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introducing me to the field of non-resonant inelastic x-ray scattering. Additionally,

I would like to thank them for the guidance and encouragement they have given me

throughout this work. I would like to express my gratitude to Dr. Eric Shirley whose

contribution to this work was invaluable. I would also like to express my gratitude
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Abstract

The development of new synchrotron x-ray sources has significantly increased the use

of x-rays in the characterization of solids. The need to understand and analyze these

results has partly motivated the development of new computational methods that

can reliably handle excited states of solids. Although many of these methods aim to

be independent of the experimental results, they often include approximations that

can only be justified by how well they can predict the experimental results. This

is why a collaboration of the experimental, theoretical and computational efforts is

important for the development of these methods.

This work introduces computational methods and approximations that can be

used to study the excited states of electrons produced by non-resonant inelastic

x-ray scattering. First an ab initio scheme to calculate the dielectric function for

finite momentum transfers is introduced. It is used to analyze the results of non-

resonant inelastic x-ray scattering from valence electrons of several semiconductor

materials. The scheme is found to correctly predict the inelastic x-ray scattering

spectra in different types of semiconductors. Furthermore, another scheme is intro-

duced for calculating core-excited states in solids and it is applied to a wide range of

materials. Although this scheme is based on the same theoretical formalism as the

work on the valence-excited states, some modifications were made to correctly treat

core excitations. Again, by comparing the calculated results with the experimental

ones the scheme is found to work well. Additionally, the effects of the final-state

electron-electron correlations on the high-energy and momentum transfer inelastic

x-ray scattering are studied using a model spectral function developed in this work.

These results are used to discuss the validity of the impulse approximation in light

of the final-state electron-electron interaction. These final-state correlations were

found to explain some previously unresolved differences between experiments and

theoretical calculations.
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1 Introduction

The first to correctly interpret inelastic x-ray scattering experiments were

Compton [1] and Debye [2]. They used, at the time, a new and controversial con-

cept of the light quantum to explain the experimental results. Only few years after

this discovery DuMond [3] measured the Compton profile of beryllium metal and

was able to show that the conduction electrons obeyed the Fermi-Dirac distribution.

After this early work the experimental development in inelastic x-ray scattering has

been rather independent of the advances in the theoretical understanding of the elec-

tron systems. However, often enough the theoretical ideas and models have been

tested by comparing them to inelastic x-ray scattering results.

Inelastic x-ray scattering can be used to probe different physical properties of

solids. Since a solid is a true many-particle system, the use of many-body formal-

ism is unavoidable in any theoretical study of inelastic x-ray scattering from solids.

The x-rays scatter mostly from the electrons and the properties of electrons in their

ground or excited state determines the scattering cross sections of most hard1 x-ray

scattering experiments. The theoretical formalism used in the modern studies of

many-electron systems was, for the most part, developed early in the second half

of the 20th century. The subsequent work has concentrated on the development of

practical approximations for dealing with the many-electron systems found in nature,

such as solids.

The development of the 3rd-generation synchrotron x-ray sources has radically

changed the use of x-ray scattering in materials science [4]. The properties of the

synchrotron radiation, such as tunable photon polarization and energy combined

with high intensity and natural collimation, have made possible experiments that

were infeasible using the conventional x-ray sources. In inelastic x-ray scattering

the tunability of the incident energy made it feasible to study high-Z materials us-

ing resonant inelastic x-ray scattering [5, 6]. Synchrotron radiation has also made it

possible to study previously discovered phenomena in more detail. By studying the

momentum-transfer dependence of the spectral features the dispersion or even the

symmetry of the corresponding excitations can be determined. In the high momen-

tum transfer limit, i.e., in the limit where the impulse approximation [7] is valid,

inelastic scattering can be used to study the ground-state momentum density of a

system. With the new synchrotron sources a wide range of properties of materials

can be studied using inelastic x-ray scattering.

The new experimental results in inelastic x-ray scattering have challenged the

theoretical understanding of the properties of electrons in solids. Even in relatively

simple systems, such as metals, the experimental results have eluded complete the-

oretical explanation. For example, the Compton profile and discontinuity (Zf ) of

1Hard x-rays have energy over few keV
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the momentum distribution function at the Fermi break has been measured for sev-

eral metals (see for example [8–10]). In lithium (Li) the Zf estimated from experi-

ments [9,10] disagreed with the earlier theoretical estimates. This motivated several

theoretical studies [11–16] which disagreed not only on the origin of the experimen-

tal results but also on their estimates on the value of Zf . Also the general shape

and dispersion of the dynamic structure factor has attracted both experimental and

theoretical interest [17–19]. The experimental results for the local-field factor dis-

agree with the earlier theoretical predictions in the moderate-momentum-transfer

regime [19]. These studies are examples of how new inelastic x-ray scattering results

have raised questions about widely used theoretical approximations.

This work presents computational methods which can be used to study excited

electron states in solids and their applications to non-resonant inelastic x-ray scat-

tering. Reliable computational schemes for describing the ground-state properties of

solids have existed for several years. Only in more complex systems, such as strongly

correlated systems or systems with crystal defects, does the ground-state evade com-

plete theoretical understanding. The excited states have proven to be harder to treat

with the same accuracy. This is why, even today, the theoretical approaches used

in the analysis of inelastic x-ray scattering are often based on a single-particle ap-

proximation. The final state and many-particle interactions of the electron system

are either neglected or they are included using phenomenological corrections. Only

during the recent years there have been advances both in the algorithms and the

computational power that have made it possible to treat the excited states more

accurately.

This summary starts with a short review of the non-resonant inelastic x-ray scat-

tering. Next the theoretical approaches and the approximations used in this work

are introduced on a general level. A more detailed discussion on the different appli-

cations of these approximations follows. Some previously unpublished details of the

work are also discussed. Examples of the computational schemes applied to different

materials are given in this summary and more examples can be found in the included

papers.

2 Non-resonant Inelastic X-ray Scattering

In this section the theoretical basis of non-resonant inelastic x-ray scattering is pre-

sented. The scattering cross section is derived starting from the non-relativistic

expression for the electron-photon interaction. Also the general properties of the

cross-section are discussed.
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2.1 Interaction Hamiltonian and the Cross Section

In the presence of an electromagnetic field the Hamiltonian of the combined electron-

photon system can be written with three terms:

H = He + Hp + He−p,

where He is the Hamiltonian of the electrons in the absence of the external field, Hp

is the photon field Hamiltonian, and the last term He−p represents the interaction be-

tween the electrons and the photon field. In the non-relativistic limit the interaction

Hamiltonian He−p is

He−p =
∑
i

(
α2

2
Ai ·Ai + αpi ·Ai), (1)

where Ai is the vector field operator, pi is the electron momentum operator and α

is the fine structure constant. The sum is over the electrons (i) in the system. The

vector field is assumed to follow the Coulomb gauge (i.e. ∇i · Ai = 0), and in the

Heisenberg representation it can be written in a quantized form as

Ai(t) =
∑
k,η

(
2π

V ωkα2
)1/2

[
âkηεηe

i(k·ri−ωkt) + â†kηε
∗
ηe
−i(k·ri−ωkt)

]
, (2)

where the photons are characterized by their momentum k and their polarization

state η (with polarization vector εη). The quantization has been done in a volume

V and â† (â) is the photon creation (annihilation) operator.

In first-order perturbation theory the first term of Eq. (1) represents scattering

(elastic or inelastic) and the second term absorption and emission. In an x-ray

scattering process there is one photon in the initial and in the final state. The

scattering cross section for such a process is given in the second order by the Kramers-

Heisenberg formula:

d2σ

dΩdω2

= r2
0

ω2

ω1

∑
F

|〈F |
∑
i

ei(k1−k2)·ri|I〉(ε1 · ε∗2) (3)

−
∑
M

[
〈F |

∑
i(ε1 · pi)eik1·ri|M〉〈M |

∑
i(ε
∗
2 · pi)e−ik2·ri|I〉

EM + ω2 − EI

+
〈F |

∑
i(ε
∗
2 · pi)e−ik2·ri|M〉〈M |

∑
i(ε1 · pi)eik1·ri|I〉

EM − ω1 − EI − iΓM
]|2

×δ(ω1 − ω2 + EI − EF ).

Here the initial (final) photon momentum, energy and polarization vector are given

by k1, ω1 and ε1 (k2, ω2 and ε2) respectively. The three states I, M and F denote the

initial, intermediate and final states of the electrons and their energies are given by

EI , EM and EF . ΓM is the inverse of the intermediate-state lifetime. The third term

in Eq. (3) is resonant and gives a strong contribution if the energy of the incoming
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photon (ω1) is tuned close to an x-ray absorption edge. If the incident photon energy

is far away from the x-ray edges, the non-resonant first term dominates. In this case

the cross section can be given in a simple form

d2σ

dΩdω2

=

(
dσ

dΩ

)
Th

S(q, ω), (4)

where S(q, ω) is the dynamic structure factor (DSF)

S(q, ω) =
∑
F

|〈F |
∑
i

eiq·ri|I〉|2 δ(ω + EI − EF ) (5)

and (dσ/dΩ)Th is the Thomson scattering cross section.2 The dynamic structure

factor depends on the momentum transfer q = k1−k2 and energy transfer ω = ω1−ω2

from the photon to the electron system and on the properties of the excited states

of the system. The Thomson cross section represents the electron-photon coupling.

In other words, in the expression for the cross section the information about the

studied system and the probe is separated. In fact, the cross section for electron

energy loss spectroscopy (EELS) can be approximated with a similar equation except

that (dσ/dΩ)Th is replaced with an appropriate cross section for electron-electron

scattering.

2.2 Dynamic Structure Factor

As indicated in the previous section the non-resonant inelastic x-ray scattering

(NRIXS) cross section is proportional to the dynamic structure factor S(q, ω). In

NRIXS the freedom of choosing the momentum and the energy transfer indepen-

dently of each other makes it possible to study the properties, such as dispersion,

of different types of excitations. The DSF can be represented as a Fourier trans-

form with respect to the time and the position coordinates of the density-density

correlation function [22]

S(q, ω) =
1

2π

∫ ∫ ∫
dr′ dr dt 〈ρ(r′ − r, t)ρ(r′, 0)〉 eiq·r e−iωt, (6)

where ρ(r, t) is the electron density operator. The expectation value 〈〉 is taken with

respect to the ground state of the system. It can be seen from the Eq. (6) that the

magnitude of the momentum transfer q = |q| and the energy transfer ω determine

the spatial and time scales on which the density-density correlations are studied [21].

When the momentum transfer is small compared to the inverse of the characteristic

length scale rc of the system (i.e. for example the average inter-particle distance)

the effects of correlations between particles determine the spectrum. For ω close to

a typical phonon or plasmon energy the dynamics of these collective excitations can

2Following Ref. [21] the factor of ω2/ω1 is included into the definition of (dσ/dΩ)Th.
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be studied in this low-momentum-transfer regime. When the momentum transfer is

increased the correlations between particles become less important and in the high-

momentum-transfer regime the scattering can be assumed to happen from single

particles. However, this simple division is complicated by the many-particle nature of

solids. For example, in Cs the plasmon has a negative dispersion at low momentum

transfers which was explained by a first-principles study of Fleszar et al. [20] to

have its origin in the interplay of the low-momentum plasmon with the one-electron

excitations. On the other hand, in the high-momentum-transfer region the dynamic

structure factor is affected by the fact that the excited particle can decay by coupling

to the collective excitations [10].

The dynamic structure factor can also be related to the macroscopic response of

the system. This is done by using fluctuation-dissipation theorem which relates DSF

to the dielectric function εM(q, ω) of the system

S(q, ω) = − q2

4π2n
Im

[
1

εM(q, ω)

]
. (7)

Here εM represents the response of the system to the total macroscopic field and n

is the average electron density of the system. This relation links the correlations of

the system (as given in Eq. (6)) to the dissipation of energy from an external source

in the system (as given by −Im (1/εM)). In this work the fluctuation-dissipation

theorem is used to study valence excitations in section 4 by computing εM instead

of the dynamic structure factor.

3 Theoretical Background

In this section an overview of the theoretical background of this work is given. The

aim is to give a review of the problem and the approximations used in this work.

The first subsection is dedicated to the discussion on the general properties of the

dynamic structure factor in light of a single- or independent-particle picture. In a

single-particle picture the initial and the final state of the electron are calculated

using a average ground-state potential due to the other electrons and the nuclei. The

effects going beyond this simple approach are commonly called final-state effects in

different spectroscopies. These include the effects of the interaction of the excited

electron (or hole) with its own polarization cloud (i.e., the polarization of the other

electrons in the system). These are covered in the second subsection where the

single-particle Green’s functions are introduced. The interaction between the final-

state electron and hole is discussed in the last subsection in which the theory and

computation of the two-particle Green’s functions are presented.
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3.1 Single-Particle Theory

In the single-particle picture the initial and final states in Eq. (5) are replaced by

Slater determinants created from single-particle states. This gives a rather simple

formula for DSF:

S(q, ω) =
occ∑
i

unocc∑
f

|〈f |eiq·r|i〉|2 δ(ω + εi − εf ), (8)

where |i〉 (|f〉) denotes the single-particle initial (final) state and εi (εf ) its energy.

This expression neglects all the interactions of the final-state hole and the final-state

electron that are not included in the single-particle Hamiltonian (H0). However, it

can be used to study the main features of the NRIXS spectra. Also, it enables one

to rather easily derive many of the general trends of DSF. For example, in the low

momentum transfer limit the exponential in Eq. (8) can be expanded as

eiq·r = 1 + iq · r− (q · r)2/2 + . . . . (9)

When this expansion is inserted into Eq. (8) the first term to contribute is propor-

tional to q · r and it gives rise to dipole-allowed transitions. When the momentum

transfer is increased the other terms and excitation channels (monopole, quadrupole)

become more important. In this way the large momentum-transfer range available

in NRIXS can be used to study excitations with different symmetries. In the other

limit as q → ∞ and ω → ∞ the expression (8) reduces to the so-called impulse

approximation (IA)

S(q, ω) ≈
∫
dp ρ(p) δ(ω − p · q− q2/2). (10)

Here ρ(p) is the ground-state electron momentum density of the system. The delta

function in this equation represents both the energy and the momentum conserva-

tion. From this it is easy to understand how the spectrum evolves as the momentum

transfer is changed. The term q2/2 determines the position of the peak of the spec-

trum and p ·q on the other hand controls the width of the spectra.3 Although these

general trends of the dynamic structure factor were here derived from rather simple

approximations, they persist even if more elaborate methods are used.

In this subsection so far we have concentrated on the single-particle excitations

in solids. The other important electron excitations that can be studied using NRIXS

are plasmons, i.e., collective oscillations of the electrons. To study plasmons we

use the fluctuation-dissipation theorem that relates the dynamic structure factor to

the dielectric function of the system. In a solid, due to the charge inhomogeneity,

a concept of dielectric matrix εG,G′(q̃, ω) has to be introduced. Here G and G′

are reciprocal lattice vectors and q̃ is restricted to the first Brillouin zone. In the

3This is, of course, the behavior observed already by Compton [1] and Debye [2].
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random phase approximation (RPA) the dielectric matrix of a crystalline solid is

given by [23,24]

εG,G′(q̃, ω) = δG,G′ −
4π

|q̃ + G|2Ω

∑
kij

〈ik|e−i(q̃+G)·r|jk̃〉〈jk̃|ei(q̃+G′)·r|ik〉 (11)

×
nf (Eik)− nf (Ejk̃)

ω + Eik − Ejk̃ + iδ

where |ik〉 is a single-particle state with a crystal momentum k and a band index i.

Here Eik is the band-energy and nf (Eik) the corresponding occupation number. The

momentum k̃ is chosen so that the momentum conservation is fulfilled in the matrix

elements. In normal NRIXS only the diagonal (G = G′) [25] elements of the inverse

of the matrix εG,G′ are needed and the dielectric function in the Eq. (7) is given by

εM(q, ω) = 1/ε−1
0,0(q, ω), where q = q̃ + G is the momentum transfer. The plasmon

oscillation frequency is now defined by det
[
εG,G′(q̃, ω

pl(q̃))
]

= 0 [25]. The lowest

order approximation for εM is to set it equal to ε0,0 [26]

εM(q, ω) = 1− 4π

|q2|Ω
∑
kij

〈ik|e−iq·r|jk̃〉〈jk̃|eiq·r|ik〉 (12)

×
nf (Eik)− nf (Ejk̃)

ω + Eik − Ejk̃ + iδ
.

This is the lowest-order approximation for the full dielectric function that can give rise

to plasmons with the familiar plasmon dispersion relation εM(q, ωpl(q)) = 0. A solid

responds to a disturbance with wave vector q at all the wave vectors q + G, where

G is any reciprocal lattice vector. These are commonly called local-field effects and

these effects are included in RPA but not in Eq. (12). This is the explanation for the

difference between the two plasmon dispersion relations. However, the approximation

given by Eq. (12) has been found to work relatively well for simple metals, but for

semiconductors the local-field effects were found to be more important for small

q [27].

3.2 Single-Particle Green’s Function

The single-particle Green’s function (G1) describes an excitation of the system where

a single particle is removed from an occupied state (hole added) or added to an

unoccupied state. For non-interacting particles the single-particle Green’s function

G0
1 is defined by

(i
∂

∂t1
− Ĥ0)G0

1(1, 1′) = δ(1− 1′)

where Ĥ0 = −∇2
1/2m+Vext(1) is the Hamiltonian operator with an external (crystal)

potential. The indices 1, 1′, . . . represent the space (ri), the spin (σi) and the time

11



(ti) coordinates. To go beyond the single-particle approximation a Dyson equation

can be used

G1(1, 1′) = G0
1(1, 1′) +

∫
d(23)G0

1(1, 2)Σ(2, 3)G1(3, 1′), (13)

where Σ is the so-called self-energy and it describes the effects of the electron-electron

interactions in the system. In solids Hedin’s GW -approximation (GWA) [28] is often

used to approximate the self-energy. In the GWA the self-energy of the electrons can

be expressed as

Σ(1, 1′) = −iδ(1, 1′)
∫
d2 v(1, 2)G1(2, 2+) + iW (1+, 1′)G1(1, 1′) (14)

where v is a bare Coulomb interaction and W is a screened one. W is given in terms

of a dielectric function ε as

W (1, 1′) =

∫
d2 v(1, 2)ε−1(2, 1′). (15)

In Eq. (14) the first term is the Hartree term and the second term represents the

exchange and correlation. In principle the equations for the Green’s function G(Σ),

the self-energy Σ(G,W ), and the screened interaction W (G) should be solved self-

consistently [29]. In the cases where this has been done [30] the fully self-consistent

GW has been found to give poorer results than the non-self-consistent calculation

(sometimes called G0W0). Calculations self-consistent with respect to G but not

W (GW0) gave more reasonable result but, for example, the jellium quasiparticle

band widths were larger than the free electron result, in clear disagreement with the

experimental results and G0W0 [31]. Additionally, the observed improvements were

small and this is why the G0W0 approach is usually used [32].

Normally in solid state applications the GWA is transformed into a Dyson-type

equation for the quasiparticle energies (Eqp
m ) and states |φqpm〉 [29]

(Ĥ0 + Σ̃(Eqp
m ))|φqpm〉 = Eqp

m |φqpm〉, (16)

which are solved self-consistently with respect to Eqp
m . These equations are either

solved using local-density-approximation (LDA) [33] wave functions as basis set or

assuming that the quasiparticle states are same as the LDA states. This approach

to calculating the quasiparticle states and energies has been successfully applied to a

wide range of electron systems [34]. Computationally the most extensive part of the

calculation is the evaluation of the dielectric function in W . Although calculations

including the full RPA dielectric function have been done, it is often more efficient

to use a model dielectric function (see for example [35]). Usually when the results

from the RPA approximation and these simpler approximations are compared the

differences are small.
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The self-energy has two types of effects on the dynamic structure factor. The real

part of the self-energy changes the quasiparticle energies from the values predicted

by mean-field theories. For example, in semiconductors this usually means that the

center of gravity of the spectra will be moved to higher energies compared to the

ones obtained, for example, by LDA. This effect is for the most part canceled by the

electron-hole interaction which will be discussed in the next section. The imaginary

part of the self-energy causes the quasiparticles to have a finite lifetime, i.e., the

single-particle excitation can relax by coupling to the system. The lifetime effects

are discussed in more detail in the last section of this thesis.

3.3 Electron-Hole Pairs

Inelastic x-ray scattering from an electron system creates an electron-hole pair exci-

tation. The electron and the hole interact with the rest of the electrons in the system

and this interaction turns into the self-energy discussed in the previous section. How-

ever, they also interact with each other, which should be included at the same level as

their interaction with the rest of the system. This can be done consistently using so-

called conserving approximations [36, 37] while calculating the two-particle Green’s

function. The effect of the electron-hole interaction for optical absorption was first

studied by model calculations [38, 39]. Later also x-ray absorption was studied [40].

Recent ab initio calculations of optical absorption [41–45] including the electron-

hole interaction have confirmed the importance of these effects in semiconductors

and made possible a realistic comparison of calculated spectra with experiment. In

this subsection the basic formalism for calculating two particle Green’s functions is

reviewed4 and its application to NRIXS is presented later.

A two-particle Green’s function (G2) represents the excitation spectra of the sys-

tem when two particles are added to it. For NRIXS the relevant two-particle Green’s-

function is one where a particle-hole pair is added to the system. A two-particle

correlation function L2(1, 2, 1′, 2′) = −G2(1, 2; 1′, 2′) + G1(1, 2)G1(1′, 2′) satisfies a

Bethe-Salpeter equation (BSE)

L2(1, 2; 1′, 2′) = L0(1, 2; 1′, 2′) +

∫
d(3456)L0(1, 4; 1′, 3)K(3, 5; 4, 6)L2(6, 2; 5, 2′),

where L0(1, 2; 1′, 2′) = G1(1, 2′)G1(1′, 2) is the two-particle correlation function of the

non-interacting particle-hole pairs. The electron-hole interaction kernel K is given

as a functional derivative of the self-energy [36]

K(3, 5; 4, 6) =
δΣ(3, 4)

δG1(6, 5)
.

This relation gives the “correct”(i.e. conserving) approximation of the electron-hole

interaction kernel for a given approximation for the single-particle Green’s function.
4This discussion follows closely the one in Refs. [40, 45], where also more details are given.
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Using the GW -approximation for the self-energy and neglecting the derivative of the

screened interaction with respect G1 the result is

K(3, 5; 4, 6) = −iδ(3, 4)δ(5−, 6)v(3, 6) + iδ(3, 6)δ(4, 5)W (3+, 4). (17)

The first term is called exchange interaction (Kx) and it originates from the Hartree

part of the self-energy. Kx is usually a repulsive interaction i.e. it shifts the spectral

weight towards higher excitation energies. On the other hand, the screened inter-

action (Kd) is attractive (i.e., it shifts the spectra toward lower energies), and it is

called direct term. Kd gives rise to what is often called the ladder-approximation.

The function L2 depends on four independent time variables associated with the

creation and annihilation times of the particles. When studying the response to an

external perturbation and assuming an instantaneous creation and annihilation of

the particle-hole pair there remain only two independent time variables [46]. Ad-

ditionally, only the difference of these two times is relevant and one-dimensional

Fourier-transformation with respect to time can be used to obtain a Lehmann rep-

resentation for L. L0 has a simple expression in energy space:

L0(x1,x2,x
′
1,x

′
2;ω)= i

occ∑
i

unocc∑
j

[
ψj(x1)ψi(x2)ψ∗i (x

′
1)ψ∗j (x

′
2)

ω − (Ej − Ei)

−
ψi(x1)ψj(x2)ψ∗j (x

′
1)ψ∗i (x

′
2)

ω + (Ej − Ei)

]
where xi = (ri, σi). The single quasiparticle energies are given by Ei and Ej and

the corresponding states by ψi and ψj. Similar representation is obtained for L by

assuming that the system has well-defined (i.e. long-lived) electron-hole excitations

with energies Ωλ and amplitudes

χλ(x1,x2) = −〈N, 0|ψ†(x1)ψ(x2)|N, λ〉.

The expression for L in this basis is

L(x1,x2,x
′
1,x

′
2;ω) = i

∑
λ

[
χλ(x1,x1′)χ

∗
λ(x2′ ,x2)

ω − Ωλ

− χ∗λ(x1′ ,x1)χλ(x2,x2′)

ω + Ωλ

]
.

In the modern solid state approaches BSE is transformed to a matrix problem by

expanding the electron-hole wave function χ(x1,x2) in the basis of single-particle

wave functions

χλ(x1,x2) =
occ∑
i

unocc∑
j

[
Aλijψ

∗
i (x2)ψj(x1) +Bλ

ijψ
∗
j (x2)ψi(x1)

]
,

where coefficients Aij represent the electron-hole pairs moving forward in time and

Bij those that move backward in time. The BSE reduces to a generalized matrix

eigenvalue problem

(H0 + K(Ωλ))vλ = ΩλSvλ, (18)
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where Ωλ and vλ = (AλBλ)T are the eigenvalue and the eigenstate coefficients,

respectively. The matrix S can be expressed in terms of the identity matrix 1

S =

(
1 0

0 −1

)
.

H0 is the single-particle part of the Hamiltonian, and it is diagonal in the given basis

i.e. H0
ij,i′j′ = δij,i′j′(Ej − Ei). The electron-hole interaction part of the Hamiltonian

matrix K couples the different electron-hole pairs. The eigenvalue dependence of K

is in the screened interaction.

In this work, instead of solving the full eigenvalue problem given in Eq. (18) the

off-diagonal part of K coupling the backward and forward going pairs is neglected.

In the language of Ref. [47] this means solving BSE within the Tamm-Dancoff ap-

proximation (TDA) instead of the RPA.5 In the TDA the coefficients A and B can

be solved separately and they result in the same excitations energies, different only

in sign. In the cases where the influence of this non-diagonal part of K has been

studied it has been found to have only a small effect on the resulting excitation en-

ergies Ωλ [45]. Additionally, we only consider the spin-singlet electron-hole pairs and

we neglect the eigenvalue dependence of K. The resulting eigenvalue problem is

(Ej − Ei)Aλij +
∑
i′j′

[2Kx
ij,i′j′ −Kd

ij,i′j′ ]A
λ
i′j′ = ΩλA

λ
ij, (19)

where the exchange matrix elements Kx are

Kx
ij,i′j′ =

∫
drdr′ ψi(r)ψ∗j (r)v(r, r′)ψ∗i′(r

′)ψj′(r
′). (20)

The coefficient in front of Kx in Eq. (19) comes from restricting the excitations to

spin singlets. As mentioned, in the direct interaction, Kd, the energy dependence of

the screening is neglected (W (r, r′, ω) = W (r, r′, ω = 0)) and the matrix elements

are

Kd
ij,i′j′ =

∫
drdr′ ψi(r)ψ∗j (r

′)W (r, r′)ψ∗i′(r)ψj′(r
′). (21)

There are two advantages in approximating the full eigenvalue problem of Eq. (18)

with Eq. (19). The first one is that we are now dealing with a Hermitian eigenvalue

problem. Additionally, since we neglected the eigenvalue and energy dependence

of the direct interaction we can use the matrix operator in Eq. (19) as an effec-

tive Hamiltonian (Heff ) for the electron-hole system. In the next two sections this

effective Hamiltonian will be used to calculate NRIXS spectra.

5This should not be confused with the RPA discussed earlier in connection with the dielectric
matrices.
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4 Scattering from Valence Excitations

The computational approach to inelastic x-ray scattering from the valence electrons

is presented in this section. The effective Hamiltonian introduced in the previous

section is used to calculate the dynamic structure factor for the valence NRIXS.

Full description of the scheme applied to optical absorption can be found in [41, 42]

and to NRIXS in Paper I of this thesis. Here some details of the computational

procedures and the nature of the electron-hole interaction kernel are reviewed. The

different aspects of the electron-hole interaction are discussed in light of comparison

with recent experimental results for cubic boron nitride (cBN) [48]. A connection is

also made to some of the earlier approaches to valence NRIXS and their results are

compared to those of the current scheme for cBN.

4.1 Computational Method

The approach used in this thesis to calculate the DSF is based on the fluctuation-

dissipation theorem that relates it to the longitudinal dielectric function εM(q, ω).

This dielectric function is the response of the system to the total macroscopic field

i.e. it also includes the electric field induced in the system. Following the formalism

presented in the previous section the dielectric function can be calculated using the

effective Hamiltonian:

εM(q, ω)=1− 4π

q2

[
〈0|ρ̂q

1

ω − Ĥeff + iη
ρ̂†q|0〉 − 〈0|ρ̂−q

1

ω + Ĥeff + iη
ρ̂†−q|0〉

]
, (22)

where ρ̂†q is the density-fluctuation operator

ρ†q =
∑
vck

〈ck + q|eiq·r|vk〉â†ck+qâvk. (23)

The states here are the conduction band electron state |ck+q〉 and the valence band

hole state |vk〉. The electron-hole pair wave function for this problem is a superpo-

sition of the valence-hole and a conduction-band-electron pairs with a momentum

difference equal to the momentum transfer:

Ψq(re, rh) =
∑
vck

Cvckψ
∗
vk(rh)ψck+q(re)

.
=
∑
vck

Cvck|vck〉q. (24)

The single-particle wave functions in Eq. (24) are calculated in plane wave basis

using pseudopotentials [49] within the LDA [33]. The band energies for the diagonal

part in Ĥeff are modified to agree with the calculated GW band structure. This

modification is done using a linear parameterization of the GW -band energies Eqp

as a function of the LDA-band energies ELDA,

Eqp
vk = (1 + Av)E

LDA
vk +Bv

Eqp
ck = (1 + Ac)E

LDA
ck +Bc,
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where the coefficients Av,c and Bv,c are determined so that the self-consistency in

Eq. (16) is fulfilled. This was usually done, as well as possible, in the full Brillouin

zone, using all of the valence bands and up to ten conduction bands. These coefficients

were then applied to all of the bands used in the calculation of εM .

The exchange interaction in this formalism introduces the local-field effects into

εM . The local-field effect here means the effect of the microscopic (i.e. unit cell scale)

fields induced by the macroscopic external field. In the single particle approach

discussed in the section 3.1 these were introduced because εM was related to the

inverse of the dielectric matrix εG,G′ . Despite the dissimilarity of these approaches

they introduce the same effect on εM . The exchange interaction in the basis given in

Eq. (24) is [41,42]

q〈vck|Kx|v′c′k′〉q =
∑
G 6=0

4π

Ω|q + G|2
ρ∗G(v′c′k′)ρG(vck). (25)

The matrix elements ρG are calculated using Fourier transforms of the periodic parts

unk of the band states (i.e. ψnk(r) = eik·runk(r)):

ρG(vck) =
∑
G′

u∗ck+q(G′)uvk(G′ −G).

In the expression (25) for the exchange matrix elements the term G = 0 is neglected.

This is because the dielectric function εM represents the response of the system to the

total field. If the term G = 0 would be included the dielectric function in Eq. (22)

would represent the response to the external field. This has been shown, for example,

for exciton-type of wave functions by Cho et al. [50] and discussed in systems with

general symmetry by Del Sole et al. [51].

The direct part of the electron-hole interaction is an approximation for the local-

field factor mentioned in the introduction. Usually the local-field factor is approx-

imated with a static one obtained from an electron gas approach (see for exam-

ple [19]). Recently there have also been studies where time-dependent density-

functional-theory [52] based approximation for the local-field factor has been used

(see for example [13]). In the approach used in this work the direct part of the

electron-hole interaction can be expressed as

q〈vck|V̂d|v′c′k′〉q =
∑
R

∫
dxdyei(k

′−k)·(x−y+R)u∗c,k+q(x)uv,k(y)W (x + R,y)

× uc′,k′+q(x)u∗v′,k′(y), (26)

where the vectors x and y are restricted to an unit cell. The lattice vector R connects

the unit cell where the hole (y) is located to the one that the electron (x) occupies. In

this work the Hybertsen-Levine-Louie [35] approximation for the dielectric function

in the screened interaction W is used. It is a generalized plasmon-pole approximation

(GPPA) for the dielectric function and requires the dielectric constant ε∞ of the solid.
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The dielectric constant could, in principle, be calculated, for example, using the RPA,

but the differences between using the RPA and the tabulated experimental values

have only a small effect on the outcome of the calculation. This was demonstrated

by Chang et al. [53], who also calculated the dielectric constant self-consistently for

α-quartz and the result was in good agreement with the experimental value.6 As

explained in the paper I and Refs. [41, 42] the direct term is diagonal in the real-

space representation of the particle-hole basis. Transforming the basis to the real

space improves the computational efficiency of the method considerably because fast

Fourier transform (FFT) techniques can be used.

The relative strength of the different parts of the electron-hole interaction depends

on the material. In absorption the direct part has been found to be more important

for semiconducting and insulating materials [42]. This has also been true for the DSF

for the materials studied in this thesis. A similar conclusion, from quite a different

starting point, has also been made in the case of aluminum [19], although it is not

always true for metals (see for example [20]). In the next section the results for valence

NRIXS in cubic boron nitrite (cBN) are calculated within different approximations.

These are compared with the recent experimental results [48].

4.2 Application to cBN

In this subsection different approximations for the dynamic structure factor are com-

pared in the case of cBN. The effects of using GW band energies with and without

including the electron-hole interaction are looked at first. Next the effects of the dif-

ferent parts of the interaction are studied. Finally, the full calculation is compared

with calculations using LDA band energies with and without the exchange contribu-

tion. Figure 1 shows the experimental results together with the calculated spectra

with and without the electron hole interaction for cBN. The electron-hole interac-

tion shifts the spectral features down by about 3 eV. Besides shifting the spectra,

the electron-hole interaction also changes the relative weight and the shape of the

spectral features. As an example, in the interacting calculation there is a double-

peak structure at approximately 25 eV. This feature is not present in the calculation

without the electron-hole interaction. In the next figure the relative importance of

the different parts of the interaction is studied. In Fig. 2 the calculation with and

without the exchange part of the interaction kernel are shown. It is clear that, at

least for cBN, the direct part of the interaction is more important. The effect of Kx

is to move the spectra to just slightly higher energies. As discussed in Ref. [45] the

calculation with Kx = 0 would be appropriate for the spin-triplet excitations.

6It should be noted here that Chang et al. used a RPA screening corrected for the exciton effects
instead of the simple Hybertsen-Levine-Louie model used in this work.
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Figure 1: The experimental NRIXS spectrum together with two calculated spectra for cBN
with momentum transfer 0.49 ΓX. The experimental spectrum (circles) and the spectra
calculated using GW band energies with (bold solid line) and without (solid line) the
electron-hole interaction are shown [48].

Figure 2: Two calculated spectra for cBN with the same momentum transfer as in Fig. 1.
The spectra calculated using GW band energies with (solid line) and without (dashed line)
the exchange part of the electron-hole interaction are shown.
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Figure 3: Three calculated spectra for cBN with the same momentum transfer as in Fig. 1.
The spectrum calculated using GW band energies and with the electron-hole interaction
is given by the solid line. The spectrum calculated with LDA band energies neglecting the
local-field effects is given by the dashed line and the calculation with the local-field effects
by the dash-dotted line.

To make a connection to earlier works on NRIXS a comparison with LDA-based

approximations is also presented here. Figure 3 shows the result of the calculation

based on the BSE with GW band energies (BSE+GW) and also two LDA calcula-

tions. The first approximation is to remove the electron-hole interaction from the

effective Hamiltonian and use the LDA band energies. Additionally, the local-field

effects are included by adding the exchange term into Ĥeff . The comparison shows

that, although the overall center of gravity of the spectrum is nearly the same in

both LDA and BSE+GW, there still remains some differences in the details. For

example, the relative weight of the dominating peaks in the spectra at 27 eV and

40 eV is closer to the experiment for the BSE+GW calculation than it is for either of

the LDA based calculations. Additionally, the double-peak structure around 27 eV is

not present at all in the LDA result. As before, the effect of including the exchange

term or the local-field effects is rather small. In fact, the calculation without the

exchange interaction and with the LDA band energies is closer to the experimental

results than the approximation with Kx.
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5 Scattering from Core Excitations

In this section the non-resonant inelastic x-ray scattering from inner-shell excitations

is discussed. X-ray absorption has attracted both experimental and theoretical in-

terest since it can be applied, for example, to study the unoccupied states [54] and

the structure of a system [55]. NRIXS could be used as an alternative technique to

study these effects as has been demonstrated for several cases [56,57]. The approach

used for core spectroscopy in this work is based on the Bethe-Salpeter formalism

introduced in Section 3.3. The scheme is first reviewed and some unpublished details

of the approach are presented. Again, the properties of core excitations are studied

by comparing the calculated results with experimental ones. First the scattering

from a core state in a wide-gap insulator is studied and the last part of this section

is dedicated to the x-ray near edge structure in metals.

5.1 Computational Method

In this subsection a computational approach to NRIXS from the core excitations, also

referred to as X-ray Raman Scattering (XRS), in solids is presented. The approach

is based on the same method as the valence case with some exceptions. First of all

the dynamic structure factor in this case is expressed as

S(q, ω) = − 1

π
Im〈0|ρ̂q

1

ω − Ĥeff + iη
ρ̂†q|0〉. (27)

As before, the density fluctuation operator ρ̂q can be expressed in the second-

quantized form given by Eq. (23). Since the core states studied in this work are

tightly bound (or deep) core states, the electron-hole pair wave function can be ex-

pressed as

Φ(re, rh) =
∑
nk

Cnkψnk(re)[ψ
TB
k−qα(rh)]

∗ (28)

with ψnk(re) being the conduction band wave function for the electron and ψTBk−qα(rh)

a tight-binding type expression for the core hole state. The index α represents the

atomic quantum numbers nlm of the core hole and its position in the unit cell τ :

ψTBk−qα(rh) =
∑
R

ei(k−q)·(R+τ )φnlm(rh −R− τ ). (29)

An important approximation is made here, namely only the electron-hole pairs with

the same nl numbers and same position τ are included into the basis set given by

Eq. (28). This means that the hole states are not allowed to move or relax to a

different type of electron-hole pair. The effective Hamiltonian Ĥeff in Eq. (27) has

an important difference when compared to the one used to calculate the dielectric

function in Eq. (22). By comparing the definition of DSF in these two cases one

can conclude that the G = 0 term left out of Kx in the calculation of εM should
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be included in Eq. (27). In other words, the DSF is the response to the external

field [50]. An additional difference compared to valence excitations is that here the

energy of the core hole is set to the measured value. In practice this means that for

calculations the zero energy of the excitations is set equal to the conduction-band

minimum. For comparison with the experimental results the calculated spectra are

rigidly shifted to the same energy scale.

The conduction band states have been calculated using the pseudopotential plane-

wave code. The matrix elements in the operators ρ̂q and Kx require calculating

the overlap between the conduction band states and the core state. This is done

with a pseudopotential-inversion scheme first introduced [58] and later refined [59]

by Shirley et al. The current approach [59] is similar to the projector augmented

wave (PAW) [60] method. In this approach the goal is to find an operator T that

will reconstruct from a pseudo wave function |ψPS〉 the corresponding all electron

(or true) wave function |ψAE〉 = T |ψPS〉. The starting point of PAW is that every

pseudo wave function can be expanded in terms of the pseudo partial waves |φPSi 〉 in

some augmentation region ΩR close to a core:

|ψPS〉 =
∑
i

ci|φPSi 〉.

The corresponding all electron wave function would then be

|ψAE〉 = T |ψPS〉 =
∑
i

ci|φAEi 〉 (30)

within ΩR. In PAW the T is constructed by using projectors |pi〉 that fulfill 〈pi|φPSj 〉 =

δij. From this it is easy to see that with T =
∑

i |φAEi 〉〈pi| the coefficient in Eq. (30)

would be ci = 〈pi|ψPS〉. An additional requirement for the projectors is that they

form a complete set in the sense that
∑

i |φPSi 〉〈pi| ≈ 1. In PAW the wave function

can then be calculated everywhere in the crystal

|ψAE〉 = T |ψPS〉 = |ψPS〉+
∑
i

ci(|φAEi 〉 − |φPSi 〉),

where the partial waves are only defined in the volume ΩR. In this work we are

interested in using this expansion close to the core where the core wave function φnlm

is large, and this is why we only use the expansion as it is given in the Eq. (30).

This expansion is accurate as long as the core state is limited to ΩR. As said before,

this method is used to calculate the matrix elements between the core state and the

conduction band states. As an example, we write the matrix element needed for ρ̂q

within the augmentation region ΩR:

〈φnlm|e−iq·r|φnk〉 = 〈φnlm|e−iq·rT |φPSnk 〉
=

∑
i

cnk
i 〈φnlm|e−iq·r|φAEi 〉,
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where φnk denotes the partial wave of a conduction band state and the coefficients cnk
i

are obtained using the projectors. A similar, but a slightly more complicated formula

can be obtained for the exchange matrix elements. In this work the projectors are

calculated within the atomic code and tested on partial waves for a wide energy

range.

The computation of the direct interaction Kd in XRS is complicated by the use

of pseudopotential approach to the conduction band states. This means that the

screening by the core and the valence electrons has to be considered separately. We

break up the potential into three parts:

Vd(r) = Vα(r) + ∆Vα(r) + ∆Vval(r), (31)

where Vα(r) is the bare core hole potential, ∆Vα(r) accounts for the screening done by

the core electrons (i.e., electrons that were included in the core when the pseudopo-

tential was formed) and ∆Vval(r) for the screening by the valence electrons. The core

screening is calculated within an atomic Hartree-Fock code and the valence screening

is calculated as a response of the system to the potential Vα(r) + ∆Vα(r):

∆Vval(r) =

∫
d3r′(ε−1(r, r′)− δ(r− r′))(Vα(r′) + ∆Vα(r′)). (32)

The simple models, like GPPA [35], have been found to be inadequate and instead

a calculation of RPA [61] static dielectric function ε−1(r, r′) is required. Similarly

the core screening potential should be the response to the potential Vα(r) + ∆Vval(r)

and these equations (for ∆Vα(r) and ∆Vval(r)) should be solved self-consistently.

Actually, in the cases it has been tested, the first iteration has been all that is

needed.

The scheme presented here has been applied to XRS, x-ray absorption and elec-

tron energy loss spectroscopy for several materials. Here we present examples for

XRS from F K edge in LiF [62] and K edge in Li-metal.

5.2 Application to F K edge in LiF

In this section the scheme is applied to XRS from 1s electrons of fluorine in lithium

fluoride (LiF). LiF is a wide-gap insulator with strong excitonic effects both at the

x-ray edge and in the valence spectra. The dispersion of the valence excitons has

been studied both with NRIXS [63,64] and with EELS [65,66]. Also the momentum

transfer dependence of the Li K edge exciton has attracted attention [63, 65]. The

near edge x-ray absorption measurements of the fluorine K edge in LiF had strong

peaks that were attributed to excitons [67]. Later calculations have confirmed these

findings [68].

Here we study the momentum transfer dependence of the F K edge structure in

LiF. The experimental spectra together with the calculated spectra for three momen-

tum transfers can be found in Fig. 4. The spectra are normalized to have the same
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Figure 4: XRS results for F K edge in LiF. Three experimental spectra [62] with momentum
transfers of 1.88 a.u. (dash-dotted line), 3.84 a.u. (dashed line), and 4.37 a.u. (solid line)
are shown. Calculated results are offset for clarity.

area under the curve for the energy transfer above 695 eV. This was done to em-

phasize the momentum transfer dependence of the structure just below the edge. As

can be seen from the figure, the structure below the edge becomes more pronounced

compared to the other parts of the spectrum as the momentum transfer is increased.

This can be explained by the fact that most of the scattering is due to dipole-allowed

(∆l = ±1) transitions which behave as S(q, ω) ∝ q2. The theoretical calculations

predict that the pre-peak structure is due to monopole transitions ∆l = 0 and thus

behave approximately as S(q, ω) ∝ q4. The position of the even-parity exciton with

respect to the edge as well as its relative weight are quite accurately predicted by the

current calculation. However, the near-edge odd-parity exciton’s weight is slightly

overestimated.

5.3 Application to K edge in Li metal

The x-ray near-edge structure of metals has attracted both theoretical and experi-

mental interest. This is because the edge structure of metals can, at a qualitative

level, be quite well predicted by the so-called Mahan-Nozieres-De Dominicis (MND)

theory [69, 70]. The MND theory includes parameters that control the shape of the

x-ray near edge structure and these parameters can, in principle, be determined from

the experimental results. Various experimental methods have been used to estimate
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Figure 5: The experimental and the calculated spectra for XRS from the Li K edge in
Li-metal. The experimental results are from Ref. [57]. The figure a) shows the result for
the momentum transfer 0.46 a.u with the calculated spectra vertically shifted for clarity.
b) same as a) but with 5.15 a.u. momentum transfer.

the value of these parameters. However, values obtained with different experimental

methods can be quite different (some of the results for Li are given in [57]). This

motivated Krisch et al. [57] to measure the momentum transfer dependence of the

near K edge structure in Li metal. They were able to compare the fitted parameters

for the monopole and dipole channels with previously obtained results. In Fig. 5 the

experimental spectra [57] are shown together with the spectra calculated using the

scheme presented in this thesis. The calculations correctly predict the shape and

momentum-transfer-dependence of edge structure. Earlier experimental XRS spec-

tra [56] on the Li K edge on a wider energy transfer range are given in Fig. 6. Again,

the overall agreement between the calculation and the experiment is quite good. The

spectral weight of the features above 65 eV is underestimated compared to the peak

at the edge. Similar difference was found for the K edge in Be-metal studied in

Paper III. The reason for this discrepancy has not been analyzed in detail in this

work. However, one can speculate that either the screening of the core potential is

underestimated in metals or the excitations that are responsible for this behavior

cannot be represented in the particle-hole pair basis.
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Figure 6: The experimental results [56] together with the calculation for the XRS from
K edge in Li-metal. The momentum transfer is 0.93 a.u. and the experimental result for
several directions of the momentum transfer is shown (see [56] for details). The calculated
spectra for the Cartesian (100) direction is also shown.

6 Lifetime Effects and Non-resonant Inelastic X-

ray Scattering

In this section we will discuss the effects of the electron-electron (or hole-electron)

correlations on DSF that go beyond changing the single-particle energies. We do this

by reviewing the properties of the electron self-energy and spectral function. First

we will discuss how the damping or the lifetime broadening of the quasiparticle ex-

citations can be seen in XRS spectra of metals. Next we will look into the effects of

going beyond the quasiparticle picture. This will be done by introducing a formu-

lation for the dynamic structure factor in the high-momentum-transfer region with

the help of spectral functions. This will enable us to shed new light on the region of

validity of the impulse approximation. The results in this section are mostly derived

from the electron gas approximations for the self-energy in solids and they can only

be considered to be qualitative. The damping of excitations in solids (including the

crystal potential) has only been studied for excitations in range of few eV above the

Fermi energy [71] and it is hard to use these results for XRS (excitation energies up to

tens of eV are studied) or impossible to use them in Compton scattering (excitation

energies in the order of at least hundreds of eV).
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6.1 Lifetime Effects in Core Spectra

In the core spectra there are two corrections due to the imaginary part of the self-

energy. The core hole has a finite lifetime because it can relax due to fluorescence or

other processes such as Auger processes. All these processes can, as an approxima-

tion, be grouped together as a single energy- and momentum-transfer independent

linewidth Γc. There is an additional damping due to the coupling of the excited elec-

tron with the other elementary excitations in the system. In this work this is included

by using the on-shell7 approximation to the imaginary part of the self-energy Σe
2(p, ω)

of the final state electron. It is assumed that the final state electron momentum is

determined by the energy of the excitations, i.e. p(ω) =
√

2(ω − E0), where E0 is

the binding energy of the core state. These effects are implemented by replacing the

η in Eq. (27) by an energy-dependent damping Γ(ω) = Γc + |Σe
2(p(ω), ω)|:

S(q, ω) = −1/πIm
∑
nk,n′k′

〈0|ρ̂q|nkα〉〈nkα|(ω−Ĥ+iΓ(ω))−1|n′k′α〉〈n′k′α|ρ̂†q|0〉. (33)

The fact that the on-shell approximation is used in this manner means that the

Haydock recursion method [72] used in this thesis does not have to be modified.

As already pointed out, there has been many different approaches to the calcu-

lation of the electron self-energy. Here some of the simplest ones to implement are

tested for approximating the electron lifetime effects in XRS. In Fig. 7 a) the XRS

spectrum for energy transfer close to the Be K edge is given using two approximations

for the self-energy and the corresponding on-shell self-energies are given in Fig. 7 b).

The first of the self-energy approximations is the GWA calculated using generalized

plasmon-pole approximation (GPPA) [35]. In the GPPA the self-energy is zero un-

til the electron has enough energy (Ec) to excite a plasmon in the system. At Ec

there is a sharp increase in the self-energy. In other words, in the GPPA there are

no final state electron-lifetime effects in the spectra close to the edge and only for

ω −E0 > Ec the quasiparticle excitation has a finite lifetime. The other approxima-

tion is the electron gas GW self-energy calculated using Lindhard dielectric function

(G0W0). In G0W0 there is also a contribution from exciting valence electron-hole

pairs. This means that there are damping effects right from the edge of the spectra

and a sharp increase due to the coupling with plasmons for excitation energy above

Ẽc. The comparison in the Fig. 8 between the calculated spectra with G0W0 electron

7On-shell approximation here means that the imaginary part of the self-energy is only calculated
on the energy shell,.i.e., by setting ω = p2/2 in the self-energy.

27



Figure 7: The effect of the final-state electron lifetime on Be K edge XRS spectra in Be-
metal with momentum transfer of 1.25 a.u. along the c-axis. In a) the spectra calculated
using G0W0 approximation (solid line) and GPPA (dashed line) for the final state electrons
self-energy are shown. In b) the corresponding imaginary parts of the on-shell self-energies
are shown.

Figure 8: Experimental [56] and calculated XRS spectra for the K edge in Be metal for
three directions. The magnitude of the momentum transfer vector is 1.25 a.u. and the
experimental results for the momentum transfer along c-axis (circles), the [100]-direction
(squares) and the [110]-direction (triangles) are shown. The corresponding calculated spec-
tra, offset for clarity, are given by the solid, dashed and short dashed line, respectively.
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self-energy effects and the experiment [56] shows the importance of correctly including

these effects to the spectra. It also shows that the Lindhard approximation performs

slightly better than the simpler GPPA. There is damping also below Ec and the

damping is smaller above Ec than estimated by the GPPA.

6.2 Off-Shell Self-Energy Corrections to Impulse Approxi-

mation

The widely used impulse approximation is based on approximations about the final

state of the electron system as well as the scattering process. The assumption about

the scattering is that the energies of the initial state and the final state of the elec-

tron depend only on their respective momenta which are related by the momentum

transfer. The other assumption is that the final state electron is a free and non-

interacting particle. This enables one to approximate the dynamic structure factor

with the simple formula given in Eq. (10). What is neglected in this picture is the

interaction between the electron and the hole. Additionally the interaction of the

final-state electron with the other electrons of the system is omitted. Most of the

attempts to calculate corrections to the IA have concentrated on the electron-hole in-

teraction [73,74]. Usually these approaches are applied to the core-electron Compton

profile, for which the atomistic approach that they use is somewhat justified. The

effects of the electron-electron interaction (or self-energy) on the IA are treated here

with the approach discussed in paper V and in Ref. [75].

In the large-momentum-transfer regime the dynamic structure factor can be ap-

proximated by expressing it in terms of one particle spectral functions A(k, E) =

1/π|ImG(k, E)| [10]

S(q, ω) ≈ 2

n

∫ 0

−ω
dω′
∫

dp

(2π)3
A(p, ω′)A(p + q, ω + ω′). (34)

The IA expression is obtained when: (i) in the second spectral function the energy ω′

is replaced p2/2 and (ii) the second spectral function is replaced by a delta function

(free particle). This way one obtains the expression for IA approximation to DSF

(as given in Eq. (10)). If only the approximation (i) is used the resulting expression

for the DSF is

S(q, ω) ≈
∫
dp ρ(p)A(p + q, ω + p2/2). (35)

Comparing this with Eq. (10) we can see that the effect of the spectral function is to

act as a smoothing function. This effect was first pointed out in Ref. [76], where the

main contribution to the on-shell self-energy was given. However, the on-shell result

assumes that the final-state electron behaves as a well-defined quasiparticle. Within

G0W0 the final-state spectral function has a double peak structure where the main

peak is due to a quasiparticle excitation and the satellite peak is due to the coupling

29



of the electron with a plasmon. The role of the spectral function in Eq. (35) becomes

more apparent if one realizes that the shape of spectral function changes quite slowly

but its position follows closely the quasiparticle behavior. By presenting the spectral

function on a shifted energy scale Ã(k,E − k2/2) = A(k,E) we obtain

S(q, ω) ≈
∫
dp ρ(p)Ã(p + q, ω − p · q− q2/2). (36)

Now it is possible to approximate p + q ≈ q in Ã and one obtains

S(q, ω) ≈
∫
dω′ SIA(q, ω′)Ã(q, ω − ω′), (37)

where SIA(q, ω′) is the usual IA result for S(q, ω). From this it is easy to see that the

final state electrons spectral function smears the experimental Compton profile. This

smearing can explain much of the disagreement of the theoretical Compton profiles

and the experimental ones for the high-resolution experiments (with the momentum

transfer around 5 a.u.) [75]. However, a detailed study (paper V and Ref. [77]) of

the momentum transfer dependence of this effect has shown that it is only a partial

explanation of the observed differences. Still, this approximation is relatively easy to

apply using the model spectral functions introduced in the paper V and should be

used before the experimental result is compared to a theoretical Compton profile.

7 Summary of the Papers

The papers in this thesis give examples of how the final-state effects can be included in

the description of non-resonant inelastic x-ray scattering. A number of computational

methods are applied to this problem.

Paper I presents an ab initio scheme that was developed to study NRIXS from

valence electrons in solids. It is an extension of a scheme that was developed earlier

for optical absorption. It uses a Bethe-Salpeter equation approach to the correlation

functions that has attracted much interest recently. The scheme is applied to non-

resonant inelastic x-ray scattering from LiF, diamond and GaN.

Paper II presents results for both resonant inelastic x-ray scattering and non-

resonant inelastic scattering. A scheme is presented here for resonant inelastic x-ray

scattering and it is applied to cubic and hexagonal boron nitride. Also results for

non-resonant scattering from Mg and O 1s electrons in MgO are presented.

Paper III presents an ab initio scheme to calculate the screening of the core hole

potential and how it can be applied to core spectroscopy. Like paper I this work
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also uses the Bethe-Salpeter equation as its starting point. The scheme is applied

to NRIXS spectra for scattering from 1s electrons in Be metal. Additionally, it is

applied to electron energy-loss scattering from Li 1s electrons in LiF, x-ray absorption

near the F K edge in LiF and C K edge in diamond.

Paper IV presents results of the scheme of paper III applied to x-ray Raman

scattering in several materials. The strongly bound exciton at the Be K edge in

BeO is studied. Also the momentum-transfer-dependence of the Li K edge exciton

structure is studied. Finally experimental and theoretical results for the C K edge in

diamond are presented. The results are analyzed in the view of ab initio calculations.

Paper V is a qualitative study of the final-state electron self-energy and how it

changes the range where impulse approximation is valid. An approximate formula

for the final-state electrons self-energy and spectral function is presented.

8 Concluding Remarks

In this work the different aspects of the final-state interactions in non-resonant in-

elastic x-ray scattering were studied. Because of the large energy and momentum

transfer range studied a variety of different approaches were used.

In the moderate-momentum-transfer region the scattering from valence excita-

tions was studied using a two-particle Green’s function scheme previously developed

for optical absorption. What is new in this scheme, compared to most of the ap-

proaches to non-resonant inelastic x-ray scattering, is that the interaction between

the excited electron and hole is taken into account at the ab initio level. This is why

the method can be applied to study, for example, systems with strong valence exciton

lines. However, the scheme is also quite reliable in systems where such excitations

are not important. An interesting and challenging future development will be the

application of this scheme to non-resonant inelastic x-ray scattering from metals.

The scattering from core-excited states was also studied using the two-particle

Green’s function method, although the approach was slightly modified from the one

developed for the valence case due to the specific nature of core excited states. The

detailed comparison of the experimental and calculated x-ray Raman scattering spec-

tra showed that the scheme works reasonably well. The discovered differences will

offer interesting possibilities for studying in more detail the properties of core excited

states. Additionally, this scheme together with the one for valence excitations has

been applied to resonant inelastic x-ray scattering, which still is a novel and rapidly

growing application of the new synchrotron radiation sources. Again, this offers an

invaluable opportunity for future research.
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Additionally, the final-state lifetime broadening of both core and valence excited

states was studied on a qualitative level using electron gas models for the self-energy.

In the Compton regime these effects were found to explain much of the differences

between the existing theories and experimental results. Since the results of this part

of the thesis must be considered more qualitative, it will be interesting to see how

more quantitative results, based on ab initio methods, will compare to the results

presented here.
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C. Kao, S. Manninen, and W. Schülke, Final-state interaction in Compton scattering

from electron liquids, Phys. Rev. B 62 (Rapid Communication), R7687 (2000).

4 S. Galambosi, J. A. Soininen, K. Hämäläinen, Eric L. Shirley and C.-C. Kao
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