTs that areesgpd as many times as the number of columns, hence thegscalin
be expressed as:

Nfiops ~ O (nsamples' 109, (Mitter) - npix) 5 (34)

Once the inverse noise matrix is assembled it is inverted@slaion similar to the one described above. We note thatethating
covariance matrix has to be symmetric. Though this isariori ensured by the algorithm it is the case within expected nigaler
errors. To ameliorate anyffect we symmetrize the result by averaging the matrix wittréaspose.

Alternately, we can compute the NCM column-by-column wigtghof multiple map-making-like operations, i.e.,

yi. = (ATNTA) @, (35)
whereg is a unit vector as defined above apidtands for a column dfl. We rewrite the above equation as
(ATNTTA) -y = e, (36)

and solve it using the standard PCG map-making solver. We that in such a case there is no need to store a full inverse noi
covariance matrix in a memory of a computer at any single isithe operations on the left hand side can be performed fghn r
to left. As a result this approach can be applied also for-h@golution cases for which the direct method describedabomuld
not be any more feasible.

We note that unlike in the previous approaches based on thetanatrix inversion in the latter case there is no speaet c
taken of potential singularities. Though the presence o$¢hdoes not hamper the PCG procedure (e.g.. Cantalup@@os),
nonetheless care must be taken while interpreting itsteesul

3.2. Destriped map covariance

In the destriping approach to map-making, we model all noiseslations by baselindisets. Thus we write Ed.](2) as
d= As+ Bx + ny, (37)

wheren, is a vector of uncorrelated white noise samples. Accorginvgt must replace the time-domain noise covariance matrix,
N, by a diagonal matrixV,. All noise correlation is then included in the prior baseloffset covariance matrif.
If we now apply the destriping approximation to Eqs.](11) welfior the pixel-pixel residual noise covariance matrix:

M= ATNTA - ATA'B (P + E;TNng)‘1 BTAIA. (38)
The first term on thens is the binned white noise contribution (a diagonal or bldékgonal matrix for temperature-only and
polarized cases respectively) and the second term deschibgixel-pixel correlations due to errors in solving foe baselines,
i.e., the diference between the solved and actual baselines (Kurkii®abal. 20009).

When making a map using destriping, one can use high resnltdisolve for baselines and still bin the map at low resofuti

Since this is equivalent to producing first a high-resolutisap and then downgrading through inverse noise weightegwill
always assume the same pixel size for both of these steps.

3.2.1. Conventional destriping

Springtide (Ashdown et &l. 2007b) is an implementation ef¢bnventional destriping approach which solves for onelvaesper
pointing period. Since the baselines are so long, it allamvsafnumber of optimizations in the handling of the data. Bgihne
pointing period, the same narrow strip of sky is observedymamnes, so the time-ordered data are compressed into rigfgsed
doing the destriping. Anotheffect of the long baselines is that the prior covariance mafrike baseline®, is strongly diagonal-

. N : -1
dominant, so to a very good approximation can be assumeddabenal. As a consequence, the ma(@xl + BTNng) that

appears in the expression for the inverse map covariancexn@8) is also diagonal. Thus the number of operationsratke
compute[(3B) is

Nﬂops ~ O(nbase(npix/baséz)- (39)

The number of baselines is small compared to the generaligstiiping approach, so another method of computing thgenoi
covariance matrix of the map becomes feasible. It is passdcompute the inverse posterior covariance matrix of teeline
offsets explicitly, to invert it and use it to compute the mapar@nce matrix. This method has the advantage that theutésol
at which the destriping is performed is not constrained tdheesame as the resolution of the final map covariance mdatia.
destriping can instead be done at the natural resolutioheoflata to avoid subpixel stripindgfects. The inverse of the posterior
baseline error covariance matrix can be calculated usingIEB) and the corresponding map covariance matrix is giyead (12).
However, the pointing matrices\,, need not be for the same resolution in both steps.

The structure of the inverse posterior baseline covariamateix, Eq. [I8), depends on the scanning strategy, butritgeneral
a dense matrix. Inverting the matrix and using it to compuge(fE2) involves dense matrix operations, so this methodnsputa-
tionally more demanding than the other approach describedea However, the posterior baseline covariance matexisenly to
be computed once and stored, and then can be used many tiowapote the map covariance matrix for any desired resalutio
is also possible to use E.(12) to compute the residual mois@riance matrix for a subset of the pixels in the map.
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Table 1.Pixel side to baseline length at 1 rpm spin rate

Nside \/Pixe| area Npix thase
4 14658 192 2.443s
8 7329 768 1.222s
16 3665 3,072 0.611s
32 832 12,288 0.305s
64 (0916 49,152 0.153s
128 0458 196,608 0.076s

3.2.2. Generalized destriping

Madam [(Keihanen et 8l. 2005; Keihanen et al. 2009) is anemphtation of the generalized destriping principle. Itéxifble in
the choice of baseline length and makes use of prior infaomaif baseline covariancé(is not approximated to be diagonal).
Even for a generalised destriper, all the matrices in Eq) é38 extremely sparse. Most of the multiplications onlyuieg

operations proportional to the number of pixels, baseloremmples. The matricg%* and(SD*l + BTNng) ! are approximately
circulant, band-diagonal matrices whose width is deteeahiny the noise spectrum. For all cases studied in this ptpelatter
matrix is limited to the order of T0non-negligible elements per row. We call this width thaseline correlation length, neor, and
includes the white-noise contribution as weller corresponds to a few hours of samples and is inversely ptiopal to baseline
length,ny,.

We evaluate the prior baselinéget matrix from the power spectral density of the correlatade P(f), by Fourier transforming
the baseline PSPy(f), into the autocorrelation function. The baseline PSD @uated as (Keihanen etal. 2009):

1 <« sir? x
Py(f) = @en;m P(f + M/tbasd9( Floase+ M), Where g(x) = PR (40)

The sum converges after including only a fawaround the origin. For stationary noise, any rowrof can then be evaluated as a
cyclic permutation ofF ~2[1/Py(f)].

We evaluate[(38) after computing {40) by approximating tiveei matrix,(SD*l + BTNng) l, as circulant. This allows us to
invert thenpase X Npaseband diagonal matrix by two short Fourier transforms. Ihtuout that the matrix multiplications are most
conveniently performed by first evaluating the spak$&l ;1B matrix and then operating with it on the inner matrix fromtbsides.

In effect the inverse covariance matrix gains a contribution faimuadrupletsX;, X;, p, d), where baselines andx; are within
baseline correlation length and hit pixgd@ndq. The number of operations required to complete the estimmdken proportional
to

Nfiops ~ O (nbase' Neorr * (npix/baséz) » (41)

wherenyase@ndngorr, the number of baselines per survey and correlation lemgbectively, are inversely proportional to the length
of a baseline. In contrasiyix/nase Pixels per baseline, is proportional to baseline lengtin short baselines and low-resolution maps,
the magnitude ofipix/paseis close to unity. Tablgl1 lists low-resolutidiqe parameters and the baseline lengths that correspond to
average pixel sizes. It can be used to estinmgignaseand shows that, for example.2b s baseline fiset atNsige = 32 resolution

covers approximately 4 pixels. The success of this apprt}z:atcirreplacenﬁI in the computation complexity blygix/base

3.3. Smoothed covariance matrices

In order to apply the smoothing operator to the low-resolutioise covariance matriceN, (Eq. [29)), we assume that low-
resolution maps, and thus also their covariance matriceserpected to cover the entire sky. We can also use the eigen-
decomposition of the noise covariance matrices as it idablaifrom the matrix inversion procedure described eafiensequently,
we perform the smoothing to the eigenvectors of the noisartance matrix, Eq[(29).

Each eigenvector is aNgix map itself (I, Q, U map) and it has therefore an expansiongrsifherical harmonic domain with a
set of codficientsa;

a=Ya. (42)

HereY is the matrix that performs the transformation. It is madsgif-0 and spin-2 spherical harmonic functions. Thefotients
shall now be smoothed with the same window function that vegl ws the high-resolution map:

a =Wa. (43)
Next we turn the smoothed cfiieients back to a map
e=Y"g (44)

and compose the smoothed matrix

N=>1%§. (45)
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We note that becaudeis symmetric, its eigenvalues are real and its eigenventake an orthogonal system. Howevgrandg are

not in general the eigenvalues and eigenvectors of the $radobatrixN. This is particularly important whenever the unsmoothed
noise covariance matri®, is singular and therefore its calculation needs to be exguéld, as described in Sdct.]3.1. In such cases,
special care may need to be taken to accountfi@ces of such singularities on the smoothed covariance. Apoir® out in the
next Section, the unsmoothed covariance is indeed comneaplcted to be singular or nearly so and therefore a germecgure

of treating singular cases is needed. We will discuss a pmag of dealing with such an issue in Séctl]6.2.

In addition, the smoothing procedure on its own will ofteadeto singular eigenvectors of the smoothed covariancebmatr
with the eigenvalues corresponding to those close to zdroudh at a first glance such eigenvectors may look like beioggly
constrained by the data, their actual value in the analgsieegligible as the sky signal in those modes is also smoofftesl
nearly vanishing variance of those modes will often spugipexaggerate the smoothing and map-making artifacttylipesent
whenever any inverse noise weighting needs to be appliezldid such problems hereafter we compute the inverse ofitbethed
covariance via its eigenvalue decomposition and set thenegues of all the nearly singular modes to zero. The @itefor
selecting the nearly singular modes will in general depanthe case at hand.

In some cases the eigenvalue decomposition of the smoothieckmay not be readily available or its computation noiiddse.

We can then regularize the inversionhfby adding some low level of the pixel-independent uncoteglaoise. For consistency,
a random realization of such noise should also be added teattiesponding maps. We note that both approachesizetieely
equivalent and that the choice of the singularity threshadded to select the singular eigenmodes correspondslyciagtine
choice of the noise level to be added. We will commonly usddtier approach in some of the power spectrum tests disdlestss.

3.4. Singularities

As we have pointed out in SeEf._B.1, the inversion of the sw@oise covariance matrik|™*, Egs. [20) & [11), often needs to be
regularized due to the presence of singular or numericalfiyugar modes. In this Section we discuss the origin of suodes.
We first note that in all cases considered here the inversariamce can be expressed as

N—l — AT M—l A, (46)

whereM™1is defined to be,

N for the optimal maps;
M= { b P (47)

Nt - N;B (7"1 + BTNleB)fl BTA;L,  forthe destriped maps.

We assume that the pointing matri¥, has full column rank, and thusx = 0 = x = 0. This is equivalent to an assumption that the
sky signal can indeed be estimated from a given data set.ghhitiis may not be always the case, in particular for the pration
sensitive experiments, it can usually be achieved if sontbefll-constrained pixels are removed from considerat®ren this
assumption, the problem of the singular modeslot becomes that of the matri/~1, defined above.

Let us consider the optimal map case first. The mamix! is equal to the inverse of the time-domain noise covariaNce,
The latter, Secf. 212, is a block Toeplitz matrix with eachickl defined by an inverse of the noise power spectrum,[Ef. Exbh
of those blocks describes the noise properties of one ot#tiesary data segments assumed in the simulations. Fbriidack the
eigenmodes corresponding to the lowest frequencies astperny the length of the segment have eigenvalues vastylsnthan
the high frequency modes. These modes can therefore leahtsimgularities. This is specifically true for zero-frequy modes
corresponding to anftset of each of the stationary data segments. The (near)padesof the full matrix will be therefore spanned
by all such vectors corresponding to each of the segments.

Due to projection ffects, not all of those modes result in singular modes of tla fiitxel domain noise covariance. However, if
for a modet, from the null space o1, there exists a pixel domain vector,such ag = A x, the inverse noise covariance will
be singular with eigenvector equalto

In the studied case, the scanning strategy is such that jharsks observed in each of the stationary periods overlagghw
efficiently removes most of the potential degenerate vectoradt only a single pixel-domainQU vector of which thd part is
one and all the others zero, called hereafter a glofiaét can potentially be singular. We will indeed confirm thegpectations
via numerical results laték

In the case of the maps produced with the destriper codesiatitence of any priors, i.2; = 0 the M~! matrix has as
many singular vectors as the baselifisets defined by the columns of thfset ‘pointing’ matrix,B. However, as long as all of
the dfsets cross on the sky the only singular vector of the pixahaia covariance will again correspond to the glokb#det vector
as in the optimal map case. We note however that unlike inctes, this time this vector is exactly singular. If a priogiisployed,
as is the case in both the classical and generalized implatiwms of the destriper technique discussed here, themrawf the
matrix B are no longer singular vectors of the mat1, nor is the global fiset vector a singular vector &f. Nevertheless, at
least for some common choices of the prior the glolfides vector remains nearly singular.

4 We note that in the argument presented here the gldEsgtanode is only nearly singular. This is due to our assumésk power spectrum,
which is finite at zero frequency. In a more realistic casedtffigets of the stationary segments will be however unknownesponding to an
infinite amplitude at zero frequency. The noise covariamcstich cases should be therefore considered to be strintiylar with the global
offset being the singular eigenvector. In such cases the neigghting on the right term of the map making equation,[E¢wiB force the dfset
of each of the stationary data segments to be strictly zénis May not be a gficiently good approximation in particular for short station
time segments. This could, however, be alleviated by intcoty the segmentffsets as extra degrees of freedom contained in the vect(,g.
Stompor et al. 2002).
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4. Numerical tests and comparison metric

This paper has two main goals. On the one hand we propose amabce various methods devised to produce the low-resalutio
maps, searching for the map-making method which leads teéselution maps virtually free of artifacts such as thase @ sub-
pixel power aliasing. In parallel we develop the tools tareate residual noise covariance for such maps, which plppgescribe
the error of the estimated maps due to residual noise. Thencahresults presented in the subsequent sections ofer @im
therefore at comparing and validating the algorithms whiethave presented earlier. The discussed comparisonsénsizindard
statistical tests, such Kolmogorov-Smirng¥, etc. and ones which are specifically devised in the lightefanticipated future
applications of the maps and their covariances. We desstitie tests in this Section.

4.1. Quadratic maximum likelihood power spectrum estimation

One of the main applications for the low-resolution noiseac@nce matrices we envisage is to the estimation of popestea C,.
This is often separated into the estimation of large and Isamglular scales, usually associated with high and low $ignaoise
regimes. The methods discussed here are relevant for laggeaa scales. The successful estimation of the underlyiregpower
spectrum of the sky signal sets demanding requirementhiéqtality of the maps produced for such a purpose as welleas th
consistency of the estimated noise covariance and thelactise contained in the map. For this reason we will use fiengaower
spectrum estimation as one of the metrics with which to eatalthe quality of the proposed algorithms.

We will use the Quadratic Maximum Likelihood (QML) method the power spectrum estimation as introduced.in (Tegmark
1997) and later extended to polarization lin (Tegmark & de€da-Costa 2001). Given a map in temperature and pol&izat
m = (T, Q, U), the QML provides estimates of the power spectra, that,read

CY = > (FH5X [m'EL m-tr(NEK)]. (48)
X

Here,é?‘ is an estimated power spectruk= TT, EE, TE, BB, TB, or EB, andFﬁ&, is the Fisher matrix defined as

.1 oC oC
FY, = —tr[C’l—C’l—]. 49
T2 acx~ ocyx (49)
The E matrix is given by
1 oC
¢ _ Te-1 -1
Ex = 2C 6C§‘C , (50)

whereC = S(C,) + N is the covariance matrix (signal plus noise contributidithe map,m. HereC; is a fiducial power spectrum
needed for the calculation of the signal part of the covagain this paper we will take it to be given by the true powercipum
as used to produce the simulated skies. Though this woulah humfair assumption, while testing the performance of tlua/er
spectrum estimation technique, it is justified in our cadeene the fact that it leads to the minimal estimation unatitss increases
the power of our test. (Indeed the QML estimator is in faco d&sown to be equivalent to a single iteration of a quasi-Newt
Raphson procedure to search for the true likelihood maxirfBomd et all 1998).)

More details about the QML method can be found elsewhereTegmark 1997; Tegmark & de Oliveira-Caosta 2001; Efstathio
2006). Gruppuso et al. (2009) describes the specific impi¢atien of the method, nicknamed Bolpol, as used in this vwaord
discusses its performance in the application to the WMAPZ5 gata.

Hereafter, we neglect any systematiteets of either instrumental afut astrophysical origins. Nevertheless we note that if
the final CMB map is obtained via some linear cleaning prooedhwolving maps computed either forfidirent detectors ayar
frequency channels, the results of this paper will be stilévant and the noise covariance of the ‘cleaned’ CMB mapbean
computed via a linear combination of the single map covagartalculated in turn with help of the procedure discussee.h

4.2. Noise bias

In the map-making methods considered in this paper resithisé in the maps is independent of the sky properties angletehy
defined by the time-domain noise properties and the scarstiategy. The noise present in the maps contributes to thvempo
spectrum estimates of the map signal. We will thereforertef¢his contribution as the noise bias and use it to quatiiémnoise
level expected in the maps of ouffdirent methods in a manner more succinct and manageablénth&ulltnoise covariance.

The noise bias is defined to be the expectation value for angolver spectrum in the noise-only case

NZY = (Cres), (51)

where X and Y stand for T, E and B. In the general case of a quadratic esitnauch as QML, Eg.[(48),
(Tegmark & de Oliveira-Costa 2001), the power spectrumregties are given as a quadratic form of the input nmap,

CX =mQ¥m=tr QXmm'. (52)
By takingmto be noise-only, the noise bias can be expressed as

NYY = (C*"%% = tr QFN. (53)
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Table 2. Frequently used symbols in this paper.

Symbol  Definition

C pixel-pixel covariance matrix

N noise covariance, map domain

N noise covariance, time domain

N’ correlated (1f) noise covariance, time domain

M-1 white noise covariance, map domain
Ny white noise covariance, time domain
Mp 3 x 3 observation matrix

prior baseline fiset covariance
detector pointing matrix
offset-to-TOD matrix

baseline fset vector

3Nix Stokes 1,Q,U map vector

map estimate

noise vector

correlated noise vector

white noise vector

TOD vector

sky map

Cartesian unit vector along tlgh axis

Do 3I>sw3I X W

Given the eigenvalue decomposition of the noise covariarateix, N = ¥; 1;&&", we can evaluate the noise bias as
NXY = Z A8 Qa. (54)

In the following we will validate the noise covariance meds, estimated for the recovered sky maps, with the helofrisspective
noise biases, which we will compare to results of Monte Canoulations. In this context it is particularly useful tonsider a
pseudoc, estimator that assumes uniform pixel weights and full sky.tRis estimator, the operat@jY is

1 i
XY _ X Y
t 2% +1 (Y{’) Y€ s (55)

WhereYX has Z + 1 rows that are maps of the appropriate spherical harmohiogaps a map vector into a vector of spherical

harmonlc expansion cﬁ“ments{ax } wherem= —¢...¢.

The procedure we |mplement here involves two steps. Fmse‘fery estimated noise covariance we compute analytically
the noise bias using Eqé. (54) ahd](55). Second, we compeaitgidls using Monte Carlo realizations of the noise-only n@ps
duced using the corresponding map-making procedure. Th@ﬁuationsY?‘ui are conveniently implemented using the HEALPix
(Gorski et all 2005) Fortran 90 subroutimgp2alm. We note that as we consider hereafter only full-sky cadesnbise biases we
compute as described above would be equal to those expectieel Maximum Likelihood estimates of the sky power spectrum
were it not for the imperfection of the sky quadrature dueixelzation dfects (Gorski et al. 2005).

5. Simulation
5.1. Scanning strategy

In this study the Panck satellite orbits around the second Lagrangian point (L2hefEarth-Sun system (Dupac & Tauber 2004).
The spin axis lies near the ecliptic plane, precessing athmanti-Sun direction once every six months with an amgétof 75.
The telescope line-of-sight forms an°@&ngle with the spin axis. In addition to these modes, we thek nutation of the spin axis
and slight variations to the 1 rpm spin rate. Details of thensing simulation can be found fram Ashdown et al. (2009) nelie
was used in a map-making study.

5.2. PLaNcK detectors

In this Paper we study residual noise in thexk 70 GHz frequency mapsiick has twelve detectors at 70 GHz. In the focal
plane they are located behind six horn antennas, a pair etwes (“Side” and “Main” detectdis sharing a horn. A pair of
detectors measures two orthogonal linear polarizatiohse.lorns are split in two groups (three horns in a group). Tile &nd
Main polarization sensitive axes of a group are nearly &liband the polarization directions of the second grotigidfrom the
first group nominally by 45 Two horns from the dierent groups make a polarization pair that follows the saraa path in the
sky (three pairs in total with slightly ffierent scan paths). As a minimum the observations of a pel#iz pair are required to
build a polarization map. Due to implementation restrictithe Side and Main polarization axes are not fully orthegand the

5 Side and Main refer to two detector branches downstreamtinerarthomode transducer that separates the two ortholjoeat polarizations.
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polarization direction dferences between the groups are not exactty lat the deviations from these nominal values are small
(s @®2). The Side polarization axes of the two group$atiby +225 and-225 from the scan direction.

The beams of the detectors were assumed circularly symonweith a 14 FWHM (full width half maximum) beam width.
The beams do not impact the residual noise maps or covanmmatrees. None of the map-making methods studied here nrake a
attempt to correct for beantfects in the maps.

5.3. Time ordered data

We computed the NCM’s of our three map-making methods usurgnoise model spectrum and the one year pointing data of
twelve 70 GHz detectors. We produced NCM's for bbdlfye = 8 andNsige = 32 pixel sizes. We wanted to compare these NCM’s
to the noise maps made by the same map-making methods. Eputip@se we simulated 50 noise-only timelines and made maps
from them. Our correlated noise streams were simulatedxiday chunks by inverse Fourier transforming realizatiohthe
noise spectrum_(Natoli et al. 2002). We assumed an indepeed®tween the chunks and between the detector§.]Fig. diceat
comparison between the power spectra of the generatedsitésens and the model spectra.

Twenty-five of the surveys featured a relatively higtf Tontribution having the knee frequendyee Set to 50 mHz. The other
half was simulated to have a more favorahige = 10 mHz. It should be noted that these frequencies have bexsectabove and
below the satellite spin frequency, 1 rpm17 mHz. The slope of the/T noise power spectrum was = —1.7. The correlation
timescale of the Af noise was restricted to about one day. This made our noistrapeflat at low frequencies (below a minimum
frequencyfmin = 1.15x 10°Hz ~ 1/24 h). As we described earlier, it is the minimum frequenat thetermines the correlation
length of the noise filter in the optimal map-making. In theéseocovariance matrix of the generalized destriping, theelae
correlation length is, however, determined by the kneeueegy.

We used a uniform white noise NET of 20K +/s for all detectofs We chose this NET because we wanted to produce noise
maps and covariance matrices whose noise levels are cdrepaiih another CTP study (ffa et all 2009). In all map-making and
NCM computations we assumed a perfect knowledge of the tetesise spectrum.

The noise timelines were processed directly into both lesstution Nsige = 32) and high-resolutionNsige = 1024) HEALPix
maps using the discussed map-making codes. IiNthe= 1024 temperature and polarization maps the mean standaetidas
of white noise per map pixel were 44 and @8 (Rayleigh-JeangK). For Nsige = 32 maps the corresponding values werkdnd
2.0ukK.

The high-resolution maps were in turn downgraded to the &get resolution using the schemes detailed in §edt. 2.3.

For the signal error studies described in Secll 6.3, we stheimulated foreground maps into signal-only timelindsese
we processed into low-resolutioNdge = 8) maps using the same methods as forNgg. = 32 (both directly and through high
resolution). We then extracted the signal error part by rsieking a binned map from the destriped map. The foregroigrhk
errors were summed with a CMB map to provide a worst case soenfasignal striping in otherwise perfectly separated CMB
map.

5.4. Input maps

To study bandwidth limitation with respect to downgrading simulated 117 high-resolutidfyjqe=1024 CMB skies corresponding
to the same theoretical spectru@, These maps were smoothed and downgrad®itg=8 using three dferent Gaussian beams
of widths 5, 10°, 20° and three apodized step functions with the choicegpt{) being (2024), (16 24) and (1620). A seventh
set of downgraded maps was produced by noise weighting @iogopto the scanning strategy. To comply with this last ctse,
smoothing windows include also tig;4=8 pixel window function from the HEALPix package.

For the signal error exercise we used thexek sky model, PSi version 16.3, to simulate the full microwave sky at 70 GHz.
For diffuse galactic emissions we included thermal and spinning, dhe®-free and synchrotron emissions. We then added a
Sunyaev-Zeldovich map and finally completed the sky withaaahd infrared point sources. The combiregi=2048 map was
smoothed with a symmetric Gaussian beam and scanned imtebrnte according to the scanning strategy.

For final validation the noise covariance matrices werestest power spectrum estimation. Each noise map was added to a
random CMB map drawn from the theoretical distribution dediby a fixed theoretical CMB spectrum. The theoretical spect
is the WMAP first-year best fit spectrum and has zero BB mode.

All maps in this work are presented in the ecliptic coordératstem. This choice is useful fordRck analysis since the scanning
circles and many map-making artifacts form circles thatnem the polar regions of the map. In this coordinate systengalaxy
is not positioned in the ecliptic plane but forms a verticaide shoe shape around the center of the map (se€le Fig. 16).

6. Results

In this Section we first focus on the noise covariance matrimmputed using fierent map-making techniques. We discuss and
compare the overall noise patterns implied by such mateandgest the quality of the destriper approximation as apb the noise
covariance predictions. In the second part of the Sectiodis@iss the low-resolution maps and evaluate their quialitiye light

of their future potential applications, such as those tdahge angular scale power spectrum estimation. Due to thgpatational
resource restrictions the low-resolution results presgthere are obtained either with the HEALMNYq4. = 8 — in particular tests

in Sect[6.B and power spectrum estimation tests in Bec8 6-20r Ngjge = 32 — in most of the other Sections.

6 o= NET +/fsample Whereo- and fsampiewere defined in Eq[{21). The 70 GHz detectors fagpe= 76.8 Hz.
7 seehttp://www.apc.univ-paris?.fr/APC_CS/Recherche/Adamis/PSM/psky-en.php
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Figure 2. Eigenspectra of the inverse covariance matrid
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6.1. Noise covariance matrices

First we discuss the noise covariance matrices computeddédow resolution maps of the direct method. As explaine®dnt[ 2.3

we compute from these matrices the noise covariances ofttiee downgrading techniques. In the following we consideisa
covariance calculated using 4ffdirent ways. In the first way we compute the noise covarianicey ike optimal algorithm. For
this purpose we have developed two codes MADping or ROMAivlaire described in Se€f._B.1. However, as they are just two
different implementations of the same algorithm, we derive mifatie results presented in the following and involving tipdimal
covariance using MADping. We note that whenever resultsiftiee both codes are available they have turned out to beailirtu
identical within the numerical precision expected fronstkind of calculations. The optimal noise covariance masrigre expected

to provide an accurate description of the noise level foartié actual optimal maps. We will test this expectation mftillowing

and use the optimal results as a reference with which to coeripa destriping results.

The three remaining computations of the noise covarianedased on the destriping approach and correspondfereatit
assumptions about thétset prior as well as baseline length. We consider the foligugpecific cases: a classical destriper calcula-
tion with a baseline of 3600 s (Springtide) and two geneedlidestriper computations with a baseline @5]s and 60 s (Madam).
For each of these cases we will compare the covariance mstniith each other, with the optimal covariances and therthes
consistency with the noise found in the simulated maps. We again that this last property is not any more ensured given
approximate character of the destriper approach.

Fig.[2 shows the eigenvalue spectra of some inverse NCMs.di¢ethat all matrices possess a positive semi-definite eigen
spectrum as is required for any covariance matrix, yet as#nee time they all have one nearly ill-conditioned eigenéioevhich
renders the condition number, i.e., the ratio of the largagtsmallest eigenvalue, very large. This is in agreemeéhtaur expec-
tations as described in Selct.13.4. Indeed the peculiar gigdas corresponding to the smallest eigenvalues of thesaveatrices
are also found to be non-zero and constant foil thart of the vector and nearly zero for its polarized compdsemd thus close to
the global dfset vector discussed in Sdct]3.4. The small deviationy@norder of 103, exist, as expected, as none of the peculiar
modes is in fact truly singular. We note that the MADping ar@NRA results, both computed in this test, are seen in the fitube
indistinguishable. They also coincide very closely with adam results computed for the safj@e = 50 mHz. The Springtide
results, computed withy,.e = 10 mHz are close to, though not identical with, the MadamlItedar the very same value dfnee
when a longer (60 s) baseline is used for Madam.

Fig.[3 depicts the estimated Stokes I, Q and U pixel variansesell as the covariance between them. These quantities are
dominated by the white noise contribution and all methodscdiee white noise in the same manner. The top right-mostlpan
shows the reciprocal condition numberddndition number) of the 8 3 blocks of the matrixAT ;1 A for each of the sky pixels.
These numbers define our ability to disentangle the threleeStparameter for each of the pixels. Whenever they are ¢g a2
the parameters can be not only determined but their unn&esiwill not be correlated. If the reciprocal conditionnmoer for a
selected pixel approaches 0, the Stokes parameters cam nohbtrained. In the cases considered here, the Stokengiara can
clearly be determined for all the pixels.

Fig.[3 shows a strong asymmetry between the 1Q and IU blodks.fact that the polarization axes of the two detectors of a
horn are not fully perpendicular makes the | noise of a pirelelate with the Q and U noises of the same pixel. We can ingaam
instrument basis, where one group of three horns measwe €3 ¢ this basis and the other group measures the U of the sagize b
Because Side and Main polarization axis deviations fronotiteogonality have similar magnitudes in the two groups ewpect
the diagonals of 1Q and IU blocks to be similar (symmetric@hdnd IU) in the instrument basis. In the map we usefieint

8 A double precision (64 bit) matrix is numerically ill-coridined when the condition number exceeds approximately (Biess 1992). For
our matrices the situation is not as dire but the first eigetergiill deserves special attention.
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polarization basfs Building the noise weighted map (in the map-making) ratdte Q and U from the instrument basis to the map
basis. The 1Q and IU blocks become asymmetric in this ratatio

-1.3 —= —— 1.3
Figure 3. Top: MADping pixel variances for temperature and polarizatiod the reciprocal condition number of the pixel observa-
tion matricesBottom: Correlation cofficientx10® between I-Q, I-U and Q-U pixels. This part of the noise camace is dominated
by white noise which is modelled equivalently in all threegaigms. Hence, MADmap, ROMA, Madam and Springtide resurks
nearly identical. Maps are rotated into galactic cooradindb show the structure near the ecliptic poles.

Figs.[4Eb show plots of a single column of the noise covagamatrix. The column corresponds to reference pixel number
0. In the HEALPix nested pixelization scheme fdgige = 32 resolution, pixel 0 is located at the equator. In the pbatsh pixel

has the valugm,my) normalized by, /(m%)(n‘%). Thus the pixel values of the plots represent correlatiafficients. Due to this

normalization, the reference pixel automatically gets ualue and is later set to zero in order to bring out smallatuees of the
other elements of the columns.

The sky is scanned from one ecliptic pole to the other. The N\\OMmn maps are characterized by bands of correlation along
the scanning rings. Pixels near the equator, such as theenete pixel O, are only observed during a few-hour windowhas t
satellite scanning ring is rotated over the course of thgesurThe two crossing bands of higher correlation corredportwo
pointing periods half a year a part that observe the referpnel 0.

For both generalized destriping and optimal map-makingretlis a visible gradient in the correlation along the saagning.
Pixels that are observed immediately before or after theregice pixel have the strongest correlation. The convealtaestriping
with its hour long baselines assumes constant correlatisé nger the scanning ring and does not, therefore, shoviciare.

Figs.[4 andb show that the strongest cross-correlatiori$4) exist between Q and U noise maps. Side and Main polasizati
sensitive directions dier slightly from 90 and, as a result, smaH(10-%%) IQ and IU correlations remain.

Figs [BET show plots of the NCM columns of another refererixel fnumber 2047). This pixel is located at the northeripticl
pole region and it exhibits a veryfirent correlation pattern compared to the previous caseeShe pole is visited frequently
through the course of the survey, it becomes correlatedtivitmest of the map as a whole. Correlation amplitude is asad by a
factor of 3 from the equator pixel case (the increase can &e em the color bar ranges) and there is now a distinct asgtnym
between northern and southern hemispheres. As one exglezsymmetry only appears in optimal and generalizedigesjr
estimates.

6.2. Noise covariance validation

In this Section we report the results of thre@felient validation tests. We performeg-atest, compared the noise biases computed
from the matrices and corresponding Monte Carlo maps antiyfinsed the matrices and Monte Carlo maps as inputs to angula
power spectrum estimation.

6.2.1. By °

Residual noise expected in the recovered maps is Gaussiato dine linear character of all the map-making methods densd
here. Thus the noise is completely described by its coveeiamatrix. More specifically, in the absence of any singulades of

% In a HEALPix map the Stokes parameters Q and U at a point inkhare defined in a (x,y,z) reference coordinate, where thgisis along
the meridian and points to south, the y-axis is along theuldéi and points to east, and the z-axis points to thel skysiét al! 2005).
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Figure 7. A single column of the Springtide covariance matrix cormasfing to a pixel near the ecliptic north pole. For desooipti
of the normalization, see text.
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the estimated residual covarian®g,the residual mapsn = § - s, are drawn from a multivariate Gaussian distribution defibg
N. Therefore, the? statistic, defined ag> = m"N=1m, is drawn from a2 distribution with Nyx degrees of freedom (dof).

If any singular mode is present we simply replace the maltix, in the definition ofy?, by a matrix,N’~, which is like N-*
in all respects but has the eigenvalue corresponding tarigelar vector set to 0. We note that if the eigenvalue deasition of
the matrixN~! is not available or too costly to compute, we can achieve migalty the same fect by definingN’ = N + 72 W,
wherev is a singular vector we want to project out ayfds a large positive number for which however inversiombfis still stable
(e.glBond et al. 2000). As we subtract one degree of freedwnesponding to the excluded, ill-conditioned eigenmodeswpect
that there are in totalf$,x — 1 degrees of freedom left in our maps

We can apply the analogous test to the smoothed noise coeari@hey? statistic is defined as before with the smoothed
covariance matrix as well as residuals used now in place efréspective unsmoothed objects. As we commented on that in
Sect[3.8, the inverse of the smoothed covariance has tofgremately regularized, to avoid the results of the testdpdiased
by the artifacts potentially present at the scales smdikan the smoothing kernel and therefore not containing asgnotogically
useful information. Thefective number of degrees of freedom left in the data will cle then with the number of eigenvalues
which have not been set to zero in the regularization pro@dssrnately, if the preferred regularization approactoined adding
some low level of the white noise, Sect.13.3, the number otitgrees of freedom is equal tdgy.

In addition, one needs to take care of the singularity of themoothed noise covariance. This has to be done explifitly i
the smoothed version of the ill-conditioned eigenmodejoes not belong to the null space of the inverse smoothed N€M
N-1(Lv) 9&1 0. To do so, we employ the same approach as before, repldwngggularized inverse of the smoothed covariance
matrix, N~+, by,

N [N+ 2 vy i (R Lv) [ Rt )] (R Ly (56)

where L is a smoothing operator, Eq_(29), and the last expressiiowi® from the Sherman-Morrison-Woodbury for-
mula (Woodbury 1950). This last operation additionallyuees the number of degrees of freedom by 1 (or whatever number
of modesy is to be projected out).

The Kolmogorov-Smirnov test can be used to test whether afsatmples conforms to some theoretical distribution. Hse t
estimates the probability of the maximatftérence between treenpirical distribution function,

Fod) = = > O(x), 57)
i=1

of the observations; (in our case the individual?) and the theoretical cumulative distribution functi@{x) is the Heaviside step
function. We note that in this work we take an advantage ofdbethat we can simulate the residual noise directly. Tinathgs is
clearly not the case when real data are considered, thediestsibed here can be applied to ietience of two sky maps produced
by disjoint sets of detectors operating at the same frequemet can therefore be a useful test of the real life data gsicg integrity
(e.g/Stompor et al. 2002).

Figs.[8EID show the two cumulative distribution functions 25 noise maps in the case of the direct method. Repqred
values are the probabilities of observing this level of disement even if the noise description was exact. Conveaitio the level
p < 0.05 is considered to be enough to reject the null hypotheatsthie distributions match.

We then proceed to study the agreement between downgradssimaps and the noise covariance matrices. As a test case,
we use the Madam NCM for 10 mHz knee frequenc25k baselines. We smoothed the covariance matrix using @ahizeu
window function, setting the thresholds tdlgyse and Nsijge respectively. As expected, the smoothed matrix is extresiagular.
We compute its inverse by including only the eigenvaluesdha greater than 18 times the largest eigenvalue, including 862
of the 36 864 available modes.

Fig.[I1 shows the empirical distribution functions of tfe Even though the matrix is computed for the direct method, th
inverse noise weighted (INW) maps conform well to it. Howewehen we apply the smoothing kernel to the high-resolutiaps,
there is a clear disagreement. This stems from the factrhhts downgrading the high resolution pixels are not cdlygdmverse
noise variance) weighted when we compute the low-resalutiap. If we first produce a low-resolution direct method owikhap
and then smooth it, the agreement is much better. This isshothe bottom row of Fid. 1.

In the case of the direct method maps our results show thgtaptimal (noise) maps and their respective noise covagianc
are mutually consistent in the light of the statistics. The good statistical agreement in this case doedepend on the time
domain noise characteristics nor map resolution. This peeted given that the noise covariance estimator implesaeint the
optimal codes, Eq[{20), is an exact expression descrilliaghbise properties in the pixel domain, and that we havenzesu
perfect knowledge of the time domain noise.

The level of consistency found in the destriping cases sat@pending on the underlying time domain properties,fige and
on the assumed baseline length. In the caskef = 50 mHz, we have not found a satisfactory agreement in anyeofdinsidered
destriping cases. For the lowé#ec = 10 mHz the results obtained with the generalized destripadam, are satisfactory for the
short, 125, baseline choice, and marginal for the long one, 60 sl&ttex result is consistent also with that obtained usirgg th
classical destriper, Springtide.

In the case of direct low-resolution map-making, the digarey between the noise maps and the noise covariance statris
from the destriping approximations. Both destriping ajgoftes assume that the correlated part of the noise is ggnfectielled
by a set of baselineffsets. Correlated noise occurring at frequencies highenilieat the baselines can model is not removed from
the TOD and therefore is binned onto the map For short ba&setin low knee frequencies the unmodelled noise manifesis as
relatively small angular scale correlation and does ndt thia power spectrum estimates at law
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Figure 8. MADping empirical y? distribution
function from the 25 residual noise maps com-
pared with the theoretical cumulative probabil-
ity density. The black stair line is the empiri-
cal distribution function, the blue solid line is
the theoretica)? distribution for Noix —1 =
36,863 degrees of freedom. It is the same for
all direct method maps in Figsl [8310. The red
dashed line is the least squares fit of fRelis-
tribution to the experimental distribution (dof
being the fitting parameter). The horizontal axis
is translated to the expected center of the distri-
bution, {y?) = dof = 36,863, and scaled by the
expected deviationr,. = v2dof.

Figure9. Madam empirical y? distribution
functions from the 25 residual noise maps com-
pared with the theoretical cumulative probabil-
ity density.

Figure 10. Springtide empiricaly? distribution
functions from the 25 residual noise maps com-
pared with the theoretical cumulative probabil-
ity density.Left: direct methodRight: INW.

We conclude that the noise covariance of the low-resolutiaps produced by the destriping algorithm needs to be usd wi
care. The flexibility of the generalized destripers pefimitthem to use dierent baseline lengths makes them in this context the
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Figure11. Madam empirical y? distribution functions from 60 residual noise maps comgasgéth the theoretical cumulative
probability density. For a smoothed map, we count the degoééreedom as the number of included eigenmodes in thesaver
NCM. Top: Three sets of low-resolutions maps using just one of therkswelution methods at a time. The high-resolution maps
for INW and smoothing methods hadljze = 1024.Bottom: Since it is suboptimal to compute a low-resolution sphétfieamonic
expansion from a noisy high-resolution map, we test how thellsmoothing approach works conjunction with the two pixel-
based downgrading methods.

preferred choice. We emphasize however that, if the acgwhithe noise description is the major concern, then onlyogmal

techniques are suitable. In the next Sections we will reidensill these low-resolution map-making techniques incibretext more
specific to the large angular scale power spectrum estimatiok, which is envisaged as the main application of the tegelution
maps and their covariances.

6.2.2. By noise bias

In this Section we describe the calculation of the averagelan power spectrum of noise maps, i.e., the noise bias -Seeg4.?,
using a pseud@, estimator for which both the NCM estimate and the Monte Cardp averages are feasible to compute. Testing
the noise covariance matrix by comparing estimated and unedshoise biases can be viewed as complementary tg?thests
described in the previous Section. It can certainly provitbee information than the plaig? test, as instead of simple pass or fail
indicator, the noise bias comparison will tatlwhich angular resolution the noise model agrees with the data. At the same time,
the noise bias is less sensitive to the anisotropic feapnesent in the residual noise. The noise bias test is cleashg directly
relevant for power spectrum estimation.

Figs[12£I4 compare noise bias averages from 25 noiseatatiz of the maps of the noise residuals to the analytitahates,
Eg. (54), based on the estimated noise covariance matrig.dgactra are computed using the HEALRhafast utility and the
estimated noise biases using the corresponahingalm subroutine. We only show the autospectra, TT, EE and BB,easdanning
has decoupled the modes to large extent and only minimaliogupetween the modes exist.

The error band around the averages is the standard devidtiba individualC, values divided byv25. Each plot exhibits up
to five curves: direct, noise weighted and harmonic smootioésk biases, and two analytical estimates.

The results derived for the case of the Madam runs with thet ffaseline, 25 s, and the high knee frequency, 50 mHz, as
shown in Fig[IR, agree now very well with the MADping resulibis is unlike in thechi? test discussed earlier, indicating that
those were the anisotropic features responsible for ther ldisagreement. The numerical calculations of the ndeedre in this
case agree very well with the analytic predictions, Sed. Both these facts validate the destriper approximatiotihéonoise
covariance in the light of this test, which is found to ddsersuficiently precisely noise in the low-resolution map. Thisdosion
agrees with those derived using tfetest earlier.

The long baseline case is shown in Figl 13 fgre = 50 mHz and computed using the generalized destriper, andyifilB
for the low value of the knee frequency, 10 mHz, and based oim@jfile results. We find that in the high knee frequency case
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the prediction and numerical resultsfdr rather dramatically, highlighting the failure of the tfigxer approximation in such case
already seen with the? test. We note here that the failure seems to fbecting the largest angular scales as both the numerical
and analytical results tend to converge at the highiestd considered in this analysis. Similar results are fowndHe classical
destriper maps and covariances. For the fgw. case the agreement is found to be marginal, with visibleadi®ris seen generally
at¢ < 5 and are the most significant in the case of the BB mode spacirhe results obtained using Madam in the analogous case
are nearly indistinguishable.

We note that our analytic prediction are well in line with WiRAiIndings|(Hinshaw et &l. 2007; Page €t al. 2007) and studlies o
the destriping framework (Efstathiou 2005, 2006).

TT noise bias, 50mHz, 1.25s EE noise bias, 50mHz, 1.25s BB noise bias, 50mHz, 1.25s
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Figure 12. Analytical and mean Monte Carlo noise biases from Madam atifigee = 50mHz using a short.25 s baseline. Grey
band is the 1o region for the average, computed by dividing the sampleanae byv25.

TT noise bias, 50mHz, 60s EE noise bias, 50mHz, 60s BB noise bias, 50mHz, 60s

14; j | 505 j g 50 j
— r ___ direct ] _ E ] _
:M 12+ ~INW g :g E—ﬂ 40
s 10F _ smoothed r=) >
- gL _. analytical ] - — 30
E E E
s 6; = s 20
e AR 5 8
&) B N N ) o 10k,

Ot 0

10
Multipole, ¢ Multipole, ¢ Multipole, ¢

Figure 13. Analytical and mean Monte Carlo noise biases from Madam atrig,ee = 50 mHz using a long 60 s baseline. Grey

band is the 1= region for the average, computed by dividing the sampleavae byVv25. Long baselines clearly fail to model the
correlated noise.
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Figure 14. Analytical and mean Monte Carlo noise biases from Sprimgtiths atfynee = 10 mHz.

Averaged noise biases conform to the analytical estimateslmost all accounts and deviations are small comparedeto th
absolute noise bias. As a warning example we include thdtsesumodelling residual noise from thighee = 50 mHz timelines
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Table 3. Comparison of TT power (rms) in the stripe map®Nate = 8

CMB? Foregrounds
Map-maker Direct Averaged Smoothed Direct Averaged  Srmmbth
Madam, 125s  544uK  7.29nK 520nK 946uK 4.67nK 214nK
Madam, 60s D7uK  3.31nK 198 nK 381uK 3.21nK 223nK

aBinned CMB map rms is 334 uK
b Binned foreground map rms is 186K

using 60 s baselineftsets. This leaves more noise in the maps but the corresppadalytical estimate is actually lower, since
noise not modelled by the baselinfsets is neglected.

At 10 mHz the Madam results for long 60 s baselines are eanvalith Springtide results: both succeed to estimate rHoae
at low knee frequency but should not be used for high kneaifrgies as such.

Our noise bias estimates for EE and BB spectra are equahéwavieraged spectra for the Monte Carlo maps appear visually
differentin this respect. To ensure that this is only due to M@atdo noise we ran Madam in Monte Carlo mode, simulatingenois
on the fly and avoiding the costs associated with storing eftithe ordered data. After averaging over INgfye = 8 noise map
spectra we found that theftkrences between EE and BB noise map spectra were at most 10%.

In the AppendixA.l we replot some of these figures after sdhitng the analytical bias and dividing by the Monte Carimpke
deviation to highlight the dierences between the analytical and numerical results.

6.2.3. By power spectrum estimation

Our final validation procedure for the noise covariance it@srwas to use them i@, estimation. Due to resource constraints this
exercise was conducted at a lovgge = 8 resolution. All three map-making codes produced maps ften25 noise realizations.
Each realization was paired with an independent realinatithe CMB sky and the co-added maps were processed usiBplpel
code, an implementation of the QML estimator described ictB€l. The 25 power spectrum estimates for each multipote we
then averaged over and the Bolpol-determined error bars aeordingly divided byv25.

The example of the results is shown in Hig] 15. These estanatre obtained for the case with the low knee frequency,
funee = 10 MHz, using the conventional destriper, Springtide. Wee ttloey do not hint unambiguously at any problem with the
estimated covariance, even if thé (strongly) and the noise bias (mildly) tests may indicateeotvise. This is likely in part due to
a lower sensitivity of the power spectrum test on the one faarttlon the other due to the fact that the lower resolution kas b
used in this last case.

Similar statistically good agreements can also be seeneirtdise of the higher value df.ee if the covariance is computed
using either the optimal or generalized destriping techaigith the short baselines of2bs. If longer baselines are used, i.e., 60s,
the estimates of the polarized spectra, both E and B, arelwidiscrepant with the assumed inputs. Similar disagre¢mman be
seen if the -diagonal elements of the covariance matrices are neglelctdoth of these cases, no particulfieet on the total
intensity spectrum can be noticed in the range of invegijangular scales. We illustrate all these statements iredgig[A.2.
These observations emphasize the importance of precisgaéisin of the noise covariance in particular for the paed power
spectra.

6.3. Low-resolution maps

In the previous sections we have discussed our ability fmest correctly the properties of the noise present in therksolution
maps. We have demonstrated that this is indeed the casel fworalidered resolution downgrading strategies and botimap
and destriper maps. Though in the latter case a baselinthleegds to be carefully chosen depending on the time donuése n
characteristic.

In this Section we focus on the low-resolution maps theneselWe will look at them from three flierent perspectives, evalu-
ating the level of the map-making artifacts left in the maps,properties of the sky signal and the level of the noise.

In Fig.[18 we show the dlierences of the noise-free low resolution maps computeddiiterent downgrading approaches
discussed earlier and the input map used for the simulatibms reference low resolution version of the input map hanbe
obtained via simple binning of the sky signal directly inbaviresolution pixels.

In the case of the direct method we see clearly the extra pspread all over the sky in all three Stokes parameters. Amgrot
proposed approach clearly fares much better leading tosiantial decrease of the level of the observed artifacts.i$tguantified
with the help of the pseudo-spectrain Figl 17 and in Tablelreswe have collected the root mean square estimates fesigthn
residual maps.

The CMB part of the low-resolution maps also depends on thendoading technique. These attempt to suppress thehigh-
(subpixel) power and therefore can potentialifeat the CMB angular power spectrum even within the band efrést. Fig[TI9
shows the full-sky pseud@; spectra averaged over 117 CMB realizations, downgraded irsierse noise weighting and a number
of smoothing kernels. Comparison of the spectra shows tlighiard to attain sub-percent bias everf at 2Ngjqe. If these were
estimates from an actual power spectrum estimation codeawitrelated noise and a sky cut, the smoothed covariancelslwo
however, be regularized by adding white noiskeetively leading to a considerable uncertainty alreadyhat multipole due to
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Figure 15. Averaged power spectrum estimates over 25 noise and CMBa#ahs. The noise has a 10 mHz knee frequency.
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Figure 16. Examples of signal striping. We show thdfdrence between a binned and destriped signal-only maps &avwespond
to direct Madam results,.25 s and 60 s, and inverse noise weight&b baseline case respectively.
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Figure 17. Comparison of CMB and stripe power spectra reveals thatttifgrg can significantly bias the EE and BB power
spectrum estimates. Stripe map spectra are computed frqs shawn in Fig._16.

white noise and a sky cut. Methods that produce less than &%d®iC, estimates af = 2.5Njqe are the Gaussian 18ymmetric
beam and the apodized step function it {2) = (2 or 25Nsige, 3Nsige)-

In Fig. [I8 we show the actual sky signal spectra estimatedhferiow-resolution, noiseless maps. It can be seen that the
estimated band powers are not drasticaffgeted with respect to the estimates coming from the binngusnidevertheless, the
case of estimates coming from the direct low-resolutionsrsmw some deviation from the binned case. The bias is mastipent
in the BB low multipole estimates. We note that since the ifpesd covariance matrix is ill-conditioned it was regutai by adding
a small white NCM ¢ ~ 1K) and each signal map received a noise realization consisféh this white NCM.

None of the proposed downgrading approaches can yield & tmis| better than the direct method. This is because noise-
weighted downgrading or smoothing both introduce depeastfiom the optimal weighting of the noise present in the .dBit&
expected level of the noise is therefore an important metitic which to compare the fierent downgraded maps. Figl] 20 shows
the analytical noise biases evaluated fromN\age=8 Madam noise covariance matrix after smoothing using thgférdnt beam
window functions defined in Se¢t. 5.4 and the unsmoothed thatds a close match to the noise weighted maps. The narrowes
Gaussian window function having an FWHM equal todightly less than average pixel width, appears pathohigiue to aliasing
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Figure 19. Bandwidth limiting the signal using various window funei® In the QML method the quadratic map function is
multiplied with the inverse Fisher matrix to produce the Qlgiwer spectrum estimate (see SEcil 4.1). The inverse Risigix

can correct some of the aliasinffexts that cause bias in the power spectra. For this figurestedoC, spectra were computed
from the full sky CMB maps. To simulate thdfect of the inverse Fisher in QML we deconvolved our pseudatspavith a
mode coupling kernel that we computed from a map of ones. Aileetpanels show the same curves first as raw estimates, then
after deconvolving the smoothing and pixel windows and Knaftter subtracting and dividing by input model. The apedistep
window functions (“cosine”) correspond to choices of theetiholds {1, £2) as (2024), (16 24) and (1620) respectively. Here,
solid lines are for Gaussian windows and dashed lines foafizalized step functions. Note that the noise weighting arettd
low-resolution map-making produce similar aliasirftpets.

effects. The rest of the test cases are more stable but featarersegligible amount of aliased power for multipole monsdregyond
¢ = 3Nsige (the C, are not normalized with the conventiod§f + 1)/2r).
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Figure 20. TT noise bias computed from smoothed covariance matricdil lBes correspond to the Gaussian window functions
and the dashed ones to apodized step functicefs.Linear vertical scaleRight: Logarithmic vertical scale.

6.4. Resource requirements

Table[4 lists some CPU time costs for varidisgye baseline length and knee frequency combinations. Beimgnaiderably ex-
pensive operation, we have not tested the scaling of thenaptialculation for this particular exercise. See Bori®99) for more
discussion of scaling. The Madam resource cost scales kpligbarly with respect to the number of pixels and the stteca
baseline correlation length.

Resource requirements of the three approaches vary. Asweifihmaking, the destriping problem size is related to tloseh
baseline ffset length. The same consideration applies also for noisgriemce estimation. Both the Madam generalized destriper
and the MADping covariance calculations scale by the len§the noise filter. ROMA does the calculation in Fourier spand as
a results scales as the the logarithm of the noise filter lefigite MADping algorithm has no dependency (ignoring comication
and final file writing) on the number of pixels being used. Alilgh the computation prefactors are not specified, we cathaéeat
Nsige = 32, MADping is already more resourcéieient than ROMA (cf. rows two and three).
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Table 4. CPU time costs for 12 70GHz detector year8 - 10'° samples. Calculations are done on 2.6GHz Quad-core Oteron

Case Nside Weort® PEs CPUN
MADping 32 131,073 14,000 800C
MADping 32 4,097 14,000 7,525
ROMA 32 4,097 512 25,000
ROMA 4 16,385 256 480
ROMA 4 4,097 256 410
Madam 1.25s,50 64 1,759 1,024 901
Madam 1.25s, 50 32 1,759 512 114
Madam 1.25s, 10 32 8,285 512 438
Madam 10s, 50 32 289 128 42
Madam 60s, 50 32 84 64 34
Madam 1.25s, 50 16 1,759 256 34
Springtide, 10 32 1 1,024 256
Springtide, 10 16 1 1,024 51

a The filter or baseline correlation length
b performed on an earlier, dual-core version of the machine
¢ 10 and 50 refer to If knee frequencies in mHz

7. Conclusion

We have presented the formalism and tools to compute thdurgsioise covariance matrix for three map-making paradigpondied

for PLanck (an optimal method and two destriping methods). The straafithese matrices follows from the scanning strategy but
is modulated by the underlying noise model that defines the-making method. The matrices were tested against Montie Car
noise maps that were processed from correlated noise stredonmaps using MADmap, Madam and Springtide map-making
codes.

The most accurate correspondence between the covarianidg eral the noise maps is, as expected, between the optimal
map-makers, MADmap and ROMA, and their covariance matriécekthe two codes produce nearly identical matrices. Bath th
generalized (Madam) and classical (Springtide) destipee shown to disregard some medium frequency correlatied ttat
cannot be modelled by the chosen baselifisat length. It is shown that for a low knee frequency, 10 mhiz Springtide baseline
length of 1 hour is sflicient to model the correlated noise and compute the resithis¢ covariance. For a high knee frequency,
50 mHz, even the Madam 60 s baselines are too longfficeuHowever, using a shori2b s baselines (just 96 samples) the Madam
results are extremely close to optimal results even for itjle knee frequency.

As a concluding test we used the matrices in actual powertrspe@stimation and verified that all methods model residual
noise adequately when the noise approximation (baselimgghgis short enough to model the correlated noise.

Resource costs of the methods vary greatly. Although bottigiAg and ROMA arrive at the same result, the implementation
differ and the ROMA result scales with the resolution of the magthBptimal implementations are extremely resource irkens
The Madam method can be used to produce good approximafitims optimal covariance matrices at a fraction of their cobke
covariance matrices for these tests were evaluated forawadsolutionsNsige = 8 andNsjge = 32. It is possible to compute the
matrices up td\sige = 64 (already 162 gigabytes) or even upNgqe = 128 (26 TB) but the computational scaling of the methods
using the matrices will likely set limits to the usefulne$soach resolutions.

We studied two classes of downgrading strategies, thoserthke an attempt to limit the signal bandwidth and thosedbat
not. The choice of the best downgrading approach dependstbrthee accuracy of the resulting noise and signal modetst Fi
measuring our ability to compute an accurate noise covegiamatrix and the second describing our ability to contigrhal dfects
such as striping and aliasing.

All methods to produce low-resolution maps have their diasids. Direct map-making at low resolution produces an ugatec
able level of signal striping that is caused by subpixelcte. Downgrading by noise weighting biases the powertsp@ahrough
aliasing dfects. The frequently used Gaussian beam smoothing hasificsighdrawback of suppressing the signal at otherwise
useful angular resolutions. We find that an apodized stegtifumis able to retain a great deal of signal power uf g = 2Nsige but
even then the power spectrum estimates will be biased be§en#é 5Nsjqe. However, to accurately evaluate the noise covariance
matrix for a smoothed map, we would need to compute an usredatbvariance matrix at the high map resolution and theryappl
the same smoothing kernel to both the matrix and the mape@asding this requirement leads to disagreement betweemap
and the matrix that can be alleviated by combining two or nodtbe downgrading methods.

Of the downgrading methods considered, we consider snmapthiith a suitable choice of the window function and pogsibl
a intermediate downgrading step by inverse noise weightingroduce the best possible low-resolution maps for p@pectrum
analysis.

We presented in this work a method to compute the residuakenmdvariance of a smoothed, bandwidth-limited map. The
method was shown to produce an accurate description of tise mothe smoothed maps when both the map and the matrix agree
prior to smoothing. Our method of smoothing the covariana&rinmakes it possible to consider bandwidth limited lagalution
maps and produce sub-percent level unbiased power speestimmates up té = 2.5Nsge

In this work we have assumed a single frequency channel,rtelated noise between detectors, noise that is white &t hig
frequencies and full sky coverage. In further work any ofstheonstraints can be lifted. The only application that wedube
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covariance matrix was in power spectrum estimation. Therdpading methods that suit power spectrum analyses beshatde
optimal for diferent low-resolution analysis, e.g., study of large sagp®liogy. A relevant future direction to explore is the use of
the covariance matrices as inputs in a likelihood code fesnmogical parameters.

Acknowledgements. The work reported in this paper was done by the CTP Workingu@af the Ranck Consortia. IPanck is a mission of the European Space
Agency. We acknowledge the use of the CAMB (hftamb.info) code for generating theoretical CMB spectran&of the results in this paper have been derived
using the HEALPIx package (Gorski et al. 2005). We ackndgethe use of version@.3 of the Ranck sky model, prepared by the members okfRx Working
Group 2. This work has made use of thesRk satellite simulation package (Level-S), which is assedhblg the Max Planck Institute for AstrophysicsaRck
Analysis Centre (MPAC). This research used resources dfiltienal Energy Research Scientific Computing Center, ivisisupported by the fice of Science of
the U.S. Department of Energy under Contract No. DE-AC02H51231. We thank CSC (Finland) for computational resarB¥ wishes to thank the Jenny and
Antti Wihuri Foundation and the Vaisala Foundation farafincial support. This work was supported by the Academy miaiRd grants 121703 and 121962. HKS
thanks Waldemar von Frenckells stiftelse and Magnus EbthrBoundation for financial support. We acknowledge sugpam ASI, contract Planck LFI Activity

of Phase E2. RS acknowledges partial support of the Eurdpeammission Marie Curie IR Grant, MIRG-CT-2006-036614.

References

Ashdown, M. A. J. et al. 2007a, Astron. Astrophys., 471, 361

Ashdown, M. A. J. et al. 2007b, Astron. Astrophys., 467, 761

Ashdown, M. A. J. et al. 2009, Astron. Astrophys., 493, 753

Benabed, K., Cardoso, J. F., Prunet, S., & Hivon, E. 2009,)MeXprints

Bond, J. R., e, A. H., & Knox, L. 1998, Phys. Rev., D57, 2117

Bond, J. R., Jde, A. H., & Knox, L. E. 2000, Astrophys. J., 533, 19

Borrill, J. 1999, in Proceedings of the 5th European/®&ly MPP Workshop, Bologna, Italy
Cantalupo, C. M., Borrill, J. D., &, A. H., Kisner, T. S., & Stompor, R. 2009, in preparation
Challinor, A. et al. 2000, Phys. Rev., D62, 123002

de Bernardis, P., Ade, P. A. R., Bock, J. J., et al. 2000, da#d4, 955

de Gasperis, G., Balbi, A., Cabella, P., Natoli, P., & ViidoiN. 2005, A&A, 436, 1159
Delabrouille, J. 1998, A&AS, 127, 555

Dupac, X. & Tauber, J. 2004, ArXiv e-prints

Efstathiou, G. 2005, Mon. Not. Roy. Astron. Soc., 356, 1549

Efstathiou, G. 2006, preprint astro/0611814

Efstathiou, G., Gratton, S., & Paci, F. 2009, ArXiv e-prints

Gorski, K. M., Banday, A. J., Bennett, C. L., et al. 1996, Ap84, L1+

Gorski, K. M. et al. 2005, Astrophys. J., 622, 759

Gruppuso, A., De Rosa, A., Cabella, P., et al. 2009, ArXiviatp

Hanany, S., Ade, P., Balbi, A., et al. 2000, ApJ, 545, L5

Hinshaw, G. et al. 2007, Astrophys. J. Suppl., 170, 288

Jdfe, A. et al. 2009, in preparation

Jarosik, N. et al. 2003, Astrophys. J. Suppl., 148, 29

Jarosik, N. et al. 2007, Astrophys. J. Suppl., 170, 263

Jewell, J., Levin, S., & Anderson, C. H. 2004, ApJ, 609, 1

Keihanen, E., Kurki-Suonio, H., & Poutanen, T. 2005, Mont.NRoy. Astron. Soc., 360, 390
Keihanen, E., Kurki-Suonio, H., Poutanen, T., Maino, D Bé&rigana, C. 2004, A&A, 428, 287
Keihanen, E. et al. 2009, in preparation

Kuo, C. L., Ade, P. A. R., Bock, J. J., et al. 2004, ApJ, 600, 32

Kurki-Suonio, H. et al. 2009, submitted to A&A

Maino, D., Burigana, C., Gorski, K. M., Mandolesi, N., & Banelli, M. 2002, A&A, 387, 356
Masi, S., Ade, P. A. R., Bock, J. J., et al. 2006, A&A, 458, 687

Natoli, P., de Gasperis, G., Gheller, C., & Vittorio, N. 20@&A, 372, 346

Natoli, P., Marinucci, D., Cabella, P., de Gasperis, G., &dfio, N. 2002, Astron. Astrophys., 383, 1100
Page, L. et al. 2007, Astrophys. J. Suppl., 170, 335

Planck Collaboration. 2005, ESA-SCI, 1, preprint astréd@ph4069

Poutanen, T. et al. 2006, Astron. Astrophys., 449, 1311

Press, W. H. 1992, Numerical Recipes in FORTRAN: The Art aé@tific Computing, 2nd edn. (Cambridge University Press)
Stompor, R., Balbi, A., Borrill, J. D., et al. 2002, Phys. RBy 65, 022003

Stompor, R. & White, M. 2004, A&A, 419, 783

Tegmark, M. 1997, Phys. Rev., D55, 5895

Tegmark, M. & de Oliveira-Costa, A. 2001, Phys. Rev., D643@®&L

Woodbury, M. A. 1950, Statistical Research Group, Memo..R&p, 4

Wright, E. L., Bennett, C. L., Gorski, K., Hinshaw, G., & SotpG. F. 1996, ApJ, 464, L21

Appendix A: Additional material
A.1. Noise biases

For completeness, we present in [Fig.]JA.1 the noise bias ctedftom the MADmap NCM and the 25 corresponding noise maps
and in Fig[A.2 the Madam bias fdgnee = 10 mHz and 60 s baseline.

To highlight diferences between the estimates and simulated noise mapsanghalv the fractional ffierences in Fig$. Al3—
[A.5 These plots complete the ones presented in 6.2.2.

A.2. Power spectra

Here we present another successful test of the covariantixmsed in power spectrum estimation, Hig.JA.6. We alsonshow
the power spectrum estimates can be used to pick out inaeqesidual noise covariances in Hig. JA.7.
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TT noise bias, 50mHz EE noise bias, 50mHz BB noise bias, 50mHz
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Figure A.1. Analytical and mean Monte Carlo noise biases from MADmays rafrixnee = 50mHz. Grey band is the &-region for

the average, computed by dividing the sample varianca/B§. Like the TE, TB and EB biases are both consistent with aacb
are not shown here. The analytical bias corresponds to thmamthed case presented in Secil. 6.3.

TT noise bias, 10mHz, 60s EE noise bias, 10mHz, 60s BB noise bias, 10mHz, 60s
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Figure A.2. Analytical and mean Monte Carlo noise biases from Madam atifigee = 10 mHz.
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Figure A.3. Averaged noise biases after subtracting the analyticathatt and normalizing with the standard deviation. Thig plo
contains the same curves as Fig.JA.1.
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Figure A.4. Averaged noise biases after subtracting the analyticathatt and normalizing with the standard deviation. Thig plo
contains the same curves as [Fig. 12.
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TT, 10mHz Springtide EE, 10mHz Springtide BB, 10mHz Springtide
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Figure A.5. Averaged noise biases after subtracting the analyticethast and normalizing with the standard deviation. Thig plo
contains the same curves as Fig. 14.
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Figure A.6. Averaged power spectrum estimates over 25 noise and CMBa#ahs. The noise has a 50 mHz knee frequency.
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Figure A.7. Averaged power spectrum estimates over 25 noise and CMBaé&ahs.

The noise has a 50 mHz knee frequency.
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