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Abstract

Knowledge of the physical properties of asteroids is crucial in many branches of solar-system
research. Knowledge of the spin states and shapes is needed, e.g., for accurate orbit deter-
mination and to study the history and evolution of the asteroids. In my thesis, I present
new methods for using photometric lightcurves of asteroids in the determination of their
spin states and shapes. The convex inversion method makes use of a general polyhedron
shape model and provides us at best with an unambiguous spin solution and a convex shape
solution that reproduces the main features of the original shape when an abundant data
set is available. Deriving information about the non-convex shape features is, in principle,
also possible, but usually requires a priori information about the object. Alternatively, a
distribution of non-convex solutions, describing the scale of the non-convexities, is also pos-
sible to be obtained. Due to insufficient number of absolute observations and inaccurately
defined asteroid phase curves the flatness of an individual shape is somewhat ill-defined for
spheroidal objects. In the case of elongated objects, on the other hand, all the axis ratios
are often reasonably well constrained, even in the case when only relative lightcurves are
available. The results prove that it is, contrary to the earlier misbelief, possible to derive
shape information from the lightcurve data if a sufficiently wide range of observing geome-
tries is covered by the observations. Along with the more accurate shape models, also the
rotational states, i.e., spin vectors and rotation periods, are defined with improved accuracy.
When only a highly limited data set is available, fast semi-analytical methods can be used to
obtain a distribution of possible spin and shape solutions. The distributions can be used, for
example, in planning for additional observations required for unambiguous spin and shape
determination. The shape solutions obtained so far reveal a population of irregular objects
whose most descriptive shape characteristics, however, can be expressed with only a few pa-
rameters. Preliminary statistical analyses for the shapes suggests that there are correlations
between shape and other physical properties, such as the size, rotation period and taxonomic
type of the asteroids. More shape data of, especially, the smallest and largest asteroids, as
well as the fast and slow rotators is called for in order to be able to study the statistics more
thoroughly.
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1 Introduction

The physical properties of asteroids, such as spin states and shapes, reflect the history
and evolution of these small solar-system objects. The most abundant data source for de-
termining the physical properties are the photometric observations. For spin and shape
determination, it is sufficient to study the integrated brightness of the target, which has
been known for more than a hundred years to vary with time. A natural explanation for the
variation is rotation combined with irregular shape and varying scattering properties across
the surfaces. Russell (1906) was the first to analyze the inverse problem of determining
the pole orientation, rotation period, three-dimensional shape, and scattering properties of
the surface of a body from disk-integrated photometry. Russell mainly studied the stars
which always radiate from every point of their surfaces. Thus, when considering asteroids,
a natural choice for him was to treat them at opposition (i.e., when the Sun and the Earth
are in the same direction, as seen from the asteroid), where they, as well, scatter light from
every visible point of their surface. The opposition geometry was a relevant assumption also
since, in the beginning of the twentieth century, asteroids were most often observed near
opposition. Russell assumed, to a good approximation that, at opposition, the body scatters
light geometrically, i.e., the total brightness depends only on the projected surface area. The
quite pessimistic conclusion he made was that one cannot distinguish the shape and scat-
tering effects to any acceptable accuracy from photometric opposition lightcurve data alone.
Only information about possible existence of albedo variegation or non-spherical shape can
be obtained.

Later, the theoretical and observational techniques have become more and more power-
ful, and observations at larger phase angles (i.e., angles between the direction to the Sun
and to the Earth, as seen from the asteroid) have been carried out; even phase angles over
100◦ have been reached for NEAs (near-Earth asteroids). Thus, the information content in
the lightcurves is currently much larger than at Russell’s time. Methods for interpreting
asteroid lightcurves have been under constant development, but the problem of the tradi-
tional methods has been the simplicity of, especially, the shape models, in part due to a
common misbelief that more detailed information cannot be obtained. Also, the efficiency
of present-day computers has inspired the development of alternatives to analytical methods
which necessarily limit the variety of possible models.

In the thesis, I present a novel lightcurve inversion method, called convex inversion, that
provides us a convex hull -like shape model of the target and a spin solution which is more
accurate than those obtained with other methods. Also, the possibility to derive informa-
tion about the non-convex features on the asteroid’s surface is discussed. The study was
inspired by the work of Kaasalainen et al. (1992) who showed that it is possible to obtain
shape models for asteroids based on the lightcurve data if a wide enough range of observing
geometries is covered; the present thesis is the implementation of the practical numerical
methods. A crucial part of convex inversion is also the numerical method for constructing
the shape from the Gaussian surface density (Lamberg, 1993). The groundwork for deriving
convex polyhedron shape models from lightcurve data was carried out by Torppa (1999). In
the following, I give a brief review of the included papers:
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Paper I: Kaasalainen and Torppa, 2001. Optimization methods for asteroid lightcurve
inversion. I. Shape determination, Icarus, 153, 24.

Paper II: Kaasalainen M., Torppa J., and Muinonen K., 2001. Optimization methods
for asteroid lightcurve inversion. II. The complete inverse problem, Icarus, 153, 37.

Paper III: Torppa J., Kaasalainen M., Michalowski T., Kwiatkowski T., Kryszczyńska
A., Denchev P. and Kowalski R., 2003. Shapes and rotational properties of thirty asteroids
from photometric data, Icarus 164, 346.

Paper IV: Torppa et al., 2005. Statistical inversion of GAIA photometry for asteroid
spins and shapes, in Proceedings of the Gaia Symposium The Three-Dimensional Universe
with Gaia (ESA SP-576). Held at the Observatoire de Paris-Meudon, 4-7 October 2004.
Editors: C. Turon, K.S. O’Flaherty, M.A.C. Perryman, p. 321.

Paper V: Muinonen K., Torppa J., Virtanen J., and 15 co-authors, 2007. Spins, shapes, and
orbits for near-Earth objects by Nordic NEON, In Proceedings of IAU Symposium No 236,
Near-Earth Objects, our Celestial Neighbors: Opportunity and Risk (A. Milani, G. Valsecchi,
and D. Vokrouhlicky, eds.), p 309.

Paper VI: Torppa J., Hentunen V-P., Pääkkönen P., Kehusmaa P., and Muinonen K.,
2007. Asteroid shape and spin statistics from convex models, submitted to Icarus.

In Paper I, the theory of determining the shapes using the convex inversion method
is presented and applied to simulated lightcurve data. Methods for obtaining non-convex
shapes are also presented. In Paper II, the spin state is added to the inverse problem, and the
complete convex inversion procedure is applied to asteroids with shape models available from
spacecraft flybys or radar observations. The choice of a suitable scattering law is discussed, as
well as the possibility to generate reference phase curves if absolute photometry is available.
In Paper III, the convex inversion method is applied to 30 asteroids, revealing a population
of irregular and elongated shapes. In Paper IV, a data set typical for the future all-sky
surveys is analysed with the convex inversion and spherical-harmonics methods, the latter of
which is largely similar to the non-convex inversion method presented in Paper I. In Paper
V, the convex inversion method is applied to the first NEA observations of the Nordic NEON
(Near-Earth-Object Network) observing program. A novel method is also presented to derive
a distribution of possible spin states and shapes from very limited data. In Paper VI, the
shape models derived so far are collected together, and a statistical analysis is carried out
to find correlations between the shape, size, rotation period, and taxonomic type.

2



2 Asteroids

2.1 Overview

In addition to the eight planets, there are populations of smaller objects orbiting the Sun:
comets, asteroids, and trans neptunian objects. These populations differ significantly from
each other by the orbits and physical properties of their members. Comets are icy bodies
in the outer Solar system with stellar and galactic perturbations delivering some of them
periodically close to the Sun. Trans neptunian objects, as well, are icy, but have orbits that
constantly keep them in the outer borders of the Solar system. Pluto, which was previously
known as the ninth planet, is now considered to be one of the large trans neptunian objects
called dwarf planets. Asteroids, which are the subject of this thesis, are rocky bodies, that lie
mostly in the inner Solar system. The terminology is ambiguous since, e.g., the compositional
differences between asteroids and dormant comets are thought to be no larger than the
differences between different asteroid classes. Thus, in the present thesis, we do not make
a distinction between these populations, but call all of the rocky small bodies asteroids.
Asteroids were discovered in 1801, when (1) Ceres was first observed by Piazzi. The name
asteroid (’star-like’) was given by William Herschel in 1802, because these objects are so
small compared to their distance from the Earth that they are observed as point sources,
just like stars. The next three asteroids (2) Pallas, (3) Juno, and (4) Vesta were discovered
within the next seven years, after which it took almost 40 years to discover the next one,
(5) Astraea. Ever since, increasing numbers of new asteroids have been discovered per each
year. At the moment, there are about 160000 numbered asteroids (as of September, 2007),
that is to say, asteroids with well-defined orbits. The estimated total number of 1-km-sized
objects or larger is 1.1-1.9 million, according to the results from the ISO (The Infrared Space
Observatory) Deep Asteroid Search.

Most of the asteroids orbit the Sun in the main belt between the orbits of Mars and
Jupiter but, due to planetary resonances, some of the main-belt asteroids (MBAs) are ejected
to unstable orbits outside Jupiter’s or inside Mars’ orbits. A few populations of asteroids also
have stable orbits at or outside that of Jupiter’s. Trojans, for example, leading and following
Jupiter on its orbit, are only slightly less numerous than MBAs. The largest known asteroid
is Ceres, with a diameter about 1000 km. A lower limit is not strictly defined for asteroid
size and, in practice, the size distribution is continuous from one thousand kilometers to dust
grains. The smallest particles, however, have traditionally been called meteoroids or dust.

Asteroids are thought to be remnants from the early stages of the Solar system evolution,
when most of the material around the young Sun accreted to form the eight planets. Part
of the remaining dust particles ended up as building blocks of asteroids. One scenario of
the formation of asteroids is the collisional disruption of one large or a number of smaller
planetesimals. Another widely accepted explanation is that the formation of the largest
planets (Jupiter and Saturn) prevented further accretion of planetesimals and left a number
of small fragments to orbit the Sun. Both theories probably are correct, since part of the
asteroids show spectral features of primitive material (targets that have never grown very
large), while others seem to represent differentiated, metamorphosed material (suggesting
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that they have been part of a larger asteroid at some epoch). Independent of the process
that initially formed asteroids, collisions have been fracturing them ever since. Depending on
their size, asteroids are thus either irregularly shaped fractures, or just covered with craters
of various sizes (Fig. 1). The most detailed shape models for asteroids have been obtained
from spacecraft encounters or flybys. All of the targets have turned out to be irregular in
shape, or covered with global-scale craters (see, e.g., Thomas et al. (1999) for (253) Mathilde,
Thomas et al. (2002) for (433) Eros, and Demura et al. (2006) for (25143) Itokawa).

(a) (b)

(c)

Figure 1: Images of asteroids a) 433 Eros (33 km × 13 km × 13 km) and b) 253 Mathilde (D = 52
km), taken by the NEAR spacecraft (NASA). c) Image of asteroid (25143) Itokawa (540 m × 270
m × 210 m), taken by the Hayabusa-spacecraft (JAXA).

The spin states of asteroids are also affected by mutual collisions, causing, for example,
the observed nearly random distribution of pole directions. However, there is also another
process gradually changing the rotation periods and pole directions of asteroids, namely,
the thermal radiation force, existence of which was realized already in the 19th century by
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the Russian civil engineer Ivan Osipovich Yarkovsky (1844-1902). The effect that changes
gradually the semimajor axes of asteroid orbits is called the Yarkovsky effect, whereas the
effect spinning up or down the rotation and affecting the spin axis orientation of asteroids is
known as the YORP effect. Rubincam (2000) gave a thorough theoretical presentation of the
YORP effect and Vokrouhlický et al. (2003) suggested that it is the cause of the spin-vector
alignment of the Koronis family asteroids. The YORP effect was directly measured, e.g.,
for asteroid (54509) 2000 PH5 (now named YORP) by Taylor et al. (2007). Since the rate
of change in the rotation period is extremely slow, compared to the time span of any set of
asteroid lightcurve observations, the change can be modelled as a linear function of time.
The YORP effect is most likely to be detected for small asteroids with data sets spanning
over a long period of time. Thus, the linear change in period should be included in the
spin-state analyses of small asteroids, if it otherwise is impossible to simultaneously fit the
rotational phase to all the data lightcurves.

By investigating the dynamical and physical properties of asteroids, we can obtain a
more accurate picture of the early evolution of the Solar system. The rotational states
of individual objects, together with their shapes and orbits, reflect the collisional history
of the objects. Studying the statistical distributions of and correlations between different
properties provides information about asteroids as a population of primordial Solar-system
bodies. Just to give a few examples of the statistical studies of asteroid properties, Tedesco
and Zappalà (1980), for example, studied the dependence between various properties. They
detect correlations between the rotation period and size, period and amplitude, and taxo-
nomic type and semimajor axis, but indicate the need for further observations to minimize
the possible biasing effects. Their dataset consists of physical properties for 134 MBAs.
Pravec et al. (2002) review the results of detailed analyses of asteroid rotations that have
revealed certain structures in the spin-size distribution. As seen in Fig. 2, for example, only
asteroids below 0.15 km in diameter show rotation periods less than 2 h. Such objects must
be monolithic, since fractured rubble-pile bodies cannot be held together by self-gravitation
at such high rotation rates. Alvarez-Candal et al. (2004) studied the rotational periods,
lightcurve amplitudes, and sizes of Themis-, Eos-, and Maria-family asteroids. They found
a weak negative correlation between the size and the spin period. Hartmann et al. (1988)
observed that Trojans, in the 1:1 mean-motion resonance with Jupiter, and Hildas show a
greater incidence of high lightcurve amplitudes than MBAs of comparable size, suggesting
more elongated shapes for Trojans and Hildas than for MBAs. In Paper VI, we add the
shape of the asteroid to the statistical study of the properties and, as well, find correlations
between various properties. However, the sample for which the shape has been determined
does not represent evenly the entire asteroid population, and more observations are required
to perform more thorough analyses. Future all-sky surveys, such as the Gaia-satellite and
PanSTARRS, will provide new results for thousands of asteroids, which will be enough to
carry out a thorough statistical study of various asteroid populations.

Considering NEAs, which are the population of asteroids with Earth-approaching orbits,
there is also a practical aspect in studying spins and shapes of these objects: they represent a
hazard to the Earth’s biosphere. According to Stuart and Binzel (2004) and Harris (personal
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(a)

Figure 2: Rotation periods of asteroids compared to their diameters (Pravec et al. 2002).

communication), an object greater than 200 m in diameter impacts the Earth on average
every 35000-56000 years. The explosive yield of such an impact is about 30000 times the
Hiroshima atomic bomb, and the consequences can be devastating depending on the location
of the impact. The more accurate the orbit determination of the asteroid is, the longer in
advance we can predict the impact. On the other hand, computation of an accurate orbit
requires the barycenter correction to be made for the astrometric observations, which, again
requires knowledge about the shape of the asteroid. Physical properties of a hazardous
asteroid should also be known for any actions that aim at preventing a possible collision.

2.2 Photometric observations

The most important sources of information on the shapes and spin states of asteroids are
ground-based optical, interferometric, and radar observations, stellar occultations, and space
missions. Ground-based radar observations reach asteroids that orbit close to the Earth,
and have provided a large number of non-convex models for NEAs (see, e.g., Magri et al.,
2007). Spacecraft flybys and encounters have, during the recent years, provided invaluable
information about the physical properties of asteroids (e.g., Demura et al., 2006). These
missions are, however, rare, and cannot be used alone as the source of information of the
asteroid belt as a whole.

Of the aforementioned types of observations, the ones that encounter the least hinders
(financial or technical) are ground-based optical observations. Recently, in a few cases when
an asteroid has come very close to the Earth, the largest optical telescopes provided with

6



adaptive optics have been able to carry out disk-resolved imaging, which provides informa-
tion about the overall dimensions and, especially, about the possible multiplicity of the object
from the CCD images alone. However, due to their small size, and usually (fortunately!)
long distance from the Earth, the asteroids mostly appear star-like to optical ground-based
telescopes. Thus, in the visible wavelengths, we observe the total amount of sunlight re-
flected from the surface of the asteroid at each epoch of observation. The intensity of the
reflected radiation depends on the phase angle, i.e., the angle between the Earth and the
Sun, as seen from the asteroid; due to the scattering properties of the surface material and
shadowing effects on the surface, more light is reflected at small phase angles than at larger
ones. Especially, near opposition (zero phase angle), the intensity increases rapidly; the
phenomenon is called the opposition effect. The rotational phase of the asteroid, as well,
affects the amount of observed radiation at a certain epoch; since asteroids are irregular, the
part of its surface area which is both visible and illuminated, changes as it rotates. Thus,
the total amount of reflected sunlight, seen by the observer, varies, unless we have a pole-on
view to the asteroid. A sequence of brightness measurements taken during a revolution is
called a lightcurve. Examples of a phase curve and a lightcurve of an asteroid are shown in
Fig. 3.

(a)

(b)

Figure 3: a) Phase curves of seven asteroids representing different taxonomic classes (Muinonen
et al. 2002). b) Lightcurve of asteroid 1862 (Apollo) (Paper V).

The more densely sampled the lightcurve points are, the more detailed information is
obtained about the shape and albedo of the target. The restrictions of ground-based opti-
cal observations come mostly from the long exposure times needed to achieve an adequate
signal-to-noise ratio. With slowly moving MBAs, this is usually no problem, and they repre-
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sent the majority of the observed asteroid population. NEAs, on the other hand, often move
fast in the field-of-view of the telescope, making long exposure times useless. This is why the
faint-end of NEAs is rarely observed with optical telescopes, and should be observed with
radar instead. Photometric observations are also sensitive to the weather, unlike radar ob-
servations. Especially, when carrying out absolute photometric observations, the sky should
be completely clear to allow for a good enough signal-to-noise ratio. Absolute photometry
also requires the use of standard filters, which decreases the amount of radiation incident
on the CCD, and thus decreases the number of observable asteroids. In addition, standard
star observations have to be carried out throughout the night, making absolute brightness
measurements laborious. Absolute photometry is required for obtaining information on the
scattering properties of the surface, as well as of the c/b ratio of the shape. The number of
absolute brightness observations, however, is usually too small to be of much use.

One challenge is the planning of the observations. As mentioned above, MBAs move
slowly, and remain visible for long periods of time, giving flexibility to the timing of the
observations. They are also relatively bright, and carrying out MBA observations does not
often require the use of large professional telescopes, from which it is thus very hard to
obtain observing time for MBAs. Amateur observers provide a significant contribution to
MBA photometry, since MBAs are one of the few astronomical targets of which scientific
observations can be carried out with small telescopes. Compared to MBAs, NEA observa-
tions are much harder to carry out. They are observable only at most a few months during
each apparition and apparitions can be years apart. Thus, to obtain photometric data from
a wide range of observing geometries required, e.g., for spin-axis and shape estimation, long-
term or especially intensive observing programs are usually needed. One of these programs
is the Nordic near-Earth object network (NEON), and its first results are presented in Paper
V. These kinds of observing programs are not easy to be organized at large professional
telescopes and, due to the faintness and fast motion of NEAs, they can be rarely observed
by amateur telescopes. Hence, photometric data sets of only a marginal sample of NEAs are
sufficient for generating a useful physical model. NEAs, however, are valuable photometric
targets, since they are observable also at large phase angles, while observations of MBAs
are restricted to phase angles below approximately thirty degrees. Observations carried out
across a wide range of phase angles provide us with valuable information about the shapes
of the targets.

A problem with using photometric data of asteroids is that there is no place where all the
observations would be collected at the moment. There is a huge amount of data that is sedi-
mentated in the drawers of the observers and maybe single scientists, and finding even most
of the observations of a certain object takes time, and so does interpreting all the differently
formatted data files. The Uppsala Asteroid Photometric Catalogue (UAPC) served as the
main database of photometric data until its last update (Lagerkvist et al., 2001). Ever since,
the amount of observed lightcurve data has grown enormously, and a paperback version of
the catalogue is now too difficult to keep up to date; an electronic version of the catalogue
would be more practical for a number of reasons: 1) it would be updated continuously as ob-
servations are carried out or published, 2) the data would be in a standard electronic format,
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3) the data could be browsed with various criteria. Such catalogues are under developement;
for example, the Standard Asteroid Photometric Catalogue, SAPC, developed and currently
maintained at the University of Helsinki Observatory (http://www.astro.helsinki.fi/SAPC)
and NASA’s Planetery Data System, PDS (http://pds.jpl.nasa.gov/data services/). SAPC
is suitable for both the observers and the scientists to submit data to the data base and to
search data with specific criteria, while PDS is adequate to serve as a long-term archive.

2.3 Scattering and brightness

All the visible light detected from the asteroids is scattered sunlight. To be able to find
out, what kind of an object produces a certain lightcurve, we need to compute the model
brightness. The amount of radiation reflected from a surface is the differential brightness
integrated over the visible and illuminated part of the surface

Lm = F�

∫ ∫
A+

Sda, (1)

where F� is the flux density of the incident light, da is the area of a surface element and S
is the scattering function at the surface element. A+ refers to the part of the surface that
is both visible and illuminated. The corresponding equation for a discretized polyhedron
surface is

Lm = F�
∑
i

Siai, (2)

where the index i refers to the sum over all the visible and illuminated facets.
For most of the asteroids, with the exception of the largest ones, the albedo is usually

assumed to be uniform across the surface in global scale. The choice of the scattering law,
however, is not straightforward. Currently, there is no universally accepted scattering law
that would explain all the features in the variation of the observed brightness of asteroids.
Determining the physical parameters of the available scattering laws requires accurate ab-
solute photometry, which is not always available. Examples of such scattering laws are
the well-known Lumme-Bowell and Hapke laws (Lumme and Bowell, 1981a,b and Hapke
1986). Some of the parameters of the laws are related to the properties of the regolith, some
only to the shape of the phase curve. Neither the Lumme-Bowell nor the Hapke law can
fully explain the scattering of asteroid surfaces, which motivates continuous development of
scattering models. Traditional explanations for the opposition effect, for example, are the
shadowing effects in the structure of the surface, while within the last two decades the role of
coherent backscattering has been intensively studied. Muinonen et al. (2002) give a review
of the advances in investigating scattering from asteroid surfaces.

In addition to the physical scattering laws, there are also scattering laws with no direct
physical meaning of the parameters. Such empirical functions are generally of the form

S = S(µ, µ0, ω̃, α), (3)
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where µ = E · n and µ0 = E0 · n, E and E0 being the unit vectors pointing to the observer
and to the Sun, as seen from the asteroid, and n the unit surface normal. ω̃ is the albedo
and α the phase angle. The most simple expression for the scattering, with zero parameters,
is geometric scattering, according to which the reflected brightness depends only on the
area projected towards the observer, i.e., S = µ. Geometric scattering is applicable at the
zero-phase-angle observing geometry, and it is often applied in methods that assume small-
phase-angle observations. One example of a one-parameter scattering law is the combination
of the Lommel-Seeliger and Lambert laws

S(µ, µ0) =
µµ0

µ+ µ0

+ cµµ0, (4)

where the first term is the Lommel-Seeliger part and the second term the Lambert part.
Lambertian law is often applied in the case of bright surfaces, whereas the Lommel-Seeliger
law is more suitable for low-albedo objects. Considering asteroids, a combination of the
two laws, with the Lambertian weight depending on the assumed albedo of the object, has
proven to be suitable for reproducing the desired lightcurve features. Especially, at small
phase angles the maxima and minima of the lightcurves generated with different scattering
laws deviate from each other only by a few percent. Thus, the shape models derived from
small-phase-angle observations (e.g., for MBAs) are not very sensitive to the choice of the
scattering law; models obtained using different scattering laws most likely differ from each
other less than from the real shape of the target asteroid. Thus, it is justified to use a
simple model, such as that of Eq. (4), in lightcurve inversion, at least for MBAs. If absolute
photometric data is available, Eq. (4) should be multiplied with a phase function f(α) that
accounts for the brightening towards small phase angles. In inverse problems, any scattering
parameters should usually be constrained to realistic limits, since they do not affect strongly
the rms of the model fit, and often achieve extreme values if incorporated as free parameters
to be fitted.

For computing the model brightness corresponding to a certain data point, we need to
know the observing geometry (E,E0). If we assume, that the asteroid rotates around a fixed
rotation axis with rotation period P , we obtain a vector in asteroid’s own rotation frame
from that expressed in ecliptical coordinates, by the rotation sequence

rast = Rz(φ0 + ω(t− t0))Ry(β̃)Rz(λ)recl, (5)

where λ and β = 90◦ − β̃ are the ecliptic longitude and latitude of the spin axis, t is the
time of the observation, φ0 the rotation phase of the asteroid at time t0, and ω the angular
velocity of rotation. Rk(α) is the rotation matrix for rotation through angle α in a positive
direction about axis k. Using Eq. (5), we obtain the directions of the Sun and the Earth in
the asteroid’s own rotation frame at the epoch of each data point and, thus, can compute
the corresponding model brightness.
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3 Asteroid spins and shapes uncovered

3.1 Convex inversion

Quantum leap in the field of lightcurve inversion during this decade has been the convex
inversion method presented in this thesis. The method has been used in various publications
to derive the spin state and the convex shape model describing the global shape features
of asteroids. In some cases, information about the non-convex features is possible to be
obtained. Examples of the results are presented in, e.g., Paper III, Kaasalainen et al. (2002a),
and Kaasalainen et al. (2004).

Basically, we compare the brightnesses calculated for the model shape to data bright-
nesses, and find the shape and spin state that produces the best fit to the data. In the
following, I explain the procedure, step by step:

Determining the approximate spin state
In the initial spin-state search, we use a low-order functional series representation for the

logarithm of the Gaussian curvature of the model shape’s surface

G(ϑ, ψ) = exp
( ∑
lm

almY
m
l (ϑ, ψ)

)
, (6)

where ϑ and ψ are the spherical coordinates of the surface normal direction and alm are
the coefficients of the spherical harmonics series Y m

l . We prefer the exponential form since
it is a convenient way to force the curvature to be positive when searching for the best-fit
coefficients alm. The total brightness for a discretized surface at the observing geometry
(E,E0) is then

Lm(E,E0) =
∑
i

S(µi, µ0,i)G(ϑi, ψi)σi, (7)

where the sum is over the visible and illuminated surface elements, and σi is the area of the
ith surface element on the unit sphere, corresponding to that on the model shape, i.e., the
one with the same surface normal.

Since we want to find a shape and spin state that minimizes the difference between the
data and model brightnesses, we minimize the function

χ2 =
∑
j

(Lm,j − Ldat,j)
2, (8)

where Ldat,j is the value of the jth data point. In practice, to keep the shape solution convex,
we have to add a reqularization term to Eq. (8). When using relative photometry, we also
have to divide each lightcurve sequence by the mean of the data lightcurve to make curves
comparable to one another. The form of the χ2 function in the case of relative photometry
is, thus,

χ2 =
∑
cp

(
Lm,cp
L̄c

− Ldat,cp
L̄c

)2 + w
∑
ik

nikG(ϑi, ψi)σi, (9)
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where the index c corresponds to the lightcurves and p to the data points in each lightcurve
and L̄c is the mean brightness of the cth lightcurve. The second term is the convexity
regularization, which increases χ2 for non-convex shapes with a weighting factor w. ni is
the unit surface normal of facet i and index k refers to the x, y, and z coordinates. A
suitable method to find the minimum of χ2, when G is represented as in Eq. (27), is the
Levenberg-Marquardt optimization method (Press et al. 1994).

The free parameters in the initial spin-state search are the coefficients of the spherical-
harmonics series representation of the Gaussian curvature in Eq. (27). Since we do not need
to know the detailed shape of the object for obtaining an approximate spin state, the degree
of the series can be as low as lmax = 2 (l = 0, . . . , lmax and m = 0, . . . , l), which produces an
almost ellipsoidal shape. The possible spin states are found by scanning through the period
and spin-axis space, while fitting the shape for each sampled spin state. From the set of
solutions, the ones that produce satisfactory fits to the data are accepted. The previous
estimates for the rotation period are useful to constrain the range of periods that has to be
tested. The time step in period sampling should be a few times ∆P , which is the difference
between the local minima in P, χ2 -space,

∆P =
1

2

P 2

T
, (10)

where P is the rotation period and T the total time range of observations. These minima are
due to that, if P is changed by ∆P , the lightcurve is phase-shifted by π during T. Thus, if we
have a lightcurve with two roughly equal maxima and minima that coincide in the first and
the last of the observed lightcurves for period P, then they coincide also for period P + ∆P .
Although lightcurves often are non-sinusoidal enough to provide an irregular shape model,
this equation gives a rough estimate about how densely the χ2 minima are located in the
χ2, P -space, and how densely P should be sampled. The spin axis should be sampled in at
least eight uniformly distributed directions.

Improving the spin solution
To improve the spin solution, we use the spin states, accepted in the initial spin state

search, as a starting point. The procedure is otherwise the same as above, but the number
of shape parameters is increased to, e.g., lmax = 6, and the spin-axis direction and rotation
period are set as free parameters. From the set of solutions we, again, accept the ones
satisfying certain criteria. If the data set is abundant, a single best-fit solution is found.
The number of such targets is restricted, however, and usually we get two or three, or even
a distribution of solutions.

Improving the shape solution
When the number of acceptable spin solutions is small, we can still improve the corre-

sponding shape solutions by expressing the model shapes as polyhedra, whose facet areas are
solved for. Such a model allows expressing in practice any convex shape. The total model
brightness is then

Lm(E,E0) =
∑
i

S(µi, µ0,i) exp(ai), (11)
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where exp(ai) is the facet area of the ith surface element. The surface normals are fixed
according to a suitable discretization method. One way to obtain a uniform distribution of
facets is to apply the octant triangulation routine, described, e.g., in Paper I. The number of
facets has to be large to ensure that the shape solution does not depend on the discretization
method, i.e., on the exact choice of the surface normals of the facet elements. The number of
shape parameters is now much larger than when expressing the shape as spherical-harmonics
series and, thus, we fix the spin parameters.

A suitable method to find the minimum χ2, when Lm is expressed as in Eq. (11), is the
conjugate gradient method (Press et al. 1994). From the best-fit solution, we obtain a set
of facet areas and normal directions. To derive the actual shape information, i.e., vertices
of the shape, from the facet information, we can apply, e.g., the Minkowksy minimization
method (Lamberg 1993 and Kaasalainen et al. 1992), described below.

Reconstruction of the shape from facet information
The Gaussian surface density of a convex surface corresponds to one and only one surface.

To define the surface from the Gaussian surface density, the Minkowski minimization method
employs two quantities, one of which is the support function

ρ(ϑ, ψ) = n(ϑ, ψ) · r(ϑ, ψ), (12)

where n(ϑ, ψ) is the surface normal directed to (ϑ, ψ), and r(ϑ, ψ) is the corresponding radius
vector. In other words, ρ(ϑ, ψ) is the distance of the tangent plane, with normal directed to
(ϑ, ψ), from the origin. The other quantity is the mixed volume that can be defined for two
strictly convex bodies R and S as

V (R,S) =
1

3

∫ 2π

0

∫ π

0

ρR(ϑ, ψ)GS(ϑ, ψ) sinϑdϑdψ. (13)

Thus, e.g., V (S, S) is the volume of S and 3V (U, S) is the surface area of S, when U is the
unit sphere. Minkowski (1903) showed that the mixed volume reaches its minimum when ρR
and GS correspond to the same surface, i.e., R = S. Thus, by minimizing V , with known G,
we can solve for ρ. The only constraint required is that the volume of R be constant. If we
know the discretized Gaussian surface density, i.e., facet normals and areas, we can express
the mixed volume as

V (R,S) =
1

3

n∑
j=1

lj(R)aj(S), (14)

where aj is the area of the facet j, and lj is its distance from the origin. An analogous,
but computationally more efficient way to minimizing V (R,S), is to maximize V (R) while
keeping the inner product a · l constant. In that case, we minimize

V (R) =
1

3

n∑
j=1

ljAj, (15)
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where Aj are the facet areas as computed from l. The constraint of keeping a · l constant is
fulfilled by calculating the gradient projected onto the constraint plane

f = A− 〈A, a〉
〈a, a〉

, (16)

when applying numerical minimization methods that apply gradient information.

Convex inversion can be used, when the number of lightcurves and observing geometries
is large enough to constrain the spin axis and shape properly. If, for example, only one
lightcurve was available, there would be a shape solution, acceptably fitting the data, for
any pole direction, since the dimensions of the model shape are not constrained in any way.
If a large number of possible spin states is found, it would be too time consuming to check
if each corresponding shape model is realistic. Thus, within a wide distribution of solutions,
there are also spurious solutions included. The convex inversion method is, hence, most
applicable to objects, for which a clearly constrained distribution of possible spin states can
be found, and the dimensions for each shape model can be checked.

The computing time with a typical present-day computer, including all the steps of convex
inversion, is approximately 20−45 minutes per one solution, depending on the density of the
period minima. In the case when the data are not sufficient for an unambiguous solution, it
may takes about one day to get the distribution of spin solutions.

3.2 Non-convex inversion

In Papers I and IV, we discuss deriving information about the non-convex features of aster-
oids. In Paper I, we express the radius of the surface as an exponental spherical harmonics
series in the same manner as in Eq. (31) (Muinonen, 1998), but without the statistical
parameters:

r(θ, φ) = exp
( ∑
lm

clmY
m
l (θ, φ)

)
, (17)

where θ and φ are the spherical coordinates. To avoid porcupine-shaped solutions, we prefer
the functional series representation, instead of directly fitting the radii. We use the shape
model from the convex inversion as the first guess, and minimize the difference between
the model and data brightnesses. Regularization is necessary to prevent the existence of
unrealistically deep vallies. A convenient way to smoothen the model shape is to force it to
be as convex as possible.

In Paper IV, we use a statistical approach to derive information about the nonconvexities
from sparse data. We express the shape as in Eq. (31), and use the convex inversion solution
as a starting point. In the vicinity of the initial solution, we incorporate higher spherical
harmonics for the logarithmic radius and map the parameter distributions using a trial and
error method based on existing knowledge of the statistical properties of asteroid shapes and
spins. We repeat the analysis for varying initial conditions in order to assess the potential
clumpiness in the a posteriori probability density of the parameters.
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3.3 Limited data sets

In Paper V, we present a method to derive spin and shape information from very limited data
sets (in the sense of observing geometries); even based on a single lightcurve, the distribution
of possible solutions can be somewhat constrained. The shape model we use for the method
is a combination of a sphere, two cylinders, and four plane elements, for each of which
the brightness can be calculated analytically, using a suitable scattering law. We sampled
the spin state with a Monte Carlo technique and fitted the shape parameters, constrained
to reasonable limits. Thousands of possible solutions can be sampled in a moderate time,
showing the distribution of the possible spin and shape solutions. The method should be
used in planning future observations of a certain object, since the correct choice of observing
geometries reduces the number of required lightcurve sequences.

3.4 Background and other advances

In various publications considering the interpretation of photometric lightcurve data, the
term shape has a variety of meanings. The first, most simple shape model that has been
used for decades, is the triaxial ellipsoid. The radius of an ellipsoid can be expressed as

r(θ, ϕ) =
abc√

b2c2 sin2 θ cos2 ϕ+ a2c2 sin2 θ sin2 ϕ+ a2b2 cos2 θ
, (18)

where θ and ϕ are the spherical coordinates of the radius vector and a, b, and c are the
ellipsoid axes in decreasing order.

The first available publications applying an ellipsoid model are from the mid 20th century.
For example, Cuffey (1953) analysed a single lightcurve of (4) Vesta and, based on the
amplitude of the lightcurve, derived relative ellipsoid axis ratios b/a = 0.88 and c/b =
1. From the deviation of the lightcurve from sinusoidal shape, he concluded that, on the
ellipsoidal shape, there are either a number of albedo spots or large mountain ranges. They,
however, called for further observations to distinguish between the two theories. They, of
course, had no intention to solve for the spin state, since only one lightcurve was available.

The earliest methods utilizing a set of lightcurves, observed at various observing geome-
tries, actually aimed at defining the spin-axis direction and/or the rotation period of the
asteroid. The ellipsoid axis ratios, if needed, acted only as fitting parameters, but were often
published as the axis ratios of the model shape. In the photometric astrometry method, or
the epoch method, no shape model is used. It is assumed that a specific feature on the sur-
face of the asteroid (RFO, recognizable feature origin) can be connected to a feature (LRF,
a lightcurve recognizable feature) in each of the data lightcurves (notations RFO and LRF
are from Detal et al., 1994). Since the synodic period of an asteroid depends on its pole
direction, the spin axis can be solved for by investigating the epochs of LRFs. The time
difference between the epochs of two LRFs, corresponding to the same RFO is

Jj − Ji =
(
nij +

φij
2π

)
Psid, (19)
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where nij is the number of full revolutions between the two epochs, Psid is the sideral period,
and φij the azimuthal angle, in the equatorial coordinates, between the direction of RFO at
the two epochs. φij depends on the spin axis direction, which is determined by finding the
pole coordinates that produce the best fit to the observed LRF epochs.

The amplitude and magnitude (AM) methods, which are often used complementary to
the epoch method, derive from the fact that the amplitude and magnitude of a lightcurve
at a certain epoch depends on the aspect angle of the observation (i.e., the angle between
the spin vector and the vector pointing to the observer). There are various versions of the
AM methods that differ, e.g., in the choice of the model shape and in the way to take into
account the brightening along with the decreasing phase angle. Zappalà (1981), for example,
used a triaxial ellipsoid model with axes a > b > c, and thus the method they presented
is restricted to asteroids with regular lightcurves with well-defined maxima and minima.
Small-phase-angle observations, where the brightness is approximately proportional to the
projected area of the asteroid only, are required as well. With no loss of generality, they
set c = 1, and calculated the difference between the maximum magnitudes at aspect angle
ξ = 90◦ and the observed aspect angle ξ from

∆V (ξ) = 2.5 log
Peq
P (ξ)

, (20)

where Peq = πa is the projected area at ξ = 90◦ and P (ξ) = πad = πa
√
b2 cos2 ξ + sin2 ξ is

that corresponding to the observation. Assuming, that the phase behaviour of the brightness
obeys a linear change in the phase-angle range 8.5◦ < α < 25◦ and a parabolic increase
for α < 8.5◦, they transformed all the lightcurves to a comparable magnitude level. The
amplitude of the model was presented as

A(ξ) = 2.5 log(ad/bd′), (21)

where d′ =
√
a2 cos2 ξ + sin2 ξ. Assuming, that the maximum observed amplitude corre-

sponds to the equatorial viewing geometry, i.e., Amax = 2.5 log(a/b), they obtained the
b/a-ratio of the ellipsoid axis. Then they plotted the magnitude versus the amplitude, cali-
brating the axis ranges so that ∆V = 0 for A = Amax. The aspect angle of the observations
can be obtained from either the magnitudes (Eq. (20)) or amplitudes (Eq. (21)) as

cos ξ = ±
√

(V ? − 1)/(b2 − 1), (22)

cos ξ = ±
√

(1 − A?)/(A?a2 − A? − b2 + 1) (23)

where V ? = 102∆V/2.5 and A? = 102(A−Amax)/2.5. From the relation between the coordinates
of the pole and those of the asteroid, they calculated the longitude of the pole while sampling
the latitude with a step of 10◦. Usually two possible pole solutons are obtained using the
amplitude-magnitude (-aspect) method.

However, it was evident from the beginning that a plain triaxial ellipsoid is too simple
to model most asteroids. A more detailed shape model, to be used for the AM and epoch
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methods, was proposed by Cellino and Zappalà (1989), who combined eight octants of el-
lipsoids having different semiaxes so that the adjacent ellipsoids have two equal semiaxes in
common. Lightcurves that they computed for their model were similar to those observed for
asteroids.

An ellipsoid, whose ends were sharper than those of an ellipsoid was used by Magnusson
et al. (1996), who applied the AM and epoch methods to define the spin vector of (1620)
Geographos. As a near-Earth asteroid, Geographos was observed at large phase angles, and
its lightcurves showed irregular features, most dominating being the unequal maxima and
minima. For the AM methods, they combined different ways to define the amplitudes and
magnitudes. They also took into account nongeometric scattering, and the fact that only the
part of the surface that is both illuminated and visible contributes to the observed brightness.

Lumme et al. (1989) presented a pole determination method based on the series expansion
of lightcurves. They extrapolated all the lightcurves to zero phase angle to reduce two (phase
angle and obliquity) of the four angles defining the observing geometry (obliquity is the angle
between the vector normal to the plane defined by the asteroid, the Earth and the Sun and
the plane defined by the spin vector and the direction of the Earth). Thus, the brightness
of the asteroid depends only on the aspect angle and rotational phase of the asteroid. The
series expansion of the lightcurves, extrapolated to the zero phase angle, is represented as

L(ξ, φ) =
∑
lm

Pm
l (cos ξ)[xlm cos(mφ+ δl) + ylm sin(mφ+ δl)] (24)

where ξ is the aspect angle, φ the rotational phase, Pm
l are the associated Legendre functions,

and δl the absolute rotational phases. xlm and ylm are determined by the shape and albedo
distribution of the asteroid. Lumme et al. restrict themselved to the case of sinusoidal
lightcurves with two maxima and two minima, since the power spectrum of such curves is
dominated by the second-order amplitude term H2

H2 =
N∑
n=2

h2nP
2
n(µ), (25)

where µ = cos ξ. Since H2 is the amplitude of the function it represents and, as Lumme et
al. showed, the series can be truncated already at N = 2, the amplitude of each curve is

Ac = H2,c = h223(1 − µc), (26)

where the index c corresponds to the cth lightcurve. The unknowns are h22 and µ =
− sin β0 sin β− cos β0 cos β cos(λ−λ0), whence the pole direction (λ0, β0) can be solved from
the set of observed amplitudes. λ and β are the ecliptic coordinates of the asteroid.

Kaasalainen et al. (1992) introduce a novel approach to shape modelling by expressing
the combined Gaussian surface density and the dependence of the scattering law on the
location on the surface of an asteroid as a functional series,

G(ϑ, ψ) =
∑
lm

almY
m
l (ϑ, ψ), (27)
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where ϑ and ψ are the spherical coordinates of the surface normal direction and alm are the
coefficients of spherical harmonics series Y m

l . The Gaussian surface density is related to the
surface radii through the equation

G(ϑ, ψ) =
| ∂r
∂ϑ

× ∂r
∂ψ

|
sinϑ

, (28)

where r(ϑ, ψ) is the radius vector of the surface. Using the Gaussian surface density, the
model brightness is

Lm =

∫ ∫
µ,µ0≥0

S(µ, µ0, α,$)G(ϑ, ϕ) sinϑdϑdϕ (29)

according to Eq. (1). By expressing both Lm and the observed lightcurves as Fourier series,
the corresponding coefficients can be compared and shape parameters (i.e., coefficients alm
in Eq. (27)) solved. Kaasalainen et al. assumed ovaloid shapes, i.e., convex shapes with no
planar sections, where every direction of the surface normal corresponds to one and only one
point on the surface. When deriving the shape parameters from the lightcurve data, no a
priori shape was assumed but, due to the instability of the inversion problem, regularization
had to be used. They also considered expressing the surface density as a set of discretized
values, but found it too large a computational effort, since the number of discrete density
values should be at least hundreds.

Barucci et al. (1992) performed shape determination on asteroid Gaspra using both the
method by Kaasalainen et al. (1992) and the octant ellipsoid method by Cellino and Zappalà
(1989), plus a third method by Fulchignoni and Barucci (1988), where some reshaping was
imposed on the best-fit ellipsoid by cutting off a piece of it, making craters, etc. They
compared each shape result with the Galileo spacecraft image of this asteroid and it was
evident that all models describe the overall shape well. They conclude that each method has
specific advantages and drawbacks, none of them being absolutely preferable to the others.

Detal et al. (1994) presented three shape and/or spin determination methods: the
RAMA, FAM, and FS methods. With the RAMA (revised AM) method, they assumed
an ellipsoidal shape, geometric scattering, and small-phase-angle observations. They took
into account the opposition spike, and expressed the model brightness as

Lm(φ, α) =
Fs$A(φ)

g(Q,α)
, (30)

where Fs is the incident solar flux, $ the geometric albedo, A the projected area, and g(Q,α)
the distribution of single and multi-scattered light (Lumme and Bowell, 1981a,b). φ is the
rotational phase, Q the multiple-scattering parameter, and α the phase angle. By fitting the
model brightness to the observed lightcurves, they obtained values for the pole direction,
ellipsoid axis (both included in A), and Q. In the FAM (free albedo map) method, the
model is a discretized sphere, whose facet albedos and spin axes are adjusted to reproduce
the observed lightcurves. Analogously with the RAMA method, Detal et al. assumed only
small-phase-angle observations. Brightness of the model was the sum of the brightnesses
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of the visible surface elements, including the multiple-scattering function. For the last,
FS (free shape) method, they applied a convex polyhedron shape model. They ensured
convexity either minimizing the surface to volume ratio, or by maximizing the radii entropy,
and calculated the total brightness analogously with Eq. (30). The parameters that they
obtained were the vertices of the polyhedron, Q, and the spin-axis direction. The number
of facets, however, was enough to reproduce only a very rough estimate of the shape. In
all three methods they sampled the spin axis direction over the entire space with 1◦ − 10◦

interval while fitting other parameters.
Non-convex features on asteroid surfaces were studied by Karttunen (1989) and Kart-

tunen and Bowell (1989), who investigated the effect of small-scale concavities by implanting
spherical craters on ellipsoidal surfaces. The message was that the effect of these possibly
quite wide, but relatively shallow craters on lightcurves could not be distinguished from
noise.

Muinonen (1998) expressed the radius of a shape as an exponential series

r(θ, ϕ) = a exp[s(θ, ϕ) − β2

2
], (31)

where θ and ϕ are the spherical coordinates of the radius vector, a is the mean radius and β
the standard deviation of the logarithmic radius s(θ, ϕ), which is represented as a spherical
harmonics series

s(θ, ϕ) =
∑
lm

slmYlm(θ, ϕ), (32)

where Ylm are the spherical harmonics functions, and coefficients slm are independent Gaus-
sian random variables. The exponential form is a convenient way to restrict the radii to
positive values. Muinonen generated sample shapes by selecting the coefficients slm ran-
domly from a Gaussian distribution. Muinonen and Lagerros (1998) presented a method to
derive the covariance function for the logarithmic radii for a sample of small solar-system
bodies.

The special case of interpreting lightcurve data of binary asteroids has become an im-
portant field of study, since the number of binaries in, e.g., the NEA population, is assumed
to be about 15%. Binary asteroids are generally observed as point sources from the Earth
distance. Only adaptive optics may, in some cases, provide a disk resolved image, where the
two components can be detected separately (Fig. 4). Kaasalainen et al. (2002a) applied
the convex inversion method to detect binary asteroids from lightcurve observations. They
interpret cone-like models, with one end much smaller than the other, to be of binary origin.
They, however, predict that, for MBAs, which are observed only at small phase angles, it
is mostly impossible to deduce any information of the non-convex features of the binaries
based on lightcurves only. Descamps et al. (2007) used a different, three-step approach for
binary analysis of the main-belt asteroid (3169) Ostro. In the first step, they assumed that
the lightcurve with the largest amplitude corresponds to the equatorial observing geometry,
and obtained the possible pole latitudes as a function of pole longitude. Using the same
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(a) (b)

Figure 4: a) Adaptive optics image of the binary asteroid (90) Antiope. b) A model of asteroid
(90) Antiope, based on the adaptive optics images and lightcurve observations. (Descamps et al.,
2007.)

assumption, they obtained an initial guess for the Roche parameters of the binary system.
In the second step, they searched for the correct pole using the initial shape model and
fitting the model to the observed lightcurve minima. In the third step, they held the spin
solution fixed, and improved the shape parameters. They conclude that it should be possible
to detect the binary shape of even MBAs, if the aspect coverage of the observations is large
enough. However, when performing binary analysis, one must be careful not to over-interpret
the lightcurve data. As Descamps et al. state, additional observations are needed also to
verify the binary character of asteroid Ostro.

Analysing data sparse in time has become important along with the future all-sky sur-
veys, such as the ESA astrometric cornerstone mission Gaia (launch 2011) and PanSTARRS
(Panoramic Survey Telescope and Rapid Response System). Both will produce highly accu-
rate absolute photometric data as solitary points, distributed unevenly in time. For example,
Gaia will carry out 50-100 brightness measurements of each of the about 300,000 asteroids to
be observed during its five-year mission. Cellino et al. (2006) propose a method applying a
triaxial ellipsoid model to analyze the spin state and shape of asteroids based on such data.
They first sample randomly the parameters, i.e., the ellipsoid axis ratios, spin axis, and
rotation period. Of all the solutions, they accept the ones that fit the data to a reasonable
accuracy. Then they improve the accepted solutions, again, with random sampling. The
fits to the data are good, and they conclude that the ellipsoid model is accurate enough to
model the asteroids with such sparse data.
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4 Summary of papers

4.1 Paper I

Optimization methods for asteroid lightcurve inversion. I. Shape determination.
In Paper I, we present a new method to construct convex shape models of asteroids from
their photometric lightcurves, and investigate how well this model represents the shape of
the original nonconvex object. We discuss the state of art in asteroid shape modelling, and
compare the new method to the earlier ones.

We use two approaches to represent the model shape: a convex polyhedron and a se-
ries representation. Both methods are thoroughly described and the computation of the
brightness of convex as well as nonconvex objects is presented. We studied how the scale
of the nonconvexities in the original shape affects the quality of the convex shape solution
by using four different nonconvex shapes: from nearly convex to a binary shape. We com-
pared the lightcurves and shapes of the original, nonconvex objects, to those of the convex
model shapes and the convex hulls of the original shapes. For situations, where a convex
solution cannot be found, we present a method to interpret the residual nonconvexity as
albedo variegation. Then again, for cases where we have highly informative data, a method
to derive knowledge about the nonconvex features of the original shape is presented. We also
discuss the effect of observing geometry and amount, structure and quality of data to the
shape solution as well as the difference of considering the data relative or absolute. If we use
absolute data, the function to be minimized is of square form, and thus is formally unique
(has only one solution). A beneficial result was, however, that even when considering data
as relative, thus removing the formal uniqueness, the shape solution is stable. This stability
is one of the strengths of the convex inversion method.

The main result of the paper is that the convex shape solutions obtained with the convex
inversion method really describe the overall features of the original, non-convex shapes with
the valleys and depressions covered with large planar areas.

The author wrote the Fortran programs for the convex-hull computation and convex
inversion with the polyhedron model as well as the routines for extracting the data from the
data files. All the simulations were carried out by the author.

4.2 Paper II

Optimization methods for asteroid lightcurve inversion. II. The complete inverse
problem. As a continuation to Paper I, we present the method to find the spin state of
asteroids in addition to their shape, and also discuss the scattering models suitable for
lightcurve inversion as well as phase behaviour of the brightness.

To solve for the rotation state of an asteroid, we set the pole direction and rotation
period as free parameters in the inverse problem, otherwise keeping the mathematical form
of the problem unaltered. This way we make the minimized function formally non-unique
(like when considering data as relative), but this, again, does not remove the uniqueness of
the solution. We show how we can approach the final spin and shape solution gradually, by
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first finding the approximate spin solution using an approximate shape solution, and then
by improving in two steps the spin and shape solutions. We also discuss the stability and
accuracy of the solution. Finally, we test the applicability of the convex inversion method
by comparing its results to those obtained from radar observations or space missions. The
conclusion is clearly that the convex inversion method gives reliable solutions for both the
shape and the spin state of the asteroid.

The choice of the scattering model in the inverse problem is discussed, and it is pointed
out that a simple but versatile scattering law, like the combination of the Lommel-Seeliger
and Lambert laws, is a suitable choice. This is an empirical scattering law with no physical
meaning of the parameters. The possibility of obtaining the phase curve of the target from
the scale factors of the absolute observations is discussed. We also test how the phase curve
of an asteroid depends on its shape, and draw the conclusion that phase behaviour is highly
independent on the global shape of the target, leaving the explanation of the differing phase
curves solely to the small-scale roughness and material of the surface.

The author carried out most of the simulations as well as contributed to the inversion
for the sample targets.

4.3 Paper III

Shapes and rotational properties of thirty asteroids from photometric data. In
paper III, we present results of spin and shape analysis with convex inversion for thirty
main-belt asteroids. This is one of the series of papers scanning through the lightcurve data
in the Uppsala Asteroid Photometric Catalogue (UAPC). Also some new data was used.
Results show, that even large asteroids (> 100 km in diameter) show remarkable irregular
features that cannot be modelled with a triaxial ellipsoid.

We introduce the growing amateur-professional co-operation and point out the enormous
observing potential that we have in the amateur observers. We discuss the quality of the
data, and information content in MBA data. A general conclusion is that MBA data cannot
contain much information of the non-convexities, since they can be observed only at small
phase angles. The data were not as good as in the previous papers and, thus, a unique model
was not found for all the targets, but many obtained a double spin solution.

The author carried out inversion for most of the targets and undertook the major part
of writing the paper.

4.4 Paper IV

Statistical inversion of Gaia photometry for asteroid spins and shapes. Tradi-
tionally, photometric asteroid data has consisted of more or less complete lightcurves. Gaia,
however, as well as ground-based all-sky survey programs, such as PanSTARRS, will start to
produce accurate absolute photometric data sparse in time in the near future. For example, a
typical data set observed by Gaia of an asteroid is about 50-100 brightness values distributed
over the time span of five years. In Paper IV, we study the applicability of two lightcurve
inversion methods, the convex inversion method and the spherical-harmonics method, to
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photometric data sparse in time. We use the convex inversion method to determine the spin
state and convex shape from the data reproduced by a nonconvex, asteroid-like object. Two
possible spin states are obtained, one of which is the correct one, and the other one is the
mirror solution. The shape solution describes well the overall shape of the original body. We
describe briefly the spherical-harmonics method and, in the vicinity of the convex-inversion
spin and shape solution, find nonconvex shape solutions that produce an acceptable fit to
the data. Although the non-convex solution is not as stable as the convex one, the concave
features in the spherical-harmonics model were reasonably close to their real locations.

The author was responsible for the convex inversion part and for writing sections other
than Sect. 4.

4.5 Paper V

Spins, shapes, and orbits for near-Earth objects by Nordic NEON. In Paper V, we
apply the convex inversion method to the lightcurve data of NEAs. The observations were
carried out as part of the Nordic NEON (Near-Earth-Object Network) observing program
at the NOT (Nordic Optical Telescope). We obtained an unambiguous solution for one
asteroid and a set of possible spin states for two. We also present a new method for deriving
spin and shape information from limited data. The shape model is chosen to allow analytic
computation of the disk-integrated brightness. Thus, it is possible to obtain thousands
of possible solutions, with a random sampling of spin states while fitting the shape, in a
reasonable time. The obtained distribution of the possible solutions shows the part of the
spin and shape space, where the correct solution lies. Astrometric observations were carried
out as well, and during the program four NEAs were recovered and orbits were improved for
76 objects.

The author had a significant contribution to applying for the observing time, planning,
carrying out, and reducing the photometric observations. The convex inversion was per-
formed by the author.

4.6 Paper VI

Asteroid shape and spin statistics from convex models. Paper VI deals with the
problem of characterizing the shape solutions from convex inversion with a small number
of parameters. We present three methods to find characteristic parameters describing the
overall dimensions of the shape and calculate the inertia tensor of the model shape to evaluate
its reliability. The irregularity of the shape is expressed as the deviation from the best-fit
ellipsoid, as well as by the distribution of the facet areas on the surface of the model. With
the aforementioned methods, we calculate characteristic parameters for the model shapes of
87 asteroids, and study the distributions of various properties. We find correlations between
shape and other physical properties, such as size, taxonomic type, and rotation period. The
amount of data, however, is still small, and more observations are called for, especially of
extreme populations, such as small and large asteroids as well as slow and fast rotators, to
perform a more thorough statistical analysis of the asteroid population.
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We also present new spin and shape solutions for eight asteroids. Since the data sets of
the asteroids generally are not necessarily sufficient for deriving an unambiguous spin and
shape solution, we present a semi-statistical approach to find all the solutions that produce
an acceptable fit to the data. For one asteroid, we obtained a wide distribution of possible
spin solutions, for one target an unambiguous solution, and for the remaining six objects
two or three solutions, some of which were double solutions (with the same pole latitude and
longitudes 180◦ apart).

The author has been responsible for everything else but carrying out and reducing the
observations.

5 Conclusions and future prospects

The aim of the present study was to develop methods to derive more accurate spin and shape
models for asteroids from their photometric observations. With the novel convex inversion
method, it is possible to obtain from an extensive data set the spin state, to an accuracy of
5◦, and a convex shape model that resembles the convex hull of the target (Paper I). Some
of the lightcurve data sets allow the determination of only the best-fit ellipsoid axis ratios,
but most contain more shape information. An example representing the typical quality of
convex models is the model of asteroid (433) Eros, shown in Fig. 5 together with the model
reconstructed from spacecraft observations. Results from the convex inversion of the nearly
hundred asteroids analyzed so far suggests that most of the asteroids are irregular, and it
is possible to obtain a significant amount of information of the shape features if we are not
constrained to ellipsoidal models.

(a) (b)

Figure 5: a) Model of asteroid (433) Eros, reconstructed from the NEAR-spacecraft observations
(NASA). b) A convex inversion model of asteroid (433) Eros from the same viewing direction as in
fig. a.

In Paper IV, we apply the convex inversion method for sparse, Gaia-like data, and obtain
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a shape that closely resembles the shape of the original simulated object. The results are
not in full agreement with those of Cellino et al. (2006) who, as mentioned above, concluded
that the triaxial ellipsoid model is applicable when interpreting sparse data. Although the
convex shape solution is not as accurate as that derived, e.g., from radar observations,
the number of solutions is larger, about 100 at the moment, and as all-sky surveys, such
as PanSTARRS and Gaia, start to produce photometric data in the future, the number of
solutions will increase dramatically. Thus, for statistical studies of asteroid spins and shapes,
the photometric observations remain the main source of information in the future.

In some cases, information about the non-convex features can be derived, but the inverse
problem is not as stable as the convex inversion, and usually a priori information is required
to obtain a reliable solution (Paper II and Paper IV). Important for non-convex inversion
is the wide range of observing geometries, especially large-phase-angle observations (typical
for NEAs). It has to be kept in mind that, although methods for obtain more and more
detailed shape solutions will be developed, the smallest scale features of the shape are surely
drowned in the noise of the data. Even though the inversion methods have developed in
twenty years, one must still be careful when interpreting the detailed shape solutions and
avoid fitting the data noise.

A qualitative determination of the uncertainty of each convex inversion model has not yet
been carried out. However, empirical studies show that the spin solution can be considered
to be accurate within 5◦, since it is not sensitive to moderate changes in the model shape or
scattering law (Paper II). The uncertainty of the rotation period for each pole solution is ∆P
of Eq. (10). The accuracy of the shape model is the hardest to define, but the uncertainty
of the b/a-ratio for each solution can be assumed to be the same as that for the support
function (Paper II), i.e., a few percent. Solving for the c/b-ratio would require rotation about
an axis perpendicular to the z-axis, which corresponds to absolute observations carried out
at a large range of aspect angles. Thus, especially when only relative photometry is available,
c/b is poorly constrained. However, even absolute photometry does not guarantee the correct
c/b-ratio, since the phase behaviour of the brightness is not exactly known for asteroids. A
good example of an asteroid with poorly-defined c/b-ratio is (93) Minerva, for which a value
of c/b = 0.97 is obtained when using relative photometry only, while including absolute
photometry suggests a more flattened shape with c/b = 0.6 (Harris et al., 1999). The
b/a-ratio is unity according to both solutions. In this case, the Harris et al.’s solution is
most probably correct, since the absolute magnitude at various oppositions varied markedly.
According to simulations, however, most of the shape models with b/a << 1 obtained
using relative photometry are in agreement with the shape of the target asteroid, since the
amplitude of the lightcurves of elongated shapes clearly changes along with the changing
c/b-ratio at a certain observing geometry. The b ' a case, like that of (93) Minerva, is more
difficult, since all the lightcurves are more or less flat and it is hard to detect differences is
amplitude for changing c/b-ratio. Absolute photometry should be included if possible; even
if not providing an accurate c/b-ratio (due to the inaccurately known phase curve), it most
probably improves the solution. Development of more accurate scattering laws is called for,
as well as calibration of all the absolute lightcurve observations to the same system in order
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to be able to deduce as much information from the photometric data as possible.
Observations, especially of small and large asteroids as well as slow and fast rotators,

should be carried out for performing a thorough statistical analysis of asteroid shapes, spin
states, and compositions. Correlations between shape and other properties have been de-
tected, but the sample of asteroids with well-determined shape is still small.

The main outcome of the present thesis is that lightcurves of asteroids contain a sig-
nificant amount of information of their spin states and shapes. Along with additional well-
planned absolute photometric observations, current lightcurve inversion methods can provide
a valuable contribution to the knowledge of the properties of the asteroid population, of the
evolution of the asteroid belt, and of the formation of the Solar system.
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Cellino A., Zappalà V., and Farinella P., 1989. Asteroid shapes and lightcurve morphology,
Icarus, 78,298.
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