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Abstract

Inflation is a period of accelerated expansion in the very early universe, which has the
appealing aspect that it can create primordial perturbations via quantum fluctuations.
These primordial perturbations have been observed in the cosmic microwave back-
ground, and these perturbations also function as the seeds of all large-scale structure
in the universe. Curvaton models are simple modifications of the standard inflationary
paradigm, where inflation is driven by the energy density of the inflaton, but another
field, the curvaton, is responsible for producing the primordial perturbations.

Since the curvaton must decay, it must have some interactions. Additionally real-
istic curvaton models typically have some self-interactions. In this work we consider
self-interacting curvaton models, where the self-interaction is a monomial in the po-
tential, suppressed by the Planck scale, and thus the self-interaction is very weak.
Nevertheless, since the self-interaction makes the equations of motion non-linear, it
can modify the behaviour of the model very drastically. The most intriguing aspect of
this behaviour is that the final properties of the perturbations become highly depen-
dent on the initial values.

Departures of Gaussian distribution are important observables of the primordial
perturbations. Due to the non-linearity of the self-interacting curvaton model and
its sensitivity to initial conditions, it can produce significant non-Gaussianity of the
primordial perturbations. In this work we investigate the non-Gaussianity produced
by the self-interacting curvaton, and demonstrate that the non-Gaussianity parameters
do not obey the analytically derived approximate relations often cited in the literature.

Furthermore we also consider a self-interacting curvaton with a mass in the TeV-
scale. Motivated by realistic particle physics models such as the Minimally Super-
symmetric Standard Model, we demonstrate that a curvaton model within the mass
range can be responsible for the observed perturbations if it can decay late enough.
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Units and Conventions

In this work we use natural units, i.e., we set three constants of nature to unity,

„ D c D kB D 1 :

For most of this work, we use units of electronvolts, eV, or multiples thereof, such as
gigaelectronvolts, GeV, as the measure of energy and consequently all dimensionful
quantities.

We denote the reduced Planck mass by

MPl D

r
„c

8�G
:

In the three papers, on which this thesis is based, we set the reduced Planck mass
often to unity, i.e., express all dimensionful variables as powers ofMPl. Nevertheless,
we refrain from setting it to unity in the main text.

For Fourier transforms we use the normalization convention where the factors of
2� are included in the inverse transformation,

f .x/ D

Z
d3k
.2�/3

eik�xfk ; fk D

Z
d3x e�ik�xf .x/ :

As most of this work is concerned with investigating the evolution of certain
quantities from the end of inflation to some much later point in time, we adopt the
short-hand notation where the subscript � denotes a quantity evaluated at the end of
inflation, e.g. H� is the Hubble constant at the end of inflation.

In the literature there has been a mixture of notations concerning the factor r . It
denotes the energy density of the curvaton �� compared with the total energy den-
sity of the universe. For this work we adopt a very useful, though a bit inconsistent
notation where r denotes the energy fraction in the curvaton field,

r �
��

†i�i
;

while r� describes the energy density of the curvaton compared to that of the back-
ground at the end of inflation,

r� �
��

�r

ˇ̌̌̌
end of inflation

;
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and rdec, in discrepancy with the preceding definition of r , measures the quantity often
referred to as r in the literature,

rdec �
3��

3�� C 4�r

ˇ̌̌̌
curvaton decay

;

also called the efficiency factor. Note that these definitions somewhat differ from the
notation used in the attached publications.
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Chapter 1

Introduction

Modern cosmology offers a detailed description of the evolution of the universe from
its very first picoseconds until the present day. It predicts accurately the amount of dif-
ferent elements present in the universe [4–6], and it explains the evolution of structure
on large scales as well as the formation of non-linear structures on smaller scales. This
standard description of the universe is often calledƒCDM, comparable to the Standard
Model of particle physics. ƒCDM however has several ingredients which invite a more
rigorous understanding: What is the nature of dark matter and dark energy, what is
the source of the baryon asymmetry in the universe, and what is the mechanism for
inflation in the very early universe?

The topic of this thesis is the generation of primordial perturbations in curvaton
models. The primordial perturbations are usually thought to originate during infla-
tion, and they function as the primordial seeds for all structure in the universe: stars,
galaxies, clusters etc. The curvaton models are a modification of the run-of-the-mill
inflationary models.

1.1 Friedmann-Robertson-Walker Cosmology

The universe is described exceptionally well by a spatially homogeneous and isotropic
universe. The most generic metric realizing these symmetries is the Friedmann-
Robertson-Walker cosmology [7–11], described by the metric

ds2 D �dt2 C a2.t/

�
dr2

1 �Kr2
C r2d�2 C r2 sin2� d�2

�
: (1.1)

Here K determines the geometry of slices of constant time: The case K D �1 corre-
sponds to a hyperbolic universe, K D 1 corresponds to a closed universe, and K D 0

to a flat universe. Observationally we know thatK is extremely close to zero [12, 13],
and thus henceforth we set it to zero.



2 Introduction

The scale factor a.t/ encodes information about the evolution of distances in the
universe, and its evolution determines the expansion of the universe. Due to the afore-
mentioned symmetries of the FRW-model, the scale factor can have evolution only in
time. The time evolution of a.t/ is determined by the energy content of the universe.
The equation of motion for a.t/ is to be derived from equations of motion for the
whole metric, which in general relativity are given by the Einstein equations

R�� �
1

2
Rg�� D 8�GT�� : (1.2)

Here the metric g�� is the fundamental dynamical quantity, whereas R and R�� are
respectively the Ricci scalar and the Ricci tensor, which encode information of the
curvature of the metric. They consist of derivatives of g�� , and their computation is
discussed in more detail in section 2.3.

The information about the energy content of the universe is given by the energy
momentum tensor. In the rest frame of an ideal fluid the energy-momentum tensor can
be written as T �� D diag.��; p; p; p/, and thus the continuity equation r�T

�� D 0,
analogous to the energy and momentum conservation in flat space, can be written as

P�C 3H.�C p/ D 0 ;

where � and p are the energy density and pressure, and H is the Hubble parameter,
H � Pa=a, which measures the expansion speed of the universe. For a fluid with a
constant equation of state parameter w � p=�, a scaling law can thus be written (see
also section 3.2 for the case of homogeneous oscillating fields) for the energy density:

�.t/ / a�3.1Cw/.t/ :

The Einstein equation (1.2) has two free indices, and is thus actually a set of
4�4�6 D 10 equations. Nevertheless, due to the symmeries of the FRW metric only
very few of the equations are independent. Writing the 0 � 0 and i � i components
separately, and substracting them from each other, one ends up with the Friedmann
equations,

H 2
D

�
Pa

a

�2
D
8�G

3
� (1.3)

Ra

a
D �

4�G

3
.�C 3p/ : (1.4)

Here the dot denotes the usual temporal derivative,

P �
d

dt
:

The Friedmann equations encode the information of how the energy content of
the universe affects the expansion of the universe. The scale factor a.t/ in the metric
of the equation (1.1) is thus to be solved for in the Friedmann equations.



1.2 The Hot Big Bang and the CMB 3

The coordinates in equation (1.1) correspond to physical time and comoving spa-
tial coordinates, meaning that while the time coordinate t is the actual time measured
by a comoving observer, the fixed coordinate distances correspond to increasing phys-
ical distances due to the evolution of a.t/. Often it is more convenient to use confor-
mal time �, defined by the infinitesimal expression

d� D
dt
a.t/

: (1.5)

Intuitively this means that the new time coordinate scales according to the evolution
of a.t/, similarly to the spatial coordinates. The metric in these new coordinates reads

ds2 D a2.�/
�

� d�2 C dxidxi
�
:

As with the physical time t , we define a temporal derivative with respect to the
conformal time �,1

0
�

d

d�
:

We also define the conformal Hubble parameter,

H �
a0

a
:

Using conformal time can often simplify calculations. We alternate between us-
ing physical and conformal time from calculation to calculation according to which
choice makes the notation simplest.

1.2 The Hot Big Bang and the CMB

Several observations, including the redshift of distant galaxies [14], are explained
by the expansion of the universe [7]. Indeed, solving for the evolution of the scale
factor a.t/ by inputting the energy content of the universe into the Friedmann equation
results in an expanding solution. The consequence of the expansion is of course that
as we go back in time the universe becomes more dense and correspondingly hotter.
This is the basic idea that we call the hot Big Bang.

Some of the most concrete evidences for the hot Big Bang is the cosmic mi-
crowave background, or CMB [15]. In the very early universe the temperature of the
primordial plasma was very high, and thus the plasma was completely ionized. Af-
ter large amount of expansion, the temperature dropped sufficiently for the plasma to
start to recombine into electrically neutral atoms. As the universe turned electrically
neutral, the mean free path of photons suddenly increased by several orders of magni-
tude and the photons started to propagate effectively freely. While these photons had

1Note that 0 is used to denote a derivative not only with respect to conformal time but also with respect
to a scalar field. Nonetheless, it is usually clear from the context what is meant with this notation.



4 Introduction

a large energy early on, i.e., the temperature of decoupling, the photons have been
redshifted by the expansion of the universe all the way to the microwave part of the
electromagnetic spectrum in current times, and thus the microwave photons produce a
background: Everywhere we look in the sky we can observe the microwave radiation
originating from the primordial universe. The measurement of the CMB [13, 16, 17]
and the intricacies of its spectrum is the source of the most accurate and reliable in-
formation about the early universe, and thus it is referred to in this work on several
occasions.

1.3 Inflation

While standard Big Bang cosmology is otherwise extremely successful in explain-
ing the observable universe, it has trouble explaining the initial conditions which are
required for the evolution of the universe to match observations.

The CMB, which encodes information about the variations in energy density in
the early universe, is extremely homogeneous; in fact, it has temperature perturbations
with a relative magnitude of only 10�5. However, the (comoving) diameter of the sky
that we observe today is much larger than the length of causal propagation from the
Big Bang until CMB decoupling. This means that the different regions in the CMB
sky appear to have had no causal contact with the other regions, yet they all still have
the same properties, near perfect homogeneity and isotropy. How can these regions
have the same temperature if they have never been in contact with each other? This is
called the the horizon problem.

Furthermore, the spatial geometry of the universe is extremely flat. The energy
density of the universe is extremely close to the critical density �c � 3H 2=8�G, or
� � �=�c ' 1. However, � D 1 is typically not an attractor, but rather an unstable
value. This can be seen by writing the evolution equation for � [18]

d�

d ln a
D .1C 3w/�.� � 1/ ; (1.6)

where w is the equation of state parameter of the constituents of the universe. This
clearly states that for w > �

1
3

, � D 1 is unstable. Thus if � is so close to its
critical value now, � must have been extremely close to the critical value in the very
early universe. Can we explain why this was so? This problem is called the flatness
problem.

The solution to these problems is inflation, as suggested by Guth in 1981 [19]
with similar ideas already put forward earlier by Starobinsky [20, 21]. The idea is
that the radiation driven thermal expansion history of the universe is modified by a
period of exponential or quasi-exponential expansion of the universe early on. After
several number of e-folds, the universe reheats in a process where the energy driving
inflation decays into ordinary degrees of freedom, after which the standard thermal
history continues.
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Inflationary universe corresponds to the Friedmann-Robertson-Walker-universe
with

a.t/ / eHt :

This space is also called de Sitter space. Using the first Friedmann equation (1.3), we
get

� D 3M 2
PlH

2 :

This means that since H is constant, so is the energy density. Since

� / a�3.1Cw/ ;

we can also conclude that w D �1, fulfilling the condition of equation (1.6). This
means that inflation is caused by any energy component with an energy density which
does not dilute in the expansion of the universe.

In conformal coordinates, integrating equation (1.5), we get

a.�/ D �
1

H�
;

where now the conformal time runs from �1, corresponding to infinite past, to 0,
corresponding to infinite future.

The original idea by Guth was that a scalar field would sit in a false vacuum,
and that the potential energy of this false vacuum would drive inflation. However,
this model was plagued with the problem of graceful exit: The false vacuum driven
inflation would never end. After several generations of inflationary paradigms, slow-
roll inflation [22–25] is nowadays considered to be the most well-accepted paradigm,
and several particle physics motivated models have been presented (for a review see
e.g. [26]).

Slow-roll Inflation

In single field slow-roll inflation, inflation is driven by a scalar field slowly rolling
down its potential — hence the name. A homogeneous scalar field with an action

S D

Z
d4x

p
�g

�
�
1

2
@�' @

�' � V.'/

�
has the pressure and energy density given by

� D
1

2
P'2 C V.'/ ; p D

1

2
P'2 � V.'/ : (1.7)

The equation of state parameter is then given by

w D
p

�
D

1
2

P'2 C V.'/
1
2

P'2 � V.'/
:
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Hence, if the potential energy of the field dominates its kinetic term, w can be close
to (but not smaller than) �1, and inflation ensues. This means slow evolution of the
field in the sense that h

1
2

P'2i < V.'/. Slow-roll inflation then corresponds to the limit
1
2

P'2 � V.'/.
Typically slow-roll inflation is parameterized by the so called slow-roll parame-

ters. The first of them, ", is defined by

" D
M 2

Pl

2

�
V 0

V

�2
; (1.8)

where the prime denotes a derivative with respect to the field. " describes the slope
of the potential at the point of inflation, and has to be small enough in order for the
kinetic energy to be sufficiently small. The limit " D 0 corresponds here to the exact
de Sitter space limit.

The other slow-roll parameter is �,2 defined by

� D M 2
Pl
V 00

V
: (1.9)

�measures the curvature of the potential at the point of inflation. If " is small, inflation
ensues, however its duration is controlled by the magnitude of �: The potential has to
be flat enough in order for the acceleration of the field to be small enough.

Quite soon after the idea of inflation was presented, it was also realised in [27–29]
based on the work of [30], that inflation offers a natural mechanism to produce the
density perturbations of the universe. This property of inflation is nowadays consid-
ered to be perhaps the most convincing argument for inflation, and it is also the main
topic of this thesis.

1.4 Primordial Perturbations

The cosmic microwave background, which offers us our best view into the primordial
universe, has been observed to be extremely homogeneous [31, 32]. In fact, aside
from the dipole of the CMB which is due to the peculiar motion of our galaxy and
the solar system, the relative temperature perturbations in the CMB have the relative
amplitude of � 10�5. It is however these small perturbations that we are interested
in.

Observations on the later universe [33, 34] confirm that on large scale (i.e., on
scales much larger than clusters) the universe is very homogeneous. Nevertheless, the
smaller scales are populated by rich structure, e.g. galaxies, clusters, superclusters,
and quite importantly, stars and planets. These structures are formed by gravitational
collapse in what is called hierarchical structure formation: Structure starts to form

2� is also used to denote conformal time, as is " other quantities. Since " and � are mainly used in this
section, we however use the traditional notation here.
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by gravitational collapse first on the smallest scales, and later on in the larger scales.
An important ingredient in hierarchical structure formation are the same primordial
perturbations that we observe in the CMB: These perturbations act as the initial seed
for structure. Small initial overdensities will collapse to form first protostars, and later
on galaxies and clusters.

To quantify the initial perturbations, we use several observables. The most im-
portant of them is the amplitude of the perturbations, which is often expressed by
the power spectrum (defined later in equation (2.19)). The amplitude for the power
spectrum at astrophysical scales is given by

2

5

p
PR D 1:91 � 10�5 ; (1.10)

often called the COBE normalization according to the first experiment to measure the
perturbations accurately. Another observable is the spectral index, which expresses
how blue- or red-tilted the spectrum is, i.e., whether there are more over and under-
densities in the smaller or larger scales. Observations are consistent with the spectral
index being unity, meaning that the perturbations have been observed to be almost
scale-invariant. Yet another observational quantity is the amount of non-Gaussianity
in the primordial perturbations. This is usually quantified by the non-Gaussianity pa-
rameters fNL and gNL as discussed in chapter 4. The current observational limits are
consistent with fNL and gNL being zero. Thus we can conclude that the primordial
perturbations have been observed to be nearly scale-invariant, extremely Gaussian,
and they have the relative amplitude of � 10�5.

One of the biggest triumphs of the inflationary paradigm is that it offers a natural
mechanism to produce these initial perturbations, as is explained in chapter 3. In the
inflating universe the quantum fluctuations of fields are expanded to very large scales
and they turn into classical perturbations. Indeed, the properties of the primordial
perturbations offer us most of the little (indirect) observational insight into inflation
that we have. If not taking into account the properties of the primordial perturbations,
we know actually very little of inflation, mainly that it happened in relatively high
energy scale and lasted long enough for the scale factor to grow at least by a factor of
e60.
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Chapter 2

Cosmological
Perturbation Theory

To study the formation and evolution of density perturbations in the universe, we need
to develop cosmological perturbation theory. This means adding small perturbations
to the FRW universe, and seeing how these perturbations evolve. We consider here
only linear theory, and ignore all possible backreaction of the perturbations on the
background solution.

2.1 The Perturbed Metric
and Gauge Transformations

Adding perturbations to the metric of the background solution, we get

g�� D a2.��� C h��/ ;

where ��� is the flat metric of Minkowski space. The perturbations can now be writ-
ten1 �

h��
�

D

�
�2A �Bi
�Bi �2Dıij C 2Eij

�
;

or expressing this in terms of the line element,

ds2 D a2.�/

�
�.1C2A/d�2�2Bid� dxiC

�
.1C 2D/ıij C 2Eij

�
dxidxj

�
: (2.1)

Here we work in conformal time, since it simplifies the notation a bit for the time
being.

1The components of a tensor are, of course, not tensors. Thus, even though the notation A.�; x/,
Eij .�; x/ etc. is similar to real tensors, bear in mind that the scalar perturbations are not tensors.
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Naı̈vely the above metric has 1C 3C 1C 5 D 10 degrees of freedom. A general
gauge transformation has 4 degrees of freedom, corresponding to a 4-vector, and thus,
the metric has 6 physical degrees of freedom. The physical degrees of freedom can
be furthermore divided into scalar, vectorial and tensorial degrees of freedom. By
dividing the tensorial part into a trace, a traceless tensor, and a gradient of a vector,
and then the vector fields to two parts, the first one with zero curl and the second one
with zero divergence, we can write

�
h��

�
D

�
�2A B;i � BVi

B;i � BVi 2D CE;ij �
1
3
ıij ı

klE;kl �
1
2
.Ei;j CEj;i /CETij

�
:

(2.2)
Here now ETij is transverse and traceless, and BVi has zero divergence.

According to the decomposition theorem (see e.g. [35, 36]), perhaps quite supris-
ingly, the scalar, vectorial and tensorial degrees of freedom do not interact in first order
perturbation theory. Indeed, vector perturbations have only decaying solutions, where
as the tensorial modes obey a wave equation, and are responsible for gravity waves.
We are interested in the perturbations in the density of matter (i.e., the temperature of
the CMB) or alternatively the curvature of space. These correspond to scalar modes,
and thus, because of the decomposition theorem, to follow their evolution we can
solve for them without caring what happens to the other DOFs. However, it is note-
worthy that since the decomposition theorem applies only at first order in perturbation
theory, second order vector and tensor perturbations are generated automatically even
if they were initially zero [37].

With only the scalar perturbations the metric reads

ds2 D a2.�/
˚

�.1C 2A/d�2 C 2B;id� dxi C
�
.1 � 2 /ıij C 2E;ij

�
dxidxj

	
;

(2.3)
where we have defined

 � D C
1

3
r
2E :

A general (infinitesimal) coordinate transformation has four degrees of freedom,

Qx˛ D x˛ C �˛.�; Ex/ : (2.4)

However, if we start in a gauge with only scalar perturbations, we can end up in a
gauge with vector perturbations. These perturbations are, however, pure gauge, and
thus of no interest. Such spurious gauge transformations can be avoided by limiting
the gauge transformations of equation (2.4) to the form [38]

Q� D �C �0.�; Ex/ ;

Qxi D xi � ıij �;j .�; Ex/ :
(2.5)

To find out how the components of the metric transform under the gauge trans-
formation of equation (2.5), one writes the expression for the line element ds2 and
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requires it to be invariant, i.e., of similar form to equation (2.3). This results in the
transformation laws for the components of the metric perturbations:

QA D A � �0
0
�
a0

a
�0 (2.6)

QB D B C � 0
C �0 (2.7)

Q D  C
a0

a
�0 (2.8)

QE D E C � (2.9)

In the unperturbed FRW universe the energy momentum tensor reads

T �� D .�C p/u�u� C p a2��� ; (2.10)

where u� is the four-velocity of the fluid in the universe. Because the universe is
isotropic, the four-velocity cannot have a spatial component, and thus ui D 0. Fur-
thermore since the norm of the vector must be u�u� D �1, the unperturbed velocity
must be

u� D .1=a; 0; 0; 0/ :

If we add perturbations to the energy momentum tensor, it then reads

T 00 D �� � ı�

T 0i D .�C p/vi

T i0 D �.�C p/.vi � B ;i /

T ij D ıij .p C ıp/C†ij ;

where †ij is the anisotropic stress tensor. †ij is gauge invariant, while the other per-
turbations are not, and they transform according to

Qı� D ı� � �0�0 (2.11)
Qıp D ıp � p0�0 (2.12)
Qıq D ıq C .�C p/a�0 : (2.13)

Here ıq is defined to be the momentum density, ıq;i D .�C p/ui .

2.2 Gauge Invariant Combinations
of the Perturbations

The scalar functions A, B ,  and E specify the scalar perturbations of the metric.
These functions are however gauge dependent, as is their evolution. Thus it would be
more convenient to deal with gauge invariant quantities. Since we have four functions,
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A, B ,  and E, but two free functions defining the gauge, �0 and �, we expect that
there are two “physical” degrees of freedom. The separation into these two degrees
of freedom is of course still arbitrary.

One choice of gauge invariant degrees of freedom are the so called Bardeen po-
tentials, which are given by

ˆB D AC H.B �E 0/C .B �E 0/0 (2.14)
‰B D  � H.B �E 0/ : (2.15)

By using the equations (2.6) - (2.9), it can be easily checked that ˆB and ‰B are
indeed gauge invariant.

Although ˆB and ‰B are gauge invariant, they evolve in time non-trivially. Thus
we define two other combinations of the scalar perturbations, which later on turn out
to have interesting evolution for super-horizon modes. We first define the curvature
perturbation on uniform-density hypersurfaces [39]

�� D  C
H
�0
ı� : (2.16)

The inspiration of the name of � is obvious: In a uniform-density gauge ı� D 0, and
� is just � , and  in the non-relativistic limit is just the Newtonian potential. The
minus sign is just an unfortunate relic of notation. We also define another gauge-
invariant variable, the comoving curvature perturbation [40, 41]

R D  �
H

�C p
ıq : (2.17)

Since a comoving gauge is defined by ıq D 0, in this gauge R D  .
It can be shown that (see e.g. the computation in [18]) that the difference between

�� and R is proportional to k2,

� C R /
k2

.aH/2
;

and thus, on large (superhorizon) scales �� and R coincide.

2.3 Evolution of the Perturbations

Until this point we have merely defined perturbed quantities. To find out how these
quantities evolve dynamically, one has to use their equations of motion. In the context
of general relativity, these are given by the Einstein equation (1.2), or

R�� �
1

2
R g�� D 8�G T�� :
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To find out the equations of motion for the perturbed quantities, one has to com-
pute both the left hand side and the right hand side expressions in terms of the pertur-
bations, and then expand the equation. To compute the LHS, one has to first calculate
the connection coefficients

�



˛ˇ
D
1

2
g
�

�
@ˇg˛� C @˛gˇ� � @�g˛ˇ

�
;

from which one then calculates the Riemann tensor

R���� D @��
�
�� � @��

�
�� C �

�

��
���� � �

�

��
����

and then contracts indices to get the Ricci tensor and scalar,

R�� � R���� ; R � R�� :

This is straightforward, but quite laborous. Similarly one has to calculate the pertur-
bations of the energy-momentum tensor T�� . After this lengthy calculation one ends
up with equation of motion for the different perturbations, describing their evolution.

We are interested however only in their super-horizon behaviour. In that case
using only the local conservation of the energy-momentum tensor, r�T

�
� D 0, yields

the result [42–44] on scales much larger than the horizon

P� D �
H

�C p
ıpnad C gradient terms ; (2.18)

where pnad is the non-adiabatic component of the pressure (see e.g. [45]). Indeed, by
assuming the gradients to be small, we see that the curvature perturbation is conserved
in super-horizon scales in the absence of non-adiabatic pressure. It is interesting to
note that the conservation of the super-horizon perturbations follows directly from
Poincaré symmetry of the underlying theory, and the form of the metric theory of
gravitation is of no importance. Its form only governs the evolution of the sub-horizon
modes.

The perturbation modes that we are interested in, that is those which are observ-
able today, enter horizon long after inflation. These modes evolve according to Ein-
stein equations, first linearly, but finally they form non-linear structures. The scope of
the present work is to study the generation of these perturbations modes, and for that
end their property that they are conserved while outside the horizon is sufficient.

2.4 The Power Spectrum

Consider a random variable f .x; t /. We define the power spectrum of this variable
by

hfk f
�

k0i D .2�/3ı.k � k0/
2�2

k3
Pf .k/ : (2.19)
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The reason for choosing the numerical prefactor 2�2=k3, can be understood by con-
sidering the expectationg value of f 2 in real space. Since f is real in real space, we
can write

hf 2.x/i D

Z
d3k
.2�/3

Z
d3k0

.2�/3
eix�.k�k0/

hfk f
�

k0i

D

Z
d3k
.2�/3

2�2

k3
Pf .k/

D

Z 1

0

dk
Pf .k/
k

;

thus Pf .k/ is the contribution to the variance per unit logarithmic interval in the
wavenumber k.

2.5 �N-formalism

Although first order perturbation theory appears to work extremely well in the early
universe, certain features of interest, such as non-Gaussianity, would require the us-
age of second-order perturbation theory. This is very cumbersome, and often a non-
perturbative alternative2 is practical. The method described here is usually called the
separate universe approach or �N -formalism [42, 46–51].

The metric can be written as [24, 50]

ds2 D �dt2 C a2.t/ e�2 .t;x/dx2 ;

where a.t/ is the scale factor of the background solution.
Now consider two patches, a and b, at fixed spatial coordinates, separated by

coordinate distance �. The large-scale curvature perturbation can then be defined by

ı D  a �  b ;

independent of the background. If we define the number of e-folds,

N.t2; t1;x/ D

Z t2

t1

dt H.t;x/ ;

where H.t;x/ is now the actual Hubble parameter, not that of the background solu-
tion, then we can write

ı .t/ D N.t; t0;xa/ �N.t; t0;xb/ ;

2The �N -formalism is a zeroth-order gradient expansion, and thus actually a perturbative method.
Anyhow, since the expansion is not done in the curvature perturbation, and thus encompasses it to all
orders, this is often called non-perturbative.
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or essentially
�� D �N :

Thus we can compute the evolution of the curvature perturbation by comparing the
number e-folds of two patches with initial conditions corresponding to the initial per-
turbation.

The evolution of these separate patches is in principle non-trivial, and should be
computed. Indeed the equation of motion for the patches can be calculated and shown
to coincide with the background equation of motion in a gradient expanson to first
order [24]. A more elegant argument is however given by Wands et al. [42]: There
has to be some scale �s for which the assumption that the separate patches evolve as
if independent background solutions, since if there were not, the concept of unper-
turbed Friedmann-Robertson-Walker universe would make no sense. By background
we mean an even larger scale, �0, with respect to which we define our perturbations.
Thus we actually require a hierarchy of scales,

�0 � � � �s ;

which merely states the fact that we assume that the universe is homogeneous on
very large scales, that we are interested in perturbations which are of smaller scale,
and that the evolution of these perturbations is independent of shorter wavelength
perturbations.

The �N formalism is very suitable for calculating, for example, non-Gaussianity
parameters, since�N incorporates all orders of �. It is also very suitable to numerics,
since the problem of solving the evolution of perturbations is reduced to solving the
background equations with different initial conditions.
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Chapter 3

Generating Perturbations

Inflationary models, including the curvaton model which is the main topic of this
thesis, have the general property that they are capable of producing the primordial
perturbations that we observe in the CMB and which seed all structure in the universe.
This amazing property is due to quantum fluctuations in the expanding universe: The
quantum fluctuations of a scalar field on scales much smaller than the horizon become
larger and larger as the universe expands, until they cross the horizon and become
classical perturbations of the field.

3.1 Quantizing a Scalar Field in de Sitter Space

We are interested in calculating the expectation value of quantum fluctuations of a
field. To do this, we need to quantize a scalar field in curved background. This
proceeds in analogy with the quantization of scalar fields in flat space-time. Since the
background is time dependent, the computation is easiest to perform using canonical
quantization. The procedure is the following:

1. Write the action and derive the equation of motion from that.

2. Find the mode functions by solving the equation of motion.

3. Promote the field and its canonical momentum to operators. Write the field
operator by using ladder operators and the mode functions, and find the proper
normalization for the mode functions by requiring that the operators obey the
canonical commutation relations.

4. Calculate the expectation value of the field correlator.

We start out with a scalar field in de Sitter space,

S D

Z
d4x

p
�g

�
�
1

2
@�� @

�� � V.�/

�
;
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where the metric is given by

ds2 D �dt2 C a.t/2dx2 ; a.t/ / eHt :

Since the determinant of the metric is g D �a6 and dt D d� a, the action can be
rewritten in conformal time to be

S D
1

2

Z
d3x d� a2

�
�02

� .r�/2 � 2a2V.�/
�
:

Using the Euler-Lagrange equations, we find the equation of motion to be

�00
C 2H�0

� r
2� C a2m2� D 0 : (3.1)

To get rid of the single time derivative in equation (3.1), we introduce a new
variable Q� � a�. Subsituting this definition into equation (3.1) and multiplying by a,
we get the equation of motion for Q� to be

Q�00
C

�
� r

2
� H0

� H2
C a2m2

�
Q� D 0 :

To find the mode functions uk of Q� we take the Fourier transform of the equation
so that r ! �ik, and use the fact that since in de Sitter space-time H D const,
H D �1=� and a D �1=H�. Then the equation for the mode functions is given by

u00
k �

2

�2
uk C k2uk C

m2

H 2�2
uk D 0 :

This is in fact a Bessel equation,

u00
k C

�
k2 �

�2 �
1
4

�2

�
uk D 0 ; (3.2)

with the index

�2 D
9

4
�
m2

H 2
:

When � is real, equation (3.2) has the solution [30, 52]

uk.�/ D
p

��
h
c1.k/H

.1/
� .�k�/C c2.k/H

.2/
� .�k�/

i
; (3.3)

where H .1/
� and H .2/

� are the Hankel functions of first and second kind.
The solution in equation (3.3) has two arbitrary coefficients c1 and c2. The free-

dom in choosing those coefficients corresponds to the freedom of choosing a vacuum.
Thus a problem arises from the fact that in quantum field theory in curved space the
choice of vacuum is no longer unique: A state which has zero particle number at a
given time has generally a non-zero particle number in some other time. This can be
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considered to be a result of the non-trivial time evolution of the background space-
time. This feature is also responsible for the phenomenon we are interested in, that is,
inflationary space time producing particles, i.e., excitations of the field. To choose a
vacuum, we need to specify which vacuum is the one we are interested in. In general
this is a very fundamental problem of quantum fields in curved space, however, in this
case we have a very natural choice of vacuum: we simply require that in the ultravio-
let limit, k � aH and k � m, the mode functions match the solutions of Minkowski
space, so that the choice of vacuum coincides with our “intuitive“ notion of vacuum1,

uk !
1

p
2k
e�ik� : (3.4)

Using the formulas for the asymptotic behaviour of the Hankel functions,

H .1/
� .x � 1/ �

r
2

�x
ei.x� �

2 �� �
4 / ; H .2/

� .x � 1/ �

r
2

�x
e�i.x� �

2 �� �
4 / ;

we are lead to c1.k/ D

p
�

2
ei.�C 1

2 /
�
2 and c2.k/ D 0. Thus the mode functions are

given by

uk.�/ D

p
�

2
ei.�C 1

2 /
�
2

p
��H .1/

� .�k�/ : (3.5)

To quantize the field Q�, we promote the field to an operator, and expand it in terms
of the mode functions and ladder operators:

Q� D

Z
d3k
.2�/3

h
uk.�/ Oak e

ik�x
C u�

k.�/ Oa
�
k e

�ik�x
i
: (3.6)

Then we impose the canonical commutation relations for Q� and its canonical momen-
tum Q� ,

Œ Q�.x/; Q�.y/� D iı.x � y/

Œ Q�.x/; Q�.y/� D Œ Q�.x/; Q�.y/� D 0 :

These relation give familiar relations for the ladder operators Oak and Oa
�
k,

Œak; a
�
k0 � D .2�/3ı.k � k0/ :

Also we get the normalization condition for the mode functions to be

u�
ku

0
k � uku

�
k

0
D �i ; (3.7)

which the mode functions obey, since we chose the normalization for the mode func-
tions in equation (3.4) serendipitously.

1The normalization at this point is in principle arbitrary. However, the normalization in equation (3.4)
has been chosen so that the normalization condition in equation (3.7) is satisfied.
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Next we can calculate the expectation value of the correlator. We do this in mo-
mentum space,

h Q�
�
k

Q�k0i D

D�
u�

k Oa
�
k C uk Oak

��
uk0 Oak0 C u�

k0 Oa
�
k0

�E
D

D
uku

�
k0 Oak Oa

�
k0

E
D .2�/3ı.k � k0/ uku

�
k :

To calculate the correlator of the original field � we simply divide by a2,

h�
�
k�k0i D

h Q�
�
k

Q�k0i

a2.�/
D .2�/3ı.k � k0/

�

4

��

a2.�/

�
H .1/
� .�k�/

�2
:

This correlator has explicit time dependence. However, we are interested in the be-
haviour of superhorizon modes in the massless limit. Thus taking the superhorizon
limit jk�j � 1, and using the asymptotic limit for the Hankel functions,

H .1/
� .x � 1/ �

r
2

�
e�i �

2 2�� 3
2
�.�/

�.3=2/
x�� ;

we can write

h�
�
k�k0i D .2�/2ı.k � k0/

��

a2.�/
22��4

�
�.�/

�.3
2
/

�2
.�k�/�2�

In the massless limit, � !
3
2

, this reads

h�
�
k�k0i D .2�/3ı.k � k0/

1

2 a2.�/ k3�2
:

Using the fact that in de Sitter space a.�/ D �1=H�, this reduces to

h�
�
k�k0i D .2�/3ı.k � k0/

H 2

2k3
: (3.8)

Comparing this with equation (2.19) we get the expression for the power spectrum of
the field,

P� D

�
H

2�

�2
;

demonstrating that massless fields aquire scale-invariant perturbations in de Sitter
space for modes that have exited the horizon.
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3.2 Scaling Solutions for Oscillating Fields

Once the perturbations are created, we need to know how different energy compo-
nents in the early universe evolve. For a field undergoing sufficiently fast coherent
oscillations in an expanding background, there exists a simple scaling law for the
energy density of the field. Following Turner [53], we now derive this scaling law.

Assume that a field is oscillating around its miniumum in a symmetric potential
V.�/. The energy density and pressure are given by

� D
1

2
P�2 C V.�/

p D
1

2
P�2 � V.�/ :

As the field value � oscillates, so do � and p. If the oscillations are fast enough,

! ' P�=� � H ; (3.9)

we can divide the evolution of the field into two separate components,

.
 C 
p/� D �C p ; (3.10)

where 
 is the average over one oscillation, and is thus the evolution of the envelope
of the oscillation, and 
p is the term describing the (nearly) sinusoidal oscillation.
Note that from this it follows that 
p averaged over one oscillation is zero.

The equation of motion for the field

R� C 3H P� C V 0.�/ D 0

can be rewritten to be as an equation for the energy density,

P� D �3H.�C p/ :

Substituting equation (3.10) into this, and integrating, we get

ln
�

�0
D �3

�Z
dt

Pa

a

 C

Z
dt

Pa

a

p

�
:

The latter term goes to zero as the oscillations becomes faster, due to 
p averaging
to zero over an oscillation cycle. If 
 is constant, then the first term can be readily
integrated to give

� D �0

�
a

a0

��3


: (3.11)

The expression for 
 can be derived by averaging equation (3.10) over one cycle of
oscillation. Since the oscillation period is very short, we can approximate the energy
density to be fixed, � ' V.�max/. Writing �C p D P�2 we getZ t2

t1

dt P�2 D V.�max/

Z t2

t1

dt .
 C 
p/ :



22 Generating Perturbations

Here the integral over 
p is by definition zero, and can be omitted.
Since the potential is symmetric, instead of integrating over a full oscillation, we

can integrate over a quarter of it, from 0 to �max. Changing the integration limits, as
well changing the integration variable from t to �, gives for constant 



 D

Z �max

0

d� P�

V.�max/

Z �max

0

d� P��1

:

Now since 1
2

P�2 D � � V.�/, we can substitute P� to give the expression for 
 :


 D 2

Z �max

0

d�
�
1 �

V.�/

V .�max/

� 1
2

Z �max

0

d�
�
1 �

V.�/

V .�max/

�� 1
2

(3.12)

Now consider a monomial potential,

V.�/ D ��n :

Substituting this into equation (3.12), we get


 D 2

Z 1

0

dx
p
1 � xnZ 1

0

dx
1

p
1 � xn

:

The two integrals can be integrated easily by changing variables xn ! y, giving a
fraction of Euler beta functions,


 D

1
n

Z 1

0

dy y
1
n �1.1 � y/

1
2

1
n

Z 1

0

dy y
1
n �1.1 � y/�

1
2

D
2n

nC 2
:

Inserting this value for 
 in equation (3.11), we get the following expressions for
different powers of the potential V / �n:

n D 2 W � / a�3 , dilutes like cold matter
n D 4 W � / a�4 , dilutes like radiation (3.13)
n � 6 W � dilutes faster than radiation
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The preceding calculation was based on the assumption that the field was oscil-
lating rapidly in a monomial potential. For large values of n, specifically n � 10, the
field no longer has oscillatory solutions, but rather only decaying modes, and thus the
above calculation is inapplicable. Nevertheless, the decaying mode for n � 10 has a
scaling law with similar behaviour.

3.3 Slow-roll Inflation

In the first section of this chapter we computed the spectrum of perturbations that a
free scalar field acquires in de Sitter space. The idea in inflation generating primor-
dial perturbations is that the perturbations in the inflaton field are transformed into
perturbations of the energy density or — depending on the gauge choice — curva-
ture of space. To compute the spectrum of those perturbations we need to relate the
perturbations of the scalar field to the curvature perturbations, namely R.

In spatially flat gauge,  D 0, the comoving curvature perturbation of equation
(2.17) reads

R D �
H

�C p
ıq :

Here ıq is defined by T 0i � @iıq. Assuming that inflation is driven by a scalar field
', with the Lagrangian density

L D �@�' @
�' � V.'/ ;

we can compute the energy-momentum tensor from

T�� D
@L

@.@�'/
@�' � g��L :

This yields
T 0i D �@0x' @iı' C O.ı'2/ ;

from which we can read off ıq D �.@0x'/ı'. Here the overbar denotes the un-
perturbed background value. On the other hand using equation (1.7) we can write
�C p D .@0'/2, so that the comoving curvature perturbation reads

R D H
ı'

'0
D H

ı'

P'
: (3.14)

Here the second equality follows from using the identities Pf D f 0=a and H D H=a.
Using equation (3.14) we can express the correlator of the curvature perturbation

in terms of the correlator of the perturbation of the scalar field,

hRkRk0i D

�
H

P'

�2
hı'kı'k0i ;
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or, in terms of the power spectrum,

PR.k/ D

�
H

P'

�2
Pı'.k/ :

In the context of slow-roll inflation, we assume that the inflaton field ' is homoge-
neous and slowly varying. Furthermore, since we assume that the field sits still for a
period long enough, the field must be in a point in the potential where the curvature is
very small. Thus the perturbation of the field, ı', is effectively massless. This means
that Pı'.k/ is given by equation (3.8), and thus

PR.k/ D

�
H

P'

�2�
H

2�

�2
:

Often the results for slow-roll inflation are expressed in terms of the slow-roll
parameters " and �. Using the slow-roll approximation P' ' �V 0=3H , we can write

PR.k/ D

�
3H 2

V 0

�2�
H

2�

�2
:

Since the energy density of the universe is dominated by the potential energy of the
inflaton field, 3H 2M 2

Pl ' V.'/, and then using the definitions of the slow-roll param-
eters given in equations (1.8) and (1.9), we can write

PR.k/ D

�
3H 3

V 02�

�2
D

�
3H 2M 2

Pl

V 0

H

2�MPl

�2
D

�
V

V 0

�2�
H

2�MPl

�2
D

M 2
Pl

2"

H 2

.2�/2M 4
Pl

D
V

24�2M 4

1

"
:

Since the amplitude of PR.k/ is fixed, i.e., the COBE normalization is given in equa-
tion (1.10), this means that the slow-roll parameter " and the value of the potential at
the point of inflation must be tuned to produce the observed amplitude of perturba-
tions.

The Spectral Index

Even though the field is in slow-roll, the perturbation spectrum is not completely
scale-invariant. In principle the spectrum might have arbitrary behavior over a large
range of wave-numbers k. In practice, however, the primordial perturbations are ob-
served only for a limited window of k, corresponding to the range of scales observable
in the CMB and in large scale structure. In that limited range the spectrum has been
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observed to be nearly scale invariant, and thus it is common to parametrize the scale-
dependence in the spectrum by a single number, the spectral index, defined by

d lnPR.k/

d ln k
� ns � 1 : (3.15)

Since ns is without scale dependence, the above definition should be considered to
apply at some fixed scale kref.

Since the perturbations do not evolve after they have stretched to be larger than
the horizon, we can evaluate them at horizon exit, k D aH . Thus we can exchange
the differentation with respect to k to a differentiation with respect to time,

d
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We can then first differentiate the slow-roll parameter ",
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where we have again used the slow-roll approximations P' ' �V 0=3H and 3H 2M 2
Pl '

V and ignored higher order terms. Using the above results it is straightforward to cal-
culate
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so that the spectral index is given by

ns D 1C 2.� � 3"/ :

The best observational bounds on the spectral index, combining different datasets
[13], give

ns D 0:963˙ 0:012 :
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3.4 The Curvaton Scenario

In inflation the inflaton field acquires perturbations which are then translated to a
curvature perturbation during reheating. The computation of section 3.1 nevertheless
applies to any scalar field in de Sitter space-time. Thus any massless field can acquire
nearly scale-invariant perturbations. In the curvaton scenario [54–58] the primordial
perturbations originate not from the inflaton, but from quantum fluctuations of another
scalar field, which has negligible energy density during inflation.

During inflation the curvaton field, � , has some homogeneous background value,
��. Even if the initial configuration for � is not homogeneous, inflation will quickly
erase all inhomogeneities. On top of the homogeneous background value, � will ac-
quire perturbations originating from quantum fluctuations. If the field is light enough,
m� � H , the magnitude of the perturbations is given by the calculation in section
3.1,

ı� '
H�

2�
:

After inflation ends, the inflaton decays into radiation, so that the universe becomes
radiation dominated. While the radiation component initially dominates the energy
density of the universe, it scales as

�r / a�4 ;

with the Hubble scale decreasing as

H D

r
�r�

3

1

MPl

�
a�

a

�2
:

The curvaton, instead, evolves according to the shape of its potential. Initially the cur-
vaton field is in slow-roll, V 00 � H 2, during which the value of the field stays con-
stant. Once the Hubble friction no longer dominates and the curvaton exits slow-roll,
it starts to oscillate around the minimum of its potential. During these oscillations,
the scaling behaviour of its energy density depends on the power of the potential, as
described in section 3.2. In the simplest curvaton model the potential is quadratic, so
according to the calculation of section 3.2,

�� / a�3 :

Thus the fraction of total energy density contributed by the curvaton increases as a
function of time, until it starts to initially contribute significantly to, and finally dom-
inate, the energy density of the universe. The curvaton then decays into the radiation
degrees of freedom.

The perturbations in the curvaton field are initially a mixture of adiabatic and
isocurvature perturbations, but when the curvaton decays into radiation, the pertur-
bations are transformed into adiabatic ones. The transformation is due to the decay
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of the curvaton field: Since there is a single degree of freedom (radiation density)
left, there can be no isocurvature perturbations. In principle the final perturbations
might be a mixture of perturbations originating from the curvaton and the inflaton
[56, 59–64], or possibly multiple curvatons [65, 66].

In analogy with the definition of � in equation (2.16) we can define � for multiple
fluid components. In spatially flat gauge ( D 0) the definition of � reads

�� D
H
�0
ı� :

The interpretation of this is simply that the perturbation is a perturbation of the energy
density of fluid. If we have multiple fluid components, we can analogously define
perturbation for each component separately,

��i D
H
�0
i

ı�i :

In the case which is relevant here, we have two components: radiation, and the curva-
ton, which scales like matter. Remembering the scaling laws of equation (3.13), we
thus get

�� D
1

3

ı��
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�r D
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4

ı�r

�r
:

Using these definitions to write the total perturbation, we get

� D �H
P
i ı�iP
i �

0
i

D
3���� C 4�r�r

3�� C 4�r
:

We are interested in the case where only the curvaton produces perturbations, so we
write

� D
3����

3�� C 4�r
:

Since the perturbation becomes adiabatic only after the curvaton decays, and assum-
ing that the decay is instantaneous [67], we should evaluate the perturbation at decay.
Thus we write

� D
3����

3�� C 4�r

ˇ̌̌̌
decay

� rdec �� ; (3.16)

where we have defined the efficiency factor rdec.
To proceed with the analysis of the curvaton model we need to know the value of

�� when the curvaton decays. To compute this, we use the fact that if the potential
of the curvaton field is quadratic, then both the homogeneous background field and
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the perturbation of the curvaton field obey the same equation of motion, and thus, the
relative perturbation in the curvaton field stays constant. Indeed, this can be seen by
comparing with equation (2.18). Using the definition of ıpnad [45] to compute it for a
field undergoing quadratic oscillations

ıpnad D P' ı P' �m2 ' ı' D 0;

where the last equality follows from the sinusoidal form of the oscillations, we can
conclude that for a quadratic field the non-adiabatic pressure is zero, and thus the
perturbation stays constant for super-horizon modes. Thereby �� is related to the
initial conditions by simply

�� D
1

3

ı��

��
'
1

3

�0
� .��/ı��

�� .��/
D

H�

3���

;

where the prime denotes a derivative with respect to � . Inputting this to equation
(3.16), we get the final expression for the perturbation produced by a curvaton with a
quadratic potential,

� D
rdecH�

3���

: (3.17)

In the limit that the curvaton is completely dominant when it decays, rdec ! 1,
and

� D
H�

3���

:

In the limit that the curvaton is very subdominant when it decays, rdec � 1, and

� D
H�

4���

��

�r

ˇ̌̌̌
decay

:

Note that in the limit where rdec is very small, ı��=�� becomes larger and larger, and
the applicability of linear perturbation theory is questionable. In practice, however,
the cases where rdec is very small are ruled out by large non-Gaussianity for quadratic
models, as we will see in chapter 4.



Chapter 4

Non-Gaussianity of the
Primordial Perturbations

For a Gaussian random field, �.x/, all statistical quantities are encoded in the two-
point correlation function

h�.x/�.y/i :

All even higher order correlation functions are then given by just products of the two-
point correlation function, while all odd higher order correlation functions are zero,
and we say that the connected part of the higher order correlation functions are zero.

In Fourier space the two point correlation function is given by equation (2.19),
and thus all information about the distribution of the random field encoded in the
two-point correlation function is usually expressed using the power spectrum, P.k/.

The observations of the primordial perturbations, mainly through the CMB, have
indicated them to be highly Gaussian. Some deviations from complete Gaussian-
ity can be however expected. To quantify these deviations, non-linearity, or non-
Gaussianity, parameters fNL and gNL are usually used. These are defined by expand-
ing the perturbation around a Gaussian distribution [68–70],

� D �1 C
3

5
fNL�

2
1 C

9

25
gNL�

3
1 C O.�41/ : (4.1)

The numerical prefactors in the definition of fNL and gNL are due to the early con-
vention of characterising the primordial perturbations by the metric potential in the
matter-dominated era, ˆ D

3
5
�.

The expansion in equation (4.1) of course makes sense only in the case when we
know that the distribution is close to Gaussian, and thus the use of this form is justified
from the observations of the perturbations.

The non-Gaussianity parameters fNL and gNL measure the strength of the bispec-
trum and trispectrum respectively. The bispectrum corresponds to the connected part
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of a 3-point function and the trispectrum to the connected part of a 4-point function.
In principle one could define even higher order non-Gaussianity parameters, quad-
spectrum, pentaspectrum etc., which would measure the non-Gaussianity of higher
n-point correlators. However, since � is very small, the magnitude of n-point correla-
tors becomes increasingly small as n increases. Already �2 � 10�10, and �3 � 10�15.
For this reason, most work in non-Gaussianity is concentrated only on fNL and gNL
[71, 72].

Note that in equation (4.1) the products between the non-Gaussianity parameters
and the powers of � should in principle be a convolution over momentum space, since
the non-Gaussianity is a priori momentum dependent. Indeed, the scale dependence
of fNL has been recently studied in [73, 74], and also for curvaton models [75]. In
spite of that we consider only scale independent non-Gaussianity, also called local
non-Gaussianity, for the rest of this work.

Best current bounds on the values of the non-Gaussianity parameters come from
the CMB, and are given by [31] and [76],

�9 < fNL < 111 ; (4.2)
�3:5 � 105 < gNL < 8:2 � 105 : (4.3)

As can be seen, the limits on gNL are much less strict. This is to be expected,
since the trispectrum is five orders of magnitude smaller then the bispectrum. Future
CMB experiments are expected to be able to detect much smaller values of the non-
Gaussianity parameters. For example, the Planck surveyor mission [77] is expected
to reduce the limits of fNL by almost an order of magnitude.

The value of fNL can also be measured from the large scale structure of the uni-
verse. This corresponds to measuring the distribution of galaxies in the older uni-
verse, and then extrapolating backwards in time to figure out the primordial den-
sity perturbations. This method can give almost as good limits, for example [78]
�29 < f local

NL < 70 :

It is noteworthy that if fNL � O.100/ and gNL � f 2NL, the expansion of equation
(4.1) might not seem good at first glance since the parameters are much larger than
one. However, the parameter in which the expansion is done is �, which is very small,
� 10�5. Thus the ratio between the second order term and the first order term in the
expansion is of order 10�3.

4.1 Non-Gaussianity in the �N-formalism

If the primordial perturbation is sourced by a single field,1 ', then we can expand�N
around the initial background value of the field '�,
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1In fact, nothing limits the notation for a single field: If the perturbation is sourced by two fields, then
we might just as well expand�N D N�ı�CN'ı'C 1

2
N��ı�

2 C 1
2
N�' ı�ı'C 1

2
N''ı'

2 C : : :
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where the prime now denotes a derivative with respect to '. When calculating �N ,
the number of e-folds in both patches are to be evaluated from the initial slice to
a constant energy density slice where the universe is dominated by radiation. Thus
the derivative denoted by prime is to be calculated with the additional condition that
the energy density of the final slice stays constant. For a two-component fluid, this
complication must be kept in mind.

If ı'� is small, we can identify order by order the perturbations of the above
equation with the perturbations of equation (4.1)
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Using this identification, we can solve the non-Gaussianity parameters in terms of the
derivatives of the number of e-folds to be [70]

fNL D
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; (4.5)
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N 000

N 03
: (4.6)

Note that even though in order to use the �N -formalism one does not have to as-
sume smallness of any initial value, the expansion of equation (4.4) converges only if
ı'� is small enough. If the expansion does not converge fast enough the identification
of equations (4.5) and (4.6) cannot be done.

4.2 Non-Gaussianity in Single Field Slow-roll
Inflation

To compute the non-Gaussianity parameters in single field slow-roll inflation, we start
out by writing the number of e-folds as

N D ln
areh

a�

;

where a� is the scale factor in the initial slice, and areh the scale factor in the constant
density slice when �N is to be evaluated. By using the chain rule, we change the
differentiation of N to be with respect to the moment of time when the field has its
initial value,
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Using the chain rule again we can write
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Using the slow-roll approximation 3H P� ' �V 0, we can derive the intermediate
results
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Applying these to the expression of N 00 we get
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:

Remembering the definitions for the slow-roll parameters (equations 1.8 and 1.9) we
can thus write

fNL D
5

6
.2" � �/ :

At this order of slow-roll approximation, we can no longer neglect the intrinsic
non-Gaussianity of the fields at Hubble exit, and a correction to this computation
[69, 79] modifies the results so that in the squeezed limit k21 � k22 C k23
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5

12
.1 � ns/ ;

where we have used the definition of the spectral index of equation (3.15). Since the
observational limit for ns is very strict [13], single-field inflationary models predict
very small non-Gaussianity. If future experiments, e.g. the Planck mission, should
detect non-Gaussianity, this would in effect rule out single-field models for inflation.

4.3 Non-Gaussianity Parameters in the Curvaton
Scenario

One interesting feature of curvaton models is that they can generate significant non-
Gaussianity [65, 66, 80–86]. In this section we compute the predictions for fNL and
gNL analytically, using a formalism which is easily applicable for the simplest models.

To calculate the values of the non-Gaussianity parameters fNL and gNL, we first
need to differentiate the number of e-folds with respect to the curvaton field initial
value, ��. The initial moment in the definition of N is of course the end of inflation,
H D H�. However, the curvaton starts to oscillate when H ' m and is very sub-
dominant before that, and thus we can safely ignore the number of e-folds from the
end of inflation to the beginning of oscillations, since this number is the same for all
patches of the universe with different values of �� [70]. For generality we add a new
function �osc.��/, which is the value of the curvaton field when it starts to oscillate.
For a quadratic curvaton model �osc.��/ ' ��.

We denote the initial time by the subscript osc, and the final time by the subscript
dec. If we use the scale factors to express N , we get the expression that is to be
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differentiated,
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:

To calculate the derivatives, we need to differentiate both ��;osc and ��;dec in the loga-
rithm. Since ��;osc D

1
2
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we first need to write �
��;dec

��;osc

� 1
3

D

�
�dec � ��;dec

�osc � ��;osc

� 1
4

:

Differentiating both sides with respect to ��, and then solving �0
�;dec yields
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where again
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Using these results, we can calculate
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The first order perturbation is thus given by
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If �osc D ��, then this reads
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;

which coincides with equation (3.17), as it should.
To calculate fNL and gNL, we need the higher derivatives of N . These quite long

expressions are given by
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where r 0
dec has been calculated to be

r 0
dec D

2

3

� 0
osc

�osc
rdec

�
3 � 2rdec � r2dec

�
:

Inserting these higher derivatives into equations (4.5) and (4.6) we get [70, 84, 87]
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In the limit �osc D �� these expressions simplify significantly, giving the predic-
tions of non-Gaussianity for a quadratic curvaton,
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Since rdec cannot be larger than unity, the dominant contribution to fNL and gNL is
usually given by

fNL '
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1

rdec
; gNL ' �

25

6

1

rdec
: (4.13)

However, if �osc.��/ deviates from �� even slightly, the higher derivatives of �osc are
no longer zero in the term proportional to 1=r2dec in gNL. Even though the coefficient
for this term might still be small, as rdec decreases the 1=r2dec-term starts to dominate.
Thus for a curvaton with any departure from the quadratic potential we expect

gNL /
1

r2dec
/ f 2NL : (4.14)

The functional form of �osc encodes all dynamics of the curvaton field until it starts
to undergo quadratic oscillations [84, 87], and thus the functional form of equations
(4.9) and (4.10) is not really an approximation, but an exact result for an arbitrary
curvaton model. It is defined as the field value at some point of time when the curvaton
is oscillating in the quadratic potential, and as such, its definition is rather arbitrary.
Furthermore the result for fNL and gNL cannot depend on the choice of �osc. Thus
even though the above expressions are valid for all curvaton models, including non-
quadratic, their usefulness is very limited, since in models with non-quadratic terms
in their potential, all the possible non-trivial and interesting dynamics are encoded in
�osc and calculating it can easily become extremely involved.



Chapter 5

Importance of
Self-interactions

Until now we have considered a minimal curvaton model, described by a potential of
a free massive field,

V.�/ D
1

2
m2�2 :

However, the curvaton needs to decay, and thus it must have some interactions with
other fields. Indeed, realistic models, i.e., models motivated by particle physics, have
usually both interactions with other fields as well as self-interactions. These inter-
actions can be anything from a single monomial coupling to complex polynomial
interactions [88] or e.g. an axion type potential [89]. Even if the tree-level potential
for the field would have no self-interactions, the necessary couplings to other fields
will generate self-couplings due to loop corrections to the effective potential. Thus
any curvaton model necessarily has some self-interactions.

The significance of self-interactions for the birth of the primordial perturbations
is not a priori clear. Depending on the form of the interactions, they might not play
any role at all during the evolution of the curvaton in the primordial universe. In
this chapter, we will however demonstrate that even very weak self-interactions can
change the evolution of the curvaton significantly. The following calculations are
discussed in more detail in paper III for a TeV mass curvaton.

5.1 The Lower Limit for the Decay Constant �

In order for the initial perturbation in the curvaton field to be converted into an adia-
batic curvature perturbation, the curvaton field must have interactions with the stan-
dard model degrees of freedom. The curvaton does not have to be directly coupled to
these standard model degrees of freedom, as the decay may proceed via one or more
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intermediate components instead. Nevertheless, we model the curvaton and its decay
with a two fluid model, where the radiation fluid and the curvaton field are coupled
via an interaction term in their equations of motion. The strength of this interaction is
encoded in an effective coupling constant � . Thus the effective equations of motion
for the energy densities are

P�r D �4H�r C ���

P�� D �.3H C �/�� :

The effective decay constant � here determines the moment when the curvaton de-
cays, as the decay will occur approximately whenH ' � . Thus the smaller the value
of � , the later the curvaton decays.

The primordial perturbations have been observed to be adiabatic to a very great
accuracy [90, 91]. This means that the perturbations of the energy density in all com-
ponents of the primordial fluid are the same. In particular, the adiabacity of the pertur-
bations dictates that the perturbations of the radiation and the dark matter component
are the same. If the primordial perturbations are sourced by the curvaton field, this
means that the curvaton must decay either to radiation before dark matter is decoupled
from the radiation component, or it must decay in the right fraction to radiation and
to dark matter. Since the latter scenario implies additional fine tuning, we consider
the first case and what limits it imposes for the curvaton scenario. If the dark matter
decouples from the primordial particle soup whenH D HDM, then we need to require
that the curvaton decays before that instant of time, i.e., we require � & HDM.

Although several models of dark matter have been considered and constructed
(see e.g. [92]), perhaps the most popular general idea for dark matter is a weakly
interacting massive particle, or WIMP [93]. The attractiveness of a WIMP is due to
what seems a happy accident, which is often referred to as the WIMP miracle: When
calculating the relic abundance of a dark matter particle [94, 95], a GeV � TeV-mass
particle with an annihilation cross-section typical for weak interactions produces the
right amount of dark matter. A WIMP is of course not a specfic model for a dark
matter particle, but rather just a generic idea or a category of theories. To investigate
and predict the specific properties of the dark matter particle, one needs to specify the
appropriate extension beyond the standard model.

A WIMP decouples typically at the temperature TDM � O.10/GeV. Since H D

O.10/ � T 2=MPl, we can deduce that

� & 10�15 GeV : (5.1)

It should be stressed that this lower limit for � is dependent on the model of dark
matter; for a WIMP scenario, it might be an order of magnitude larger or smaller; for
a non-thermal model of dark matter, e.g. an axion type model [96], this limit can be
several orders of magnitude lower. Nevertheless, this demonstrates that the decay of
the curvaton cannot occur arbitrarily late.
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5.2 Bounds in the Parameter Space

To explore the importance of self-interactions, we need to find out what regions of
the parameter space for the quadratic curvaton are consistent with observations, and
then check for self-consistency of the quadratic assumption in those regions. There
are three bounds limiting the feasibility of the quadratic curvaton model: The isocur-
vature bound, non-Gaussianity and the requirement that � � 10�5, which we call the
curvature bound.

5.2.1 Curvature Bound

The most important feature of the curvaton model is its ability to produce the observed
amplitude of the primordial perturbations, � � 10�5. According to equation (3.17),
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Since rdec can be at most unity, we can write
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:

Solving the field value in terms of the energy density from ��� D
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membering the definition of r�, we get
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:

This can be solved to yield the curvature bound,
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MPl

�2
1

54�
: (5.2)

5.2.2 Non-Gaussianity Bound

For a quadratic curvaton the values of the non-Gaussianity parameters fNL and gNL
are completely determined by rdec according to equations (4.11) and (4.12). Since the
lack of observations of non-Gaussianity limit both fNL and gNL, they also limit the
possible values of rdec. For simplicity we consider only the limits for fNL and adopt
the conservative limit

jfNLj � 100 : (5.3)

Since rdec � 1, fNL is dominated by the first term in the expansion of equation (4.11),
so that fNL D 5=4rdec. Substituting this into equation (5.3) results in

rdec �
5

400
:
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To see how the above bound translates to bounds in the .H�; r�/-plane, we use
equation (3.17), with similar substitutions as in the previous section, to write

� D
1

3�

rdec
p
6r�

m

MPl
:

From this we can solve rdec and impose the limit from the equation above,

rdec D
MPl

m
3�

p
6r�� �

5

400
:

Solving r� from this inequality yields the non-Gaussianity bound

r� �
1

345600�

1

�2

�
m

MPl

�2
: (5.4)

5.2.3 The Isocurvature Bound

Since � is bounded from below according to the equation (5.1), this means that a
certain region of the parameter space of .H�; r�/ is also excluded: this corresponds to
the region where � � 10�5 occurs only when � is too small. To see what this region
is, we first relate which value of rdec corresponds to a givenH . To do this, we need to
solve for the scale factor as a function of H .

The Friedmann equation reads

3H 2M 2
Pl D �r C �� : (5.5)

In the regime after the oscillations have started but before decay, the energy densities
scale as

3H 2M 2
Pl D �r�

a4�
a4

C ���

a3osc

a3
:

Since r� �
��

�r

ˇ̌̌
�

and �r� C ��� D 3H 2
�M

2
Pl, the initial densities are given by

�r� D
3H 2

�M
2
Pl

1C r�
; ��� D 3H 2

�M
2
Pl

r�

1C r�
:

Thus the Friedmann equation (5.5) can be written as

a4.H/

a4�

�
H

H�

�2
.1C r�/ D 1C r�

a.H/ a3.H D m/

a4�
; (5.6)

where we have approximated that the field starts to oscillate when H D m, thus
aosc ' a.H D m/.
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To solve equation (5.6), we use the fact that r� � 1, so we can solve the equation
perturbatively. Expanding a.H/ D

P1

nD0 an.H/ r
n
� , and requiring equality of both

sides of the equation power by power, yields

a40.H/

a4�

�
H

H�

�2
D 1

4 a30.H/ a1.H/

�
H

H�

�2
C a40.H/

�
H

H�

�
D a0.H/ a

3
0.m/

for the zeroth and linear order in r�. Thus

a.H/

a�

D

r
H�

H

�
1C

r�

4

�
H 2

�

m
p
Hm

� 1

��
C O.r2�/ : (5.7)

Using � D
H�

2���
rdec, we can solve r� to be

r� D
m

p
m�

H 2
�

6

�
MPl

m

�2
�2

H 2
�

m
p
m�

� 12

�
MPl

m

�2
�2
: (5.8)

If we set � to be its smallest possible value, we get a line in .H�; r�/-space, so that
the parameter space to the left of it is excluded.

5.3 Importance of the Self-interactions

To discuss the importance of self-interactions for the curvaton model, one would need
to specify the form of self-interactions. Indeed, myriads of different types of interac-
tions can be listed: nearly quadratic potentials [86], monomials of different power and
of different coupling constants, axion-type periodic potentials [89], washboard-type
potentials [97] and others. Also other, non-scalar types of curvaton models have been
considered, for example a vector curvaton scenario [98–100]. We however adopt a
very simple, but arguably quite generic type of self-interaction: A monomial term
suppressed by the Planck mass scale. Thus the potential reads

V.�/ D
1

2
m2�2 C

�nC4

M n
Pl
: (5.9)

Here the notation is chosen so that n measures the non-renormalizability of the self-
interaction, i.e., n D 0 corresponds to the marginally renormalizable quartic potential.

The choice of a monomial potential is of course much simpler than a choice of
a, perhaps more realistic, polynomial potential. In spite of that, typically one of the
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terms of a polynomial would dominate the effect of the self-interactions, and investi-
gating the behaviour of different values of n emulates thus also partly more generic
polynomial potentials.

If the potential does not have any higher order terms, then in order for the potential
to be bounded from below, nmust be even. If n is not even, there must be higher even
powers, which necessarily will play a crucial role in the evolution of the curvaton.
Thus we limit ourselves to the cases where n is even.

The above type of self-interaction can be considered very weak: Either the in-
teraction is of Planck scale, and thus much weaker than other known interactions, or
if the suppressing mass scale is lower than the Planck scale, then the corresponding
coupling constant is very small. Since a theory of quantum gravity is often presumed
to produce Planck-scale corrections to effective potentials, one can also argue that the
self-interaction of equation (5.9) should be present for all fields.

Note that the curvaton field might not necessarily have self-interactions at the tree
level, but rather only interactions with some other degrees of freedom. As we are
calculating the evolution of a classical homogeneous solution, we are interested in
the effective potential where we have integrated over all quantum effects, or, as in
the usual formalism, loops. These interactions will necessarily produce higher order
self-interactions, and indeed, even if at the tree level the action for the curvaton would
have only interactions with other fields, after integrating over those other degrees
of freedom, an effective potential will surely have some self-interactions, which are
typically supressed by the scale of those interactions. Since the self-interaction of
equation (5.9) is suppressed by the Planck mass, these self-interactions can have an
origin of very weak interactions with other fields.

If self-interactions of the forementioned type are present, then the approximation
that the curvaton is purely quadratic can be safely made if and only if

1

2
m2�2 �

�nC4

M n
Pl

throughout the evolution of the curvaton, all the way from inflation to the decay of
the curvaton. Since the energy density of the curvaton decreases monotonically as a
function of time, it is sufficient to impose the above constraint only at the beginning
of the evolution of the curvaton. Thus we require that

1

2
m2�2� �

�nC4
�

M n
Pl
:

It is not a priori clear how much larger the quadratic term should be in order for the
quadratic assumption to be a good approximation. Instead we use the limiting case
when they are equal, and define �eq so that

1

2
m2�2eq D

�nC4
eq

M n
Pl

) �eq D

�
m2M n

Pl

2

� 1
nC2

: (5.10)
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The limiting case occurs when �� D �eq, or in terms of r�,

r� D

�
m

MPl

�2 �2eq

3H 2
�

:

This defines a line in .H�; r�/-plane, to the right thereof the self-interactions are, at
least initially, important for the evolution of the curvaton.

In figure 5.1 the parameter space is plotted with the bounds discussed in the previ-
ous section. The curvature bound and the non-Gaussianity bound are the red horizon-
tal dashed line and the green horizontal dashed line, respectively. Thus in order for
the quadratic curvaton to produce the observed amplitude of primordial perturbations
with not too large non-Gaussianity, the initial conditions should between those two
dashed lines. The isocurvature bound is the blue curve drawn with a dash dot line,
and thus in order for the quadratic curvature not to produce isocurvature, assuming
a WIMP-type dark matter, the initial conditions should lie right of that line. Finally,
the black solid line is the line where the quadratic and the non-quadratic terms in the
potential are initially equal. Thus in order for the quadratic assumption to be a good
approximation, the initial conditions should lie left of that black line. Thus the al-
lowed quadratic regime is the trapezoid limited by all the different lines so that the
black line is the right edge of the trapezoid.

In general, one can draw the conclusion that the lower the value of n is, the less
allowed quadratic regime there is. For n D 4 there is quadratic regime left for both
plotted values of mass, where as for n D 0 no quadratic regime is left for these choices
of m. Additionally the increase in the magnitude of the mass has a general trend of
creating more allowed quadratic regime.

For n D 0, which corresponds to the quartic self-coupling, there is no quadratic
regime left, even for the higher mass, m D 108GeV. This is perhaps not too surpris-
ing, since the interaction is no longer weak, but actually strongly coupled. This can be
seen by looking at the choice of the self-interaction (equation (5.9)) for n D 0: While
for higher values of n the powers of Planck mass in the denominator guarantee that
the interaction is indeed weak, for n D 0 there are no powers of Planck mass in the
denominator, and the effective coupling constant is unity. If one would add a weak
coupling constant to the quartic self-coupling, the line of equality for the mass term
and for the self-coupling (the black solid line) would move to the right and for a small
enough coupling there would be allowed quadratic region in the parameter space.

For n D 2 there is no allowed quadratic region left for the mass of 104GeV, where
as for the higher value of the mass, m D 108GeV there is still some quadratic region
left. For n D 4 for both choices of mass there is some allowed quadratic region,
though for the smaller value of the mass the region is very small.

As a conclusion the effect of self-interactions can be said to be very important:
For some choices of n and m there is some region in the parameter space where the
quadratic approximation is consistent, even though there a large region where the
self-interactions become important. For other choices of n and m there is no area in
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the parameter space where the quadratic approximation would be a good one. Thus
the investigation of the effects of self-interactions to the evolution of the curvaton is
well motivated for all choices of parameters, and absolutely crucial to understand the
predictions of the curvaton model.
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Figure 5.1: The parameter space and different bounds for quadratic curvaton models.
The red dashed line is the curvature bound (section 5.2.1), the green dashed line is the
bound arising from limits on non-Gaussianity (section 5.2.2), and the blue dash-dotted
line is the isocurvature limit (section 5.2.3). Thus the allowed region for the curvaton
is the area right from the blue dash-dotted line, and between the red and green dashed
lines. The black curve signifies the initial equality of the quadratic and non-quadratic
terms in the potential, thus the self-interactions become significant right of the black
solid line.
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Chapter 6

Dynamics of Self-interactions

In the previous chapter we introduced self-interactions for the curvaton. We also
demonstrated that for some choice of m and n, these self-interactions are relevant in
significant regions of the parameter space, whereas for some other choice of m and
n they are relevant everywhere in the parameter space. There the initial field value is
such that the non-quadratic self-interaction initially dominates the mass term in the
potential, �� > �eq.

The self-interaction is relevant when the field value, or the amplitude of its oscil-
lations, is high enough to reside in the non-quadratic part of the potential. It turns
out that the non-quadratic form of the potential modifies the scaling solution of an
oscillating field in such a significant way that the predicitions of the curvaton model
become non-linear and highly dependent on the initial conditions. The analysis in this
chapter is based on the more detailed discussion in papers I and II.

6.1 Analytical Estimates for the Self-interacting Case

In general adding a new monomial term to the potential of the curvaton modifies its
evolution in time. Assuming that one term in the potential dominates at a time, we
can divide the evolution of the curvaton roughly into four separate phases:

1. After inflation ends, the curvaton is still in slow-roll, H 2 � V 00.��/, and the
field value stays fixed, � D ��.

2. As H decreases sufficiently, the field becomes massive compared to the Hub-
ble friction term in its equation of motion, H 2 � V 0.��/, and the field starts to
move more rapidly towards its minimum. If n � 6 the field merely rolls slowly
down until it reaches the quadratic regime [53], but for n � 4 the field under-
goes oscillations around its minimum. Given that �� > �eq, these oscillations
are affected by the non-quadratic term of the potential.
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Figure 6.1: Comparison between the numerical solution and and analytical approxi-
mations. n D 4, m D 104 GeV, H� D 1013 GeV, � D 10�3 GeV, r� D 10�15. The
horizontal axis is H in units of MPl. As H decreases with time, time runs from right
to left in this plot. Note that in order for � � 10�5, the value of � should be adjusted
to be significantly smaller.

3. As the universe expands, the amplitude of the oscillations of the curvaton de-
creases, and slowly the importance of the non-quadratic term starts to diminish.
Once � � �eq, the field oscillations become almost purely quadratic, so that the
energy density of the field scales as �� / a�3.

4. Once the Hubble constant has decreased such thatH � � , the curvaton decays
into radiation, transforming the initial mixed perturbation into an adiabatic per-
turbation.

As stated above, if n is sufficiently large, the evolution of the field in the non-
quadratic part of the potential is not oscillatory, but rather merely decaying. For sim-
plicity, and due to the fact that the cases n � 6 evolve smoothly and thus produces
no unexpected results, for the rest of this work we consider mostly the cases n � 4,
which have non-linear oscillatory behaviour.

In the stages 1, 3 and 4 of the curvaton evolution, there is a clear approxima-
tive solution. However, for the period of non-quadratic oscillations there is no valid
analytical solution. In section 3.2 we derived a scaling law solution for the energy
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density of the curvaton when it is oscillating rapidly in a monomial potential. If the
field would be oscillating extremely fast compared to the background evolution, and
the amplitude of the oscillation would be very large, so that the non-quadratic term
would dominate the quadratic term for most of the oscillation, then this approximation
would be valid. These different phases and their approximations are demonstrated in
figure 6.1. It illustrates clearly that while the oscillations in the quadratic regime are
fast enough for the scaling solution to be a good approximation, for the non-quadratic
regime the situation is not as evident.

Since the evolution of the self-interacting curvaton follows that of the quadratic
curvaton once the amplitude of the oscillations has decreased sufficiently, in prin-
ciple the notation of section 4.3 is still valid. Thus the equations for �, fNL and
gNL look deceivingly similar to the quadratic case. Even so, the non-linearity of the
self-interacting model is merely hidden in the function �osc.��/, which evolves in a
non-trivial, and as we shall see later on, oscillatory manner.

The approximative analysis stated above applies only for the homogeneous back-
ground field value of the curvaton. For the quadratic model the homogeneous field
value and the perturbation had the same (linear) equation of motion, so that the rel-
ative perturbation stayed constant. In the non-quadratic case, the equation of motion
for the perturbation is very different,

Rı� C 3H Pı� C V 00.�/ ı� D 0 :

Now the evolution of the perturbations depends in a non-linear way on the evolution
of the background solution. Thus it is no longer sufficient to solve for the field value
when it decays, but rather we need to solve both the background EOM as well as the
EOM for the perturbation. In practice it is usually simpler to use the �N -formalism,
so that one does not need to solve the EOM for the perturbation separately, but rather
it is sufficient to solve the background equation multiple times.

6.2 Numerical Analysis

In the previous section we discussed analytical approximations for the self-interacting
curvaton scenario, in a similar fashion to what we did for the quadratic case in the
previous chapter. Be that as it may, due to the non-linearity of the self-interacting
model we need to resort to numerical methods to take into account the evolution in
the non-quadratic part of the potential. Since we are solving the model numerically,
we can also dispose of the other approximations we have made, most important of
those being the instantaneous decay.

To compute the predictions of the self-interacting curvaton model of equation
(5.9) numerically, we use the �N -formalism to compute the primordial perturba-
tion amplitude and the corresponding non-Gaussianity parameters. The system of
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equations that we need to solve is given by

R� C .3H C �/ P� Cm2� C .nC 4/
�nC3

M n
Pl

D 0 ;

P�r D �4�r C � P�2 (6.1)
3H 2M 2

Pl D �r C �� :

Also, the initial conditions are specified by the previously introduced two free param-
eters, H� and r�, so that the initial energy densities are given by

�r D 3H 2
�M

2
Pl ;

�� D V.��/ D r��r :

The initial velocity of the curvaton field is assumed to be negligible, P�� D 0.
Since when using the�N -formalism we are investigating differences in evolution

of two separate patches, we need to specify different initial conditions for the patches.
In the other patch the initial conditions are given by the background, while the other
one has otherwise similar initial conditions, but the initial curvaton field value has
a small perturbation, originating from the quantum fluctuations described in section
3.1,

�1 D �� ; �2 D �� C
H�

2�
:

The final amplitude of the primordial perturbation is then given by evolving the system
until the curvaton has decayed, and then comparing the number of e-folds in the two
different patches at a fixed value of H . In principle the full system, described by
the system of equations (6.1), should be used all the way until this final constant
energy density slice. Having said that, solving this set of differential equations is
very slow at the end of the simulation: As the field enters the quadratic regime, the
oscillations become extremely rapid. Since several steps are needed for each cycle of
oscillation, the solution becomes increasingly slow to compute deep in the quadratic
regime. To circumvent this, we use the fact that when the field is oscillating in a
quadratic potential, in the limit of fast oscillations it satisfies a relation h

1
2

P�2i D

h
1
2
m2�2i, analogous to a harmonic oscillator. This means that in the limit of infintely

fast oscillations in the quadratic regime, the system has one degree of freedom less,
and the behaviour of the curvaton field can be described perfectly by a single degree
of freedom, here chosen to be the energy density, �� . This energy density has then
a well-behaving scaling law, �� / a�3. Thus after the quadratic term dominates
sufficiently, 1

2
m2�2 �

�nC4

Mn
Pl

, we can safely switch to solving an approximate system,
described by the equations

P�� D �.3H C �/�� ;

P�r D �4�r C ��� ; (6.2)
3H 2M 2

Pl D �r C �� :
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This corresponds to the approximation that the field is oscillating in a purely quadratic
potential very fast compared to the background solution. We have checked the numer-
ical stability, and confirmed that the error created by this approximation is diminish-
ingly small.

After the curvaton has decayed, we then calculate the difference of number of
e-folds in the two patches. This must be done in a uniform-density slicing, i.e., the
two patches must be evolved to the same value of H . The difference in N in the two
patches is then directly �.

6.2.1 Non-Gaussianity

To compute the non-Gaussianity parameters in the �N -formalism, we use equations
(4.5) and (4.6) where fNL and gNL are expressed as fractions of derivatives of the
total number of e-folds with respect to the initial field value ��. Since numerical
methods have finite accuracy, the derivatives are calculated as finite differences. This
is done using a numerical method called five-point stencil [52]. In this method, the
derivatives of a function f .x/ are expressed as linear combinations of values of f .x/,
different number of h-sized steps away from x. For fNL and gNL we need the three
first derivatives, and these are given by the expressions

f 0.x/ D
�f .x C 2h/C 8f .x C h/ � 8f .x � h/C f .x � 2h/

12h
;

f 00.x/ D
�f .x C 2h/C 16f .x C h/ � 30f .x/C 16f .x � h/ � f .x � 2h/

12h2
;

f 000.x/ D
f .x C 2h/ � 2f .x C h/C 2f .x � h/ � f .x � 2h/

2h3
:

The five-point stencil has the advantage compared to many other finite difference
methods that the error made using these formulae is of order O.h4/.

For the calculation of the derivatives of N , we calculate the above expressions
with different values of the finite interval h, which is then adjusted dynamically to
minimize the contribution of numerical noise and inaccuracy arising from the finite-
ness of h.

6.3 Evolution of r

To gain some insight into the evolution of the self-interacting curvaton, it is often
more practical to follow the evolution of the energy fraction in the curvaton, defined
by

r �
��

�� C �r
;

than the evolution of the field value �.t/. Indeed, since we solve the approximate
system of equation (6.2) once we enter the quadratic regime, the field value is not
always uniquely determined by the program.
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Figure 6.2: The evolution of the energy fraction r in time. H� D 10�7MPl, � D

10�2 GeV, n D 4 and r� D 10�14. The lower curve has the mass m D 104 GeV,
whereas the upper curve has the mass m D 105 GeV. Note that for better visibility �
has been set far too small to get � � 10�5.

As expected and already briefly discussed in section 6.1, the curvaton is initially in
slow-roll and evolves slowly. Since � stays roughly constant, but the background ra-
diation component dilutes as / a�4, r increases. After H has decreased sufficiently,
the field, as well as the energy fraction r , starts to oscillate. As the field is still in
the non-quadratic part of the potential, the energy density of the curvaton scales down
approximately as calculated in section 3.2, that is, for n > 0 it dilutes faster than
that of the background radiation, and thus r decreases. Note that since the oscilla-
tions occur now in the non-quadratic regime, �� does not scale down smoothly, but
with an oscillatory envelope. After r and the field value of the curvaton have scaled
down sufficiently, the contribution of the non-quadratic term to the potential becomes
negligible, and the field starts to undergo almost purely quadratic oscillations. In the
quadratic regime the equality h

1
2

P�2i ' h
1
2
m2�2i ' hV.�/i holds and the evolution

of r becomes smooth.

If the oscillations in the non-quadratic part of the potential would have a similar
(short) period as the oscillations in the quadratic regime, the value of r would de-
pend smoothly on the initial conditions. However, the periods differ by several orders
of magnitude. This causes the phase of the oscillation in the non-quadratic regime
to be frozen in when the oscillations change abruptly to quadratic oscillations. This
is demonstrated in figure 6.2. Here the curvaton is evolved with otherwise similar
parameters and initial conditions, but in the upper green line the mass has been cho-
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sen to be 105 GeV, where as in the lower blue one it has been chosen to be 104 GeV.
Since the mass determines when the transition from the non-quadratic to the quadratic
regime occurs, the decrease of mass delays the transition a bit. However, as the os-
cillations in the non-quadratic regime are quite slow, the transitions happen in com-
pletely different phases of the oscillations: one at the top of an oscillation, while the
other at the bottom of an oscillation. Since the initial conditions for the quadratic
oscillations thus differ significantly, so do their later evolution: The curvaton which
switched to the quadratic regime on the top of an oscillation has much larger value of
r later on than the curvaton which initiated its quadratic oscillations on the bottom of
an oscillation.

Note that in order for this effect to be significant, the regime of transition, that
is, the regime where both the quadratic and the non-quadratic term in the potential
are significant, must be shorter than the period of an oscillation in the non-quadratic
regime. Otherwise the initial value for the quadratic oscillations would be an average
over several oscillations in the non-quadratic regime.

6.4 Evolution of �N

Although the non-quadratic oscillations can be slow when compared to the back-
ground dynamics, the oscillations are nevertheless smooth: The evolution of r in
figure 6.2 look quite close to a power law multiplied by some sinusoidal oscillation.
However, we are not interested in the value of r , but rather the amplitude of the pri-
mordial perturbations and the value of the non-Gaussianity parameters. In figure 6.3
we have plotted the evolution of�N for a given set of parameters as a function ofH .
Although the evolution of r is smooth, �N demonstrates very non-trivial behaviour.

There are several qualitative features manifest in figure 6.3. Firstly, the general
envelope of the curve, averaged over the oscillations, follows approximately that of
r . This merely reflects equation (3.16), which states that the total perturbation, here
given by �N , is the perturbation in � multiplied by the efficiency factor, which is
roughly given by r . Thus the evolution of the general amplitude of�N , discarding the
oscillatory features, is explained by the changes in the energy fraction in the curvaton:
�N decreases in the non-quadratic regime as r decreases, and �N increases as the
curvaton starts to undergo quadratic oscillations and r starts to increase. Moreover,
when the curvaton decays, the mixed perturbation in the curvaton is transformed into
the adiabatic perturbation of the total fluid, and thus�N freezes to its constant value.

The oscillations of�N are however more difficult to understand. The oscillations
in the non-quadratic regime appear very non-sinusoidal, as the full oscillation cycle
consists of two very different half-cycles. Again, since the evolution is very smooth
in the quadratic regime, the value that �N has during the transition from the non-
quadratic to the quadratic regime freezes in as the initial value for the quadratic evo-
lution. Thus the final value of �N is very sensitive to the phase of the non-quadratic
oscillations when the transition occurs.
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Figure 6.3: Plot of the evolution of �N as a function of H . H� D 1013 GeV,m D

104 GeV, � D 10�3 GeV, n D 4, and r� D 10�15. Note that in order for � � 10�5,
the value of � should be adjusted to be significantly larger.

Also noteworthy is the fact that though we actually plot j�N j due to the logarith-
mic plot, the sign of �N actually oscillates: In the oscillations in the non-quadratic
regime every other half-cycle of the oscillations has an opposite sign from its neigh-
bouring half-cycles. Thus if the switch to the quadratic regime would occur during
a half-cycle with a negative sign, the final value of the perturbation would have an
opposite sign to that of the initial perturbation. While this feature has no definite
observational signature, it demonstrates the very counter-intuitive dynamics present:
The patch which had initially higher energy density than the average, can have lower
energy density in the final slice, and vice versa.

6.5 Oscillations in the Parameter Space

As demonstrated in the previous sections the long period of oscillations in the non-
quadratic regime causes the phase of the non-quadratic oscillation to freeze in, so that
its value during the transition from the non-quadratic to the quadratic regime affects
the final values of r and �N significantly. Thus any small change of parameters
which affect either the phase of the non-quadratic oscillations or the point of transition
from the quadratic to the non-quadratic regime can change the final values by a large
amount.

Almost all of the parameters and initial conditions can affect the point of transition
and the phase of the non-quadratic oscillations: Sincem determines the value of �eq, it
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Figure 6.4: N 0, N 00 and N 000 plotted against r�. The other parameters are given by
n D 4, m D 106 GeV, and H� D 1012 GeV. The missing intervals in the plots
correspond to those combinations of parameters which cannot produce � � 10�5.

also determines what is the value of H when the transition from the non-quadratic to
the quadratic regime occurs. r� plays the role of determining the initial homogeneous
value of the field, ��. The initial amplitude of the perturbation is determined by H�.
Different values of n corresponds to different behaviours in the non-quadratic regime.
Thus if we would plot�N or its derivatives as a function of any of the forementioned
parameters, we would see oscillatory behaviour.

In figure 6.4 we have plotted the values of N 0, N 00 and N 000 as a function of r� for
fixed values of H�, m and n. Here the value of N 0 can be seen to have a nearly fixed
magnitude. This can be understood by N 0 approximately determining the amplitude
of the perturbation through the formula � ' N 0ı��. Since H� is fixed, so is ı��, and
in order to get � � 10�5, N 0 must also have almost a fixed value. This is realized by
tuning the value of � appropriately. N 0 nevertheless can change sign, and since ı��

is fixed, also � can change sign. Again, the sign of the primordial perturbation is not
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(a) jfNLj plotted against rdec for a fixed value of H� D 5 � 1012 GeV. Red points
coresponds to fNL > 0 and blue points to fNL < 0.
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Figure 6.5: The behaviour of jfNLj for a self-interacting curvaton model with n D 4

andm D 106 GeV. Only those points are plotted which produce the correct amplitude
for the perturbations in the range H� D 109 : : : 1013GeV and r� D 10�24 : : : 10�8.

observationally significant, but it does result in the counterintuitive result that patches
that were overdense in the very early universe become underdense later on.
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Figure 6.6: jgNLj plotted against jfNLj for all values of H� and r� which produce
the correct amplitude for the perturbations in the range H� D 109 : : : 1013 GeV and
r� D 10�24 : : : 10�8. The green line corresponds to the linear relation gNL � fNL
and the blue lines to the quadratic relation gNL � f 2NL. Other parameters are given by
n D 4 and m D 106 GeV.

Even though � is adjusted so that N 0 does not oscillate, the same does not apply
for the higher derivatives: Both N 00 and N 000 oscillate wildly, also changing signs.
This is a direct consequence of the slow non-quadratic oscillations. As r� is changed,
the number of oscillations that the curvaton undergoes before the transition to the
quadratic regime changes, and the phase of the non-quadratic oscillation freezes in
producing the observed oscillations of the derivatives of N as a function of the initial
conditions.

6.6 Comparison with the Analytical Estimates for
fNL and gNL

To demonstrate the non-linear and oscillatory behaviour of the self-interacting curva-
ton, we compare the numerical results with the analytical expression calculated for
fNL and gNL. In figure 6.5(a) the value of jfNLj is plotted against rdec for a fixed value
of H� and r� between 10�24 and 10�8 for m D 106 GeV and n D 4. In the figure
we can see the analytical estimate of equation (4.13) drawn as the black line, whereas
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the red dots corresponds to the numerical results. From that we can see that while the
analytical expression for fNL roughly applies, the oscillations can signifcantly change
the value of fNL.

In figure 6.5(b) we have plotted all allowed points in the parameter space for a
model with m D 106 Gev and n D 4. As we allow H� to take different values, a
family of curves is drawn, where each curve is similar to the curve present in figure
6.5(a), but each with a bit different oscillatory features, resulting into the noisy scatter
present in the plot. Again we can see that the analytical result functions as an attractor,
though most of the points are scattered aobve the line.

In figure 6.6 the value of jgNLj is plotted against the value of jfNLj. The green line
corresponds to the analytical expression for the quadratic curvaton in equation (4.13),
and the blue line correponds to an analytical estimate for a non-quadratic curvaton in
equation (4.14). We can see that there is a wide accumulation of points near the green
line, which corresponds to that area of the parameter space which is already initially
in the quadratic regime. Similarly there appears to be a build-up of points near the
blue line. In spite of that, most of the points are scattered around the plot.

Most points give rise to a larger fNL than one would expect from the analytical
1=rdec-estimate, however since fNL can actually change sign, points can always be
found where fNL is arbitrarily close to zero. It is also interesting to note that several
different values of fNL correspond to a given point rdec, since different choices of
initial conditions can be degenerate yielding the same rdec. It is also noteworthy that
for a given fixed value of rdec, there are multiple sets of parameters which all give rise
to the same final amplitude for the perturbations but different value of fNL and gNL.



Chapter 7

Results in the
Parameter Space

The numerical method described in the previous chapter can compute the amplitude
of the primordial perturbations, �, produced by a self-interacting curvaton for a set of
parameters fn;m;H�; r�; �g. To find out what combinations of the parameters can
produce perurbations compatible with observations, we first fix n and m, and then
scan through the parameter space spanned by H� and r�. We then impose constraints
to ensure that we are left with only those points in the parameter space which are
compatible with observations. The complete scan of the parameter space is performed
in paper I and II, with the latter paper focusing on the non-Gaussianities created by
the self-interacting curvaton.

7.1 Allowed Regions of the Parameter Space

To make sure that the amplitude of the perturbations is correct we adjust the value of
the effective decay constant � at each point in the .H�; r�/-space so that � � 10�5.
Since decreasing � postpones the decay and thus makes the curvaton more dominant,
smaller � translates to larger �. However, when the curvaton is already completely
dominant when it decays, rdec � 1, decreasing � has no effect. Thus if � < 10�5 even
when rdec ' 1, then that point in the parameter space cannot produce the observed
perturbations and thus that combination of the parameters is ruled out.

Note that the choice of which parameter to adjust while keeping the other param-
eters fixed is not unique. Instead of adjusting � , we might just as well adjust r� to try
achieve the correct amplitude for �. Be that as it may, adjusting � is often easier, since
the amplitude of � increases monotonously as a function of � , but not as a function of
r� etc.

As discussed in section 5.1, the curvaton must produce only adiabatic modes when
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it decays, and thus it must decay before dark matter decouples. By assuming that the
DM particle is a generic WIMP, we get a lower limit for � (see section 5.1), which
depends on the DM decoupling temperature. In papers I and II, we adopted the limit
� > 10�15GeV, corresponding to a decoupling temperature TDM � O.GeV/, and in
paper III the more conservative limit � > 10�17GeV. Note that the choice of the
lower limit is somewhat arbitrary, since it depends on the details of the DM model.
We then discard those points in the parameter space which would require too small �
to produce � � 10�5.

The curvaton can potentially produce non-Gaussianity so large that it would be in
conflict with current observations, and thus those areas of the parameter space must
be discarded. The current best observational limits are given in equations (4.2) and
(4.3) [31, 76]. We thus compute the values of fNL and gNL for each point left in the
parameter space, and discard those which produce non-Gaussianity incompatible with
the limits mentioned above.

The amount of tensor perturbations in the early universe is determined by the
inflationary scale H�, and is not dependent on the field value of the inflaton. Thus
observations of the tensor modes would be a direct observation of the inflationary
scale. The observational limit for the tensor modes is usually given by the tensor-to-
scalar ratio defined by

r �
Pg.k/

PR.k/
;

where Pg is the power spectrum for the tensor modes defined analogously with section
2.4. The current best bounds for r are given by r < 0:36 from the CMB alone,
or r < 0:20 where the CMB data is combined with data from baryonic acoustic
oscillations and supernovae observations [13]. The stricter value translates to a limit
for the inflationary scale

H� < 2:99 � 1014GeV :

To sum up, each point in the parameter space is evaluated with the following
criteria:

1. There must be a value of � such that � � 10�5.

2. That value of � cannot be smaller than the limit given by the isocurvature
bound.

3. The non-Gaussianity parameters must be within observational limits, �9 <

fNL < 111 and �3:5 � 105 < gNL < 8:2 � 105.

4. The inflationary scale cannot be too large, as constrained by the tensor-to-scalar
ratio.

If the point in the parameter space passes all these tests, then we conclude that a
curvaton model with that set of parameters could be responsible for the primordial
perturbations that we observe.
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Figure 7.1: A schematic plot of the effect of different constraints in the parameter
space. Line a is the bound imposed by limits on non-Gaussianity, line b demonstrates
the limit originating from the initial perturbation being smaller than 10�5, line c is
the requirement that the curvaton needs to be massless and very subdominant during
inflation, and line d is the isocurvature limit.

7.2 Effect of Constraints in Parameter Space

The different bounds originating from different observational limits mentioned in the
previous section make cuts in different regions of the parameter space. To illus-
trate these different constraints and their effect in the allowed region of the parameter
space, we have plotted their effect schematically in figure 7.1.

The line a indicates the cut made by the observational limits for fNL and gNL. In
the part of the parameter space dominated by the non-quadratic part of the potential,
rdec increases from lower right to the upper left corner. Without the oscillations the
non-Gaussianity parameters would be given by roughly fNL / 1=rdec and gNL /

1=r2dec, and thus the cuts produced by these constraints would be direct lines in the
direction indicated by line a. However, due to the oscillations in the parameter space,
both fNL and gNL increase un-monotonically as a function of rdec and thus the cut
produced by these constraints is not a straight line. Nevertheless, the parameter space
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in the region indicated by the line a is mostly limited by non-Gaussianity.
The cut indicated by line b is due to the initial perturbations in the curvaton field

being too small to evolve into the final perturbation of 10�5. If the homogeneous
curvaton field value and its perturbation would obey the same equation of motion, the
relative perturbation would stay fixed all the way until decay, and then the amplitude
of the perturbation would be given by

� ' rdec
H�

3���

:

The efficiency factor is given by rdec � 1, and thus if the initial perturbation given
by H�=2��� is smaller than the required �, then the curvaton cannot produce the
observed perturbations under any conditions. This limit would be given by a straight
line such as the line b. However, the curvaton field value and its perturbation have
different equations of motion, and thus the final value of the relative perturbation is
not completely determined by the initial value, but instead is affected by the non-linear
dynamics. Thus the cut is not given by a straight line, but rather by an oscillatory
curve.

The upper region of the parameter space is limited by several factors, indicated by
line c. The higher the value of r�, the more massive the curvaton is during inflation.
If the curvaton is too massive, it is no longer in slow-roll, but rather the value of the
field can change significantly during inflation. This would lead to a running of the
spectral index, and thus we require that the curvaton is effectively massless during
inflation, V 00 � H 2

� . Note that since also the running of the inflaton and thusH� will
also produce running of the spectral index, we have not quantified this limit explicitly,
as the exact limit will depend on the details of the inflationary model [101]. It might
even be possible to produce a model where with some fine-tuning the curvaton and
the inflaton would evolve appropriately to produce a scale invariant spectrum even
though neither the inflaton nor the curvaton would be in slow-roll. Additionally the
limit indicated by line c also ensures that the perturbative treatment that we have used
is applicable: We have assumed that the curvaton is completely subdominant during
inflation and thus does not affect the dynamics of inflation. It is not completely clear
what is the minimum requirement in order for this approximation to be consistent. A
sufficient requirement is nevertheless given by r� � 1.

Finally the smooth cut in the lower left corner of the parameter space is given
by the isocurvature limit, i.e., a lower limit on the magnitude of the effective decay
constant � . This limit is demonstrated by the line d.

7.3 Scan of the Parameter Space

A thorough scan of the parameter space was performed in articles I and II. We con-
sidered values of n from 0 to 6 and values of m from 106GeV to 1010GeV. We then
scanned through the parameter space of .H�; r�/ for all combinations of m and n.
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The numerical results confirm the qualitative understanding of the oscillations
presented in chapter 6. From the plots in article I we see that for n D 6 there are
no oscillations in the non-quadratic regime of the potential, and thus there are no
oscillations either in the parameter space. Also for n D 0 the oscillations are so rapid
in the non-quadratic part, that the phase thereof does not freeze in but rather is wiped
out by the transition from the non-quadratic regime to the quadratic regime. Here the
transition lasts several oscillation cycles.

For n D 2 and n D 4 the oscillations in the non-quadratic potential result in large
oscillations in the parameter space. The values of � , rdec, fNL and gNL all oscillate, or
are strongly dependent on small alterations of the initial conditions. These oscillations
result in such regions in the parameter space being allowed, which would seem to be
disallowed by naı̈ve analysis. Specifically, since both fNL and gNL oscillate, even in
areas where the analytical approximations would give large values for fNL and gNL,
there are always points where at least the other one is zero. The observational limits
for gNL are much less stringent than for fNL, and thus points around fNL � 0 are
usually allowed.

In general the results of article II indicate that there is not much parameter space
left for the n D 0 case.1 Instead, for n D 2, 4 and 6 there are large areas in the
parameter space which are compatible with observations. Since fNL and gNL oscillate
wildly, their absolute magnitude is nevertheless large in most of the allowed regions.
Large non-Gaussianity here of course means allowed by observations but significantly
non-zero, and perhaps detectable with next generation CMB experiments, such as
Planck.

The values of the decay constant � mostly populate the lower limit imposed by
the isocurvature bound. A priori this of course is not a nuissance, however, one can
argue that the model implies fine tuning if the curvaton is required to decay just before
DM decoupling. The small values of � can also be a problem for a model builder,
since this suggests very small coupling costants.

7.4 The TeV-mass Curvaton

There are strong theoretical hints that there may be significant new physics on the TeV
scale. Furthermore current and future experiments, such as the LHC, might discover
new degrees of freedom which might function as a curvaton field [102]. Thus in
article III we took the parameter choice m D 1 TeV as a specific example.

As demonstrated in section 5, for a curvaton with a TeV mass, the assumption
of a quadratic potential is not self-consistent, since even the weak self-interactions
of equation (5.9) will always play a significant role in the evolution of the curvaton.
Furthermore, we found that even though a priori unconstrained, n can take only the

1Note that since we chose the potential to have the form of equation (5.9), the n D 0 corresponds to
a very strong coupling. If one would add a small coupling constant, then this would leave more parameter
space allowed.
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value n D 4. This is due to the fact that for other choices of n the curvaton needs to
decay so late that the isocurvature limit rules these scenarios out, and only the n D 4

potential offers sufficient amplification of the perturbations due to the non-linearities
so that all constraints are satisified. The part of the parameter space which is allowed
for n D 4 is then limited to isolated stripes in the .H�; r�/-space. Their total area is
small compared to the total parameter range, but still sufficiently large.

The TeV mass curvaton requires values for � that are very close to the lower limit
imposed by the isocurvature bound. Though this is not a problem for the curvaton
model in general, it is a problem for most realistic particle physics motivated models.
One of the most attractive candidates of scalar fields to function as the curvaton are
the flat directions present in supersymmetric theories. Specifically, the widely studied
Minimally Supersymmetric Standard Model, or MSSM, which is one of the most
popular candidates for extensions of the Standard Model, feature a large number of
these flat directions (for a review, see e.g. [103] and references therein). These flat
directions have usually self-interactions of the form of equation (5.9), and thus are
viable candidates for a curvaton scenario. Indeed, MSSM flat directions have been
suggested to work as a curvaton previously [104–109]. Nevertheless, the values of
decay constant found in article III are very small, since the couplings that they apply
are smaller than the couplings present in the Standard Model, and thus also in the
MSSM.

7.4.1 Additional Mechanisms to Facilitate Small Values of �

If the actual couplings are larger than suggested by the numerical values of � found in
the scan of the parameter space, than additional mechanisms are required to explain
why the curvaton decays so late.

One of the possibilites is so called kinematic blocking. Here the idea is that the
fields to which the curvaton is supposed to decay acquire an effective mass that is
propotional to the coupling constant and the VEV of the curvaton. If the curvaton has
a sufficiently large VEV, than it might be that the would-be decay products have such
a large mass that the process of the curvaton decay to the other particles might be
kinematically blocked. A real field oscillating around its minimum always of course
passes through zero, and thus the VEV of the field also goes to zero. Thus kine-
matic blocking is possible only if the oscillating field is complex. Though the anal-
ysis present in this work concerns only real fields, in the article III we argue that
if a complex field is oscillating around its minimum with sufficiently small angular
momentum, the dynamics that it experiences are very similar to those experienced
by a real field. Thus the small effective value of � might be explained by the decay
channels of the curvaton being kinematically blocked. In the cases where the curvaton
field oscillates near zero preheating type phenomena will, however, become important
[105, 110–112].

Also note, that what matters is not really where the energy density is, e.g. in the
curvaton or in the background, but rather the equation of state of the energy compo-
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nent. Thus, if the curvaton decays into an energy component which has the equation
of state of matter, then this effectively delays its decay. One such possibility is Q-balls
[113, 114] which are macroscopic exitations of complex scalar fields. A collection of
Q-balls would have the correct equation of state, w D 0, and as the Q-balls decay
through surface evaporation, the decay into radiation can be delayed [115, 116].



64 Results in the Parameter Space



Chapter 8

Conclusions

In this thesis we have studied the ability of curvaton models to produce the primordial
perturbations. Specifically we have documented the behaviour and dynamics of self-
interacting curvaton models, and discussed the allowed regions in the parameter space
of these models.

It seems plausible that the curvaton, like any other scalar field, has some self-
interactions. The type of self-interactions that we consider here has the most simplest
functional form imaginable, that is, a monomial. Furthermore, we assume that the
mass scale suppressing the self-interaction is the Planck scale, i.e., the highest scale
where “conventional” physics is thought to apply, and thus the self-interaction is very
weak. In this sense our assumption on the form of the self-interaction is very minimal
and well motivated.

As discussed in [86–89, 97, 107, 111, 117, 118], even small deviations from the
extensively studied quadratic potential [80] can cause significant effects. In fact, even
the type of potential that we consider has been studied for example in [107]. Never-
theless, we have presented for the first time thorough analysis of the dynamics of the
self-interacting model. The crucial ingredient for this compared to the previous work
was the numerical solution of the equations of motion. In fact, the interesting oscilla-
tory features are completely absent when modeling the evolution of the curvaton with
approximative scaling laws.

The self-interactions of the model affect the dynamics of the system in much more
drastic ways than one would suspect after naı̈ve analysis: The non-linearity introduced
by the self-interactions changes drastically the predictions of the self-interacting cur-
vaton models in wide regions in the parameter space. The slow oscillations in the
non-quadratic part of the potential cause the phase of those oscillations to be frozen
in to the final value of � and derivatives of N , and thus cause oscillations in the pa-
rameter space.

The oscillatory behaviour caused by the self-interaction produces also typically
large values of fNL and/or gNL. This is caused by the oscillatory behaviour of the
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derivatives of N . Although the analytical results 1=rdec and 1=r2dec capture the non-
Gaussianity originating from the subdominance of the curvaton during its decay,
they fail to describe the non-Gaussianity originating from the oscillations in the non-
quadratic part of the potential. Indeed, we have shown that the non-Gaussianity of the
latter type is usually the dominant contribution in the self-interacting models.

Even though the possible parameter space of the self-interacting curvaton model
is limited by several observational limits, there remains large regions in the parameter
space left for which a self-interacting curvaton would produce perturbations compat-
ible with observations, with different combinations of n and m. For a curvaton with
a mass of TeV scale we have shown that the only possible Planck suppressed mono-
mial self-interaction has the power �8, since all other choices of n fail to produce the
observed perturbations.

The self-interacting curvaton scenario has several intersting properties that are
quite rare in other inflationary scenarios. Since fNL and gNL oscillate, they can have
either sign. In fact, since they oscillate there are regions in the parameter space where
fNL is negligible, and the dominant contribution to non-Gaussianity is given by gNL.
(See also [87].)

The decay of the curvaton has not been studied in detail here, as we have merely
assumed that the decay processes are well described by an effective decay constant.
The values of the decay constant are quite small, and imply weak couplings to known
physics. Also preheating type phenomena related to the decay might play a significant
role and modify the results for e.g. non-Gaussianity significantly [105, 110–112].

A scenario with mixed perturbations from both the curvaton and inflaton or per-
haps from multiple curvatons should be studied with these self-interactions in mind.
Since the curvaton can produce (extremely) large values of fNL and gNL, one alterna-
tive is that where as most of the amplitude of the perturbations might come from an
inflaton with nearly Gaussian statistics, a very subdominant curvaton might produce a
smaller perturbation component, but with such a large non-Gaussianity that the non-
Gaussianity of the final perturbations might be dominated by the perturbations from
the curvaton.
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