
Collecting data from distributed FOSS projects

Fabian Fagerholm
Department of Computer Science

University of Helsinki
Fabian.Fagerholm@helsinki.fi

Juha Taina
Department of Computer Science

University of Helsinki
Juha.Taina@helsinki.fi

ABSTRACT
A key trait of Free and Open Source Software (foss) devel-
opment is its distributed nature. Nevertheless, two project-
level operations, the fork and the merge of program code,
are among the least well understood events in the lifespan of
a foss project. Some projects have explicitly adopted these
operations as the primary means of concurrent development.
In this study, we examine the effect of highly distributed
software development, as found in the Linux kernel project,
on collection and modelling of software development data.
We find that distributed development calls for sophisticated
temporal modelling techniques where several versions of the
source code tree can exist at once. Attention must be turned
towards the methods of quality assurance and peer review
that projects employ to manage these parallel source trees.
Our analysis indicates that two new metrics, fork rate and
merge rate, could be useful for determining the role of dis-
tributed version control systems in foss projects. The study
presents a preliminary data set consisting of version control
and mailing list data.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics; D.2.9 [Software
Engineering]: Management—Software configuration man-
agement ; H.4 [Information Systems Applications]: Types
of systems—Decision support (e.g. MIS)

General Terms
Human Factors, Management, Measurement

Keywords
free software, open source software, FOSS, software metrics,
version control, distributed software development

1. INTRODUCTION
Free and Open Source Software (foss) has gained a strong
foothold in the computer software industry. It challenges the
entire field of software production in several areas, includ-
ing technical aspects of software engineering, organisational
and managerial structures of software projects, and social
structures that surround production and use of software in
society. Furthermore, foss is often seen as a cost-reducing
factor in both software production and use, having a disrup-
tive effect on the software market. Several commercial com-
panies produce foss products, have entered or wish to enter
into cooperation with foss projects, or wish to replicate
positive aspects of foss in general. One particular area of
interest is agility: robustness, low project management over-
head, and sustained development speed in rapidly changing
circumstances are closely tied into the working habits and
tools of foss development.

Studying, describing, analysing and understanding foss is
important both from academic and practical viewpoints.
Several studies have described areas in which foss can bring
advantages to software development projects [4, 14, 8]. Some
studies have attempted to highlight details that seem to ap-
ply to foss in general [5, 11, 15]. A trait of foss is its ten-
dency to rapidly abandon tools and methods that are cum-
bersome and rapidly adopt tools and methods that prove
useful for the moment. In recent years, foss has undergone
an evolution towards larger-scale and more distributed de-
velopment, and earlier studies no longer reflect the current
state of the art in foss development. Also, some techniques
and methods described for collecting foss metric data are
not directly applicable to distributed development.

In this paper, we describe how increased distribution affects
foss development and collection and modelling of metric
data. As an example, we examine a preliminary data set de-
scribing version control and mailing list data collected from
the Linux kernel project.

2. RELATED WORK
Asklund and Bendix described the state of the art in foss
configuration management in 2002 [1]. They noted that
the area has traditionally been a manager activity where
the software development process stages are directed and
controlled from a top-down perspective. In contrast, foss
configuration management is applied from a developer per-
spective. Configuration management tools are used to store
and maintain software components and their history and to

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Helsingin yliopiston digitaalinen arkisto

https://core.ac.uk/display/14919137?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


coordinate simultaneous changes to the product. Both con-
figuration and working methods are included in this view,
and the goal is to enable a group of developers to be as
efficient as possible.

Godfrey and Tu examined the Linux kernel and saw that it
has increased dramatically in size over a period of six years
[6, 7]. They concluded that this indicates an ability of foss
development to sustain super-linear growth. Izurieta and
Bieman applied part of this study to the FreeBSD kernel
and found that the claim of super-linear growth in foss has
no support in general [9]. Polančič et al., Michlmayr, and
Crowston et al. all draw attention to project-level aspects of
foss development [15, 11, 12, 4, 5]. They observe both the
layers and hierarchies that project participants are organised
in and the limits in numbers of participants that project
structures can support.

Koch and Schneider have developed a formal data model for
information obtained from foss projects [10]. Their model
encompasses people involved in the project, the discussion
guiding it, and the actual source code produced. The model
is based on observation of mailing list activity and activity
within the gnome cvs source code repository. Their ex-
periment displays important characteristics that allows cap-
turing some defining aspects of foss development. First,
the sample granularity is quite small. For source code, a
sample is a single cvs commit action, instead of an entire
release. Second, each action is associated with an actor that
performs it. Koch and Schneider demonstrate that this is
an important factor when modelling foss projects. Third,
Koch and Schneider include discussion lists in the model,
and although they do not analyse discussion contents, they
do find temporal correlation between discussion list activity
and cvs activity. Fourth, Koch and Schneider apply time-
line analysis throughout their methodology. Each action is
placed on a time-line with very fine granularity, allowing the
authors to make effort estimations and track progress on a
very accurate scale.

Conklin et al. describe OSSmole, a repository of research
data and analyses of foss data [3]. They note that a large
portion of research on foss has prioritised presentation of
results but have masked or discarded background informa-
tion and research context needed to correctly interpret the
results. Their experience with foss data collection shows
that while a large mass of information is available because
actions are always digitally recorded, the practical challenges
to utilise this data are significant.

Christley and Madey describe a number of data mining tech-
niques that can be used to manage some practical challenges
when analysing a large dataset with many different kinds of
data from many different projects [2]. They concentrate on
analysis of well-defined activities such as checking out source
code from repositories, modifying a source code file or up-
dating a local copy of the source code. They show examples
of algorithms for data analysis and identify activity patterns
that correspond to development processes.

3. PROBLEM
Mining publicly available data from foss projects presents
two important challenges. First, as previously noted, the

analysis itself is a difficult problem. Finding or designing
a data model that fits more than a few foss projects is
hard because there is so much variation among projects.
Data cleaning and format normalisation is time-consuming
because the possible patterns are virtually endless and re-
quire repeated adjustments. Deep analysis frequently re-
quires information network algorithms with NP complex-
ity. Second, the data sources are changing. The tools used
by foss projects are moving from a centralised storage and
communication architecture towards a distributed architec-
ture. It is no longer enough to obtain data from a single
network location that remains stable for a long time; data
acquisition must dynamically discover new sources during
the analysis and cope with overlapping time-lines. The tool
changes also affect the first problem – as the data sources
themselves change, the analysis inevitably becomes more dif-
ficult.

We experienced the challenges of data capture from dis-
tributed version control systems as we studied quality fac-
tors in foss projects. Our original goal was to capture and
analyse a data set with both great breadth and depth –
number of variables and amount of samples. We wanted to
model and analyse data from several complementing infor-
mation spaces, allowing us to examine possible correlation
between them and find more comprehensive explanations
for the quality-related phenomena that we observed. We
also explicitly wanted to explore the challenges involved in
automating data collection and analysis. For our experi-
ment, we used a data model partially derived from Koch
and Schneider’s, but expanded it and made it more general.

Although there is a large body of work analysing many dif-
ferent aspects of metric data collection and analysis, it is
mostly based on a traditional view of foss development
where a centralised, network-accessible source code repos-
itory is used by participants. However, several large foss
projects have already abandoned or started to abandon this
development model due to both project scaling issues and
technical drawbacks of centralised systems. These projects
have adopted distributed version control systems where each
individual developer holds his or her own source trees and
code sharing can take place in a more flexible way.

The scaling issues have been clearly visible in the Linux ker-
nel project. Originally, the project did not use any source
code management system [1]. Collaboration relied on patch
files that were sent by email between developers or to public
mailing lists. This caused a bottleneck in development, not
due to the underlying model but due to the amount of man-
ual work involved in processing and integrating patches1.
In February 2002, the project started to use the BitKeeper
version control system, with positive effects in the form of
increased productivity. In April 2005, BitKeeper was aban-
doned2 and later that year the project started using git, a
tool written to fit the needs of that project. Several other
foss projects have started using git as well. Efforts are

1Linus Torvalds: Re: source mgt. requirements solicitation,
mailing list message on the GCC Project Mailing List, De-
cember 2002.
2Linus Torvalds: Kernel SCM saga, mailing list message on
the Linux Kernel Developers’ Mailing List, April 2005.



being made to store not only source code but also bug in-
formation in distributed data repositories.

As we applied our data collection tools on the Linux ker-
nel project, we noticed that although we could collapse the
complex version control system history into a single time-
line by obtaining samples from only one of the source code
trees, we did lose many explaining factors. We looked at the
project from a single perspective – a perspective that does
not reflect how the project participants see their project.

Let us briefly describe and define the distributed develop-
ment model employed by the Linux kernel project. The
source code is stored using the git version control system.
Each stored instance, a source tree, can be defined as a fork
of the source code. To begin development, a developer makes
a clone of an existing fork. There is no actual primary copy –
forks are technically equal and although humans may assign
special meaning to them, their only relation is the common
point in time when one fork has been cloned from another.
The clone action also constitutes a fork action on the project
level: the clone is a disconnected copy which gains an inde-
pendent history identical to that of the original up to the
point where it was forked.

The crucial point of the distributed development model is
not forking but the way forks, or parts of them, are merged.
Merges in git are performed as pull operations; even though
the initial fork was made by cloning data from a specific lo-
cation, merging is not performed by pushing back changes
and resolving conflicts that may have arisen because of other
merges. Instead, anyone may pull changes from a particular
fork and resolve conflicts in their own source code tree. On
the project level, a merge temporarily brings two indepen-
dent histories together in a single point. Using pull merging
has some important implications: the developer who made
the fork does not have to be active in merging, as long as
the fork is made available on the Internet. For metric data
collection, however, this implies that new data mining tech-
niques are required. A single time-line no longer reflects the
real evolution of the source code.

4. EXPERIMENT
We first conducted an experiment prototype, in which we
made feasibility tests for obtaining data and taking mea-
surements from it. We experimented with approximately ten
different foss projects, including the Linux kernel project.
We wrote simple tools to collect data from several sources
and calculate or simulate calculation of metric values. The
focus in these prototypes was to solve technical issues with
the data sources.

We selected three projects from the initial set of projects:
Linux 2.6, an operating system kernel, gimp, a graphics pro-
gram, and Blender, a 3d content creation suite. Addition-
ally, we included source code from versions of the Linux
kernel ranging approximately from February 2002 to April
2005, as a comparison to the current Linux kernel tree. This
code falls into the period when Linux was maintained using
BitKeeper and the code has later been imported into a sepa-
rate, special-purpose git repository to preserve history. We
refer to this code as Linux-historical. Due to space limi-
tations, we will only present results from the Linux kernel

Linux 2.6 Linux-historical

VCS
type

git git

VCS
URL

git://git.kernel.org/
pub/scm/linux/kernel/
git/torvalds/linux-2.6.git

git://git.kernel.org/
pub/scm/linux/kernel/
git/tglx/history.git

BTS
type

Bugzilla Ad-hoc / none

BTS
URL

http://bugzilla.kernel.org Various / none

Relevant
mailing
lists

lkml lkml

Mailing
list
archives

http://userweb.kernel.org/
∼akpm/lkml-mbox-
archives/

http://userweb.kernel.org/
∼akpm/lkml-mbox-
archives/

Table 1: Identified data sources for Linux and Linux-
historical.

bts

project

bug

person

submitter

identifier

mailinglist

post

sender

revision

committer

vcs

Figure 1: Data model for experiment.

project here. We grouped the data sources into information
spaces. The data sources are shown in Table 1.

To acquire data from each data source, we wrote special
programs based on the earlier prototypes. All programs in-
sert the results of their computation into an sql database.
The values of each computation can then be retrieved ef-
ficiently along with information about its context – from
which project it was obtained, to which point in time the
value is connected, and so on. The data model used in the
database is described in Figure 1.

The first program extracts information from mailing list
archives. It detects the sender, subject, message identifier
and date of each message, and performs data cleaning on
these items. Table 2 shows the number of messages and the
time required to import them into the database. The second
program obtains bug reports from bug tracking systems. We
omit the analysis of this data since there is no symmetric,
machine-readable mapping between a source code commit
event and, for example, a bug close event. Also, bug track-
ing space data is frequently lagging behind source code space
data, which could distort exact temporal correlation.

The third program obtains source code from network-access-
ible version control systems and runs metric calculations
on it. We wrote support for Subversion and git systems,
the first representing a traditional, centralised version con-
trol system, and the second representing a distributed sys-
tem. The git part presented some challenges due to its



Mailing list Messages imported Time required

LKML 646 001 approx. 7 h

Source code
repository

Revisions
imported

Full metrics
interval

Time required

Linux 64 707 every 300 revi-
sions

approx. 44 h

Linux-
historical

63 428 every 3000 re-
visions

approx. 14 h

Table 2: Import statistics for mailing list and ver-
sion control data. The times required are approxi-
mate wall-clock measurements, rounded to the near-
est hour, of the import job running on a 1.2 GHz PC.

distributed nature. Source trees are forked every time a de-
veloper clones another developer’s tree and can be merged
back either directly or via other developers. Several sep-
arate time-lines may exist simultaneously. Following the
global source code changes is complicated and in some cases
impossible. We chose to observe development through the
main tree maintained by Linus Torvalds. We also included
the Linux-historical tree as a comparison. Table 2 shows the
number of revisions imported, the metric run interval, and
the time required to perform this data acquisition.

All programs make use of data already stored in the database
to identify the actor whose action resulted in a mailing list
message, a submitted bug, or a source code revision. As
artefacts are analysed, the database is automatically con-
sulted to see if the associated actor-identifier has already
been recorded. If so, we assume that the actor is the same
person. Thus, we were able to make some correlation be-
tween actions in the different information spaces, although
we did not use all possible data sources.

On inspection of discovered correlations, we found that the
identification tokens have too little overlap between the dif-
ferent systems. In the Subversion system, the actor is identi-
fied only by a user name local to the main Subversion server.
We found that this user name was frequently different from
the name or email address used elsewhere, so unambigu-
ously connecting actors in all three data spaces was not pos-
sible. However, git encourages the use of an email address
as identification token, and thus it was often possible to con-
nect actions in version control system data with actions in
data from other information spaces. In some cases, devel-
opers had chosen other forms of tokens, which again inter-
fered with correlation. We considered an approach where the
analysis would be re-run each time a new identifier token is
added, using tokens from previous runs to bootstrap identi-
fication. Unfortunately the time required to run that many
iterations would have exceeded reasonable limits. Another
approach considered was to manually produce the identifier
tokens, but we rejected this because the time required would
have been significant, and we wanted to see how well this
completely automatic approach would work. We note now
that the order of data source analysis is relevant; if we had
started with the version control systems, we could have ob-
tained greater overlap by using the local part of the actors’
email addresses as well as the whole email address as an

identifier in later stages. The identifiers obtained from the
version control systems seem to be most consistent and have
the least amount of errors and variations.

5. ANALYSIS
Our analysis shows that even by looking only at the metrics
commonly reported, such as commit frequency, posting fre-
quency, and project participant structure, there are indica-
tions that the project has made changes to its organisational
model and thus achieved increased output. However, deeper
analysis is needed to discover what has actually changed.
Observing activity in the distributed version control system
reveals both how the action patterns differ from centralised
systems, and suggests some new metrics that could be cal-
culated.

The commit frequency shows that activity has been varying
between a few hundred commits to nearly 4000 commits per
30-day interval. It is difficult to detect a trend, but activity
does seem to be cyclic, more or less following the develop-
ment phases in use in the project. Releases are preceded by
a short stabilisation time when only bug fixes are incorpo-
rated. The post frequency shows a rising trend. Discussion
seems to be increasing, which could be a sign that more de-
sign work and coordination is performed as the code base
grows. Alternatively, it could be a result of the steps taken
to distribute development – as the barrier of participation
decreases, the pace of discussion increases.

We detected a total of 22 236 distinct persons posting to the
Linux kernel developers’ mailing list and a total of 646 001
messages. The same kind of distribution applies to mail-
ing list participation and bug submission as to source code
commits. These findings are consistent with results in other
studies; a majority of all work is done by a small number of
contributors, while the majority of contributors contribute
only once.

We were also able to obtain information on project struc-
ture, in terms similar to those defined by Crowston et al.
and Mockus et al. [4, 5, 13]. The project structure is as-
sumed to be layered with core developers, co-developers, ac-
tive users, readers, and passive users. We chose to divide
participants into these categories by measuring their con-
tribution to the source code of the project. The number of
commits per author follows a power law, with most commits
being contributed by a small number of authors. Core devel-
opers were expected to have contributed the largest number
of commits, with co-developers having contributed less but
still enough to implement some small feature or make some
important change in program logic such as optimisation or
refactoring. Active users were assumed to have made spo-
radic contributions, mostly cosmetic fixes or small bug fixes.

Estimating the number of commits for core developers at
500 or more and for co-developers at 50 or more, we find
that core developers constitute approximately half a percent
of all committers and co-developers slightly more than 6%
(Table 3). It should be noted that this definition of developer
classes is only an approximation of socially assigned roles
within the project.

Compared to Linux-historical, the core team has shrunk by



Developer class Size:

Linux

Size:

Linux-

historical

Size: dif-

ference

Percentage of

committers:

Linux

Percentage of

committers:

Linux-historical

Percentage of

committers:

difference

Core developers
(≥ 500 commits)

18 26 −8 0.54% 1.65% −1.11%

Co-developers (≥
50 commits)

213 125 88 6.38% 7.93% −1.55%

Active users 3106 1426 1680 93.08% 90.42% 2.66%

Table 3: Developer classes in Linux and Linux-historical.

more than one percentage unit, and the co-developers set
has shrunk by slightly more than one and a half percentage
units. The active user set has in turn grown by more than
two and a half percentage units. This could indicate that
there is a trend toward more distributed development where
a shrinking core is moderating a growing mass of changes.
The implication is that use of git has enabled development
to become more distributed, reducing the load on core and
co-developers, but also increasing the need for a hierarchical
peer-review process.

When analysing version control data more closely we find
that it is worth describing how the action patterns are dif-
ferent in a distributed system compared to a centralised one.
Figure 2 shows a simplified part of version control history
for a centralised system and a distributed system. In the
centralised system, each work cycle begins with a checkout
action, where the developer obtains a working copy of the
source tree. After making local modifications, the developer
commits the changes back to the repository. If conflicting
modifications have been made in the meantime, the devel-
oper will have to resolve the conflict by updating the changes
to apply to the newer version. In the distributed system,
more complex patterns are possible.

Our example shows that the source tree begins its life as
revision A1, stored in developer A’s repository. Developer
A makes a change and commits it to the repository. At this
point, developer B forks the source tree, creating a clone
of revision A2, labelled B1. After this, developer A com-
mits a change, creating revision A3. Meanwhile, developer
B commits a change, creating revision B2. This revision has
no other connection to developer A’s tree than the common
ancestry with revision A2.

At this point, developer C forks developer B ’s tree, cloning
revision B2 into revision C1. After that, developer B makes
three commits, creating revisions B3, B4 and B5. Devel-
oper A now merges revision B5 back into the first source
tree. Developer B does not need to be involved in this oper-
ation. The result of the merge is revision A4. Developer A
then makes another modification, creating revision A5. De-
veloper C has now modified revision C1 and committed the
modifications as revision C2. Developer A decides to merge
these changes as well, and pulls in the changes as revision
A6. Finally, developer A commits more changes, creating
revision A7.

As the example shows, the action patterns in the distributed
version control system are far more complex even in this
quite normal scenario. Centralised version control systems

Centralised
(Subversion)

Developer

Decentralised
(git)

Developer A

Developer B

Developer C

rev 1

rev 2 working
copy

checkout

commit

rev A1

rev A2

commit

rev A3

commit

rev B1 fork

rev A4

rev A5

commit

rev A6

rev A7

commit

rev B2

commit

rev B3

commit

rev C1

fork

rev B4

commit

rev B5

commit

merge
(pull)rev C2

commit

merge
(pull)

Figure 2: Examples of differences in workflow be-
tween centralised VCS (Subversion) and distributed
VCS (git).



do have capabilities that go beyond the simple checkout-
modify-commit cycle, but the simplest workflow in the git

system can already result in action patterns that are far
more complicated, because forks can occur from any source
code tree and merges can be pulled into any source code tree
at any time.

6. CONCLUSIONS
We have presented some of the challenges involved in col-
lecting data from distributed foss projects. Our experi-
ment suggests that some existing methods can be applied
with meaningful results. However, new metrics are needed
to specifically measure characteristics of distributed software
development.

As foss projects adopt distributed version control systems,
the amount of public data is likely to increase because the
number of source trees increases and access to data is a
prerequisite for the distributed workflow. This leads to in-
creased challenges in studying data. Data sets will grow in
size and must model several time-lines at once instead of only
one. As we have shown, it is possible to see signs of changed
organisational structures in projects by observing traditional
metrics such as commit frequency, post frequency, and size
of developer classes.

Because forks and merges are so fundamental to distributed
version control systems, as shown in Figure 2, we suggest
two metrics that could be useful for studying distributed
development: fork rate and merge rate. They determine how
how often fork and merge actions are performed in relation
to commits. Differences in these metrics could be used to
classify source trees; high sustained numbers for both could
identify coordination trees while low numbers could identify
development trees, for example.

Another area that requires further study is action patterns
in distributed version control systems. For example, are
forks usually merged back into the same tree as they orig-
inated from or is it common to have widely branched fork
trees which are merged into each other with no clear main
tree? These patterns may reveal how projects implement
distributed development and how their organisational struc-
ture correlates with the development process.

We believe that the distributed development paradigm will
increase the importance of a framework for research on pub-
lic software development data. Detailed and accessible de-
scriptions of data retrieval methods, metric calculation al-
gorithms, tools to facilitate research, and standardised data
sets would allow researchers to focus on one problem at a
time and still perform the entire set of operations needed to
get meaningful, comparable results.

7. REFERENCES
[1] U. Asklund and L. Bendix. A Study of Configuration

Management in Open Source Software Projects. IEE
Proceedings – Software, 149(1):40–46, 2002.

[2] S. Christley and G. Madey. Analysis of Activity in the
Open Source Software Development Community. In
Proceedings of the 40th Hawaii international
conference on system sciences, page 166, Waikoloa,
HI, USA, 2007. IEEE Press.

[3] M. Conklin, J. Howison, and K. Crowston.
Collaboration using OSSMole: a repository of FLOSS
data and analyses. In Proceedings of the 2005
international workshop on mining software
repositories, pages 1–5, New York, NY, USA, 2005.
ACM Press.

[4] K. Crowston, H. Annabi, J. Howison, and C. Masango.
Effective work practices for software engineering:
free/libre open source software development. In
Proceedings of the 2004 ACM workshop on
interdisciplinary software engineering research, pages
18–26, New York, NY, USA, 2004. ACM Press.

[5] K. Crowston and J. Howison. Assessing the Health of
Open Source Communities. IEEE Computer,
39(5):89–91, 2006.

[6] M. Godfrey and Q. Tu. Evolution in Open Source
Software: A Case Study. In Proceedings of the
international conference on software maintenance,
page 131, Washington, DC, USA, 2000. IEEE
Computer Society.

[7] M. Godfrey and Q. Tu. Growth, evolution, and
structural change in open source software. In
Proceedings of the 4th international workshop on
principles of software evolution, pages 103–106, New
York, NY, USA, 2001. ACM Press.

[8] G. Gousios and I. Samoladas. Software Quality
Observatory for Open Source Software: Overview of
the state of the art, deliverable report. Technical
report, January 2007.

[9] C. Izurieta and J. Bieman. The evolution of FreeBSD
and Linux. In Proceedings of the 2006 ACM/IEEE
international symposium on empirical software
engineering, pages 204–211, New York, NY, USA,
2006. ACM Press.

[10] S. Koch and G. Schneider. Results from Software
Engineering Research into Open Source Development
Projects Using Public Data. Discussion paper for
Tätigkeitsfeld Informationsverarbeitung und
Informationswirtschaft, Wirtschaftsuniversität Wien,
2000.

[11] M. Michlmayr. Software Process Maturity and the
Success of Free Software Projects. In K. Zielinski and
T. Szmuc, editors, Software Engineering: Evolution
and Emerging Technologies, pages 3–14, Krakow,
Poland, 2005. IOS Press.

[12] M. Michlmayr. Quality Improvement in Volunteer Free
and Open Source Software Projects: Exploring the
Impact of Release Management. PhD thesis,
University of Cambridge, March 2007.

[13] A. Mockus, R. T. Fielding, and J. D. Herbsleb. Two
case studies of open source software development:
Apache and Mozilla. ACM Transactions on Software
Engineering and Methodology, 11(3):309–346, 2002.

[14] J. W. Paulson, G. Succi, and A. Eberlein. An
Empirical Study of Open-Source and Closed-Source
Software Products. IEEE Transactions of Software
Engineering, 30(4):246–256, 2004.

[15] G. Polančič, R. V. Horvat, and T. Rozman.
Comparative assessment of open source software using
easy accessible data. In Proceedings of the 26th
international conference on information technology
interfaces, volume 1, pages 673–678, Slovenia, 2004.


	1 Introduction 
	2 Related work 
	3 Problem 
	4 Experiment 
	5 Analysis 
	6 Conclusions 
	7 References

