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Definitions for terms 

Abiotic surface surface of non-living material 
Anatase one of the three natural crystalline forms of titanium dioxide, 

the other two being brookite and rutile 
Band-gap energy difference between the highest valence band and the 

lowest conduction band which is found in insulators and 
semiconductors. The band gap energy is the amount of energy 
required to move electrons from the valence band to the 
conduction band 

Biofilm a structured community of microbial cells enclosed in a self-
produced polymeric matrix and adhered to an inert or living 
surface 

Biofouling undesired deposition of biomass (biofilms) on surfaces 
Biotic surface surfaces of living organisms 
Brownian motion  the random movement of particles suspended in water 
Conditioning film  within moments of placing a clean surface into a water source, 

a film begins to deposit consisting of substances adsorbed to 
the surface 

Diffusion layer a thin (µm), stationary layer of fluid on an immmersed surface 
which does not mix with the main body of the fluid. Also 
known as the stagnant layer or the boundary layer 

Fimbria a filamentous appendage on the surface of a bacterial cell  
Genome an organism's entire hereditary information, encoded in DNA 

or, for some viruses, in RNA 
Gibbs free energy the maximum amount of non-expansion work that can be 

obtained from an isothermal, isobaric thermodynamic system 
Glycoconjugate carbohydrates that are covalently linked with other chemical 

compounds, such as lipids or peptides (glycolipids and 
glycopeptides respectively) 

Gushing sudden over foaming of bottled beer 
Electron hole (h+) the lack of an electron at a position where one could exist in an 

atom  
Kurtosis, Sku surface parameter that describes the "peakedness" of the 

surface topography 
Lectin carbohydrate-binding proteins or glycoproteins that are highly 

specific for their sugar residues  
Pellicle biofilm structures that some bacterial species (e.g. P. 

aeruginosa and Bacillus spp.) are able to form at the air–liquid 
interface of stationary cultures  

Periodic acid-Schiff a staining method used to detect glycogen  
Persister cell the "persister" is a hypothetical cell state in which 

microorganisms are protected from antimicrobial insults 
Photocatalysis the acceleration of a photoreaction in the presence of a catalyst 
Pilus a hairlike appendage found on the surface of many bacteria. 

Pilus is required for bacterial conjugation and/or adhesion to a 
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surface or to other bacteria. Type IV pili are known to generate 
movement called twitching motility 

Planktic microorganism free floating microorganism 
Proteome the expressed proteins in cells or an organism at a certain time 

under defined conditions 
Quorum sensing bacterial communication mechanism dependent on population 

density 
Rutile the most common natural crystalline form of TiO2 
Sessile microorganism surface-bound microorganism 
Skewness, Ssk surface parameter that describes the asymmetry of the height 

distribution histogram 
Substrate enzymes catalyze chemical reactions involving the substrate 
Substratum a surface on which an organism grows or is attached 
Wort the sugar containing liquid extracted from the mashing process 

during the brewing of beer 



10 
 

Abstract 

Microorganisms exist predominantly as sessile multispecies communities in natural 

habitats. Most bacterial species can form these matrix-enclosed microbial communities 

called biofilms. Biofilms occur in a wide range of environments, on every surface with 

sufficient moisture and nutrients, also on surfaces in industrial settings and engineered water 

systems. This unwanted biofilm formation on equipment surfaces is called biofouling. 

Biofouling can significantly decrease equipment performance and lifetime and cause 

contamination and impaired quality of the industrial product. 

In this thesis we studied bacterial adherence to abiotic surfaces by using coupons of 

stainless steel coated or not coated with fluoropolymer or diamond like carbon (DLC). As 

model organisms we used bacterial isolates from paper machines (Meiothermus silvanus, 

Pseudoxanthomonas taiwanensis and Deinococcus geothermalis) and also well characterised 

species isolated from medical implants (Staphylococcus epidermidis). We found that coating 

of steel surface with these materials reduced its tendency towards biofouling: Fluoropolymer 

and DLC coatings repelled all four biofilm formers on steel. We found great differences 

between bacterial species in their preference of surfaces to adhere as well as their 

ultrastructural details, like number and thickness of adhesion organelles they expressed. 

These details responded differently towards the different surfaces they adhered to. 

We further found that biofilms of D. geothermalis formed on titanium dioxide coated 

coupons  of  glass,  steel  and  titanium,  were  effectively  removed  by  photocatalytic  action  in  

response to irradiation at 360 nm. However, on non-coated glass or steel surfaces irradiation 

had no detectable effect on the amount of bacterial biomass. We showed that the adhesion 

organelles of bacteria on illuminated TiO2 coated coupons were complety destroyed whereas 

on non-coated coupons they looked intact when observed by microscope. 

Stainless steel is the most widely used material for industrial process equipments and 

surfaces. The results in this thesis showed that stainless steel is prone to biofouling by 

phylogenetically  distant  bacterial  species  and  that  coating  of  the  steel  may  offer  a  tool  for  

reduced biofouling of industrial equipment. Photocatalysis, on the other hand, is a potential 

technique for biofilm removal from surfaces in locations where high level of hygiene is 

required. 

Our study of natural biofilms on barley kernel surfaces showed that also there the 

microbes possessed adhesion organelles visible with electronmicroscope both before and 

after steeping. The microbial community of dry barley kernels turned into a dense biofilm 

covered with slimy extracellular polymeric substance (EPS) in the kernels after steeping in 
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water. Steeping is the first step in malting. We also presented evidence showing that certain 

strains of Lactobacillus plantarum and Wickerhamomyces anomalus, when used as starter 

cultures  in  the  steeping  water,  could  enter  the  barley  kernel  and  colonise  the  tissues  of  the  

barley kernel. By use of a starter culture it was possible to reduce the extensive production of 

EPS, which resulted in a faster filtration of the mash. 
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Tiivistelmä 

Mikrobit esiintyvät luonnossa etupäässä pintoihin kiinnittyneinä, useiden lajien 

muodostamina yhdyskuntina. Näitä liman verhoamia mikrobiyhteisöjä kutsutaan 

biofilmeiksi. Suurin osa mikrobilajeista pystyy muodostamaan biofilmejä. Biofilmejä 

esiintyy kaikilla pinnoilla, joilla on tarjolla tarpeeksi kosteutta ja ravinteita. Tällaisia pintoja 

on kaikkialla missä käsitellään vettä tai vesipitoisia nesteitä, kuten teollisuudessa ja 

vesijohtoverkossa. Biofilmin muodostus teollisuusprosesseissa voi heikentää laitteiden 

toimintakykyä ja lyhentää niiden käyttöikää, sekä aiheuttaa kontaminaatioita ja laadun 

heikenemistä tuotteisiin. Tästä syystä biofilmejä pyritään häätämään prosessilaitteista.  

Tutkin väitöskirjassani bakteerien tarttumista pinnoitetuille ja pinnoittamattomille 

teräspinnoille. Käytin koe-eliöinä paperikoneiden biofilmeistä eristettyjä bakteerilajeja, 

Meiothermus silvanus, Pseudoxanthomonas taiwanensis ja Deinococcus geothermalis, sekä 

lajia, joka tekee biofilmejä ihmisen elimistöön sijoitetuille esineille (implantit), 

Staphylococcus epidermidis. Löysin bakteerilajien väliltä suuria eroja sekä niiden kyvyssä 

tarttua eri pinnoille, että itse bakteerien pinnan rakenteissa. Turtkimani bakteerit osasivat 

myös sopeuttaa solurakenteensa eri pinnoilla, mm. tarttumaelimien paksuus ja lukumäärät 

olivat erilaisia. 

Käytin työssäni D. geothermalis -bakteerin muodostamia biofilmejä tutkiakseni, 

voidaanko ne irrottaa lasi- tai teräspinnoilta, jos pinnat pinnoitetaan titaanidioksidilla joka 

aktivoidaan 360 nm valolla. Tulokseni osoittivat, että näin saatiin aikaan biofilmiä tuhoava 

fotokatalyysi. Pinnoittamattomalla lasilla ja teräksellä biofilmin määrä pysyi 

muuttumattomana valaisusta riippumatta. Kun tutkin kenttäemissiopyyhkäisy-

elektronimikroskoopilla biofilmejä TiO2 pinnoitetuilla pinnoilla, havaitsin että 

valokäsitellyillä pinnoilla bakteerien tarttumaelimet olivat tuhoutuneet, mutta 

pinnoittamattomilla pinnoilla ne näyttivät ehjiltä.  

Teräs on yleisin koneiden ja laitteiden materiaali monilla teollisuuden aloilla. 

Väitöskirjan tulokset kuitenkin näyttävät, että bakteerit tarttuvat hyvin juuri teräkseen. Samat 

tulokset saatiin hyvin erilaisilla, fylogeneettisesti kaukaisilla, bakteerilajeilla. Tulokset 

osoittivat myös, että teräksen alttiutta kerätä biofilmejä voidaan vähentää pinnoittamalla ja 

jos käytetään fotokatalyyttisesti aktiivista pinnoitetta, jo muodostuneetkin biofilmit voidaan 

poistaa valokäsittelyn avulla.  

Tutkin myös eläviin solukkoihin tarttuvia mikrobibiofilmejä. Tutkimuskohteena oli 

ohran jyvän luonnollinen biofilmi. Havaitsin että myös nämä biofilmit rakentuivat 

mikrobeista, joilla oli tarttumaelimiä. Ulkonäöltään tarttumaelimet muistuttivat niitä, joita 
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olin löytänyt teräs- ja lasipinnoilta. Ohraa mallastettaessa kuivat jyvät liotetaan vedessä. Kun 

ohran jyvän biofilmiä tarkasteltiin elektronimikroskoopilla, havaittiin että likovaiheen aikana 

kuivien jyvien mikrobisto muuttui tiheäksi liman peittämäksi biofilmiksi. Tutkimukseni 

osoitti, että tätä limanmuodostusta voi vähentää lisäämällä likoveteen tiettyjä 

maitohappobakteereja (Lactobacillus plantarum) ja hiivoja (Wickerhamomyces anomalus). 

Nämä mikrobit pystyivät tunkeutumaan jyvän kuorikerroksen alle ja täyttämään pinnan, joka 

muuten olisi täyttynyt limaista biofilmiä tuottavilla mikrobeilla. Kun liman määrä väheni, 

niin mäskin suodatettavuus parani. 
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1 Introduction 
1.1 Biofilms 
1.1.1 A brief glance into the history of biofilm research 

Henrici (1933) studied the microbiota of fresh water early in the 1930s, by immersing 

microscopic slides into the mud and, after a suitable time, examining the slides with a 

microscope. He was surprised by the number and the diversity of organisms adhered on it. 

He stated: “It is quite evident that for the most part the water bacteria are not free floating 

organisms,  but  grow  upon  submerged  surfaces;  they  are  of  the  benthos  rather  than  the  

plankton”. Few years later ZoBell and Allen (1935), studied the fouling of ship hulls and 

noticed that bacteria and other microbes are the primary biofouling organisms on submerged 

glass surface. The “film” formed on glass surface functioned as a foundation for larger 

organisms to adhere to. Later ZoBell (1943) found that many of the bacteria in sea water are 

sessile, growing attached to a solid surface and possessing specific organelles for such 

attachment.  

Even  though biofilms  were  first  observed  as  early  as  1930s,  the  significance  of  biofilm 

mode of growth was realized not until in 1970s, when Geesey et al. (1977 and 1978) noticed 

that most of the bacteria living in alpine streams were attached on river stones. The stream 

biofilms contained multiple bacterial species in spite of the lack of nutrients and great shear 

forces that removed the planktic bacteria.  

The complexity of biofilm architecture was revealed later, when confocal scanning laser 

microscopy (CLSM) was applied for biofilm research in early 1990s (Lawrence et al., 1991). 

For the first time, it was possible to look inside a thick, fully hydrated, live biofilm. Since 

that the biofilm related research and the number of published studies have increased 

exponentially (Fig. 1). The most studied model organism in biofilm research has been human 

pathogen Pseudomonas aeruginosa, a bacterium forming biofilm on cystic fibrosis patients’ 

lungs causing chronic infection and most often death of the patient (May et al., 1991, Singh 

et al., 2000). 
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Fig. 1. Number of biofilm related papers published in peer reviewed journals in years 1970-
2009. The articles were searched by the author from Web of Science with search words: biofilms 
or sessile bacteria* and with a time span of 1970 to 2010.  
 
1.1.2 Biofilm mode of growth 

Microorganisms have mainly been studied as planktic (e.g. free-swimming) cells 

previously, but the past decade has taught us that in natural habitats they exist predominantly 

as sessile multispecies communities. These surface attached highly structured matrix-

enclosed microbial communities are known as biofilms. Most, if not all, bacterial species can 

form biofilms.  

Biofilms  occur  in  a  wide  range  of  environments,  on  every  surface  when  supplied  with  

moisture  and  nutrients.  Biofilms  can  exist  in  natural  ecosystems;  like  river  stones  and  

surfaces of a plant, or in ecosystems connected with disease; like surface of a tooth and the 

mucosal membranes of multicellular organisms, as well as in man-made ecosystem; like 

steel surfaces of industrial equipments, heat exchangers and water pipes (Costerton et al., 

1987 and 1999, Danhorn and Fuqua, 2007). 

The biofilms usually consist of microcolonies formed by multiple microbial species 

embedded in an extracellular matrix. Composition of the extracellular matrix, i.e. 

extracellular polymeric substance (EPS), is as diverse as the biofilm forming microbial 

species. It is usually composed from polysaccharides, proteins, nucleic acids and cell 

components with concentrated minerals and nutrients from the surrounding environment 

(Reviewed by: Sutherland, 2001, Dunne, 2002, Allison, 2003). As the population in a 

biofilm grows, the individual microbial cells may differentiate and take on specific tasks 

enabling the formation of a defined architecture of shapes resembling mushrooms or towers 

connected by a network of water channels responsible for the transport of nutrients, oxygen 

and wastes (Stoodley et al., 2002).  
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The  complex  structures  of  biofilms  with  a  high  level  of  differentiation  among  biofilm  

cells require cell-to-cell signalling, i.e. quorum sensing (Irie and Parsek, 2008). Watnick and 

Kolter (2000) compared natural biofilms to our cities: bacterial cells are living in a 

multispecies community; they stay or leave with purpose, share genetic material horizontally, 

and fill distinct niches within the biofilm. 

When a bacterium starts to form a biofilm, it switches from single cell to multicellular 

lifestyle by up- and downregulating specific genes. Even in single species biofilms 

individual  cells  express  their  genes  in  a  pattern  that  differs  from  cell  to  cell  and  from  the  

planktic cells of the same species. Kolter and Greenberg (2006) suggested that biofilms hold 

microniches with varying gradients of nutrients due to metabolic activity of sessile cells. 

These small ecosystems create conditions for spontaneous mutations to occur. Different cell 

types in biofilm provide genetic diversity for adaptation to sudden environmental changes 

(Kolter and Greenberg, 2006). 

For  a  human  point  of  view,  biofilms  can  be  beneficial  or  detrimental.  Biofilms  are  

utilized in water purification (e.g. Nicolella et al., 2000, Simpson, 2008) and bioremediation 

of hazardous substances in the environment (recently reviewed by Cao et al., 2009). 

However, they cause inconvenience when formed on industrial surfaces (Wong, 1998, 

Coetser and Cloete, 2005) or when causing persistent infections in humans, animals or plants 

(Costerton et al., 1999, Danhorn and Fuqua, 2007). 

Bacteria in biofilms are far more resistant towards antimicrobial agents and physical 

stressors than their planktic counterparts. Many reviews have been published on the 

resistance properties of biofilm bacteria: e.g. Costerton et al., 1987 and 1999, Mah and 

O'Toole, 2001, Stewart and William Costerton, 2001, Lewis, 2008. The mechanisms of the 

biofilm resistance have been reviewed by Mah and O’Toole (2001) and more recently 

Andersson and O’Toole (2008). 

 

1.1.3 Initial attachment 

When a clean abiotic surface is submerged in water, organic and inorganic molecules 

accumulate  on  the  surface  by  diffusion  or  due  to  water  flow.  This  surface  phenomenon  is  

called conditioning and the formed layer is a conditioning film. The formation of 

conditioning film may affect the adhesion of bacteria, since it alters the physicochemical 

properties of the surface, like surface energy, hydrophobicity or charge (Dunne, 2002). 
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Microbial colonization of solid-liquid interface and biofilm formation can be divided into 

sequences of events reviewed by Dunne, 2002, Stoodley et al., 2002 and van Loosdrecht et 

al., 1990 and illustrated in Fig. 2. 

 

Fig. 2. Schematic drawing 
showing the attachment of 
planktic cells and sequential 
stages of biofilm formation. 
(Modified from van 
Loosdrecht et al. and 1990, 
Costerton, 2007). 

Panel A, Transportation of the 
planktic cells to a surface by: 1) 
Brownian motion, which is 
random movement of particles 
in water, 2) active movement 
of a motile flagellated 
bacterium, 3) convective 
transport with the current in 
the fluid. Panel B, reversible 
initial adhesion. Forces 
involved are Van der Waals 
forces, electrostatic forces and 
hydrophobic interactions. 
Panel C, irreversible 
attachment with adhesion 
organelles or EPS. Irreversibly 
attached bacteria will no 
longer detach from the surface 
unless strong shear force is 
used. Panel D, surface growth 
by cell division and formation 

of microcolonies. Panel E, early architecture of biofilm. Panel F, three dimensional structure of 
mature biofilm and dispersing cells. Single cells or aggregates dispersed from a biofilm can 
colonise new locations. Dispersion can be driven by shear forces or enzymatic degradation of 
EPS (Hall-Stoodley et al., 2004). 

 

Interactions between microorganisms and the substratum in natural or industrial aquatic 

environments are complex. Since multiple factors affect cell attachment it is difficult or 

impossible to make an exact model for biofilm formation. Many factors contribute to the 

initial attachment of a bacterial cell to a surface: characteristics of the bacterial species 

involved (motility and EPS production; see chapters 1.1.4.1 and 1.1.4.2, respectively), 

characters of the surface being colonised (roughness, charge and hydrophobicity of the 

surface; see chapter 1.3.1) and physical and chemical parameters of the environment (such as 

the hydrodynamics and nutrient availability; see chapter 1.2 and Stoodley et al., 1998. 
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Environmental influence on biofilm development was recently reviewed by Goller and 

Romeo (2008).  

 

1.1.4 Attachment mechanisms of biofilm forming bacteria 

1.1.4.1 Adhesion organelles 

The  irreversible  attachment  of  bacterial  cells  to  an  abiotic  surface  is  often  mediated  by  

adhesins, surface macromolecules produced by bacteria (An and Friedman, 1998). Adhesins 

can be associated with specialized surface structures or appendages of bacterium. These 

appendages, flagelli, pili or fimriae and curli, have been identified from several bacterial 

species (Table 1).  

Watnick and Kolter showed that fimbriae and flagelli accelerate the biofilm formation of 

Vibrio cholerae, but that these organelles are not required for attachment to an abiotic 

surface (Watnick and Kolter, 1999). It was also reported that V. cholerae uses divergent 

pathways for biofilm formation on biotic and abiotic surfaces: toxin-coregulated pilus is used 

for colonising the intestine, but mannose-sensitive hemagglutinin fimbriae for colonising an 

abiotic surface (Watnick et al., 1999, Thelin and Taylor, 1996, Tacket et al., 1998). O’Toole 

and Kolter reported that both flagellar motility and type IV pili were required for proper 

biofilm formation of P. aeruginosa when  glucose  was  used  as  the  carbon  source.  The  

mutants not expressing type IV pili, formed a monolayer of cells on abiotic surface, but did 

not develop microcolonies, whereas the non-motile mutants were not able to adhere on the 

surface at all (O’Toole and Kolter, 1998a). This was partly confirmed later by Klausen et al. 

(2003a) who reported that the flagelli and type IV pili did not affect P. aeruginosa initial 

attachment or biofilm formation, but the wild type strain formed biofilms with different 

structures than flagellum and type IV pili mutants. They also showed that when citrate was 

used as the carbon source the P. aeruginosa formed flat biofilm with no microcolonies and 

that the initial attachment was independent on flagellar motility or on type IV pili (Klausen 

et al., 2003a). Later Klausen et al. (2003b) proposed that P. aeruginosa biofilm structure 

development is dependent on migration driven by type IV pili. Merritt et al. (2007) showed 

that the influence of flagelli and motility on biofilm formation by Agrobacterium 

tumefaciens depended on culture conditions. Non-motile mutants were not able to form 

biofilm under static conditions, whereas under flow they formed a denser biofilm than wild 

type. A mutant having a non-functioning flagellum was unable to form biofilm under either 

condition (Merritt et al., 2007). This was confirmed by Houry et al. who found that neither 

the flagellum nor motility were required for biofilm formation by Bacillus cereus in a flow 
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cell, but on microtiter plate and in glass tubes motility contributed to biofilm formation 

(Houry et al., 2010).  

Flagellar motility has been shown to be required for bacteria to attach on biotic surfaces 

(e.g. Smit et al., 1989, De Weger et al., 1987). 

It  thus  seems  that  bacterial  adhesion  organelles,  such  as  flagelli  and  fimbriae,  may  

contribute to the initial attachment as well as to the biofilm architecture, but are not required 

for either of these. Motility may help the bacterial cell to penetrate the diffusion layer of 

water on the surface and in that way help the initial attachment to occur.  

 

Table 1. Adhesion organelles and envelope structures involved in abiotic surface colonization by 
bacteria 

Putative 
adhesion 
organelle or 
adhesin 

Reported from  Reference 

Flagelli Salmonella enterica ser. Typhimurium, 
Vibrio cholerae, Pseudomonas 
aeruginosa, P. fluorescens, Escherichia 
coli, Agrobacterium tumefaciens, 
Cronobacter sakazakii, Bacillus cereus 

Watnick and Kolter, 1999, O’Toole and 
Kolter, 1998a, Merritt et al., 2007, 
Houry et al., 2010, Kim and Wei, 
2009, Korber et al., 1994, Pratt and 
Kolter, 1998, Hartmann et al., 2010 

Type IV pili V. cholerae, Deinococcus geothermalis, P. 
aeruginosa, Ralstonia solanacearum, V. 
parahaemolyticus, Clostridium 
perfringens, Shewanella oneidensis 

Saarimaa et al., 2006, O’Toole and 
Kolter, 1998a, Watnick et al., 1999, 
Barken et al., 2008, Kang et al., 2002, 
Shime-Hattori et al., 2006, Varga et 
al., 2008, Thormann et al., 2004 

Type I pili E. coli Pratt and Kolter, 1998 

Type 3 pili Klebsiella pneumoniae Di Martino et al., 2003 

Thin pili Acinetobacter baylyi Gohl et al., 2006 

S. maltophilia 
fimbriae 1 (SMF-
1) 

Stenotrophomonas maltophilia de Oliveira-Garcia et al., 2003 

Curli  E. coli Vidal et al., 1998, Pawar et al., 2005 
Mat fimbriae (E. 
coli common 
pilus) 

E. coli Lehti et al., 2010 

Conjugative 
fimbriae 

E. coli Ghigo, 2001 

Thin aggregative 
fimbriae (curli 
like) 

Salmonella enterica ser. Enteritidis Austin et al., 1998 

Bap adhesin Staphylococcus aureus, Salmonella 
enterica ser. Enteritidis, Burkholderia 
cepacia 

Cucarella et al., 2001, Latasa et al., 
2005, Huber et al., 2002 

Esp adhesin Enterococcus faecalis Toledo-Arana et al., 2001 

Teichoic acid Staph. aureus Gross et al., 2001 
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1.1.4.2 Exopolysaccharides 

Exopolysaccharides have been suggested to be the main component of biofilm 

extracellular polymeric substance (EPS) or slime layer, which not only surrounds and 

protects the biofilm bacteria, but also anchors them onto the surface (Dunne, 2002). Once a 

bacterium adheres onto the surface, biotic or abiotic, it surrounds itself with polysaccharides 

to form microcolonies (Costerton et al., 1981). However, polysaccharide production is not 

required for initial attachment contrary to the development of the biofilm architecture 

(Sutherland, 2001). So the primary function of biofilm matrix is in the maintenance and 

persistence of the attached bacteria (Allison, 2003). 

Production of exopolysaccharides has been shown to be essential for building the biofilm 

architecture by Vibrio cholerae (Watnick and Kolter, 1999), as well as many other Vibrio 

spp. (reviewed by Yildiz and Visick, 2009), E. coli (Danese et al., 2000) and for the 

formation of pellicles by Bacillus subtilis (Nagorska et al., 2010).  

There is evidence that alginate, probably the most studied exopolysaccharide, is not 

essential for biofilm formation in Pseudomonas aeruginosa (Stapper et al., 2004) and was 

not a major constituent of the extracellular matrix of two strains of this species (Wozniak et 

al., 2003). Nevertheless, it was previously shown that overproduction of acetylated alginate 

leads to significant architectural and morphological changes in P. aeruginosa biofilms 

(Stapper et al., 2004, Hentzer et al., 2001). Besides alginate, the P. aeruginosa biofilm 

matrix contains other exopolysaccharides as well (Wozniak et al., 2003, and a review by 

Ryder et al., 2007). 

Peltola et al. (2008a) studied the architecture of Deinococcus geothermalis E50051 

biofilms  on  glass  and  on  stainless  steel  with  CLSM  and  large  number  of  different  

fluorescently tagged lectins. The deinococcal biofilm had a non-slimy appearance and the 

microcolonies seemed to contain exopolysaccharides mainly internally. Nevertheless, the 

type  strain  of  D. geothermalis has been shown to produce a capsule-like structure 

surrounding the cells (Ferreira et al.,  1997).  Bacterial  capsule  consists  usually  of  

polysaccharides and polypeptides forming a covering layer outside the bacterial cell wall 

separated from extracellular slime. Bacterial capsules occur both in Gram-negative and 

Gram-positive bacteria. It has been suggested that cell surface polysaccharides and proteins 

act as bacterial adhesins (Review by An and Friedman, 1998). 
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1.1.4.3 Extracellular DNA 

It  has  been  known  for  a  long  time,  that  extracellular  DNA  (eDNA)  is  a  component  of  

biofilm EPS (Sutherland, 2001). It has been commonly considered to be derived from lysed 

cells. Whitchurch et al. (2002) found that extracellular DNA is required for the initial 

establishment of P. aeruginosa biofilms. They suggested that eDNA was not derived from 

lysed cells but rather from membrane vesicles. Barken et al. (2008) reported that quorum 

sensing-controlled eDNA release is required for the formation of mushroom-shaped 

multicellular structures in P. aeruginosa biofilms. 

Allesen-Holm et al. (2006) suggested that eDNA functions as a compound connecting 

cells to each other in P. aeruginosa biofilms. Also other results suggest a structural role for 

eDNA (Flemming et al., 2007). Some bacteria produce substantial quantities of eDNA 

through a mechanism that is thought to be independent on cell lysis and involves the release 

of small vesicles from the outer membrane. DNA stabilises the biofilm structure. 

Furthermore, recent findings suggest its role in gene transfer within biofilms (Vlassov et al., 

2007). 

Qin et al. (2007) reported that the extracellular DNA is as a major component required 

for the initial attachment and the early phase of biofilm development of Staphylococcus 

epidermidis. They also showed that eDNA was generated in Staph. epidermidis populations 

through  lysis  of  a  subpopulation  of  the  bacteria,  and  that  the  eDNA  promoted  biofilm  

formation of the remaining population. Extracellular DNA has also been shown to have role 

in biofilm formation of following bacterial species: Streptococcus pneumoniae (Moscoso et 

al., 2006), Streptococcus mutans (Perry et al., 2009), Staphylococcus aureus (Izano et al., 

2008), Listeria monocytogenes (Harmsen et al., 2010), Neisseria meningitidis (Lappann et 

al., 2010), Enterococcus faecalis (Thomas et al., 2008), Haemophilus influenzae (Jurcisek 

and Bakaletz, 2007) and Bacillus cereus (Vilain et al., 2009). 

Adhesion of bacteria to an abiotic surface has been reviewed by many authors e.g. An 

and Friedman, 1998, Pratt and Kolter, 1999, Wimpenny et al., 2000, Lejeune, 2003. Biofilm 

matrix was recently reviewed by Flemming and Wingender, 2010. 

 
1.2 Biofilm structures - industrial vs. pathogenic bacteria 

Due to the wide variety of environments in which biofilms are found and the microbial 

species forming them, it is impossible to generalize about their structure or physiological 

activities, as indicated by Sutherland (2001). Every biofilm has its unique characteristics 

depending on the microbial species present and conditions prevailing.  
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The basic biofilm architecture model of microcolonies, sometimes called ”mushrooms”, 

with water channels and voids in between, have been discovered from single species in vitro 

model systems as  well  as  the  tooth  plaque  in  human  (Wood  et al., 2000) and stream 

biofilms (Battin et al., 2003). 

Industrial environments differ from those in nature. Waters in industrial processes are 

often oligotrophic whereas the media used for culturing pathogenic bacteria for medical 

purposes are nutrient-rich. The bacterial species present in industrial processes are other than 

those in foods or clinical specimens. Substrate concentrations will also affect the biofilm 

structure.  

Fluid shear and flow rates are high in industrial systems. Fluid shear influences the 

density and the tensile strength of the biofilm (Stoodley et al., 1998, Reviewed by Stoodley 

et al., 2002). It was shown that P. aeruginosa as well as mixed species biofilm became 

elongated into the downstream direction and formed filamentous streamers under high flow 

and increased shear stress (Stoodley et al., 1999). Mattila et al. (2002) reported that under 

high flow the biofilms formed on-site on stainless steel in paper machine remained flat and 

dense. This result is in agreement with those reported by Liu and Tay (2001). Battin et al. 

(2003) reported that the architecture of stream biofilms was affected by flow velocity as well. 

The biofilms that developed under slower velocity were thicker and had higher areal 

coverage than their counterparts exposed to higher velocities (Battin et al., 2003).  

The factors influencing the biofilm structure has been reviewed by Wimpenny et al., 

2000. 

 

1.2.1 Characteristics of selected biofilm forming bacteria 

Although biofilms in nature are usually formed by multiple microbial species, most of 

the biofilm research today in laboratories has been conducted with few strains of human 

pathogens like Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus, 

Staphylococcus epidermidis and Vibrio cholerae (Fig. 3). These strains have often a long 

history of laboratory maintenance and therefore they have undergone countless subculturings 

leading to unintended adaptation. The conventional laboratory growth conditions are a 

selective disadvantage for biofilm forming phenotype. For P. aeruginosa it has been shown 

that great proportion of genes present in wild isolates may have been lost during the 

subculturings (Costerton, 2007). Similar adaptation has been shown for E. coli and Staph. 

aureus (Cooper et al., 2003, Somerville et al., 2002). The history of three laboratory 

reference strains (i.e. E. coli K12, P. aeruginosa PAO1 and Staph. aureus COL) commonly 
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used in biofilm research and the important genomic differences between these strains and 

clinical isolates of the same species was reviewed by Fux et al. (2005). 

 

 
Fig. 3. Number of papers published in peer reviewed journals relating to certain biofilm forming 
bacteria. The articles were searched by the author from PubMed with the search words: 
Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus, Staphylococcus 
epidermidis, Vibrio cholerae, Bacillus subtilis, Lactobacillus plantarum, Deinococcus 
geothermalis, Meiothermus silvanus or Pseudoxanthomonas taiwanensis and biofilm and 
limiting the search to the title and the abstract. 
 

Not all of the knowledge presently available of biofilms is applicable to biofilms in 

industrial settings or bacterial species recently isolated from an industrial environment. 

Biological characteristics of biofilm forming bacterial species belonging to diverse phyla are 

summarised in Tables 2 a and b.  



 

 

24 

Introduction 

Table 2. Characteristics of selected bacterial species on which biofilm studies have been reported in the literature. Table 2 a; the bacterial species used as 
model organisms in this thesis: Deinococcus geothermalis, Meiothermus silvanus, Pseudoxanthomonas taiwanensis, Staphylococcus epidermidis and 
Lactobacillus plantarum. Table 2 b; the bacterial species most often used in biofilm research: Vibrio cholerae, Staphylococcus aureus, Pseudomonas 
aeruginosa, Escherichia coli and Bacillus subtilis. 

Table 2 a 
Deinococcus geothermalis 

Meiothermus silvanus 
(syn. Thermus silvanus) 

Pseudoxanthomonas 
taiwanensis 

Staphylococcus 
epidermidis 

Lactobacillus 
plantarum 

Phylum/class Deinococcus-Thermus Deinococcus-Thermus Gammaproteobacteria Firmicutes Firmicutes 

Metabolism Aerobe, chemoorganotrophic Strict aerobe, can use nitrate 
as terminal electron 
acceptor 

Strict aerobe, heterotrophic Facultative anaerobe  Facultatively 
heterofermetative 

Cell wall The envelope consisted of a three-
layered asymmetric cytoplasmic 
membrane surrounded by a gram-
positive-like cell wall with an 
innermost highly electron-dense 
layer and a corrugated outer surface. 
Growth on solid medium was shown 
to produce a fibrous periodic acid-
Schiff positive capsular layer 
surrounding and interconnecting 
adjacent cells.  

An envelope consisted of a 
three layer symmetric 
cytoplasmic membrane and 
a cell wall with an inner, 
electron-dense thin layer, 
which presumably represens 
the peptidoglycan. An outer 
corrugated layer was 
connected to the 
peptidoglycan by irregularly 
spaced invaginations.  

 Cell wall teichoic acid: 
glycerol, glucose and 
N-acetylglucosamine 

Teichoic acid: ribitol 
or glycerol 

Flagelli 0 0 0 0 0 

Fimbriae Type IV pili     

G + C mol% 65.9 63.6 69.9-70.1 33.5 ± 0.2 44-46 

Cell 
morphology 

Spherical Ø 1.2 to 2.0 µm, non-
motile, nonsporing, Gram stains 
positive 

Gram-neg., rods of 0.5 to 
0.8 µm wide, various lengths 
and short filaments, 
nonsporing 

Gram-neg., rods 0.5-0.8 µm × 
0.9-1.4 µm, non-motile, 
nonsporing 

Gram-pos. spherical 
Ø 0.5 to 1.0 µm, in 
pairs and tetrads. 
Non-motile, 
nonsporing 

Gram-pos. rods, 0.7 to 
1.0 × 3.0 to 8.0 µm, 
singly or in short 
chains. Non-motile, 
nonsporing 

Pigment Pink, orange Red Yellow, brown None  
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Deinococcus geothermalis Meiothermus silvanus  

Pseudoxanthomonas 
taiwanensis 

Staphylococcus 
epidermidis 

Lactobacillus 
plantarum 

Peptidoglycan 
type 

A3  (L-Orn-Gly2-3)  A3  (L-Orn-Gly2-3)  ND A3  (L-Lys-Gly4-5, L-
Ser0.7-1.5) 

A1  (m-Dpm-direct) 

Respiratory 
quinones 

Menaquinone 8 Menaquinone 8 ND* Menaquinone 7 None 

Isolation sites Hot springs and runoffs at Italy and 
Portugal; paper machines 

Hot springs and runoffs at 
Vizela, Portugal and Geysir 
geothermal area, Iceland; 
paper machines 

Chi-ban Hot Springs in 
eastern Taiwan; paper 
machines 

Human skin and 
cutaneous ecosystem, 
indwelling medical 
devices as 
opportunistic 
pathogen  

Dairy products, silage, 
pickled vegetables, 
sour dough, cow dung, 
sewage and human 
mouth, intestinal tract 
and stools 

Other Gamma radiation resistant, primary 
biofilm former from paper machines 

Found from several defects 
(holes and spots) in paper 
products  

Primary biofilm former from 
paper machines, unusual 
denitrification reaction, 
reducing nitrite, but not 
nitrate, with the production of 
N2O only 

Presently recognized 
as an opportunistic 
pathogen 

Used for the 
production of 
fermented foods. 
Certain strains are 
used as probiotics 

Reference Saarimaa et al., 2006, Battista and 
Rainey, 2001, Ferreira et al., 1997 

Tenreiro et al., 1995, Nobre 
et al., 1996, Nobre and da 
Costa, 2001, Ekman et al., 
2007 

Lipski and Stackebrandt, 
2005, Chen et al., 2002 

Kloos and Schleifer, 
1986, Schleifer and 
Kloos, 1975 

Kandler and Weiss, 
1986, Pederson, 1936, 
Brooijmans et al., 
2009 

ND = Not detected 
*) Ubiquinone 8 is found from several species of Pseudoxanthomonas, e. g. Psx. broegbernensis (Finkmann et al., 2000), Psx. mexicana and Psx. japonensis 
(Thierry et al., 2004) Psx. sacheonensis (Lee et al., 2008), Psx. dokdonensis (Yoon et al., 2006) 
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Table 2 b Vibrio cholerae Staphylococcus 
aureus 

Pseudomonas aeruginosa Escherichia coli Bacillus subtilis 

Phylum Gammaproteobacteria Firmicutes Gammaproteobacteria Gammaproteobacteria Firmicutes 

Metabolism Facultative anaerobe, 
chemoorganotrophic, 
reduction of NO3- to NO2-, 
acid but no gas is formed 
from fermenting glucose 

Facultative anaerobe, 
chemoorganotrophic 

Aerobe, respiratory 
metabolism with oxygen as 
terminal electron acceptor but 
can use nitrate as alternative 
electron acceptor.  

Aerobe and facultatively 
anaerobe, both respiratory 
and fermentative type of 
metabolism, 
chemoorganotrophic. Acid and 
gas are formed from 
fermentable carbohydrates 

Aerobe, 
chemoorganotrophic, 
reduction of NO3 to NO2 

Cell wall Lipopolysaccharide (LPS) 
characteristic to Gram-neg. 
bacteria.  

Capsule. Cell wall teichoic 
acid: ribitol with either - 
or -glycosidically liked 
N-acetyl-D-glucosamine 
residues. 

Cell wall and membranes 
characteristic of Gram-neg. 
bacteria. No capsule. Two LPS 
O-polysaccharide species in 
outer membrane: 
hydrophobic and hydrophilic. 

Outer membrane 
lipopolysaccharide (LPS) 
characteristic to Gram-neg. 
bacteria. 

Paracrystalline cell wall 
surface layer (S-layer)  

Flagelli 1 0 1 Peritrichous 5-10 Peritrichous  

Fimbriae Mannose-sensitive 
haemagglutinin type IV pili 
(MSHA), toxin co-regulated 
pili (TCP), chitin-regulated 
pili (ChiRP) 

 Type IV pili Type 1 pili. More than 30 
fimbriae described in E. coli 

 

G + C mol% 47-49 32-36 67.2 48.5-52.1 42.9-43.1 

Cell 
morphology 

Gram-neg. rods 0.5-0.8 µm 
× 1.4-2.6 µm straight or 
curved, motile, nonsporing 

Gram-pos. spherical Ø 
0.5 to 1.0 µm, singly or in 
pairs. Non-motile, 
nonsporing 

Gram-neg. rods 0.5 µm × 1.5-
2.5 µm, motile, nonsporing 

Gram-neg. rods 1.1-1.5 µm × 
2.0-6.0 µm, singly or in pairs, 
motile, nonsporing 

Gram-pos. rods 0.7-0.8 
µm × 2-3 µm, motile, 
endospore forming 

Pigment Some strains produce 
melanin like brown pigment 

Triterpenoid carotenoid, 
(gray with yellowish tint, 
yellow-orange, orange) 

Pyocyanine, pyorubin, 
chlororaphin, oxiphenazin, 
the Pseudomonas blue 
protein, pyoverdine  

Orange-red pigment on 
tryptophane containing media 

 

Brown, red, orange, 
black 
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Vibrio cholerae 

Staphylococcus 
aureus 

Pseudomonas aeruginosa Escherichia coli Bacillus subtilis 

Peptidoglycan 
type 

A1  (m-Dpm-direct) A3  (L-Lys-Gly5-6) A1  (m-Dpm-direct) A1  (m-Dpm-direct) A1  (m-Dpm-direct) 

Respiratory 
quinones 

Ubiquinone 8 Menaquinone 7 and 8 Ubiquinone Ubiquinone, menaquinone 
and demethylmenaquinone  

Menaquinone 7 

Optimum T°C 37 30 to 37 37 37 37 

Isolation sites Water: sewage, brackish 
water, estuaries, coastal 
inlets, polluted streams, 
rivers, ponds, lakes and 
tissues of crustacean 

Nasal membranes, skin, 
perineum, 
gastrointestinal tract and 
genital tract of warm-
blooded animals  

Soil, water, clinical specimens Lower part of the intestine of 
warm-blooded animals  

Endospores are 
widespread. Vegetative 
cells in degrading 
organic materials 

Other Some serotypes cause severe 
diarrhea, cholera, and other 
serotypes cause 
gastrointestinal diseases in 
varying severity  

Pathogen, causes number 
of infectious in human 

Some strains produce alginate 
(e. g. mucus). Opportunistic 
pathogen 

Colonises mammalian 
intestine as a harmless 
commensal, but certain strains 
are pathogenic for humans 
and animals. 

Some strains produce 
heat stable toxin 
amylosin 

Reference Yildiz and Visick, 2009, 
Farmer III et al., 2005, 
Casutt et al., 2010 

Kloos and Schleifer, 1986 Palleroni, 2005, Hugh and 
Leifson, 1964, Heilmann, 1974 

Scheutz and Strockbine, 2005, 
Unden and Bongaerts, 1997, 
Benjamin and Tamhane, 1966, 
Schleifer and Kandler, 1972 

Claus and Berkely, 1986, 
Apetroaie-Constantin et 
al., 2009 
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1.2.2 Biofilms in industrial settings - biofouling 

Biofilms are the predominate mode of growth for microbes in industrial settings and 

engineered water systems as well as in natural ecosystems. Biofouling is a term describing 

unwanted biofilm formation on equipment surfaces. This can occur in wide range of man-

made environments and can significantly decrease equipment performance and lifetime and 

cause contamination and impaired quality of the products. Since biofilms are more resistant 

against  external  forces  than  free  swimming  cells,  they  are  more  difficult  to  eradicate  from  

industrial processes by biocides or cleaning agents. Therefore they create diverse problems 

(Table 3). In heat exchangers biofilms decrease the efficiency of heat transfer by forming an 

insulating layer and in pipelines they cause fluid frictional resistance and induce corrosion 

(MIC, a book by: Borenstein, 1994). In ship hulls the marine biofilms reduce speed and 

increase the fuel consumption of the ships. In drinking water industry biofilms may provide 

a habitat for many pathogenic bacteria (for reviews see Coetser and Cloete, 2005 and 

Flemming, 2002). In food industry biofilms are common sources of contamination, since 

they are attached and grow on food processing equipments, food contact surfaces and 

pipelines and are not always removed by routine cleaning procedures. This may lead to 

serious hygienic problems and food spoilage. Significance of biofilms in food industry has 

been reviewed by Kumar and Anand, 1998. 
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Table 3. Biofilm problems in selected industrial settings.  

Industrial 
process 

Biofilm problem Bacterial species found from 

Paper 
industry 

Slimes on machine surfaces affect machine 
runnability and can induce process failure.  

The slimes dropping from machine surfaces can 
cause defects (spots, holes) in end products.  

Microbially induced corrosion (MIC). 

Contaminations in end products. 

Biofilms on paper machine surfaces  Reference 

Burkholderia cepacia, B. coagulans, Deinococcus 
geothermalis, Meiothermus silvanus, Pseudoxanthomonas 
taiwanensis, Bacillus cereus, Brevundimonas vesicularis, 
Cytophaga sp., Enterobacter sp., Klebsiella pneumonia, 
Paenibacillus stellifer, Starkeya sp., Rubellimicrobium 
thermophilum 

Ekman et al., 2007, Väisänen 
et al., 1998, Peltola et al., 
2008b, Kolari et al., 2003, 
Rättö et al., 2005, Denner et 
al., 2006 

End-product defects  

Meiothermus spp. Ekman et al., 2007, Haapala 
et al., 2010 

Slimes on corrosion pits of stainless steel  

Sulphate reducing bacteria 

 

Thorpe, 1987, Uutela et al., 
2003 

End-products  

Bacillus cereus, B. mycoides, B. thuringiensis, B. globisporus, 
B. licheniformis, B. megaterium, B. circulans, B. pumilus, B. 
subtilis, B. flexus, Paenibacillus polymyxa, P. macerans, P. 
pabuli, P. stellifer 

 Väisänen et al., 1991, 
Pirttijärvi et al., 1996, 
Raaska et al., 2002, 
Suominen et al., 2003 

Malting and 
brewing 

EPS production by bacteria on barley kernel 
during malting may restrict grain germination 
and disturb wort separation in brewing process.  

Using Fusarium infected barley malt may cause 
alterations in wort composition, beer gushing 
as well as mycotoxin production. The proteases 
produced by mold may affect color, flavor, 
texture, and foaming of beer. 

EPS production  

Pseudomonas spp., Enterobacter spp. Laitila et al., 2007a, Laitila et 
al., 2006 

Mycotoxin, protease and gushing factor production  

Fusarium spp.  

 

Wolf-Hall, 2007 
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Industrial 
process 

Biofilm problem Bacterial species found from  

Dairy Contamination of end-products which may 
cause food borne illnesses to the consumers 
and decreased life-time of the product 

Biofilms on dairy plant surfaces  

Staphylococcus epidermidis, Bacillus spp., Lactobacillus spp., 
Streptococcus spp., Lactococcus spp., Staphylococcus spp., 
Shigella spp., Escherichia coli , Enterobacter aerogenes, 
Citrobacter spp., Flavobacterium spp., Proteus spp., Listeria 
monocytogenes 

Wong, 1998, Sharma and 
Anand, 2002, Jaglic et al., 
2010 

Food-
processing 

Contamination of products which may cause 
food borne illnesses to the consumers and 
decreased life-time of the product 

Biofilms on beef-processing plant surfaces   

Shewanella putrefaciens, Pseudomonas putida, P. 
anguilliseptica, Arthrobacter spp., Staphylococcus xylosus, 
Staph. capitis, Staph. sciuri, Micrococcus caseolyticus, Bacillus 
subtilis, B. pumilus, Kocuria varians, Aerococcus viridans, 
Staphylococcus equorum, Listeria monocytogenes 

Marouani-Gadri et al., 2009, 
Leroy et al., 2009, Gamble 
and Muriana, 2007, 
Kathariou, 2002  

Biofilms on raw vegetable processing line  

Vibrio diazotrophicus, Serratia plymuthica, Panthoea 
agglomerans  

Van Houdt et al., 2004 

Biofilms in poultry processing plants  

Listeria monocytogenes Kathariou, 2002, Ojeniyi et 
al., 2000 

Industries 
using heat 
exchangers 

Biofouling causes efficiency loss of the heat 
exchanger, clogging of the cooling circuit pipes 
and may cause MIC. Bacteria can oxidize 
soluble Mn2+ to insoluble MnO2 

Thermo-fluid heat exchanger in nuclear power plant  

Iron oxidizing bacteria and sulphate reducing bacteria Rao et al., 2009 

Lamellar heat exchanger in Baltic seawater after 
pressure wash 

 

Shewanella sp., Pseudomonas sp., Flavobacterium sp., 
Aeromonas sp. 

 

 

Kuosmanen et al., 2006 
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Industrial 
process 

Biofilm problem Bacterial species found from  

Drinking 
water industry 

The drinking-water distribution systems and 
bottom of drinking-water reservoirs are 
colonised by biofilms which might affect the 
water’s quality, e.g. taste, odour and colour.  

The biofilms can provide a habitat for 
pathogenic micro-organisms. 

Nitrification by bacteria can contribute to the 
depletion of monochloramine and result in the 
formation of nitrate. 

Biofilms   

Pseudomonas vesicularis, Flavobacterium spp., Burgholderia 
cepacia, P. pickettii, P. stutzeri, Alcaligenes spp., Acinetobacter 
spp., Moraxella spp., Agrobacterium radiobacter, 
Arthrobacter spp., Corynebacterium spp., Bacillus spp., 
Enterobacter agglomerans 

LeChevallier et al., 1987 

Pathogenic bacteria in biofilms  

Legionella spp., Aeromonas spp., Pseudomonas aeruginosa. 
Campylobacter jejuni, C. coli, Mycobacterium intracellulare, 
M. avium, M. lentiflavum, M. gordonae 

Szewzyk et al., 2000, 
Falkinham, 1996, Falkinham 
et al., 2001, Sen and 
Rodgers, 2004, Tsitko et al., 
2006 

Nitrifiers   

Nitrosomonas spp., Nitrosospira spp., Nitrobacter spp., Berry et al., 2006 
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1.2.3 Biofilms in paper machine environment 

Paper mills provide ideal conditions for bacteria to grow and form biofilms. The 

dissolved and colloidal substances, such as polysaccharides and wood extractives, are 

released into the process waters during pulping and are transferred to paper machine, where 

they provide energy sources and nutrients for microbial growth. In addition to wood 

components, the process waters contain papermaking additives such as fillers, retention aids 

and fixatives. The conditions, i.e. warm water (40 to 55°C) and near neutral or slightly 

alkaline pH, prevailing in the paper mahine, are suitable for microbes. Planktic bacteria, 

even in high numbers (106 ml-1 of white water), do not necessarily adversely influence 

machine operation or the quality of the end-product, but biofilms, i.e. slimes and stickies, 

accumulating on steel surfaces of the machinery are known to cause problems in runnability, 

process failure, and contaminations and defects (spots, holes) in end products (Ekman et al., 

2007, Haapala et al., 2010, Sanborn, 1933, reviewed by Blanco et al., 1996 and Kanto 

Öqvist, 2008). Therefore, frequent down-time for cleaning of the machine is needed. The 

paper machine slimes have been show to consist of bacterial cells and EPS produced by 

bacteria as well as wood fibres, emulsified pitch and inorganic material (Väisänen et al., 

1994, Lindberg et al., 2001). 

Not all bacteria can initiate a biofilm formation in paper machine environment (Kolari et 

al., 2001). Therefore, it is important to identify the primary biofilm formers in order to 

design antifouling strategies for paper machines. The genera Deinococcus, Meiothermus, 

Pseudoxanthomonas and Rubellimicrobium, have been identified as primary biofilm formers 

by methods requiring cultivation (Kolari et al., 2003, Denner et al., 2006, Kolari et al., 2002). 

However, it has been shown that the biofilms are colonised also by unculturable bacteria and 

that nitrogen fixing bacteria might have a role in formation of paper machine biofilms 

(Lahtinen et al., 2006). The bacteria initiating biofouling in two paper mills were studied by 

Tiirola et al. (2009) using heterogeneity analysis of PCR-amplified 16S rRNA genes (LH-

PCR), a method not requiring cultivation, for profiling bacteria attaching on stainless steel in 

process water. They found that primary biofilm formers in these machines were from the 

genera Rhodobacter, Tepidimonas and Cloacibacterium. These genera have been described 

from paper machine previously as well (Kolari et al., 2003, Suihko and Skyttä, 2009, Prince 

et al., 2009). 

Coloured biofilms are especially harmful when occurring on paper machines (Kolari et 

al., 2003), since they cause spots in the end-products spoiling the quality (Ekman et al., 2007) 

(Fig. 4). Bacterial species forming pigmented biofilms in paper machines have been isolated, 
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characterized and quantitated in many studies (Ekman et al., 2007, Väisänen et al., 1998, 

Peltola et al., 2008b, Kolari et al., 2003, Denner et al., 2006, Kolari et al., 2001, Oppong et 

al., 2000). 

 
Fig. 4. Colourful biofilms on paper board machine surfaces. Panel A, disc filter; panel B; duct of 
a wire pit; panel C, doctor blade of the leading roll on wire section; panel D, splash area in the 
wire section. Courtesy of Juhana Ahola. 
 

Väisänen et al. (1998) identified the species Deinococcus geothermalis as a producer of pink 

biofilms on the wire section of paper machines. This species was capable of adhering to 

stainless steel and long-term growth at elevated temperatures (50°C). D. geothermalis is also 

known for its radiation resistance (Ferreira et al., 1997), a property connected to desiccation 

resistance, and organic solvent-tolerance (Kongpol et al., 2008). Later Kolari et al. (2003) 

recurrently found this species among 95 pink-, red-, orange- or yellow pigmented biofilm 

forming isolates from several paper and board machines.  

D. geothermalis, Meiothermus silvanus and Pseudoxanthomonas taiwanensis (the latter 

was earlier thought to represent Thermomonas spp.), the species found from coloured 

biofilms by Kolari et al. (2003), and Tepidimonas spp. have been isolated and described 

from geothermal springs before (Ferreira et al., 1997, Tenreiro et al., 1995, Chen et al., 2002, 

Moreira et al., 2000, Chen T. L. et al., 2006). The findings indicate hot springs as the natural 
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habitat of many paper machine bacteria. Runoff areas of geothermal springs are often 

coloured by pigmented biofilms (Fig. 5). 

Fig. 5. Colourful biofilms growing in the runoff areas of hot springs. Panels A to C, Yellowstone 
National Park, USA; Panels D and E, Geysir geothermal area, Iceland; Panel F, Reykjadalur 
valley, Dalasel-Klambragil area, Iceland. Photos: Mari Raulio. 

 

Ekman et al. (2007) used quantitative PCR to study the prevalence of Meiothermus spp. 

and Peltola et al. (2008b) of D. geothermalis in deposits, slimes and end products in paper 

industry. These studies showed that Meiothermus spp. are common biofoulers in paper 

industry and often occur in large quantities in the deposits from paper machines. They also 

demonstrated the connection between coloured microbes and end-product defects. 

Meiothermus was  reported  as  the  dominant  bacterial  genus  also  by  other  authors  in  a  

Canadian paper machine (Prince et al., 2009). Haapala et al. (2010) found Meiothermus spp. 

from coloured biofilms collected from surfaces and from the end product of a paper machine 

producing newsprint. D. geothermalis was found at many machines but always as a minor 

constituent. It was detected in deposits in splash areas of the wire section from machines 

where Meiothermus spp. was the dominant constituent. Peltola et al. (2008b) suggested that 

D. geothermalis operated as a pedestal for other bacteria to adhere and grow into a biofilm. 

Psx. taiwanenis has been reported from various samples in four studied paper mills (Suihko 

et al., 2004) and from pulp of two paper mills (Suihko and Skyttä, 2009). 

Pseudoxanthomonas sp. was reported from pulps and slimes (Desjardins and Beaulieu, 2003) 

as well as from the headbox of a paper machine in a Canadian mill (Prince et al., 2009) and 

later from newsprint producing machine where it was common throughout the machine 

(Haapala et al., 2010). 
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It is clear that the diversity of bacteria colonizing a paper machine is extensive, and in 

addition the population fluctuates according to raw materials and biocide treatments as well 

as changing conditions. However, only a part of this large community of microbial species is 

capable of colonizing clean surface and causing problems. This suggests that designing 

antifouling methods targeted against the primary biofilm formers, not necessarily aiming to 

kill them, could be a rational aim. 

 

1.2.4 Biofilms on medical implants 

Biofilms were estimated to be associated with 65% of reported nosocomial infections 

(Mah and O'Toole, 2001). Biofilms are a common cause of persistent infections, such as 

dental caries, valve endocarditis, otitis media, periodontitis, cystic fibrosis, chronic wounds, 

and a frequent reason for the failure of biomedical devices, such as prosthetic joints, 

catheters, heart valves and cardiac pacemakers. Because of the high resistance of bacteria in 

biofilms to antimicrobial agents, implant infections can often be remediated only by surgical 

removal of the implant (reviewed by Costerton et al., 1999 and 2005, McCann et al., 2008). 

The common human skin bacterium Staphylococcus epidermidis, once considered 

harmless, has become one of the most important pathogens causing chronic infection in 

immunocompromised, immunosuppressed and long-term hospitalized hosts. It is also the 

leading cause of infections of implanted medical devices (reviewed by Costerton et al., 1995, 

Götz, 2002, McCann et al., 2008, Rohde et al., 2010). In Staph. epidermidis, as well as other 

staphylococci, the major component of the EPS is a polysaccharide intercellular adhesin 

(PIA), a polysaccharide composed of -1,6-linked N-acetylglucosamines with partly 

deacetylated residues, whose synthesis is mediated by the ica operon (Mack et al., 1996). 

PIA has been shown to be a major virulence factor and to contribute to biofilm formation of 

Staph. epidermidis (Izano et al., 2008, Mack et al., 1994). The cells are embedded in PIA 

(Fig. 6), which is a barrier against immune defence of the host and against treatments with 

antibiotics (reviewed by Costerton et al., 2005, Götz, 2002, Rohde et al., 2010). 
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Fig. 6. Scanning electron micrograph of 
Staphylococcus epidermidis O-47 (PIA+) 
attached on steel surface. The slimy 
appearance  of  biofilm  is  due  to  a  
polysaccharide intercellular adhesin (PIA) 
produced by these bacteria. Courtesy of 
Juhana Ahola.  

 

 

 

 

1.2.5 Biofilms on malted barley kernel tissues 

Malted  barley  is  used  for  the  production  of  beer  and  distilled  spirits  as  well  as  an  

ingredient for various food products. Malting exploits the biochemical reactions of grain 

germination as enzymatic release of nutrients, such as fermentable sugars, needed for yeast 

growth in beer fermentation. The barley kernel is naturally colonised by microorganisms. 

The malting process is consisting of two metabolically active groups: the microbial 

community and the barley kernel.  

Malting consists of three steps: steeping, germination and kilning. Steeping of barley, i.e. 

soaking in water, induces germination of the kernel but also favours microbial growth and is 

therefore considered to be the critical step in malting with respect to microbial activity 

(Laitila et al., 2006a, Noots et al., 1999, Kelly and Briggs, 1992, O’Sullivan et al., 1999). 

Microbial activity remains high during the germination stage, but the removal of water that 

takes place during kilning slows down the microbial activity. Nevertheless, kilning appears 

to have little impact on the viable counts of bacteria or fungi. Generally the counts are higher 

in the finished malt than in the dry kernels (Laitila et al., 2006a and 2007a, reviewed by 

Noots et al., 1999). 

The diversity of microbial species depends on the barley cultivar, climate, soil as well as 

the  conditions  of  harvesting,  storage  and  transport.  Various  types  of  bacteria,  yeast  and  

filamentous fungi are present (Laitila et al., 2006a and 2007a, Noots et al., 1999, Petters et 

al., 1988). The microorganisms present during the malting significantly affect the grain 

germination, performance of malting and brewing as well as the quality of the final product 

(Laitila et al., 2006b and 2007b, Noots et al., 1999, Doran and Briggs, 1993, Kelly and 

Briggs, 1992, Lowe and Arendt, 2004, Van Campenhout et al., 1998, Van Campenhout et al., 

1999). Depending on the species present, these impacts may be beneficial or harmful for the 

malting and brewing processes. Therefore it is important to know the composition of 

microbial communities in barley kernels. Malt-derived lactic acid bacteria and certain fungi 
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offer a potential tool as biocontrol agents. The well characterised microbes can be applied as 

starter cultures into the steeping water to control the growth of undesirable indigenous 

microbial contaminants (Laitila et al. 2006, Laitila, 2007 and reviewed by Lowe and Arendt, 

2004). 

It appears that microbes in barley kernels are present as biofilms, which are remarkably 

resistant against desiccation as well as antimicrobial agents (Laitila, 2007).  

 

1.3 Antifouling – how to prevent or to remove unwanted biofilms  

Wet industrial processes provide environments for formation of microbial biofilms. Open 

processes are impossible to keep sterile. Designing materials or coatings effectively repelling 

towards all kinds of microbial colonization on long term basis has proven to be equally 

impossible. Therefore novel methods for antifouling are needed.  

In paper industry microbial growth is usually controlled by dispensing biocides and slime 

removing chemicals into the process. In addition, mechanical cleaning of the machinery is 

necessary (reviewed by Blanco et al., 1996). The procedures used in industrial cleaning are 

not necessarily effective against most tenacious primary biofilm formers, like D. 

geothermalis (Kolari et al., 2002). The efficacy of biocides is diminished by the appearance 

of biocide resistant microbial species and also causes concern for damage to the environment 

when discharged in wastewaters. Kolari et al. (2003) reported that by the usage of biocides, 

such as methylene bisthiosyanate (MBT) or 2,2-dibromo-3-nitrilopropionamide (DBNPA), 

at concentrations inhibiting planktic bacteria actually promoted the transition of the 

colonisers into biofilm mode of growth.  

In processes like food manufacturing or in systems in open connection to marine or fresh 

water environment, control of biofouling with chemical biocides is not possible. Engineering 

surfaces and coating materials to repel microbial adhesion or using physical methods (e.g. 

photocatalysis, electrochemical polarization) rather than chemicals is therefore of great 

interest for antifouling. The countermeasures against biofouling should be separately tailored 

for each individual process situation. 

 

1.3.1 Surface parameters affecting the adherence of bacteria 

More than three decades ago, Fletcher and Loeb (1979) studied the influence of 

substratum characteristics on the attachment of marine bacteria. They concluded that both 

electrostatic and hydrophobic interactions were involved in bacterial attachment. They also 

found that larger numbers of bacteria attached to hydrophobic than to hydrophilic surfaces. 
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The substrata found to be most repellent towards marine bacteria were hydrophilic and 

negatively charged. After this study a considerable number of papers have been published in 

this area, but no agreement on the surface parameters to repel microbial adhesion has been 

achieved.  Also,  comparison  of  the  results  is  complicated,  since  the  bacterial  strains,  

conditions and detection methods vary between the studies.  

Yet, some major trends were seen. Goller and Romeo (2008) reviewed the surface 

parameters influencing initial attachment of bacteria and noted that surface roughness and 

hydrophobicity were important. In agreement with Fletcher and Loeb, Goller and Romeo 

stated that bacteria typically adhered to hydrophobic surfaces more eagerly than on 

hydrophilic surfaces. As an example they used clinical isolates of Staphylococcus 

epidermidis. Listeria monocytogenes was mentioned as an exception.  

Gottenbos et al. (2001) studied the adhesion and surface growth of Staphylococcus 

aureus, Staph. epidermidis, Pseudomonas aeruginosa and Escherichia coli on positively and 

on negatively charged poly(methacrylate) surfaces. As expected, they found that bacteria 

adhered more on the positively charged surface, but interestingly, the surface growth of the 

two Gram-negative species was inhibited on these surfaces. They suggested that this is due 

to strong binding through electrostatic interaction. 

In general rough surfaces, offering a large surface area, are colonised more easily than 

smooth surfaces, but bacteria can attach even to smooth surfaces. The surface roughness has 

been reported to be a dominant factor in the plaque formations (Morgan and Wilson, 2001, 

Charman et al., 2009). Arnold and Bailey (2000) studied the attachment of a mixed species 

bacterial population on stainless steels with different surface roughness and found that 

significantly fewer bacterial cells attached on electropolished stainless steel, which was the 

least rough surface, than on the other treated surfaces. This result was confirmed by Mattila 

et al. (2002). Inconsistent result was reported by Mitik-Dineva et al. (2009), who found that 

E. coli, P. aeruginosa as well as Staph. aureus attached significantly more on modified glass 

surface than on non-modified glass. The modified glass surface was significantly smoother 

according to data obtained from the determination of four roughness parameters (i.e. the 

average surface roughness, the root mean square, the maximum roughness and the 10-point 

average roughness). However, glass is hydrophilic wheras steel is hydrophobic surface, 

which may explain this inconsistancy. 

It has also been suggested that there is an optimal roughness, or surface topography, for 

bacterial adherence. It has been hypothesized that if the crevises on the surface are similar 

size to microbial cell, the adhesion is more efficient than on a rougher or on a smoother 
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surface. The large crevices would offer protection from shear forces and offer an increased 

area for attachment providing more contact points (reviewed by Verran and Boyd, 2001 and 

Whitehead and Verran, 2006). On the other hand, it has been reported that specific micro-

topography decrease bacterial adherence (Allion et al., 2006). Medilanski et al. (2002) found 

that four bacterial species from three different phyla adhered least onto steel with scratches 

of the size corresponding to the width of the bacterial cells. Bacteria fitted these scratches in 

longitudinal orientation only. Three of the strains were found to align in the scratches. 

As a conclusion, the role of the surface roughness to microbial adhesion is still under 

debate, but most of the studies show that smoother surface attracts fewer bacteria. 

After decades of searching a surface or a surface coating repellent to microbial adhesion, 

it seems likely that there is no such surface parameter which would prevent adhesion of all 

microorganisms in all environments. It is difficult to predict adherence of bacteria in natural 

waters, containing non-defined dissolved components that may alter the substratum. 

Microorganisms may possess different surface characteristics, making the situation even 

more unpredictable. Microorganisms are able to adapt to a new environments and new 

surfaces, making the surfaces prone to colonisation. In addition, the conditioning layer 

forming also on antibacterial surfaces may change characteristics of the surface and allow 

biofilm formation when under heavy bacterial load (Chiang et al., 2009). 

However, a multible approach, surface parameters that reduce microbial attachment 

combined with control of biofilm formation or with enhancement of the removal of biofilm 

may offer a great progress in many industrial settings. 

 

1.3.2 Mechanisms occurring in nature 
1.3.2.1 Lotus effect 

In some Eastern cultures, the lotus plant (Nelumbo nucifera, Fig.  7  A)  is  a  symbol  of  

purity. Lotuses prefer to grow in muddy waters but the leaves remain clean. This 

phenomenon is nowadays commonly called lotus effect. The lotus effect refers to the very 

high water repellency (superhydrophobicity) exhibited by the leaves of the certain aquatic 

plants.  On the lotus leaf (Fig.  7) the epidermal cells coated with tubular epicuticular waxes 

create a structured surface with high water repellency (non-wettability) and reduced particle 

adhesion generating a self-cleaning mechanism (Koch and Ensikat, 2008, Lafuma and Quere, 

2003, Barthlott and Neinhuis, 1997). The adhesion of contaminating particles, including 

pathogenic spores and conidia, onto the leaf is reduced due to surface structure and the 

particles are removed completely by water droplets rolling off the surface. There would be 
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many applications for self-cleaning materials mimicking this natural phenomenon. However, 

it has been reported that the self-cleaning effect is not achieved with submerged surfaces in 

nature (Flemming, 2002).   

  
Fig. 7. Panel A, lotus leaf with water droplets (http://mi9.com/c22p1g2008f1i25647/lotus-
leaf/); panel B, computer graphic of lotus leaf surface with water droplets and dirt particles. 
http://en.wikipedia.org/wiki/File:Lotus3.jpg. 

 

1.3.2.2 Disturbance of quorum sensing 

Several marine organisms, mostly bacteria or cyanobacteria, block quorum-sensing 

signals to control the growth and biofilm formation of other bacteria (Dobretsov et al., 2009). 

Hentzer et al. (2002) found that a synthetic halogenated furanone, derivative of the 

secondary metabolites produced by an Australian macroalga (Delisea pulchra), permeated 

into the biofilm matrix and interfered with quorum-sensing in Pseudomonas aeruginosa. The 

compound did not affect the growth or the initial attachment of P. aerugnosa to the 

substratum, but only the architecture of the biofilm. It also enhanced the detachment, which 

led to a loss of bacterial biomass from the substratum. Later Hentzer et al. (2003) reported 

that this furanone also inhibited the expression of virulence factors in P. aeruginosa.  

After this discovery, quorum sensing inhibition has been under intense investigation. In 

future prospects the quorum-sensing blockers will be applied as anti-microbial agents to 

control biofilm-associated infections (reviewed by Njoroge and Sperandio, 2009). 

Biotechnological applications of quorum-sensing inhibitors have resulted in more than 100 

published patents worldwide. The applications include industrial as well as therapeutic usage 

(reviewed by Dobretsov et al., 2009). 

 

1.3.3 Engineering microbe repelling coatings 

Engineering surfaces with certain physical parameters (topography, charge etc.) to repel 

microbial adhesion with no direct antimicrobial action is very challenging. In industrial 
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processes the complexity of microbial populations with multiple adhesion mechanisms and 

possibility of fast mutations, as well as the changing conditions make the situation very 

complex. Even for a single microbial strain and a surface, the environmental stimuli can 

change the relative importance of the mechanisms of adhesion and characteristics of the 

surface. There is no single material feature or microbial characteristic that would completely 

describe or control the microbial adhesion. (Lichter et al., 2009) 

Lichter et al. (2009) introduced three general strategies to limit colonization of material 

surfaces. The first strategy is based on repellency of bacterial adhesion by modifying the 

surface characteristics; e.g. hydrophobicity or topography. In this strategy the focus is not in 

killing but in inhibition of the adhesion.  

The second strategy is based on surfaces impregnated with antimicrobial agents and 

leaching of this agent into the surrounding solution. This “release-killing” kills bacteria not 

only  on  the  surface,  but  also  nearby.  For  example  silver-ions  are  known  to  disrupt  the  

permeability barrier function of the cell membrane. Serious disadvantage in this strategy is 

that the diffusion of antimicrobial agent into the environment may cause emergence of 

resistant strains. In addition, when antimicrobial agent is released gradually into the 

surrounding solution, the effect fades when leaching antimicrobial agent is exhausted 

(Lichter et al., 2009). 

The third strategy is based on contact killing. Antibiotic functional groups are linked to a 

long polymeric chain, which is anchored covalently to the surface of a material. The 

polymeric chain allows the antimicrobial moieties to permeate into, and kill, the microbial 

cell. Immobilized cations have been studied for contact killing surfaces. It is suggested that 

long cationic polymers penetrate the cell membrane or induce cation exchange that disrupts 

the membrane integrity and induce cell lysis. As an advantage to this strategy, antimicrobial 

agent is not released into the environment and the risk of generating resistance to the 

compound is unlikely (Lichter et al., 2009, Lewis and Klibanov, 2005, Murata et al., 2007).  

Examples of studies describing surfaces or coatings limiting or inhibiting bacterial 

adhesion are listed in Tables 4 and 5. 
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Table 4. Antimicrobial agents used in coating materials for biocide leaching or contact killing strategies 

Strategy Substance Model organism Application Reference 

Contact killing     

Immobilised 
cations 

Quaternary ammonium: 2-
(dimethylamino)ethyl methacrylate 

Escherichia coli Industrial, medical, 
community and private 
settings 

Murata et al., 2007 

 N-alkylated poly(4-vinylpyridine) Staphylococcus aureus, Staph. 
epidermidis, E. coli, Pseudomonas 
aeruginosa 

Consumer and medical 
products 

Lewis and Klibanov, 2005, 
Tiller et al., 2001 

 Polyelectrolyte multilayers of 
poly(allylamine hydrochloride) and 
poly(sodium 4-styrene sulfonate) 

Staph. epidermidis, E.coli  Lichter and Rubner, 2009 

 Polyelectrolyte layers of N,N-
dodecyl,methyl-polyethylenimine 

Staph. aureus, E.coli, A/WSN 
(H1N1) virus 

Items handled by people 
(e.g., doorknobs, 
keyboards,) 

Wong et al., 2010 

 Polyelectrolyte multilayers of hyaluronic acid 
and chitosan 

Staph. aureus Titanium based implant 
materials 

Chua et al., 2008 

Release killing     

Silver ions Ag–SiO2 thin films E. coli, Staph. aureus Antibacterial glass Jeon et al., 2003 

 Ag nanoparticles E. coli Biomedical devices Podsiadlo et al., 2005, Lee et 
al., 2005 

 Ag-Pd  E. coli Medical devices, water 
distribution systems, food 
production facilities 

Chiang et al., 2009 

 Ag-DLC  Staph. epidermidis Biomedical devices Katsikogianni et al., 2006 

Leaching biocides Triclosan-incorporated polymer E. coli, Bacillus thuringiensis hospital use as fabric seat 
covers, tables, chairs, and 
clothing 

Kalyon and Olgun, 2001 

 Polymer-encapsulated ClO2 + Zinc chloride B. subtilis, Staph. aureus, E. coli  Li et al., 2009 
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 Substance Model organism Application Reference 

 Polyurethane coated with AgCl and 
benzalkonium chloride 

Staph.aureus, Staph. epidermidis, 
E.coli, P. aeruginosa, Serratia 
marcescens, Candida albicans 

Central venous catheter Li et al., 1999 

 Furanone (3-(1’-bromohexyl)-5-
dibromomethylene-2(5H)-furanone) -coated 
polymers 

Staph. epidermidis Biomedical devices Hume et al., 2004, Baveja et 
al., 2004 

Leaching 
antibiotics 

Antibiotics rifampin and a sparfloxacin Staph. epidermidis Ventricular catheter Kohnen et al., 2003 

 Polyelectrolyte multilayers incorporating 
gentamicin 

Staph. aureus Biomedical devices Chuang et al., 2008 

 Ciprofloxacin, gentamycin, fosfomycin and 
flucloxacillin incorporated into 
polyurethanes 

Staph. aureus, Klebsiella edwardsii Biomedical devices Schierholz et al., 1997 

 
Table 5. Antifouling surfaces/coatings based on surface modification 

Strategy Antifouling approach / Surface modification Model organism Application Reference 

Surface 
roughness 
/topography 

 SiO2 mesoporous materials, SiO2-CaO-P2O5 glass and 
biphasic magnetic bioceramics 

Staph. epidermidis, Staph. 
aureus 

Bone and dental implants, 
implantable drug delivery 
systems 

Kinnari et al., 2009 

 Ti thin films Staph. aureus, P. aeruginosa Orthopedic implants Ivanova et al., 2010 

 Nano-scale rough Ti surfaces Staph. aureus, Staph. 
epidermidis, and P. 
aeruginosa 

Orthopedic implants Puckett et al., 2010 

 Etched glass surfaces with nano-scale roughness E. coli, P. aeruginosa, Staph. 
aureus 

 Mitik-Dineva et al., 2009 

 Stainless steel with different surface finish Desulfovibrio desulfuricans, 
P. aeruginosa, P. putida, 
Rhodococcus sp. 

 Medilanski et al., 2002 
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 Antifouling approach / Surface modification Model organism Application Reference 

Surface charge Surface charge Poly(methacrylate) Staph. epidermidis, Staph. 
aureus, E.coli, P. aeruginosa 

Implants Gottenbos et al., 2001 

Surface free 
energy / 
hydrophobicity 

Perfluoroalkoxy alkane (PFA), polytetrafluoroethylene 
(PTFE), Ni–P–PTFE, Ni–P and Ni–1% Al coatings 

P. aeruginosa Medical devices Pereni et al., 2006 

 Fluoropolymers, DLC Deinococcus geothermalis, 
Pseudoxanthomonas 
taiwanensis, Meiothermus 
silvanus, Staph. epidermidis 

Industrial applications Raulio et al., 2008,  

 Fluoropolymers Lactobacillus paracasei, 
Pseudomonas fluorescens, 
Serratia marcescens, Pichia 
anomala (yeast) 

Brewery Preliminary results in 
Storgårds et al. 2007 

Altering 
chemical 
composition 

Ion implantation of steel with SiF3+  Staph. epidermidis, Staph. 
aureus 

Biomedical devices Zhao et al., 2008 

 Ti and Ti-6Al-7Nb Staph. aureus (MRSA) Metal implants Harris et al., 2007 

Photocatalysis Ti and Ti-Ag nanoparticles (release killing and 
photocatalysis) 

D. geothermalis 

 

 Keskinen et al., 2006 

 TiO2 E. coli, Burkholderia 
cepacia, P. aeruginosa, B. 
subtilis 

 Li and Logan, 2005 

 TiO2 D. geothermalis Industrial applications Raulio et al., 2006 
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1.3.4 TiO2 Photocatalysis: The fundamentals and microbicidal effect 

Photocatalysis by a semiconductor is a technology in which activation of the catalytic 

solid occurs through absorption of photons with an irradiation wavelength greater than the 

semiconductor band-gap. Anatase crystal form of titanium dioxide (TiO2) is a semiconductor 

with a band gap of 3.2 eV. When TiO2 particles are irradiated with near UV light (  >350 

nm), holes (h+) and hydroxyl radicals (OH ) are generated in the valence band, and electrons 

and superoxide anions (O2 ) are generated in the conduction band. The electrons possess the 

reducing power of the conduction band energy and the holes have the oxidizing power of the 

valence band energy. The oxidation power of the holes in the TiO2 valence band can 

mineralize any organic compound by participating in a series of oxidation reactions leading 

to carbon dioxide, water, and mineral acids (Fujishima et al., 2000, Linsebigler et al., 1995, 

Mills and Le Hunte, 1997, Josset et al., 2008). 

Photocatalytic activity by water suspended TiO2 particles is known to have microbicidal 

action (Matsunaga et al., 1985, Ireland et al., 1993, Wei et al., 1994, Maness et al., 1999, 

Huang et al., 2000, Sunada et al., 2003a). Its effectiveness in killing microorganisms in 

aqueous environment is well documented and also has numerous practical applications, but 

its mode of action is still under debate. Matsunaga et al. (1985) were the first to report on the 

microbicidal effects of TiO2 photocatalysis reaction. They proposed that the oxidation of 

terminal sulfhydryl groups of intracellular coenzyme A, leading to inhibition of respiration 

and death of the cells, is the main bacterial killing mechanism of photocatalysis. Later 

Maness et al. (1999) showed that reactive oxygen species (ROS) generated on the irradiated 

TiO2 surface attack unsaturated phospholipids in E. coli, which subsequently causes a 

breakdown of the cell membrane structure and therefore is a primary cause of cell death. 

Huang et al. (2000) proposed  a  detailed  mechanism  for  the  bactericidal  effect  of  TiO2 

photocatalytic reaction. The initial oxidative damage takes place on the cell wall, where the 

TiO2 photocatalytic surface makes first contact with intact cells. After the protection by the 

cell wall is lost, the oxidative damage expands into the underlying cytoplasmic membrane 

progressively increasing the cell envelope permeability, and subsequently allows the free 

efflux of intracellular contents that leads to cell death. With further illumination, the cells 

completely decompose (Huang et al., 2000, Sunada et al., 2003a). The presently accepted 

view is that OH  produced by TiO2 upon illumination is the primary killing agent, but that 

other ROS generated in the photocatalysis by TiO2,  such  as  O2
- and  H2O2, may be partly 

responsible for inactivation of bacteria (Cho et al., 2005). Because of the short half life of 

OH  and its low diffusion potential, bacterial cells to be oxidized must be close to the site 
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where OH  is generated. Gogniat et al. (2006) showed that adsorption of bacteria on TiO2 is 

essential for the bactericidal effect of photocatalysis. Whole cells of Gram-positive and 

Gram-negative bacteria, viruses, as well as bacterial and fungal spores have been completely 

mineralized to carbon dioxide via photocatalysis with TiO2 (Jacoby et al., 1998, Wolfrum et 

al., 2002).  

There is a growing interest in the use of TiO2 thin film coatings as a method of keeping 

surfaces free of microbes. Such self-disinfecting surfaces would be of particular value for 

various applications where sterile surfaces are essential, such as in hospitals. The 

effectiveness of the TiO2 thin films in inactivation of water suspended organisms has been 

demonstrated in various studies (Sunada et al., 2003a, Kikuchi et al., 1997, Amézaga-

Madrid et al., 2002, Kühn et al., 2003, Sunada et al., 2003b).  

Nearly all studies on photooxidation of bacteria are conducted with water suspended 

model organisms, most frequently Escherichia coli. The potential of photocatalytic TiO2 

against biofilm formation or destroying existing biofilm has received little attention so far. Li 

and Logan (2005) studied Escherichia coli, Burkholderia cepacia and Pseudomonas 

aeruginosa adhered on TiO2 coated glass illuminated at 254 (UVC) and 340 nm (UVA). 

They achieved up to 50 % and 30-70 % removal at 340 nm and at 254 nm respectively. 

Moreover, successful photocatalytic oxidation of natural biofilms on surfaces coated with 

rutile crystal form of TiO2 has been reported (Rajagopal et al., 2006).  

 
1.4 Biofilm quantification 

To collect  quantitative data from the biofilm density on different substrata,  a method is 

needed for counting the adhered bacteria independent on possible presence of extracellular 

materials like slime. Examples of methods used for biofilm quantification in the literature are 

presented in Table 6. 
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Table 6. Examples of methods used for quantification of bacterial biofilms in the literature. The 
table lists methods that were used to evaluate the impact of abiotic surfaces or conditions on the 
tendency to accumulate biofilm. 

Method Species References 

Fluorescence staining 
& scanning 
fluorometry 

Bacillus coagulans, B. cereus, B. 
amyloliquefaciens, B. pumilus, B. 
licheniformis, Deinococcus 
geothermalis 

Mattila et al., 2002, Kolari et al., 2001 

Microscopic imaging 
& automated 
enumeration software 

Staphylococcus epidermidis, Staph. 
aureus, Streptococcus oralis, 
Strept. mutans, Proteus mirabilis,  

Charman et al., 2009, Harris et al., 
2007, Cerca et al., 2005, Stickler et al., 
2006, Vacheethasanee et al., 1998, 
Aykent et al., 2010. Reviewed by 
Beyenal et al., 2004 

Staining & 
microscopic counting 

B. stearothermophilus, B. 
thermoleovorans, B. flavothermus, 
B. licheniformis, B. coagulans, B. 
pumilus, Staph. aureus, Escherichia 
coli, 

Fletcher and Loeb, 1979, Parkar et al., 
2001, Pompermayer and Gaylarde, 
2000 

Counting from SEM 
micrographs 

Staph. aureus, Staph. epidermidis, 
Pseudomonas aeruginosa, 
Fusobacterium nucleatum, 
Porphyromonas gingivalis, 
Prevotella intermedi 

Arnold and Bailey, 2000, Ivanova et 
al., 2010, Kodjikian et al., 2003, Kuula 
et al., 2004 

Removing bacteria by 
ultrasonication or 
vortexing & plate 
count method 

Salmonella spp., Listeria 
monocytogenes, Staph. aureus, 
Staph. epidermidis, Salmonella 
enteritidis, 

Chua et al., 2008, Kinnari et al., 2009, 
Zhao et al., 2008, Sinde and Carballo, 
2000, Shi et al., 2006, Chen W. et al., 
2006, Giaouris and Nychas, 2006, 
Katsikogianni et al., 2006 

Crystal violet staining 
& absorbance 
measurement 

E. coli, D. geothermalis, 
Meiothermus silvanus, M. ruber, 
Vibrio cholerae, Pseudomonas 
fluorescens, E. coli, B. cereus, 
Strept. agalactiae 

Watnick and Kolter, 1999, Houry et al., 
2010, Pratt and Kolter, 1998, Pawar et 
al., 2005, Kolari et al., 2003, Van 
Houdt et al., 2004, Kolari et al., 2001, 
Silagyi et al., 2009, O’Toole and Kolter, 
1998b, Rinaudo et al., 2010 

ATP measurement  Mattila et al., 2002 

Dry-weight 
determination 

Staph. epidermidis Cerca et al., 2005 

Quantitative PCR L. monocytogenes Guilbaud et al., 2005 
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2 Aims of the study 

 
The aim of this thesis was to study the ultrastructure and biological functionalities of 

biofilms formed on biotic and abiotic surfaces by phylogenetically distant micro-organisms. 

 

Further detailed aims of this thesis were: 

 

1. Describe the interactions in mixed species biofilms on biotic and abiotic surfaces (paper 
III, this thesis). 

2. Study the responses of biofilm forming bacteria towards engineered novel surfaces 
(papers I-II). 

3. Explore the responses of biofilms towards photocatalytic TiO2 coatings (paper I). 

4. Document the ultrastructure of natural microbial community on and within barley kernels 
and its responses to malting with and without a starter culture (paper III). 

5. Quantitatively analyse the formation of biofilms on abiotic materials (paper I-II). 

6. Characterise known and novel biofilm forming taxons within the sparsely studied phylum 
Deinococcus-Thermus. Members of this phylum are important foulers of paper machine steel 
surfaces (paper IV). 

7. Use identical methods to examine the biofilms formed by selected phylogenetically distant 
microbes (paper I-III, this thesis). 

8. Observe the interactions between selected phylogenetically distant microbial species and 
different abiotic materials (paper II). 
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3 Materials and methods 

3.1 The methods used in this thesis  

The methods used in this thesis are compiled in Table 7.  

 
Table 7. The methods used in this thesis. Detailed descriptions of the methods can be found 
from the original publications or in the chapter 3.2. 

 

Method Description 

Microscopy methods  

Fluorescence microscopy Paper I, Paper IV, this thesis  

Light microscopy, phase contrast Paper IV, this thesis 

Scanning electron microscopy Papers I- IV, this thesis 

Transmission electron microscopy, thin sections Paper IV 

Transmission electron microscopy, negative staining Paper IV 

SEM-EDS elemental analysis This thesis 

Fluorescence detection methods  

Staining live biofilms with fluorochromes Paper I, Paper II, this thesis 

Quantitative scanning fluorometry Paper I, Paper II, this thesis 

Other methods  

Studying the resistance of a bacterium to ionizing 
radiation 

Paper IV 

Cultivation of biofilms on abiotic surfaces Paper I, Paper II, this thesis 

Staining endospores with malachite green Paper IV, this thesis 

Gram-staining Paper IV, this thesis 

Analysis of maximum and minimum growth 
temperature of a bacterium 

Paper IV 

Whole bacterial cell fatty acid analysis Paper IV, this thesis 

Studying the production of gas and acid from 
carbohydrates 

Paper IV 

Detection of oxidase activity of a bacterium Paper IV 

Isolation of pure bacterial cultures This thesis 
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3.2 Methods other than those described in the papers I-IV 

3.2.1 Deposits from a paper machine: a case study 

Two petrified deposits were receiveded from a paper mill using recycled fibre. Deposit A 

was scales from the disperger of a recycled fibre plant (75°C, pH 10). Deposit B was from a 

vacuum pump of the paper machine (45°C, pH 7.8). Pieces of the deposits were placed in 

tubes  with  1  ml  1  M  HCl  and  boiled  in  water  bath  for  15  min.  The  obtained  extract  was  

neutralised  with  NaOH and measured  for  oxalic  acid  using  an  enzyme assay  (R-Biopharm 

755699, Darmstadt, Germany). The deposits did not dissolve noticeably.  

Untreated pieces of the deposits were used to inoculate R2 agar. The agar designed for 

isolations of oxalic acid producing bacteria contained: half strength R2A agar, CaCl2 (0.3 g l-

1), yeast extract (0.25 g l-1), Victoria Blue B -stain (0.75 mg l-1, Sigma-Aldrich, St. Louis, 

MO, USA), pulp (pine wood cellulose and CTMP 1:4; ~0.5 w/v %) and agar (4.5 g l-1).  

Oxalic acid production by the obtained isolates was investigated by aerobic cultivation in 

R2 broth amended with soft wood pulp (~0.5 w/v %) and sodium pyruvate (0.6 g l-1) for 7 d, 

45°C, 160 rpm. The oxalic acid content of the culture was measured using the enzyme assay 

as above. 

For electron microscopy, pieces of air dried deposits were coated with Au and then 

inspected by SEM (JEOL JSM-840A, Tokyo, Japan). The elemental compositions were 

analysed using SEM with energy dispersive X-ray spectroscopy (SEM-EDS, JEOL JSM-

840A Röntec Edwin Winshell). 

 

3.2.1 Penetration of microbes into ceramic materials 

We investigated the penetration of bacteria through ceramic materials intended for 

coating of press cylinders at paper machine. The materials were received from the Ceramic 

materials laboratory, Technical University of Tampere (TUT). The ceramic sheets were with 

five different compositions: 1) TiO2; 2) CrO3; 3) Al2O3; 4) 87% Al2O3, 13% TiO2; 5) 75% 

CrO3, 25% TiO2. The sheets were disinfected in 70% v/v ethanol, glued with silicon onto 

coupons of autoclaved stainless steel and submerged in a medium consisting of sterilized 

white water (volume 1 l, from a paper machine) yeast extract (0.1 g l-1),  starch  (1  g  l-1), 

sodium pyruvate (0.3 g l-1), sodium thiosulphate (0.3 g l-1) and calcium chloride (0.5 g l-1). 

This  medium was  seeded  with  0.5% v/v  of  an  overnight  culture  (in  R2 broth)  of  an  oxalic  

acid producing strain of Meiothermus silvanus ox-13 (Hambi 2510) and with Deinococcus 

geothermalis E50051, and incubated at 45°C (130 rpm). One-half of the medium was 

replaced by fresh medium each two days. After 17 d the coupons were removed and the 
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ceramic sheets separated carefully by cutting with sterile scalpel. Both the ceramic and the 

steel surfaces were stained with acridine orange and examined with epifluorescence 

microscope (emission filter  450-490 nm).  

The steel coupons were boiled for 15 min in 1 M HCl and the oxalic acid concentrations 

were measured using an enzyme assay.  

 

3.2.2 Investigation of mixed species biofilms on coated steel surfaces 

The bacterial strains used are listed in Table 8. The strains were grown on R2 agar plates 

for 2 d at 45°C. The target surfaces (Table 9) were acid proof steel coated or not coated with 

materials provided by our collaborators (TUT and Millidyne Oy).  

Prior to biofilm tests, the steel coupons were autoclaved or disinfected with 70% ethanol 

and mounted in the wells of a sterile 6-well polystyrene plate. The coupons were immersed 

in R2 broth seeded with the bacterial strains, each to a density of 10 µg (wet weight) ml-1 

(~106 cells ml-1).  The  plate  was  covered  with  a  lid  and  incubated  under  shaking  (160  rpm)  

for  1  d  at  +45 C. The biofilms formed on the test coupons were rinsed with municipal tap 

water and stained for 5 min with the nucleic acid specific fluorochrome SYTO9 (5 µmol l-1, 

Molecular Probes, Leiden, The Netherlands). The unbound stain was removed by rinsing 

with water and the emitted fluorescence measured with a scanning fluorometer (Wallac 1420 

multilabel counter, Victor, Perkin Elmer, Wellesley, MA, USA) with an excitation 

wavelength of 485 nm and emission wavelength of 530 ± 10 nm. Because SYTO9 stains 

nucleic acids (DNA; RNA) the fluorescence intensity reflects the number of attached 

bacteria. The background fluorescence from non-seeded coupons of each coating material 

was subtracted. After measuring the fluorescence the coupons were stained with crystal 

violet (J.T.Baker, Phillipsburg, NJ, USA, 4 g l-1 in 20% v/v methanol), washed to remove 

non-adhering biomass and photographed.  
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Table 8. The bacterial strains used for growing biofilms 

The  strains  were  from  the  collection  of  M.  S.  Salkinoja-Salonen,  Department  of  Food  and  
Environmental sciences, University of Helsinki. 
 
 
Table 9. The studied coatings on steel. The steel used as a base was of the acid proof quality, 
AISI316L 2B for all coatings. The coated steels were novel designed materials provided by the 
collaborators (TUT and Millidyne Oy). 
 

 L L-FAS FAS MD1 MD2 MD3 
Non-
coated 

Preparing 
method 

Sol-gel Sol-gel, spin coating Spin coating 
Sol-
gel 

Sol-
gel 

Sol-
gel 

- 

Activity 
Superhydrophilic, 
nano-topography 
(Boehmite) 

Superhydrophobic, 
nano-topography 
(Boehmite, 
fluorosilane) 

Hydrophobic 
(Fluorosilane) 

Antimicrobial 
(biocide) 

- 

Water 
contact 
angle 

<5° 150° 105°  70° 

 

Strain Origin of the strain 

Deinococcus geothermalis E50051 (Hambi 2411) Biofilm in the splash area of a paper machine,  

Meiothermus silvanus B-R2A5-50-4 (Hambi 2477) Biofilm in the wire section of a paper machine  

Pseudoxanthomonas taiwanensis JN11306 
(Hambi 2750) 

Paper machine wet end, biofilm on a 
submerged surface 

Bacillus pumilus TSP66 Paper product 

Brevibacillus agri PMW-17 Biofilm, paper machine 
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4 Results and Discussion 

4.1 Means for preventing biofouling 

4.1.1 Developing a method for quantification of biofilm on steel 

A new method based on optical reading of the fluorescence was developed in this study 

for  the  quantification  of  biofilm  on  steel.  This  work  was  based  on  earlier  developments  

reported by Kolari et al. (2001) and by Mattila et al. (2002) on quantitation of biofilms 

formed in situ at the paper machine. Bacteria attached on a surface are stained with a nucleic 

acid specific fluorochrome, such as SYTO9, and the emitted fluorescence is measured using 

a scanning fluorometer with excitation and emission wavelengths specific to the dye. We 

showed that the fluorescence output under these conditions was proportional to number of 

attached bacteria. The fluorescence values were translated to bacterial numbers using a 

calibration curve obtained by manual counting of the cells with a microscope. The 

autofluorescence from non-seeded coupons was measured for each of the coating materials 

and was subtracted from the biofilm value. 

Before the evaluating a surface or a surface coating for its ability to repel or remove 

biofilm, methods to quantitate the amount of biofilm on the non-transparent abiotic surface is 

needed. Examples of methods used in biofilm research are listed in Table 6. Microscopic 

counting of bacterial cells is laborious, time consuming and not applicable on microcolonies 

or thick biofilms where it is impossible to distinguish each individual cell. Quantification 

techniques based on detaching the bacterial cells from the surface followed by counting by 

culture based methods are not suitable for bacteria forming tenacious biofilms, like 

Deinococcus geothermalis. D. geothermalis biofilm was shown to detach inefficiently by 

each of the methods applied, sonication, vigorous shaking and by chemical cleaning agents 

such as aquous solution of sodium dodecyl sulphate (Kolari et al., 2002) or sodium 

hydroxide (Kolari et al., 2002, Paper I). 

Quantification methods based on crystal violet staining or determination of biomass dry-

weight require thick biofilm, because of the low sensitivity. In our studies the experiments 

with biofilms were conducted after a maximum of two days growth in oligotrophic media at 

45°C. This did not result to thick biofilms with the bacteria from paper machines. Longer 

cultivation would require usage of rich medium which no longer reflects conditions at paper 

machine. Moreover, Kolari (2003) reported that ample nitrogen in growth media prevented 

and low ionic strength favoured biofilm formation of the paper machine isolate D. 

geothermalis E50051. 
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The method developed in this study was fast to conduct for large number of surface 

samples, and is suitable also for relatively thin biofilms. Disadvantage of the fluorescence 

based method was that it did not suit to all materials. Some substrata or coating materials 

exhibited strong autofluorescence and some materials bound fluorochromes unspecifically 

resulting to background fluorescence values that were too high compared to the fluorescence 

emitted by the attached bacteria. For these reasons a value for background fluorescence was 

always measured from a stained, non-seeded surface. 

 
4.1.2 How does coating of steel affect its tendency towards biofouling? 

4.1.2.1 Adherence of microbes on steels coated with diamond like carbon or with 
fluoropolymers 

Four different, phylogenetically distant biofilm forming bacteria were used to explore the 

bacterial adherence on to stainless steels with or without diamond like carbon (DLC) or 

fluoropolymer coatings (paper II). The bacterial species chosen for this study originated 

from widely different branches of the evolutionary tree: Staphylococcus epidermidis belongs 

to the phylum Firmicutes. This Gram-positive bacterium is known to form biofilms on 

medical implants (reviewed by Götz, 2002). Three other selected species were known 

formers of biofouling on paper machines. Meiothermus silvanus forms pink slime in paper 

machine wet end (Ekman et al., 2007, Kolari et al., 2003) and Deinococcus geothermalis 

forms pink deposits in splash areas of paper machines (Väisänen et al., 1998, Peltola et al., 

2008b, Prince et al., 2009) and pulp dryers. These species belong to the ancient phylum 

Deinococcus-Thermus. Bacteria of this phylum possess complex cell envelopes with many 

layers including an outer membrane. Pseudoxanthomonas taiwanensis is known for forming 

brown biofilms on submerged surfaces in the paper machine wet end (Kolari et al., 2003, 

Suihko and Skyttä, 2009, Prince et al., 2009, Suihko et al., 2004). This species belongs to 

Gammaproteobacteria, i.e. the same subphylum as the extensively studied Escherichia coli 

and Pseudomonas aeruginosa (Table 2). 

The coatings on stainless steel were done with two different diamond like carbon (DLC-

A and DLC-B) and two fluoropolymers (AR-115 and AR-221, paper II). These coatings 

reduced the adhesion of all four biofilm forming bacteria (Fig. 8).  

As described in paper II, we detected a new surface property parameter, skewness (Ssk) 

measured with AFM, that affected the adherence of bacteria to surfaces (Table in paper II). 

Slightly positive value (0.76 to 0.88) of Ssk indicated low tendency of adherence for each of 

the four different biofilm forming test bacteria used in this study. Furthermore, all test 

bacteria adhered densely to non-coated steels, which had the lowest Ssk values (-0.43 and -
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0.56). A positive Ssk value indicates lack of surface porosity i.e. a non-porous surface. In 

addition, we found that a high value (~7) of kurtosis (Sku)  predicted  low  tendency  of  

adhesion by all bacteria tested. High value of Sku indicates that the surface had sharp 

protrusions. 

Very recently, Ivanova et al. (2010) reported that skewness and kurtosis were useful 

parameters for evaluating the tendency of surfaces to biofouling. They measured these 

parameters to evaluate titanium thin films and studied adherence of Pseudomonas 

aeruginosa and Staphylococcus aureus onto such surfaces. Their results indicated that 

thickest Ti film (150 nm) with the higher values of Ssk (2.3  ±  0.1)  and  of  Sku (36.7 ± 1.1) 

attracted more P. aeruginosa and Staph. aureus than thinner Ti films (3 nm and 12 nm) with 

lower values of Ssk (1.2 ±0.2 and 1.0 ±0.1) and Sku (9.2 ± 1.3 and 5.6 ± 0.1).  Interestingly,  

they  generalised  their  results  opposite  to  those  in  our  paper  II  where  we  concluded  that  a  

positive value of skewness and high value of kurtosis indicated decreased, rather than 

increased, tendency of bacterial adhesion. Closer inspection of their results reveals, however, 

that the skewness and kurtosis values reported by Ivanova et al. (2010) for the thick titanium 

film were far higher than those measured by us for the DLC and fluoropolymer coated steels 

in paper II (Ssk -0.56 to 0.88, and Sku 3.17-7.54, paper II, table 4 and Fig. 8 in this thesis). So, 

Ivanova et al. compared high values to even higher values and did not study any material 

with truly low Ssk and Sku. The thinnest (3 nm) Ti film of Ivanova et al., which attracted least 

P. aeruginosa and Staph. aureus, had Ssk and Sku values (1.2 ± 0.2 and 9.2 ± 1.3), i.e. close 

to the values of our DLC-B coating (0.88 and 7.54). The DLC-B coating attracted least 

amounts of Staph. epidermidis (the same genus as Staph. aureus of Ivanova et al. 2010). 

Moreover, the water contact angle values of these two surfaces were close to each other (Ti 

76.3 ± 0.9 and DLC-B 79). 

Our evidence shows that the bacterial repellence was not determined by surface 

hydrophobicity alone but other surface properties had a great impact. However, the measured 

water contact angles (Table 3, paper II and Fig. 8 in this thesis) indicated that D. 

geothermalis and M. silvanus preferred a hydrophilic surface (  < 90°) for adhesion whereas 

Psx. taiwanensis and Staph. epidermidis were more attracted to hydrophobic surfaces (  > 

90°). Our findings could explain the observation of Cerca et al. (2005) that clinical isolates 

of Staph. epidermidis (n=11) adhered better on acrylic than on glass substrata. Moreover 

Katsikogianni et al. (2006) found that fluorinated PVC attracted more Staph. epidermidis 

than non-fluorinated or DLC coated PVC.  
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The results from paper II, in which biofouling of steel surfaces coated with DLC or with 

fluoropolymer coatings were compared, showed that the surface parameters skewness and 

kurtosis were more important in predicting attractiveness of the surfaces for biofilm 

formation than hydrophobicity/hydrophilicity ( ). Slightly positive values for skewness and 

values around 7 for kurtosis indicated that the surface was less prone to biofouling by the 

bacteria used in this study. Our findings showed that there are great differences between 

bacterial species and their preferences for adherence, is also important and new.  

Paper II was the first paper describing adherence and biofilm formation of several 

essential bacterial species biofouling paper machines. Our study also is the first biofilm 

study done on adherence by Meiothermus sp. and by Pseudoxanthomonas sp.  

 
Fig. 8. Adherence of cultures of Deinococcus geothermalis, Meiothermus silvanus, 
Pseudoxanthomonas taiwanensis and Staphylococcus epidermidis (Table 8) onto coated or 
non-coated stainless steels (Table 2 in paper II). The steel coupons were immersed for 2 d at 45 
37°C or at 37°C (Staph. epidermidis) in media seeded with the test bacteria. Non-adhered or 
loosely adhered cells were removed by washing with water. The coupons were stained with 
SYTO9 and the cell numbers were calculated from the fluorescence readings using a standard 
curve calibrated by microscopic counting. Error bars indicate standard deviations. Steel 1 = acid 
proof steel, Steel 2 = AISI316L/2B. The coatings: AR = fluoropolymer, DLC = diamond like 
carbon. Ssk= skewness, Sku = kurtosis, y = roughness corrected contact angle. 
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4.1.2.2 Coating of steel with or without antimicrobial agents  

This study was done using mixed species cultures, of which three bacterial species were 

known to be capable of forming biofilms in paper machine environment, and two spore 

forming bacteria had been isolated from biofilms of a paper machine and from paper 

products (Table 8). Biofouling was measured by staining the bacteria adhered to the coated 

or non-coated coupons (Table 9). The degree of fouling was assessed by fluorescence 

emitted from the steel coupons by the method described under chapter 4.1.  

The  results  summarised  in  Fig.  9  show  that  the  surfaces  coated  with  L-FAS,  FAS  and  

MD2 films emitted less fluorescence after exposure to the biofilm forming bacteria than the 

coupons of non-coated AISI316 steel or those with the L, MD1 or MD3 coatings. In addition, 

the results showed that the L-FAS coating on steel adsorbed the dye in such a high quantity 

that fluorescent emission, even in absence of bacteria, was so high that it compromised the 

measuring of bacterial fluorescence. Photographs of the coupons after staining the biomass 

with crystal violet (Fig. 11) show that this stain bound onto the L-FAS coating also without 

any biofilm. Thus, also this dye was unsuitable for analysing biofouling of the L-FAS 

coating. Furthermore, Fig. 11 shows that the biofilms formed ornamental patterns on several 

surfaces. These patterns reflect the clockwise flow of the liquid as the exposures were done 

on a clockwise rotating shaker. On L-FAS, on FAS and on MD2 coated surfaces this pattern 

was absent or less marked compared to the non-coated steel AISI316 or the L, MD1 or MD3 

coatings, indicate lower adherence of bacteria. This supports the results from the 

measurements where fluorescence emission was used as measure for biomass (Fig. 9). Fig. 

10 shows clearance of turbidity in the microplate wells holding coupons coated with MD2. 

This indicates that the coating emitted substance that killed the suspended bacteria rather 

than prevented them from adhering on the coupon.  
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Fig. 9. Adherence of mixed inocula containing Deinococcus geothermalis, Meiothermus 
silvanus, Pseudoxanthomonas taiwanensis, Bacillus pumilus and Brevibacillus agri (Table 
8) onto coated or non-coated coupons of steel. The coupons are described in Table 9. The 
medium R2 broth was seeded with the test strains and grown at 45°C, 160 rpm for 1 d. Non-
adhered cells were removed by washing with water. The coupons were stained with SYTO9 
and the resulting fluorescence was measured with a scanning fluorometer as described in 
chapter 4.1. Error bars indicate the standard deviations. 

 

 
Fig. 10. Photographs of 6-well plates used for measuring biofouling of coated and non-
coated acid proof steel (AISI316). Panel A shows the non-coated steel and panel B shows the 
steel  coupons  with  biocide  containing  coating  (MD2).  The  figure  shows  that  the coating 
MD2 emitted substance that killed the bacteria not only on the coupon surface but also in 
the immersion medium (i.e. no turbidity in the liquid). The strains were listed in Table 8. 

 

The coupons immersed into the bacterically seeded broth were inspected with FESEM. 

Examples of these results are shown in the 42 FESEM micrographs displayed in Figs. 12.1 

to  12.7.  Each  micrograph  shows  only  a  small  surface  area  (~75  µm2 to 3050 µm2) of the 

heterogeneous biofilms, selected by the author of this thesis out of a collection of 483 

microscopic fields prepared by the author. Although the selection always is a subjective 

choice, the author has pursued to approach the physical reality as close by as possible.  
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Fig. 11. Photograph of crystal violet stainings of coated and non-coated stainless steel 
coupons immersed in a broth seeded or not seeded (sterile control) with a mixed inoculum 
containing Deinococcus geothermalis, Meiothermus silvanus, Pseudoxanthomonas 
taiwanensis, Bacillus pumilus and Brevibacillus agri. The coupons are described in Table 9 
and the strains and their origins are shown in Table 8. Crystal violet stains proteins blue, 
thus the blue colour indicates the presence of bacterial biomass, except for the L-FAS coating 
where the sterile control adsorbed colour and therefore stained blue. The ornamented blue 
patterns on the surfaces of other coupons reflected the concentric clockwise liquid flow due 
to the rotating shaker.  

 

The bacterial species used as test bacteria in this study differed in cell sizes and shapes. 

Based on these morphological differences, it was possible to evaluate the contribution of 

each species in the biomass accumulated on the steel coupons. The cells of Psx. taiwanensis 

are  the  small,  1-2  µm  ×  0.3  µm,  wrinkled,  rod  shaped  bacteria.  D. geothermalis are the 

spherical, smooth surfaced cells of 1 µm in diameter. M. silvanus cells are the short rods, 1 

µm × 0.5 µm, frequently occurring in chains. Bacillus and Brevibacillus were  visible  as  

heavily ornamented spores, size 0.8-1 µm × 1.3-1.8 µm.  

The images document that the species that most efficiently adhered onto the test surfaces 

under the conditions tested was Psx. taiwanensis. This  species  was  shown  to  be  efficient  

biofouler of various coatings in paper II as well. D. geothermalis adhered efficiently onto the 

most of the surfaces as well. Only superhydrophilic L coating was repelling D. geothermalis 
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cells, while Psx. taiwanensis and M. silvanus adhered efficiently onto this surface. In paper 

II  it  was  shown,  that  D. geothermalis adhered more on hydrophilic than on hydrophobic 

coatings,  but the water contact angle of these coatings was much lower (~80°) than that of 

superhydrophilic coating in this study (105°). Furthermore, it can be seen from Figs. 12.1 to 

12.7, that when occurring as thin biofilms, these bacteria often formed single species 

microcolonies rather that scattered randomly.  

The spores of B. pumilus and Br. agri were often seen stacked on layers of cells of the 

other species, indicating they adhered better on bacterial biomass than directly onto the 

abiotic surface. An exception to this was the superhydrophobic L-FAS coating, where 

several spores were seen attached directly onto the abiotic surface (Fig. 12.3 F). It has been 

reported previously that many Bacillus spp., including B. pumilus, have spores with 

hydrophobic character, (Doyle et al., 1984, Faille et al., 2010). Vegetative cells of these 

species were seen to adhere on the steels infrequently. It was earlier shown that Bacillus spp. 

did not form biofilm independently under conditions simulating the paper machine 

environment. Kolari et al. (2001) studied seven Bacillus species from paper machines and 

found that  none  adhered  on  stainless  steel  or  polystyrene,  including  the  B. pumilus TSP66 

used in the present study. However, when the same strains were co-cultured with D. 

geothermalis E50051, mixed species biofilms were formed (Kolari et al., 2001). In this 

thesis work, we saw that B. pumilus and Br. agri spores mostly adhered onto a biotic surface, 

i.e. biofilms formed by Psx. taiwanensis, a recently recognised primary coloniser from paper 

machine. 

Combining the results from fluorescence measurements, photographs and FESEM 

micrographs, we conclude that the coating most repellent against biofouling for these 

bacterial  species  was  the  FAS  coated  stainless  steel  and  that  the  antimicrobial  substance  

emitting coating MD2 effectively killed the suspended bacteria.  

 
Figs. 12.1 to 12.7. FESEM micrographs of coated and non-coated coupons of AISI316 steel 
biofouled  with  a  mixture  of  paper  machine  bacteria:  Deinococcus geothermalis, Meiothermus 
silvanus, Pseudoxanthomonas taiwanensis, Bacillus pumilus and Brevibacillus agri. The 
coupons (table 9) were exposed to a planktic mixture of test bacteria suspended in R2 broth, for 
1  d  at  45°C  on  a  rotary  shaker  (160  rpm).  The  cell  sizes  and  morphologies  can  be  used  to  
distinguish the species from the micrographs: Psx. taiwanensis: small 1-2 µm × 0.3 µm, 
wrinkled, rods; D. geothermalis: spherical Ø 1 µm, smooth; M. silvanus: short rods, 1 µm × 0.5 
µm, occurring in chains; B. pumilus:  rod,  0.6 µm × 2-3 µm; Br. agri:  rod,  0.5-1  µm × 2-5 µm; 
spores: ornamented, egg shaped, 2 µm × 1 µm. The strains of the test bacteria and their origins 
are shown in Table 8. The test bacteria colonised the surfaces as heterogenous patches. Typical 
examples of these images were selected for the figure to show how the different bacteria 
assembled to biofilms alone or in mixed biofilms with other species. 
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Fig. 12.1. Non-coated steel AISI316 biofouled with the five paper machine bacteria. Panels 
A, B, low magnification micrographs of the thick mixed species biofilm on steel. In the left 
upper corner of panel B the steel grain boundaries are visible. In panels C to F, cells of Psx. 
taiwanensis (white arrows) and D. geothermalis (black arrows) are adhered on steel. Panel 
E shows spores (white arrow heads) attached on a biofilm of Psx. taiwanensis on the steel. 
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Fig. 12.2. L coating on steel AISI316 biofouled with the five paper machine bacteria. 
Panels A, B, low magnification micrographs of this mixed species biofilm on L coated steel. 
Microcolonies and a chain of cells formed by M. silvanus (thin, white arrow) are visible. A 
thick biofilm is visible in the upper right corner of panel C as well as in the middle of Panel 
D. Panels E, F, show high magnification views of spores (E, white arrow heads) and 
putative M. silvanus cells (F, thin, white arrows) adhered on a biofilm of Psx. taiwanensis 
(white arrows). 
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Fig. 12.3. L-FAS coating on steel AISI316 biofouled with the five paper machine bacteria. 
Panels A, B, low magnification micrographs of the mixed species biofilm on the L-FAS 
coated steel. Thick biofilm in the upper left corner and scattered cells of Psx. taiwanensis 
(white arrows) in the lower right corner of Panel B. Monolayer of adhered D. geothermalis 
(black arrows) cells is visible in Panel C. Panels D and F show numerous spores (white 
arrow heads) attached on the substratum. Topography of the L-FAS coating is visible 
between the adhered cells and spores in Panels E and F. 
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Fig. 12.4. FAS coating on steel AISI316 biofouled with the five paper machine bacteria. 
Panels A, B, only few adhered cells on the FAS coated steel are seen, compared to non-coated 
steel surface (Fig. 12.1). Large areas were vacant from any adhered bacteria as seen in panel 
C. In panels D and E, few Psx. taiwanensis cells (white arrows) and chains of M. silvanus 
cells (thin, white arrows) and in panel F, Psx. taiwanensis (white arrows) and D. 
geothermalis (black arrows) cells are adhered on the coated steel. 
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Fig. 12.5. MD1 coating on steel AISI316 biofouled with the five paper machine bacteria. 
Panels  A,  B,  are low magnification micrographs of  a  thin mixed species biofilm on the MD1 
coated steel. Large areas of vacant surface are also seen in Panel B. Panels C and D show Psx. 
taiwanensis and D. geothermalis adhered on the steel. A thick biofilm formed by Psx. 
taiwanensis is  visible  in  Panel  C.  Panel  E  shows  Psx. taiwanensis cells attached on grain 
boundaries of the steel substratum. Panel F, D. geothermalis cells attached to the abiotic 
surface and to each other by attachment threads. 
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Fig. 12.6. MD2 coating on steel AISI316 biofouled with the five paper machine bacteria. 
Panels A to F, significantly fewer bacteria are seen adhered on surface compared to the 
non-coated steel (Fig. 12.1). Only a few individual bacterial cells or spores were seen on this 
coated steel surface. 
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Fig. 12.7. MD3  coating  on  steel  AISI316  biofouled  with  the  five  paper  machine  bacteria. 
Panels A, B, show low magnification micrographs of a thick mixed species biofilm on the 
coated steel. Higher magnification of these biofilms is shown in panels C and D. In Panel E 
D. geothermalis cells (black arrows) appear adhered on the coated steel surface. In panel F, 
cells of Psx. taiwanensis (white arrows) cells and Bacillus or Brevibacillus spores (white 
arrow heads) appear adhered on the coated steel surface. 
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We used the FESEM technique to study the ultrastructures of mixed species biofilms 

formed by five paper machine bacteria on surfaces of steel with different coatings or no 

coating. The bacterial strains D. geothermalis, M. silvanus and Psx. taiwanensis represented 

primary biofilm formers from paper machines, with shown capability to adhere onto plain 

steel as well as most of the coated steel surfaces. The species B. pumilus and Br. agri were 

also paper machine biofilm isolates, but only able to adhere as spores onto superhydrophobic 

L-FAS coating and onto biofilms formed by the other species. The results showed that most 

effective coating in repelling biofouling caused by these species was hydrophobic 

fluorosilane coating.  

 

We have showed evidence that Psx. taiwanensis is an effective biofouler of abiotic 

surfaces in conditions simulating paper machine environment (paper II and this thesis). Psx. 

taiwanensis adhered onto a majority of the surfaces tested in these two studies: steel (Figs. 2 

and 6 in paper II, Figs. 12.1 and 18 in this thesis), glass (Fig. 18 in this thesis), 

fluoropolymers (Figs. 2 and 6 in paper II), DLC (Figs. 2 and 6 in paper II), L-FAS, L as well 

as two different antimicrobial coatings (Figs. 12.2, 12.3, 12.5 and 12.7 in this thesis, 

respectively). Only the FAS coated steel (Fig. 12.4 in this thesis) which was mildly 

hydrophobic (  105°) but possessed no nanotopography, and the coating that emitted biocide 

(MD2,  Fig.  12.6  in  this  thesis)  to  the  immersing  medium  were  relatively  clean  after  the  

exposure to a seeded medium.  

In addition to being able to adhere on different abiotic surfaces, Psx. taiwanensis was 

found to be capable of adhering to resin acid and wood extractive i.e. pitch emulsion droplets 

under conditions simulating those in paper machine wet end. Moreover, Psx. taiwanensis 

coagulated the pitch emulsion so that large rafts (up to 15 µm) were formed (Leino et al., 

201×b, Leino et al., 201×a). Such lipid containing rafts are low in gravity and may float, 

depositing on the surface of the paper web when it is formed on the wire. Surface exposed 

bacterial-pitch deposits may connect to the fouling of hot calender surfaces observed at the 

dry end of the paper machine during on-line calendering.  

 

4.1.3 Biofilms can be destroyed by photocatalysis 

There are plenty of studies describing the potential of photocatalysis for disinfection or to 

improve hygiene by destroying microbes attached on surfaces. There is less information on 

the potential of photocatalysis to destroy actual biofilms on nonliving surface. We 

investigated this aspect using photocatalytic TiO2 films, prepared by the ALD or the sol-gel 



Results and discussion 

69 
 

method, as a substratum for D. geothermalis –biofilm (paper I). Biofilms pre-grown on the 

TiO2 coated  coupons  were  illuminated  (  360  nm)  for  1  d.  The  coupons  were  then  stained  

with a fluorogenic nucleic acid stain to measure the quantity of bacteria that remained on the 

surface. The fluorescence emission was recorded by a scanning fluorescence reader. The 

coupons were also examined with epifluorescence microscope and with scanning electron 

microscope.  

The results (Figs. 2 to 7 in paper I and Figs. 13 to 15 in this thesis) showed that surfaces 

with photocatalytic coating carried a lesser amount of bacteria when illuminated (  360 nm) 

than when kept in the dark.  

 
Fig. 13. Removal of D. geothermalis biofilms from various abiotic substrata, coated and non-
coated with TiO2,  by exposure to illumination at  360 nm. The biofilms had been grown on the 
coupons  for  2  d  in  the  dark  and  were  then  illuminated  for  1  d,  1  W  m-2 at  360  nm  or  not.  The  
biofilms were quantitated by dyeing with the nucleic acid responsive fluorochrome SYTO9. 
Fluorescence emission values were measured with a scanning fluorometer. Glass = borosilicate 
glass, Steel = AISI316, ALD 1 = borosilicate glass substratum coated with anatase TiO2 by ALD 
method, ALD 2 = borosilicate glass substratum coated with rutile TiO2:S by ALD method, Sol-gel 
1 = titanium substratum coated with macroporous anatase TiO2 with sol-gel method, Sol-gel 2 = 
titanium substratum coated with anatase TiO2 with sol-gel method. 
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Fig. 14. Epifluorescence images of D. geothermalis biofilm on coupons of stainless steel stained 
with the nucleic acid responsive fluorochrome SYTO9. Panels A and B show biofilm grown for 2 
d. Plenty of green fluorescing cells. Panels C and D show similarly prepared coupons 
fluorescently dyed after irradiated for 1 d, 1 W m-2 at 360 nm. Most of the biomass fluorescently 
stainable by SYTO9 persisted the irradiation. 

 
Fig. 15. Epifluorescence images of D. geothermalis biofilm on a stainless steel coupon coated 
with TiO2 (ALD 3). The images were taken after the coupons had been dyed with the nucleic acid 
responsive fluorochrome SYTO9. Panels A and B show biofilm grown for 2 d. Plenty of green 
fluorescing cells. Panels C and D show similarly prepared coupons irradiated for 1 d, 1 W m-2 at 
360 nm and then fluorescently dyed. Almost all fluorescently stainable material is absent. 
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There are plenty of studies describing the potential of photocatalysis for disinfection or 

for improving hygiene by destroying microbes attached on surfaces. However, little is 

known on  the  potential  of  photocatalysis  to  destroy  biofilms  on  abiotic  surfaces.  It  is  well  

known that bacteria in biofilms tolerate well many stressors, such as antimicrobial agents, 

desiccation and radiation (Costerton et al., 1987 and 1999, Mah and O'Toole, 2001, Stewart 

and William Costerton, 2001, Lewis, 2008). Interestingly, D. geothermalis is radiation and 

desiccation resistant (Ferreira et al., 1997) and was observed to produce more biofilm when 

exposed to certain biocides such as, methylene bisthiosyanate (MBT) or 2,2-dibromo-3-

nitrilopropionamide (DBNPA) at pH 5 than when not exposed (Kolari et al., 2003).  

In paper I we showed that D. geothermalis biofilms  on  TiO2 coated coupons were 

effectively (reduction by 1 to 2 log units) removed by photocatalytic action of the TiO2 when 

illuminated at 360 nm. My scanning electron micrographs revealed that the D. geothermalis 

biofilm was extensively damaged by the photocatalytic action (Figs. 2 and 3 in paper I): the 

adhesion threads normally connecting the adjacent cells to one another and the cells to the 

substratum practically disappeared from the D. geothermalis cells  on  TiO2 coated coupons, 

whereas the same bacteria on plain steel appeared to possess undamaged threads after similar 

irradiation (Figs. 4 and 5 in paper I).  

My data published elsewhere (Keskinen et al., 2006) showed that irradiation catalysed 

cell density reduction by > 1 log in D. geothermalis biofilms on steel coated with TiO2 by 

the flame spray method. This photocatalytic killing was less effective when silver 

nanoparticles were applied together with the TiO2 on  the  steel  substratum.  However,  in  

absence  of  illumination  the  silver  containing  coatings  attracted  >  1  log  less  of  D. 

geothermalis cells than the steel substratum coated with TiO2 only or with none. Storgårds et 

al. (2007) presented preliminary results from experiment in brewery filling department. They 

exposed steel coupons with no coating or coated with plain TiO2 or TiO2 together with silver 

to production environment. Results showed >1 log reduction in the counts for aerobic 

bacteria on TiO2/Ag coated steel compared to the non-coated steel and 3 log reduction in the 

counts of pseudomonads on both TiO2 and TiO2/Ag coated steel after 200 d exposure. The 

experiment was conducted without added illumination. The results from these two studies 

showed that applying silver on photocatalytic surface reduced biofilm load more efficiently 

that plain TiO2 in conditions with no sufficien illumination for photocatalysis to occur. 

However, the use of silver coatings to suppress biofilm growth is questionable, since silver 

induces resistance (Silver et al., 2006). 
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Summarising all these data, (the results in paper I, and elsewhere) showed that 

photocatalysis is a potential tool for removing biofilms from abiotic surfaces in transparent 

media, such as application in water handling industries and facilities where high level of 

hygiene is required. 

 

Stainless steel is the material of choice in many industrial process equipments and 

surfaces. Examples of industrial settings reported to have biofilm problems were compiled in 

Table 3. The results from my studies (papers I and II and this thesis) showed that biofilm 

forming bacteria from three phylogenetically distant phyla are capable of colonising and 

forming a biofilm on steel. Coating the steel surfaces with material that reduces biofouling 

would be beneficial in a broad range of industrial applications. However, the requirements of 

the coating material are demanding. In addition to the repellency towards microbial 

colonisation, demonstrated in this study, the material should be easy to apply, affordable and 

durable against cleaning procedures and wearing. No material has yet fullfilled all these 

requirements.  

 

4.1.4 Use of starter cultures to modify biofilm structure in barley kernel tissues 

Paper III describes ultrastructural details of the natural microbiota of barley kernels 

before the steeping step of malting (Fig. 2 in paper III and Fig. 16 A to C) and after (Fig. 3 in 

paper III and Fig. 16 D to F) as revealed by field emission scanning electronmicroscope. 

Amending the steeping water with a culture of Lactobacillus plantarum E76 reduced the 

accumulation of EPS during the subsequent steeping. The strain of L. plantarum used in this 

study as a starter culture was successful in colonising the tissues of barley kernels (Fig. 4 in 

paper III and Fig. 16 G to I in this thesis). This colonisation resulted into reduced growth of 

slime producing bacteria. A positive effect on filterability of the mash was also observed 

(Fig. 5 in paper III). Lactic acid starter bacteria have elsewhere been shown effective in 

controlling undesirable microbial contaminants, particularly pseudomonads and the 

Fusarium fungi in malting (Laitila et al., 2006, reviewed by Lowe and Arendt, 2004).  

Adding the yeast Wickerhamomyces anomalus C565 (synonym Pichia anomala) to 

steeping water was shown to suppress the growth of contaminating yeasts and filamentous 

fungi, but did not noticeably affect bacterial growth in grain (Laitila et al. 2007b). The final 

malts were of good quality, but the separation of wort slowed down. Based on this 

knowledge we decided to use two starters simultaneously, Lactobacillus plantarum E76 and 

Wickerhamomyces anomalus C565 in the steeping water. When we examined biofilms on 
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the barley kernel surfaces with FESEM we found that both the L. plantarum and the W. 

anomalus strains had entered the husk layer of the barley grain and adhered on the surfaces 

of the kernel suppressing the growth of the EPS producing bacteria (Fig. 1 in Laitila et al., 

201× and Fig. 16 G to I in this thesis). 

Microbial communities are an integral part of all cereals including barley as is visible in 

Fig.  16  A to  F.  It  is  shown that  microbial  community  in  barley  kernels  consists  of  diverse  

bacteria, yeasts and fungi, located within the outer layers of kernel. The natural microbiota 

of grains has great impact on the technical performance and the quality of cereal products 

(Laitila et al., 2007a, Noots et al., 1999). Steeping in water stimulates the microbiota in the 

barley kernel to grow and to produce extracellular substance. In the micrographs in Fig. 3 in 

paper II and Fig. 16 D to F and Fig. 19 D to F in this thesis it is shown that the tissues of 

steeped barley kernel became covered by slime which embedded microbes. Kernel 

associated biofilms and EPS may deteriorate germination (Laitila et al., 2007a, Doran and 

Briggs, 1993, Kelly and Briggs, 1992) and be harmful in brewing, by reducing the separation 

of wort and filterability of the mash (Laitila et al., 1999). The results in this thesis show that 

starter cultures can be used in steeping water to modify the microbial community and the 

structure of the biofilms inside barley kernels. 
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Fig. 16. FESEM micrographs of surfaces of the epidermis layers of barley kernels. Panels A to C show clusters of bacteria on a dry kernel of barley, 
collapsed fungal hyphae (h) and yeast cells (y). Panels D to F show 2 d old biofilms on a steeped barley kernel. Most of the kernel surface and the attached 
bacteria are embedded in amorphous slime. Panels G to I show 2 d old biofilms on a barley kernel steeped in the presence of the starter Lactobacillus 
plantarum E76 with Wickerhamomyces anomalus C565 (synonym Pichia anomala). Cells looking like L. plantarum (short rods) have colonized the 
kernel surface. In panel G yeast cells (y), putative W. anomalus, are in close proximity to putative L. plantarun cells. In panel I, the belt-like structures of 
L. plantarum cells are visible (white arrows).  
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4.2 Ultrastructural studies of bacteria adhered on abiotic surfaces using FESEM  

4.2.1 Mechanisms of adhesion to biotic and abiotic surfaces by phylogenetically remote 
bacteria  

We found by field emission scanning electron microscopy (FESEM) that several biofilm 

forming bacterial species utilise thread like appendages to anchor their cells onto a surface 

and also to bridge neighbouring cells to one another (Papers I-III and Fig. 17 in this thesis). 

As model organisms we used two members of the phylum Deinococcus-Thermus 

(Deinococcus geothermalis and Meiothermus silvanus), one Firmicute (Staphylococcus 

epidermidis) and one Gammaproteobacterium (Pseudoxanthomonas taiwanensis) (Table 2).  

We observed by FESEM (paper I) that although the adhesion organelles of D. 

geothermalis were resistant towards washing with alkali (0.1% w/v NaOH), they were 

destroyed by photocatalysis. Irradiation with 360 nm light of D. geothermalis cells adhered 

onto TiO2 coated coupons destroyed the adhesion organelles completely (Figs. 2 and 3 in 

paper I), whereas same irradiation did not visibly affect the cells adhered onto coupons of 

plain  steel  (Fig.  4  in  paper  I).  The  TiO2 coating itself was not toxic to D. geothermalis, as 

shown by biofilms on TiO2 coated coupons incubated in the dark (Figs. 2 and 3 in paper I). 

The cells adhered on TiO2 coated steel displayed adhesion organelles similar to those seen 

on cells adhered on plain steel. D. geothermalis may possess a second mean of attachment 

besides these adhesion threads, since some of the cells persistently adhered on the TiO2 

coated coupon even after irradiation at 360 nm. Kolari et al. (2002) measured with AFM the 

adhesive forces between the surface of D. geothermalis cell adhered on glass and silicon tip 

of the cantilever. They found that the cell surface was heterogeneous in adhesiveness. The 

surface topography of adhered D. geothermalis cells looked patchy also in FESEM 

micrographs  of  high  magnification  (Fig.  5  in  paper  I).  The  local  adhesive  areas  on  the  

surface of D. geothermalis possibly mediated adhesion to certain abiotic surfaces. D. 

geothermalis type strain (Ferreira et al., 1997) as well as paper machine biofilm isolate 

E50051 (Fig. 1 D in paper IV), are known to produce capsule-like layer surrounding and 

connecting adjacent cells. Capsular layer has been shown to act as adhesin (reviewed by An 

and Friedman, 1998). 

In paper II (Fig. 4) we showed that in D. geothermalis biofilms on non-coated and DLC 

coated steels most cells displayed a large number of appendages. These thread shaped 

organelles connected neighbouring cells to one another or to the abiotic surface. Only few, 

thin appendages were present on the cells grown on steel coated with fluoropolymer and 
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planktic cells grown in the same culture medium were void of any thread-like structures. D. 

geothermalis grown on glass surface also expressed the appendages (Fig. 17 in this thesis). 

Kolari et al. (2002) found , using FESEM and AFM, the first evidence on the presence of 

peritrichous appendages, in D. geothermalis biofilms and suggested that the bacterium uses 

these for cell-to-cell attachment and adhesion onto abiotic surfaces. Later Saarimaa et al. 

(2006) found glycosylated proteins, reminiscent on type IV pili in washing supernatants of D. 

geothermalis E50051 cells grown on agar plates. In the same study Minna Peltola and I 

showed that the appendages only appear during surface attached growth and were absent in 

planktic cells. We did this by imaging with FESEM and CLSM combined with lectin 

staining (Figs. 1 and 3 Fig. in Saarimaa et al. 2006 and Fig. 17 in this thesis). However, very 

recently Tian et al. (2010) reported fimbrial pilin and type IV pilus assembly proteins from 

planktic cells of D. geothermalis DSM 11300T by proteomic analysis of membrane proteins. 

The pili and the numerous cell surface -exposed glycoconjugates (Peltola et al., 2008a), 

and unique cell envelope proteins and repair enzymes (Liedert et al., 2010) expressed by D. 

geothermalis E50051, could explain the firm attachment and formation of tenacious biofilms 

by this bacterium, which is persistent against desiccation, radiation, aggressive washings and 

antimicrobial agents.  

 
Fig. 17. FESEM micrographs of planktic (A and B) and sessile (C and D) cells of Deinococcus 
geothermalis E50051 isolated from a pink biofilm in a paper machine. Sessile cells (on glass 
surface) expressed adhesion threads, absent in the planktic cells. 
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We  found  that  in  biofilms  of  Psx. taiwanensis large  amounts  of  cell  ghosts  were  

distributed on the abiotic surface among and underneath the adhered intact cells (Fig. 2 in 

paper II, Fig. 18 in this thesis). We hypothesise that this bacterium uses a suicidal strategy to 

form a biofilm: part of the population is sacrificed to mediate the adhesion of the remaining 

part of the community onto the abiotic substratum. No such ghost cells were observed in 

liquid culture or among Psx. taiwanensis cells  adhered  onto  coupons  of  steel  coated  with  

fluoropolymers. This phenomenon is yet to be studied in detail to understand the actual 

events taking place. Is the suicidal biofilm generation a fact or an artifact? Having viewed 

hundreds of micrographs of Pxt. taiwanensis and other species attached and not attached on 

surfaces, after the same procedures of fixation and dehydration, we conclude that the suicidal 

biofilm formation likely reflects the real life situation. Nevertheless, more study is required 

by independent methods (e.g. light microscopy with live cells) to confirm this hypothesis.  

The hypothesis of an altruistic suicide among bacteria gets support from reports where 

release of extracellular DNA through an autolysin-mediated lysis of a subpopulation of 

bacteria was shown to advance biofilm formation by Staph. epidermidis, by Enterococcus 

faecalis and by Streptococcus mutans (Qin et al., 2007, Perry et al., 2009, Thomas et al., 

2008). Cell lysis also provides nutrients for the surviving part of the population. It has been 

suggested that autolysis of bacteria is functionally similar to the programmed cell death 

(apoptosis) in eukaryotes, promoting the development of biofilm architecture (Lewis, 2000) 

and is linked to the resistance of biofilm bacteria against bactericidal antimicrobials 

(reviewed by Lewis, 2001 and Bayles, 2007). 

 



Results and discussion 

79 
 

Fig. 18. FESEM  micrographs  of  the  paper  machine  biofilm  isolate  Pseudoxanthomonas 
taiwanensis JN 11306 adhered to abiotic surfaces. Panels  A  to  C,  acid  proof  steel  (Steel  #1,  
Table 2 in paper II). Panels D to F, glass. Arrows in Panels B and E point at cell ghosts.  
 

When grown on non-coated steel Staph. epidermidis (Fig. 5 in paper II and Fig. 6 in this 

thesis) displayed slimy appearance and expressed thick threads bridging the neighbouring 

cells. In contrast, on DLC or fluoropolymer coated steel adhered cells of the same strain 

consisted of non-slimy cells interconnected by thin appendages only. The strain (O-47 PIA+) 

used  in  this  study  is  known  as  a  producer  of  the  polysaccharide  intercellular  adhesin,  PIA  

(Heilmann,C., 1996). PIA is a component of the EPS of Staph. epidermidis and contributes 

to its adherence (Izano et al., 2008, Mack et al., 1994). Fig. 5 A in paper II shows that the 

biofilm of Staph. epidermidis O-47 PIA+ had a slimy appearance, possibly due to the 

production of PIA. 

Adhesion  threads  similar  to  those  displayed  in  paper  II  and  in  Figs.  17  and  18  in  this  

thesis were also seen in bacteria adhered onto barley kernels studied in paper III. The 

appendages shown in Fig. 19 B and C of this thesis and Figs. 2 and 3 in paper III resemble 

those observed by Pawar et al. (2005) in electron micrographs of curli-expressing 

Escherichia coli O157:H7 5-11 adhered on an abiotic surface. Inside the steeped barley 

kernel the threads connected bacteria to each other and to the seed-coat tissues to dense 

networks. Some of the microbial cells seemed to make contact with the barley kernel surface 

by means of a slime layer (Fig. 19 D to F in this thesis). The slime covered up to 95% of the 

accessible surface in the husk and on the outer epidermis of the barley kernels after steeping.  

We noticed the presence of a belt-like structure on the surface of L. plantarum cells and 

hypothesised that this belt connected the bacterium to tissues of the barley kernel (Fig. 4 in 

paper III and Fig. 16 I in this thesis). Those could represent some of the 12 putative adhesion 

factors reported by Boekhorst et al. (2006) from the proteome of L. plantarum.  

Literature offers examples of appendages visualised on bacterial cells with scanning 

electron microscopy; e.g. type IV bundle-forming pili of enteropathogenic E. coli (Bieber et 

al., 1998), lateral flagellar filaments in Vibrio parahaemolyticus (Belas and Colwell, 1982) 

and flagelli-like filaments and the thin fibrillar structures of Stenotrophomonas maltophilia 

(de Oliveira-Garcia et al., 2002). Ishii et al. (2004) reported two morphologically different 

cell organelles from Acinetobacter sp.  and  showed  FESEM  images  as  well  as  variable  

pressure FESEM (VP-FESEM) images of the same structures. The specimens for VP-

FESEM were fixed but not dehydrated for imaging. Later Ishii et al. (2008) showed that 

these structures were only expressed in adhered cells. Also, the electrically conductive 

bacterial nanowires produced by Shewanella oneidensis were visualised by Gorby et al. 
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(2006) by scanning tunneling microscopy, SEM as well as epifluorescence microscopy. 

Later Ray et al. (2010) imaged the nanowires by SEM from adhered and planktic 

Shewanella oneidensis grown with and without oxygen. Type IV pili of Haemophilus 

influenza were visualized with SEM and with immunofluorescence confocal microscopy by 

Jurcisek and Bakaletz (2007). 

As a conclusion, our results from the studies described in papers I, II, and III showed that 

phylogenetically remote bacteria utilised similar tools, adhesion threads, to attach on biotic 

and abiotic surfaces. From electron micrographs alone, it is not possible to decide if threads 

were genuine appendages or if they consisted of dehydrates slime produced by the bacteria. 

However, the adhesion threads of Deinococcus geothermalis were seen also in hydrated 

samples by CLSM and by atomic force microscopy (AFM) (Saarimaa et al., 2006, Peltola et 

al., 2008a, Kolari et al., 2002). For the other species where we also saw adhesion threads, e.g. 

Psx. taiwanesis, M. silvanus, Staph. epidermidis and the native colonisers of barley kernels, 

the true nature of adhesion organelles remains to be elucidated.  

 

Flagellar motility has been reported to an important factor for adherence and for biofilm 

formation for many human pathogens (Table 1). Results in papers I and II and in this thesis 

showed, that also non-flagellated biofilm forming bacterial species are capable of adhering 

to abiotic surfaces under hydraulic flow. Such bacteria were exemplified by the species D. 

geothermalis, M. silvanus, Psx. taiwanensis and Staph. epidermidis, none of which is 

flagellated (compiled in Table 2). Deinobacterium chartae is further example of a non-

flagellated, biofilm forming bacterium (paper IV, Table 7 in this thesis). Convective 

transport with the liquid flow may provide the energy needed for the non-motile bacteria to 

penetrate the diffusion layer and to reach the abiotic surface.  
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Fig. 19. FESEM micrographs of 2 days old native biofilms on the epidermis of a steeped barley 
kernel. Panel A shows the biofilm located in between the testa and the outer epidermis of the 
kernel. It shows numerous microbes, exopolymeric matrix and the kernel epidermis (be). Panels 
B and C show biofilm bacteria on the barley biofilm adhering to one another and to the kernel 
surface (white arrow heads). Panel D shows bacteria embedded in fibrous slime (black arrow 
heads). Panels E and F show bacteria embedded in amorphous slime (white arrows). 
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4.2.2 Bacteria respond to the quality of an abiotic surface  

Ultrastructures of the single species biofilms formed by four unrelated species of bacteria, 

representing three different phyla, were investigated by field emission scanning electron 

microscope (FESEM) in paper II. Cultures of the bacteria were grown under high liquid flow 

for  2  days  at  45°C on  coupons  of  coated  and  non-coated  stainless  steels.  In  Figs.  1  to  5  in  

Paper II it was already shown that each of the four biofilm forming bacteria possessed a 

different cell surface ultrastructure depending on whether it grew in planktic form or as a 

monoculture biofilm. Expanding on this, we describe below that these bacteria adapted the 

types of their adhesion organelles, cell morphology and the strategy for forming biofilm, to 

the surface they were colonising. 

D. geothermalis showed numerous adhesion threads of various lengths and thicknesses 

connecting cells to one another and to steel surface. The cells that adhered onto 

fluoropolymer coating produced threads thinner and fewer in number than those observed on 

steel (Fig. 4 in paper II). This was also observed in paper I. The threads mediating adhesion 

of D. geothermalis to  steel  and  to  TiO2 coated steel coupons were fewer in number but 

longer  and  thicker  than  those  on  the  cells  adhered  to  glass  (Figs.  1  to  5  in  paper  I).  Later  

Peltola et al. (2008a) showed by CLSM, that the adhesion of D. geothermalis to acid proof 

steel was partly mediated by molecules with lectin specificities different from those adhering 

to glass. Staph. epidermidis (PIA+) produced both thick and thin appendages on steel, but 

used only the thin adhesion threads on coated steels. Furthermore, the colonies appeared less 

slimy on fluoropolymer coated steel compared to those on plain steel. The fluoropolymer 

coating on steel appeared to induce downregulation of the formation of the adhesion threads 

as compared to plain steel.  

M. silvanus formed giant cells (> 20 µm long) when adhered onto DLC coated steels or 

to non-coated steels, but no such cells were seen among those that adhered to fluoropolymer 

coated steels (Fig. 3 in paper II and Fig. 20 in this thesis). Biofilms on hydrophilic surfaces 

(DLC,  =  79°  to  91°)  contained  a  large  number  of  elongated  cells  but  the  biofilms  on  

hydrophobic surfaces (fluoropolymer,  = 111° to 115°) contained none. Thus, the number 

of  giant  cells  responded to  the  contact  angle  of  the  substratum (Table  3  in  paper  II).  Giant  

cells were also observed among M. silvanus cells that adhered to glass (not shown), which is 

a hydrophilic surface. The change of the cell shape is impossible to explain based on any 

artifacts from sample preparation. 
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There was large amounts of cell ghosts (lysed cells) among the intact looking Psx. 

taiwanensis cells adhered on non-coated steel, DLC coated steel and glass (Fig. 2 in paper II 

and Fig. 18 in this thesis).  

None of these morphological features of those four phylogenetically remote bacterial 

species were present on cells of the same strains if grown in the same medium and 

temperature in liquid culture (Fig. 1 in paper II and Fig. 17 in this thesis).  

As a summary, when investigating the ultrastructure of four totally unrelated bacterial 

species adhered on surfaces we came across the surprising finding that each of these four 

bacteria  used  a  different  mode  of  adhesion  onto  plain  steel  compared  to  that  used  by  the  

same species on the same steel coated with diamond like carbon (DLC) coatings or 

fluoropolymers.  The  adhesion  organelles  of  D. geothermalis and Staph. epidermidis were 

shorter and thinner when growing on steels coated with fluoropolymers or with DLC 

coatings than those of the same bacteria on the same steel with no coating, immersed in the 

same medium at the same temperature. In addition, giant cells or cell ghosts were present 

frequent in the biofilms formed by M. silvanus and Psx. taiwanensis on stainless steel coated 

or not coated with DLC, but absent on steels coated with fluoropolymers.  

We conclude from these observations that the four studied bacteria were capable of 

sensing the quality of the surface they are adhering to and adapted to it.  

 

After the confocal scanning laser microscopy (CLSM) was applied to biofilm research in 

1990s, the use of electron microscopy has diminished substantially. The reason for this is 

understandable: Electron microscopy of biological samples requires pretreatments, fixation 

and dehydration. Additionally, transmission electron microscopy (TEM) requires staining, 

embedding and sectioning. Scanning electron microscopy (SEM) requires coating of the 

specimens with metallic vapours. Extensive sample preparation can cause severe artifacts, 

distort the structures and change interactions between the components, for instance, by 

removing the lipids soluble in solvents used for the dehydration. Interpretation of the images 

thus requires caution. For CLSM the samples can remain fully hydrated which reduces the 

risk for artifacts. Yet, electron microscopy has a major advantage compared to light 

microscopy: its ultrahigh resolution. Highest possible magnification in light microscopy is 

1000 ×, in electron microscopy 200000 × can be reached. Nevertheless, the results acquired 

using electron microscopy should be confirmed by other techniques to rule out artifacts. 
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Fig. 20. FESEM micrographs of the paper machine biofilm isolate Meiothermus silvanus B-
R2A5-50.4 adhered on coated and non-coted steels. Panel A shows M. silvanus cells adhered on 
acid proof steel AISI 316L/2B (steel #2 in Table 2 in paper II). Plenty of cells occurred in chains 
and  few  giant  cells  are  visible.  Panel  B  shows  chains  of  M. silvanus cells adhered on another 
brand of acid proof steel (steel #1). Also here a giant cell is seen. Panels C, D show M. silvanus 
giant cells adhered on diamond like carbon coatings on steel#2 (DLC-A and DLC-B, 
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respectively). Panels E, F show M. silvanus adhered on fluoropolymer coatings on steel #1 (Ar-
115  and  AR-221,  respectively).  No  giant  cells  were  found.  Panel  F  shows  that  M. silvanus cells 
only adhered into the crevices of the AR-221 fluoropolymer coated steel.  

 

4.3 Oxalate and silicate in deposits formed in a paper mill (a case study) 

Sometimes petrified deposits accumulate in paper mill water circuits. Petrified means 

that the deposit is insoluble in water or cleaning liquids used to clean the machines (warm 

aqueous 1% NaOH or surfactants). We addressed the question whether microbes play a role 

in the formation of such deposits? 

Petrified deposits (Fig. 21) were obtained from a paper mill. They originated from the 

pulper (75°C, pH 10, “pulper deposit”) and from the vacuum pump (45°C, pH 7.8, “pump 

deposit”) of a paper machine using recycled fibre as raw material.  

 
Fig. 21. Petrified deposits from a paper mill. Panel A, deposit from a pulper (“pulper deposit”); 
Panel B, deposit from a vacuum pump (“pump deposit”) of the mill. 
 

 

The  deposits  were  insoluble  in  1  M  HCl,  indicating  that  carbonates  were  not  the  main  

constituent. The “pump deposit” contained 0.3 mg oxalic acid g-1 while oxalic acid could not 

be detected in the “pulper deposit” by assay conducted with commercial enzymatic kit. 

Enzymatic assay may have been insufficient method for measuring oxalic acid from the 

deposits, since Ca-oxalate dissolves poorly.  

The deposits were air dried and inspected with SEM and CLSM (Figs. 22 and 23). SEM 

micrographs displayed a crystal of 10 µm × 5 µm on the surface of the “pulper deposit”. On 

the “pump deposit” fungal hyphae and spores were visible.  
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Fig. 22. Scanning electron micrographs (SEM) of deposits from a paper machine using recycled 
fiber;  Panels  A and B show a crystal  on the surface of  a  deposit  from a pulper of  the machine.  
Panels C and D show fungal hyphae and spores on surface of the deposit from a vacuum pump of 
the machine. 

 
Fig. 23 A deposit from a vacuum pump of a paper machine was stained with fluorescent labelled 
Triticum vulgaris lectin (green) and nucleic acid stain, SYTO60 (blue) and inspected by CLSM. 
The information was collected in reflection (=grey), in green (=green), red (=red), far red (=blue) 
channels. The figure shows fungal hyphae –like filaments. The lectin bound to some junctions of 
the filaments. SYTO60 (blue) indicates the locations where DNA or RNA is present. Thickness of 
the  optical  section  in  panel  a  was  24  µm  and  in  panel  b  16  µm.  The samples were prepared as 
described by Peltola et al., (2008a). The images are courtesy of Minna Peltola. 

 

CLSM micrograph of “pulper deposit” (Fig. 23), stained with the Triticum vulgaris 

(wheat germ) lectin and a nucleic acid reactive fluorochrome, shows the network of fungal 

hyphae on surface of the deposit. Some of the filaments (Fig. 23) appear to penetrate the 
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surface indicating that the organism may have grown inside the deposit. The Fig. 23 also 

shows that the filaments were living material since they were positive for nucleic acid 

specific fluorochrome SYTO60. This indicates that the filaments contained DNA and /or 

RNA. Fig. 23 B shows lectin binding to certain parts of the filaments, indicating growing 

points of the organism. The Triticum vulgaris lectin is specific for -GlcNac, sialic acid and 

GlcNAc( 1,4)GlcNAc. The binding of the lecting thus indicates the presence of bacterial 

(murein) or fungal (chitin) cell wall material. The lectin showed also unspecific binding, 

maybe to pulp material of the paper machine (Fig. 23 A). 

 
Fig. 24. EDS spectra of two petrified deposits from a paper mill. The deposits were gilded (Au) 
before the EDS-analysis. Panel A, “pulper deposit” (overall spectrum); Panel B, a crystal from 
the “pulper deposit”; Panel C, “pump deposit”; Panel D, Model substance Ca-oxalate. 

  
The deposits were air dried and analysed for chemical elements using EDS (Energy 

Dispersive Spectrometry, Fig. 24). Both deposits contained calcium as the main metal. The 

EDS spectrum of the “pump deposit” (Fig. 24 C), prepared of gilded sample (explaining the 

Au)  resembles  that  of  calcium  oxalate  (reference  material,  shown  in  panel  D).  The  EDS  

spectrum  of  the  “pulper  deposit”  (Fig.  24  A)  also  resembles  that  of  calcium  oxalate.  EDS  

analysis (Fig. 24 B) of the crystal (Fig. 22 A and B) found in the “pulper deposit” gave 

signals of silicon (Si) and carbon (C). In other areas of the “pulper deposit” there was less or 
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no Si (Fig. 24 A). Silicon and oxalate have been associated with microbially influenced 

corrosion (MIC) of steel in conditions prevailing in paper machine (Uutela et al., 2003). 

Uutela et al. (2003) reported that the corrosion pits formed on steel accumulated large 

amounts of silicon containing ovoid particles of the shape and the size similar to those seen 

in Fig 22 B. 

We  cultured  the  deposits  (Fig.  21)  on  an  agar  to  which  a  blue  stain  (Victoria  Blue  B),  

CaCl2 and pulp (pine wood cellulose and CTMP) were added. The blue agar allows detection 

of the light coloured calcium oxalate deposits surrounding colonies of oxalic acid producing 

bacteria. Colonies surrounded by light zones were thus searched for. Seventeen such isolates 

were subcultured (7 d at 45°C 160 rpm) in R2 broth amended with softwood pulp and 

sodium pyruvate. Concentrations of soluble oxalates were determined in the growth medium. 

Seven isolates produced oxalic acid 15 to 22 mg l-1 after  the  7  d  cultivation.  None  of  the  

oxalic acid producing isolates was from the “pump deposit”, suggesting that the putative 

oxalic acid was formed by the fungi which were seen in the micrographs (Figs. 22 and 23). 

Our attempts to subculture the oxalate producer(s) from this deposit failed.    

These results show that petrified deposits from paper mill most likely contained calcium 

oxalate. Other possible constituents, insoluble in dilute acids, such as calcium phosphate, 

calsium sulphate and polythionates were excluded bacause these should have given a 

phosphorus or sulphur signal in EDS, respectively. In EDS only carbon, calcium and oxygen 

signals were seen for the “pump deposit” and additionally silicon (Si) for the “pulper 

deposit”, indicating the presence of silicates. The deposits also contained microbiota. The 

organisms may have been involved in the synthesis or in the utilization of the petrified 

substance (possibly calcium oxalate) and of the silicon containing crystal.  

 

4.4 Do microbes penetrate ceramic coating materials? 

We measured the penetration of bacteria into and through ceramic with materials 

prepared by our collaborating laboratory (Ceramic materials laboratory, Technical 

University of Tampere, TUT). The ceramic sheets of five different compositions, were 

silicon  glued  on  coupons  of  sterilised  stainless  steel.  These  coupons  were  immersed  in  

sterilized white water from a paper machine amended with yeast extract, starch, sodium 

pyruvate, sodium thiosulphate and calcium chloride, and inoculated with the oxalic acid 

producing M. silvanus strain ox-13 and the biofilm former D. geothermalis strain E50051. 

After 17 d of shaking at 45°C the ceramic sheets were removed carefully from the steel 

coupons and both the ceramic sheet and the steel coupon surfaces were fluorescently stained 



Results and discussion 

89 
 

and examined with epifluorescence microscope. The micrographs (Fig. 25) show that a thick 

biofilm had formed on the surface of ceramic coating (Fig. 25 A) and that a number of 

bacteria had penetrated the ceramic and adhered on the underlying steel surface (Fig. 25 B). 

The results obtained with different ceramic coatings were largely similar. The steel coupons 

were boiled in HCl and the oxalic acid concentrations were measured using an enzyme assay. 

No soluble oxalates were detected from the steel surfaces.  

The results demonstrated that penetration of bacteria through the ceramic coating 

material does occur. Thus, such penetration could take place also on the ceramically coated 

steel rolls of the paper machine press section.  

 

 
Fig. 25. Epifluorescence micrographs of the ceramic sheet and the steel surface after 17 d 
immersion in nutrient supplemented white water. The coupons were stained with acridine 
orange. Panel A, thick biofilm had formed on a ceramic sheet (75 % CrO3, 25 % TiO2); panel B, 
bacterial cells had penetrated the ceramic coating and adhered on the steel surface. 
 
 
4.5 A novel bacterial taxon, Deinobacterium chartae gen. nov. sp. nov., isolated from a 

paper machine 

We characterized and described the strain K4.1 isolated from a paper machine biofilm. It 

represented a novel genus, named by us Deinobacterium, and a novel species, 

Deinobacterium chartae (paper IV). The strain K4.1T originated from a biofilm growing in 

the wire section of a Finnish paper mill producing folding boxboard. Temperature at the site 

of isolation was 45 – 50°C. 16S rRNA gene sequence analysis showed that the strain K4.1T 

was closest to the type strains of Deinococcus pimensis (90.0 %) and D. pereridilitoris 

(89.6 %) and that the strain K4.1T formed a separate branch inside the phylum Deinococcus-

Thermus, vicinal to the genus Deinococcus. The maximum likelihood tree, constructed for 
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the 16S rRNA gene sequences of the strain K4.1T and  50  validly  described  species  of  the  

phylum Deinococcus-Thermus is shown as a supplementary Fig. S4 in paper IV.  

Figs. 26 to 27 and Table 7 display some features of this novel genus and its novel species. 

Fig. 26 A shows malachite green and Gram–stainings of the strain K4.1T, showing that this 

strain produced no endospores. The strain K4.1T stained Gram-negative, was a rod shaped 

bacterium and changing the length of its cells with growth temperature from 0.8-1 µm at 

37°C to 1-2 µm at 45°C (Fig. 26 C and D) when grown on TSA plates. Paper IV showed that 

cells of the type strain K4.1T of the novel species were longer when grown in a nutrient rich 

liquid broth (TSB) than on TSA plates. The cell length was from 3 µm to 8 m at 45°C when 

grown for 1 d and filamentous (up to 40 m) after 2 d (Supplementary Fig.  S1 in paper IV 

and Fig. 26 E and F in this thesis). 

 

 

Table 7. Characteristics of Deinobacterium chartae type strain K4.1T 

 Deinobacterium chartae 

Phylum Deinococcus-Thermus 

Metabolism Aerobic, chemoorganotrophic 

Cell wall The cell envelope had a less complex multilayered appearance than that of many 
Deinococcus species. The strain K4.1T did not have capsule-like structure 
surrounding the cell like D. geothermalis. 

Flagelli 0 

Fimbriae Not detected 

G + C mol% 66.8 

Cell 
morphology 

Stains Gram-negative but has features of Gram-positive bacteria. Rod 0.8-1.3 µm 
× 1.4-2.5 µm, non-motile, nonsporing 

Pigment Pale pink colonies on R2A at 45°C 

Peptidoglycan 
type 

A3  (L-Orn - Gly – Gly) 

Respiratory 
quinone 

Menaquinone 8 

Optimum T°C 37 to 45 

Isolation site Biofilm collected from a Finnish paper machine 

Other Radiation resistant  

Reference Paper IV 
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Fig. 26. Light microscopic images showing morphology of Deinobacterium chartae K4.1T. 
Panels  A and B show malachite green -stainings of  Deinobacterium chartae, gen.  nov,  sp.  nov. 
strain K4.1T grown on tryptic soy agar (TSA) plates for 5 d (panel A) and reference spore former 
Bacillus cereus F4810/72  (panel  B)  grown  similarly.  The  spores  in  B. cereus culture stained 
turquoise. No endospores were present in the culture of Db. chartae K1.4T.  Panel  C,  Gram-
stained Db. chartae K4.1T grown on TSA, 37°C for 1 d and Panel D, TSA at 45°C for 1 d. Panels E 
and F, phase-contrast images of cells grown  in  tryptic  soy  broth  for  1  d  and  2  d  at  +45  °C,  
respectively. 
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Cell surface ultrastructures of the strain K4.1T were examined with scanning electron 

microscope  (Fig.  1  in  paper  IV,  Fig.  27  in  thesis).  Cell  surface  of  Db. chartae K4.1T, gen. 

nov. sp. nov. was smooth (Fig. 27), and no shrinkage due to sample preparation, 

characteristic to the appearance of the outer membrane of Gram-negative cells was seen. The 

transmission electron micrographs (Fig. 28) revealed a typical Gram-positive cell wall 

morphology,  with  no  outer  membrane  (Fig.  1  C  in  paper  IV,  Fig.  28  in  this  thesis),  even  

though the strain K4.1T stained Gram-negative.  

 
Fig. 27. Field emission scanning electron micrographs of the type strain K4.1T of 
Deinobacterium chartae, gen. nov, sp. nov. The figure shows smooth ultrastructure of the cell 
surface. For FESEM Db. chartae was grown in R2-broth for 3 d at 37 °C. 

 

According to TEM image (Fig. 1 C in paper IV) the cell envelope of Db. chartae K4.1T 

was multilayered but less complex than that of Deinococcus species  (Battista  and  Rainey,  

2001, Ferreira et al., 1997). Db. chartae K4.1T cell envelope was very different from that of 

D. geothermalis E50051, also isolated from paper machine (Fig. 1 D in paper IV). The 

thinsection of the Db. chartae K4.1T resembled that of D. radiopugnans (Battista and Rainey, 

2001). Several kinds of inclusion bodies were detected in Db. chartae K4.1T with TEM (Fig. 

S2 in paper IV, Fig. 28 in thesis). Part of the inclusion bodies fluoresced yellow when 

stained with DAPI, indicating polyphosphate (Tijssen et al., 1982). According to a review by 

Shively (1974) polyphosphate granules (volutine) are widely distributed in prokaryotes and 

occur  at  a  fairly  constant  number  during  the  exponential  phase  of  growth  and  decrease  in  

number under limiting phosphate conditions. Polyphosphates are known to function as 

energy storage or as a phosphate reserve (Shively, 1974). The D. radiodurans strains SARK 

and R1 are also known to contain round inclusion bodies (Battista and Rainey, 2001). 
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Fig. 28. Transmission electron micrographs of thin sections of Deinobacterium chartae, gen. 
nov, sp. nov. strain K4.1T.  Panel  A  shows  cell  size  and  morphology,  Panel  B  the  cell  wall  
structure, Panels C to F show inclusion bodies, presumably polyphosphate granules (black arrow 
heads) and lipid granules (white arrow heads). For ultra thin sections the strain K4.1T was grown 
on TSA for 3 d at 37°C or 45°C. 

 

The characteristics of Db. chartae, gen. nov, sp. nov. strain K4.1T, i.e. growth at 45°C, 

utilisation of starch, ability to form biofilms and plausible resistance to desiccation 

(connected to radiation resistance, Supplementary Fig. S3 in paper IV), show that this 

bacterium is adapted for conditions prevailing at paper machines.  
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5 Conclusions 

 
1. Electron microscopic analysis of adhered and not adhered cells of Staphylococcus 

epidermidis, Meiothermus silvanus, Pseudoxanthomonas taiwanensis and Deinococcus 

geothermalis showed that these strains adhered on abiotic surfaces by using adhesion 

threads. 

 
2. We found remarkable differences in the ultrastructural details of adhered cells of the 

Staphylococcus epidermidis, Meiothermus silvanus, Pseudoxanthomonas taiwanensis 

and Deinococcus geothermalis under same conditions on different abiotic surface 

materials. These four bacterial species sensed the quality of the abiotic surface and 

responded accordingly.  

 

3. Results in this thesis showed that biofilms of D. geothermalis on titanium dioxide 

coated coupons of steel or glass were destroyed (1 to 2 log units) by photocatalysis 

generated by titanium dioxide irradiated at 360 nm. The reduction in biomass was not 

detected on non-coated steel or glass. We showed that photocatalysis is a powerful 

technique for biofilm removal and applicable in water industries as well as for processes 

and facilities where high level of hygiene is required. 

 

4. This study showed that coating reduced biofouling of steel. Moreover, it showed 

great differences between the preferences of different bacterial species to adhere the 

various surfaces. In contrast to most biofouling studies, usually executed with a single 

strain  of  a  single  species,  we  used  four  biofilm  forming  species  of  widely  distant  

phylogenetic origins. We found that fluoropolymer and diamond like carbon coatings 

repelled all four biofilm formers, Staphylococcus epidermidis, Meiothermus silvanus, 

Pseudoxanthomonas taiwanensis and Deinococcus geothermalis on steel.  

 

5. We found new criteria to predict bacterial repellence by abiotic surfaces. The new 

parameters skewness (Ssk) and kurtosis (Sku), measured with AFM, were found 

important in predicting attractiveness of surfaces for bacteria forming biofilms. Surfaces 

with skewness values mildly positive, and kurtosis values around 7, were less prone to 

biofouling than surfaces with negative skewness value and kurtosis value around 4. 

Hydrophobicity/hydrophilicity, expressed by the water contact angle ( ), is traditionally 

believed to be an important parameter to predict biofouling. Our results indicated that 
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impact of this parameter for adherence greatly differed between bacterial species. D. 

geothermalis and M. silvanus preferred a hydrophilic surface (  < 90°) for adhesion 

whereas Psx. taiwanensis and Staph. epidermidis were more attracted to hydrophobic 

surfaces (  > 90°). 

 

6. This is the first study describing the factors determining adherence and formation of 

biofilm  for  the  bacterial  species  shown  as  essential  biofoulers  of  paper  machines.  For  

the first time the conditions determining adherence by species of Meiothermus and of 

Pseudoxanthomonas were described. 

 

7. We developed a method for quantifying biofilm by means of optical reading of the 

emitted fluorescence. This method can be applied for in situ quantification of biofilms 

directly on a surface. 

 
8. It was shown that starter cultures of Lactobacillus plantarum and of 

Wickerhamomyces anomalus entered the barley kernel and colonised the kernel tissues 

in concerted action when simultaneously dispensed in steeping water during the malting 

process. Use of these starter cultures decreased the formation of detrimental 

extracellular polymeric substances (EPS) during the steeping and positively influenced 

the mash properties. 

 

9. The family of biofilm formers in paper machines was expanded by a genus novel to 

science, Deinobacterium. Its species Db. chartae is validly described in this thesis.  

 

10. It was shown in this thesis that even petrified deposits from paper mills contained 

microbiota, in addition to calcium oxalate and silicates.  

 

11. It was demonstrated that bacterial penetration through a ceramic coating materials 

does occur under conditions (45°C, oligotrophic medium) prevailing at the paper 

machine wet end. Penetration thus could take place also on the ceramically coated steel 

rolls of the paper machine press section. 
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