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Abstract

Quantum chromodynamics (QCD) is the theory describing interaction between quarks and glu-
ons. At low temperatures, quarks are confined forming hadrons, e.g. protons and neutrons.
However, at extremely high temperatures the hadrons break apart and the matter transforms
into plasma of individual quarks and gluons.

In this theses the quark gluon plasma (QGP) phase of QCD is studied using lattice techniques
in the framework of dimensionally reduced effective theories EQCD and MQCD. Two quantities
are in particular interest: the pressure (or grand potential) and the quark number susceptibility.
At high temperatures the pressure admits a generalised coupling constant expansion, where
some coefficients are non-perturbative. We determine the first such contribution of order g6 by
performing lattice simulations in MQCD. This requires high precision lattice calculations, which
we perform with different number of colors Nc to obtain Nc-dependence on the coefficient.

The quark number susceptibility is studied by performing lattice simulations in EQCD. We
measure both flavor singlet (diagonal) and non-singlet (off-diagonal) quark number susceptibili-
ties. The finite chemical potential results are optained using analytic continuation. The diagonal
susceptibility approaches the perturbative result above 20Tc, but below that temperature we ob-
serve significant deviations. The results agree well with 4d lattice data down to temperatures
2Tc.
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Chapter 1

Introduction

At the era of new particle accelerators like Tevatronin Fermilab, Relativistic Heavy Ion Collider
(RHIC) in Brookhaven and the upcoming Large Hadron collider (LHC) in CERN, experimental
particle physics is at the verge of new findings, which might include the Higgs boson and super-
symmetry among others. It is also hoped that one would gather some evidence for or against
more controversial predictions, such as string theory and extra dimensions. In addition to new
findings, the experiments are expected to provide a more profound understanding of an already
accepted theory, the theory of strong interactions, quantum chromodynamics (QCD).

QCD was developed in the mid seventies, but the first discoveries leading to it date back to
1964 when Gell-Mann [7] and Zweig [8] proposed a model that explains the hadron spectroscopy
in terms of elementary constituents, quarks. Mesons were expected to be quark-antiquark bound
states and baryons bound states of three different quarks. By assuming three different species of
quarks, which have fractional charges and spin 1/2, Gell-Mann and Zweig were able to explain
the quantum numbers of all the hadrons known by then. Later, the number of different quark
types, which are usually referred to as flavors, has grown to six.

There were two problems in the quark model. First, the spectrum of baryons included parti-
cles, which should not exist according to Fermi-Dirac statistic, for example ∆++ which consisted
of three up-quarks. This problem was solved by Han and Nambu [9], Greenberg [10], and Gell-
Mann by proposing that quarks carry an additional, unobserved quantum number called color.
The simplest model of color would be to assign quarks to the fundamental representation of a
new, internal global SU(3) symmetry.

The second problem was that the individual quarks were never seen. Hence, all the observed
particles were color singlets. This problem was solved when Gross and Wilczek, and indepen-
dently Politzer discovered [11, 12] that non-Abelian gauge theories were asymptotically free,
meaning that the coupling constant approaches zero as the the energy increases. Conversely,
as the quarks are stretched apart the coupling constant grows. This may then lead to interac-
tions which are sufficiently strong to prevent individual quarks from escaping. Then, the color
symmetry, having no other physical meaning, was identified as the symmetry associated with
asymptotic freedom. The colors were quantum numbers of quarks. This resulted in a theory of
strong interactions called QCD as a system of quarks, which had various flavors and were each
assigned to the fundamental representation of the local gauge group SU(3). The quanta of the
SU(3) gauge fields are called gluons, and the property which ensures that individual quarks or
gluons are never seen, is called confinement. There is no rigorous mathematical proof that QCD
is a confining theory. Nevertheless, it has been shown to be true by lattice techniques [13].

However, as predicted by lattice calulations [14, 15, 16], at extremely high temperatures or
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densities the hadrons break apart and the matter transforms into a plasma of individual quarks
and gluons. The plasma is called quark-gluon plasma (QGP). The phase transition occurs at
zero chemical potential µ = 0 at temperatures around Tc ≈ 170MeV ≈ 2.0 × 1012K. One of the
most essential goals of experimental and theoretical particle physics currently is to understand
the properties of QGP. At much higher temperatures than Tc, one expects QGP to behave
as an ideal gas because the coupling approaches zero as temperature increases. However, this
argument does not hold down to temperatures near the phase transition, where the coupling
constant grows larger. For example, the recent observations at RHIC [17] suggest that the QGP
behaves as a perfect liquid, which implies strong coupling. Also, lattice simulations have found
expectation values for, e.g., pressure [18], far from ideal gas, and even in perturbation theory
one observes a significant deviation from ideal gas results at temperatures as high as 1000Tc.

One major problem in the theoretical understanding of QGP is the large difference between
the results from perturbative calculations and lattice simulations. The lattice results grow more
expensive as temperatures increase1 because the simulation parameters must fulfill a wide range
of conditions. First, the lattice spacing a must be much smaller than the periodic time direction
1/T , which in this case is much smaller than Tc, and Tc must be much smaller than the lattice
size L. In addition, in the calculation of the equation of state or grand potential Ω = −pV , there
is the problem of infinite zero energy, which is normalized by subtracting the corresponding zero
temperature result, which has to be calculated on a lattice larger than the inverse of the typical
QCD energy scale, 1/ΛMS.

Naturally, perturbation theory does not work at low temperatures, because the running cou-
pling constant is not small around Tc and decreases only logarithmically as T increases. One
could hope that the calculation of additional terms in perturbation theory would bring the re-
sults closer to lattice results. But in addition to the calculations becoming prohibitively more
difficult at each new loop order, there is a fundamental barrier, which arises at some order in g
and depends on the observable in case. For example, in the case of the pressure p, the order is g6

and for the quark number susceptibility g8. The barrier is due to infrared problems, which cause
all the orders of loop expansion to contribute at the same order of expansion in the coupling
constant. It was first discovered by Linde [19].

The size of the non-perturbative effects could be estimated by lattice calculations, but this
would require simulations at extremely high temperatures for the results to be comparable
with perturbation theory. Therefore, it is not a feasible option. However, we can utilize the
effective field theory methods and construct a simpler theory, which exhibits the same infrared
behaviour as the full theory. The derivation of the effective theory is based on the fact that at
sufficiently high temperatures QCD has three relevant energy scales: πT , gT and g2T . Thus,
we can perturbatively integrate over scale πT , obtaining a theory for scales gT and g2T only.
Because all of the field modes which exhibit (imaginary) time dependence and all fermion field
modes have effective masses of πT ≫ gT , g2T , the effective theory is three dimensional and
purely bosonic, called electrostatic QCD (EQCD). This procedure is often called dimensional
reduction. All the parameters of EQCD are perturbatively matched to the parameters of full
QCD making it an effective theory. One can also continue the procedure and integrate out
the modes proportional to gT , which results in an effective theory called magnetostatic QCD
(MQCD). MQCD is a 3d pure gauge theory and includes all infrared sensitive contributions
which are not calculable in perturbation theory.

The dimensionally reduced theories provide an interesting alternative to standard 4d lattice
simulations. Above all, they are three dimensional and purely bosonic, making them much

1Naturally at Tc the simulations are demanding due to critical slowdown.
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cheaper to simulate. They are also superrenormalizable theories so one can calculate the lattice
continuum relations exactly. The downside is that the matching back to the full QCD is per-
turbative and therefore we cannot study, e.g., the phase transition. The methods also allow us
to obtain otherwise incalculable corrections to perturbation theory. For example, in the case of
pressure, we can perform simulations in MQCD and find the infrared divergent part of the g6

contribution.
The purpose of this thesis is to study the dimensionally reduced effective theories EQCD

and MQCD using lattice methods. The thesis is based on three papers [1, 2, 3]. We are
in particular interested in two quantities: the pressure (or grand potential) and the quark
number susceptibility. The pressure is one of the most important and fundamental quantities
describing the properties of the QGP. Its value is of great importance to the study of heavy-
ion collisions. Namely, it describes the expansion and cooling of heavy-ion collision products
in terms of hydrodynamics. Hence, it is also relevant to the expansion of the early universe
where similar conditions occurred. The quark number susceptibility is related to event-by-event
fluctuations in heavy ion collisions and can work as a signature of the formation of the quark
gluon plasma [20, 21].

The thesis is organised as follows. In chapter 2, we will introduce the basic concepts of
thermal quantum field theory and QCD. In chapter 3, we consider the perturbative calculation
of the QCD pressure and also discuss the dimensional reduction. In chapter 4, we review the
calculation of the non-perturbative input to the QCD pressure, which we perform in general Nc.
Chapter 5 is devoted to the calculation of susceptibility. Chapter 6 contains our conclusions.
Some results of lattice perturbation theory are given in Appendix A.
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Chapter 2

Finite temperature QCD

In this chapter we will give a brief introduction to the thermodynamics of quantum fields (see,
e.g., [22]). The QCD Lagrangian is discussed at the end of the chapter (see, e.g., [23]).

2.1 Basics of quantum field thermodynamics

To study a statistical system one needs an ensemble which describes the correct macroscopic
behaviour. The choice of the ensemble depends on the dynamics and the boundary conditions of
the system. For quantum field theory the grand canonical ensemble is a natural choice, because
it can change energy as well as particles with an external reservoir allowing particle creation
and annihilation. The density matrix for the grand canonical ensemble is

ρ(β) = e−β(H−µiNi), (2.1)

where β is the inverse of the equilibrium temperature, H is the Hamiltonian and Ni are a set of
conserved number operators (assumed to commute with H) and µi are chemical potentials. A
summation over repeated indices is implied.

Given the density matrix, the ensemble averages are defined through the formula

〈A〉 =
1

Z
TrρA, (2.2)

where
Z = Trρ (2.3)

is the partition function. All standard thermodynamical properties can be derived from this.
E.g., the first partial derivatives of Z give

P =
T∂ lnZ

∂V
, Ni =

T∂ lnZ

∂µi
(2.4)

S =
∂T lnZ

∂T
, E = −PV + TS + µiNi, (2.5)

and its second derivatives give, e.g., the susceptibilities, which are particular examples of re-
sponse functions

χij =
∂2lnZ

∂µi∂µj
. (2.6)
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Hence, the knowledge of the system can be returned to the knowledge of its partition function.
The standard method to calculate partition functions in quantum field theory is the usage of
functional integrals or path integrals.

Let φ̂(x, t) be the Schrödinger-picture field operator for a neutral scalar field and π̂(x, t) its
conjugate momentum. Then Z can be written as

Z =

∫
dφ〈φ|e−β(H−µiNi)|φ〉, (2.7)

where |φ〉 is the eigenstate of φ̂(x, 0), with eigenvalue φ(x). This can be interpreted as a transition
amplitude from state |φ〉 to itself with an imaginary time τ = it = 1/T . Thus, the partition
function can be written, in analogy to real time case, as

Z =

∫
Dπ
∫

Dφ exp

{∫ β

0
dτ

∫
d3x

(
iπ(x, τ)

∂φ(x, τ)

∂τ
−H(π, φ) + µiNi(π, φ)

)}
, (2.8)

where the field φ is constrained so that φ(x, 0) = φ(x, β). In physically interesting cases,
the Hamiltonian is usually quadratic in π and the momentum interaction can be carried out,
resulting in

Z =

∫
Dφ exp

(∫ β

0
dτ

∫
d3xL′(φ, φ̇)

)
, (2.9)

where L′ is the Lagrangian. The same procedure also applies for charged Dirac fields. The
major difference is that the fields are now constrained as ψ(x, 0) = −ψ(x, β), which follows from
the anti-commuting property of fermions.

Usually, it is more convenient to work in momentum than in coordinate space. Because of the
(anti)periodic boundary conditions in the imaginary time direction, the momentum integration
over the imaginary time turns, in fact, into a Fourier series

φ(p, τ) =

√
β

V

∞∑

n=−∞

∫
d3pei(ωnτ+p·x)φn(x), (2.10)

where

ωn =

{
2πnT bosons
2π(n + 1)T fermions

(2.11)

The different values of ωn for bosons and fermions follows from the periodic and anti-periodic
boundary conditions.

2.2 Finite temperature quantum chromodynamics

QCD is a renormalizable non-Abelian gauge field theory for the strong interactions. Using
standard Euclidean metric gµν = δµν , it is defined through the lagrangian

LQCD =
1

4
F a

µνF
µν
a + ψ̄(6D +M)ψ, (2.12)

where the field strength tensor is

F a
µν = ∂µA

a
ν − ∂νA

a
µ + gfabcAb

µA
c
ν . (2.13)
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The field strength tensor describes the interaction and propagation of gluons and is invariant
under the gauge transformation

Aµ
aTa → Λ(x)

(
Aµ

aTa +
i

g
∂µ

)
Λ†(x), (2.14)

where Λ ∈ SU(Nc) is
Λ(x) = exp(igαa(x)Ta). (2.15)

The infinitesimal form of a gauge transformation can be derived by expanding in α(x). The
result is

Aµ
a → Aµ

a +
1

g
∂µαa + gfabcA

µ
bαc. (2.16)

The antisymmetric structure constants are defined as

[T a, T b] = ifabcT c, (2.17)

where T a are the generators of SU(Nc) and a = 1, . . . ,N2
c − 1. In the physical case of QCD

Nc = 3. The generators are normalized as

Tr(T aT b) =
1

2
δab (2.18)

The second term in the QCD lagrangian is the fermion lagrangian. It consists of the covariant
derivative term

6Dψ ≡ iγµ

(
∂µ − igAa

µT
a
)
ψ, (2.19)

which contains the minimal coupling of the quarks to the gluons. The third term includes the
quark mass matrix

diag(M) = (mu,md,ms,mc,mb,mt). (2.20)

We study QCD in the high temperature regime, where at least the lightest quark masses are
much lower than the energy scales. On the other hand, if the mass of a quark is mf > T , its
contribution to thermodynamical quantities is negligible. Hence we assume from now on the
quark masses to be zero and work with a general Nf , which in practise is taken ≤ 3.

The quark field transforms under the finite gauge transformation as

ψ(x) → Λ(x)ψ(x), (2.21)

and under the infinitesimal gauge transformation as

ψ(x) → (1 + igαa(x)T a)ψ(x). (2.22)

We have suppressed the color (A = 1, ..,Nc), flavor (f = 1, ..,Nf ), and spinor (α = 1, .., 4)
index of ψ. With all indices written explicitly, the terms of Lagrangian (2.12) are, e.g, of the
form:

ψ̄ 6Aψ = ψ̄α
A,fγ

µ
αβA

a
µT

a
ABψ

β
B,f . (2.23)

We can derive the partition function for QCD at finite temperature and density using the
path integral representation. In the path integral the integration is over all gauge configurations,
but configurations related to each other under the gauge transformation (2.14) and (2.22) are
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physically equivalent. To avoid the overcounting we have to impose a gauge condition. One set
of gauges that are often used is the set of covariant gauges

F a = ∂µAa
µ − fa(x) = 0, (2.24)

where fa is a undetermined function. The standard way of imposing the gauge condition is to
utilize the Faddeev-Popov procedure [24], which modifies the action so that the gauge condition
is in effect. This requires adding additional “ghost “ fields ηa and η̄a, which are anti-commuting
scalars. After some technicalities, we obtain the partition function with gauge fixing terms

ZQCD =

∫
DAµDψ̄Dψ exp

[
−
∫ β

0
dx0

∫
d3xLeff

]
, (2.25)

where the effective Lagrangian density Leff is

Leff = LQCD +
1

2ξ
(∂µA

a
µ)2 −

∑

f

ψ†
fµfψf + η̄a

(
∂2δab + gfabcAc

µ∂µ

)
ηb, (2.26)

ξ is the gauge parameter. The Faddeev-Popov procedure guarantees that the value of any
correlation function of gauge-invariant operators computed from Feynman diagrams will be
independent of the value ξ. Thus, it is usually fixed before perturbative calculations. The choice
ξ = 0 corresponds to the Landau gauge and ξ = 1 to the Feynman gauge.

QCD has two remarkable properties. The First is the asymptotic freedom [11, 12], which
states that at large enough energies (or short enough distances) the gauge coupling approaches
zero. This can be seen from the running of the coupling constant g, which in the lowest order
reads

g2(Λ) =
24π2

(11Nc − 2Nf) ln(Λ/ΛQCD)
, (2.27)

where Λ is the renormalization scale and ΛQCD ∼ 150MeV a free parameter corresponding to
the characteristic energy scale of the theory.

The second is the confinement, which ensures that individual quarks and gluons are never
seen. If one attempts to separate a color-singlet state into colored components, e.g., decompose
meson into a quark and an antiquark qq̄, the energy cost of separating color sources grows
proportionally to the separation. At high enough distance between quarks, the potential energy
of the system is greater than required for a creation of a real quark antiquark pair. Hence, by a
qq̄-pair production the energy of the system is lowered to a new state consisting of color-singlet
hadrons. However, at high enough temperatures Tc ∼ 170 MeV or chemical pontentials µ ∼ 350
Mev strongly interacting matter appears in a deconfined phase where the quarks are liberated
from their confinement [14, 15, 16].
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Chapter 3

Pressure of QCD up to order g6

In this chapter we first review the known results of the QCD perturbative expansion of the
pressure and describe the problems and limitations involved in it. The perturbative calculation
has been performed up to order O

(
g6 ln g

)
, which is the last purely perturbative order. We

also explain the ingredients needed to calculate the first non-perturbative order O(g6) in the
framework of dimensional reduction. We finish this chapter by briefly discussing the region of
validity of dimensional reduction.

3.1 Limitations of perturbation theory

The quantity of interest here is minus the free-energy density (grand potential) or the pressure
defined by

pQCD ≡ lim
V →∞

T

V

∫
DAµDψ̄Dψ exp(−SQCD), (3.1)

where SQCD is the QCD action

SQCD =

∫
d4xLQCD. (3.2)

The running of the coupling constant allows us to perform perturbative calculations at high
temperature. In the leading order of perturbation theory (g = 0), the QGP is a free gas of gauge
bosons and quarks. Hence, the result is the ideal gas result multiplied with the correct number
of degrees of freedom. For a finite chemical potential µ, the result called Stefan-Bolzmann law
reads:

pSB =
π2T 4

45

(
(N2

c − 1) +
7

4
NcNf

)
+
Nc

6
T 2
∑

f

µ2
f +

Nc

12π2

∑

f

µ4
f , (3.3)

where pSB ≡ pQCD(g = 0) and all quark masses have been set to zero.
The complexity of the calculations grows exponentially with each loop order. In Table 3.1 all

the calculated orders of the pressure have been listed. The non-analytic terms with odd powers
and logarithms of g arise from infrared divergences, which can be cured by calculating all the
orders of a specific type of infrared sensitive diagrams. The procedure is called resummation.
Braaten and Nieto [25] formulated the problem in such a way that the problematic infrared
divergences could be taken into account by the use of dimensionally reduced effective theories.

From the existence of the logarithmic terms, it is obvious that the pressure is not an analytic
function of g2, and therefore there exists no domain of convergence for the expansion parameter
αS = g2/(4π) > 0. This was first noted by Dyson already in 1952 for QED [34] with general
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Shuryak and Chin 1978 [26, 27] g2 2-loop
Kapusta 1979 [28] g3 2-loop resummed
Toimela 1983 [29] g4 ln g 2-loop resummed
Arnold and Zhai 1994 [30] g4 3-loop resummed
Kastening and Zhai 1995 [31] g5 3-loop resummed
Kajantie et. al 2002 [32] g6 ln g 4-loop using effective 3d-theories
Vuorinen 2003 [33] g6 ln g generalization of [32] to finite µ

Table 3.1: A list of calculated loop orders of QCD pressure pQCD.

physical arguments. Technically, this corresponds to the factorial growth ∼ n! of the expansion
coefficients (coefficients of different gn terms). Nonetheless, the series is believed to be asymp-
totic. This means that there is an optimal number of terms whose inclusion brings the answer
close to the actual value of the function in question, and if one then adds additional terms to the
series, it deviates from the correct answer more and more. However, the expansion can be made
arbitrary close to the correct answer by decreasing the expansion parameter αS. The optimal
number of terms depends on the size of the expansion parameter. A crude approximation for
the number of terms is ∼ 1/αS. It is also important to note that asymptotic expansions are
unique. However, the argument is not reversible; many functions may have the same asymptotic
expansion.

The motivation to perform perturbation theory in QCD comes from the fact that it works
astonishingly well for QED, where the most accurate correspondence between the theoretical
predictions and the results from experiments has been achieved [35]. Nevertheless, the situation
in QCD is rather different. The size of the QED coupling (at low scales) is 1/137, whereas the
the three loop QCD coupling is 0.2 around 2Tc, meaning that roughly only the five first terms
would converge (1/αS(2Tc) ≈ 5) to the correct answer1. The situation is gradually amended as
the temperature increases and around 10Tc the 1/αS ≈ 8, which probably is large enough for
perturbation theory to be valid approach. For smaller temperatures, the situation is unclear
and the only certain way to find out the soundness of perturbation theory is to actually perform
the computation to the next order and compare the result with the previous orders, lattice
simulations, and experiments.

However, there is a fundamental barrier in finite temperature perturbation theory that pre-
vents us from calculating the expansion of the pressure up to g6. The problem was first noted
by Linde [19] already at 1980 and it is again due to infrared modes. But this time they are of
a more severe type than those cured by the resummations and up until now a purely analytic
solution to this problem has not been discovered.

The infrared problems can be understood by considering the order at which the Feynman
diagrams contribute. Following Ref. [22], let us examine a l + 1 loop diagram of the following
type:

�21 l + 1. . .

If l = 1, there are three propagators and two vertices. Adding a loop adds two vertices and

1The value is for Nf = 2 with Tc/ΛMS
= 0.7
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Figure 3.1: Left: perturbative result at various orders in g normalized to the Stefan-Boltzmann
value. The O(g6) constant has been matched to the 4d lattice results. Right: the effect of
varying the still missing g6 coefficient. The figure is from [36].

three propagators. Hence, in a general graph there are 2l vertices and 3l propagators. Then a
contribution of this type of a diagram to QCD pressure is

∼ g2l(2πT )l+1

(∫
d3p

)l+1 p2l

(p2 +m(T )2)3l
. (3.4)

The m(T ) is a static infrared cutoff, which appears due to high temperature effects. In the case
l > 3 the result of the loop integral (3.4) is of the form

∼ g6T 4

(
g2T

m(T )

)l−3

, (3.5)

which can be seen, e.g., by dimensional grounds. The problem becomes apparent when one
inspects the infrared sensitive modes m ∼ g2T (see the next section for more discussion about
the scales in the theory). Then all loops with l > 3 contribute to the term of order g6. Because no
method of summing all of these infinite numbers of loop orders has been found, it is apparent that
a different approach is needed. Even if at extremely high temperatures T > 1000Tc the effect of
g6 term is negligible, its contribution at lower temperatures might still be significant. Especially,
it is the first non-perturbative coefficient, and therefore its size might differ significantly from the
already known coefficients. Additionally, it is possible that if the effect of the g6 term is taken
into account, the perturbation theory might be applicable to surprisingly low temperatures [36],
see also Fig. 3.1.

One approach is to perform full QCD lattice simulations and to fit the order g6 coefficient.
However, the simulations should be performed at extremely high temperature in order to obtain
a well controlled difference between perturbation theory and lattice calculations. On top of that,
the pressure is an exceptionally demanding quantity to calculate using lattice simulations. The
simulation parameters must fulfill a wide range of conditions

a≪ 1

T
≪ 1

Tc
≪ L. (3.6)
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In addition, one has to somehow normalize the zero-point energy. This is achieved by subtracting
the zero-temperature result from the corresponding finite-temperature results. The difference
is particularly difficult to evaluate because both terms being subtracted contain an unphysical
contribution that scales approximately 1/(aT )4. Hence, as the continuum limit is approached,
the numerical signal decreases rapidly [18]. This renders the finite temperature simulations in
practice impossible in the region where perturbation theory would be applicable. Therefore, a
novel approach is needed.

3.2 Dimensional reduction

A solution to the problem of the calculation of the order g6 coefficient is to use the same method
than in most recent perturbative computations, namely dimensional reduction. It was first
developed the in early 1980’s by Ginsparg, and Appelquist and Pisarki [37, 38]. Since then it
has been widely used as a method to gain insight into the qualitative behavior of field theories
at high temperature [39, 40]. But after the works by Farakos, Kajantie, Rummukainen, and
Shaposhnikov [41, 42], who applied it to the electroweak phase transition, and Braaten and
Nieto, who applied it to a scalar field with φ4 interactions [43], it has proven also to be an
effective method for quantitative calculations both in perturbation theory [32, 44, 45, 46, 47, 48]
and lattice simulations [49, 50, 51]. Braaten and Nieto also first presented the procedure, how
to evade the infrared problems of QCD [25].

The basic idea of dimensional reduction becomes apparent from the Fourier decomposition
of the fields (2.10). One discovers that 4d finite-temperature field theory is exactly equivalent
to a 3d zero-temperature theory with an infinite number of fields. Substituting the fields into
the QCD Lagrangian2, (2.12) the 3d fields acquire a correction to their masses. The masses of
bosons are mB = 2πnT and those of the fermions mF = πT (2n+ 1), where n ≥ 0 is an integer.
Hence, all the fermionic modes and the dynamic bosonic modes (n 6= 0) have an effective mass
proportional to ∼ πT . Therefore, if we are interested in infrared physics only, one naturally
expects the heavy modes to decouple.

The naive approach is to discard the fermions and heavy bosonic modes and write

∫
d4x

1

4
F a

µνF
µν
a → 1

T

∫
d3x

{
1

2
TrF 2

kl + Tr[Dk, A0]

}
, (3.7)

where F a
ij = ∂iA

a
j − ∂jA

a
i + gEf

abcAb
iA

c
i , Dk = ∂k − igEAk, and we have used the shorthand

notation Ak = Aa
kT

a, A0 = Aa
0T

a. However, as pointed out by Landsman (in contrast to zero
temperature theory [52]), this kind of complete decoupling does not occur at limit T → ∞
[40]. Rather, the non-static modes generate an infinite number of effective vertices for the static
modes which cannot in general be ignored.

The method is to write down the most general 3d Lagrangian for the static modes, which
includes all the operators up to the required order. The resulting theory needed to calculate the

2This holds for any lagrangian with a quadratic kinetic part.
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pressure up to order g6 is called EQCD which we define by

pQCD ≡ pE +
T

V
ln

∫
DAa

kDAa
0 exp(−SE),

SE =

∫
ddxLE,

LE =
1

2
TrF 2

kl + Tr[Dk, A0]
2 +m2

ETrA2
0

+iγETrA3
0 + λ

(1)
E (TrA2

0)
2 + λ

(2)
E TrA4

0 + . . . . (3.8)

In addition to the operators shown explicitly, there are also higher order ones, which start to
contribute from order O(T 3g7). The lowest such operators have been listed in [53].

We use dimensional regularisation in order to regulate the ultraviolet divergences appearing
in the perturbative matching. We write the momentum integration measure as

∫
ddp

(2π)d
= Λ−2ǫ

[(
eγΛ̄2

4π

)ǫ ∫
ddp

(2π)d

]
, (3.9)

where Λ̄ ≡ (4πe−γ)1/2Λ is the scale parameter of MS renormalization scheme and γ is the Euler-
Mascheroni constant. The factor Λ−2ǫ is suppressed since we are only interested in quantities
that are finite in the limit ǫ→ 0. We use the notation of [54] and denote the scale with Λ instead
of the more common choice µ to distinguish it from the chemical potential.

One notable property of EQCD is that it is superrenormalizable. This makes it much easier
to analyze with perturbative and non-perturbative methods. In contrast to the 4d theory, where
ultraviolet divergences exist at any order of perturbation theory, in 3d only 1- and 2-loop graphs
are divergent. This enables us also to convert the lattice measurements exactly to the continuum
using lattice perturbation theory, see Appendix A.

On the downside, EQCD cannot describe the QCD phase transition since at too low T the
QCD coupling becomes strong and the perturbative derivation of EQCD fails. Nevertheless, the
theory has been observed to be quantitatively accurate down to surprisingly low temperatures
of order 1.5-4 Tc, depending on the quantity of interest.

In the relation of Eq. (3.8) there appear six different matching coefficients, pE, m2
E, g2

E, γE,

λ
(1)
E , and λ

(2)
E . The pE contains contributions to the pressure from the hard scales ∼ πT and

is fully perturbative. The other matching coefficients are determined by requiring that EQCD
reproduces the same static gauge-invariant correlation functions than full QCD at distances
L ≫ 1/T . The coefficients have to be calculated up to sufficient depth to obtain the pressure
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up to order O(g6). The quantities written to the required order read:

pE = T 4
[
αE1 + g2

(
αE2 + O(ǫ)

)
+

+
g4

(4π)2
(
αE3 + O(ǫ)

)
+

g6

(4π)4
(
βE1 + O(ǫ)

)
+ O

(
g8
)]

(3.10)

m2
E = T 2

[
g2
(
αE4 + αE5ǫ+ O

(
ǫ2
))

+
g4

(4π)2
(
αE6 + βE2ǫ+ O(ǫ)

)]
(3.11)

g2
E = T

[
g2 +

g4

(4π)2
(
αE7 + βE3ǫ+ O

(
ǫ2
))]

(3.12)

λ
(1)
E = T

g4

(4π)2
(βE4 + O(ǫ)) (3.13)

λ
(2)
E = T

g4

(4π)2
(βE5 + O(ǫ)) (3.14)

γE =
g3

3π2

∑

f

µf (3.15)

where coefficient αE4, αE6, αE7, βE5, and βE5, which in the general case depend on the chemical
potential µ, are known and given in [50, 55]3. The βE1 . . . βE3 are still unknown coefficients,
but well-defined and purely perturbative. At µ = 0 also βE2 and βE3 are known [48]. The
determination of βE1 requires a calculation of the four-loop vacuum integrals of the theory
amounting to the computation of about 25 × 106 sum-integrals, which can be considered a
challenging task. However, lately some progress has been made and the first non-trivial integral
has been successful calculated [56].

Note that at finite chemical potential the action is complex. Hence, as finite density QCD,
also EQCD suffers from the sign problem. This will be discussed in more detail in forthcoming
chapters. Observe also that when Nc = 2, 3, the two quartic operators in Eg. (3.8) are related
through

(Tr[A2
0])

2 = 2Tr[A4
0]. (3.16)

For future use we define the following dimensionless ratios

x ≡ λ
(1)
E

g2
E

(3.17)

y ≡ m2
E

g4
E

(3.18)

z ≡ γE

g3
E

. (3.19)

3Note the different definition of µ̄ in [55]
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The dimensionless couplings can be written using the physical variables for Nc = 3 as follows

g2
E =

24π2

33 − 2Nf

T

Λ̄g/ΛMS

(
1 −

Nf∑

i=1

1

9 −Nf
D(µ̄i)x+ O(x2)

)
(3.20)

x =
9 −Nf

33 − 2Nf

1

Λ̄x/ΛMS

(
1 −

Nf∑

i=1

1

9 −Nf
D(µ̄i)x+ O(x2)

)
(3.21)

y =
(9 −Nf)(6 +Nf)

144π2x

(
1 +

Nf∑

i=1

3

6 +Nf
µ̄2

i

)
+

486 − 33Nf − 11N2
f − 2N3

f

96π2(9 −Nf)

(
1 +

Nf∑

i=1

3(7 +Nf)(9 − 2Nf)

486 − 33Nf − 11N2
f − 2N3

f

µ̄2
i

)
+ O(x) (3.22)

z =

Nf∑

i=1

µ̄i

3π

(
1 +

21 + 3Nf

18 − 2Nf
x

)
+ O(x2), (3.23)

where µ̄ = µ/(πT ), and, for small µ̄, D(µ̄) ≈ −7ζ(3)µ̄2/2, and

Λ̄g = 4πT exp

(−3 + 4Nf log 4

66 − 4Nf
− γE

)
, (3.24)

Λ̄x = 4πT exp

(−162 + 102Nf − 4N2
f + (36Nf − 4N2

f ) log(4)

594 − 75Nf +N2
f

− γE

)
. (3.25)

The equation (3.22) defines a “constant physics curve” within EQCD, from the point of view of
full 4d QCD.

As can be seen from the equations (3.11)-(3.15) there are still two different scales gT and
g2T in this theory. The procedure can be continued by integrating out the field A0. This field
accounts for the effects of the color-electric scale gT . The resulting theory is called magnetostatic
QCD (MQCD) and reads

T

V
ln

∫
DAa

kDAa
0 exp(−SE) ≡ pM +

T

V
ln

∫
DAa

k exp(−SM),

SM =

∫
ddxLM,

LM =
1

2
TrF 2

kl + . . . , (3.26)

where Fkl = i/gM[Dk,Dk], Dk = ∂k − igMAk. Again there are higher order corrections to the
Lagrangian LM, but they would contribute to the pressure only at order O(T 3g9). The two

14



matching coefficients pM and gM of MQCD, given to the required depth, are

pM

T
=

1

(4π)
m3

E

[
1

3
+ O(ǫ)

]

+
1

(4π)2
dACAg

2
Em

2
E

[
− 1

4ǫ
− 3

4
− ln

Λ̄

2mE
+ O(ǫ)

]

+
1

(4π)3
dAC

2
Ag

4
EmE

[
−89

24
− π2

6
+

11

6
ln 2 + O(ǫ)

]

+
1

(4π)4
dAC

3
Ag

6
E

[
αM1

(
1

ǫ
+ 8 ln

Λ̄

2mE

)
+ βM1 + O(ǫ)

]

+
1

(4π)2
dA(dA + 2)λ

(1)
E m2

E

[
−1

4

]

+
1

(4π)2
dA(2dA − 1)

Nc
λ

(2)
E m2

E

[
−1

4
+ O(ǫ)

]

+
1

(4π)4
dADT

2
f g

6
E


 1

2Nf

∑

f

µ̄




2 [
αM2

(
1

ǫ
+ 4 ln

Λ̄

2mE

)
+ βM2 + O(ǫ)

]
, (3.27)

g2
M = g2

E + O
(
g3
)
, (3.28)

where µ̄ = µ/(πT ) and the group theoretical factors included in the expression are

CAδ
cd ≡ fabcfabd = Ncδ

cd (3.29)

CFδij ≡ (T aT a)ij =
N2

c − 1

Nc
δij (3.30)

Tfδ
ab ≡ TrT aT b =

Nf

2
δab (3.31)

Dδcd ≡ dabcdabd =
N2

c − 4

Nc
δcd (3.32)

dA ≡ δaa = N2
c − 1 (3.33)

dF ≡ δii =
dATf

CF
= NcNf , (3.34)

where the trace of Eq. (3.31) is taken over both color and flavor indices.
After the second reduction step we are left with the contribution from MQCD

pG ≡ T

V

∫
DAa

k exp(−SM). (3.35)

The theory has only one parameter gM with a dimension of GeV1/2. Because there are no mass
scales in the propagator, the perturbation theory result of the pressure in dimensional regular-
isation scheme erroneously vanishes. The calculation of the pressure results in an expression
with divergences from both IR and UV, which cancel each other exactly. However, the pressure
having a dimension of GeV4 the non-perturbative contribution must be of the form

pG

T
= g6

3

[
A′

G ln
µ̄

g2
3

+B′
G

]
. (3.36)

15



The coefficient of the logarithm has been calculated by introducing a mass-scale m2
G for the

gauge and ghost field propagators and sending m2
G → 0 after the calculation. The result in the

MS scheme, which regulates away the 1/ǫ divergences, reads

pG,MS

T
= g6

3

dAN
3
c

(4π)4

[(
43

12
− 157

768
π2

)
ln

µ̄

2Ncg2
3

+BG(Nc) + O(ǫ)

]
. (3.37)

The procedure naturally breaks the gauge symmetry of Eq. (2.14), so in a perturbative framework
the quantity BG(Nc) is unphysical. To compute BG(Nc) non-perturbatively, which in general is
a function of Nc, we have to perform lattice simulations. Because of the superrenormalizability
of the theory, the result can be converted exactly to the MS scheme.

3.3 Validity of dimensional reduction

An important question is when the dimensional reduction approach is reliable. Formally, the
error in the dimensional reduction procedure can be parametrized as [42]

(V4 − TV3)/T
4 = O(m2

i (T )/T 2), (3.38)

where V4 and V3 are effective potentials computed in QCD and EQCD respectively. The mi(T )
are the relevant mass scales of the system, i.e., inverse screening and correlation lengths, which
at high temperatures are proportional to ∼ gT . Hence, a formal requirement of the validity of
dimensional reduction is the same than that for T = 0 perturbation theory g2 ≪ 1.

It is important to note that the criterion is not same as the one for finite T perturbation
theory, which is valid down to energy scales Q ∼ g2T , where Q is a typical energy scale which is
much smaller than the temperature. Hence, there is a parameter range where finite temperature
perturbation theory does not hold,

g2T

Q
≥ 1, (3.39)

but dimensional reduction works as g2 ≪ 1. Hence, lattice simulations of EQCD do not only
provide corrections to the weak coupling expansion, but also extend the results down to tem-
peratures where perturbation theory is not valid.

Therefore, it is understandable that EQCD provides reliable results down to temperatures as
low as T ∼ 2 − 4Tc, depending on the quantity of interest. Especially good results have been
obtained in the calculation of static correlation lengths [50]. An interesting study of the validity
of dimensional reduction has been conducted in [57], where the authors study the symmetry
group of the spatial transfer matrix by measuring the screening masses. They find out that
the spectrum obtained from 4d QCD corresponds to that expected from dimensionally reduced
theory already at T ∼ 2Tc. The other limiting case for the validity of EQCD is the limit of large
µ, which has been studied in [58]. It is found out that EQCD is valid for arbritrary high µ/T
as long as πT is larger than the scales in EQCD, namely πT & mE.

Unfortunately, the dimensional reduction, in the case of QCD, cannot be extended to include
the properties of the deconfinement phase transition4. However, the EQCD has a non-trivial
phase diagram with some resemblances to the QCD one. QCD without matter possess a Z(3)

4In contrast, the phase transition of the electroweak theory can be studied in the framework of dimensional
reduction [41, 42].
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Figure 3.2: The EQCD phase diagram with the dimensionless variables x and y. The tempera-
ture decreases from left to right. The solid line represents the first-order phase transition line,
which changes to second order at the tricritical point. The dotted line is the “constant physics”
curve. The figure is from [59].

symmetry, which is spontaneously broken in the high temperature phase. The order parameter
is the Polyakov loop L(x)

L(x) =
1

Nc
TrP exp

[
ig

∫ β

0
dτA0(τ,x)

]
. (3.40)

In the broken phase, it has an expectation value ∼ ei2πk/Nc , where k is an integer. One can
define a transformation of the fields, so that the action is invariant but L→ ei2πk/NcL.

On the other hand EQCD has also 3 different phases: a symmetric 〈Â3
0〉 = 0 and 2 broken

phases with non-zero 〈Â3
0〉 related by the reflection 〈Â3

0〉 ↔ −〈Â3
0〉 [60] (see also [61]). However,

the construction of EQCD requires small amplitudes of the adjoint field A0, A0 ≪ 2πT/g,
which means that to describe QCD properly, EQCD must stay on the symmetric A0-phase, and
the Z(3) invariance of QCD is broken in EQCD. Discouragingly, the “constant physics curve”
(3.22), which corresponds to the physical 4d values of the parameters lies inside the broken phase
〈Â3

0〉 6= 0. However, the phase transition is strongly first order for physically relevant parameter
values, which guarantees that the theory is metastable, enabling us to perform meaningful
simulations in EQCD. At higher values of x there is a tricritical point, after which the phase
transition is of second order. Interestingly, the tricritical point lies close to the physical QCD
phase transition, see Fig. 3.2.

There are also a promising constructions of dimensionally reduced effective theories, which
possess the correct Z(Nc)-symmetry. A Z(3) invariant theory is described in [59] and studied on
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lattice in [62, 63], and a corresponding Z(2) theory is constructed in [64]. It is hoped that the
correct symmetry structure of the effective theories would improve the behaviour of the theory
near Tc compared to EQCD. However, quantitative calculations of physical observables are still
missing, and therefore it is unclear if these theories describe the physics close to phase transition
any better than EQCD.
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Chapter 4

Calculations of BG(Nc)

Next we will describe the computation of non-perturbative input BG(Nc) to the pressure. We
will carry out lattice measurements with Nc = 2, 3, 4, 5 and 8 to obtain Nc-dependence of
the non-perturbative input to pressure. This gives us an independent check for the physical
Nc = 3 case and acts as a consistency check for the entire pressure calculation. Namely, we
expect to see a smooth behavior of the observable in Nc. Additionally, there are various other
physical motivations to study the Nc-dependence and especially the large-Nc limit of SU(Nc)
gauge theories [65]. The limit Nc → ∞ simplifies the theory significantly, but nevertheless the
phenomenology is in many ways similar to SU(3). These reasons have motivated numerous
large-Nc limit studies on the lattice [66, 67, 68].

We start the chapter by formulating EQCD on the lattice. We also discuss the relation
between BG(Nc) and the lattice observables. The main part of the chapter is devoted to the
technicalities of the lattice simulations. At the end we also describe, how the reliability of the
result can be tested.

4.1 EQCD on the lattice

For the the calculation of BG(Nc) only the lattice simulations of MQCD are needed. However,
for later use we will introduce entire EQCD on the lattice. We introduce a three-dimensional
spatial lattice with a lattice spacing a. Every point on the lattice is then specified by three
integers n ≡ (n1, n2, n3). Hence, the adjoint Higgs field can be written on the lattice as

xk → nka

A0(x) → A0(na)∫
d3x → a3

∑

n

. (4.1)

To keep the notation simple, we will still denote the position with x, but in the case of the
lattice, it has to be considered a discrete variable.

The gauge field part of the action can be obtained as suggested by Wilson [13] defining link
matrices Uk through

Ui = P exp

[
igE

∫ x+k

x
dxkAk

]

= exp [igEaAk (x)] . (4.2)
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The link matrices Uk act as a parallel transporters from one lattice site to a neighbouring one.
They transform in a gauge transformation Λ ∈ SU(Nc) as

Uk(x) → Λ(x)Ui(x)Λ
†(x+ k̂) (4.3)

U †
k(x) → Λ(x+ k̂)Ui(x)

†Λ†(x), (4.4)

where k̂ is a unit vector to direction k. In the limit of a→ 0, this expression reduces to (2.14).
It is obvious that the only gauge invariant quantities containing link matrices only are traces of
closed loops. The simplest closed loop is the plaquette

Pkl(x) =
[
Uk(x)Ul(x+ k̂)U †

k(x+ l̂)U †
l (x)

]
. (4.5)

Expanding in a, the plaquette reduces to

ReTrPkl(x) = Nc

[
1 − a4g2

4
F a

klF
a
kl + O

(
g4
Ea

6
)]
. (4.6)

On the lattice the adjoint A0 field transforms in the gauge transformation as

A0(x) → Λ(x)A0(x)Λ
†(x). (4.7)

With adjoint fields A0 and gauge fields U , the “string” type of quantities are also gauge invariant.
The simplest being

Tr[A0(x)Uk(x)A0(x + k̂)U †
k(x)], (4.8)

which reduces in the continuum limit to

Tr[A2
0] −

a2

2
Tr[Dk, A0]

2 + O
(
g2
Ea

4
)
. (4.9)

Hence, we can write the EQCD action on the lattice as a

Sa = SYM
a + SAH

a , (4.10)

SYM
a = β

∑

x

∑

k<l

(
1 − 1

Nc
ReTr[Pkl(x)]

)
(4.11)

SAH
a = 2a

∑

x

∑

k

(
Tr[A2

0(x)] − Tr[A0(x)Uk(x)A0(x + k̂)U †
k(x)]

)
(4.12)

+a3
∑

x

(
m2

bareTrA2
0(x) + iγETr[A3

0(x)] + λE(Tr[A2
0(x)])2

)
, (4.13)

where β = 2Nc

ag2

E

and m2
bare is a bare mass parameter that has to be renormalized before simu-

lations. Other couplings do not need renormalization. Note also that because we are going to

perform the EQCD simulations at Nc = 3, we have set λ
(2)
E = 0, and denote λE ≡ λ

(1)
E . The

MQCD action on lattice is SYM
a .

The lattice action reproduces the continuum action in the formal continuum limit a → 0 or
β → ∞, but includes corrections of O (a). One can naturally introduce improvements which
disappear in the continuum limit but cancel the effects at O (a). Some improvements for the cou-
pling λE and mass parameter mE have been calculated in [69]. We will, however, not implement
them, because in simulations of EQCD they have been found irrelevant.
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To perform the actual computer simulations, we follow the implementation of [61] and write
the action as

Slatt = β
∑

X

∑

k<l

(
1 − 1

Nc
ReTr[Plk(x)]

)

−4Nc

β

∑

x,k

Tr[Â0(x)Uk(x)Â0(x + k̂)U †
k(x)]

+
∑

x

(
αTr[Â2

0(x)] +
8N3

c

β3
izTr[Â3

0(x)] +
8N3

c

β3
x(Tr[Â2

0)])
2

)
, (4.14)

where Â0 ≡ A0/gE. Choosing the scale Λ̄ = g2
3 , the relation between the lattice and continuum

mass parameters reads

α =
12Nc

β
+

8N3
c

β3
− [2CA + (dA + 2)x]

NcΣ

2πβ

+
N2

c

4π2β2

{
2x(dA + 2)(x− CA)(

(
ln

3

Ncβ
+ ζ

)
− 2CAx(dA + 2)

(
Σ2

4
− δ

)

−C2
A

[
5

8
Σ2 +

(
1

2
− 4

3C2
A

)
πΣ − 4(δ + ρ) + 2κ1 − κ4

]}
, (4.15)

where the lattice constants are given in Appendix A.

4.2 Lattice MS relation for BG(Nc)

To obtain BG(Nc) in the continuum theory, we need to derive the relation between the quantities
we can measure in the lattice simulations and BG(Nc). We begin this by studying the lattice
vacuum energy density

pG,a

T
≡ −fa ≡ lnZYM =

1

V
ln

[∫
DUk exp

(
−SYM

a

)]
. (4.16)

The expression involves an integration over all variables Uk. The DUk denotes the so-called
Haar measure, which is left and right invariant under the multiplication of group elements of
SU(Nc), depends on dA = N2

c − 1 real variables parametrizing the elements of SU(Nc), and is
of the form

∏

n

J(αn)

N2
c −1∏

a=1

dαa
n, (4.17)

where αa
n denote the group parameters of n’th link variable. The structure of the Jacobian

J(αn) is determined from the requirement of gauge invariance.
Because on the lattice there are two dimensionful parameters gE and a, the situation is more

complicated than in the continuum. Having a mass dimension GeV3 the vacuum energy density
can contain terms of the form g2n

3 an−3. Thus, in the continuum limit a → 0, we can relate fa

and fMS ≡ −pG/T as follows:

∆f ≡ fa − fMS (4.18)

= C1
1

a3

(
ln

1

ag2
3

+C ′
1

)
+ C2

g2
3

a2
+ C3

g4
3

a
+ C4g

6
3

(
ln

1

aµ̄
+ C ′

4

)
+ O(g8

3a). (4.19)
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Taking derivatives of Eq. (4.18) with respect to g2
3 and using 3d rotational and translational

symmetries on the lattice, we obtain a relation [1, 2]

8
dAN

6
c

(4π)4
BG(Nc) = lim

β→∞
β4

{
〈1 − 1

Nc
Tr[P ]〉a −

[
c1
β

+
c2
β2

+
c3
β3

+
c4
β4

(ln β + c′4)

]}
. (4.20)

Hence, we obtain BG(Nc) by measuring the plaquette as a function of Nc on the lattice. The
relations between ci and Ci read

c1 = C1/3 c2 = −2Nc

3
C2 c3 = −8N2

c

3
C3

c4 = −8N3
cC4 c′4 = C ′

4 −
1

3
− 2 ln(2Nc). (4.21)

The coefficients c1-c3 can be calculated by means of lattice perturbation theory. An outline of
the calculation and the numerical values of these parameters are given in Appendix A. Because
there is no Λ̄ dependence in fa, the c4 is determined by the MS value of the logarithmic coefficient
of equation (3.37),

c4 = 8
dAN

6
c

(4π)4

(
43

12
− 157

768
π2

)
. (4.22)

The coefficient c′4 is more problematic since the four-loop free energy itself is an IR divergent
quantity in both the MS and lattice schemes. But the finite difference between them, c′4, can
be defined by introducing the same IR cutoff, e.g., a gluon mass, in both schemes. The cutoff
dependence then cancels out when the two schemes are compared. The MS result has been
calculated in [32], but the lattice counterpart is known only for Nc = 3, for which it has been
calculated using stochastic perturbation theory [70]. The result reads

c′4 = 7.0 ± 0.3. (4.23)

For later use, we define a quantity

PG(β,Nc) ≡
32π4β4

dAN6
c

{
〈1 − 1

Nc
Tr[P ]〉a −

[
c1
β

+
c2
β2

+
c3
β3

+
c4
β4

lnβ

]}
, (4.24)

which is a normalized plaquette expectation value minus all the ultraviolet divergences. Hence,

BG(Nc) −
(

43

12
− 157

768
π2

)
c′4 = PG(∞,Nc). (4.25)

The PG(∞, Nc) has been determined in [2]. After the Nc-dependence of c′4 has been determined
by, e.g., stochastic perturbation theory, one has reached the final goal, the determination of
BG(Nc).

4.2.1 Large-Nc limit

In the large Nc-limit the theory reduces to the so-called planar diagram theory developed by
’t Hooft [65]. The statement is that the limit Nc → ∞ and gE → 0, such that λ = g2

ENc is
kept fixed, leads to an expansion in λ (called the ’t Hooft coupling), for which all the Feynman
diagrams are planar. Using the ’t Hooft coupling at the planar limit, the PG can be written as

PG(λa,∞) =
512π4

λ4
a

{
〈1 − 1

Nc
Tr[P ]〉a −

[
ĉ1λa + ĉ2λ

2
a + ĉ3λ

3
a − ĉ4λ

4
a log(λa)

]}
, (4.26)
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where λa = aλ and the ĉi are numbers independent of Nc. Because the ’t Hooft-coupling
provides the leading Nc behaviour, we expect that PG(λ) = const + O (1/Nc). We also suspect
the leading order corrections to be 1/N2

c since perturbation theory produces only even powers
of N2

c . Naturally, being a non-perturbative quantity the, functional form of PG(λ,Nc) can be
different form perturbation theory, especially since there are results from other pure gauge theory
observables with corrections of 1/Nc [71].

4.3 Lattice simulations

The details of the lattice computations we have performd have been described in [1, 2]. Here,
we will concentrate on simulation algorithms and comment on some interesting results of the
simulations.

4.3.1 Simulation algorithms

Because of the huge number of the degrees of freedom in the path integrals, the only known
practical method of calculating them numerically are Monte Carlo simulations. Namely, we gen-
erate field ensembles with a probability distribution given by the Boltzmann factor exp(−S[φ]),
where φ denotes all the fields in the action. Then, the expectation values 〈O〉 are approximately
given by the averages of measurements of independent ensembles

〈O〉 ≈ 1

N

N∑

i=1

O({φ}i). (4.27)

Hence, the problem is reduced to generating ensembles according to the Boltzmann weight.
Only trivial examples are known where ensembles can be generated from scratch. In all

relevant cases, one has to generate an algorithm, which updates an existing ensemble, so that
the new ensemble respects the Boltzmann distribution or approaches it if the original one is far
off. The process should be independent of the initial ensemble, which must first be updated a
sufficiently large number of times, so that equilibrium is reached. The number of steps required
for this is called the thermalization time. After the thermalization is completed, one performs a
measurement and updates repeatedly until the required precision is achieved. In an ideal case,
the measured ensembles would be independent of each other and the errors would decrease as
1/
√
N . However, this is rarely the case and the errors behave as

Errors ∼
√
τ

N
, (4.28)

where the autocorrelation time τ is the number of updates required to make the ensemble
independent from the initial ensemble. The autocorrelation time τ depends on the algorithm
used, the observables one is studying, and the parameter values of the theory.

The ensembles are usually required to be elements of a Markov chain, which means that
the next ensemble depends only on the ensemble preceding it. If Wf (φ → φ′) is a transition
probability, namely the probability that under an update f an ensemble consisting of fields φ is
transformed to φ′, then an update f must fulfill the following properties

1. f must preserve the Boltzmann distribution pB(φ) ∼ exp(−S[φ])
∫

dφWf (φ→ φ′) = pB(φ) (4.29)
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2. f must be ergodic. This means that, given any configuration, a repeated use of f brings
us arbitrary close to any other configuration.

The first requirement is usually hard to prove for any given algorithm. Therefore, one uses a
more restrictive condition called detailed balance which reads

Wf (φ→ φ′)

Wf (φ′ → φ)
=
e−S[φ′]

e−S[φ]
. (4.30)

The standard algorithms update one link or a site at a time. The first such update algorithm
was proposed by Metropolis et al. [72]. One sweeps through the lattice, suggesting a random
step for a site. Then, the new value is accepted according to the probability

Wf (φ→ φ′) ∼
{

exp (−(S[φ] − S[φ′]), if S[φ] < S[φ′]
1 otherwise

(4.31)

This clearly fulfills detailed balance and is ergodic. However, there are more efficient algorithms
because the acceptance probability of the Metropolis check (4.31) becomes small when the change
suggested is large, which causes longer autocorrelation times.

To update gauge field actions there are two different type of efficient methods: heath bath
(HB) and overrelaxation (OR). In the former one a new configuration is generated directly from
the probability distribution

Wf (φ→ φ′) ∼ exp(−S[φ]). (4.32)

Hence, the new value is independent of the old value. In the OR algorithm one “reflects” the
current state with respect to the action minimum, so that the value of the action does not change.
Both algorithms fulfill trivially the requirement of detailed balance, but the OR algorithm is not
ergodic and hence must be combined with an ergodic algorithm which usually is HB.

To implement the update algorithms for the gauge field action, we study the local action

Sk(x) =
β

Nc
ReTr [Uk(x)Xk(x)] , (4.33)

where Xk is the sum of the neighboring staples defined as

Xk(x) ≡
∑

l 6=k

[
Ul(x + k̂)U †

k(x + l̂)U(x)†l + U †
l (x + k̂ − l̂)U †

k(x − l̂)U(x − l̂)l

]
. (4.34)

and Uk is the link to be updated.
Then, in the case of a gauge theory, a heat bath algorithm generates new link matrices Uk

from the probability density P = exp(−Sk). There is an effective algorithm for SU(2) pure
gauge theory by Creutz [73], which has been improved for large values of β by Kennedy and
Pendleton [74]. For Nc > 2, the updates are usually performed using pseudo HB algorithm,
which updates SU(2) subgroups of the SU(N) matrix.1 The SU(2) is a special case because the
sum of SU(2) matrices is proportional to an SU(2) matrix.

For gauge fields, OR update can be performed by finding an matrix R ∈ SU(Nc), which
minimises the action. Then the state is reflected with respect to the minimum by applying
the rotation RU−1

old twice to the old link matrix Uold. For general SU(Nc), an algorithm was
developed by Brown and Woch [76], which also updates the SU(2)-subgroups. However, there

1There is also an HB algorithm for SU(3) by Pietarinen [75], but it is unpractical.
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is a rather new OR algorithm developed by de Forcrand and Jahn [77]2, which finds a minimum
for the the entire link matrix using the singular value decomposition (SVD) X = UΣV †, then
W = UV † minimises the action. However, detW 6= 1 and the matrix must be “projected” to
the SU(Nc)-space. The SVD algorithm has considerably smaller autocorrelation times than the
one updating the SU(2)-subgroups only.

In the simulations of the plaquette, we performed one Kennedy-Pendleton HB update for one
SVD OR update. The number of updated subgroups in HB for Nc = 3, 4, 5, and 8 were 3, 4,
8, and 24, respectively. The subgroups were chosen randomly. After each cycle, we measured
the plaquette expectation value. Autocorrelation times were around 0.75. For SU(2), we used
a dedicated HB and OR algorithm with same ratio of updates. The autocorrelation time was
slightly better: 0.6.

4.3.2 The simulations

A common challenge in lattice simulations is to perform the simulations in a physically relevant
parameter range. In MQCD simulations, we have two limitations to concern, namely the effects
of finite volume and finite lattice spacing. Because there is a mass gap in the theory, we expect
the finite volume effects to be exponentially suppressed in high enough volumes [79]. The
quantities characterising the finite volume effects are the longest correlation lengths. They are
expected to be proportional to the inverse mass of the lightest glueball (the lightest mass scale
in theory), which by dimensional grounds is ∼ g2

E. In Fig. 4.1, we have plotted PG(β,Nc), with
different values of Nc and a constant β as a function of β/(NN2

c ). We note that the reduction
of the number of lattice points N starts to effect the values of PG around β/(NN2

c ) = 0.2. The
scaling in Nc is valid in our parameter range Nc = 2 . . . 8, indicating that the mass of the glueball
behaves to leading order in Nc as mgb ∼ Ncg

2
3 . This behaviour of the mass of the glueball is also

confirmed in [80, 81]. In addition, our results are also in accordance with the measurements of
other observables at Nc = 3, which conclude that finite volume effects are invisible as soon as
β/N < 1 [82]. To obtain an infinite-volume estimate, we fit a constant to the data in the range

β

NN2
c

< 0.1 (4.35)

An other problem occurs when we conduct the extrapolation to the continuum, which we
reach by fitting a second order polynomial to the divergence-subtracted data

d1 +
d2

β
+
d3

β2
. (4.36)

To reliably obtain continuum values, we would like to perform the simulations with as large β
as possible. Its maximum value is limited by the equation (4.35); as β grows the lattice volume
grows as ∼ β3. Hence, the memory requirements of the simulation program soon outreach the
capacity of computers. The minimum value is on the other hand limited by convergence of the
series (4.36). Namely, there is a bulk phase transition, which is unique to the lattice theory and
separates the weak and strong coupling regions. In Fig. 4.2, we have plotted the PG(Nc) as a
function of 1/β. The bulk phase transition is located slightly above β ≈ N2

c . To be within the
domain of convergence of the small beta expansion we require β > N2

c .
Summarising the requirements, we perform the simulations with β in the interval

N2
c < β .

N

(Nc/3)2
. (4.37)

2Almost similar algorithm was independently discovered by Kiskis, Narayanan and Neuberger [78]
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Figure 4.1: PG(β,Nc) as a function of β/(NN2
c ) with different Nc and a constant β. Points

denoted by open symbols correspond to low statistics simulations, performed to illustrate the
exponential suppression of finite-volume effects. They are omitted in the extrapolation denoted
by the solid horizontal line. The dotted line is for illustration purposes only. Finite-volume
effects become visible around β/(NN2

c ). The points on the vertical axis indicate the infinite-
volume estimate, obtained by fitting a constant to the data in the range β/(NN2

c ) < 0.1.

4.3.3 Accuracy requirements

Because of the superrenormalizability of the theory additional loop corrections in MQCD are
always one order higher in lattice spacing a than at the original order. This allows us to
rigorously convert the measurements from lattice regularisation scheme to MS (or to some other
continuum scheme). However, the conversion becomes challenging, if we consider a quantity
with a high degree of divergence like the conversion between the plaquette expectation value and
BG(Nc). We have to subtract many orders of divergent terms in order to obtain the conversion
to the continuum regularization scheme. Obviously, we want to perform the simulations with
as small lattice spacing a (large β) as possible to obtain a solid continuum limit. Therefore the
subtraction of equation (4.20) leads to a major significance loss. For example, in the case of
SU(4) the largest β used was β = 100, in which case the leading subtracted term in equation
(4.20) ∼ c1/β was six orders of magnitude larger than the signal we were interested in, which
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Figure 4.2: The bulk phase transition is located around β ≈ N2
c . Simulations denoted with the

lighter color are left out of the continuum extrapolation.

was ∼ 1/β4. Therefore, to obtain a physically meaningful input, the relative error on our
measurements should be smaller than one part in ten million. In addition, we also have to know
the coefficients ci with a good precision, see Fig. 4.3.

4.3.4 The result

After continuum extrapolation we studied the Nc dependence of our observable. As expected,
the leading order contribution to PG is a constant (see chapter 4.2.1). Our resolution is good
enough to fit the next-to-leading order term. A polynomial in 1/N2

c represents the data well,
see Fig. 4.4 and [2]. As final result, we obtain

BG(Nc) +

(
43

12
− 157

768
π2

)
c′4 = PG(∞,Nc) = 15.9(2) − 44(2)/N2

c . (4.38)

At the physical Nc = 3 we get

BG(3) +

(
43

12
− 157

768
π2

)
c′4 = 11.0 ± 0.3, (4.39)

which is consistent with the calculation, where the values are evaluated in Nc = 3 simulations
only. The value obtained in Ref. [1] is

BG(3) +

(
43

12
− 157

768
π2

)
c′4 = 10.7 ± 0.4. (4.40)
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Figure 4.3: Significance loss due to the subtraction of lattice artifacts displayed in equation
(4.20). The physical signal is many orders of magnitude smaller than number actually measured.
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Figure 4.4: Comparison of different fitting functions for the next to leading order corrections of
PG(∞, Nc). Our data favors a zero 1/Nc-term.
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4.4 Consistency of the result

We have calculated the non-perturbative input to the QCD-pressure. Then, by calculating the
unknown matching coefficients, we obtain the pressure up to the order g6, which hopefully is
close to the 4d-lattice results at low temperatures. However, it is important to perform some
consistency checks to validate our results, especially because the convergence of the series is bad
as one can see, e.g., from the left panel of Fig. 3.1. The order-by-order behaviour of the pressure
is not systematic, and the low-temperature behaviour changes qualitatively at order O

(
g3
)

and
O
(
g5
)
.

Hence, we should estimate the size of the higher order contributions. The bad convergence
of the series is associated with the bad convergence of the EQCD contribution, pM. Indeed, the
orders which change the low temperature behaviour, g3 and g5 are from EQCD, whereas the
moderately changing orders obtain contributions from both hard and soft modes. Hence, study-
ing the convergence of the series in EQCD provides a good approximation for the convergence
of the whole series. We also note that the EQCD correction to the result starts from order g7

whereas the first hard mode correction is order g8.
In EQCD we can perform simulations at arbitrary high temperature or small coupling, and

thus we can compare the results rigorously with perturbation theory and obtain an estimate
of the size of the higher order contributions [49]. The procedure is as follows. Let us define a
dimensionless EQCD free energy using the ratios of equation (3.19) at zero chemical potential.

F(x, y) =
fpert

g6
3

+ ∆F(x, y), (4.41)

where fpert = −pM/T and ∆F(x, y) is the difference between the perturbation theory and the
correct answer. To approximate the size of ∆F(x, y), we perform lattice simulations. The free
energy F(x, y) can not be directly measured from the lattice because it can not be normalized,
but we can measure its derivatives. Hence, we write

∆FMS(x, y) = ∆FMS(x0, y0) +

∫ y

y0

dy

(
∆∂FMS(x, y)

∂y
+

dx

dy

∂FMS(x, y)

∂x

)
(4.42)

The partial derivatives appearing here are the condensates

∆∂FMS(x, y)

∂y
=

〈
Tr[A2

0]

g2
E

〉

MS, latt

−
〈

Tr[A2
0]

g2
E

〉

MS, pert

, (4.43)

and
∆∂FMS(x, y)

∂x
=

〈
(Tr[A2

0])
2

g4
E

〉

MS, latt

−
〈

(Tr[A2
0])

2

g4
E

〉

MS, pert

, (4.44)

which can be measured on the lattice, and again because of the superrenormalizability of EQCD,
we can convert them to MS by calculating the difference of the renormalization schemes in
the limit a → 0. The integration constant ∆FMS(x0, y0) is the non-perturbative contribution
obtained from MQCD simulations.

The project described above is not yet fully completed due to the large accuracy requirements
needed to obtain a reliable and well behaving difference between the lattice simulations and
perturbation theory in EQCD. However, in the next chapter we will calculate the quark number
susceptibility, which also provides a reliability check for perturbation theory and dimensional
reduction.
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Chapter 5

The diagonal and off-diagonal quark

number susceptibilities

The quark (baryon) number susceptibility is directly related to the event-by-event fluctuations
observed in heavy ion collision experiments [20] and can provide a signature for the formation
of QGP. Thus, it is of significant interest to calculate it theoretically as accurately as possible.
Hence, several calculations of susceptibility using lattice simulations [83, 84, 85, 86, 87, 88] and
perturbation theory have been published [54, 89].

In this chapter, we will discuss the calculation of the diagonal and off-diagonal quark number
susceptibilities in the framework of EQCD. First we will derive an expression for the suscep-
tibility in EQCD. The finite chemical potential results are obtained by performing simulations
using imaginary chemical potential and then analytically continuing the results to real chemical
potentials. In the end, we compare our results with other 4d lattice simulations.

5.1 Susceptibilities in EQCD

We are going to study the susceptibilities in the case of Nc = 3 and Nf = 2. The µ̄ dependence
of the dimensionless couplings of Eq. (3.19) can be written as

g2
E = g2

E|µ=0

(
1 −

2∑

i=1

D(µ̄i)

7
x

)

x = x|µ=0

(
1 −

2∑

i=1

D(µ̄i)

7
x

)

y = y|µ=0

(
1 +

2∑

i=1

3

8
µ̄2

)
≡ y0

(
1 +

2∑

i=1

3

8
µ̄2

)

z =

2∑

i=1

µ̄i

3π

(
1 +

27

14
x

)
. (5.1)

The corrections are of relative order O
(
x2
)
. For simplicity, we will ignore also the terms of O (x)

in g2
E, x , and z. Naturally, this effects our results somewhat. At the smallest temperatures

we consider x ∼ 0.1. The relative changes in z are larger than those in x and g2
E, because

2/7D(µ̄)x < 1 for all the values of µ̄ we consider. The relative change in z can be even around
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20%. However, we expect the effect of the approximation to be smaller than our statistical
errors, since the entire result is dominated by the value of y as will be shown later.

Following the equation (2.6), the susceptibility is the second derivative of pressure with respect
to the quark chemical potential

χE,ij =
1

V

∂2

∂µ̄i∂µ̄j
lnZ =

1

V

∂2

∂µ̄i∂µ̄j
ln

∫
DAkDA0 exp (−SE) , (5.2)

where i, j stands for quark flavors u and d. Thus, there are two independent components of the
susceptibility: diagonal (i = j) and off-diagonal (i 6= j).

Using the shorthand notation for the (dimensionless) volume averages

Ân
0 ≡ 1

gn
3V

∫
d3x TrAn

0 (x), (5.3)

and defining the condensates

K1 = 〈Â2
0〉

K2 = V g6
3

(
〈(Â3

0)
2〉 − 〈Â3

0〉2
)

K3 = V g6
3

(
〈(Â2

0)
2〉 − 〈Â2

0〉2
)

(5.4)

K4 = V g6
3

(
〈Â3

0Â
2
0〉 − 〈Â3

0〉〈Â2
0〉
)
,

we can write the susceptibilities as

χE,ij

g6
3

= −3

4
δij y0K1 −

1

9π2
K2 +

9

16
µ̄iµ̄j y

2
0 K3 + i

1

4π
(µ̄i + µ̄j) y0K4. (5.5)

The peculiarity here is that the expectation value of K4 is imaginary even if the condensates
themselves are purely real.

5.2 The finite density simulations

At non-zero µ, EQCD suffers from sign problem as well. Because of the imaginary term in the
EQCD action at non-zero µ, the measure is not positively definite, and standard Monte Carlo
techniques fail. There are some ideas, how to circumvent this problem. We will introduce the
most popular ones from the viewpoint of EQCD. For a good review on the subject in QCD, see
[90].

5.2.1 Reweighting

Reweighting is based on the following idea. If we have measured an expectation value 〈O〉λ0

with coupling λ0, we obtain the expectation value with another coupling λ using the following
identity

〈O〉λ =
〈Oe∆S〉λ0

〈e∆S〉λ0

, (5.6)

where ∆S is the difference between the action with coupling λ and λ0. One can also reweight
with respect to multiple couplings at the same time.
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In order for the reweighting to provide reliable results, fluctuations in simulations with cou-
pling λ0 must overlap with those performed λ. The difference behaves approximately as

∆λ ∼ 1√
V

(5.7)

when the system is away from a phase transition, and as

∆λ ∼ 1

Lκ
(5.8)

when the system is at a critical point. Here κ is some critical exponent.
To study non-zero µ, one performs simulations with µ = 0 and then reweights them to the

desired value. In EQCD, we have an additional difficulty since we have to stay on the “constant
physics curve” (3.22). Therefore, we have to reweight with respect to two couplings z and y.
The reweighting with respect to y is problematic, because the expectation values are sensitive
to it, and hence it is possible to reweight only to small values of µ. Remember that we need
rather large volumes V = 2563 to obtain a reliable continuum limit and the fluctuations die out
as ∼ 1/

√
V . Naturally, we could perform simulations using the physical value y calculated with

the value of µ, to which we are going to reweight. In this case we would have to perform a unique
simulation for each (T ,µ)-pair. This does not render the method useless, but on the other hand
there are more effective methods as well that can be utilized here as will be explained later.

If one is interested in quantities requiring less accuracy than our observable, then reweighting
with respect to both x and y becomes a feasible option. This was the case in [50], where the
measured quantities were screening lengths and the largest simulation volume used was V = 403,
whereas we need volumes up to V = 2563. Their conclusion was that reweighting is possible for
chemical potentials up to µ/T = 2.0. A naive estimate in our case would allow us to reweight
only to chemical potentials µ/T ≈ 0.1.

5.2.2 Taylor expansion

The Taylor expansion method is very similar to the one we are going to utilize, and is based on
the same fact: On the lattice, the partition function Z(x, y(µ̄), z(µ̄)) is an analytic function of
its parameters. Hence, we can expand the susceptibility around µ = 0

χ3(z) = a0 + a2µ̄
2 + a4µ̄

4 + . . . . (5.9)

The coefficients ai are increasingly more complex functions of the A0-condensates. Because
〈TrAn

0 〉 vanishes for odd n at µ = 0, the odd terms vanish. Again, one could improve the
accuracy by performing simulations by fixing y first and expanding only in z . This would also
simplify the Taylor coefficients considerably, because they would be only 2n-moments of 〈Tr3

0〉.

5.2.3 Analytic continuation

In standard analytic continuation the observable is again Taylor expanded about µ = 0, but this
time the coefficients are calculated from the simulations with imaginary chemical potential

χ3(z) = b0 + b2µ̄
2 + b4µ̄

4 + · · · = b0 − b2(iµ̄)2 + b4(iµ̄)4. (5.10)

The calculation with imaginary chemical potential provides a better control of the curvature of
the observable as µ̄ grows.

32



However, as mentioned above, the results are dominated by the K1 ∼ 〈TrA2
0〉-term. In pure

analytic continuation, we should simulate with

y → y

(
1 +

2∑

i=1

3

8
(iµ̄)2

)
, (5.11)

but we fix y to its physical value and perform the analytic continuation only about z. If we
then expand each condensate Ki separately, we note that the z dependence of the condensates
is very weak and we have to expand only to a very low order

K1 = a1 + a2z
2 K3 = a4 (5.12)

K2 = a3 K4 =
∂C1

∂(iz)
= −2ia2z. (5.13)

Note that because K4 is ∼ 〈TrA5〉, it is a series in odd powers of z. We assume that K2 and
K3 are independent of z, which is true within the statistical accuracy we can reach as we will
demonstrate later by performing simulations with constant x and y and varying z only. The z
dependence of K1 is also rather small, and only visible at smallest temperatures, but we will
anyhow include it.

Finally, we can write the analytically continued final result as

χ3,ij(z)

g6
3

= − 3

4
δij y0

(
K1 + zK4

)
− 1

9π2
K2

+
9

16
µ̄iµ̄j y

2
0 K3 +

1

4π
(µ̄i + µ̄j) y0K4 ,

(5.14)

where the condensates Ki have been measured at imaginary chemical potential iz

5.2.4 Imaginary µ and the phase diagram of EQCD

As described in chapter 3.3, to describe 3d-physics correctly, EQCD must stay in its symmetric
phase 〈TrA3

0〉 = 0. The finite chemical potential alters the picture somewhat. First, the order
parameter 〈TrA3

0〉 obtains a non-zero expectation value, which is however rather small and
therefore does not cause any problems.

A more significant change to the phase diagram is caused by the change of the mass parameter
y, as µ is altered. In the case of standard analytic continuation, y would be smaller bringing
the “constant physics curve” deeper into the broken phase. The phase transition point was
calculated to be µ̄ = 1/3 in [51]. However, for our method of analytic continuation this problem
is completely avoided: Because we calculate y(µ) with real µ, the value of y increases as µ
increases. Thus, the physical symmetric phase remains stable at all values of µ.

5.3 Matching to QCD

The results of the EQCD simulations must be matched back to QCD. Being perturbative in
nature the procedure produces some error to the result. The susceptibility in QCD can be
written in terms of the EQCD susceptibility and the matching terms as follows

χij

T 2
=

g6
3

π2T 3
χ3,ij +

∂2

∂µi∂µj
∆p, (5.15)
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where

∆p = pE − g4

(4π)4
dACAαE5 + O

(
g6
)

(5.16)

is the perturbative 3d↔4d matching coefficient for the pressure.
However, there is an additional complication in the matching of the lattice results. In pertur-

bation theory, one obtains an expression like, e.g., Cg6
E, which can be converted to full QCD by

substituting to it the equation (3.12), whereas on the lattice side one obtains a number L(x, y, z).
To match this number to QCD, we need to know the actual value of the QCD coupling g that
the parameters correspond to. The coupling can be resolved by first using equation (3.21) to
obtain T , from which g can be calculated. Then we can utilize equation (5.15) to obtain the
physical result. However, because the relations have been calculated in perturbation theory,
all of these steps are approximative. Therefore, ∆p and our measurements are calculated at
slightly different couplings g. The effect of this difference grows as T → Tc, and to minimise it,
we perform the matching for the non-perturbative parts only

χ

T 2
=

g6
3

π2T 3

(
χlatt

3 − χpert
3 )

)
+
χpert

T 2
. (5.17)

Here, χpert
3 and χpert are 3d and 4d perturbative results.

There are two additional source of errors in the matching procedure. The first one is that the
the perturbative series, and hence the matching, is known only up to order g6 ln 1/g. Comparison
with 4d-lattice data [85, 86] indicates that the size of higher order terms is comparably small.
The second one is that to match the result with physical temperature, we need to know ΛMS.
We use the value ΛMS = 245 MeV, which has been obtained from lattice simulations with 2 light
Wilson quarks [91]. To compare with 4d-lattice results, which have usually been normalized to
the critical temperature, we choose Tc = 170 MeV, yielding the ratio Tc/ΛMS = 0.7. This is
compatible with the results of [92], r0Tc = 0.438 combined with [91] r0ΛMS = 0.62, where r0 is
hardronic radius. Our results are in fact more sensitive to the selection of the scale ΛMS than
the size of the order g6 contribution, if the coefficient of the g6-term is taken to be of the same
order as coefficients of the lower order contributions.

5.4 Lattice MS relations for condensates Ki

In analogy with the MQCD case, the lattice MS relations of the observables can be derived
by considering the difference of the free energy in the two schemes. The difference can be
parametrised as

∆f ≡fa(m
2
E, g

2
E, λE) − fMS(m

2
E, g

2
E, λE) (5.18)

=
dA

4π

[
C1,0

1

a3
+D1,0

m2
E

a

]
(5.19)

+
dA

(4π)2

[
C2,0

g2
E

a2
+ C2,1

λE

a2
+D2,0g

2
Em

2
3 + λEm

2
E

]
(5.20)

+
dA

(4π)3

[
C3,0

g4
E

a
+ C3,1

g2
EλE

a
+ C3,2

λ2
E

a

]
(5.21)

+
dA

(4π)4
[
C4,0g

6
E + C4,1g

4
EλE + C4,2g

2
Eλ

2
E + C4,3λ

3
E + E2,0γ

2
E

]
, (5.22)
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where Ci,0 are the same coefficients as those denoted by Ci in the case of MQCD.
The continuum relations for the condensates can be derived by differentiating ∆f with respect

to the couplings. Using dimensionless variables we have

∆K1 =
∂∆F
∂y

∆K3 =
∂2∆F
∂y2

(5.23)

∆K2 = −∂
2∆F
∂z2

∆K4 = i
∂2∆F
∂y∂z

(5.24)

In the limit the lattice spacing a → 0 (or β ≡ 6/(g2
Ea) → ∞) we obtain following relations

[42, 61, 93]

K1,MS = K1,a − c̃1β − c̃2
(
lnβ + c̃2

′
)

+ O(1/β),

K2,MS = K2,a −
[
c̄2
(
lnβ + c̄′2

)]
+ O(1/β),

(5.25)

K3,MS = K3,a + O(1/β),

K4,MS = K4,a + O(1/β),
(5.26)

where the values of the coefficients are given in Appendix A.
As can be seen from equations (5.25), the significance loss due to the subtraction of lattice

divergences is much milder in Ki’s than in the case of BG(Nc). However, because we want to
compare lattice results with the perturbation theory result of EQCD the accuracy requirements
are still extremely high.

5.5 Simulation algorithms

To simulate EQCD we need efficient update algorithms for the adjoint A0 field. Because A0

couples to the gauge field, the HB and OR gauge field update algorithms must be adjusted.
However, the changes are minor. We calculate the update using standard techniques described
in chapter 4.3 and then perform an accept/reject check including the coupling to adjoint A0

field.
The adjoint A0 fields themselves can be updated using pseudo-HB and -OR algorithms1. The

local action can be written in the form2

SA,local(x) = β2Tr

[
A0(x) − βA

2β2
Xadj(x)

]2

− β3Tr[A3
0(x)] + β4(Tr[A2

0(x)])2, (5.27)

where βi are the couplings on the lattice trivially calculated from (4.13) and Xadj is the staple
for A0

Xadj(x) =

3∑

k=1

[
Uk(x)A0(x + k̂)U †

k(x) + U †
k(x − k̂)A0(x− k̂)Uk(x− k̂)

]
. (5.28)

Then both the HB and OR algorithms are easy to implement for the quadratic part, and
one can perform a metropolis-check with cubic and quartic terms. To be more precise, the HB
algorithm works as follows. We generate a new field Anew with

Aa
0,new =

βA

2β2
Xa

adj +
1√
β2
Rgauss, (5.29)

1They are pseudo algorithms since at the end a Metropolis check is required.
2Here we have substituted z = iz
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where RGauss is a gaussian random number between -1 and 1. The new field is updated with
the probability

Pacc = exp
[
β4(Tr[A2

0,old]
2 − Tr[A2

0,new]2) − β3((Tr[A3
0,old] − (Tr[A3

0,new])
]
, (5.30)

where Aa
0,old is the old adjoint field. The OR algorithm is as straightforward. The new matrix

is generated as

Aa
0,new =

βA

β2
Xa

adj −Aa
0,old, (5.31)

which does not change the magnitude of the quadratic part of the local action. The Aa
0,new is

then accepted with the probability (5.30).
We performed one HB for four OR updates for both the gauge and the adjoint fields. Because

the gauge fields have considerably smaller autocorrelation times, they were only updated in one
direction each time. The acceptance of the Metropolis check (5.30) was good, being always over
95%, regardless of the parameter values. The autocorrelation times of the simulations grows
when β increases and y decreases. The smallest autocorrelation times were around 1 (β = 32
y = 6.62) and the largest around 300 (β = 120 y = 0.36).

5.6 Results of lattice simulations

The details of the simulation parameters used and the continuum extrapolation are described
in [3]. Instead of extrapolating the condensates separately, we calculate the susceptibility using
equation (5.14) for each lattice spacing separately, after which we subtract lattice divergences,
and perform the continuum extrapolation. This is more rigorous, because now the analytic
continuation is performed for finite a, which guarantees analyticity of the expectation values.

The results are dominated by the condensate K1. The condensate K2 is rather small, but it
is important for the off-diagonal susceptibility. At µ̄ = 0, it provides the entire contribution for
this quantity. The condensate K3 (in addition to the change of y) describes the finite chemical
potential dependence since it includes a factor µ̄2. The condensate K3 has relatively large errors,
which hinders the precision of our result as µ̄ grows. The condensate K4, which describes the
effect of non-zero chemical potential as well, is negligible at all but the smallest temperatures,
see Fig. 5.1 and Fig. 5.2.

5.6.1 Diagonal susceptibility

Our main results for the diagonal susceptibility are presented in Fig. 5.3 and Fig. 5.4. At zero µ̄,
they agree with 4d-lattice at least as well as the 4d dynamical two flavor lattice results [83, 94]
agree with each other. The deviation from perturbation theory is significant still at T = 10Tc,
indicating that the higher order perturbative contributions are important at experimentally
accessible temperatures, see left panel of Fig. 5.3. Our results are somewhat sensitive to the used
scale Tc/ΛMS. The result of varying the scale about 15% is shown in the right panel of Fig. 5.3.
The scale we use Tc/ΛMS = 0.7 is close to optimal from the point of view of the agreement
with 4d-simulations, and changes of about 10% do not effect the agreement considerably. One
should also keep in mind that the order g6 matching coefficient is still unknown, but our results
indicate it to be rather small.

The finite µ effects are plotted in Fig. 5.4. In the left panel the results are normalized with
respect to the Stefan-Boltzmann result

χSB(µ) = T 2 +
3

π2
µ2. (5.32)
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Figure 5.1: The magnitudes of the different terms contributing to the diagonal susceptibility.
The change of the slope of |K1| at y ≈ 0.5 and |K2| at y ≈ 2 is due to a change of sign in the
condensates themselves.

The deviation is large at low temperatures, but already at T = 10Tc the Stefan-Boltzmann law
describes the finite-µ behaviour well and around T ∼ 100Tc almost exactly. However, at low
temperatures the µ dependence is in accordance with the lattice results of [85, 86], see the right
panel of Fig. 5.4.

5.6.2 Off-diagonal susceptibility

The results for the off-diagonal susceptibility χud are shown in Fig. 5.5 and Fig. 5.6. The EQCD
results approach perturbation theory faster than in the case of the diagonal susceptibility being
similar already at temperatures ∼ 10Tc. At µ = 0 and T < 3Tc, our results have a larger
magnitude than those of 4d-lattice [85, 86] and perturbation theory, see the left panel of Fig. 5.6.
There is a strong downward curvature as one approaches the critical temperature from above.
The EQCD simulations seem to predict this behaviour, but at larger temperatures. Increasing
Tc/ΛMS would bring results closer to each other, but for them to agree we need a rather large
value Tc/ΛMS ≈ 0.9, and the higher temperature simulation results would still be somewhat
below the 4d-lattice results. Naturally, this should be viewed as an indication that we are
already at the border of the validity of dimensional reduction.

Nevertheless, the µ-dependence of χud is in accordance with the 4d lattice results [85, 86]
already at T ∼ 1.32Tc. The behaviour is plausible in the entire simulation range 0 ≤ µq/T ≤
2.22; see the right panel of Fig. 5.6.
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Figure 5.2: Simulations performed with three different pairs of (x, y) values while varying the
chemical potential in the range 0 ≤ z ≤ 0.15. The dependence of the chemical potential is only
visible at smallest y (temperature), where it effects K1 and K4 only.
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Chapter 6

Conclusions and Outlook

In this thesis, we have studied dimensionally reduced effective theories of high temperature
QCD, EQCD and MQCD. MQCD was utilized to obtain the non-perturbative input to the QCD
pressure by calculating the plaquette expectation value. This requires high precision numerical
Monte Carlo simulations close to the continuum limit. The task is challenging because the
conversion of the result to a continuum scheme requires a subtraction of perturbative terms up
to 4-loop level, which leads to a major significance loss. After the lattice result is converted
to MS, the full QCD pressure of order g6 can be obtained by a further 4-loop computation
of the unknown matching coefficient βE1. The calculation of the missing matching coefficients
seems a tedious task, but it is well-motivated since if the effect of the g6 term is taken into
account, perturbation theory might be applicable at surprisingly low, experimentally accessible,
temperatures, as discussed in chapter 3.1, see also [32].

The accuracy of the perturbative expansion at 4-loop level can be quantitatively estimated
through EQCD simulations. The bad convergence of perturbation theory can be traced back
to the bad convergence of the series in EQCD. Because EQCD can be easily simulated in the
entire parameter range where perturbation theory is valid, the difference of the lattice results
and perturbation theory provides a good approximation for the sum of the higher order terms,
starting at order g7. However, this is the subject of still ongoing research work.

In this thesis, EQCD was utilized to calculate the quark number susceptibilities. Our results
agree well with 4d lattice results of two light quark flavors. This demonstrates the wide range of
applicability of the method. The diagonal susceptibility agrees with the 4d simulations by Allton
et al. [85, 86] even below 2Tc. The results smoothly approach the perturbative results, but there
is still a significant deviation at 10Tc. The off-diagonal susceptibility agrees with perturbation
theory already at 10Tc. However, the agreement with [85, 86] is poor below 2Tc, which indicates
that we are already at the border of the applicability of EQCD.

EQCD is also extremely well suited for the finite µ simulations. The main reason for this
is that most of the finite µ effect is taken into account by changing the values of the coupling
constant y, whereas the problematic imaginary term effects the results only marginally. We
obtain a smooth behaviour in the whole parameter range of simulations and hence, we can
conclude that EQCD is valid at at least to chemical potentials µ/T ∼ 2.5. This is in accordance
with the results of [58] where it was concluded that EQCD is valid approach to arbitrary large
values of µ/T as long as πT is the largest scale in the theory. More precisely πT > mE.

The significant difference between perturbation theory and the EQCD result for the suscep-
tibility up to 10Tc seems to argue against the possibility that the perturbative expansion of
the pressure could be accurate already at order g6. However, the order by order comparison

41



between the observables is misleading. The pressure obtains the first non-perturbative input
at g6, whereas the corresponding order for the susceptibility is g8. According to the conjecture
presented in [95], most of the dynamics of the dimensionally reduced theory has been accounted
when all the scales have made their entrances in the result.

Our results support the conjecture to some extent. As can be seen from the Table 2 of [3],
the terms of order g8 are larger than those of order g7. Naturally, this does not predict the
magnitude of the higher order corrections since statistical errors in our data are too large to
approximate them. Nevertheless, the fit up to order g8 represents the data well and provides
good agreement with 4d-lattice simulations down to temperatures 2Tc. The inclusion of even
higher order terms in the fit does not alter the situation qualitatively. Hence, the perturbative
result of the pressure up to order g6 might well be a good approximation of the full result at
experimentally accessible temperatures.
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Appendix A

Lattice perturbation theory

To rigorously convert the lattice simulations to MS regularisation, we need to compute the
observables in both lattice and MS regularisation. Then the conversion is provided by the
difference of the results. Because of the superrenormalizability of EQCD and MQCD, there are
divergent terms only up to a finite loop order. We will here review some of the calculations
needed for the quantities in question [42, 96, 93, 97].

A.1 Plaquette expectation value

Let us first consider the case of MQCD, where we need to calculate the plaquette expectation
value up to O

(
1/β4

)
. The leading order contribution ∼ 1/β can be obtained straightforwardly.

Following [98], we parametrise the plaquette as

P = exp(iT aωa
P), (A.1)

where ωa
P ∈ R. At leading order, the partition function becomes

Z =

∫
DU exp

(
− β

4Nc
ωa

Pω
a
P + O

(
βω4

P

))
. (A.2)

The expression requires gauge fixing. However, in the leading order calculation we note that
gauge fixing fixes one direction of the link matrices.

Expanding the link matrices near unity, the partition function can be written in quadratic
form as

Z = C

∫ ∏

ij

ddAωij exp

[
−1

2
βωK−1ω + O

(
βω3

)]
, (A.3)

where K is the gauge boson propagator and the terms O
(
βω3

)
generate the vertices. Because

the integrand in equation (A.3) is Gaussian, the integration can be performed, resulting in

Z = C ′

∣∣∣∣
K

β

∣∣∣∣
1/2

. (A.4)

The matrix K has the dimensionality of the parameter space after gauge fixing. Hence, pulling
β in front of the equation results

Z = C ′|K|1/2βdAN3

, (A.5)
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Figure A.1: Feynman diagrams needed to calculate c2

where the result holds in three dimensions. Then, we obtain the average plaquette in the form

P = − 1

3N3

∂

∂β
lnZ

=
dA

3

1

β
+ O

(
1

β2

)
. (A.6)

To calculate higher order corrections, we need to derive Feynman rules for the propagators and
interactions. In contrast to the continuum formulation, the lattice regularisation causes some
additional complications. First, the gauge invariant integration measure depends non-trivially
on the gauge fields, resulting in additional vertices. Second, the regularisation generates infinite
number of diagrams, which become more complex, as the number of legs increases.

Because of the finite lattice spacing, the momentum p is replaced by trigonometric functions,
and hence lattice integrals are more difficult to calculate than the corresponding continuum
ones. E.g., for a scalar field propagator we have

1

p̃2 +m2
, (A.7)

where

p̃2 =
4

a

3∑

i=1

sin2
(api

2

)
(A.8)

Feynman rules for the vertices, derived up to the four gluon vertex, can be found, e.g., from
[99, 100].

The calculation of next-to-leading order terms requires a two loop calculation. In three di-
mensions, it has been first computed in [101]. The diagrams needed are displayed in Fig. A.1.
The integrands are rather complicated combinations of trigonometric functions. For example,
the sunset diagram reads:

g2
E

fabcfabc

12

∫ π/a

−π/a

d3p1

(2π)3
d3q

(2π)3
d3r

(2π)3

[
δjk (̃r − q)ipj

e

+ δik ˜(p− r)jqk
e

+ δij ˜(q − p)kri
e

]

[
− δjk (̃q − r)ipk

e

− δij ˜(p− q)jri
e

− δij ˜(p− q)kqj
e

]δ(p + q + r)

p̃2q̃2r̃2
,

(A.9)

where we used a notation

p̃i =
2

a
sin
(pia

2

)
, pi

e

= cos
(pia

2

)
. (A.10)

One challenge is to reduce the integrals to a minimum set of master integrals, which then
will be calculated numerically. In a two loop calculation of pure gauge theory this can be done
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by hand, but for additional loop orders or more complicated theories automation is necessary.
A pulchritudinous algorithm, which can be implemented, e.g., with FORM [102], has been
presented in [62]. The sunset diagram reduces to

−g2
EdANc

(
− 1

96
+

1

8
Σ − 3

2
Σ2 + 6

κ1

(4π)2
+

2

3

κ5

(4π)2

)
, (A.11)

where the constants are defined as

Σ =
1

π2

∫ π

2

−π

2

d3x
1∑

i sin
2 xi

= 3.175911535625 . . . (A.12)

κ1 =
1

4π4

∫ π

2

−π

2

d3xd3y
sin2 xi sin

2(xi + yi)∑
i sin

2 xi
∑

i sin
2(xi + yi)

∑
i sin

2 yi
= 0.958382(1) (A.13)

κ5 =
1

π4

∫ π

2

−π

2

d3xd3y

∑
i sin

2 xi sin
2(xi + yi) sin2 yi∑

i sin2 xi
∑

i sin
2(xi + yi)

∑
i sin2 yi

= 1.013041(1). (A.14)

An analytic expression has been found only for Σ [42]. The others have to be calculated nu-
merically. Because the integrands are singular near the origin, the most straightforward method
to calculate them is to use different lattice sizes and extrapolate to N → ∞. There are some
symmetries one can use to reduce the calculation time, but with a modern PC, a five decimal
precision can be obtained without any tricks in less than 30min. Error estimation is challenging
since all the errors are systematic. The most reliable method seems to be to test the sensitivity
of the result with respect to the order of the fitting polynomial. If higher precision is required or
the integrals are of higher dimensions, one can try to reduce the number of integration variables.
Two of them can be removed with a standard trick, e.g, for Σ we can write,

Σ =
1

π2

∫ π

2

−π

2

d3x
1∑

i sin2 xi
(A.15)

= π

∫ π

2

−π

2

d3x

∫ ∞

0
dα exp

[
−α

∑

i

sin2 xi

]
(A.16)

= π

∫ ∞

0
dα
[
e−

1

2
αI0

(α
2

)]3
, (A.17)

where I0 is the modified Bessel function. Another option is to use the coordinate space method
described in [103].

Calculating all the diagrams of Fig. A.1, we obtain the 2-loop result

c2 = −2

3

dAN
2
c

(4π)2

(
4π2

3N2
c

+
Σ2

4
− πΣ − π2

2
+ 4κ1 +

2

3
κ5

)
(A.18)

= dAN
2
c

(
0.03327444(8) − 1

18

1

N2
c

)
. (A.19)

The tree loop term has been calculated in [97], where the authors have automatized the whole
procedure from diagram generation to their numerical calculation. An additional complication
is the need to derive the five and six gluon vertices. The result reads

c3 = dAN
4
c

(
0.0147397(3) − 0.04289464(7)

1

N2
c

+ 0.04978944(1)
1

N4
c

)
. (A.20)
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Figure A.2: The diagrams needed to calculate the continuum limit of condensates Ki

The four loop term has only been calculated at Nc = 3 using stochastic perturbation theory
[70]. We note that the calculation requires an introduction of a mass to the gluon terms, which
acts as an infrared cut off. The stochastic perturbation theory result reads

c′4(Nc = 3) = 7.0 ± 0.3. (A.21)

A.2 Lattice integrals in EQCD

The massive propagator causes additional complications to the calculations since the integrals
have to be expanded in m. However, the task is made easier by the fact that we only need
contributions up to 2 loops. The needed Feynman rules are calculated in [93] and the needed
diagrams are shown in Fig. A.2.

The derivative of the one loop graph with respect to m2 is the tadpole graph

I(a,m) =

∫ π/a

−π/a

d3p

(2π)3
1

p̃2 +m2
. (A.22)

A naive expansion in m2 does not work, because the integrals in the higher terms would be
infrared divergent. First, note that lattice degree of divergence degrIF , given by power count
theorem of Reisz [104], is positive (degrIF = 3− 2 = 1), which means that the naive continuum
limit p̃2 → p2 does not work. To obtain the leading order term, let us divide the integrand in to
two parts.

I(a,m) = I(a, 0) + [I(a,m) − I(a, 0)] . (A.23)

The first part, giving the leading order contribution, is easily computed and gives

I(a, 0) =
Σ

4aπ
. (A.24)

The second part, which we denote by I ′(a,m), becomes

I ′(a,m) = −m2

∫ π/a

−π/a

d3p

(2π)3
1

(p̃2 +m2)p̃2
, (A.25)

Now, I ′(a,m) has a negative degrIF = 3 − 4 = −1, and consequently the next order term is
given by the corresponding continuum integral. Hence, we can proceed by dividing the integral
again

I ′(a,m) = I ′(0,m) +
[
I ′(a,m) − I ′(0,m)

]
, (A.26)

where the first part is

I ′(0,m) = −m2

∫
d3p

(2π)3
1

(p2 +m2)p2
= −m

4π
. (A.27)
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The higher order corrections (not needed here) can be calculated by continuing the procedure,
which results in

I(a,m) =
1

4π

[
Σ

a
−m− ξam2 + O

(
a2m3

)]
, (A.28)

where

ξ =
1

π2

[∫ π

2

−π

2

d3x
1

(
∑

i sin2 xi)2
−
∫

d3p
1

p4

]
= 0.15281(1) (A.29)

The most complicated integral arising from the two-loop calculation is the sunset integral

H(a,m1,m2,m3) =

∫ π/a

−π/a

d3p

(2π)3
d3q

(2π)3
1

p̃2 +m2
1

1

q̃2 +m2
2

1

(̃p− q)
2
+m2

3

, (A.30)

Having a degrIF = 6−6 = 0, the leading order term H0 contains the lattice contribution, but the
logarithmic term has the same coefficient as the corresponding continuum integral (calculated,
e.g., in [105]). Hence, we can write

H(a,m1,m2,m3) =
1

16π2

(
ln

6

a(m1 +m2 +m3)
+

1

2
+ ζ + O (am)

)
, (A.31)

where the remaining lattice coefficient needs an infrared regulator z

ζ = lim
z→0

[
1

4π4

∫ π/2

−π/2

d3xd3y

(
∑

i sin2 xi + z2)
∑

i sin2 yi
∑

i sin
2(xi + yi)

− ln
3

z
− 1

2

]
, (A.32)

and must be evaluated numerically. The result is ζ = 0.08848010(1).
After calculating all of the integrals with similar methods, subtracting the values of corre-

sponding continuum integrals, and using equations (5.24) and (5.25), we obtain the needed
numerical coefficients:

c̃1 =
dANcΣ

4π2
≈ 0.1684873399,

c̃2 =
NcdA

(4π)2
≈ 0.1519817755,

c̃′2 = ζ +
Σ4

4
− δ ≈ 0.66796(1),

c̄2 =
5

16π2
≈ 0.0316628698900405,

c̄′2 = ζ ≈ 0.08848010(1),

(A.33)

where

δ =
1

2π4

∫ π/2

−π/2
d3xd3y

∑
i sin

2 xi sin2(xi + yi)

(
∑

i sin2 xi)2(
∑

i sin
2(xi + yi))(

∑
i sin

2 yi)
≈ 1.942130(1). (A.34)
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