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Abstract

This thesis presents a novel application of x-ray Compton scattering to structural stud-

ies of molecular liquids. Systematic Compton-scattering experiments on water have been

carried out with unprecedented accuracy at third-generation synchrotron-radiation labo-

ratories. The experiments focused on temperature effects in water, the water-to-ice phase

transition, quantum isotope effects, and ion hydration. The experimental data is inter-

preted by comparison with both model computations and ab initio molecular-dynamics

simulations. Accordingly, Compton scattering is found to provide unique intra- and inter-

molecular structural information. This thesis thus demonstrates the complementarity of

the technique to traditional real-space probes for studies on the local structure of water

and, more generally, molecular liquids.
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1 INTRODUCTION 1

1 Introduction

Compton scattering is inelastic x-ray scattering at large energy and momentum transfers.

It can be used to probe the ground state of the electron system. Its history dates back to

the 1920s, when Compton [1] and Debye [2] explained their experimental observations in

terms of photons, at the time being a controversial concept. A few years later DuMond

determined the Compton-scattering lineshape of beryllium [3], thus providing the first

indisputable experimental proof of the conduction electrons obeying the novel Fermi-Dirac

statistics.

Despite the aforementioned impressive results, Compton scattering studies were scarce

during the following decades. The resurrection of the technique is owing to the study

of lithium by Cooper and coworkers [4] in the 1960s, combining x-ray tube sources and

crystal analyzers. The subsequent introduction of solid-state detectors (SSDs) in the 1970s

facilitated experimental work (see Ref. [5] for a review). During this latter period pioneering

studies of water [6–9] and aqueous solutions [10, 11] were carried out, albeit experimental

limitations hampered the extraction of detailed structural information.

A further advance was the advent of high-brilliance synchrotron-radiation sources, the

immense increase in the incident x-ray flux making high-accuracy experiments feasible.

While the pioneering experiments were carried out using SSDs [12, 13], the subsequent

introduction of crystal spectrometers [14] eventually lead to the high momentum resolu-

tion currently obtainable [15]. Hence Compton scattering yields, e.g., detailed information

about the Fermi surface [16, 17]. In recent years the technique has been applied to a variety

of problems in the field of solid-state physics, including fermiology-related issues [18–20],

high-pressure effects [21–24], and novel materials [25–29]. Notably, the so-called spin-

polarized1 Compton scattering, providing unique information about the ground-state spin

density [30, 31], has benefited largely from the polarization properties of synchrotron radi-

ation.

Subsequent to the discovery by Compton [1], the field of inelastic x-ray scattering

expanded with the experimental observations of, e.g., non-resonant [32] and resonant [33]

x-ray Raman scattering. Currently inelastic x-ray scattering is applied to studies of a

variety of phenomena, such as various electronic excitations [34, 35] and phonons [36],

Compton scattering being only a minor branch.

The inelastic x-ray scattering techniques have also been applied to studies of liquids [37],

including work on the local structure [38] and dynamics [39] of water. Water exhibits

numerous anomalous properties (see e.g. Ref. [40] for a review), which are predominantly

traceable to its three-dimensional hydrogen-bond (H-bond) network [41]. Hence the local

structure has attracted extensive interest since the 1930s. Nevertheless, no computational

model currently exists that quantitatively conforms with all experimental observations [42].

This thesis describes a novel application of Compton scattering to structural studies of

water, combining synchrotron-radiation-based experiments of unprecedented accuracy and

1Often referred to as ’magnetic Compton scattering’.



2 2 COMPTON SCATTERING

analysis within the density-functional theory (DFT). The technique is shown to provide

unique information on the intra- and intermolecular structure, isotope quantum effects,

and ion hydration.

Throughout this thesis, the system of atomic units (a.u.) is adopted for formulae and

momenta (~ = m = e = cα = 1 using standard notation), one atomic unit of momentum

being 1.99 · 10−24 kgms−1. Lengths (distances) and energies are given in SI units and

electron volts (eV), respectively.

2 Compton scattering

Compton scattering provides information about the electronic ground state of the target

system [43, 44], the technique being particularly sensitive to the valence electrons (cf. the

left panel of Fig. 1). Within the so-called impulse approximation, to be discussed in

subsection 2.2, the double-differential scattering cross section can be expressed in terms

of the so-called Compton profile, i.e. a one-dimensional projection of the ground-state

electron momentum density. The electron momentum density is also accessible by the

positron-annihilation [45], (γ,eγ) [46], and electron-momentum [47] spectroscopies. Upon

comparison the versatility of Compton scattering should be noted, however, the technique

being readily applicable to solids, liquids, and gases alike. Compton scattering is the only

momentum-density probe hitherto applied to structural studies of liquid water.

Traditionally structural studies using x rays utilize diffraction, providing information

on the electron charge density (cf. electron momentum density by Compton scattering).

The reader is referred to Ref. [48] for a review on x-ray diffraction from water. Upon

comparison a particular characteristic should be noted: contrariwise to x-ray diffraction,

no formal connection between the Compton-scattering spectrum and the structure of the

target system exists. This property is common to many spectroscopies [49–51]. Throughout

this thesis the experimental data is interpreted in terms of structural effects by comparison

with electronic-structure computations.

The well-known sensitivity of Compton scattering to chemical bonds is captured by the

’bond oscillation principle’ [52]: the electron momentum density associated with a chem-

ical bond exhibits damped oscillations in the bonding direction. The ensuing feature in

the Compton profile of ice [53] (and water) has been interpreted as being predominantly

induced by the nearest-neighbor exchange interaction [54–57]. The feature also includes

smaller contributions from charge transfer and polarization [57, 58] as well as coopera-

tive and anticooperative2 many-body effects (see Ref. [56] and paper I). This partition

is not unambiguous, however, as demonstrated by the debated interpretation in terms of

covalency [53–56]. Nevertheless, the feature depends on the specific local structure [57].

Throughout this thesis it is thus used as an effective fingerprint of the intra- and inter-

molecular structure.

2Following Ref. [59], cooperative (anticooperative) effects refer to negative (positive) non-additive con-
tributions to the total energy.
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Fig. 1: Schematic representation of Compton

scattering. Left: The scattering spectrum from

water. The dashed and dotted lines correspond

to scattering from the core (i.e. oxygen 1s)

and valence electrons, respectively. Right: The

scattering process.

2.1 Non-resonant inelastic x-ray scattering

Throughout this thesis, Compton scattering refers to a process schematically presented in

the right panel of Fig. 1. The incident (scattered) photon energy is denoted by ω1 (ω2),

momentum by k1 (k2) and polarization by e1 (e2). The initial (final) state of the target

is denoted by |I〉 (|F 〉) and its energy by εI (εF ). The energy and momentum transfers to

the recoil electron are denoted by ω = ω1 − ω2 and k = k1 − k2, respectively.

In the non-relativistic, non-resonant limit the double-differential scattering cross section

can be expressed as [60, 61]

d2σ

dΩdω2

=

(
dσ

dΩ

)

Th

S (k, ω) , (1)

where Ω denotes a solid angle. The Thomson cross section, representing the electron-photon

coupling, is given by3 (
dσ

dΩ

)

Th

= r2
0

(
ω2

ω1

)
(e1 · e2)

2 , (2)

r0 being the classical electron radius. The response of the electrons to the probe is included

in the so-called dynamic structure factor, which is given by

S (k, ω) =
∑

F

∣∣∣∣∣〈F |
∑

j

eik·rj |I〉
∣∣∣∣∣

2

δ (ω + εI − εF ) . (3)

Here the summation is over the final states of the target system.

The dynamic structure factor carries information on the spatiotemporally correlated

motion of the scattering particles. Following van Hove [63] it can be rewritten using a time

3A proper treatment of polarization would include the so-called Stokes parameters. In the present
studies the effect of the synchrotron-radiation polarization properties is limited to the multiple-scattering
contribution (see, e.g., Ref. [62]).
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integral as

S (k, ω) =
1

2π

∫ ∞

−∞
dt eiωt〈I|

∑
i,j

e−ik·ri(0)eik·rj(t)|I〉. (4)

The strong dependence on the energy and momentum transfers should be noted, proper

limits being (ξC and ωC denote characteristic lengths and energies of the system, respec-

tively):

• Small momentum transfer (|k|ξC ¿ 1): Collective behavior of the many-particle

system is probed. The energy transfer (ω ∼ ωC) determines the type of collective

excitations observed (such as phonons or plasmons).

• Large momentum transfer (|k|ξC À 1): Single-particle excitations are probed. Through-

out this thesis Compton scattering is defined in the large energy transfer limit (ω À
ωC), which constitutes the impulse approximation.

In the following subsection the latter limit is studied in more detail.

2.2 Impulse approximation

The present Compton-scattering data is interpreted within the impulse approximation.

Following the formal justification provided by Eisenberger and Platzman [64], with Eq. (3)

for simplicity rewritten in the single-particle picture, the dynamic structure factor is given

by

S (k, ω) ' 1

2π

∫ ∞

−∞
dt eiωt

occ∑
i

unocc∑

f

〈i|e−ik·r|f〉〈f |ei(H0+V )t eik·r e−i(H0+V )t|i〉. (5)

Here H0 and V denote the free-electron Hamiltonian and the potential, respectively, and

the sum is over the occupied (unoccupied) single-particle initial (final) states |i〉 (|f〉) with

energy εi (εf ). The essence of the impulse approximation can be stated as follows: For large

energy transfers (ω À 〈[H0, V ]〉1/2) only a short interval of time (t . ω−1) contributes to

the above time integral, justifying the approximation

ei(H0+V )t = eiH0teiV te−[H0,V ]t2/2 · · · ' eiH0teiV t. (6)

Since V and r commute, Eq. (5) can further be simplified as

SIA (k, ω) ' 1

2π

∫ ∞

−∞
dt eiωt

occ∑
i

unocc∑

f

〈i|e−ik·r|f〉〈f |eiH0t eik·r e−iH0t|i〉. (7)

Due to the instantaneous nature of the scattering process, the target has no time to relax;

thus the potential cancels between initial and final states. Consequently the scattered

photons carry no information about the latter states.
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Assuming the recoil electron to be free in its final state, the last expression can be

rewritten as4

SIA (k, ω) '
occ∑
i

∫
dp |χi(p)|2 δ (

ω − |k|2/2− k · p)
. (8)

Here χi(p) denotes the momentum-space wave function representing the single-particle

state |i〉. Inserting the ground-state electron momentum density N(p) =
∑occ

i |χi(p)|2 and

assuming an isotropic target (e.g. a liquid), Eq. (8) leads to

SIA (k, ω) ' 1

|k|J(q), (9)

where the isotropic Compton profile is defined as

J(q) =
1

2

∫ 4π

0

dΩ

∫ ∞

|q|
dppN(p). (10)

The scalar momentum variable q = (ω−|k|2/2)/|k| is the projection of the electron momen-

tum p along the scattering vector k. Due to the incoherent nature of the scattering process,

individual electrons provide additive contributions to the Compton profile (cf. the left panel

of Fig. 1). It should be noted that the main results outlined here persist upon using more

sophisticated methods, e.g., including relativistic [65, 66] or final-state effects [67–69]. The

deviations from the impulse approximation have been studied extensively [70–73].

The connection between the scalar momentum variable q and the experimental param-

eters, i.e. the incident (scattered) photon energy ω1 (ω2) and the scattering angle φ, is

given by relativistic kinematics [65, 66]. To a good approximation

q ' |k|
2
− (ω1 − ω2)

c

√
1

4
+

c4

2ω1ω2(1− cosφ)
. (11)

Throughout this thesis the high-energy side of the intrinsically symmetric Compton profile

corresponds to positive momentum values (cf. the left panel of Fig. 1).

2.3 Computations

In this thesis the experimental data is interpreted using model computations. In these com-

putations the electron momentum density, and the ensuing Compton profile, is determined

within the DFT. Next the computations are briefly reviewed.

Density-functional theory

Within the so-called Kohn-Sham DFT [74, 75], the many-body ground state of a system

of interacting electrons is represented in terms of fictitious, non-interacting single-particle

4The terms |k|2/2 and k ·p govern the energy position (i.e. the so-called Compton shift) and the width
of the Compton scattering spectrum, respectively (cf. the left panel of Fig. 1).
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states [76, 77]. Accordingly, the correct ground-state energy can, in principle, be found

by varying the total energy functional E[n] [74] [n(r) or n denoting the electron density].

Assuming a system of electrons in an external potential due to a set of nuclei, the total

energy functional is formally expressed as

E[n] = T [n] +
1

2

∫
dr

∫
dr′

n(r)n(r′)
|r− r′| −

∑

l

∫
dr

Zln(r)

|Rl − r| + Enuc({Rl}) + Exc[n]. (12)

Here {Rl} describes the nuclei positions and {Zl} the corresponding atomic numbers.

T [n] denotes the kinetic energy of the fictitious non-interacting electrons, while the second,

third, and fourth terms on the right-hand side correspond to the electron-electron, electron-

nucleus, and nucleus-nucleus Coulomb interactions, respectively. The last term, the so-

called exchange-correlation functional Exc[n], is composed of the energy terms neglected

hitherto. This approach would be exact, if the exchange-correlation functional was known

correctly. However, generally one resorts to approximate functionals.

For practical computations a system of non-interacting electrons moving in a common

potential is constructed [75]. The electron density, equaling to that of the true interacting

system, is specified in terms of orthogonal single-particle wave functions as

n(r) =
∑

i

∣∣ψKS
i (r)

∣∣2 . (13)

Here ψKS
i (r) denotes a so-called Kohn-Sham orbital and the sum is over the occupied states.

The variation of Eq. (12) thus leads to the self-consistent Kohn-Sham equations

[
−1

2
∇2 + VKS(r)

]
ψKS

i (r) = εiψ
KS
i (r), (14)

where εi is the eigenvalue corresponding to the orbital ψKS
i (r) and the potential is given by

VKS(r) =

∫
dr′

n(r)

|r− r′| −
∑

l

Zl

|Rl − r| +
δExc[n]

δn(r)
. (15)

The many-body system of interacting electrons can thus be treated, in principle exactly, as

a system of non-interacting particles, the interactions between the electrons being included

implicitly in the potential. The only physically relevant quantities within this approach,

however, are the electron density and the total energy.

In the present work, the momentum density is computed by Fourier transforming the

individual Kohn-Sham orbitals of the determinant wave function separately [78],

N(p) =
∑

i

(2π)−3

∣∣∣∣
∫

dre−ip·rψKS
i (r)

∣∣∣∣
2

. (16)

The Kohn-Sham orbitals are formally merely auxiliary functions; nevertheless, they can

carry valuable information about the electron system [79]. The approximation of using
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Compton profiles of water monomers.

The monomers are defined by the

intramolecular bond lengths rOH =

0.972 Å and rref
OH = 0.968 Å, respec-

tively.

them as the single-particle wave functions in computing the Compton profile of water has

been shown reasonable by comparison with Hartree-Fock (HF) and Møller-Plesset second-

order perturbation theory calculations [54, 57]. However, a verification of the adopted

approach by comparison to more sophisticated computations, e.g. coupled-cluster calcula-

tions [80], would be highly useful.

Computational approximations

Throughout this thesis, the experimental data was interpreted using atomic-cluster-based

model computations. Specifically, in papers II-IV temperature-dependent H-bond length

and angle distributions for water [50] and an ad hoc computational method (outlined in

paper I) based on additive nearest-neighbor interactions only was used. Within this ap-

proach, which is in line with previous studies of water [9] and hydrocarbons [81], the

nearest-neighbor contributions are treated as mutually independent perturbations to the

monomer Compton profile, neglecting many-body effects. Such an approach was preferred

over ab initio simulations in order to obtain specific information on the various structural

parameters observed in the Compton profile. Nonetheless, the complex local structure

of water and particularly aqueous solutions, not easily accessible by model calculations,

necessitates also comparison with more sophisticated computational approaches. Hence

computations based on ab initio Car-Parrinello molecular-dynamics (MD) [82] configura-

tions were also included in paper IV. However, the lack of quantitative agreement with

experimental Compton-scattering data could imply a necessity of including nuclear quan-

tum effects in the Car-Parrinello MD approach [83].

The influence of various computational approximations on the difference of Compton

profiles is demonstrated for water monomers in the bottom panel of Fig. 2. The monomer

and reference monomer are specified by the intramolecular bond lengths rOH = 0.972 Å and

rref
OH = 0.968 Å, respectively (see the top panel of Fig. 2 for the geometric definitions). The
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difference of Compton profiles computed using an extension [57] of the StoBe-deMon

code [84] within the generalized-gradient approximation [85, 86] (GGA) of the DFT is

shown. Linear combinations of contracted Gaussian basis functions are utilized for the

Kohn-Sham orbitals. For the oxygen atoms a TZVP-type basis set is used, whereas a prim-

itive set augmented by one p-function in a [3s,1p] contraction is employed for the hydrogen

atoms. The corresponding computation within the local-density approximation [87, 88]

(LDA) is also presented, indicating the effect of the functionals. Next, the effect of the

level of theory is demonstrated by comparison with HF-based computations using the

Gaussian03 code [89], utilizing a TZVP-type basis set. Finally, the effect of the basis set

is studied by comparison with gradient-corrected [90, 91] computations within the DFT us-

ing an extension [92] of the plane-wave-based VASP code [93, 94]. The minor influence of

the computational approximations when considering differences between Compton profiles

of water monomers (and dimers) should be noted.

3 Experiments

The experimental work described in this thesis was carried out at the beamlines ID15B of

the European Synchrotron Radiation Facility (ESRF, Grenoble, France) and BL08W of the

Super Photon Ring - 8 GeV (SPring-8, Hyogo, Japan). Both beamlines are designed for

Compton-scattering studies using monochromatic incident x rays, with the radiation source

in both cases being a wiggler. At beamline ID15B [95] the x-ray energy was either ω1 '
56 keV or ω1 ' 89 keV, whereas at station A (B) of beamline BL08W [96] harder incident

x rays with ω1 ' 176 keV (ω1 ' 115 keV) were used. The maximum incident x-ray flux at

the sample is comparable at ID15B and BL08W [approximately 1012 photons/s/(maximum

beam size)]. In the following the beamlines and the experimental details will be reviewed.

3.1 Beamline ID15B (ESRF)

At beamline ID15B, schematically presented in Fig. 3, the incident x rays are produced by

a seven-period asymmetric multipole permanent-magnet wiggler (AMPW). In the present

studies (papers II and IV) horizontally focusing Johann-type Si(311) and Laue-type Si(511)



3 EXPERIMENTS 9

EMPW

ion chamber

(a) sample

vacuum chamber

cryostat

slits

(b)

analyzer

incident x rays

SSD element

Rowland circle

triply layered Si(620)

Si(400) − 115 keV (station B)

Si(620) − 175 keV (station A)

monochromator

SSD

multi−element SSD

Position−

sensitive

detector

Fig. 4: Left: Schematic presentation of beamline BL08W: (a) the multi-element SSD and

(b) the Cauchois-type spectrometer setup. Right: Schematic picture of the multi-element

SSD.

monochromators were used, yielding incident x rays with ω1 ' 56 keV and ω1 ' 89 keV

energy, respectively. The incident x-ray flux was monitored using a Si PIN diode, working

in photovoltaic mode.

The high-resolution scanning crystal spectrometers installed at ID15B yield momen-

tum resolutions (i.e. the full-width-at-half-maximum of the resolution functions) below

0.1 a.u. [95, 97, 98]. However, since the interaction between the water molecules is ex-

pected to induce only a weak feature in the Compton profile [57], the limited statistical

accuracy hampers structural studies of water and aqueous solutions. Hence a 13-element

Ge SSD was employed, providing spectra with only moderate momentum resolution but

superior statistical accuracy. Such a detection system has previously been applied, e.g.,

to spin-polarized Compton scattering studies [99]. The use of a multi-element SSD, each

element utilizing individual electronics, is crucial to achieve the accuracy necessary for the

present studies.

With such an experimental setup, the moderate momentum resolution ∆q depends

predominantly on the energy resolution of the SSD (typically ∆ω2 & 400 eV and ∆q '
0.6 a.u. in the present studies). However, the use of the multi-element SSD leads to the

aforementioned extremely small statistical inaccuracy of the Compton profile difference

[typically below 0.02% of J(0) at the Compton peak (i.e. at q = 0 a.u.)]. The experimental

parameters are summarized in Table 1.

3.2 Beamline BL08W (SPring-8)

At beamline BL08W, schematically presented in Fig. 4, the incident radiation is produced

by a 37-period elliptical multipole wiggler (EMPW) [100]. An asymmetric Johann-type

Si(620) [a doubly bent Si(400)] monochromator was used at station A (B), providing ω1 '
176 keV (ω1 ' 115 keV) incident x rays. Two different experimental setups were used,

utilizing either a ten-element Ge SSD or a Cauchois-type spectrometer, the incident x-ray
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Paper Beamline φ ω1 ∆q σ Beam size

(◦) (keV) (a.u.) (0.1%) (mm2)

II ID15B 160 56 0.64 0.20 0.3(H)×1.0(V)

III BL08W(B) 178 115 0.63 0.16 2.0(H)×2.0(V)

IV ID15B 165 89 0.54 0.16 0.2(H)×0.5(V)

IV BL08W(A) 172 176 0.45 0.18 1.2(H)×0.6(V)

V BL08W(B) 165 115 0.20 1.3 1.0(H)×2.0(V)

Table 1: Experimental parameters. The inaccuracy σ of the difference between Compton

profiles at the Compton peak is given as fraction of J(0). The horizontal (H) and vertical

(V) beam sizes are given at the sample.

flux being monitored using an ionization chamber (Ge SSD) in the former (latter) case.

In papers III and IV a similar detection system as described above was used. At

BL08W, however, the multi-element Ge SSD was ’doughnut’-shaped (see the right panel

of Fig. 4): the ten elements were positioned symmetrically on the arc of a circle, while the

incident x rays passed through the center. It should be noted that this choice of scattering

geometry hampers the reduction of background by shielding. The momentum resolutions

achieved at BL08W and ID15B are comparable, whereas an improved statistical accuracy

is obtained at the former beamline.

In paper V the detection system consisted of the standard Cauchois-type high-resolution

spectrometer [101, 102], utilizing a triply layered Si(620) bent-crystal analyzer (radius of

curvature R = 3650 mm). The photons were detected using a position-sensitive detector,

which utilizes an x-ray image intensifier and a digital CCD camera. The middle analyzer

crystal and the detector share the same Rowland circle (R = 1825 mm). The momentum

resolution ∆q ' 0.20 a.u. was significantly improved compared with a multi-element SSD,

whereas the statistical accuracy was limited.

Upon comparing the beamlines BL08W and ID15B a particular characteristic should

be mentioned. SPring-8 is operated in the so-called top-up mode [103] (i.e. with quasi-

continuous filling of electrons), the temporal variation of the stored electron-beam current

being below 0.1% (cf. approximately 15% variation of the current in twelve-hour cycles

at the ESRF). Consequently the thermal stability of the x-ray optics and the count-rate

dependent operation of the multi-element SSD are greatly enhanced. Thus data of im-

proved quality is obtainable at BL08W, facilitating studies of the subtle H-bond effects in

the Compton profile of water.

3.3 Experimental details

The experimental work constitutes a major part of this thesis. In the following details

about the data analysis and sample environment will be reviewed.
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Data analysis

There are several important corrections that need to be applied to the collected data in

order to extract the Compton profile. The data was corrected for absorption and back-

ground, the latter determined by measuring scattering from the empty cell, before applying

a relativistic conversion of the double-differential cross section (as function of the scattered

photon energy ω2) to the Compton profile (in terms of the momentum variable q) [66]. The

contribution of multiple scattering was studied both computationally [62, 104, 105] (papers

II-V) and experimentally (paper V). When using the Cauchois-type spectrometer (paper

V) the efficiency of the detection system, i.e. the reflectivities of the analyzer crystals and

the efficiency of the position-sensitive detector, was determined utilizing x-ray fluorescence

emission of thallium and bismuth. The energy resolutions were determined utilizing char-

acteristic γ- and x-ray spectra. Finally the positive and negative momentum sides of the

(in principle) intrinsically symmetric Compton profiles were averaged (papers II-IV).

The temporally varying incident x-ray flux at synchrotron-radiation laboratories ne-

cessitates continuous monitoring, albeit the top-up mode (partly) eliminates this require-

ment [103]. However, since the Compton-scattering spectra in the present studies were

collected using energy-dispersive methods, as compared to using a scanning spectrome-

ter [73], the normalization with incident x-ray flux is less significant. The same holds for

the closely related dead-time correction, which is due to a too narrow dynamic range of

the detection system. Nevertheless, for proper background subtraction these issues are of

importance.

Since the changes in the Compton profiles studied in the present work are very small

[typically about 0.1% of J(0) at the Compton peak], the consistency of the data is crucial.

Thus it was monitored carefully throughout the experiments. In practice, spectra were

saved every 10 (30) minutes in papers II-IV (V) and verified to be consistent before

added. Due to experimental instabilities individual spectra were further shifted (typically

within 0.01 a.u. of momentum).

Sample environment

Two different types of sample confinement were used in the present studies. In papers II-

III and V metal cells with 25 µm thick polyimide (i.e. Kapton) windows were used. The

2 mm thick (10 mm in paper V) sample cells were cylindrically symmetric with respect to

the incident x-ray path. In paper IV thin-walled (10 µm thick) borosilicate glass capillaries

with a 2 mm diameter were used. Two particular characteristics of the sample cells should

be noted. First, the minor diffusion of water through the polyimide windows poses a

problem at elevated temperatures. Second, the sample thickness is well defined only when

using the glass capillaries. In particular, the minimization of volume-dependent effects

by using the same capillary is crucial when comparing Compton profiles acquired from

different liquids.

Throughout this thesis the samples were inserted in vacuum chambers, thus minimizing
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the background due to scattering from air. However, the direct comparison between normal

and heavy (i.e. deuterated) water Compton profiles (paper IV), utilizing the same unsealed

glass capillary for confining both samples, was carried out in helium atmosphere. The

temperature of the sample was controlled within 0.1 K using either standard cryostats

(papers II-III) or a Peltier-based system (paper IV).

4 Local structure of water

This thesis comprises a novel application of Compton scattering to structural studies of

molecular liquids,5 enabled by third-generation synchrotron-radiation sources. Notably,

the systematic studies included focus on water, providing unique intra- and intermolecular

structural information. In the following subsections the local structure of water, as obtained

by other techniques, and the results of the present work will be briefly reviewed.

4.1 Intra- and intermolecular structure

The V-shaped water molecule, consisting of 2 hydrogen atoms covalently bonded to an

oxygen atom, has the average intramolecular bond length rOH ∼ 0.97 Å and angle θHOH ∼
106◦ in the liquid state [107]. The interaction between the molecules is governed by the

H bond. Following Ref. [108] the O-H· · ·O’ interaction in water is defined a H bond, if it

(i) is local and (ii) O-H acts as a proton donor to the acceptor O’ (H, O, and O’ denoting

a hydrogen and two adjacent oxygen atoms, respectively). In practice, one often resorts

to various energetic or geometric definitions. The complex nature of the H bond in water,

exhibiting, e.g., cooperativity [59] and the disputed charge-transfer effects [109–111], should

also be noted.

5Throughout this thesis the term ’molecular liquid’ denotes a liquid with strong primary (i.e. in-
tramolecular) and moderate or weak secondary (i.e. intermolecular) interatomic bonding. The reader is
referred to Ref. [106] for a review on liquids.



4 LOCAL STRUCTURE OF WATER 13
R

H
O
  (

Å
)

β  (°)
A

bs
ol

ut
e 

ar
ea

  (
%

 o
f e

le
ct

ro
n)

A
B

0 10 20 30 40 50

1.6

1.8

2

2.2

2.4

2

4

6

8

R
H

O
  (

Å
)

β  (°)

q x  (
a.

u.
)

0 10 20 30 40 50
1.5

1.6

1.7

1.8

1.9

2

2.1

1.1

1.15

1.2

1.25

Fig. 6: Sensitivity of the difference between Compton profiles to radial (RHO) and angular
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The dashed line defines a geometrical criterion for intact (A) and weakened/broken (B) H

bonds [51]. Right: Momentum position of the extremum at qx ∼ 1 a.u. in the difference

between Compton profiles (cf. Fig. 5).

The water molecules form three-dimensional H-bond networks upon condensation [41].

Upon freezing at ambient pressure hexagonal ice Ih is formed (the reader is referred to

Ref. [112] for a review on ice). In ice Ih, the oxygen atoms are interconnected by nearly

linear H bonds in a tetrahedral nearest-neighbor arrangement (ROO ∼ 2.75 Å). In accor-

dance with the so-called ’ice rules’, one hydrogen atom is positioned between each adjacent

oxygen-oxygen pair. Consequently each molecule participates in four H bonds, i.e. both

donating and accepting two protons.

In contrast, liquid water is a dynamical system with the individual H bonds continually

breaking and reforming [41]. Traditionally its average structure has been studied using

x-ray [48] and neutron diffraction [113] as well as classical [42] and ab initio [114] MD

simulations. Accordingly, the prevailing picture of a quasitetrahedral local structure has

emerged: the average water molecule participates in nearly four H bonds with its nearest

neighbors, the H bonds in water being radially and angularly distorted compared to those

in ice Ih. This picture was recently contested [51], however, x-ray spectroscopic data being

interpreted as reflecting a predominance of asymmetric bonding in water, with the majority

of molecules participating only in two intact H bonds. This latter interpretation is under

active debate [115–122].

Intra- and intermolecular effects

The distinct fingerprints in the Compton profile of water induced by various intra- and

intermolecular structural parameters were studied systematically in paper I. In line with

the ’bond oscillation principle’ [52], the intermolecular fingerprints oscillate more rapidly

as compared with the intramolecular ones (see Ref. [57] and paper I). A variation of the
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intramolecular structural parameters, i.e. the intramolecular bond length rOH and angle

θHOH, induce mutually distinct fingerprints in the Compton profile. The influence of the

intramolecular oscillations should also be noted. The effect of including small O-H stretch

and H-O-H bend vibrations in the computational Compton profile, as compared to using

the first moment of the corresponding distributions, was found to be negligible compared

to the present experimental accuracy (cf. Fig. 5).

The sensitivity of Compton scattering to radial and angular distortions in the H-bond

geometry of a water dimer was also studied extensively in paper II. The absolute area of the

difference between Compton profiles was found to predominantly reflect radial distortions

(see the left panel of Fig. 6). Contrariwise to the aforementioned intramolecular bond

elongations, radial distortions of the H-bond geometry induce a fingerprint in the Compton

profile which exhibits a notable nonlinearity in terms of the absolute area. The difference

between Compton profiles was also found to reflect angular distortions of the H bond

(see the right panel of Fig. 6), albeit these are not as strongly manifested as the radial

distortions. Thus Compton scattering is found to primarily probe the H-bond length

distribution (adopting a typical geometric H-bond criterion [51] as depicted in the left

panel of Fig. 6).

Structural correlations

The present Compton-scattering studies (papers II and III) provide structural information

on water primarily in terms of structural correlations. In paper II the intermolecular corre-
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lation between the length and angular distortion of the H bond was studied. By comparing

model computations with experimental data, a necessity of excluding short and largely bent

H-bond geometries was demonstrated for liquid water. A similar result was also obtained in

paper III from the comparison between the Compton profiles of water and polycrystalline

ice Ih. The finding is in qualitative agreement with average results for crystal hydrates [125]

and H-bond geometries derived from Car-Parrinello MD simulations [123]. However, the

detailed intermolecular correlation cannot be uniquely determined by Compton scattering.

This is exemplified by the mutually distinct excluded regions for the H-bond geometries

depicted in the left panel of Fig. 7, which could not be distinguished by Compton scat-

tering. These results are valid also upon including a correlation between the intra- and

intermolecular geometries (to be discussed in the following paragraph).

The average intramolecular bond length depends on the specific H-bond geometry, the

former ranging from rOH ' 0.98 Å in ice Ih [112] to rOH ' 0.958 Å for isolated water

monomers [126]. In paper III the detailed correlation between the intramolecular bond

length and the corresponding H-bond geometry, i.e. rOH = rOH(RHO, β), was studied. By

comparing model computations with the experimental difference between water and poly-

crystalline ice Ih Compton profiles, a necessity of including such a correlation (presented

in the right panel of Fig. 7) was demonstrated for liquid water. The found correlation is in

good agreement with average results derived from crystal hydrates [124] and Car-Parrinello

MD simulations [123]. In paper IV it was further successfully applied to the analysis of

temperature-dependent water data.

Finally, the debated interpretation of x-ray spectroscopic data in terms of predominantly

asymmetric bonding in water [51] should be commented. The Compton profile of water

was not found to be sensitive to whether the bonding of individual molecules is symmetric

or asymmetric; thus the present studies can neither corroborate nor refute the claim of

Ref. [51] regarding asymmetry. Based on computational analysis, the traditional picture

of liquid water, in which the average number of intact H bonds per molecule is nHB ' 3.5

at room temperature, is consistent with the experimental data of the present studies. In

principle the lowest limit obtainable in paper III was nHB ≥ 2.7, adopting the geometrical

H-bond criterion of Ref. [51].

4.2 Isotope quantum effects

Deuteration affects many properties of water: the dynamic behavior, the thermodynamic

properties, and the local structure (see, e.g., Ref. [40]). These effects, collectively referred

to as isotope quantum effects, have partly been attributed to a larger zero-point energy of

normal compared to heavy water [83]. Experimentally the structural isotope effects have

been studied primarily by high-energy x-ray diffraction [127, 128]. Accordingly, isotopic

substitution affects the structural disorder, the local intermolecular structure of heavy wa-

ter at room temperature approximately corresponding to that of normal water at a lower

temperature (∆T ∼ 6 ◦C). This effective temperature offset has been found to decrease with
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temperature [129]. However, simulations reproduce only qualitatively the experimentally

observed difference between the structure factors [83, 130]. Hence complementary infor-

mation on the structural isotope quantum effects could shed some light on this important

issue.

Paper IV presents a Compton-scattering study addressing the isotope quantum effects

in water. By comparison with model computations, the difference between experimental

room-temperature Compton profiles of normal and heavy water is attributed predominantly

to intramolecular structural differences. The major contribution is found to be induced by

a difference in the intramolecular bond lengths, i.e. ∆r = rOH − rOD ≈ 0.004 Å (cf.

the bottom panel of Fig. 2). The interpretation in terms of intramolecular structural

differences is in good agreement with previous reports (see, e.g., Ref. [127]). Furthermore,

the temperature-induced changes in the Compton profile are distinctly different for normal

and heavy water. This is again interpreted as primarily reflecting intramolecular structural

differences. It should be noted that the mere observation of isotope effects in the Compton

profile of water owes to the very good accuracy and consistency of the experimental data.

It is also noteworthy that no temperature dependence of the intramolecular structure of

water has been observed by x-ray diffraction [127, 131], since it is primarily sensitive to

the intermolecular structure. Given this predominant sensitivity of Compton scattering to

the intramolecular structure, the technique thus provides unique structural information on

the subtle isotope quantum effects in water.

4.3 Ion hydration

Water is a strong polar solvent, which can completely dissolve strong ionic salts such

as lithium chloride. The hydration of charged ions can predominantly be attributed to

the ion-dipole interaction, the water molecules in the first hydration shell orienting their

dipoles with respect to the charged ion. However, e.g. charge-transfer effects might also

be of importance [132]. Moreover, the effect of ion hydration on the structure of water has

generally been assumed significant, some ions strengthening and some weakening the H-

bond network (i.e. the so-called ’structure makers’ and ’structure breakers’, respectively).

A recent study contested this latter picture, however, with no structural changes in the

H-bond network beyond the first hydration shell being observed upon ion hydration [133].

The traditional experimental techniques for structural studies of aqueous solutions are

x-ray and neutron diffraction (see Ref. [134] for a seminal paper on aqueous LiCl). However,

since aqueous LiCl is composed of four elements, it is characterized by a total of ten partial

radial distribution functions, which hampers experimental interpretation. Consequently

there is a large variation in the experimental results [135, 136]. Similarly classical MD

simulations suffer from severe limitations; in particular, the results depend strongly on

the empirical force fields used in the simulations [137]. Hence complementary structural

information on ion hydration would be highly important.

Pioneering Compton scattering studies of aqueous LiCl have previously been reported [10,
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11], albeit proper structural information was not obtained due to experimental limitations.

Paper V presents Compton-scattering experiments with significantly improved accuracy,

thus demonstrating the feasibility of the technique for structural studies of ion hydra-

tion. By comparison with model computations, the experimental findings are interpreted

as predominantly providing structural information on the first hydration shell. In partic-

ular, the study yields upper limits for the average nearest-neighbor oxygen-ion distances:

ROLi . 2.10 Å and ROCl . 3.15 Å for lithium and chloride ions, respectively.

5 Concluding remarks

This thesis describes a series of systematic Compton-scattering experiments of unprece-

dented accuracy on various molecular liquids: water, heavy water, and aqueous lithium

chloride. By comparison with model computations, the fingerprints in the Compton profile

related to various structural parameters can be distinguished. Consequently the subtle

changes in the Compton profile, induced e.g. by temperature, can be attributed to distinct

intra- and intermolecular structural changes.

Throughout this thesis, the experimental data is interpreted using model computations,

providing guidelines for future computational analysis. However, the complex local struc-

ture of water, and particularly aqueous solutions, is not quantitatively described by such

simple computations. A challenging, but necessary, development of the computational

analysis will thus be the inclusion of ab initio MD configurations, possibly also comprising

nuclear quantum effects.

The present work demonstrates the feasibility of the Compton-scattering technique for

structural studies of molecular liquids. Given its sensitivity to both intra- and intermolec-

ular structural changes, it has been shown to provide unique information on these subtle

effects. A continuation of the present work towards structurally more complex molecular

liquids, such as simple alcohols and their aqueous solutions, is currently being planned.
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Phys.: Condens. Matter 12, 2597 (2000).

[128] Y. S. Badyal, D. L. Price, M.-L. Saboungi, D. R. Haeffner, and S. D. Shastri, J.

Chem. Phys. 116, 10833 (2002).

[129] R. T. Hart, C. J. Benmore, J. Neuefeind, S. Kohara, B. Tomberli, and P. A. Egelstaff,

Phys. Rev. Lett. 94, 047801 (2005).

[130] R. A. Kuharski and P. J. Rossky, J. Chem. Phys. 82, 5164 (1985).

[131] L. Bosio, S.-W. Chen, and J. Teixeira, Phys. Rev. A 27, 1468 (1983).

[132] R. D. Davy and M. B. Hall, Inorg. Chem. 27, 1417 (1988).

[133] A. W. Omta, M. F. Kropman, S. Woutersen, and H. J. Bakker, Science 301, 347

(2003).

[134] A. H. Narten, F. Vaslow, and H. A. Levy, J. Chem. Phys. 11, 5017 (1973).

[135] Y. Marcus, Chem. Rev. 88, 1475 (1988).

[136] H. Ohtaki and T. Radnai, Chem. Rev. 93, 1157 (1993).

[137] M. Patra and M. Karttunen, J. Comput. Chem. 25, 678 (2004).


