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In Finland, Capercaillie (Tetrao urogallus) populations have a history of serious decrease starting from the
mid-20th century. The decline is temporally in line with the expansion of modern forestry practices that
created major changes in the landscape. We used tetraonid route-censuses from 18 forestry board dis-
tricts and Finnish forest inventories (data on forest stand structure) to analyze the decline in 1965–
1988. We used information theoretical model selection to evaluate a set of log-linear second order auto-
regressive models, allowing for spatially correlated process errors. The average trend throughout the
country corresponded to an annual decline of 4.01% (mean of local trends) ± 0.24% (SEM), parallel to a
half-life of 17 years. The decline was surprisingly uniform throughout the country (SD = 1.01%) and most
parsimoniously explained by a geographically constant log-linear trend. At the large scale of observation
applied here, population trends could not be explained by the proportional increase of younger forest age
classes (<40 years old and <80 years old, respectively). Our analysis does not support the hypothesis that
the decline in Capercaillie numbers is due to changes in the forest age structure, but we cannot exclude
the possibility that other factors behind the decline may have interacted with forestry in general. From a
conservation point of view, we caution against over-emphasizing the role of forest age especially at large
spatial scales, but leaning also on other research, we recommend that more management efforts would
go into the preservation of the overall forest cover and the original physiognomy in single forest patches.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Human alteration of natural habitats is the largest single cause
for biodiversity loss in the world (Millennium Ecosystem Assess-
ment, 2005). Boreal forest being one of the world’s most extensive
terrestrial ecosystems (e.g. Haila, 1994; Schmiegelow and Mönkkö-
nen, 2002), the increasing pressure for land conversion in the bor-
eal region is an important conservation issue. Forestry is largely
acknowledged to be the driving force in the population declines
of boreal forest species in Fennoscandia (e.g. Rassi and Väisänen,
1987; Esseen et al., 1997). The most affected are the species
adapted to old forest (e.g. Hansson, 1992; Esseen et al., 1997;
Mönkkönen, 1999; Brotons et al., 2003); a common example being
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the declining Capercaillie populations (e.g. Rolstad and Wegge,
1989a).

In general, there is a profound consensus about the role of for-
estry in the decline of Capercaillie in Europe (e.g. Storch, 2000,
2007; Miettinen et al., 2008). According to several studies, the neg-
ative effects of forestry are mostly mediated through lekking site
destructions (including the surrounding territories of the males,
Rolstad and Wegge, 1987a; Lindén and Pasanen, 1987; Helle
et al., 1994) and partly also through overall habitat loss and frag-
mentation of forests (e.g. Storch, 2000; Miettinen et al., 2008).
However, there is no clear analytical evidence of forest age being
the number one cause in the decline, although traditionally, Caper-
caillie has been thought to be dependent on older forests (e.g. Val-
keajärvi and Ijäs, 1986; Storch, 1993a; Swenson and Angelstam,
1993), and the large-sized males in particular prefer large old-
growth forest patches for their traditional lekking sites (Rolstad
and Wegge, 1987b, 1989b).

Other possible candidates for the decline include factors di-
rectly or indirectly associated with forestry or other human land
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use, e.g. disturbance and artificial constructions (Bevanger, 1995;
Baines and Summers, 1997; Ludwig et al., 2008), elevated preda-
tion pressure (Kurki et al., 1997, 2000), and lowered bilberry cover
(e.g. Storch, 1993b; Lakka and Kouki, 2009); plus factors not clearly
associated with forestry, e.g. hunting (see, however, Lindén, 1991)
and climate change (Moss et al., 2001; see also Ludwig et al., 2006).
Most likely, different factors play different roles depending on the
region, and it is highly probable that several simultaneously oper-
ating factors act in concert (e.g. Saniga, 2003; Storch, 2000).

Although forests in Finland were quite effectively used for tar
production, slash-and-burn cultivation and firewood collection al-
ready since the middle of the 18th century (Tasanen, 2006), large
forest areas remained outside intensive use. The first large-scale
changes that affected virtually all Finnish forests took place after
the Second World War. Selective cuttings were replaced with
clear-cuts and artificial regeneration, and cuttings were expanded
to previously unmanaged areas (e.g. Leikola, 2006). As a conse-
quence, between the third (1951–1953) and the fourth (1960–
1963) National Forest Inventory (NFI) in Finland, particularly the
amounts of saplings (age <20 years) and young forests (21–
40 years) increased remarkably (Tiihonen, 1968). This is tempo-
rally in line with the sharp decline in the Finnish Capercaillie pop-
ulations (Fig. 1; Lindén and Rajala, 1981).

Finnish grouse populations dynamics have been intensively
studied, mostly concentrating on their nation-wide cyclic patterns
(e.g. Lindström et al., 1995, 1996, 1997; Ranta et al., 1995). Differ-
ences in productivity between old and young females, and delayed
Fig. 1. The map of 19 forestry board districts in Finland and the data on Capercaillie abun
the district number 14 was omitted from the models due to several weak years of data
density dependence in fecundity have been found to be important
factors behind the cycles (e.g. Lindström et al., 1997). However,
regarding long-term population trends, there have been differing
viewpoints on the relative importance between adult survival
and breeding success (e.g. Kauhala and Helle, 2002; Ludwig,
2007). Moreover, exact mechanisms behind the declining trends
are still mostly unknown, although they are usually considered
to be connected with changes in habitats (e.g. Lindén and Rajala,
1981; Helle and Helle, 1991), indicating lowered carrying capacity
of the environment (i.e. the population size that the resources of
the environment can maintain is lowered, sensu Begon et al.,
1996).

In this study, we modelled the spatiotemporal pattern of de-
cline in Finnish Capercaillie populations during 1965–1988. More
specifically, we investigated whether changes in the forest age
structure, stemming from the expansion of modern forestry prac-
tices, could explain population decline. We used information theo-
retical model selection on several log-linear second order vector
autoregressive models to evaluate the effect of forest age structure
on the declining Capercaillie density. We hypothesize that the in-
crease of younger forest classes (and consequently, decrease of old-
er forest classes) negatively affects the Capercaillie habitat quality,
especially at the lekking sites. This is because the lekking sites sur-
rounded with large areas of old-growth forest support more resi-
dent males (Wegge and Rolstad, 1986) probably attracting also
more females (Storch, 1997; Gjerde et al., 2000), and the number
of displaying males is positively correlated with the lekking site
dance estimated from the route-censuses in 1964–1989 for each district. Data from
gathering. The data used in the analyses covered years 1965–1988.
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persistence (Rolstad and Wegge, 1989b). Hence, the immediate ef-
fect of forestry actions is likely to be that juveniles and females dis-
perse away from low-quality leks (Rolstad and Wegge, 1989b),
which at a large scale connote only spatial restructuring of individ-
uals. Population dynamical effects may therefore occur with a de-
lay, when males at lower quality leks die. Hence, we expect large-
scale population dynamics to be expressed at the scale of lekking
populations, best visible with a time-lag corresponding to the
death of the majority of the males. Our aim was to improve the
understanding of mechanisms behind the decline, which we think
is needed for effective and realistic Capercaillie conservation in
Europe, and which may be helpful in conserving forest wildlife bio-
diversity in general (Pakkala et al., 2003).
2. Materials and methods

2.1. Capercaillie data

Capercaillie abundance estimates (individuals per km2; see Ra-
jala, 1974) were based on tetraonid route-censuses performed in
1964–1989 (Lindén and Rajala, 1981), but the first and the last year
were dropped from the analyses due to low coverage of data. Cen-
sus routes were located on the very best grouse habitats, such as
edges of forests, and the census data comprised relative densities
of young and adult birds, estimates of the percentage of hens with
a brood and estimates of brood sizes. The routes were counted
annually in August by thousands of volunteer hunters. During
the study period about 500–800 routes were annually counted,
the total route length varying between 20,000 and 30,000 km/year
(Lindén and Rajala, 1981). Counts were performed in 19 regions of
which 18 were subject to the current analysis (number 14 was ex-
cluded due to scarce census data in several years). These areas
roughly correspond to the forestry board districts (Fig. 1) which
were selected as a spatial unit of the analyses. During the study
period, there were some small changes in the administrative bor-
ders of the forestry boards, and in these cases Capercaillie density
estimates were always corrected to correspond to the limits of for-
estry board districts.
2.2. Forest data

Data on forest cover and age structure were derived from the
NFI reports for 18 forestry board districts (Fig. 1 from which num-
ber 14 excluded; Ilvessalo, 1957; Kuusela, 1967; Kuusela and Sal-
ovaara, 1968, 1969, 1971, 1974a,b; Kuusela and Salminen, 1976,
1978, 1980, 1983; Kuusela et al., 1986; Tomppo et al., 1998). We
separated out data on total area of the district (km2), total amount
of forest land (km2 of forest with an average growth of P1 m3/ha/
year) and forest age classes (the proportion of forests of 1–
140 years, classified with 20 years intervals, plus all the forests
over 140 years [up to 210 years] grouped in their own class, calcu-
lated as percentages from the forest land). We used the geographic
center (N- and E-coordinates from the Uniform Coordinate System,
Grid27E) of every district to describe their locations.

We used data from five inventories which were carried out in
1951–1953 (NFI 3), 1964–1970 (NFI 5), 1971–1976 (NFI 6), 1977–
1982 (NFI 7) and 1986–1994 (NFI 8), once in every district per
inventory. Annual values for forest age structure variables (1960–
1981, i.e. 7 years before the response, see below) were obtained
through linear interpolation. Interpolation is justified due to the
low temporal resolution of the involved variables: (1) the changes
in forest age structure are slow and (2) our aim was to analyze
long-term trends in Capercaillie abundances. Because in some for-
estry board districts the inventories took more than a year, we al-
ways used the first year of an inventory as the main data point
from which the interpolation was carried out.

The first inventory used (NFI 3; Ilvessalo, 1957) was chosen as a
reference point describing the forest age structure in Finland be-
fore the modern forestry expansion. As the amount of forest land
was defined differently in 1951–1953 the first inventory is not
fully comparable to the following ones. However, because the older
definition, ‘‘fertile forest land” that was used in NFI 3 comprised
about 80% of the ‘‘total forest land” that was used in later invento-
ries (Tiihonen, 1966), the difference between the forest variables of
separate inventories is probably minor.

2.3. Choice of the extrinsic variables

To investigate the effects of forest age structure on Finnish Cap-
ercaillie population trends, we used the proportion of forests less
than 40 and 80 years of age (percentages from the forest land with
an average growth of P1 m3/ha/year) as explanatory variables,
interpolated from the NFIs. The average annual survival of Finnish
Capercaillie adults has been estimated to be 0.71 (Lindén, 1981a;
see also Moss et al., 2000). Because the expected time until 90%
of the remaining males have died is log0.71(1–0.90) � 6.72, we used
a lag of 7 years in the forest age variables. We hereafter refer to the
site and time specific forest age variables as A40t�7,i and A80t�7,i.

As an alternative to the forest variables the decline was mod-
elled as an undistinguished exponential declining trend, using year
of investigation as an explanatory variable. The variable, hereafter
denoted Yt, was scaled such that the first year of the response
(1967 for the dependent variable) was set to zero. The average
Pearson’s product moment correlation between Y and A40 is
r = 0.89, so keeping both in the same model simultaneously would
cause collinearity problems. Instead, we considered them as com-
peting explanations in the model selection setting.

The coordinates (N and E, Grid27E) of the geographic center in
each forestry board district were centered to zero at the average
of all forestry boards (N 6974594, E 3435680) and scaled such that
one unit corresponds to 100 km. Spatial trends were described
with three variables, including site specific scaled N-coordinate
(Ni), E-coordinate (Ei) and the interaction between those two
(Ni � Ei). Later we refer to these three geographical variables as
GEOi. In addition to geographical trends in population densities,
geographical gradients in the effects of other explanatory variables
were modelled as interactions between those variables and GEOi.

Models with different combinations of the explanatory vari-
ables and error structures were compared with an information the-
oretical approach, according to the Akaike information criterion
(AIC) and Akaike weights (x). For multivariate models with more
specific error structures, as used here, there exist no well estab-
lished exact versions of AICc (Burnham and Anderson, 2002), that
is, the AIC corrected for small sample size. Therefore, we used
the regular AIC. In total, 14 different competing models were con-
sidered in the analysis (Table 1).

2.4. The population models

The population dynamics were modelled on a logarithmic scale
with second order vector autoregressive models of the general
form

Xt;i ¼ a0 þ a1Xt�1;i þ a2Xt�2;i þ f A40t�7;i;A80t�7;i; Yt ;GEOi
� �

þ et;i

et � N18ð0;RÞ

where Xt,i is the natural logarithm of population density (young and
adult birds together) at time t and location i. The expression
f A40t�7;i;A80t�7;i; Yt;GEOi
� �

denotes a linear combination of the



Table 1
The 14 competing models and statistics indicating their degree of support. R2 are the
coefficients of determination, K are the number of estimated parameters, DAIC are the
differences in Akaike information criterion (dev. + 2 K) compared to the best model
(of which AIC = �115.72) and x are the Akaike weights.

Model Variables Res. corr. R2 K dev. DAIC x

9 Y Yes 0.547 24 �163.72 0.00 0.821
10 Y, Y � GEO Yes 0.548 27 �166.22 3.51 0.142

8 – Yes 0.429 23 �154.08 7.64 0.018
13 A80 Yes 0.425 24 �154.25 9.48 0.007
11 A40 Yes 0.414 24 �154.24 9.49 0.007
14 A80, A80 � GEO Yes 0.443 27 �158.75 10.98 0.003
12 A40, A40 � GEO Yes 0.415 27 �157.13 12.59 0.002

2 Y No 0.593 22 13.90 173.62 0.000
3 Y, Y � GEO No 0.594 25 12.13 177.85 0.000
4 A40 No 0.568 22 37.12 196.84 0.000
5 A40, A40 � GEO No 0.571 25 34.68 200.40 0.000
7 A80, A80 � GEO No 0.553 25 50.94 216.66 0.000
1 – No 0.538 21 63.69 221.41 0.000
6 A80 No 0.539 22 62.62 222.34 0.000
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variables involved, and interactions between them. This is the part
that varies among the competing models given in Table 1. For all
models we assume all regression coefficients except the intercept
terms a0i to be identical across all regions. The process errors (et)
are assumed to be multivariate normal with 18 dimensions (loca-
tions), zero mean and variance–covariance matrix (R). We take
two competing approaches to spatial synchrony in the process er-
rors: (1) no correlation and (2) the process errors are assumed to
be a 50–50% mixture of spatially correlated noise that decrease in
correlation by distance, and compound symmetric noise (correla-
tion between all sites equal). In the potentially correlated version,
the elements of R are a function of the common residual variance
(r2), the distance between the sites (D(i, j)), the spatial correlation
per unit distance (q1) and the common correlation (q2):

Ri;j ¼ 0:5r2ðqDði;jÞ
1 þ q2Þ

Our models include only process error, but it is likely that the
population indices contain measurement error as well, which
could lead to biased estimates of density dependence (Freckleton
et al., 2006; Knape, 2008). However, our focus being on large-scale
trends in the dynamics, exact estimates of density dependence fall
outside the scope of this paper.

The models were fitted using maximum likelihood estimation.
The likelihood was maximised using a variant of an iteratively
reweighted least squares algorithm. In each iteration regression
coefficients were updated by analytically solving for the values
that maximised the likelihood while holding the covariance matrix
fixed to parameter values obtained from the previous iteration.
Each of the parameters to be estimated in the covariance matrix
(for Models 1–7: r2; for Models 8–14: r2, q1 and q2) were then up-
dated in turn by holding the remaining parameters fixed to their
current values and numerically finding the parameter value that
maximised the likelihood (using golden section search imple-
mented in the MATLAB function fminbnd).

Standard errors of the parameters were calculated using para-
metric bootstrap (data resampled by simulating the fitted model)
with 500 bootstrap samples.
3. Results

The decline in the Finnish Capercaillie population in 1965–1988
was steep throughout the country. The average trend (i.e. mean of
the trends calculated for the 18 districts) corresponds to an annual
decline of 4.01 ± 0.24% (SEM), parallel to a half-life of about
17 years. The variation in the annual decline between forestry
boards is relatively low (SD = 1.01%). Between 1965 and 1972, a
slight increase in Capercaillie density could only be found in the
northernmost parts of Finland, and while moving towards 1980s
the populations declined again (Fig. 2, uppermost row of panels).
In contrast, the proportion of forest less than 40 years old consis-
tently increased most in the east (Fig. 2, middle row of panels).
Considering the amount of forest less than 80 years, there were
no major temporal changes, merely the differences between north-
ern and southern parts of Finland slightly evened out during the
study period (Fig. 2, bottom row of panels).

Among the 14 competing models presented in Table 1, Model 9
was selected by AIC to be the best approximating model (Burnham
and Anderson, 2002). Model 9 included a temporal decline (Yt)
only, whereas the second best model (Model 10) included also a
geographical gradient in the decline. Both models had synchronous
(spatially correlated) process errors. The evidence ratio (ratio of
Akaike weights) of Model 9 compared to Model 10 was over
5.77, indicating a moderately strong support for Model 9. For other
models the evidence ratio of Model 9 was greater than 45, the sup-
port being strong. Models 9 and 10 both performed fairly well,
explaining over half of the variation in the data (Table 1).

The coefficient of temporal decline in the carrying capacity (ef-
fect of Yt) in Model 9 was �0.023 ± 0.007 (SE), corresponding to an
annual decline of 2.26% in the populations’ carrying capacities. The
average trend in the carrying capacity in Model 10 was similar. An
interpretation of the fact that this is less than the observed trend
(4.01%) could be that the population density was far above the car-
rying capacity in the beginning of the study period.

Models with spatially correlated process errors (Models 8–14)
performed altogether better compared to models with indepen-
dent process errors (Models 1–7, see Table 1). Hence, our approach
to account for synchrony that decreases by distance was well jus-
tified. The synchrony can be caused by dispersal as well as spatially
autocorrelated environment (e.g. weather patterns) and is typical
for spatiotemporal population data (Ranta et al., 1999) and maybe
for large-scale Capercaillie occurrence in general (Mörtberg and
Karlström, 2005).

Unexpectedly, the models including forest age performed
clearly worse than the models with year as an explanatory vari-
able. In the fourth best model (Model 13, see Table 1) the propor-
tion of forest less than 80 years old (A80) was included, but having
an effect close to zero (Appendix A). Hence, at the large scale of
investigation used here, it seems that forest age per se does not
provide a good explanation for the decline in the Capercaillie pop-
ulations. It is notable that in the models with A80 and A40, part of
the variation in the population trend was picked up by the spatial
correlation structure of the process errors (q1). Comparing Models
11 and 4, for example, A40 has a clear negative effect in the model
with no spatial correlation among the process errors, but the effect
is lost in Model 11 (see Appendix A). For Model 11, we found a neg-
ative trend in residuals of the 18 forestry board districts (average
trend �0.022 ± 0.001 [SEM], SD = 0.005). While no such trend
could be found in the residuals of Model 4 or Model 9, it is obvious
that A40 cannot fully account for the trend appearing in the depen-
dent variable. The same phenomenon could be seen when compar-
ing Models 5 and 12 (A40 and GEO as explanatory variables,
Appendix A). It is possible, that an unknown factor also containing
a trend (e.g. climate) not included in our model might have caused
synchrony in the process errors.

Although not the focus of the study, density dependent effects
(a1 and a2) had an important role in the models (Appendix A). In
all the models, there were clear first order negative density depen-
dence corresponding to undercompensatory dynamics (0 < a1 < 1;
whereas a1 = 1 correspond to exponential growth). Interestingly,
in the models with spatial correlation structure in the process er-
rors, the two-year delayed effect (a2) disappeared, whereas in the
models with independent process errors it was always present
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with a negative effect (Appendix A). Hence, our models suggest
that the observed delayed density dependence might actually be
a consequence of environmental stochasticity (Jonzén et al.,
2002). We caution, however, that since we have not accounted
for observation error, our density dependence estimates may be
imprecise and biased.

4. Discussion

4.1. Effect of the forest age structure

Our results revealed that despite the widespread consensus on
forestry being among the most important causes for declines in the
Capercaillie populations around Europe (e.g. Lindén and Pasanen,
1987; Rolstad and Wegge, 1987a, 1989a; Gjerde and Wegge,
1989; Virkkala, 1991; Helle et al., 1994; Sjöberg, 1996; Storch,
2000, 2007; Saniga, 2003; Sachot et al., 2006), the increase in the
proportion of young (less than 40 and 80 years old) forest classes
does not provide a good explanation for the decline in Finnish Cap-
ercaillie populations. This is somewhat surprising, because lekking
sites have traditionally been found in forests older than 60–
70 years (Valkeajärvi and Ijäs, 1986; Rolstad and Wegge, 1987b),
and in some studies suitable Capercaillie habitat has been sug-
gested to be forests older than 90 years (Storch, 1993a; Swenson
and Angelstam, 1993). However, according to some more recent
papers it seems that Capercaillie might not be a strict old-forest
specialist – new lekking sites have been found in young (26–
46 years, 50–140 m3/ha) forests (Rolstad et al., 2007), and thinning
stands (36–100 m3/ha) and other younger forests might be of rea-
sonable quality for Capercaillie males (Miettinen et al., 2005,
2008).

Fragmentation of mature forests might have led to situation
where some species traditionally connected to older forest classes
(e.g. Capercaillie, Swenson and Angelstam, 1993; Angelstam, 2004)
nowadays seemingly avoid them, most likely because the extent of
a species’ home range and the extent of the mature forest area do
not match (Mykrä et al., 2000; Miettinen et al., 2005, 2008; Miet-
tinen, 2009). However, this seems to be fairly recent phenomenon:
for instance in the Northern Finland, the preference of mature
stands for Capercaillie lekking sites was still clearly visible in
1985 (Helle et al., 1989).

It is possible that some other structural aspects of forestry (e.g.
impoverishment of habitat’s physiognomy, decreased mosaic-like
variability, patch size and/or connectivity) are more important
than the decline in forest age (Helle et al., 1987; Lindén et al.,
2000; Quevedo et al., 2006). It has been suggested, for example,
that in the Northern Finland the understorey cover in mature for-
ests may have become too scarce and monotonous for Capercaillie
(Miettinen, 2009). In contrast, in some very dense forest stands
thinning may create space for large-sized Capercaillie males for
winter roosting (Thiel et al., 2007) or for lekking site displaying
(Rolstad and Wegge, 1989a; Rolstad et al., 2007). Hence, forest
age at large spatial scales might not be the most important aspect
for Capercaillie, but some old forest characteristics or structural as-
pects resembling old forest might still be needed at the stand level
(Helle et al., 1989). To conclude, forest age might be more impor-
tant on smaller spatial scales than the one studied here (e.g. Storch,
1993a; Graf et al., 2005 see also Wallgren et al., 2009).
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Interestingly, it seems that there might have been a decline
also in the Swedish Capercaillie populations from the mid-1940s
to late 1970s (Marcström, 1979). One cannot exclude the possibil-
ity that some common factors have affected the Capercaillie pop-
ulation trends in both countries, which have also many
similarities in their past land use (e.g. Esseen et al., 1997). How-
ever, the Swedish populations have since been more or less stable,
at least according to trend analysis from 1975 to 2007 (results
concerning mostly southern Sweden, The Swedish Bird Survey,
2010). In Finland, the declining Capercaillie population trend
started to partly stabilize from 1990s onwards, although large
variation still exists depending on the game management district
(Lindén, 2002).

4.2. Other factors associated with forestry

Our results further implied that the Capercaillie population
density might have been far above the carrying capacity in the
beginning of the study period. According to some indirect evi-
dence, Capercaillie populations might have been on the highest le-
vel recorded so far in the end of 1930s (Airaksinen, 1946; Mäki,
1946), and in 1953 the populations were apparently still about
40% higher than in the ‘high-density-years’ 1966–1967 (when
the relative density was over 10 birds/km2, Lindén and Rajala,
1981; Lindén, 2002). We cannot rule out the possibility that some
other factors associated with forestry, but not included in our mod-
el, might have affected the carrying capacity already before our
study period (see also Löfman and Kouki, 2001). For example, log-
ging may reduce the amount of suitable food and cover for juve-
niles and disturb dispersal (e.g. Hannon and Martin, 2006), and
large-scale forest drainage can have both direct and indirect nega-
tive effects on grouse productivity (Ludwig et al., 2008). More spe-
cifically, there are two forestry-related factors that have often been
suggested to be potential mechanisms behind grouse population
declines: (1) increased predation pressure and (2) decreased food
quality/quantity (e.g. Kurki et al., 2000; Storch, 2000, 2007; Lakka
and Kouki, 2009).

Predation is a major proximate cause for grouse chick and juve-
nile mortality (Hannon and Martin, 2006; Baines et al., 2007), and
it may also affect adult survival especially in low-density popula-
tions (Park et al., 2008). Concerning our results, interactions be-
tween enhanced predation pressure and changes in the
landscape-level habitat quantity and quality (Henttonen, 1989;
Kurki et al., 1997, 2000; Storaas et al., 1999) may have at least
partly played a role in the temporally uniform decline of Capercail-
lie populations (and possibly also other grouse species in Finland;
Kurki et al., 2000). However, predation does not well explain the
spatial synchrony of our results. The densities of the most common
predators (e.g. red fox) might be two- to threefold higher in the
southernmost Finland, and the negative effect on grouse breeding
success therefore usually varies between south and north (Kurki
et al., 1997, 2000).

Bilberry (Vaccinium myrtillus) cover is an important variable
explaining Capercaillie abundance (Storch, 1993a,b), and is com-
monly associated with the abundance of insect food important
for chicks (Wegge et al., 2005; Lakka and Kouki, 2009). The long-
term decrease in the Finnish bilberry cover (Reinikainen et al.,
2000) may be among the proximate causes for bad Capercaillie
breeding success, ultimate cause being habitat alteration (Ludwig,
2007; see also Ludwig et al., 2008; Lakka and Kouki, 2009). This
kind of explanation might match the pattern of a spatially and
temporally uniform decline, although Lakka and Kouki (2009) con-
cluded that it is unlikely that bilberry abundance alone can explain
the decline in Finnish Capercaillie populations. However, it is well
known that clear-cutting negatively affects bilberry cover (Atle-
grim and Sjöberg, 1996a) and the herbivorous insect larvae feeding
on it (Atlegrim and Sjöberg, 1996b). Ordinary forest management
practices may thus at least momentarily lower Capercaillie breed-
ing success through bilberry reduction (Baines et al., 2004).
4.3. Factors not associated with forestry

Local weather patterns can affect grouse population dynamics,
especially through breeding success (e.g. Virkkala, 1991; Sæther
et al., 2004; Baines et al., 2007). Moreover, asymmetrical climate
change has been connected to long-term grouse declines in earlier
studies (Moss et al., 2001; Ludwig et al., 2006). Climate change
could be a candidate to explain the spatially uniform decline found
in our study, but the temporal match is poor. Moreover, from the
beginning of 1990s Finnish Capercaillie population estimates have
shown signs of stabilization or even increment in some parts of the
country, indicating improved breeding success (Lindén, 2002),
whereas the climate has continued to warm up (Karl and Tren-
berth, 2003). In sum, the role of climate change in Capercaillie pop-
ulation decline remains unclear.

The effects of hunting on Capercaillie populations have been
rather little studied (Baines and Lindén, 1991; Kangas and Kurki,
2000). In 1964–1972, bag sizes followed the cyclic abundances,
although more encouraging population trends were observed in
the protected areas compared to the hunted ones (Lindén,
1981b). For the period of 1973–1984 Lindén (1991) did not find
significant correlative relationships between grouse population
trends and the annual bag, albeit there may have been some over-
harvesting in the Northern Finland. Because of the remarkable spa-
tial synchrony detected in the population trend, it is hard to believe
that hunting is the most important factor behind the Capercaillie
decline in Finland. However, hunting has the potential to cause
population declines, especially together with some other factors.
For example, the dense network of forest roads not only increases
forest fragmentation but creates also opportunities for hunters,
which may lead to local overhunting (Lindén, 1991). Selective
hunting would be especially harmful if directed towards high-
quality lekking males because of their high reproductive value,
and the potential negative effects on the display and sex ratio
(Lindén, 1981b; Ellison, 1991).
5. Conclusion and management implications

Our study shows that the causes for Capercaillie population de-
cline are difficult to pinpoint on statistical grounds because of the
spatio-temporally uniform decrease in the population density. It is
probable that several interacting factors are responsible for the de-
cline (e.g. Ludwig, 2007). For example, effects of climate change
may depend on habitat fragmentation (e.g. Foppen et al., 1999).
We caution against over-emphasizing the role of forest age struc-
ture in the forest management, until the mechanisms behind the
decline have been uncovered. However, leaning also on other re-
search we wish that at large spatial scales, more effort would go
into the preservation of the overall forest cover, especially around
the functioning Capercaillie lekking sites (e.g. Lindén and Pasanen,
1987; Helle et al., 1994; Lindén et al., 2000). In Southern Finland,
for example, functioning lekking sites are situated in forest patches
that are substantially larger than average (Lindén and Pasanen,
1987; Helle et al., 1994). Since Capercaillie is recognized as an um-
brella species, successful conservation efforts would benefit forest
biodiversity in general (Pakkala et al., 2003). Moreover, increasing
the amount of suitable habitat would offer a precaution to mini-
mize risks e.g. connected to future range shifts stemming from cli-
mate change (Thomas and Lennon, 1999). In addition, in single
forest patches preservation of the original forest physiognomy
might be of importance. Although not explicitly detected in this
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study, large-scale changes in human land use are evident threats to
forest biodiversity around the world. Compared to Central Euro-
pean forests which are seriously fragmented primarily due to the
patchy distribution of mountainous conifer forests and secondly
because of habitat loss, forests in Fennoscandia comprise the last
wide-enough habitats for many large forest-dwelling species in
Europe (e.g. Storch, 2000; Mikusiński et al., 2007), including Caper-
caillie (see also Segelbacher and Storch, 2002; Segelbacher et al.,
2003), and are therefore of primary concern for species
conservation.
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a1 � 1 �0.207
(0.048)

�0.346
(0.051)

�0.349
(0.048)

�0.277
(0.048)

�0.283
(0.049)

�0.208
(0.048)

�0.243
(0.048)

�0.619
(0.051)

�0.636
(0.050)

�0.643
(0.050)

�0.621
(0.053)

�0.631
(0.047)

�0.622
(0.049)

�0.629
(0.055)

a2 �0.157
(0.047)

�0.288
(0.051)

�0.292
(0.048)

�0.235
(0.050)

�0.240
(0.049)

�0.160
(0.049)

�0.182
(0.049)

0.011
(0.051)

�0.021
(0.050)

�0.027
(0.049)

0.011
(0.051)

0.006
(0.049)

0.010
(0.048)

0.006
(0.050)

Y 0 �0.022
(0.003)

�0.023
(0.003)

0 0 0 0 0 �0.023
(0.007)

�0.024
(0.007)

0 0 0 0

Y � N 0 0 �0.001
(0.001)

0 0 0 0 0 0 �0.001
(0.001)

0 0 0 0

Y � E 0 0 0.002
(0.002)

0 0 0 0 0 0 0.00
(0.002)

0 0 0 0

Y � N � E 0 0 0.001
(0.001)

0 0 0 0 0 0 0.001
(0.001)

0 0 0 0

A40 0 0 0 �2.135
(0.412)

�2.259
(0.443)

0 0 0 0 0 0.207
(0.507)

�0.018
(0.527)

0 0

A40 � N 0 0 0 0 0.045
(0.214)

0 0 0 0 0 0 0.120
(0.206)

0 0

A40 � E 0 0 0 0 0.340
(0.257)

0 0 0 0 0 0 0.271
(0.220)

0 0

A40 � N � E 0 0 0 0 �0.056
(0.221)

0 0 0 0 0 0 0.118
(0.170)

0 0

A80 0 0 0 0 0 �0.407
(0.392)

0.473
(0.560)

0 0 0 0 0 0.158
(0.387)

0.131
(0.448)

A80 � N 0 0 0 0 0 0 �0.586
(0.179)

0 0 0 0 0 0 �0.290
(0.149)

A80 � E 0 0 0 0 0 0 �0.034
(0.452)

0 0 0 0 0 0 0.222
(0.310)

A80 � N � E 0 0 0 0 0 0 0.127
(0.201)

0 0 0 0 0 0 0.139
(0.140)

r2 0.069
(0.005)

0.061
(0.004)

0.060
(0.004)

0.064
(0.004)

0.064
(0.004)

0.069
(0.005)

0.067
(0.005)

0.088
(0.015)

0.070
(0.011)

0.069
(0.010)

0.090
(0.017)

0.091
(0.018)

0.089
(0.017)

0.084
(0.015)

q1 0 0 0 0 0 0 0 0.908
(0.292)

0.882
(0.290)

0.884
(0.299)

0.911
(0.312)

0.915
(0.318)

0.909
(0.296)

0.904
(0.316)

q2 0 0 0 0 0 0 0 0.457
(0.243)

0.314
(0.284)

0.310
(0.294)

0.469
(0.239)

0.479
(0.239)

0.466
(0.237)

0.433
(0.251)
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Appendix A

Parameter estimates and standard errors (in parentheses) for
the 14 competing models. Parameters for which |b| > 2SE are con-
sidered to differ from zero and are bolded, excluding error vari-
ances (r2). The intercepts (a0 (1) � a0 (18)) are not shown.
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Glossary

Autoregressive models: A type of time series models that use previous observations
to predict the values of focal observations. In population dynamics, these
models are typically used to model (potentially delayed) density dependent
regulation.

Lekking site, lek: A site where Capercaillie males collect to display and copulate with
females in spring. A single lek covers approximately 300 hectares of forest
including the daily territories of the males, i.e. the area for the lekking males to
rest and feed between the actual displaying and mating.

Lekking population: Local Capercaillie population, mainly the adult males and fe-
males attending the same lekking sites and using same seasonal home ranges
and nesting sites year after year (see e.g. Storch, 1997).

Process error: Source of error (random noise) stemming from uncontrolled factors,
in population dynamics typically demographic and environmental stochastici-
ty. Often used to describe random variation that is not due to measurement
error.

Vector autoregressive models: Multivariate generalizations of autoregressive models.

http://www.zoo.ekol.lu.se/birdmonitoring/res-vinterfagel.htm
http://www.zoo.ekol.lu.se/birdmonitoring/res-vinterfagel.htm

	Are the declining trends in forest grouse populations due to changes in the forest age structure? A case study of Capercaillie in Finland
	Introduction
	Materials and methods
	Capercaillie data
	Forest data
	Choice of the extrinsic variables
	The population models

	Results
	Discussion
	Effect of the forest age structure
	Other factors associated with forestry
	Factors not associated with forestry

	Conclusion and management implications
	Conflicts of interest
	Role of the funding source
	Acknowledgments
	Appendix A
	References
	Glossary


