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Compact Differences of Composition Operators
on Bloch and Lipschitz Spaces
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Abstract. We consider the difference T = Cϕ − Cψ of two analytic compo-
sition operators in the unit disc. We characterize the compactness and weak
compactness of T on the standard Bloch space, improving an earlier result
by Hosokawa and Ohno. We also characterize the compactness and weak
compactness of T on analytic Lipschitz spaces. These characterizations are
derived from a general result dealing with differences of weighted composition
operators on weighted Banach spaces of analytic functions. We also make
complementary remarks on the compactness properties of a single composi-
tion operator on the Lipschitz spaces and answer a question of Cowen and
MacCluer on the boundedness of such an operator.
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1. Introduction

Let D be the unit disc of the complex plane and assume that ϕ : D → D is an
analytic map. Then the composition operator Cϕ taking f to f ◦ ϕ is a linear
operator on H(D), the space of all analytic functions on D. During the past
few decades much effort has been devoted to the research of such operators on
a variety of Banach spaces of analytic functions. The general idea has been to
explain the operator-theoretic behaviour of Cϕ, such as compactness and spectra,
in terms of the function-theoretic properties of the symbol ϕ. We refer to the
book by Cowen and MacCluer [4] for an overview of the field as of the mid-1990s.

A topic of considerable interest has been the inquiry into the topological struc-
ture of the set of composition operators acting on a given function space. In this
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connection it also becomes relevant to analyse the mapping properties of com-
position operator differences. This line of research was initiated in the setting of
the Hardy space H2 by Berkson [1] and Shapiro and Sundberg [29], and in the
setting of (weighted) Bergman spaces by MacCluer [17]. More recent works in
this context are [27, 24, 23, 16]. Lately several authors have studied the same
questions on spaces like H∞ and the Bloch space. In [18] MacCluer, Ohno and
Zhao considered the set of composition operators acting on H∞ and provided
function-theoretic characterizations for the cases when two composition opera-
tors lie in the same connected component or have a compact difference. Their
results have been complemented and extended in [13, 11, 12, 30, 31, 9, 2]. For the
case of composition operators on the Bloch space, Hosokawa and Ohno [14, 15]
have described connected components and compact differences.

The present paper continues this line of research. We will study the compactness
and weak compactness of a composition difference Cϕ − Cψ on the Bloch-type
spaces Bα consisting of all analytic functions f on D which satisfy the condition

sup
z∈D

(1− |z|2)α|f ′(z)| <∞.

It is well known that Bα is a Banach space under the norm

‖f‖α = |f(0)|+ sup
z∈D

(1− |z|2)α|f ′(z)|.

(See the expository article [33] by Zhu for more information on these spaces.)
Here α could be any positive number, but we will be mainly interested in the
range 0 < α ≤ 1. Note that B = B1 is just the standard Bloch space. For
0 < α < 1 it was proved by Hardy and Littlewood that a function f belongs to
Bα if and only if it is analytic in D and satisfies a Lipschitz condition of order
1− α, that is,

sup
z,w∈D

|f(z)− f(w)|
|z − w|1−α

<∞

(see [6, Thm. 5.1]). In fact, the two suprema above are comparable to each other.
Moreover, one should note that every Lipschitz function in D is boundary-regular
in the sense that it extends continuously to the closed unit disc.

Our results will involve the hyperbolic metric and related notions. For z, w ∈ D,
the pseudo-hyperbolic distance is defined by ρ(z, w) = |z − w|/|1 − wz|. The
hyperbolic distance between z and w is then

inf
γ

∫
γ

|dζ|
1− |ζ|2

=
1

2
log

1 + ρ(z, w)

1− ρ(z, w)
,

where the infimum is taken over all rectifiable arcs joining z and w in D (see
[7, Sec. I.1]). When ϕ is an analytic self-map of D, we will use the short-hand
notation

Dαϕ(z) =

(
1− |z|2

1− |ϕ(z)|2

)α

ϕ′(z),
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and in the Bloch case α = 1 we just write Dϕ for D1ϕ. It should be noted that
Dϕ is the hyperbolic derivative of ϕ in the sense that

|Dϕ(z)| = lim
w→z

ρ(ϕ(z), ϕ(w))

ρ(z, w)
.

For a general α one can regard Dαϕ as a derivative relative to a metric induced
by the arc length element (1− |ζ|2)−α|dζ| (see [33, Sec. 4]).

The importance of Dα-derivatives to the study of composition operators on Bα
stems from the identity

(1.1) (1− |z|2)α|(Cϕf)′(z)| = |Dαϕ(z)| · (1− |ϕ(z)|2)α|f ′(ϕ(z))|,
which basically shows that the condition ‖Dαϕ‖∞ <∞ is sufficient for Cϕ to be
bounded on Bα. For α = 1 this condition is always true: the classical Schwarz-
Pick inequality actually says that ‖Dϕ‖∞ ≤ 1. For 0 < α < 1 this is not
the case, and Madigan [20] observed that the condition is also necessary for the
boundedness of Cϕ on Bα (see also [4, Thm. 4.9]).

We are now ready to state our main results. Here we consider two analytic maps
ϕ, ψ : D → D and we let T = Cϕ−Cψ. We also agree to write ρ(z) = ρ(ϕ(z), ψ(z))
for the pseudo-hyperbolic distance between ϕ(z) and ψ(z). Our first theorem
deals with the standard Bloch case, characterizing the compactness and weak
compactness of T .

Theorem 1.1. T is (weakly) compact on B if and only if

Dϕ(z)ρ(z) → 0 as |ϕ(z)| → 1,(B1)

Dψ(z)ρ(z) → 0 as |ψ(z)| → 1.(B2)

Recently Hosokawa and Ohno [14, 15] characterized the compactness of T on B
by requiring (B1) and (B2) plus an additional condition which essentially says
that

Dϕ(z)−Dψ(z) → 0 as |ϕ(z)| ∧ |ψ(z)| → 1.

(We use ∧ to refer to the minimum of two real numbers, and ∨ to the maximum.)
Our contribution is to show that this third condition is actually implied by (B1)
and (B2), so it can be dispensed with.

To understand the conditions of Theorem 1.1, one should recall that Madigan and
Matheson [21] showed that a single composition operator Cϕ is (weakly) compact
on B if and only if Dϕ(z) → 0 as |ϕ(z)| → 1. This is just a natural “little-oh”
variant of the Schwarz-Pick inequality. On the other hand, the condition that

(1.2) ρ(z) → 0 as |ϕ(z)| ∨ |ψ(z)| → 1

is known to guarantee the compactness of T on various spaces, such as (weighted)
Bergman and Dirichlet spaces and Hardy spaces (see [23, 16]). In fact, it was
shown by MacCluer, Ohno and Zhao [18] that (1.2) characterizes when T is
compact on H∞ and also from B to H∞.
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Our second theorem is concerned with the Lipschitz case 0 < α < 1. As men-
tioned above, we have to assume that the Dα-derivatives of the symbols are
bounded so as to ensure the boundedness of the induced operators.

Theorem 1.2. Let 0 < α < 1 and assume that ‖Dαϕ‖∞ <∞ and ‖Dαψ‖∞ <∞.
Then T is (weakly) compact on Bα if and only if

Dαϕ(z)ρ(z) → 0 as |ϕ(z)| → 1,(L1)

Dαψ(z)ρ(z) → 0 as |ψ(z)| → 1,(L2)

Dαϕ(z)−Dαψ(z) → 0 as |ϕ(z)| ∧ |ψ(z)| → 1.(L3)

Conditions (L1) and (L2) are obvious analogues of those in Theorem 1.1. In the
present case, however, one has to impose the additional condition (L3) to guar-
antee the (weak) compactness of T . In fact, we will be able to construct symbols
ϕ and ψ, both satisfying Madigan’s boundedness condition, such that (1.2) is
satisfied but (L3) fails and consequently T is non-compact on Bα.
We will approach Theorems 1.1 and 1.2 in a unified way. In fact, in Section 2 we
will consider a very general setup where we have the difference of two weighted
composition operators acting between two weighted H∞-type spaces. The proof
of Theorem 1.1 occupies Section 3. In Section 4 we will deal with Theorem 1.2,
especially addressing the necessity of condition (L3).

In Section 5, which is largely independent of the previous sections, we briefly
revisit the theory of a single composition operator on the Lipschitz spaces. In
particular, we will answer a question of Cowen and MacCluer on the boundedness
of such an operator, which arises from an earlier work by Roan [25]. In addition,
we will explore the function-theoretic relationship between various compactness
criteria given in the literature.

2. Differences of weighted composition operators
on weighted spaces

In this section we will consider the following general setup. Given analytic func-
tions ϕ : D → D and u : D → C we define the weighted composition operator

Wϕ,u : H(D) → H(D), f 7→ u(f ◦ ϕ).

We also define the weighted function spaces

H∞
α =

{
f ∈ H(D) : sup

z∈D
(1− |z|2)α|f(z)| <∞

}
for 0 < α < ∞. These are Banach spaces under the norm determined by
the above supremum, which we will denote by ‖f‖H∞

α
. Montes-Rodŕıguez [22]

and Contreras and Hernández-Dı́az [3] have studied Wϕ,u as an operator acting
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between this type of weighted spaces (with even more general weights). In par-
ticular, they have shown that Wϕ,u is a bounded operator from H∞

α to H∞
β if

and only if the pair (ϕ, u) satisfies

(2.1) sup
z∈D

(1− |z|2)β|u(z)|
(1− |ϕ(z)|2)α

<∞.

They also characterized the (weak) compactness of Wϕ,u by the corresponding
“little-oh” condition as |ϕ(z)| → 1.

One should note that the differentiation map f 7→ f ′ is a linear isometry from
Bα onto H∞

α , provided that in Bα we identify functions differing by a constant.
Hence the unweighted composition operator Cϕ acting between Bloch-type spaces
modulo constants is similar to the weighted composition operator Wϕ,ϕ′ acting
between the corresponding weighted H∞-spaces. Since the identification of func-
tions differing by a constant does not affect the boundedness or compactness
properties of the operator (see e.g. [3, Sec. 6]), the above-mentioned general re-
sults yield conditions for the boundedness and (weak) compactness of Cϕ as an
operator from Bα to Bβ. These conditions have also been derived in [32]. In
particular, if 0 < α = β < 1, then (2.1) yields Madigan’s boundedness condition
‖Dαϕ‖∞ <∞.

Our goal here is to investigate the compactness of the difference of two weighted
composition operators on weighted spaces of the above type. To this end we
introduce analytic maps ϕ, ψ : D → D and u, v : D → C and look at the operator

T = Wϕ,u −Wψ,v.

Our general theorem is the following. A related result for differences of compo-
sition operators has recently been obtained by Bonet, Lindström and Wolf [2].
Recall that we use ρ(z) to denote the pseudo-hyperbolic distance between ϕ(z)
and ψ(z).

Theorem 2.1. Let α and β be positive real numbers, and assume that the pairs
(ϕ, u) and (ψ, v) both satisfy (2.1). Then the above operator T is (weakly) com-
pact from H∞

α to H∞
β if and only if

(1− |z|2)βu(z)
(1− |ϕ(z)|2)α

ρ(z) → 0 as |ϕ(z)| → 1,(2.2)

(1− |z|2)βv(z)
(1− |ψ(z)|2)α

ρ(z) → 0 as |ψ(z)| → 1,(2.3)

(1− |z|2)βu(z)
(1− |ϕ(z)|2)α

− (1− |z|2)βv(z)
(1− |ψ(z)|2)α

→ 0 as |ϕ(z)| ∧ |ψ(z)| → 1.(2.4)

To prepare for the proof of this theorem we have to recall some notions related to
weak compactness. A Banach spaceX is said to have the Dunford-Pettis property
if x∗n(xn) → 0 whenever xn → 0 weakly in X and x∗n → 0 weakly in the dual
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space X∗. Equivalently, this means that every weakly compact linear operator
from X into some Banach space is completely continuous, i.e. maps weakly null
sequences into norm-null sequences. A well-known example of a space with this
property is c0, the space of null sequences of scalars endowed with the supremum
norm. For a survey of the Dunford-Pettis property we refer to [5].

The auxiliary functions provided by the next lemma will be used to construct
appropriate weakly convergent test function sequences. Instead of this quite ele-
mentary lemma, one could utilize more refined results on interpolating functions
here (see e.g. [7, VII.2]).

Lemma 2.2. Let (an) be a sequence in D such that an → 1. Then there exist
numbers 0 < εn < 1 and 0 < δn < δ′n < π and functions Qn ∈ H∞ such that
εn → 0, δ′n → 0, ‖Qn‖∞ ≤ 1, |Qn(an)| ≥ 1/2 and |Qn(e

it)| ≤ εn when |t| ≤ δn or
δ′n ≤ |t| ≤ π.

Proof. The functions Qn can be obtained as outer functions satisfying

log|Qn(z)| =
1

2π

∫ π

−π

1− |z|2

|eit − z|2
log qn(t) dt,

where qn(t) = 1 for δn < |t| < δ′n and qn(t) = εn otherwise. We leave it to the
reader to check that the numbers εn, δn and δ′n can be chosen in such a way that
the requirements of the lemma are fulfilled.

One more lemma will be needed. It can be found in e.g. [10, Lem. 5.1], but we
sketch the proof for completeness. Here and throughout the paper we will use
the abbreviated notation A . B to mean A ≤ CB for some inessential constant
C > 0 depending possibly on α, and A ∼ B if A . B . A.

Lemma 2.3. For f ∈ H∞
α and z, w ∈ D,∣∣(1− |z|2)αf(z)− (1− |w|2)αf(w)

∣∣ . ‖f‖H∞
α
ρ(z, w).

Proof. Assume ‖f‖H∞
α
≤ 1. Then the estimates |f(ζ)| ≤ (1 − |ζ|2)−α and

|f ′(ζ)| . (1 − |ζ|2)−α−1 are valid for ζ ∈ D (see e.g. [6, Thm. 5.5]). Write
h(ζ) = (1− |ζ|2)αf(ζ). One checks |∇(1− |ζ|2)α| . (1− |ζ|2)α−1 by a straight-
forward calculation. Then the product rule of differentiation gives the estimate
|∇h(ζ)| . (1 − |ζ|2)−1. Since (1 − |ζ|2)−1|dζ| is the element of arc length in
the hyperbolic metric, we have established the assertion of the lemma with the
hyperbolic distance in place of the pseudo-hyperbolic one; that is,

|h(z)− h(w)| . log
1 + ρ(z, w)

1− ρ(z, w)
.

To finish the proof, we consider two cases. If ρ(z, w) < 1/2, routine estimates
show that the logarithm is less than 3ρ(z, w). If ρ(z, w) ≥ 1/2, we just observe
that since |h| is bounded by 1, we trivially have |h(z)− h(w)| ≤ 2 ≤ 4ρ(z, w).
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Proof of Theorem 2.1. Necessity. Assume that T is weakly compact. We first
prove condition (2.2). Let (zn) be a sequence of points in D such that |ϕ(zn)| → 1.
By passing to a subsequence and applying a rotation argument we may assume
that ϕ(zn) → 1. Let (Qn) be the sequence of functions provided by Lemma 2.2
with respect to the points (ϕ(zn)). By passing to a further subsequence we may
assume that the quantities of the lemma satisfy εn ≤ 2−n and δ′n+1 ≤ δn for all n.

Now define

fn(z) =
Qn(z)

(1− ϕ(zn)z)α
z − ψ(zn)

1− ψ(zn)z
.

Then |fn(z)| ≤ |Qn(z)|/(1− |z|)α. Since the sets {eit : |Qn(e
it)| > εn} are pair-

wise disjoint and
∑

n εn ≤ 1, it is easy to see that the map (ξn) 7→
∑

n ξnfn takes
the sequence space c0 continuously into H∞

α . Composing this with T , we obtain
a weakly compact operator from c0 into H∞

β such that the standard basis vec-
tors en in c0 are sent to Tfn. Since en → 0 weakly, the Dunford-Pettis property
of c0 yields that ‖Tfn‖H∞

β
→ 0. However, by the definition of fn and the fact

that |Qn(ϕ(zn))| ≥ 1/2 we have

‖Tfn‖H∞
β
≥ (1− |zn|2)β|Tfn(zn)| ≥

1

2

(1− |zn|2)β|u(zn)|
(1− |ϕ(zn)|2)α

ρ(zn),

so the right-hand side here must converge to zero. This proves (2.2), and (2.3)
is analogous.

For the proof of (2.4) we begin with any sequence (zn) for which |ϕ(zn)| → 1 and
|ψ(zn)| → 1. Again we may assume ϕ(zn) → 1 and in view of (2.2) and (2.3) also
that ρ(zn) → 0. We then proceed as above, choosing functions Qn corresponding
to the sequence (ϕ(zn)) by Lemma 2.2, passing to a subsequence, and defining
test functions

gn(z) =
Qn(z)

(1− ϕ(zn)z)α
.

As previously, we deduce that ‖Tgn‖H∞
β
→ 0. Now we have the estimate

‖Tgn‖H∞
β
≥ (1− |zn|2)β|Tgn(zn)|

=

∣∣∣∣(1− |zn|2)βu(zn)Qn(ϕ(zn))

(1− |ϕ(zn)|2)α
− (1− |zn|2)βv(zn)Qn(ψ(zn))

(1− ϕ(zn)ψ(zn))α

∣∣∣∣.
On the other hand, we have∣∣∣∣(1− |zn|2)βv(zn)Qn(ϕ(zn))

(1− |ψ(zn)|2)α
− (1− |zn|2)βv(zn)Qn(ψ(zn))

(1− ϕ(zn)ψ(zn))α

∣∣∣∣
=

(1− |zn|2)β|v(zn)|
(1− |ψ(zn)|2)α

∣∣(1− |ϕ(zn)|2)αgn(ϕ(zn))− (1− |ψ(zn)|2)αgn(ψ(zn))
∣∣,

where the first factor stays bounded because Wψ,v is a bounded operator and
the second factor converges to zero by Lemma 2.3. Putting these observations
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together we conclude that the difference in (2.4) tends to zero along the sequence
(zn). This completes the proof of the necessity part.

Sufficiency. We assume conditions (2.2)–(2.4) and prove that T is compact. As
usual, let (fn) be a sequence in H∞

α such that ‖fn‖H∞
α
≤ 1 and fn → 0 uniformly

on compact subsets of D. We have to show that ‖Tfn‖H∞
β
→ 0.

To begin with, we let ε > 0 and use (2.2)–(2.4) to find r ∈ (0, 1) large enough
such that

(1− |z|2)β|u(z)|
(1− |ϕ(z)|2)α

ρ(z) ≤ ε when |ϕ(z)| > r,(2.5)

(1− |z|2)β|v(z)|
(1− |ψ(z)|2)α

ρ(z) ≤ ε when |ψ(z)| > r,(2.6) ∣∣∣∣(1− |z|2)βu(z)
(1− |ϕ(z)|2)α

− (1− |z|2)βv(z)
(1− |ψ(z)|2)α

∣∣∣∣ ≤ ε when |ϕ(z)| > r, |ψ(z)| > r.(2.7)

The rest of the argument is divided into a few cases. First of all, it is clear that
for points z with |ϕ(z)| ≤ r and |ψ(z)| ≤ r, the quantity

(1− |z|2)β|Tfn(z)| = (1− |z|2)β|fn(ϕ(z))u(z)− fn(ψ(z))v(z)|
converges to zero uniformly. Then suppose that |ψ(z)| > r. We may write
(1− |z|2)β|Tfn(z)| = |An(z) +Bn(z)|, where

An(z) =

[
(1− |z|2)βu(z)
(1− |ϕ(z)|2)α

− (1− |z|2)βv(z)
(1− |ψ(z)|2)α

]
(1− |ϕ(z)|2)αfn(ϕ(z)),

Bn(z) =
(1− |z|2)βv(z)
(1− |ψ(z)|2)α

[
(1− |ϕ(z)|2)αfn(ϕ(z))− (1− |ψ(z)|2)αfn(ψ(z))

]
.

Here |Bn(z)| . ε by Lemma 2.3 and inequality (2.6). As regards An(z), we
observe that in the set where |ϕ(z)| ≤ r clearly An(z) → 0 uniformly. On the
other hand, if |ϕ(z)| > r, then (2.7) implies |An(z)| ≤ ε. Hence

lim sup
n→∞

sup
{
(1− |z|2)β|Tfn(z)| : |ψ(z)| > r

}
. ε.

By symmetry considerations the same conclusion also holds in the set where
|ϕ(z)| > r. Since ε was arbitrary, we deduce that (1 − |z|2)β|Tfn(z)| → 0
uniformly for z ∈ D, and the proof of the sufficiency part is complete.

3. The Bloch case

In this section we consider the difference operator T = Cϕ−Cψ as acting on the
classical Bloch space B. Note that ϕ and ψ can be any analytic self-maps of D
because it follows from the Schwarz-Pick lemma that every composition operator
is bounded on B.



7 (2007), No. 2 Compact Differences of Composition Operators 333

The following result is a corollary to Theorem 2.1 and the similarity argument ex-
plained before the statement of the theorem. It was obtained earlier by Hosokawa
and Ohno [14, 15] (in a slightly different formulation).

Theorem 3.1 (Hosokawa-Ohno). T is (weakly) compact on B if and only if

Dϕ(z)ρ(z) → 0 as |ϕ(z)| → 1,(B1)

Dψ(z)ρ(z) → 0 as |ψ(z)| → 1,(B2)

Dϕ(z)−Dψ(z) → 0 as |ϕ(z)| ∧ |ψ(z)| → 1.(B3)

It turns out, however, that condition (B3) is implied by (B1) and (B2). Thus it
can be dispensed with and we obtain Theorem 1.1, which we restate here.

Theorem 3.2. T is (weakly) compact on B if and only if (B1) and (B2) hold.

The proof of our result is based on a pair of rather elementary lemmas concerning
continuity properties of hyperbolic derivatives. The first lemma is a special case
of [8, Thm. 6], and we skip its proof. (See also Remark 4.7 at the end of Section 4.)

Lemma 3.3. Let ϕ : D → D be an analytic map. Then

|Dϕ(z)−Dϕ(w)| . ρ(z, w)

for all z, w ∈ D.

Lemma 3.4. Let ϕ, ψ : D → D be analytic maps. Then

|Dϕ(z)−Dψ(z)| . 1

r
sup{ρ(w) : ρ(z, w) ≤ r}

for all 0 < r < 1 and z ∈ D.

Proof. Let σw(z) = (w − z)/(1 − wz), so that σw is the conformal automor-
phism of D that interchanges 0 and w. We begin by establishing the general
inequality

(3.1) |σw(z)− σw′(z
′)| . ρ(z, z′) + ρ(w,w′),

which holds for all points z, z′, w, w′ ∈ D uniformly. To verify this, first note that
|σw(z)− σw(z′)| . ρ(z, z′) by the conformal invariance of the pseudo-hyperbolic
distance. Since ∂wσw(z) = 1/(1−wz) and ∂wσw(z) = σw(z) · z/(1− wz) are both
less than 1/(1− |w|) in modulus, we may argue as in the proof of Lemma 2.3 to
get |σw(z) − σw′(z)| . ρ(w,w′). These observations, along with an application
of the triangle inequality, yield (3.1).

To proceed to the actual proof, we note that for z ∈ D the derivative of σϕ(z)◦ϕ◦σz
at the origin equals Dϕ(z). Therefore, if 0 < r < 1 is given, the Cauchy integral
formula for derivatives yields the representation

Dϕ(z) =
1

2πi

∫
|ζ|=r

(σϕ(z) ◦ ϕ ◦ σz)(ζ)
ζ2

dζ.
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An analogous formula holds for Dψ(z). Now we can apply (3.1) to get the
estimate

|(σϕ(z) ◦ ϕ ◦ σz)(ζ)− (σψ(z) ◦ ψ ◦ σz)(ζ)| . ρ(σz(ζ)) + ρ(z).

As ζ traverses the set |ζ| = r, the point w = σz(ζ) runs through the pseudo-
hyperbolic circle ρ(z, w) = r. Thus, denoting the supremum in the statement of
the lemma by S, we arrive at the estimate

|Dϕ(z)−Dψ(z)| . 1

2π

∫
|ζ|=r

S

r2
|dζ| = S

r
,

and the proof is complete.

Proof of Theorem 3.2. We assume that conditions (B1) and (B2) of Theo-
rem 3.1 hold, and we will prove that then (B3) is necessarily satisfied. Suppose
(zn) is a sequence in D for which |ϕ(zn)| → 1 and |ψ(zn)| → 1. We wish to show
that Dϕ(zn)−Dψ(zn) → 0.

Assume to the contrary that |Dϕ(zn) − Dψ(zn)| ≥ 2ε for some ε > 0. By
Lemma 3.3 there exists r ∈ (0, 1) such that

ε ≤ |Dϕ(zn)−Dψ(zn)| − ε ≤ |Dϕ(w)−Dψ(w)|

whenever ρ(zn, w) ≤ r. On the other hand, by Lemma 3.4 we can find points
wn ∈ D with ρ(zn, wn) ≤ r such that 2ε ≤ |Dϕ(zn) − Dψ(zn)| . ρ(wn). On
multiplying these two inequalities together we get

(3.2) 2ε2 . |Dϕ(wn)−Dψ(wn)|ρ(wn)

for all n. Since ρ(ϕ(zn), ϕ(wn)) ≤ ρ(zn, wn) ≤ r, we necessarily have |ϕ(wn)| → 1.
Similarly |ψ(wn)| → 1. Hence conditions (B1) and (B2) imply that the right-
hand side of (3.2) tends to zero. This is a contradiction and completes the
proof.

4. The Lipschitz case

When applied to differences of composition operators on the Lipschitz spaces Bα,
where 0 < α < 1, Theorem 2.1 yields Theorem 1.2, which we restate here.

Theorem 4.1. Let 0 < α < 1 and assume that ϕ, ψ : D → D are analytic maps
with ‖Dαϕ‖∞ <∞ and ‖Dαψ‖∞ <∞. Then T = Cϕ − Cψ is (weakly) compact
on Bα if and only if

Dαϕ(z)ρ(z) → 0 as |ϕ(z)| → 1,(L1)

Dαψ(z)ρ(z) → 0 as |ψ(z)| → 1,(L2)

Dαϕ(z)−Dαψ(z) → 0 as |ϕ(z)| ∧ |ψ(z)| → 1.(L3)
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We first point out some implications of the theorem. Let us recall here that
all functions in Bα, hence ϕ and ψ, extend continuously to the closed disc D.
Assume for the moment that ζ ∈ ∂D is a point for which |ϕ(ζ)| = 1. Then
it is known that ϕ has a finite angular derivative at ζ, say ϕ′(ζ) = δ, and
therefore Dαϕ(z) → δ/|δ|α as z → ζ non-tangentially (see Section 5). So, if (L1)
holds, we actually have ρ(z) → 0 as z → ζ non-tangentially. In particular,
then ψ(ζ) = ϕ(ζ), and with the aid of (L3) we further obtain ψ′(ζ) = ϕ′(ζ).
Thus a necessary condition for the (weak) compactness of T on Bα is that the
symbols ϕ and ψ have the same unimodular boundary values and that their
angular derivatives at those boundary points coincide. This condition is known
to be necessary for the compactness of T on many other spaces as well, including
the Hardy space H2 (see [17] or [4, Thm. 9.16]) and the Bloch space B (see
[30, Sec. 4.7]).

The above reasoning leads to an interesting question, which we have been unable
to answer.

Question 4.2. Let 0 < α < 1 and suppose ‖Dαϕ‖∞ < ∞ and ‖Dαψ‖∞ < ∞.
If T is compact on Bα, does it follow that ρ(z) → 0 as |ϕ(z)| ∨ |ψ(z)| → 1?

We observed above that a non-tangential version of this holds true. If the an-
swer to the general question were positive, then the (weak) compactness of T
would be characterized by the stated condition together with condition (L3),
so Theorem 4.1 could be simplified considerably. Let us recall here that the
answer to Question 4.2 is positive in the larger space H∞ of bounded analytic
functions [18].

We proceed to give a simple family of examples to illustrate the application of
Theorem 4.1. It will be convenient to employ ϕ(z) = (1 + z)/2 as a kind of
reference map from which we can build other maps with desired properties. We
will make repeated use of the identity

(4.1) 1− |ϕ(z)|2 =
1

2
(1− |z|2) +

1

4
|z − 1|2,

which can be verified by a direct calculation.

Example 4.3. Let ϕ be as above and put

ψ = ϕ+ λ, where λ(z) = cp(z − 1)p, p ≥ 2.

Here cp > 0 is chosen small enough in order that ψ(D) ⊂ D∪{1}. For instance, if
cp = 2−p−2, then |λ(z)| ≤ |z−1|2/16 and hence 1−|ψ| ≥ 1−|ϕ|−|λ| ≥ (1−|ϕ|)/2.
Also note that since ϕ′ and λ′ are bounded in D, both ϕ and ψ induce bounded
composition operators on Bα.
Case p > 2. By virtue of the estimate

ρ(z) ≤ |λ(z)|
1− |ϕ(z)|

.
|z − 1|p

|z − 1|2
= |z − 1|p−2
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we obviously have ρ(z) → 0 as z → 1. Thus (L1) and (L2) are satisfied. To
address (L3) we observe that, by (4.1) and the definition of λ, the ratio of 1 −
|ϕ(z)| and 1 − |ψ(z)| tends to 1 as z → 1. Since λ′(z) = p(z − 1)p−1 → 0, it
follows rather easily that (L3) is satisfied too. So T = Cϕ − Cψ is compact in
this case.

Case p = 2. Now it is easily seen that |1 − ϕ(z)ψ(z)| ∼ 1 − |z|2 + |z − 1|2 and
hence

ρ(z) ∼ |z − 1|2

1− |z|2 + |z − 1|2
=

(
1 +

1− |z|2

|z − 1|2

)−1

.

On the other hand,

|Dαϕ(z)| ∼ (1− |z|2)α

(1− |z|2 + |z − 1|2)α
=

(
1 +

|z − 1|2

1− |z|2

)−α

.

As a consequence we see that the limiting behaviour of ρ(z) and |Dαϕ(z)| as
z → 1 depends strongly on the path of approach. Indeed, if (1 − |z|2)/|z − 1|2
tends to zero or infinity (e.g. if z → 1 non-tangentially), then one of these
quantities converges to zero and the other is ∼ 1, so Dαϕ(z)ρ(z) → 0 in this
case. But if (1− |z|2)/|z − 1|2 tends to a positive constant (e.g. if z → 1 along a
circle that touches ∂D at 1), then |Dαϕ(z)|ρ(z) ∼ 1. Therefore (L1) fails and T
is non-compact.

The preceding examples leave open the natural question whether condition (L3)
could be dispensed with in Theorem 4.1, as it was possible to do in the Bloch
case in Section 3. We conclude the present section by giving a negative answer
to this question. We will again start from the map ϕ(z) = (1 + z)/2, but the
procedure used to construct the other map ψ will be somewhat complicated and
will require careful analysis of the growth properties of Dα-derivatives.

Theorem 4.4. Let ϕ be as above and 0 < α < 1. There is a map ψ, analytic
on D, with the following properties:

(i) ψ(D) ⊂ D ∪ {1} and ψ(1) = 1,

(ii) ‖Dαψ‖∞ <∞,

(iii) ρ(z) → 0 as z → 1, and

(iv) Dαϕ(z)−Dαψ(z) 6→ 0 as z → 1.

In particular, conditions (L1) and (L2) of Theorem 4.1 are satisfied but (L3)
fails.

Before we start with the actual proof of this theorem, we lay out some prelimi-
naries. We will make use of auxiliary functions κa and λa defined on D by

κa(z) =
1− |a|
1− az

,

λa(z) = (z − 1)3κa(z),
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and depending on a parameter a ∈ D. Note that |κa(z)| ≤ 1 and therefore
|λa(z)| ≤ |z − 1|3 for all z ∈ D. In addition,

κ′a(z) =
a(1− |a|)
(1− az)2

,

λ′a(z) = (z − 1)3κ′a(z) + 3(z − 1)2κa(z).

The intuitive idea behind our construction can be described as follows. We will
employ functions λa as elementary perturbations to the map ϕ. Adding λa to ϕ
does not essentially alter the behaviour of the map near 1 in the hyperbolic
scale. However, by a judicious choice of a we can influence the Dα-derivative
of the resulting map just in the right way (Lemma 4.5). We will also observe
(Lemma 4.6) that each perturbation λa is “local” in the sense that when a is close
to the boundary of D, the support of λa in the disc is essentially concentrated
around the radius through point a. Thus it makes sense to define ψ = ϕ+c

∑
k λak

where c > 0 is a small constant and (ak) is a certain sequence of points in D
converging to 1.

Lemma 4.5. There are constants c1, c2 > 0 and q ∈ (1/2, 1) depending only
on α such that if q < |a| < 1 and

(4.2) 1− |a| = |a− 1|(3−2α)/(1−α),

then, for all z ∈ D,

(4.3)

(
1− |z|2

1− |ϕ(z)|2

)α

|λ′a(z)| ≤ c1

and

(4.4)

(
1− |a|2

1− |ϕ(a)|2

)α

|λ′a(a)| ≥ c2.

Proof. Let us write

Aa(z) =

(
1− |z|2

1− |ϕ(z)|2

)α

(z − 1)3κ′a(z),

Ba(z) =

(
1− |z|2

1− |ϕ(z)|2

)α

(z − 1)2κa(z),

so that the expression on the left-hand side of (4.3) equals |Aa(z) + 3Ba(z)|.
We first prove (4.3) by showing that both Aa and Ba are uniformly bounded by
a constant independent of a. Since 1−|ϕ(z)|2 & |z−1|2 and |κ′a(z)| ≤ 1/|1−az|,
we get

(4.5) |Aa(z)| .
(1− |z|2)α|z − 1|3

|z − 1|2α|1− az|
.
|z − 1|3−2α

|1− az|1−α
.

If |z − 1| ≤ 2|a − 1|, this is . |a − 1|3−2α/(1 − |a|)1−α, which is a constant
by (4.2). If |z− 1| > 2|a− 1|, then |1−az| ≥ |z− 1|− |a− 1| & |z− 1| and Aa(z)
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is uniformly bounded also in this case. With regard to Ba, we use the simple
estimates 1 − |ϕ(z)|2 & 1 − |z|2 and |κa(z)| ≤ 1 to get |Ba(z)| . |z − 1|2 . 1.
This completes the proof of the upper estimate (4.3).

To establish the lower estimate (4.4) we first observe that (4.1) and (4.2) imply
1− |ϕ(a)|2 . |a− 1|2. In addition, |κ′a(a)| & 1/(1− |a|). Hence

|Aa(a)| &
(1− |a|)α|a− 1|3

|a− 1|2α(1− |a|)
=

|a− 1|3−2α

(1− |a|)1−α = 1,

again by (4.2). Since |Ba(a)| . |a−1|2, which tends to zero as a→ 1 (equivalently
|a| → 1), we conclude that (4.4) holds when |a| is sufficiently close to 1.

Lemma 4.6. Assume that a ∈ D satisfies (4.2). For every ε > 0, there exists
δ > 0 such that if θ = arg a ∈ (0, δ), then |κa(z)| ≤ ε and |κ′a(z)| ≤ ε whenever
z ∈ D such that arg z ∈ [0, 2π] \ (θ/2, 3θ/2).

Proof. Write z = reit so that t = arg z. In view of the expressions given for κa
and κ′a after the statement of Theorem 4.4, it suffices to show that the quotient

(4.6)
1− |a|

|1− areit|2
=
|a− 1|(3−2α)/(1−α)

|1− areit|2

can be made arbitrarily small for θ and z = reit as specified in the lemma. In the
sequel we may assume r ≥ 1/2; otherwise we would have |1− areit|2 ≥ 1/4 for
all a and t, yielding the claim immediately as θ → 0+ (or equivalently a→ 1).

Let us first consider the denominator of (4.6). Note that

|1− areit|2 = 1 + |a|2r2 − 2|a|r cos(t− θ).

Here cos(t− θ) is at its maximum when |t− θ| is the smallest possible, i.e. equals
θ/2. Moreover, we have the elementary estimate cos(θ/2) ≤ 1 − cθ2 for some
c > 0. Thus

|1− areit|2 ≥ (1− |a|r)2 + 2|a|rcθ2 ≥ (1− |a|)2 + c|a|θ2.

The numerator of (4.6) can be estimated in the same way. Since cos θ ≥ 1−θ2/2,
we have

|a− 1|2 = 1 + |a|2 − 2|a| cos θ ≤ (1− |a|)2 + |a|θ2.

These estimates combine to show that |a− 1|2 . |1−areit|2. Since the exponent
(3− 2α)/(1− α) in the numerator of (4.6) is greater than 2, it follows that the
whole quotient converges to zero as θ → 0+ (or a → 1), the convergence being
uniform in r and t. This completes the proof.

Proof of Theorem 4.4. To begin with, we employ Lemma 4.6 inductively to
find a sequence (ak) in D, approaching point 1 along the curve (4.2), such that
if θk = arg ak, then 0 < θk+1 ≤ θk/3 for every k and

(4.7) |κak
(z)| ≤ 2−k, |κ′ak

(z)| ≤ 2−k if arg z ∈ [0, 2π] \ (θk/2, 3θk/2).



7 (2007), No. 2 Compact Differences of Composition Operators 339

Since the intervals (θk/2, 3θk/2) are disjoint, inequalities (4.7) are certainly satis-
fied at every point z of D for all indices k with the possible exception of one k
(depending on z). For this exceptional k we nevertheless have the trivial bound
|κak

(z)| ≤ 1.

We may clearly assume that |a1|, and hence each |ak|, is greater than the num-
ber q of Lemma 4.5. Let

λ(z) =
1

64

∞∑
k=1

λak
(z) =

(z − 1)3

64

∞∑
k=1

κak
(z).

By the remarks above we see that λ is a well-defined analytic function in D (with
continuous extension to D) and

|λ(z)| ≤ 1

32
|z − 1|3 ≤ 1

16
|z − 1|2.

Put ψ = ϕ+λ. Since 1−|ϕ(z)| ≥ |z−1|2/8, we have 1−|ψ(z)| ≥ (1−|ϕ(z)|)/2,
so ψ is an analytic function satisfying requirement (i) of the theorem. Moreover,
we may estimate

ρ(z) ≤ |λ(z)|
1− |ϕ(z)| − |λ(z)|

≤ |z − 1|3/32

|z − 1|2/16
=

1

2
|z − 1|,

from which (iii) obtains.

It remains to verify (ii) and (iv). The preceding observations imply that 1−|ϕ(z)|
is comparable to 1 − |ψ(z)| and their ratio tends to one as z → 1. Therefore it
is enough to show that the expression(

1− |z|
1− |ϕ(z)|

)α

|λ′(z)|

stays bounded in D and does not converge to zero as z → 1. To accomplish
this we observe that by the definition of λak

and inequalities (4.7) we have
|λ′ak

(z)| ≤ 2−k · 5|z − 1|2 for all z ∈ D and all except at most one k. The first
claim follows from this and the first part of Lemma 4.5 (applied to the excep-
tional λak

). To verify the second claim we apply the second part of Lemma 4.5
to conclude that the above expression does not converge to zero as we approach
point 1 along the sequence (ak).

Remark 4.7. The argument presented in Section 3 to get rid of condition (B3) in
Theorem 3.1 fails in the context of Lipschitz spaces because there is no counter-
part of Lemma 3.4 for general Dα-derivatives. However, we note that Lemma 3.3
can be carried over to the Lipschitz case; namely, for any α > 0 one has

|Dαϕ(z)−Dαϕ(w)| . ‖Dαϕ‖∞ρ(z, w).
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This can be deduced from the generalized Schwarz-Pick estimates obtained in [19].
In fact, Theorem 3 (and its proof) in [19] shows that

(1− |z|2)α+1

(1− |ϕ(z)|2)α
|ϕ′′(z)| . ‖Dαϕ‖∞,

and by applying the product rule of differentiation (cf. the proof of Lemma 2.3)
we get |∇Dαϕ(z)| . ‖Dαϕ‖∞/(1− |z|2), which then yields the desired estimate.

5. Composition operators on Lipschitz spaces revisited

Starting from the early 1980s, the fundamental problems of boundedness and
compactness for a single composition operator on the analytic Lipschitz spaces
have been studied by many authors using different approaches. In this last section
we briefly revisit this theory and address a couple of natural questions that arise
from the existing literature. We assume throughout that ϕ is an analytic self-map
of the unit disc and 0 < α < 1.

An early contribution in this area was due to Roan [25]. In his Corollary 1 the
following result on the boundedness of Cϕ is given:

• Cϕ is bounded on Bα if and only if ϕ ∈ Bα and there exist M < ∞ and
r < 1 such that |ϕ′(z)| ≤M whenever |ϕ(z)| ≥ r.

Unfortunately, as noticed by Cowen and MacCluer [4, p. 196], there is an error
in Roan’s proof for the necessity of his condition. Thus Cowen and MacCluer
mention it as an open question whether the result still holds. As a by-product
of the work done in Section 4 we can give a negative answer to their question:
There are functions that fail Roan’s condition but nonetheless induce a bounded
composition operator on Bα.

Example 5.1. Let ψ = ϕ+ c
∑

k λak
be the function constructed in the proof of

Theorem 4.4. Then ak → 1 and ψ(ak) → 1 as k → ∞. Consider the derivative
of ψ at ak. By the second part of Lemma 4.5 plus equations (4.1) and (4.2) we
have

|λ′ak
(ak)| &

(
|ak − 1|2

1− |ak|2

)α

& |ak − 1|−α/(1−α),

so |λ′ak
(ak)| → ∞ as k →∞. Arguing as at the end of the proof of Theorem 4.4

we now see that |ψ′(ak)| → ∞.

Let us now make the standing assumption that ‖Dαϕ‖∞ < ∞, so that Cϕ is a
bounded operator on Bα. For the compactness of Cϕ there are (at least) three
different characterizations given in the literature. First of all, in the work cited
above, Roan stated the following:

• Cϕ is compact on Bα if and only if for every ε > 0 there exists r < 1 such
that |ϕ′(z)| ≤ ε whenever |ϕ(z)| ≥ r.



7 (2007), No. 2 Compact Differences of Composition Operators 341

Later Shapiro [28] investigated the compactness problem in a general setting
of boundary-regular and conformally invariant “small” function spaces. By a
spectral-theoretic argument he obtained the surprising result that a necessary
condition for the compactness of Cϕ on such spaces is ‖ϕ‖∞ < 1. In the Lipschitz
case it follows almost trivially that his condition is also sufficient, thus yielding
a complete characterization of compactness as follows:

• Cϕ is compact on Bα if and only if ‖ϕ‖∞ < 1.

Finally, it is certainly possible to characterize the compactness of Cϕ by an
appropriate “little-oh” version of Madigan’s [20] boundedness condition. That
is:

• Cϕ is (weakly) compact on Bα if and only if Dαϕ(z) → 0 as |ϕ(z)| → 1.

This result, although not explicitly stated by Madigan, follows by fairly standard
arguments from the basic identity (1.1) and lends itself to many generalizations
(see [3, 22, 32]). Of course, it could also be deduced from our Theorem 1.2 by
taking ψ ≡ 0.

A natural question now arises: can one demonstrate the equivalence of these
three compactness conditions by function-theoretic arguments, without invoking
operator theory? Obviously, if Shapiro’s condition holds, then the other two
become trivial. Also, assuming the finiteness of ‖Dαϕ‖∞ (or only that ϕ ∈ Bα),
a simple reasoning shows that Roan’s compactness condition implies the Dα-
condition. However, there appears to be no known function-theoretic argument
to infer Shapiro’s condition from the Dα-condition.

Our aim is to give such an argument. The key to it is the notion of angular
derivatives and the following proposition. We note that the proposition is already
known (see [4, Cor. 4.10]), but the existing proof depends on the above-mentioned
result of Shapiro. In what follows we will give a direct function-theoretic proof.

Proposition 5.2. Let 0 < α < 1 and suppose Cϕ is a bounded operator on Bα,
that is, ‖Dαϕ‖∞ < ∞. Then ϕ has a finite angular derivative at every ζ ∈ ∂D
with |ϕ(ζ)| = 1.

Let us recall that an analytic map ϕ : D → D is said to have a finite angular
derivative at ζ ∈ ∂D if there exists a point ω ∈ ∂D such that the difference
quotient (ϕ(z)−ω)/(z−ζ) tends to a finite limit as z → ζ non-tangentially. The
limit is denoted by ϕ′(ζ) and called the angular derivative of ϕ at ζ. Clearly
then ϕ(ζ) = ω as a non-tangential limit.

The main result about angular derivatives is the following classical theorem. See,
for example, [4, Thm. 2.44].

Theorem 5.3 (Julia-Carathéodory). For ζ ∈ ∂D the following are equivalent:

(1) ϕ has a finite angular derivative at ζ;
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(2) ϕ has a non-tangential limit of modulus 1 at ζ, and ϕ′ has a finite non-
tangential limit at ζ;

(3) the quantity d(ζ) = lim infz→ζ(1− |ϕ(z)|)/(1− |z|) is finite.

Furthermore, under these conditions the non-tangential limit of ϕ′ at ζ, the an-
gular derivative ϕ′(ζ) and the number d(ζ)ϕ(ζ)ζ all agree and the limit inferior
in (3) is a non-tangential limit.

Proof of Proposition 5.2. Assume ϕ(1) = 1. We then claim that ϕ has a
finite angular derivative at 1. Let us define, for 0 < r < 1,

h(r) =

(
1− r

1− ϕ(r)

)α

ϕ′(r), u(r) =
1− ϕ(r)

1− r
.

The hypothesis of the proposition implies that h is a bounded function, and in
view of the Julia-Carathéodory theorem the claim will follow if we show that
also u is bounded.

Note that ϕ′(r) = −(1− r)u′(r) + u(r) and so

h(r) = u(r)−αϕ′(r) = −(1− r)u(r)−αu′(r) + u(r)1−α.

If we write v(r) = u(r)1−α, then this is equivalent to

− 1

1− α
(1− r)v′(r) + v(r) = h(r).

The general solution of this differential equation is

v(r) = − 1− α

(1− r)1−α

∫ r

1

h(s)

(1− s)α
ds+

C

(1− r)1−α .

Since h is bounded, the first term here is a bounded function of r. Moreover, the
definition of v implies that v(r) is of the order o(1/(1− r)1−α) as r → 1−, so we
must have C = 0. Hence v and u are bounded.

As a corollary we obtain the desired result that the “little-oh” condition for the
Dα-derivative actually trivializes to Shapiro’s compactness condition.

Corollary 5.4. Let 0 < α < 1 and suppose ϕ ∈ Bα such that Dαϕ(z) → 0 as
|ϕ(z)| → 1. Then ‖ϕ‖∞ < 1.

Proof. Assume to the contrary that |ϕ(ζ)| = 1 for some ζ ∈ ∂D. By Propo-
sition 5.2 ϕ has a finite angular derivative, say δ, at ζ. But by the Julia-
Carathéodory theorem (1 − |ϕ(z)|)/(1 − |z|) → |δ| and ϕ′(z) → δ as z → ζ
non-tangentially. Hence |Dαϕ(z)| → |δ|1−α, which is a contradiction.
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