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Abstract. This paper considers how to adapt geometric algorithms, de-
veloped for content-based music retrieval of symbolically encoded music,
to be robust against time deformations required by real-world applica-
tions. In this setting, music is represented by sets of points in plane. A
matching, pertinent to the application, involves two such sets of points
and invariances under translations and time scalings. We give an algo-
rithm for finding exact occurrences, under such a setting, of a given query
point set, of size m, within a database point set, of size n, with running
time O(mn2 log n); partial occurrences are found in O(m2n2 log n) time.
The algorithms resemble the sweepline algorithm introduced in [1].

1 Introduction

Query-by-humming is a problem that has fascinated researchers working in the
music-retrieval area for over fifteen years. First, the music under investigation
was assumed to be monophonic (see Fig. 1) [2], later the term has been used with
a wider meaning addressing problems where the task is to search for excerpts
of music, resembling a given query pattern, in a large database. Moreover, both
the query pattern and the database may be polyphonic, and the query pattern
constitutes only a subset of instruments appearing in the database representing
possibly a full orchestration of a musical work. Although current audio-based
methods can be applied to rudimentary cases where queries are directed to clearly
separable melodies, the general setting requires methods based on symbolic rep-
resentation that are truly capable of dealing with polyphonic subset matching.

To this end, several authors have recently used geometric-based modeling of
music [1,3,4,5]. Geometric representations usually also take into account another
feature intrinsic to the problem: the matching process ignores extra intervening
notes in the database that do not appear in the query pattern. Such extra notes
are always present because of the polyphony, various noise sources and musical
decorations. There is, however, a notable downside of the current geometric
methods: they do not allow distortions in tempo (except for individual outliers
that are not even discovered) that are inevitable in the application. Even if the
query could be given exactly on tempo, the occurrences in the database would be
time-scaled versions of the query (requiring time-scale invariance). If the query
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Fig. 1. An excerpt of a well-known melody in common music notation. Let us have a
closer look at the last bar with a change in key and time signature: The first note is
associated with pitch value ”Es” (or E flat). It is followed by a c-clef, which looks like
a letter ”k” to this author. Note also the resemblance of the last note to the letter ”o”.

is to be given in a live performance, more or less local jittering will inevitably
take place and a stronger invariance, namely the time-warping invariance [6],
would be a desired property for the matching process.

In this paper, new time-scale invariant geometric algorithms that deal with
symbolically encoded, polyphonic music will be introduced. We use the pitch-
against-time representation of note-on information, as suggested in [5] (see Fig 2).
The musical works in a database are concatenated in a single geometrically
represented file, denoted by T ; T = t0, t1, . . . , tn−1, where tj ∈ R

2 for 0 ≤ j ≤
n − 1. In a typical retrieval case the query pattern P , P = p0, p1, . . . , pm−1;
pi ∈ R

2 for 0 ≤ i ≤ m − 1, to be searched for is often monophonic and much
shorter than the database T to be searched, that is m � n. It is assumed that
P and T are given in the lexicographic order. If this is not the case, the sets can
be sorted in m log m and n logn times, respectively.

The problems under consideration are modified versions of two problems orig-
inally represented in [1]. The following list gives both the original problems and
the modifications under consideration; for the partial matches in P2 and S2, one
may either use a threshold α to limit the minimum size of an accepted match,
or to search for maximally sized matches only.

(P1) Find translations of P such that each point in P matches with a point in
T .

(P2) Find translations of P that give a partial match of the points in P with
the points in T .

(S1) Find time-scaled translations of P such that each point in P matches with
a point in T .

(S2) Find time-scaled translations of P that give a partial match of the points
in P with the points in T .

Ukkonen et al introduced online algorithms PI and PII solving the original
problems P1 and P2 in O(mn) and O(mn log m) worst case times, respectively,
in O(m) space [1]. Lemström et al [7] showed that the practical performance can
be improved at least by an order of magnitude by combining sparse indexing
and filtering. P2 is known to belong to a problem family for which o(mn) so-
lutions are conjectured not to exist, there is, however, an online approximation
algorithm for it running in time O(n log n). [8]. Romming and Selfridge-Field [9]
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Fig. 2. A polyphonic music score, to the left, is represented by a pointset T , in the
middle, in the geometric representation. Pointset P , to the right, corresponds to the
first two and a half bars of the melody line (the highest staff of the score) but the fifth
point has been delayed somewhat. The depicted trans-set vectors correspond to the
translation f that gives the largest partial match of P within T .

gave a geometric hashing-based algorithm for S2, which works in O(n3) space
and O(n2m3) time.

This paper studies another way to solve S1 and S2. As stated above, in this
case, the timing (rhythm) of the music is distorted by a uniform scaling factor;
methods ignoring such distortions are called time-scale invariant [6]. The novel
time-scale invariant algorithms to be introduced resemble Ukkonen et al’s PI
and PII algorithms. The new algorithm for S1 runs in time O(mn2 log n); the
algorithm for S2 in O(m2n2logn) time.

2 Related Work

Let us denote by α a similarity threshold for P2, and let p0, p1, . . . , pm−1 and
t0, t1, . . . , tn−1 be the pattern and database points, respectively, lexicographically
sorted according to their co-ordinate values: pi < pi+1 iff pi.x < pi+1.x or (pi.x =
pi+1.x and pi.y < pi+1.y), and tj < tj+1 iff tj .x < tj+1.x or (tj .x = tj+1.x and
tj .y < tj+1.y). In our application the elapsing time runs along the horisontal
axes, represented by x, the perceived height, the pitch, is represented by y. A
translation of P by vector f is denoted as P + f : P + f = p0 + f, . . . , pm−1 +
f . Using this notation, problem P1 is expressible as the search for a subset I
of T and some f such that P + f = I. Note that decomposing translation f
into horisontal and vertical components f.x and f.y, respectively, captures two
musically distinct phenomena: f.x corresponds to aligning the pattern time-wise,
f.y to transposing the musical excerpt to a lower or higher key (see Fig. 2). Note
also that a musical time-scaling σ, σ ∈ R

+, has an effect only on the horisontal
translation, the vertical translation stays intact.

Example 1. Let p = (1, 1), f = (2, 2) and σ = 3. Then p + σf = (7, 3).

A straight-forward algorithm solves P1 and P2 in O(mn log(mn)) time. The
algorithm first collects exhaustively all the translations mapping a point in P to
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another point in T . The set of the collected translation vectors are then sorted
in lexicographic order. In the case of P1, a translation f that has been used m
times corresponds to an occurrence; in the case of P2, any translation f that
has been used at least α times would account for an occurrence. Thoughtful
implementations of the involved scanning (sorting) of the translation vectors,
will yield an O(mn) (O(mn log m)) time algorithm for P1 (P2) [1].

Indeed, the above O(mn log m) time algorithm is the fastest online algorithm
known for P2. Moreover, any significant improvement in the asymptotic running
time, exceeding the removal of the logarithmic factor, cannot be seen to exist,
for P2 is known to be a 3SUM-hard problem [8]. It is still possible that P2 is also a
Sorting X+Y -hard problem, in which case Ukkonen et al’s PII algorithm would
already be an optimal solution. In [8], Clifford et al introduced an O(n log n)
time approximation algorithm for P2.

To make the queries more efficient, several indexing schemes have been sug-
gested. The first indexing method using geometric music representation was sug-
gested by Clausen et al. [3]. Their sublinear query times were achieved by using
inverted files, adopted from textual information retrieval. The performance was
achieved with a lossy feature extraction process, which makes the approach non-
applicable to problems P1 and P2. Typke et al. [4] proposed the use of metric
indexes that works under robust geometric similarity measures. The approach
lacks flexibility on features pertinent to the application: it is very difficult to
adopt it to support translations and partial matching at the same time. Lem-
ström et al’s approach [7] combines sparse indexing and (practically) lossless
filtering. Their index is used to speed up a filtering phase that charts all the
promising areas in the database where real occurrences could reside. Once a
query has been received, the filtering phase works in time O(gf (m) log n + n)
where function gf(m) is specific to the applied filter f . The last phase in-
volves checking the found cf (cf ≤ n) candidate positions using Ukkonen et
al’s PI or PII algorithm executable in worst-case time O(cfm) or O(cfm log m),
respectively.

A brute-force solution for S2 would work in time O(m3n3) and space O(mn):
First all translation vectors are calculated, exhaustively, in lexicographic order.
This gives m increasing sequences of vectors (pairs of real values) each of length
n. Then, each possible time-scaling value is selected by choosing two vectors from
two distinct sequences; there are O(m2n2) possibilities in this choice. For each
time-scaling value, the maximum co-occurrence between pattern and database
needs to be determined. This can be done by checking whether each of the
remaining m−2 sequences (each containing n vectors) includes a vector that ac-
cords with the chosen scaling vector. This is feasible in time O(mn). Candidates
thus found are to be verified by checking that the pitch intervals also match.
The only non-brute-force method for S2 is by Romming and Selfridge-Field [9].
It is based on geometric hashing and works in O(n3) space and O(n2m3) time.
By applying a window on the database such that w is the maximum number
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of events that occur in any window, the above complexities can be restated as
O(w2n) and O(wnm3), respectively.

3 Matching Algorithms

Our matching algorithms for the time-scale invariant problems S1 and S2 re-
semble somewhat Ukkonen et al’s original PI and PII algorithms in that they
all use a priority queue as the focal structure. Ukkonen et al’s PI and PII work
on trans-set translations, or trans-set vectors, f = t − p (see Fig. 2), where p
and t are points in a given query pattern, of length m, and in the underlying
database, of length n, respectively. Let us assume (without loss of generality)
that all the points, both in the pattern and in the database, are unique. The
number of trans-set vectors is within the range [n + m− 1, nm]. In order to be
able to build an index on the database in an offline phase, Lemström et al’s
method [7] is based on intra-set vectors. For instance, translation vector f is
an intra-pattern vector, if there are two points p and p′ (p, p′ ∈ P ) such that
p+f = p′. Intra-database vectors are defined accordingly. Naturally, the number
of intra-pattern and intra-database vectors are O(m2) and O(n2), respectively.
Lemström et al study several heuristics, relevant to the application, to keep the
index structure of a linear O(n) size.

The set of positive intra-pattern vectors include translations pi′ − pi where
in the case of S1: 0 ≤ i < m and i′ = i + 1, and in the case of S2: 0 ≤ i <
i′ ≤ m. The set of positive intra-database vectors include translations tk′ − tk
where, independently of the case, 0 ≤ k < k′ ≤ n. For the convenience of
the algorithms, we pretend that there are an extra element pm in the pattern
and another extra element tn in the database. The matching algorithms take
as input intra-set vectors, stored in tables K[i], 0 ≤ i < m. Table K[i] stores
intra-database translations that may match 1 the positive intra-pattern vectors
pi′ −pi, i.e., translation vectors starting at point pi. See Fig. 3 for an illustration
on tables K[i].

The entries in our main data structures will be sorted in a lexicographic order.
We will specify the underlying order by an ordered set ℵ. ℵ is formed by mem-
bers of {a, b, s}, where a, b and s correspond to the accordingly named columns
in tables K[i]. For instance, lexicographic order 〈a, s〉 is firstly based on the val-
ues on column a (the starting point of the associated intra-database vector),
secondly on the values on column s (the associated scaling value). A main loop
that goes exhaustively through all the possibilities of positive intra-pattern and
positive intra-database vectors to initialise the tables K[i] is needed. To this
end, let a positive intra-database vector g = tk′ − tk be such that there is a
positive intra-pattern vector f = pi′ − pi for which g.y = f.y (ie. the pitch
intervals of the two vectors match). Because g may be part of an occurrence,

1 Please note the distinction between an occurrence and a match. An occurrence in-
volves as many matching pairs of intra-database and intra-pattern vectors as is re-
quired by the problem specification.
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Fig. 3. Illustration of the main data structure. Each K[i] stores intra-database vectors
tk′ − tk, 0 ≤ k < k′ ≤ m− 1 that matches with an intra-patter vector pi′ − pi (where,
in the case of S1: 0 ≤ i < m−1 and i′ = i+1, and in the case of S2 0 ≤ i < i′ ≤ m−1)
with any positive time-scaling σ ∈ R

+.

a new row, let it be the hth, in K[i] is allocated and the following updates are
conducted:

K[i]h.a← k; K[i]h.b← k′; (1)

K[i]h.s← tk′ .x− tk.x

pi′ .x− pi.x
; (2)

K[i]h.y ← nil; K[i]h.w ← 1; (3)
K[i]h.c← i′; K[i]h.z ← 0. (4)

Above, in (1), the associated starting and ending points of the matching intra-
database vector are stored in K[i]j.a and K[i]j.b, respectively. The required time
scaling for the intra-vectors to match is stored in K[i]j.s (2); here extra careful-
ness is needed in order to avoid dividing by zero: If both the numerator and the
denominator equal zero, we set K[i]h.s = 1. If only one of them equals zero, the
whole row is deleted from the table altogether (it would represent for an impos-
sible time scaling). The columns y and w, initialised in (3), are used for back-
tracking a found occurrence and storing the length of a candidate occurrence,
respectively. The last columns, initialised in (4), will be needed when searching
for partial occurrences (in Section 3.2): column c stores the ending point of the
associated intra-pattern vector, z is used for identifying an occurrence.

Denoting by Σpi the number of rows generated above for table K[i], 0 ≤ i <
m, for the aforementioned extra elements (for the convenience of the algorithms)
we set:

K[i]Σpi
.a← K[i]Σpi

.b←∞; K[i]Σpi
.s← K[i]Σpi

.w ← 0; K[i]Σpi
.c← i + 1

As each iteration of the main loop takes a constant time, this exhaustive
initialisation process runs in O(n2m2) time. Finally, the columns in K[i] are
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sorted in lexicographic order 〈a, s〉. The matching algorithms have an associated
priority queue Qi for each table K[i], 0 < i ≤ m 2. For Qi, a lexicographic order
〈b, s〉 is used. As a reminder, the order is given in the superscript of a priority
queue (e.g. Q

〈b,s〉
i ).

3.1 S1: Quest for Time Scaled Exact Occurrences

Once the tables K[i] have been initialised and their columns have been sorted
in lexicographic order 〈a, s〉, the transposition-invariant time-scaled exact occur-
rences can be found using the matching algorithm given in Fig. 4. The algorithm
works by observing piecewise matches between positive intra-database and intra-
pattern vectors

tki′ − tki = σi(pi+1 − pi) (5)

that are stored in the associated K[i]. Above σi ∈ R
+ is the time-scaling fac-

tor (recall Example 1). The piecewise matches may form a chain Tτ0...τm−1 =
tτ0 , tτ1 , . . . , tτm−1 , where τ0, τ1, . . . , τm−1 is an increasing sequence of indices in
T ; tτi+1 − tτi = σ(pi+1 − pi) for 0 ≤ i < m − 1 and σ ∈ R

+ is a time-scaling
factor common to all the piecewise matches in the chain. Naturally, such a chain
would constitute a transposition-invariant, time-scaled exact occurrence. A chain
Tτ0...τm′ m′ < m − 1, is called a prefix occurrence (of length m′); Tτm′−1,τm′ is
the final suffix of the prefix occurrence Tτ0...τm′ .

Let tτi+1 − tτi (that, by definition, equals σ(pi+1 − pi)) be the final suffix
of a prefix occurrence Tτ1...τm′ . The prefix occurrence is extensible if there is a
piecewise match tk′

i+1
− tki+1 = σ(pi+2 − pi+1) such that

tτi+1 = tki+1 (6)

and scaling factor σ is the one that was used in forming Tτ1...τm′ . The binding
in Equation 6 is called the binding of extension, tτi+1 − tτi the antecedent and
tk′

i+1
− tki+1 the postcedent of the binding.

Lemma 1. If a prefix occurrence is extensible, its final suffix is also extensible.

Proof. Immediate. 
�
To be more efficient, at point i+1, the algorithm actually considers any piecewise
match tk′

i
−tki = σi(pi+1−pi) as an antecedent to the binding and tries to extend

it. Because in this case the piecewise matches in an occurrence chain have to
be consecutive in P , the antecedents of the binding are all found in K[i] and
their possible extensions, postcedents, in K[i + 1]. To process all the bindings of
extension at point i + 1, therefore, involves going through all the entries both
in K[i] and in K[i + 1]. To make this process efficient, no entry of either of the
tables should be observed more than once for one iteration. In order for this to
be possible, both sides of the binding of extension (associated with antecedents
2 A single priority queue would suffice, but the algorithm would become more compli-

cated.
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TimeScaledExactOccurrence(K[i])
(1) for j ← 0, . . . , Σp0 do

(2) Q
〈b,s〉
1 ← push(&K[0]j)

(3) for i← 1, . . . , m− 1 do

(4) q ← pop(Q
〈b,s〉
i )

(5) for j ← 0, . . . , Σpi−1 do
(6) while [q.b, q.s] < [K[i]j .a, K[i]j .s] do

(7) q ← pop(Q
〈b,s〉
i )

(8) if [q.b, q.s] = [K[i]j .a, K[i]j .s] then
(9) K[i]j .w← q.w + 1
(10) K[i]j .y ← q

(11) Q
〈b,s〉
i+1 ← push(&K[i]j)

(12) q ← pop(Q
〈b,s〉
i )

(13) K[i]Σpi
.s←∞

(14) Q
〈b,s〉
i+1 ← push(&K[i]Σpi

)

(15) if K[m− 1]j .w = m for some 0 ≤ j ≤ Σpm−1 then report an occurrence

Fig. 4. Online algorithm for finding transposition-invariant time-scaled exact occur-
rences

and postcedents) should be enumerated in the same (increasing) order. However,
the lefthand side of the binding involves end points of the intra-database vectors
in K[i] and the righthand side the start points of the intra-database vectors in
K[i + 1]. Therefore, we use a priority queue Q

〈b,s〉
i+1 whose entries are addresses

to rows associated with the antecedents of the binding at i + 1. In this way, the
binding of extension at i + 1 can be done efficiently by enumerating the entries
in Qi+1 and K[i + 1]. Note that the set of piecewise matches extended this way
also includes all the final suffixes, and therefore, according to Lemma 1, also all
the prefix occurrences.

The binding of extension takes place in line (8) of the algorithm. If a piecewise
match is extensible, its length is updated (line 9) and a backtracking link is stored
(line 10). The latter becomes useful if any of the extended piecewise matches
extends into a proper occurrence, and the whole occurrence is to be revealed
(instead of just reporting it).

Correctness. Let there be an occurrence tτ0 , tτ1 , . . . , tτm−1 , such that tτi+1−tτi =
σ(pi+1− pi) for 0 ≤ i < m− 1 with some σ ∈ R

+. It is obvious from the way the
tables are constructed that every element tτi+1 − tτi, associated with a piecewise
match, is stored in the corresponding table K[i]. Clearly the first antecedent
tτ1 − tτ0 is treated correctly: It is inserted in the priority queue Q1 in line (2);
being part of a proper occurrence, the binding of extension can be done with a
correct time-scaling factor and, therefore, the equation condition in line (8) is
satisfied. The length of this prefix occurrence is set to 2 (line (9)), and the address
of this newly found final suffix is stored in Qi+1 (line (11)) to be considered as
an antecedent for a binding of extension at iteration 2. Let us now assume that
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everything is done correctly up to point i, 2 < i < m − 1 and we are dealing
with the element tτi+1 − tτi . It is pushed in the priority queue Qi+1 in line (12)
just before the iteration i + 1 of the loop in line (3) starts. Then again, being
part of a proper occurrence, the antecedent tτi+1 − tτi , found in Qi+1, and the
postcedent tτi+2− tτi+1 , found in K[i+1], can be bound: the extension condition
is met and the prefix occurrence is increased to i+2, and the address of the new
final suffix is passed to further iterations. So, by induction, the algorithm finds
the existing occurrences.

That the algorithm does not wrongly increase the length of a piecewise match
(causing reports of spurious occurrences or occurrences of lengths exceeding m)
is down to the binding of extension, i.e., the condition in line (8). Remember that
we assume points in T and in P to be unique. Let us make a counter assumption
that a piecewise match may be unintentionally extended. To that end, at some
iteration j of the inner loop (starting at line (5)) there has to be at least two
antecedents in Qi that can be bound with a postcedent stored in K[i]j (line (8)).
Let q and q′ be entries in Qi that are antecedents for a postcedent in K[i]j, where
K[i]j.a = tl, and let q correspond to a piecewise match tl − tk = σ(pi − pi−1)
and q′ to tl − tk′ = σ(pi − pi−1). But this is impossible unless tk = tk′ which
contradicts our assumption of points being unique in T . 
�

Analysis. Let us denote by |Qi| and |K[j]| the number of entries in Qi and K[j],
respectively. Clearly, in this case, |Qi| ≤ |K[i − 1]| for 1 ≤ i ≤ m. Moreover,
let Σ = maxm

i=1(|Qi|, |K[i − 1]|). The outer loop (line (3)) is iterated m times.
Within the inner loop (line (5)), all the entries in Qi and in K[i] are processed
exactly once, resulting in O(Σ) entry processing steps. The only operation taking
more than a constant time is the updating of the priority queue; it takes at most
O(log Σ) time. Thus, the algorithm runs in time O(mΣ log Σ). Moreover, the
tables K[i] and priority queues Qi require O(mΣ) space.

In this case Σ = O(n2), because each table K[i] contains the piecewise
matches for the positive intra-pattern vector pi+1 − pi, and there are O(n2)
possibilities to this end. 
�

3.2 S2: Quest for Time Scaled Partial Occurrences

In order to be able to find transposition-invariant time-scaled partial occurrences,
we need the two extra columns c and z, that were initialised in Equation 4, for
tables K[i]. Recall that K[i]h.c stores the ending point i′ for an intra-pattern
vector pi′−pi that is found to match an intra-database vector tk′ − tk with some
scaling factor σi. Column z is used for storing a running number that is used
as an id, for a found partial occurrence. Furthermore, we use an extra table,
denoted by κ, for storing all the found occurrences.

The structure of the algorithm, given in Fig. 5, is similar to the previous algo-
rithm. Again, at point i, the antecedents in Qi are to be extended by postcedents
found in K[i]. However, as we are looking for partial occurrences this time, we
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TimeScaledPartialOccurrence(K[i])
(0) �← 0
(1) for j ← 0, . . . , Σp0

(2) Q
〈b,s〉
K[0]j.c ← push(&K[0]j)

(3) for i← 1, . . . , m− 1 do

(4) q ← pop(Q
〈b,s〉
i )

(5) for j ← 0, . . . , Σpi−1 do
(6) while [q.b, q.s] < [K[i]j .a, K[i]j .s] do

(7) q ← pop(Q
〈b,s〉
i )

(8) if [q.b, q.s] = [K[i]j .a, K[i]j .s] then

(9) while min(Q
〈b,s〉
i ) = [q.b, q.s] do

(10) r ← pop(Q
〈b,s〉
i )

(11) if r.w > q.w then q ← r
(12) K[i]j .w← q.w + 1
(13) K[i]j .y ← q
(14) if K[i]j .w = α then
(15) �← � + 1
(16) K[i]j .z = �
(17) κ[�]← &K[i]j
(18) if K[i]j .w > α then
(19) K[i]j .z = q.z
(20) κ[q.z]← &K[i]j

(21) Q
〈b,s〉
K[i]j.c ← push(&K[i]j)

(22) q ← pop(Q
〈b,s〉
i )

(23) K[i]Σpi
.s←∞

(24) Q
〈b,s〉
i+1 ← push(&K[i]Σpi

)

(25) ReportOccurrences(κ)

Fig. 5. Online algorithm for finding transposition-invariant time-scaled partial occur-
rences

cannot rely on piecewise matches that are consecutive in P but any piecewise
match associated with a positive intra-pattern vector

tki′ − tki = σi(pi′ − pi) (7)

has to be considered. Here 0 ≤ ki < ki′ ≤ n−1; 0 ≤ i < i′ ≤ m−1 and σi ∈ R
+.

Given a threshold α, a chain Tτ0...τβ−1 , such that tτj − tτj−1 = σ(pπj −pπj−1), for
0 < j ≤ β, β ≥ α, where τ0 . . . τβ−1 and π0 . . . πβ−1 are increasing sequences of
indices in T and P , respectively, would constitute for a transposition-invariant
time-scaled partial occurrence (of length β).

That piecewise matches can now be between any two points in the pattern
makes the problem somewhat more challenging. This has the effect that, at point
i, pushing a reference to a priority queue (lines (2) and (21) of the algorithm)
may involve any future priority queue, from Qi+1 to Qm, not just the successive
one as in the previous case; the correct priority queue is the one that is stored in
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K[i]j.c (recall that it stores the end point of the intra-pattern vector associated
with the piecewise match). Conversely, the antecedents at point i (stored in Qi)
may include references to any past tables, from K[0] to K[i− 1], expanding the
size of the priority queue Qi.

The two remaining differences to the algorithm above, are in lines (11) and
(14-20). In line (11), the algorithm chooses to extend the piecewise match that is
associated with the longest prefix occurrence. This is a necessary step, once again,
because we are no more dealing with piecewise matches that are consecutive in
P . In lines (14-20) the algorithm deals with a found occurrence. Lines (14-17)
deal with a new occurrence: generate a new running number, 	, for it (that is
used as its id) and store a link to the found occurrence to the table of occurrences
κ. Lines (18-20) deal with extending a previously found occurrence.

Correctness and Analysis. Denoting by Σ = maxm
i=1(|Qi|, |K[i − 1]|), with an

analogous reasoning to that of the previous analysis, we arrive at similar com-
plexities: the algorithm runs in O(mΣ log Σ) time and O(mΣ) space. Let us now
analyse the order of Σ in this case. Still it holds that for a positive intra-pattern
vector, pi′ − pi, there are O(n2) possible piecewise matches. However, the table
K[i] may contain entries associated with piecewise matches with any positive
intra-pattern vector ending at point i′. Thus, maxm

i=1(|K[i− 1]|) = O(mn2). As
|Qi| ≤ |K[i− 1]| for 0 < i ≤ m and m = O(n), we conclude that the algorithm
has an O(m2n2 log n) running time and works in a space O(m2n2).

The proof of the correctness of this algorithm is left for an interested reader.

�

4 Conclusions

In this paper we suggested novel content-based music retrieval algorithms for
polyphonic, geometrically represented music. The algorithms are both trans-
position and time-scale invariant. Given a (polyphonic) query pattern P =
p0, . . . , pm−1 to be searched for in a polyphonic music database T = t0, . . . , tn−1,
the algorithms run in O(mΣ log Σ) time and O(mΣ) space, where Σ = O(n2)
when searching for exact occurrences under such a setting, and Σ = O(n2m)
when searching for partial occurrences. Whether this is an improvement in prac-
tice over the existing algorithm by Romming and Selfridge-Field [9], working in
space O(n3) and time O(n2m3), is left for future experiments on real data.

However, the new approach seems to be very flexible: at the present the au-
thor is adopting the approach to a more complex case, where an uneven time
deformation is known just to preserve the order of the notes; there are no known
solutions for this time-warping invariant problem [6]. Moreover, it seems that
with slight modifications to the data structures and ideas presented by Lem-
ström, Mikkilä and Mäkinen in [7], it would be possible to adopt the idea of
using a three-phase searching process (indexing, filtering and checking) with a
smaller search space and a better running time to those presented here.
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