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Abstract

Quantum field theories are the basis of modern elementary particle physics.
Our present understanding of both the smallest structures of matter and
the composition of the universe is based on the quantum field theories,
that present observable phenomena by describing particles as vibrations of
fields. These fields are quantized, i.e. they get discrete values. The Stan-
dard Model of particle physics is a quantum field theory that combines
electromagnetic, weak and strong interactions into a single gauge field
theory. The Standard Model describes physics properly only to a certain
upper limit of energy scale. This scale is of the order of the masses of the
gauge fields (W, Z±). Beyond this electroweak scale the Standard Model
must be modified. For example, the Standard Model cannot explain the
quadratic divergences that plaque one of the particles of the theory (the
Higgs boson). Because the valid model must be viable to the highest
possible energy scale (Planck scale, 1019 GeV, which is determined as a
scale where the gravity becomes relevant), there must necessarily be some
new physics beyond the electroweak scale. In this dissertation I present
some viable models that describe physics beyond the Standard Model.
These include supersymmetric quantum field theories with specific su-
persymmetry breaking mechanisms, split supersymmetry and the model
with large extra dimensions. I derive limits for parameters of these models
and discuss the possibilities of finding evidence of these in future particle
accelerators.
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Chapter 1

Introduction

1.1 Background

The Standard Model (SM) of particle physics provides a quantitative description
of the elementary particles and forces of nature. This theory joins successfully
three of the known four fundamental forces: electromagnetic, weak and strong
force.

In modern physics, particles are described by fields. It is not to say that fields
are more fundamental than particles, but the effects of quantization are better
understood by using field description. In ordinary quantum mechanics a physical
state is a ray in Hilbert space, and observables are operators. Thus a spatial
displacement X is an operator, whereas time t is just a parameter. However,
Einstein’s special relativity requires that the time and displacement are treated
similarly. Elevating time to be an operator would lead to a continuous energy
spectrum that is not bounded from below. Having discretized energy levels with
a minimum energy would then be impossible. Instead, reducing the displacement
to be a mere parameter x introduces a dynamical operator type quantity ψ =
ψ(t, x), called quantum field. Merging special relativity with quantum mechanics
in a field theory results in a most useful tool to describe high energy particles,
namely quantum field theory (QFT).

Quantum field theory started from the study of relativistic wave equations.
It got it’s early form in late 1920’s when Dirac proposed a theory for quantizing
electromagnetic field [6,7] after the work done by Schrödinger and several others.
Dirac’s method was regarded as a second quantization, since fields that were
quantized were wave functions of one-particle quantum mechanics. Nowadays
this is known as canonical quantization due to it’s close analogy with classical
field theory and mechanics.

By using definite time coordinate, one is implicitly choosing an inertial frame
while doing the quantization. Therefore the Poincaré invariance is not manifest
but must always be checked at the end of the procedure. This can be quite
tricky e.g. in the case of non-Abelian gauge theories. In 1929 Heisenberg and
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Pauli [8,9] applied the Lagrangian formalism to the field quantization. The field
equations are derived from the requirement that the action is stationary under
the variation of fields. The idea of using variational methods in classical physics
is very old, stating back to Fermat’s principle in optics in 1657 and Maupertuis’
principle of least action1 in 1744 (and further developed by the Euler, Lagrange,
and Hamilton, to whom the principle is closely related).

In late 1940’s Richard Feynman generalized the action principle in his path
integral formulation of quantum mechanics [10, 11, 12, 13, 14]. This formalism
is manifestly Lorentz invariant at all stages. Applying this method to elec-
tromagnetism, one obtains the theory of electromagnetic interactions which is
called quantum electrodynamics (QED). The same result was derived separately
by Schwinger [15, 16, 17] and Tomonaga [18, 19] by using operator formalism.
These formalisms were later shown to be equivalent by Freeman Dyson. Dyson
also showed that all the infinities arising in the process are of the type that can
be removed by renormalization. A theory is said to be renormalizable if all the
infinities can be removed by redefinition of a finite number of parameters of the
theory. The importance of renormalizability for predictability is apparent; the
renormalizable theories can be expressed with help of finite number of constants,
and all quantities can be predicted using those.

High energy particle physics experiments are carried out in particle acceler-
ators. Those are nowadays huge enterprises conducted by joint organizations,
the most prominent being the Large Hadron Collider (LHC) of CERN (European
Organization for Nuclear Research). It is a proton-proton machine planned to
collide particle beams at an energy of 14 TeV. Also beams of heavy nuclei, like
lead and gold, will be accelerated. After completion, LHC will be the largest
particle accelerator in the world. The circumference of the circular beam tube is
27 km and it is placed 100 meters below ground. The first run is scheduled to
take place in late 2007. LHC is being built in place of Large Electron-Positron
collider (LEP), which ceased to operate in 2000. Other major colliders include
Tevatron in Fermilab, DESY in Hamburg and SLAC in Stanford University.

Quantum electrodynamics, as electrodynamics, is based on a U(1) symmetry.
A similar gauge symmetry can be found also for the weak and strong forces.
By combining these, the Standard Model of particle physics is formed. It is
evident that symmetries play a very important role in the development of physical
theories. Symmetries imply conservation laws. This is known as a Noether’s
theorem. In a quantum field theory it can be stated: If an action is invariant
under some group of transformations, then there exists one or more conserved
quantities that are associated to these transformations. Thus, finding a theory
that contains some wanted conservation laws is equivalent to finding an action
that is invariant under some set of transformations.

1More correctly, “principle of stationary action” in the view of calculus of variations.
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Figure 1.1: Scalar potential of unbroken and spontaneously broken models

1.2 Gauge theories: Standard Model

The mere conservation laws are not enough to form the structure of a proper
theory. A physically meaningful particle physics theory must also describe inter-
actions between the particles. In 1961 Salam and Ward [20] proposed a so-called
gauge principle which states that the interaction terms of strong, weak and elec-
tromagnetic interactions can be generated by making local gauge transformations
on the kinetic terms in the free Lagrangian for all particles.

Gauge invariance is a statement that the physics does not change in a certain
type of local transformations of the fields. This is based on the fact that in a field
theory it is possible to introduce to a model so-called gauge fields with certain
transformation properties. The gauge field transformations are such that they
exactly cancel the local transformations. In that case the theory is said to be
gauge invariant.

The gauge field of the quantum electrodynamics is photon. Following the
example of QED, the theory of weak interactions can be formulated using gauge
fields that mediate the weak force. This way, e.g., the unitarity violation problem
of four-fermion Fermi interaction can be avoided. In contrast to the massless
photon of the QED, the intermediate gauge bosons should be massive. The gauge
invariance, however, forbids the insertion of mass terms to the Lagrangian for the
gauge bosons or the fermions. Therefore some specific mechanism that generates
masses, must be introduced. The way to achieve this is to break a local symmetry
spontaneously, and this is known as Higgs mechanism [21, 22,23].

The idea of Higgs mechanism is that the minimum of the scalar potential is
obtained with non-zero vacuum expectation value (vev) of the Higgs field. This
results in a lower total energy density than it would be for a zero Higgs field vev.
This can be illustrated by an energy density L ⊃ −m2h2−λh4. If m2 is negative
and λ positive, the minimum of the potential is not at the zero of the Higgs field,
but rather at the h2 = −4λ/m2. The requirement of m2 being negative seems
rather unnatural at this point, and actually in the SM it is introduced by hand
for this purpose (ad hoc). However, in supersymmetric models this condition is
naturally achieved as can be seen later.

The Higgs field has couplings with other particles (at the tree level) of the
theory, especially with the gauge fields. If the expectation value of the Higgs field
is non-zero, the coupled terms do not vanish at the minimum of the potential,
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but give contributions to the gauge field terms. It turns out that the gauge fields
acquire masses. In the same way, the Higgs mechanism generates masses for the
fermions. The masses are produced in a renormalizable way, thus preserving the
predictability of the model.

The Higgs particle is fundamentally different particle than the other SM par-
ticles. First of all, it is the only scalar particle in the SM. It is introduced to
the theory in order to trigger the spontaneous electroweak symmetry breaking.
When the idea of local gauge invariance is combined with the spontaneous sym-
metry breaking and the Higgs mechanism, the theory for the electromagnetic and
weak interactions can be consistently formulated.

The Standard Model is a gauge theory that combines the electromagnetic,
weak and strong interactions to a single model. This model is invariant under
a particular set of gauge transformations. The gauge group of the Standard
Model is SU(3)C × SU(2)L × U(1)Y , where the subscript C denotes the color
force of strong interactions (quantum chromodynamics, QCD), L denotes the
left chiral weak interactions and Y denotes the weak hypercharge. The matter
particles of the Standard model are three families of quarks and leptons. These
are spin-1

2 particles, i.e., fermions. They are divided into SU(2)L doublets, QL

containing left handed quarks, and LL containing left-handed leptons. The right-
handed fields are put into SU(2)L singlets eR, uR and dR (in the Standard Model
there are no right-handed neutrinos). After imposing the gauge principle, the
intermediate gauge bosons that mediate the particle interactions, emerge. The
kinetic energy terms for the three SU(2)L gauge bosons W i and one U(1)Y gauge
boson B can be written as [24]

Lke = −1

4
W i

µνW
µνi − 1

4
BµνB

µν , (1.1)

where the gauge field strengths are defined as

W i
µν = ∂νW

i
µ − ∂µW i

ν + gǫijkW j
µW k

ν , (1.2)

Bµν = ∂νBµ − ∂µBν . (1.3)

The quantity ǫijk is a totally antisymmetric tensor. The kinetic and potential
terms for the Higgs boson are

LH = (Dµφ)†(Dµφ) − (µ2|φ†φ| + λ|φ†φ|2), (1.4)

where the covariant derivative Dµ is defined as

Dµ = ∂µ + i
g

2
σ · Wµ + i

g′

2
BµY, (1.5)

with σ being the Pauli matrices (see Appendix A.1). Fermion mass terms are
acquired via the Yukawa interactions of the form

Lf = −λuQLφcuR − λdQLΦdR − λeLLφeR + H.C.. (1.6)
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The terms are in family space and the Yukawa couplings are 3 × 3 matrices,
and φc = iσ2φ

∗. The kinetic terms of the fermions are of the form f̄ iγµDµf for
each of the fermion multiplet with appropriate part of the covariant derivative
(the SU(2) part is absent for the right-handed fields, and the quantities γ are
the Dirac gamma matrices, see e.g. [24]). The SU(3)C interactions can be in-
cluded similarly. When the Higgs mechanism breaks the electroweak symmetry
SU(2)L × U(1)Y spontaneously, the gauge bosons and fermions acquire masses.
Then there exist three massive weak gauge bosons: One neutral (Z0) and two
charged (W±). After the electroweak symmetry breaking there remains a resid-
ual U(1)em symmetry that is observed as an electric charge of the particles. The
associated gauge boson, photon, remains massless. While the Higgs mechanism
explains the gauge boson masses, the Yukawa couplings are in principle arbitrary
parameters, thus providing no fundamental understanding of the origin of the
fermion masses. Because the Higgs field is giving mass to three gauge bosons,
the simplest way to do this is one complex SU(2)L doublet of scalar fields. The
remaining fourth degree of freedom is the physical Higgs boson.

The Higgs boson is the only Standard Model particle that has not been dis-
covered yet. It is hoped for that the next generation particle colliders, like the
presently built CERN’s Large Hadron Collider, will be able to discover the Higgs
particle. There are several theoretical restrictions on the mass of the Higgs bo-
son. First of all, the interactions between particles must be unitary, which sets
bounds to the scattering amplitudes [25, 26, 27, 28]. The unitarity bound for the
Standard Model Higgs boson at the tree-level is given as [29,30]

m2
H ≤ 8π

√
2

5GF

≈ (780 GeV)2. (1.7)

The one-loop calculations push the Higgs boson mass value as low as mH
<∼ 350

GeV [31]. If the unitarity bounds are violated, the perturbation theory is no
longer a reliable way to calculate physical processes.

Another bound can be imposed by requiring that the model is not trivial. The
Higgs self coupling λ changes with the energy scale as stated by the renormal-
ization group equations (see Section 2.5). A pure φ4 theory is said to be trivial
in the sense that as the energy scale increases, the coupling constant eventually
blows up (the point of divergence is known as Landau pole). In other words, for
a finite (positive) value of the coupling λ at the high scale, the coupling constant
vanishes at the low scale, hence suppressing interactions. In the SM there are
more terms contributing to the running of the quartic coupling λ, so the require-
ment of model not to be trivial sets bounds to the involved parameters. If the
SM stays perturbative up to the grand unification scale, then the bound obtained
for the Higgs boson mass is roughly mH

<∼ 200 GeV [32].

Yet another bound is obtained by the requirement that the scalar potential
is bounded from below, or in other words, the coupling λ is positive. In the
SM the top Yukawa coupling gives negative contribution to the quartic coupling
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H

ψ

Figure 1.2: Fermion contribution to the self energy of the Higgs boson in the
Standard Model.

beta function. For large top mass mt the coupling λ may become negative. In
that case the scalar potential could be negative, V < 0, meaning that the vac-
uum is no longer the minimum of the potential, V (λ) < V (v). The requirement
that the scalar potential is bounded from below gives a lower bound on the cou-
plings, and thus to the Higgs boson mass. If the SM is valid up to the Planck
scale 1019 GeV, the vacuum stability requires mH > [127.9 + 1.92(mt − 174) −
4.25(αs(mZ)−0.124

0.006 )] GeV [33] (see also [34]), where αs is the strong coupling con-
stant and the masses are given in units of GeV. If one supposes that some new
physics, e.g. supersymmetry, is emerging at the scale of 1 TeV, the bound is
weakened to mH > [52 + 0.64(mt − 175) − 0.50(αs(mZ)−0.118

0.006 )] GeV [35]. The
Particle Data Group gives a combined experimental lower limit on the SM Higgs
boson mass as mH > 114.4 GeV with 95% confidence level [36, 37].

On one hand, the Standard Model parameters, besides the Higgs boson mass,
are measured to a great accuracy, while on the other hand the large number of free
parameters that has been introduced to the model by hand is a disadvantage.
That would hint towards some more fundamental theory where all the other
parameters had a common origin. That has motivated a number of Grand Unified
Theories (GUT).

1.2.1 Hierarchy problem

While giving a proper description of particle interactions at the low energy scales,
the Standard Model has one important technical problem. The Higgs boson
(and also all the other hypothetical fundamental scalars of the model) receives
unacceptable large radiative corrections to it’s mass term, since there is no such
symmetry in the standard model that would issue cancellations to the scalar mass
corrections. Avoiding the large corrections would require an extensive fine-tuning
of the parameters. This is referred to as a gauge hierarchy problem, since it is
related to the two fundamental energy scales that are present in nature. One is
the electroweak scale around 100 GeV, and the other is the Planck scale around
1019 GeV. The Planck scale MP is the energy scale, where gravity cannot be
neglected in particle interactions anymore.

In order to see the hierarchy instability, let us consider a model with a fermion
interacting with a massive Higgs boson,

Lφ =ψ(i/∂)ψ + |∂µφ|2 − m2
S|φ|2 − (λFψψφ + H.C.). (1.8)
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After the spontaneous symmetry breaking the Higgs field acquires a vev, 〈φ〉 = v,
and the original field φ is rescaled as φ = (H + v)/

√
2, where H is the physical

Higgs boson. This leads to a fermion mass term mF = λF v/
√

2. The self-energy
contribution (Fig. 1.2) to the scalar mass can be written as

−iΣS(p2) = (−i2)(−i
λF√

2
)2

∫
d4k

(2π)4
Tr[(/k + mF )((/k − /p) + mF )]

(k2 − m2
F )[(k − p)2 − m2

F ]
. (1.9)

The product of two propagators can be simplified in the denominator by using
the Feynman parameterization [12]

1

ab
=

∫ 1

0

dx

[(1 − x)a + xb]2
, (1.10)

after which the Eq. (1.9) can be written

ΣS(p2) = −i
2λ2

F

(2π)4

∫ 1

0
dx

∫
d4k′k

′2 + k′p(2x − 1) + p2x(x − 1) + m2
F

[k′2 − p2x(x − 1) − m2
F ]2

(1.11)

where I have used a momentum shift k′ = k − px. This is valid for convergent
integrals, so some regularization method must be used; cut-off regularization
scheme is assumed here.2 The Eq. (1.11) can be calculated in the Euclidean
space by using the Wick rotation [40], after which the integral takes the form

ΣS(p2) =
2λ2

F

(2π)4

∫ 1

0
dx

∫
d4kE

−kE
2 + kEp(2x − 1) + p2x(x − 1) + m2

F

[−kE
2 − p2x(x − 1) − m2

F ]2
(1.12)

The above integral is divergent, so it must be regularized. This can be done
by setting the effective upper limit for integration using the momentum cut-off
at the scale Λ. For rotationally symmetric integrands the angular part can be
integrated away (see Appendix A.3):

∫

|kE|<Λ
d4kEf(k2

E) = π2

∫ Λ2

0
dy yf(y). (1.13)

The Eq. (1.12) is of the required form, since the integration over the odd inte-
grands gives a zero contribution. After applying the Eq. (1.13) and integrating,
one gets

ΣS(m2
S) = − λ2

F

8π2

(
Λ2 − 1

2
(6m2

F − m2
S) ln

Λ2

m2
F

+ I1(m
2
S, m2

F ) + O(
1

Λ2
)
)
, (1.14)

where the integral I1 is defined as

I1(m
2
S, m2

F ) = m2
F

∫ 1

0
dx

(
1 +

m2
S

m2
F

x(x − 1)
)(

3 ln
[
1 +

m2
S

m2
F

x(x − 1)
]
+ 2

)
, (1.15)

2Also other regularization methods, such as dimensional regularization [38] or Pauli-Villars
regularization [39] can be used. Regularization is discussed in some details in the Appendix A.4
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Figure 1.3: Bosonic contributions to the self energy of the Higgs boson in the
Standard Model.

which converges if mS < 2mF , which is the case when the fields ψ are off-shell
(see Appendix A.3). The Higgs boson mass is then

M2
H = M2

S + δM2
H , (1.16)

where
δM2

H ≡ ΣS(m2
S). (1.17)

From Eq. (1.14) one can see that the mass correction is proportional to the mass
of the heaviest particle of the model (the term which is logarithmically diver-
gent). The effect of the correction is clearly seen, if one sets the tree-level mass
of the Higgs boson mS to zero: the self-energy correction is still of the order of
the fermion mass. Even more serious than that, the quadratically divergent term
in Eq. (1.14) completely wrecks the hope for having the Higgs boson mass around
the electroweak scale without enormous fine-tuning. This term can be renormal-
ized away, but that should then be done separately in all orders of perturbation
theory, which is quite unattractive. All the other masses and couplings are only
logarithmically sensitive to the cut-off. The divergent integral can also be calcu-
lated using the dimensional regularization method, in which case the correction
is also proportional to the largest mass of the model giving essentially the same
problems as the cut-off method. In the Standard Model these divergences appear
even if the Higgs boson does not have direct couplings with the heavier particles,
since these are generated at the two-loop level via other particles (such as gauge
bosons) that couple to both.

There is, however, a way out of this trouble. Consider the same model as in
Eq. (1.8), but now including also two additional (spin-0) bosons:

L = |∂µφ1|2 + |∂µφ2|2 − m2
1|φ1|2 − m2

2|φ2|2

+ λSφ(|φ1|2 + |φ1|2) + Lφ.
(1.18)

After the spontaneous symmetry breaking there are additional two kind of graphs
(Fig. 1.3) that contribute to the Higgs boson radiative mass correction. The first
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one gives the four particle vertex contribution

(δM2
H)four = − λS

16π2

(
2Λ2 − m1 ln

Λ2

m2
1

− m2 ln
Λ2

m2
2

+ O(
1

Λ2
)
)
, (1.19)

while the second graph gives the three particle vertex contribution

(δM2
H)three =

(vλS)2

16π2

(
2 − ln

Λ2

m2
1

− ln
Λ2

m2
2

+ I2(m
2
S, m2

1) + I2(m
2
S, m2

2) + O(
1

Λ2
)
)
,

(1.20)

where the integral I2 is defined as

I2(m
2
S, m2

i ) =

∫ 1

0
dx ln

[
1 +

m2
S

m2
i

x(x − 1)
]
, (1.21)

which again converges if m2
S/m2

i < 4. If somehow one can arrange the couplings
to be −λS = λF

2, the quadratically divergent terms in Eq. (1.14) and Eq. (1.19)
neatly cancel.3 Furthermore, an interesting result follows, if m2

1 = m2
2 = m2

F .
Because the vev of the Higgs field defines the fermionic mass term as v2 =
2m2

F /λ2
F , one can write the three particle vertex contribution as

(δM2
H)three =

2m2
F

16π2

(λS

λF

)2[
2 − ln

Λ2

m2
1

− ln
Λ2

m2
2

+ finite
]
. (1.22)

After combining all the corrections and requiring that the fermion and boson
masses are equal (denoting the common mass as m), and that the couplings are
related as −λS = λF

2, one gets

δM2
H = − λ2

F

16π2

[
m2

S ln
Λ2

m2
− 6m2 ln

Λ2

m2

+ 2m2 ln
Λ2

m2
+ 4m2 ln

Λ2

m2
+ finite

]

= − λ2
F

16π2
m2

S ln
Λ2

m2
+ finite.

(1.23)

The contributions proportional to the squared masses of the other than Higgs
boson mass have disappeared. The logarithmically divergent term proportional
to the Higgs particle mass comes from the fact that the corrections were evaluated
at the physical pole mass of the propagator p2 = m2

S.
The symmetry requirements that were issued in order to derive Eq. (1.23) are

indeed present in a symmetry principle called supersymmetry. Supersymmetry
solves the technical aspects of the hierarchy problem by assigning to each of the
fermions of the Standard Model corresponding supersymmetric partners. In this
way the dangerous divergences exactly cancel in all orders of the perturbation
theory. The rule m2

1 = m2
2 = m2

F is in fact present in supersymmetric theories.

3The requirement that the scalar coupling λS is negative is actually a necessity, because
otherwise the scalar potential for the Lagrangian (1.18) is not bounded from below.
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Chapter 2

Supersymmetry

Supersymmetry (SUSY) is a particular symmetry that relates half integer spin
particles (fermions) to the integer spin particles (bosons). The supersymmetry
transformations turn fermion fields to boson fields and vice versa. This means
that in a supersymmetric theory one can exchange boson fields to fermion fields
leaving the equations of motion of the underlying model unchanged. The bosons
and fermions have therefore the same couplings to the gauge bosons.

Supersymmetric models are considered to be very attractive models beyond
the Standard Model. The technical problem of Higgs boson fine tuning (the gauge
hierarchy problem discussed in Section 1.2) is solved in supersymmetric theories
due to the systematic cancellation of divergences. Another pleasant aspect is
the apparent gauge coupling unification at the scale of 1016 GeV that could be
taken as a hint in favor of a grand unified theory. Under specific circumstances,
supersymmetry also provides a good dark matter candidate.

Originally SUSY was not developed to cure the hierarchy problem. The at-
tempt to add fermions to the bosonic string theory resulted a group algebra that
included both bosonic and fermionic operators [41,42,43,44]. This superalgebra
was defined on the superstring world sheet. A few years later Wess and Zu-
mino [45] generalized the idea of supersymmetry to the quantum field theories in
four spacetime dimensions. They also realized [46] that supersymmetry is a way
to circumvent the Coleman–Mandula theorem [47]. The Coleman–Mandula the-
orem is a no-go theorem that states that the only conserved quantities except for
the generators of the Poincaré group in a consistent quantum field theory must
always be Lorentz scalars. Independently of the string theory development, in
1971 Gol’fand and Likhtman [48] had extended the Poincaré group to a superal-
gebra and used that to construct supersymmetric field theories in four spacetime
dimensions. Their model contained a massive photon and photino (spin-1

2 part-
ner of photon), a charged Dirac spinor and two charged scalars (spin-0 particles).
After the work of Gol’fand and Likhtman, Volkov and Akulov tried to associate
the massless fermion appearing due to spontaneous supersymmetry breaking with
the neutrino [49, 50]. After a year from this, Volkov and Soroka considered the
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super-Higgs mechanism and gauged the super-Poincaré group [51], which was an
early attempt of supergravity.

2.1 Supersymmetry algebra and superfields

The Poincaré group P is a group of rotations, translations and the Lorentz trans-
formations, and whose generators satisfy the relations

[Pµ, Pν ] = 0

[Pµ, Mνρ] = i(ηµνPρ − ηµρPν)

[Mµν , Mρσ] = −i(ηµρMνσ + ηνσMµρ − ηµσMνρ − ηνρMµσ),

(2.1)

where ηµν is the Minkowski metric. If one combines the Poincaré group with an
internal symmetry group G with generators

[Tr, Ts] = ifrstTt, (2.2)

then the Coleman–Mandula theorem states that any Lie group leading to non-
trivial physics must be a direct product of these.1 In other words, the generators
of the Poincaré group and the internal symmetry group commute,

[Pµ, Ts] = 0 = [Mµν , Ts]. (2.3)

The restrictions of the Coleman–Mandula theorem can be avoided if one intro-
duces the concept of the graded Lie algebra [52], which contains both the commu-
tation and anti-commutation relations between generators. The supersymmetry
algebra is required to have a Z2 graded structure, which implies that the even
(bosonic) and odd (fermionic) generators satisfy

[even, even] = even

{odd, odd} = even

[even, odd] = odd.

(2.4)

Eq. (2.3) is still valid, since the even subgroup must obey the Coleman–Mandula
theorem. The simplest choice for the SUSY generators is a two-component Weyl
spinor Q and its conjugate Q. The algebra of these fermionic operators can be
written as [53,54,55]

{Qα, Qβ} = {Qα̇,Qβ̇} = 0, (2.5)

{Qα,Qβ̇} = 2σµ

αβ̇
Pµ, (2.6)

1The theorem assumes that there is a mass gap (between vacuum and one-particle states). If
there is no mass gap, the combined Lie group could be a direct product of the conformal group
with an internal group.
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where the indices α and β (and the dotted versions) take values 1 or 2 and
σµ = (1, σi) where σi are the Pauli matrices. Similarly

[Qα, Pµ] = [Qα̇, Pµ] = 0, (2.7)

[Qα, Mµν ] =
1

2
(σµν)

β
αQβ , (2.8)

[Qα̇, Mµν ] = −1

2
(σµν)

β̇
α̇Qβ̇. (2.9)

This is known as a simple (or N=1) supersymmetry. In this case the internal
symmetry group G of Eq. (2.2) becomes just a rotation with generator R

[Qα, R] = −Qα, [Qα̇, R] =Qα̇. (2.10)

This is known as the R-symmetry. The internal group G has now non-trivial com-
mutation relations with the fermionic part of the supersymmetry group, hence
circumventing the Coleman-Mandula theorem. If there are several supercharges
Qn, then the SUSY algebra is called N -extended supersymmetry, where N > 1.

An important consequence of the Eq. (2.6) is that the vacuum energy is always
non-negative. The Hamiltonian of a supersymmetric theory can be written as

H ≡ P 0 =
1

4
(Q1Q1̇ +Q1̇Q1 + Q2Q2̇ +Q2̇Q2), (2.11)

which is a sum of perfect squares of hermitean operators, implying non-negative
eigenvalues. If the vacuum is supersymmetric, i.e. Qα|0〉 = 0 = Qα̇|0〉, then the
vacuum energy is necessarily zero by Eq. (2.11). If the vacuum breaks supersym-
metry, i.e., there is at least one generator that does not annihilate the vacuum,
then the vacuum energy is necessarily positive. Thus, global supersymmetry can
be broken only if there is a positive vacuum energy, or in other words, there is
potential with a positive vacuum expectation value 〈V 〉 > 0.

Another consequence of the SUSY algebra is that if the supersymmetry is
not broken, the particles in the same supermultiplet have the same mass. The
Eq. (2.7) [Qα, Pµ] = 0 implies that [Qα, P 2

µ ] = 0, where P 2
µ = PµPµ is the mass

operator, thus giving the same mass squared for the particles Q acts on.
When constructing supersymmetric models it is useful to make use of the

formalism of the so-called superspace [56]. In such a space, in addition to the
usual spatial (bosonic) coordinates there are also four anticommuting (fermionic)
coordinate dimensions that are represented with the Grassman variables θ1, θ1̇,
θ2 and θ2̇. A superfield is a field that depends on all coordinates of the super-
space. Every superfield S(x, θ, θ) can be expanded with respect to the Grassman
coordinates since the Grassmannian expansion terminates in the second power
(θαθα = −θαθα = 0). The coefficients of the expansion are ordinary fields. When
imposing constraints on the superfields that are covariant under the supersym-
metry algebra, the component fields form supermultiplets. Supermultiplets are
irreducible representations of the supersymmetry algebra.

13



The action of the supersymmetry algebra on a superfield is generated by

Qα =
∂

∂θα
− iσµ

αβ̇
θ

β̇
∂µ, Qα̇ = − ∂

∂θ
α̇

+ iθβσµ
βα̇∂µ. (2.12)

When one includes also the operator Pµ = i∂µ one gets a linear representation
of the supersymmetry algebra. The group element of the finite transformation is
defined as

G(aµ, ξ, ξ) = ei(ξQ+ξQ−aµPµ). (2.13)

In order to find irreducible representations one defines covariant fermionic deriva-
tives as

Dα =
∂

∂θα
+ iσµ

αβ̇
θ

β̇
∂µ, D α̇ = − ∂

∂θ
α̇
− iθβσµ

βα̇∂µ. (2.14)

These anticommute with the fermionic generators Qα and Qα̇. Thus, the co-
variant derivatives commute with the combination ξQ + ξQ making it possible
to apply the covariant condition on a superfield (which is invariant under the
supersymmetry group)

D α̇S = 0. (2.15)

A superfield that obeys this condition is called a (left) chiral (or scalar) superfield.
Any chiral superfield Φ can be expressed as a function of θ and yµ = xµ + iθσµθ.
Expanding Φ(y, θ) gives

Φ(yµ, θ) = φ(yµ) +
√

2θαψα(yµ) + θαθβεαβF (yµ). (2.16)

The quantity εαβ is the anti-symmetric tensor in two dimensions, φ and F are
complex scalar fields and ψ is a left-handed Weyl spinor field. This can be written
in terms of the original variables:

Φ(xµ, θ, θ) = φ(xµ) +
√

2θψ(xµ) + θθF (xµ)

+ i∂µφθσµθ − i√
2
θθ∂µψθ − 1

4
∂µ∂µφθθθθ, (2.17)

where the spinor indices have been suppressed. The name “left” chiral super
field is now obvious, since Eq. (2.17) depends on the left-handed spinor ψ. A
superfield obeying a conjugated version of the Eq. (2.15)

DαS† = 0. (2.18)

is called correspondingly a right chiral superfield as it depends on a right-handed
spinor ψ. Chiral superfields contain spin-1

2 particles and their superpartners.
Another possible covariant constraint that can be imposed to a superfield

is hermitian conjugation. A superfield that is it’s own self-conjugate (in other
words, real) is said to be a vector superfield,

V (x, θ, θ) ≡ V †(x, θ, θ). (2.19)
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In particular, a product Φ†Φ obeys this condition. The vector superfield V can
be represented in a component form as

V (x, θ,θ) = −θσµθAµ(x) + iθθθλ(x) − iθθθλ(x) +
1

2
θθθθD(x), (2.20)

where the so-called Wess–Zumino gauge [45,46,57] has been used to remove un-
physical degrees of freedom. The ordinary gauge freedom is not fixed yet, though,
and expanding egV would lead to a mass term to the gauge field. In fact, the
Wess–Zumino gauge is not invariant under the supersymmetry transformations.
This can be circumvented by defining a combined transformation which consists
of a supersymmetry transformation followed by an extended gauge transforma-
tion. This is called de Wit–Freedman transformation [58]. Vector superfields
contain gauge bosons and their superpartners.

2.1.1 Lagrangians

The Lagrangian density itself cannot be invariant under supersymmetric trans-
formation, because in the Eq. (2.6) on the right-hand side there is a spacetime
derivative, which implies that if δL = 0 then L must be a constant. Despite
of that, the action can still be supersymmetric provided that δL is a total di-
vergence that vanishes after the spacetime integration. To construct invariant
actions this way, one needs to know supersymmetry transformation properties of
chiral and vector superfields. For a chiral superfield Eq. (2.17) the appropriate
divergence is found from the transformation of the F -term (i.e. the coefficient of
the θθ-term)

δξF = −i
√

2∂µψασµ
αα̇ξ

α̇
. (2.21)

Because Q,Q and D, D are linear operators on superspace, it is clear that any
polynomial function of left (right) chiral superfields is again a left (right) chiral
superfield. Thus, supersymmetric invariant actions can be constructed extracting
the F -terms from the so-called superpotential W (Φ) which contains products of
the left chiral superfields. In order to get renormalizable Lagrangian the super-
potential can include no higher than products of three superfields.2 The most
general superpotential can then be written as

W (Φ) =
1

2
mijΦiΦj +

1

3
λijkΦiΦjΦk, (2.22)

where mij and λijk are symmetric and real and the tadpole term linear in Φ has
been neglected. The linear term can be later used to break supersymmetry. The
superpotential W (Φ) does not contain derivatives, so it is analytic with respect
to the chiral superfields Φ.

2Product of three superfields has a dimension three. Since the F -term of a superfield has one
dimension more, three superfields is the highest number of products which produce dimension
four Lagrangian.
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Similarly, for the vector superfields of Eq. (2.20), the total divergence is found
from the transformation of the D-term (i.e. the coefficient of the θθθθ-term)

δξ,ξD = ∂µ(λσµξ − ξσµλ). (2.23)

Thus vector superfields can appear in the Lagrangian via D-terms. An impor-
tant term that can be added to the Lagrangian this way is the D-term of the
combination Φ†Φ, which gives the kinetic terms of the component fields. It can
be noted that the transformation of the D-term of a general superfield (e.g. a
superfield constructed by multiplying both left and right chiral superfields and
their superderivatives) is also a total derivative, but the physically meaningful
action can be constructed only from vector superfields.

The superpotential (2.22) contains the scalar potential, which can be written
as [59]

V =

∣∣∣∣
∂W (φ)

∂φ

∣∣∣∣
2

, (2.24)

where the superfields are replaced by the corresponding scalar component of the
supermultiplet. After calculating the field equations of the Lagrangian containing
the F -terms of the superpotential (2.22) and the D-term of the kinetic term Φ†Φ,
the tree level effective potential becomes

V = F †
i Fi ≡ |F |2, (2.25)

and the field equation for the F †
i -field is

F †
i = −mijφi − λijkφjφk = −∂W (φ)

∂φi
. (2.26)

There are no kinetic terms in the field equation, so the F -field is auxiliary and
can be removed from the Lagrangian using the field equation (2.26). The W (φ)
is the superpotential with Φi replaced by φi from Eq. (2.17). The scalar potential
of Eq. (2.25) is a square of an absolute value, hence it is positive semi-definite
and as such, bounded from below.

The coupling of the gauge superfields to the chiral (matter) superfields is
attained by a supersymmetric version of the minimal coupling,

Φ†Φ → Φ†e2gTaV a
Φ. (2.27)

It is possible to construct chiral superfields from a vector superfield by using the
derivatives of Eq. (2.14). The superfield obtained this way is called field strength
superfield

Wα = D2e−gTaV a
DαegTbV

b
. (2.28)

In the case of Abelian gauge symmetry this reduces to Wα = D2DαV . Clearly
DWα = 0, so Wα is a left chiral superfield. Because a product of left chiral
superfields is again a left chiral superfield, one can construct gauge kinetic terms
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by including the F -term of the square of the field strength superfield to the
Lagrangian.

Collecting all these together one can construct a general version of a (renor-
malizable) supersymmetric Lagrangian as

L =

∫
d2θd2θ Φ†

ie
2gTaV a

Φi +
(∫

d2θ
( 1

64
W aαWaα + W (Φi)

)
+ H.C.

)
. (2.29)

One should note that integrating over the whole Grassmannian superspace is
equivalent of taking the D-term, and integrating over the θθ-part is equivalent
of taking the F -term of the integrand. The integrals over a fermionic space are
known as Berezin integrals [60]. The Berezin integration has the same effect as
taking a derivative, and can be characterized as

∫
dθαf(θ) = ∂θαf(θ). (2.30)

In the N=1 supersymmetry one can replace the derivative ∂θα with Dα (or ∂θα̇

with D α̇). This replacement makes the derivation of the component form La-
grangian much easier than expanding the superfields directly.

2.2 MSSM

The minimal supersymmetric Standard Model (MSSM) is a supersymmetric ex-
tension of the Standard Model with a minimal particle content. This implies that
each Standard Model spin-1

2 fermion is accompanied with a pair of spin-0 bosons
(called sfermions) and each gauge boson with a corresponding spin-1

2 superpart-
ner (photino, wino, bino and gluino). Because none of the SM fermions belong
to the adjoint representation of SU(3)× SU(2)×U(1) they cannot be identified
as superpartners of the SM gauge bosons. Therefore, a new superpartner must
be introduced for each SM particle.

Particles in the same supermultiplet transform similarly under the gauge
group. This means that the physical left- and right-handed SM fermions can’t be
in the same supermultiplet, since it is known that the left-handed SM fermions
are in SU(2)L doublets while the right-handed are in singlets. In extended su-
persymmetry with N ≥ 2 a supermultiplet contains both left and right handed
fermions. Therefore it is believed that the low-energy SUSY has to be N=1 su-
persymmetry, though high energy models might be constructed using extended
supersymmetries. Theories with N greater than eight contain necessarily parti-
cles that has spin two or higher, which are difficult to couple to other particles
in a consistent way. Therefore the N=8 theory is said to be maximally extended
supergravity theory.

In contrast to the SM, in MSSM two chiral Higgs doublets are needed. Firstly,
supersymmetry forbids the SM-like ψψH† terms in the Lagrangian, since that
would imply mixing left- and right-chiral superfields with each other, as discussed
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Table 2.1: Gauge supermultiplets in the MSSM

Supermultiplet spin 1
2 spin 1 SU(3)C , SU(2)L, U(1)Y

bino, B boson B̃0 B0 (1,1, 0)

winos, W bosons W̃± W̃ 0 W± W 0 (1,3, 0)

gluino, gluon g̃ g (8,1, 0)

in the section 2.1. Secondly, the multiplets with different weak hypercharges have
different Yukawa couplings for up and down type quarks. Thus both are needed.
Also with only one Higgs multiplet there would be a triangle gauge anomaly,
since by adding superpartners to the model the anomaly cancellation of the SM

is spoiled [61]. By adding two Higgs doublets with opposite hypercharges the
anomaly cancellation is restored. The field content of the Higgs doublets is
augmented with spin-1

2 doublets (higgsinos) to form the Higgs supermultiplets.
Even though the left slepton supermultiplet has the same SM quantum numbers
as the Hd supermultiplet, they cannot be identified, since that would lead to large
violation of experimental limits of the mass of (at least one) neutrino in addition
to the lepton number violation and non-cancellation of triangle anomaly [62].
The supermultiplets of MSSM are displayed in the Tables 2.1 and 2.2.

MSSM has the same gauge group structure as the Standard Model which
specifies the gauge interactions. Those don’t, however, specify the superpotential
completely. The most general superpotential of the MSSM is written as

WMSSM = uyuQHu − dydQHd − eyeLHd + µHuHd + W/B + W/L, (2.31)

where the gauge and family indices have been suppressed. The dimensionless
couplings yu, yd and ye are the Yukawa coupling matrices of quarks and leptons,
and give rise to quark masses and to the mixing angles of the quarks and leptons.
The µ-term yields the higgsino mass terms as well as the mass-squared Higgs
terms in the scalar potential. Because the scalar potential Eq. (2.25) is non-
negative, additional (negative) Higgs mass-squared terms are needed to trigger
the electroweak symmetry breaking. These terms also break supersymmetry, as
will be discussed in the section 2.4. Finally, W/B and W/L are the baryon and
lepton number violating parts of the superpotential, respectively. Because B-
and L-violating processes have not been observed, it is natural to require that
either those terms give extremely small contribution or, they are forbidden by a
symmetry.

2.3 R-parity – LSP – Cosmology

In a supersymmetric theory it is possible to include in the superpotential terms
that violate B- and L-symmetries, but which are gauge invariant and analytic in
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Table 2.2: Chiral supermultiplets in the MSSM

Supermultiplet spin 0 spin 1
2 SU(3)C , SU(2)L, U(1)Y

(s)quarks Q (ũL d̃L) (uL dL) (3,2, 1
6)

(×3 families) u ũ∗
R uR (3,1,−2

3)

d d̃∗R dR (3,1, 1
3)

(s)leptons L (ν̃ ẽL) (ν eL) (1,2,−1
2)

(×3 families) e ẽ∗R eR (1,1, 1)

Higgs(inos) Hu (H+
u H0

u) (H̃+
u H̃0

u) (1,2, +1
2)

Hd (H0
d H−

d ) (H̃0
d H̃−

d ) (1,2,−1
2)

the chiral superfields. These are

W/B =
1

2
λ′′ijkuididi, (2.32)

W/L =
1

2
λijkeiLjLk + λ′ijkdiLjQk + µ′iLiHu. (2.33)

The Eq. (2.32) violate the baryon number by one unit, and the terms in Eq. (2.33)
violate the lepton number by one unit. If the terms for λ, λ′ and λ′′ were all
included in the Lagrangian, the proton lifetime would be extremely short, unless
the couplings were very small. In the Standard Model the B- and L-conservations
are accidental symmetries, since it is not possible to include B- or L-violating
terms in the renormalizable Lagrangian.

The presence of W/B and W/L is prevented by introducing a discrete global
symmetry called R-parity [63, 64, 65, 66, 67]. All of the sparticles (squarks, slep-
tons, gauginos and higgsinos) are required to have negative R-parity, while the
SM particles are required to have positive R-parity. This can be written in terms
of the particle spin J , the baryon number B and the lepton number L as

PR = (−1)2J+3(B−L). (2.34)

A term in the Lagrangian is allowed only, if the product of the R-parities of
the particles is +1, thus excluding the terms of Eq. (2.32) and Eq. (2.33). The
consequence is that every interaction vertex contains an even number of particles
with PR = −1, i.e. sparticles. The remarkable consequence is that the lightest
supersymmetric particle (LSP) must be absolutely stable. Every other sparticle
eventually decays into a state which contains an odd number of LSPs. In particle
colliders sparticles can be produced only in even numbers, since the initial state
contains only ordinary particles.

The lightest supersymmetric particle is of great importance, since it always
remains in the end of decay chains involving supersymmetric particles. In many
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SUSY models the LSP is the lightest neutralino (χ̃0
1). Neutralinos are combina-

tions of neutral gauginos and higgsinos, which get mixed after the electroweak
symmetry breaking. The relative amounts of these mixing components define
the properties of neutralinos. Because neutralinos don’t have electromagnetic
interactions (or strong either), they are not detected in colliders. Instead, a
missing energy of 2meχ0

1
is observed as two LSPs leave the detector. Notice: In

hadron colliders only the missing energy component associated to the transverse
momentum component can be observed.

In the perspective of cosmology, the fact that the lightest neutralino is a
weakly interacting massive particle (WIMP) is desirable. The neutral LSP is a
good candidate for the cold dark matter. The calculations of the neutralino LSP

relic density are in accordance with the range of observed critical density (see
e.g. [68, 69]). Another possible supersymmetric WIMP candidate, sneutrino, has
been ruled out by direct searches.

In this dissertation the R-parity is supposed to be an exactly conserved sym-
metry. Usually this assumption is also included to the meaning of the word
“Minimal” in the MSSM acronym.

2.4 Breaking of Supersymmetry

It is evident that if supersymmetry exists, it must be a broken symmetry. In
unbroken supersymmetry the chiral superfields obey the tree level relation [70]

STrM2 ≡
∑

J

(−1)2J(2J + 1)m2
J = 0, (2.35)

where mJ is the mass associated with the field of spin J and STrM2 is so-called
supertrace, which is a spin-weighted sum taken over the squared mass matrix
of the real fields. For example, for the electron supermultiplet −2m2

e + m2
ẽ1

+
m2

ẽ2
= 0, which implies that one of the selectrons is lighter than or equal to the

mass of the electron. Charged superpartners lighter than corresponding Standard
Model fields would have been easy to detect, so the obvious conclusion is that
supersymmetry, if it exists, is a broken symmetry. This is in accordance with
the fact that particles in the same supermultiplet have the same mass. When
this is applied to the Higgs particle mass correction formula Eq. (1.23) one can
see how the supersymmetry removes the instability of the scalar mass radiative
corrections.

As was discussed in the section 2.1, if supersymmetry is unbroken in the vac-
uum state, the vacuum has zero energy, and if supersymmetry is broken (spon-
taneously), the vacuum has positive energy. Thus, if a supersymmetric vacuum
state exists as a local minimum of the scalar potential, it is also the global min-
imum of the potential. This requires that the scalar potential can’t have any
supersymmetric minima, if the supersymmetry is supposed to be broken.
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The global supersymmetry can be spontaneously broken, if some of the com-
ponent fields of a superfield gets a non-zero expectation value. For chiral super-
fields, the only possible field that can acquire a vev without breaking the Lorentz
invariance is the auxiliary scalar field Fi [71, 72]. This kind of SUSY breaking is
called F -term (Fayet-O’Raifeartaigh) breaking. When the field Fi gets a vev and
breaks the global symmetry, a massless Goldstone fermion, goldstino, appears.
The Goldstino is a fermionic equivalent of the massless Goldstone boson which
necessarily appears via Goldstone mechanism [73], when a global symmetry (with
bosonic generators) is broken.

The superpotential of the Eq. (2.22) cannot produce spontaneous SUSY break-
ing because one can always find a field configuration with a supersymmetric min-
imum by setting the vevs of φi in the Eq. (2.26) to zero. The Eq. (2.22) can be
generalized to have a linear term

W (Φ) = −kiΦi +
1

2
mijΦiΦj +

1

3
λijkΦiΦjΦk, (2.36)

which makes it possible to find a field configuration that breaks supersymmetry.
In this case the superfields Φi that appear in the linear term must be gauge
singlets in order not to break gauge symmetries.

In the case of vector superfields the possible field that may get a vev is
the D(x) field of the Eq. (2.20). This is again stated by the requirement of
Lorentz invariance. This method is called D-term (Fayet-Iliopoulos) supersym-
metry breaking [74]. This kind of breaking is useful when considering a gauge
theory which includes the U(1) gauge group. In this case the vev that resides
in the vectorial supermultiplet is a gauge singlet with respect to the other gauge
groups (in N=1 supersymmetry the U(1) symmetry is R-symmetry, an internal
symmetry that has non-trivial transformation properties w.r.t. supersymmetry,3

as discussed in the Sec. 2.1). In that case one can add a term

L /D = ξD(x) (2.37)

to the Lagrangian [74,64]. If all the other scalar fields are prevented from having
a vev, then D(x) must have a vev equal to −ξ, and supersymmetry is broken.

The supertrace formula (2.35) is actually valid also after a pure F -term su-
persymmetry breaking. Even though Eq. (2.35) is modified by the radiative
corrections in the presence of the supersymmetry breaking, it is not possible to
construct a spontaneously broken supersymmetric model with sparticle masses
at the tree level, where all the sfermions are heavier than corresponding fermions.
Using a D-term breaking this is possible, though, but then a new U(1)-symmetry
must be introduced, whose D-term gets a vev in the minimum of the potential.
The condition (2.35) can be circumvented, if the sparticle masses are created

3Under an U(1) R-symmetry in the N=1 supersymmetry the fermionic coordinates rotate
as θ → eiαθ and a chiral super field transforms as Φ(x, θ, θ)→ e−iqαΦ(x, eiqαθ, e−iqαθ) where q
is the charge of the U(1) group.
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through radiative corrections (see Sec. 2.6.2). It should be noted that if super-
symmetry is not broken at the tree level, then it cannot be broken by perturbative
corrections either [75,76,77]. This means in particular, that the supersymmetry
is broken at some hidden sector, and then communicated to the observable sector
by some interactions (gauge, gravitational, etc.).

In the MSSM there are no proper candidates for a supersymmetry breaking
fields. There are no gauge singlets whose F -term could generate a vev, and using
the D-term breaking associated with the U(1)Y leads to unacceptable particle
spectrum (and some of the quarks or leptons would get a non-zero vev). Thus the
supersymmetry breaking must be generated by some yet unknown fields at some
much higher mass scale than the electroweak scale inaccessible to experiments.
The phenomenology of MSSM can be still studied without knowing the exact
process that breaks supersymmetry.

Supersymmetry breaking can be parameterized by adding so-called soft break-
ing terms to the supersymmetric Lagrangian. The soft terms are terms of dimen-
sion three or less with respect to the fields, and they preserve gauge invariance
and parity. Therefore the couplings of the soft terms must have positive mass
dimensions. Inserting terms that break the symmetry between fermions and
sfermions brings back the hierarchy problem. The term “soft” means that these
terms do not destroy the cancellation of the divergences, and the main motivation
to use supersymmetry is maintained. Also the relationship of the dimensionless
couplings must be the same as in unbroken theory. The effective Lagrangian can
then be written in the form

L = LSUSY + Lsoft, (2.38)

where Lsoft violates supersymmetry but contains only mass terms and couplings
with positive mass dimension while LSUSY is still supersymmetric. Even though
the supersymmetry breaking is performed by hand, it is assumed that actual
breaking is spontaneous and the original theory is exactly supersymmetric. It
can be thought as if there were two different sectors, hidden and visible (or
observable). In the hidden sector the theory is fully supersymmetric, while the
visible sector contains the soft breaking terms.

The most general soft terms for a renormalizable supersymmetric theory are

Lsoft = − 1

2
(Mλ,aλ

aλa + H.C.) − (m2)j
iφ

i∗φj

−
(1

2
bijφiφj +

1

6
aijkφiφjφk + H.C.

)
,

(2.39)

where Mλ is a gaugino mass for each gauge group, m2 is a scalar mass term,
bij bilinear (squared mass) term and aijk is a trilinear coupling term. A softly
broken Lagrangian of the form Eq. (2.39) is free of quadratic divergences to all
orders of perturbation theory [78].

22



If there are no chiral supermultiplets that are singlets under the gauge group,
then it is also possible to add terms like

Lsoft =
1

2
rjk
i φiφjφk +

1

2
mij

F ψiψj + mia
A ψiλa + H.C. (2.40)

to the Lagrangian [79, 80, 81]. The term proportional to mij
F can be ignored,

since this term can be absorbed to the redefinition of the superpotential and to
the first term of Eq. (2.40). The last term in Eq. (2.40) is present only if there
are some matter fields (other than gauginos) in the adjoint representation of the
gauge group [82], which is not the case in the MSSM. When issuing a specific
supersymmetry breaking conditions, the terms of Eq. (2.40) are usually ignored.

2.5 Renormalization group evolution and the elec-
troweak symmetry breaking

In the context of the minimal supersymmetric standard model the most general
soft supersymmetry breaking terms are [83]

L
MSSM
soft = −1

2
(M1B̃B̃ + M2W̃W̃ + M3g̃g̃) + H.C.

− (uauQHu − dadQHd − eaeLHd) + H.C.

− Q†m2
QQ − L†m2

LL − um2
uu† − dm2

d
d
† − em2

ee
†

− m2
Hu

H∗
uHu − m2

Hd
H∗

dHd − (bHuHd + H.C.), (2.41)

where M1, M2, and M3 are the bino, wino, and gluino mass terms, respectively.
The terms au, ad and ae are complex 3 × 3 matrices in family space, and the
squared mass terms m2

i are 3 × 3 mass squared hermitean matrices in family
space. Finally, m2

Hu
and m2

Hd
are supersymmetry breaking contributions to the

Higgs potential, and b is the corresponding one for the bilinear mixing term.
The Lagrangian (2.41) is thought to be given at some high energy scale near

the Planck scale. Thus, if that is used to calculate the masses and cross-sections
at the electroweak scale, the results will include large logarithms coming from
loop diagrams. The logarithms can be resummed using the renormalization group
equations (RGE) by treating the parameters of the Lagrangian as running param-
eters. The energy scale dependence of the parameters is governed by the renor-
malization group (RG) evolution, and the corresponding equations that describe
such evolution are called renormalization group equations [84,85,86,87,88].

In order to get useful predictions of masses and cross-sections one must there-
fore evaluate the RG-running of the soft and superpotential parameters as well as
the gauge couplings down to the electroweak scale. One remarkable result of the
RGE-running in the MSSM is the unification of the gauge couplings [89,90,91,92].
The one-loop RGEs for the gauge coupling and the gaugino masses are

dαi

dt
=

1

4π
biα

2
i ,

dMi

dt
= 2biαiMi, (2.42)
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Figure 2.1: Gauge coupling unification in the SM and MSSM. One-loop evolution
from the electroweak scale up to the 1018 GeV.

where t = ln Q
MGUT

and Q is the renormalization scale, αi =
g2

i
4π and g2

1 = (5/3)g′2.
The β-function coefficients are given by b = (33/5, 1,−3) in the MSSM and b =
(41/10,−19/6,−7) in the SM. The running of the gauge couplings is shown in
Fig. 2.1. By using the measured initial conditions for the gauge couplings, the
coupling constants unify at around the scale 2×1016 GeV in the MSSM, whereas in
the SM they do not meet in a single point. This may be taken as a hint pointing
at some grand unification theory or superstring models, which predict gauge
coupling unification at some scale lower than MP. The energy scale at which the
gauge couplings unify is called the grand unification scale. The unification of the
gauge couplings is usually taken as a postulate when studying the supersymmetric
models,

αG
3 = αG

2 = αG
1 = αG(≈ 1/25). (2.43)

The RG-equations are coupled differential equations. Because of that, it turns
out that if the gaugino mass parameters Mλ are non-zero at the GUT-scale, then
all the other soft parameters will be generated via RG-evolution.4 Of a specific
interest are the equations for the soft Higgs mass-squared parameters [93, 94],
which can be written at one-loop order as

16π2 d

dt
m2

Hu
= 3Xt − 6g2

2|M2|2 −
6

5
g2
1|M1|2, (2.44)

16π2 d

dt
m2

Hd
= 3Xb + Xτ − 6g2

2|M2|2 −
6

5
g2
1|M1|2. (2.45)

In the models, where the trilinear a-terms are proportional to the Yukawa cou-
plings, the Xt, Xb, and Xτ are (in the limit, where other but the third family
Yukawa couplings are neglected)

Xt = 2|yt|2(m2
Hu

+ m2
Q3

+ m2
u3

) + 2|at|2, (2.46)

Xb = 2|yb|2(m2
Hd

+ m2
Q3

+ m2
d3

) + 2|ab|2, (2.47)

Xτ = 2|yτ |2(m2
Hd

+ m2
L3

+ m2
e3

) + 2|aτ |2. (2.48)

4The RG-equations are given in the Appendix A.5
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These are positive quantities, so their effect is always to decrease the Higgs parti-
cle masses as one evolves the RG equations downwards from the MGUT, with Xt

giving the largest contribution. This becomes relevant, when one examines the
behavior of the scalar potential at the minimum. The classical scalar potential of
the MSSM can be written (after using the SU(2)L gauge freedom to rotate away
a possible vev of one of the Higgs field components at the minimum)

V = (|µ|2 + m2
Hu

)|H0
u|2 + (|µ|2 + m2

Hd
)|H0

d |2

− (bH0
uH0

d + H.C.) +
1

8
(g2 + g′2)(|H0

u|2 − |H0
d |2)2. (2.49)

Without loss of generality, the phase of b can be absorbed into a redefinition of
the phases of Hu and Hd thus making b real and positive. In Eq. (2.49) the Higgs
doublets are written in component form,

Hu =

(
H+

u

H0
u

)
, Hd =

(
H0

d

H−
d

)
. (2.50)

Now, due to the large value of the top Yukawa coupling, the parameter m2
Hu

is pushed to the negative values at the electroweak scale, while the rest of the
scalar mass parameters remain positive. This is precisely what is needed for
the Higgs mechanism as discussed in the section 1.2. This mechanism is called
radiative electroweak symmetry breaking (rEWSB) [93,94,95,96,97,98], since the
electroweak symmetry breaking (EWSB) is driven purely by radiative corrections
(the resummation of the loop contributions is translated into the RG-evolution).

The tree level minimization condition of the scalar potential of the MSSM can
be written as

|µ|2 =
m2

Hd
− m2

Hu
tan2 β

tan2 β − 1
− 1

2
m2

Z , (2.51)

where tan β ≡ 〈H0
u〉/〈H0

d〉 = vu/vd. It is important that the true minimum of the
scalar potential is the minimum of the neutral Higgs potential (2.49). Otherwise
some of the other scalars could develop a charge and color breaking minimum,
which would make the vacuum unstable [99, 98, 100]. The one-loop corrections
to the scalar potential make this analysis quite complicated, but the tree level
potential can be used provided that the renormalization scale, which minimizes
the loop contribution, is chosen [101].

After the EWSB, three of the eight real degrees of freedom of the Higgs dou-
blets become the longitudinal components of the Z0 and W± gauge bosons, which
then acquire mass. The remaining five degrees of freedom are Higgs particle mass
eigenstates denoted by h0, H0 (scalars), A0 (pseudoscalar) and H± (charged).

The electroweak symmetry breaking affects naturally also the gaugino and
higgsino sectors. In the MSSM there are several sets of particles with same color,
charge, baryon and lepton numbers but different SU(2)×U(1) quantum numbers.
When the SU(2) × U(1) gauge symmetry gets broken, these states mix. The
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neutral higgsinos (H̃0
u and H̃0

d) and the neutral gauginos (B̃ and W̃ 0) combine in
order to form four neutral mass eigenstates called neutralinos. In the basis

ψ0 =




B̃

W̃ 0

H̃0
d

H̃0
u


 , (2.52)

the neutralino mass terms are written

−1

2
(ψ0)T M eχ0ψ0 + H.C. (2.53)

where [102,83]

M eχ0 =




M1 0 −cβ sW mZ sβ sW mZ

0 M2 cβ cW mZ −sβ cW mZ

−cβ sW mZ cβ cW mZ 0 −µ
sβ sW mZ −sβ cW mZ −µ 0


 , (2.54)

where the shorthand notation sβ = sinβ, cβ = cos β, sW = sin θW , and cW =
cos θW has been used. The mass matrix (2.54) can be diagonalized by a unitary
transformation, after which one finds the physical masses of the neutralinos. The
gaugino mass entries M1 and M2 can be chosen to be real by redefining the
phases of B̃ and W̃ . The phase of the µ parameter is a physical parameter and
cannot be rotated away. This can lead to possible combined charge conjugation
and parity (CP) -violating effects. (The Standard Model is invariant under the
CP-transformations except for a phase in the Yukawa matrices and the strong
QCD phase.) The properties of neutralinos were studied in the paper II of this
dissertation.

Similarly, the charginos are formed from four gauge eigenstates. The charged
higgsinos (H̃+

u and H̃−
d ) and winos (W̃+ and W̃−) mix to form two charged mass

eigenstates (actually four, but the positive and negative charged mass eigenstates

are degenerate in mass). In the basis ψ±T = (W̃+, H̃+
u , W̃−, H̃−

d ) the chargino
mass terms are

−1

2
(ψ±)T M eχ±ψ± + H.C. (2.55)

where [83]

M eχ± =

(
0 XT

X 0

)
, X =

(
M2

√
2mW sβ√

2mW cβ µ

)
. (2.56)

In contrast to the neutralinos, chargino masses are easily calculated by diagonal-
izing the 2 × 2 matrix m2 = X†X.

In principle, all the up-type squarks of the same color mix together by a 6×6
matrix. The same happens to the down-type squarks as well as the charged
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sleptons. Also the sneutrinos mix, but by a 3 × 3 matrix. Usually one supposes
that the squarks don’t get mixed (notably) in the flavor space, and the same is
assumed for the charged sleptons. In addition, only the third generation Yukawa
couplings give a substantial contribution through the RG-evolution, so in practice,
only the third generation squarks are mixed, as well as the third generation
sleptons. The mass mixing matrix for the top squarks in the gauge-eigenstate
basis φT

t̃
= (t̃L, t̃R) is given by

−φ†

t̃
m2

t̃
φt̃ (2.57)

where

m2
t̃

=

(
m2

Q3
+ m2

t + ∆u v(atsβ − µytcβ)

v(atsβ − µytcβ) m2
u3

+ m2
t + ∆u

)
. (2.58)

In above ∆φ = m2
Z cos 2β(T φ

3 − Qφ
EM sin2 θW ) where T φ

3 and Qφ
EM are the third

component of weak isospin and the electric charge of the chiral supermultiplet
to which φ belongs. The quantity v is related to the vevs of Higgs fields as
v2 = v2

u + v2
d. The mass eigenstates are

(
t̃1
t̃2

)
=

(
cos θt̃ sin θt̃

− sin θt̃ cos θt̃

) (
t̃L
t̃R

)
(2.59)

where m2
t̃1

< m2
t̃2

are the eigenvalues of Eq. (2.58) and 0 ≤ θt̃ ≤ π. The off-
diagonal entries will typically induce a significant mixing which reduces the lighter
top-squark (mass)2 eigenvalue. Often the t̃1 is the lightest squark. The mass
mixing matrix for the bottom squarks in the gauge-eigenstate basis φT

b̃
= (̃bL, b̃R)

is given by

m2
b̃

=

(
m2

Q3
+ m2

d v(abcβ − µybsβ)

v(abcβ − µybsβ) m2
d3

+ ∆d

)
. (2.60)

The tau slepton mixing matrix can be obtained from m2
b̃

by changing d → e,

d̄ → e and b → τ in Eq. (2.60). Diagonalizing these will give the mass eigenstates
(̃b1, b̃2) and (τ̃1, τ̃1).

The mass eigenstates of the first two generations are nearly the same as the
gauge eigenstates. Because the RGEs are highly coupled, it is convenient to solve
them only numerically.

2.6 Supergravity – Models for SUSY breaking

It is natural to think that supersymmetry, as an extension of the Poincaré sym-
metry, is a local symmetry. Since the supersymmetry is a spacetime symmetry
by nature (though the residual R-symmetry makes it also a type of an internal
symmetry), one may expect that the local supersymmetry is a theory of local
coordinate transformations, i.e. theory of gravity. Most of the symmetries in
particle physics are local symmetries rather than mere global symmetries, which
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also gives a hint that supersymmetry is a local symmetry. In locally supersym-
metric theory the parameters of SUSY transformation of Eq. (2.13) depend on
the spacetime point explicitly. The locally supersymmetric theory is known as
supergravity [103,104,105,106].

The supersymmetry breaking is supposed to be generated spontaneously. The
breaking of the global supersymmetry introduces a massless Weyl fermion, gold-
stino. The spin-2 graviton has a spin-3

2 superpartner called gravitino. In princi-
ple, the superpartner of graviton could also be a spin-5

2 fermion, but it would be
hard to couple that to other fields, so the spin-3

2 superpartner is chosen. When
local supersymmetry is spontaneously broken, the gravitino acquires mass via
super-Higgs mechanism [107, 106], analogous to the usual Higgs mechanism. It
turns out that the contributions from supergravity are of the same order of magni-
tude as the non-gravitational ones, implying that the gravitational effects cannot
be neglected even when considering only the low-energy theory [108, 109]. In
supergravity the supertrace formula Eq. (2.35) receives radiative corrections thus
making the superpartner masses heavier, which removes the mass degeneracy of
a supermultiplet. This is due to the non-renormalizability of the supergravity.

To derive a locally invariant supersymmetric Lagrangian one starts with a
generalized globally supersymmetric Lagrangian [110]

LGLOBAL =

∫
d4θK(Φ†e2gV , Φ) +

∫
d2θ(W (Φ) + H.C.)

+

∫
d2θ(fab(Φ)Wα

a Wαb + H.C.). (2.61)

The first term of Eq. (2.29) is generalized to be a general function of superfields
K(Φ†, Φ), because a theory involving gravity is not required to be renormaliz-
able.5 Coupling to the vector multiplets is arranged with the minimal coupling
e2gV . The function coefficient fab of the gauge field strength superfields Wa (see
Eq. (2.28)) is called gauge kinetic function and it is an arbitrary function of the
superfields Φi. In a similar way, W (Φ) may contain any number of products of
superfields. The only restriction is that the resulting non-renormalizable terms
must contain gravitational coupling constant in such a way that the theory will
be renormalizable again when gravity decouples (in the limit MP → ∞). The
function K(Φ†, Φ) can be reformulated as

K(Φ†, Φ) = −3|W (Φ)| 23 e−
G(φ∗,φ)

3 . (2.62)

The dimensionality of K(Φ†, Φ) is two, [K] = 2. The function G in Eq. (2.62)

5In fact, any interacting theory containing a spin-2 particle is non-renormalizable.
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can be expressed with the help of K and W as

G(φ∗, φ) = J(φ∗, φ) + ln
|W |2
M6

P

, (2.63)

J(φ∗, φ) = −3 ln
−K(φ∗, φ)

3M2
P

, (2.64)

where G(φ∗, φ) is a real analytic function of scalar fields called Kähler potential
with dimension zero ([G] = 0; here MP is the reduced Planck mass 8πGNM2

P ≡ 1).
The same K is obtained for different choices of J because G is invariant under
the Kähler transformations [110,111]

J →J + h(φ) + h∗(φ∗)

W → e−hW.
(2.65)

where h is an arbitrary holomorphic complex function.
From the global supersymmetric action one can construct a locally invariant

action systematically by using the Noether procedure [103, 112, 54]. First, a
local transformation is performed to the globally symmetric Lagrangian. The
original Lagrangian is not invariant anymore, but there exists a remainder term.
That term is explicitly cancelled by subtracting it from the original Lagrangian,
and modifying the transformation rule accordingly. The modified Lagrangian
becomes schematically now

L1 = L0 − δL0. (2.66)

The new local transformation is then performed to L1 and the iterative process
is continued until the Lagrangian is invariant under the newly constructed trans-
formation. In the process new gauge fields have to be introduced in order to be
able to cancel the remainder. The gauge field of gravity is gravitino in this sense.
If terms to the transformation law has been added, the closure of supersymmetry
algebra must be confirmed at each step. After quite tedious calculations [112,106]
the locally supersymmetric Lagrangian is obtained.

The scalar potential (i.e. the part of the Lagrangian that does not contain
fermions or derivatives) becomes [102]

V = M4
PeG

(
Gi(G−1)j

iGj − 3
)

+
g2M4

P

2
Ref−1

ab Gi(T a)ijφjG
k(T b)klφl, (2.67)

where Gi ≡ ∂G/∂φ∗
i and

(
G−1

)j

i
is the matrix of second derivatives of G−1. The

matrix Gj
i is called Kähler metric. The first term of Eq. (2.67) comes from F -

terms and the second from D-terms. If the supersymmetry breaking is thought
to be induced via F -term breaking, then the D-term contributions can usually
be ignored.
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The Kähler potential determines the conditions for the supersymmetry break-
ing. Supersymmetry is broken spontaneously via F -term, if

〈Gi〉 ≡ 〈∂G/∂φi〉 6= 0 (2.68)

for some field φi. For the D-term breaking the condition is

Gi(T a)ijφj 6= 0. (2.69)

From Eq. (2.67) one can see that if supersymmetry is not broken (i.e. the condi-
tions of the Eq. (2.68) and Eq. (2.69) evaluate to zero) the potential Eq. (2.67)
becomes V = −3M4

PeG. This is negative semidefinite, which is quite an opposite
to the global supersymmetry (see Eq. (2.11) on page 13). If local supersymmetry
is broken, the potential can have any value: positive, negative or zero in the
minimum (in global supersymmetry the vanishing vacuum energy was a condi-
tion for unbroken supersymmetry). The vanishing of the potential in a broken
phase enables one to fine-tune the cosmological constant to an appropriate value
〈V 〉 ≈ 0.

After the super-Higgs mechanism (the D-terms neglected) the gravitino ab-
sorbs the massless goldstino and gains a mass [102,83]

m2
3/2 =

1

3
〈Gi

jFiF
∗j〉 = M2

P e〈G〉, (2.70)

where Fi = −M2
PeG/2(G−1)j

iGj is the order parameter for the supersymmetry
breaking. The last equality follows if 〈V 〉 = 0.

It is assumed that the superfields of the theory can be divided into two sec-
tors: observable and hidden. The observable sector fields are the superfields of
the MSSM. The hidden sector fields include gauge superfields of an asymptoti-
cally free gauge interaction that becomes strong at some intermediate scale ΛS

between the weak and Planck scales. These non-perturbative interactions are
weak at the Planck scale but become strong at the scale ΛS. There are also
chiral superfields Zi that can feel this gauge interaction. The observable sec-
tor superfields obviously don’t feel the hidden sector gauge interactions, because
otherwise those would have already been discovered.

After the generation of the soft breaking terms, there are 124 independent
parameters in the MSSM [113,114]. Of these, 18 parameters correspond to Stan-
dard Model parameters and one corresponds to one of the Higgs sector masses.
The remaining 105 are genuinely new parameters of supersymmetric origin: 21
squark and slepton masses, 36 real mixing angles to define the squark and slep-
ton mass eigenstates, five real parameters and three CP-violating phases in the
gauge/gaugino/Higgs/higgsino sector, and 40 new CP-violating phases that can
appear in squark and slepton interactions.
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2.6.1 mSUGRA

As discussed above, the soft supersymmetry breaking terms derived from spon-
taneous hidden sector SUSY breaking are highly diverse. In general there are
over hundred new parameters introduced to the model, which makes studying
the phenomenology of the model practically impossible. Fortunately, there are
scenarios that reduce the number of free parameters.

In gravity mediated (or minimal supergravity inspired) supersymmetry break-
ing scenario mSUGRA the information of the breakdown of supersymmetry at the
hidden sector is transmitted to the visible sector via gravitational interactions. It
is assumed that there are no Fayet-Iliopoulos (D) terms and the actual breaking
is due to the vevs of the auxiliary superfields in the F -terms. Also the Kähler
metric (see p. 29) is flat, which means that the Kähler potential is only linear in
φ∗φ and receives the value (G−1)i

j = δi
j .

The hidden sector superfields are completely neutral with respect to the Stan-
dard Model gauge group. If the observable sector superfield is denoted by Y ,
and the hidden sector superfield by Z, then the superpotential can be written
schematically as

W (Zi, Yr) = W (Zi) + W̃ (Yr) (2.71)

This way any other than the gravitational effects are absent between the two
sectors.

In this scenario, in the leading order, one may assume the minimal form of
the kinetic terms, in which case the Kähler potential is

G = M−2
P (z∗izi + y∗ryr) + ln

|W |
M6

P

, (2.72)

where z and y are scalars corresponding to the superfields Z and Y , respectively.
Supersymmetry is assumed to be broken by the hidden sector vacuum expectation
values

〈zi〉 = diMP, 〈W̃i〉 = 〈∂W̃/∂zi〉 = ciµMP, 〈W̃ 〉 = µM2
P, (2.73)

with zero energy vacuum expectation value. The low energy effective potential
is obtained by replacing zi, W̃i and W̃ by their expectation values and keeping
only those terms that do not vanish in the flat-limit MP → ∞ (but keeping the
gravitino mass fixed). The gravitino mass in this case is

m3/2 = |µ| exp(|di|2/2). (2.74)

Using the rescaled visible sector superpotential

Ŵ = W̃ exp(|di|2/2) (2.75)

the effective potential becomes [115,116]

V = |Ŵr|2 + m2
3/2|yr|2 + m3/2(yrŴr + (A − 3)Ŵ + H.C.) + (D-terms) (2.76)
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where A = d∗i (c
∗
i + di). If one expands the visible sector superpotential like [117]

Ŵ = m2
i yi + bijyiyj + aijkyiyjyk + . . . (2.77)

the potential (2.76) can be written as

V ≃ |Ŵr|2 + m2
3/2|yr|2+

m3/2

[
(A − 2)m2

i yi + (A − 1)bijyiyj + Aaijkyiyjyk + H.C.
]
. (2.78)

The first term is scalar potential of the unbroken global supersymmetry (see
Eqs. (2.24) – (2.26)), the second term is a common mass term for all the scalars
in the observable sector and following terms give linear, bilinear and trilinear
couplings between the scalars. The Eq. (2.78) is of the form of the softly broken
globally supersymmetric model discussed in Sec. 2.4 on page 22.

The derivation of the gaugino mass terms requires a non-minimal gauge ki-
netic function fab. If the gauge kinetic function can be expanded in powers of
1/MP as

fab = ηab

[ 1

g2
a

+
1

MP
f i

aΦi + . . .
]
, (2.79)

then the gaugino masses are generated by supersymmetry breaking as

mλa =
1

2MP
Re(f i

a)〈Fi〉. (2.80)

If one assumes the equality of Re(f i
a) for each gaugino, then also the gaugino

masses are universal at the GUT scale. This is, however, not motivated by the
gravity mediated SUSY breaking scenario, but rather only by the request for
simplicity.6

In the context of the MSSM, the resulting parameter space has shrunk into
only four independent SUSY breaking parameters: The common scalar mass m0 =
m3/2, the common gaugino mass m1/2 = 1

2MP
Re(f i)〈Fi〉, the common trilinear

coupling A0 = m3/2Aa and the Higgs doublet mixing parameter B0 = (A − 1)b,
which is usually written as B0µ, where µ is the supersymmetric Higgs mass
parameter, which can be considered as a fifth input parameter. After the elec-
troweak symmetry breaking and requirement that the Z-boson obtains its mea-
sured value, the µ and another input parameter B0 can be written in terms of
the ratio of the Higgs doublet vevs tan β and the electroweak symmetry breaking
scale v. The sign of µ remains as a free parameter.

The gravity mediated supersymmetry breaking as considered above doesn’t
explain, why the soft breaking terms in the squark sector should be almost degen-
erate in flavor in order to avoid constraints from flavor-changing neutral current
(FCNC) processes [118]. In the Standard Model the accidental symmetries sup-
press the flavor violation (the so-called GIM mechanism by Glashow, Iliopoulos

6One can construct string and GUT models, which suggest universality of gaugino masses.
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and Maiani [119]), while in the MSSM in the presence of new scalar particles
this mechanism is replaced by the super-GIM mechanism [120,121,122,123]. One
solution to the flavor problem is provided by the so-called gauge mediated super-
symmetry breaking (GMSB) model [124, 125, 126, 127, 128, 129], where some new
chiral supermultiplets, called messengers, mediate the supersymmetry breaking
from the hidden sector to the visible sector. There is, however, a built-in solution
to the flavor problem in the gravity mediated model already, provided that the
tree level SUSY breaking contributions coming from the gravity mediation are
suppressed. It is called the anomaly mediated supersymmetry breaking.

2.6.2 Anomaly mediated SUSY breaking

The soft supersymmetry breaking terms in the gravity mediated supersymmetry
breaking mechanism has contributions originating from the super-Weyl anomaly
via loop effects [130]. In order to get the supergravity Lagrangian kinetic terms
into the canonical form, one must rescale the metric by the Weyl transformation

gµν → eK/3M2
Pgµν . (2.81)

This is justified by the fact that the supergravity Lagrangian is invariant un-
der the Kähler transformations of Eq. (2.65) provided that an auxiliary chiral
superfield is “compensating” the transformations [106,110],

ϕ → eh/3ϕ. (2.82)

Note that the field ϕ, called Weyl compensator, is not physical and is rotated
away through a Weyl rescaling, until its scalar component receives a vev. In that
case, the compensator superfield ϕ is usually written

ϕ = 1 + θ2m3/2. (2.83)

However, in the quantum level the Lagrangian is not invariant under the Weyl
transformation (2.81). Due to this breakdown of the superconformal Weyl invari-
ance, the symmetry can be violated at the loop level giving rise to the anomalous
contributions to the soft Lagrangian. Thus the soft masses are expected to be
generated at the loop level, and this effect is present in all hidden sector models.

The anomalous contributions are usually suppressed, because the tree level
couplings give the dominant contribution. If the tree level contributions, however,
are somehow absent or very suppressed, the anomaly mediated contributions can
dominate, as may happen, e.g., in brane models [131]. (The brane models will
be discussed in more detail in the context of extra dimensions in Section 3.1.)
This kind of mechanism of supersymmetry breaking is referred to as the anomaly
mediated supersymmetry breaking (AMSB) [131, 132, 133]. Anomaly mediation
is a predictive framework for supersymmetry breaking in which the breaking of
scale invariance mediates the supersymmetry breaking between the hidden and
visible sectors.
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The soft supersymmetry breaking parameters can be written in terms of the
beta functions of the RG-equations and anomalous dimensions.7 In the MSSM

the pure anomaly mediated contributions to the soft supersymmetry breaking
parameters mλ (gaugino mass), m2

i (soft scalar mass squared), and Ay (the tri-
linear supersymmetry breaking coupling, where y refers to the Yukawa coupling)
can be written as

mλ =
βg

g
m3/2, (2.84)

m2
i = −1

4

(
∂γi

∂g
βg +

∂γi

∂y
βy

)
m2

3/2, (2.85)

Ay = −βy

y
m3/2, (2.86)

where m3/2 is the gravitino mass, quantities β are the relevant beta functions,
and quantities γ are the anomalous dimensions of the chiral superfields. An
immediate consequence of these relations is that supersymmetry breaking terms
are renormalization group invariant to all orders. Also the flavor violation effects
are proportional to the Yukawa couplings, thus avoiding large effects in FCNC

processes. In this way the gaugino masses are proportional to their corresponding
gauge group β-functions with the lightest supersymmetric particle being mainly
an SU(2) gaugino wino (in a scenario, where the breaking is mainly due to the
gravitational interactions at the tree level, the LSP is usually a U(1) gaugino
bino). Analogously, the scalar masses and trilinear couplings are functions of
gauge and Yukawa coupling β-functions.

However, since the beta functions for SU(2) and U(1) are both positive, it
turns out that the pure scalar mass-squared anomaly contribution for sleptons
is negative giving rise to tachyons in spectrum [131]. There are a number of
proposals for fixing the problem of tachyonic slepton masses [134, 135, 136, 137,
138, 139, 140, 141]. Additional contributions to the slepton masses can arise in a
number of ways, but some of the solutions will spoil the most attractive feature
of the anomaly mediated models, i.e., the renormalization group invariance of
the soft terms and the consequent ultraviolet insensitivity of the mass spectrum.
Nevertheless, there are various ways to cure this problem without re-introducing
the supersymmetric flavor problem [131,134]. The simplest option is to introduce
a common mass parameter m0 to all of the squared scalar masses [142]. This
parameterizes the non-anomaly mediated contributions to the slepton masses,
so as to cure their tachyonic spectrum. This addition does not re-introduce
the supersymmetric flavor problem. This model is called a minimal anomaly
mediated supersymmetry breaking model (mAMSB).

Another possible way of resolving the tachyonic slepton mass problem is the
so-called gaugino assisted AMSB model (g̃AMSB). In the gaugino assisted anomaly

7Anomalous dimensions are defined as a derivative of the wave function renormalization
w.r.t. the renormalization scale, γ = ∂ ln Z/∂ ln µ.
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mediated model it is assumed that the gauge and gaugino fields reside in the
bulk of the extra dimension [143]. There are no singlets in the hidden sector
thus suppressing the tree level contributions and leaving the AMSB to be the
leading breaking effect. The scalar soft masses receive additional contributions
proportional to the eigenvalues of the quadratic Casimir operators of the relevant
gauge group, thus removing the tachyonic sleptons.

The third possible solution to the tachyonic slepton problem is to add an extra
U(1) gauge group to the model in addition to the usual MSSM gauge symmetry
structure [141]. The D-term contributions to the scalar masses are of opposite
sign for the left- and right-handed particles. If now both the left- and right-
handed particles have a positive charge under the new U(1)-group, then there
can be positive contributions to the squared masses of the scalars.

In the article I of this dissertation the properties of these different anomaly
mediated supersymmetry breaking scenarios were considered. The sum rules
for sparticle masses were derived in order to distinguish different AMSB models,
as well as rules to distinguish SUGRA type models from AMSB models. The
sparticle spectrum were calculated for each model in order to compare the effects
of the tachyonic mass fixing. Also, in the paper II the properties of the lightest
neutralino in the AMSB was considered. General upper limits for the lightest
neutralino mass were derived for both the AMSB and SUGRA type models.

In the AMSB scenario the gaugino masses are non-universal at the GUT-scale.
This could be true also in other breaking scenarios. The possibility of non-
universal gaugino masses originating from the specific GUT-scenarios (SU(5)) is
discussed in the Section 2.8.

2.7 Split supersymmetry

The main motivation for supersymmetry, as discussed so far, has been its ability
to give a solution to gauge hierarchy problem, as discussed in the Section 1.2.
This is known as a naturalness criterion for a model. The naturalness in the
MSSM is not perfect, though. The most pressing issue is the even more severe
fine-tuning problem associated with the cosmological constant, which seems to
be tuned to one part in 10120.

During the past year an idea not to treat the hierarchy problem as a real
problem has emerged. In the so-called split supersymmetry models [144,145,146]
most scalars have very high masses whereas the fermions are kept light. In this
framework it is assumed that the smallness of the cosmological constant could
be explained by an anthropic principle [147] stating that the structure formation
of the galaxies would require the smallness of the cosmological constant. If the
cosmological constant was something else, no-one would be here wondering it. In
a similar way, the formation of atoms [148] requires a small enough Higgs vev.

Abandoning the requirement of solving the hierarchy problem removes also
the need for the theory to be supersymmetric. However, if one requires a proper
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dark matter candidate and the gauge coupling unification, the particle content
of the MSSM is still the most minimal which satisfies these requirements [145].

The major successes of the supersymmetric standard model are the gauge
coupling unification (as discussed in the Section 2.5) and the emergence of the
viable dark matter candidate, the lightest supersymmetric particle (see Section
2.3). In the split supersymmetry these are still present, but some of the problems
of the MSSM are swept away. When the gauginos and higgsinos are kept light (as
required by the chiral symmetries and the gauge coupling unification to be still
valid), the light neutralino is a good dark matter candidate for an LSP. When all
the scalar masses are heavy w.r.t. the electroweak scale (except one Higgs particle
which mass is fine-tuned to be at the EW-scale), the FCNC effects are suppressed
at the low scale. The same happens for the dimension five interactions that
mediate proton decay. Also the non-observation of the supersymmetric particles
or the Higgs boson at the LEP or Fermilab can be explained by the heavier SUSY

breaking scale.

The split supersymmetry model is described by six parameters: (1) a common
mass m̃ for the heavy scalars, (2) tanβ, where the angle β defines the combination
of neutral SU(2)-doublet Higgs fields which remains light, (3) the higgsino mass
parameter µ, (4) the gluino mass mg̃, (5) the grand unification scale MGUT, and
(6) the unified value of the gauge coupling strength αG at MGUT. The last two
are more or less fixed by the requirement of consistency with measurements of the
three gauge coupling strengths at laboratory energies, thus leaving four relevant
parameters.

Above the common heavy scalar mass scale m̃ the model is equal to the
ordinary MSSM. The model below the scale m̃ is described by the effective the-
ory obtained from the MSSM by removing squarks, sleptons and charged, heavy
neutral and pseudoscalar Higgs particles from the particle content. The two
Lagrangians are then matched at the boundary at m̃, likewise the split SUSY La-
grangian which is matched to the SM Lagrangian at the SUSY breaking scale (say,
mLSP). A notable difference compared to the MSSM is the existence of gaugino
couplings below the splitting scale m̃.

In the paper III of this dissertation the split supersymmetry has been analyzed
in the light of the infrared fixed point of the top Yukawa coupling. In general,
the observed physical quantities are assumed to be renormalization group evolved
values of the parameters of the underlying high energy theory. This suggests that
the low-energy values are defined by the actual values at the high scale. However,
there are conditions, where the values of the parameters are determined only by
the dynamics at the low energy scale. If the value of the parameter at the low
energy scale does not depend on the value at the high energy scale, it is said to
be on its fixed point value. This can happen e.g. for the top Yukawa coupling if
the value at the high scale is large enough.

One can relate the Yukawa couplings to the gauge couplings through the
RG evolution using the (quasi) infrared fixed points [149, 150]. The ratio of the
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top Yukawa coupling and the QCD gauge coupling is an example that obeys the
(exact) fixed point structure. The related quasi fixed point is gained formally
when the RGE of a parameter has a Landau pole at the high renormalization
scale (e.g. MGUT).

In the Standard Model the top Yukawa coupling is larger than the others.
The fixed point structure would explain this quite nicely, but the mass of the
top quark obtained this way is a bit too large. In the MSSM the fixed point
structure relates the mass of the top quark to the value of tanβ. Numerically
the low-energy value of the top Yukawa coupling is indeed insensitive to its high-
energy value for a wide range of GUT-scale values Yt(GUT) >∼ 0.01 [151]. Thus, if
the fixed point is realized, the parameter space can be reduced and the model is
more predictive. Since the infrared fixed point behavior depends on the running
of the gauge couplings, its behavior is different in the split supersymmetry model
than in the general MSSM.

If one supposes that the top quark Yukawa coupling is at its fixed point
value, then, also in the split SUSY the top quark mass depends on the value of
tan β. Because the mass of the top quark is known within limits (1σ) Mpole

t =
178.0 ± 4.3 GeV [36], the values of tanβ can be limited to a narrow region in
m̃-tan β space. Our conclusion is that the infrared fixed point scenario is strongly
disfavored in the case of split supersymmetry, more recently pointed out also by
Delgado and Giudice [152].

2.8 Non-universal gaugino masses

Particle spectrum and masses are the quantities that are observed in the collider
experiments. The neutralino sector has significant role in these experiments,
since the lightest neutralino is in most scenarios of SUGRA type models the
lightest supersymmetric particle. If the LSP is supposed to be stable, as is the
case when R-parity is conserved, it eventually participates in any process involv-
ing SUSY particles, as being the last supersymmetric particle to be produced.
Because neutralino mass eigenstates are mixtures of the gaugino and higgsino
gauge eigenstates, the properties of neutralinos are determined mainly by the
initial conditions of the gaugino and higgsino mass parameters. In the minimal
supersymmetric standard model all the gaugino mass parameters are assumed
to be equal at the GUT scale. In grand unified theories it is, however, equally
possible to have a situation where the gaugino masses are not universal at the
GUT scale.

The large number of free parameters in the Standard Model gives motivation
for grand unified theories. Furthermore, when supersymmetry is introduced to
solve the technical aspects of the gauge hierarchy problem, the number of free
parameters is increased with respect to the SM. In order to reduce the number
of parameters, it is appealing to think that there exists a unifying theory.

The SU(5) is the simplest model for GUT that is able to contain the SM group
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SU(3)×SU(2)×U(1) as a subgroup. SU(5) is a simple group and it has rank four,
the same as the SM group, which is the minimal requirement for a unifying group.
In the global supersymmetric SU(5) theory there are three different degenerate
vacua corresponding to the SU(3)×SU(2)×U(1), SU(4)×U(1) and the unbroken
SU(5) [59,153,154]. This degeneracy can be lifted by making the supersymmetry
to be a local symmetry. If one chooses parameters suitably, the gravitational
effects sets a vev that gives SU(3) × SU(2) × U(1) to be the global minimum
[155,156].

In the local supersymmetric theory the Lagrangian can be written in terms of
two fundamental functions, the Kähler potential [106] G(Φi, Φ

∗
i) which is a real

function of chiral superfields and a singlet under the gauge group, and the gauge
kinetic function fab(Φ), which transforms as a symmetric product of two adjoint
representations. In general, the Φi fields are a set of superfields that are relevant
to the resulting effective theory. Here one is interested in the gaugino mass terms,
that result from the gauge kinetic part of the Lagrangian. The Lagrangian for
the coupling of gauge kinetic function to the gauge field strength W a is written
as

Lgk =

∫
d2θfab(Φ)W aW b + H.C., (2.87)

where a and b are gauge group indices, and repeated indices are summed over.
The gauge kinetic function can be expanded in terms of the gauge non-singlet
fields as

fab(Φ) = f0(Φ
s)δab +

∑

n

fn(Φs)
Φn

ab

MP
+ · · · (2.88)

The Φs and the Φn are the gauge singlet and the gauge non-singlet chiral su-
perfields, respectively. It is actually possible to cut the expansion of the gauge
kinetic function after the linear non-singlet term, since the vev of the relevant
non-singlet fields are assumed to be small [157], provided that the unification
scale MGUT ≪ MP [158].

It is assumed that the auxiliary part FΦ of a chiral superfield Φ gets a vev
〈FΦ〉, and breaks supersymmetry. Additionally, it is assumed that the SU(5)
gauge symmetry is broken to the SM gauge group SU(3) × SU(2) × U(1) by a
non-zero vev ’s of non-singlet scalar fields. Then the gaugino masses arise from
the coupling of f(Φ) with the field strength superfield W a,

Lgk ⊃ 〈FΦ〉ab

MP
λaλb + H.C., (2.89)

where the fields λi are the gaugino fields. Since the gauge kinetic function trans-
forms as a symmetric product of two adjoint representations, Φ and FΦ can belong
to any of the (irreducible) representations appearing in the symmetric product
of the two 24 dimensional representations of SU(5):

(24 ⊗ 24)Symm = 1 ⊕ 24 ⊕ 75 ⊕ 200. (2.90)
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Table 2.3: Ratios of the gaugino masses at the GUT scale in the normalization
M3(GUT) = 1, and at the electroweak scale in the normalization M3(EW) = 1 at
the 1-loop level.

FΦ MG
1 MG

2 MG
3 MEW

1 MEW
2 MEW

3

1 1 1 1 0.14 0.29 1
24 -0.5 -1.5 1 -0.07 -0.43 1
75 -5 3 1 -0.72 0.87 1
200 10 2 1 1.44 0.58 1

Only the component of FΦ that leaves the SM group SU(3) × SU(2) × U(1)
invariant should acquire a vev, in which case

〈FΦ〉ab = caδab. (2.91)

In general the gauge couplings are not equal at the GUT scale anymore due
to the corrections of the order of O(MGUT/MP) ∼ O(1/100) . It is, however,
adequate here to neglect such small non-universalities in the SU(3)×SU(2)×U(1)
couplings. In fact, the contributions of non-universality to the gauge couplings
have little effect on the phenomenological aspects.

In the minimal case Φ and FΦ are assumed to be in the singlet representation
of SU(5), which implies equal gaugino masses at the GUT scale. However Φ can
belong to any of the non-singlet representations 24, 75, and 200 of SU(5), in
which case these gaugino masses are unequal but related to each another via the
representation invariant coefficients ca.

If one assumes that the dominant component of gaugino masses comes from
one of the non-singlet F -component (i.e. the possible singlet component vev is
small enough), then the ratios of resulting gaugino masses can be calculated as
in Table 2.3. The coefficients that determine these mass relations are calculated
from the generators of the unifying gauge group. For example, for the represen-
tation 24 the group theoretical coefficients ca of the Eq. (2.91) are [157]

caδab ≡ dab 24 = 2Tr
[
{λa/2, λb/2}λ24/2

]
, (2.92)

where the λa/2 are the generators of SU(5) in the adjoint representation of
dimension 24. The coefficients for other representations are calculated similarly.
It should be noted that Φ can actually transform as a linear composition of any
of the representations, in which case the ratios of the gaugino masses change.

The RG-running of the gaugino masses Mi and the gauge couplings αi (see
Eq. (2.42)) are closely related at the one-loop level. The ratio of these is the
same regardless of the renormalization scale:

Mi(t)

αi(t)
=

Mi(GUT)

αi(GUT)
. (2.93)

39



Hence the RG-dependence of the gaugino masses can be expressed as

M1 =
5

3

α

cos2 θW

M1(GUT)

α1(GUT)
, (2.94)

M2 =
α

sin2 θW

M2(GUT)

α2(GUT)
, (2.95)

M3 = α3
M3(GUT)

α3(GUT)
. (2.96)

Using the gaugino mass relations determined at the GUT-scale one can write
down the relations between the gaugino masses at any scale in the chosen rep-
resentation. For the 24 dimensional representation of SU(5) the gaugino mass
relations are

M1

M3
= −1

2

(5

3

α

cos2 θW

) 1

α3
,

M2

M3
= −3

2

( α

sin2 θW

) 1

α3
. (2.97)

Similarly, for the 75 dimensional representation of SU(5) one has

M1

M3
= −5

(5

3

α

cos2 θW

) 1

α3
,

M2

M3
= 3

( α

sin2 θW

) 1

α3
, (2.98)

and for the 200 dimensional representation of SU(5) the relations are

M1

M3
= 10

(5

3

α

cos2 θW

) 1

α3
,

M2

M3
= 2

( α

sin2 θW

) 1

α3
. (2.99)

These results are then run down to the electroweak scale by using the relevant
renormalization group equations for the gauge couplings. The relations at the
electroweak scale are shown in the Table 2.3. These are calculated using one loop
RG-equations for the gaugino masses and the gauge couplings. Two-loop effect
is to increase the M1/M2-ratio slightly.

After the SU(5) and supersymmetry breaking the resulting model can be
parameterized by six parameters: The gluino mass M3(GUT), ratio of Higgs vev ’s
tan β = 〈H0

2〉/〈H0
1〉, the supersymmetric Higgs mixing parameter µ, the universal

scalar mass m0, pseudoscalar Higgs boson mass mA and the trilinear coupling
A0. After the radiative EWSB the values µ and mA can be calculated leaving
only sign(µ) undetermined.

In paper IV of this dissertation the phenomenology of the non-universality
of the gaugino masses was studied. Because of the importance of the LSP in
particle interactions as well as in the cosmological dark matter considerations, the
properties of the lightest neutralino were analyzed. In this work it was assumed
that the lightest neutralino is the LSP. Also two specific types of particle decays
involving Higgs bosons and neutralinos were considered in order to study the
effects of the non-universality in the Higgs sector phenomenology.

From the trace of the neutralino and chargino matrices, one can calculate
the average mass squared difference of the charginos and neutralinos. This mass
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squared difference depends only on the physical masses, and not on the Higgs(ino)
mass parameter µ or the ratio of vevs, tan β [159]. For the four different repre-
sentations of SU(5) which arise in Eq. (2.90), one finds at the tree-level the sum
rules

M2
sum = 2(M2

χ̃±

1
+ M2

χ̃±

2
) − (M2

χ̃0
1
+ M2

χ̃0
2
+ M2

χ̃0
3
+ M2

χ̃0
4
)

= (α2
2 − α2

1)
M2

g̃

α2
3

+ 4m2
W − 2m2

Z , for 1, (2.100)

= (
9

4
α2

2 −
1

4
α2

1)
M2

g̃

α2
3

+ 4m2
W − 2m2

Z , for 24, (2.101)

= (9α2
2 − 25α2

1)
M2

g̃

α2
3

+ 4m2
W − 2m2

Z , for 75, (2.102)

= (4α2
2 − 100α2

1)
M2

g̃

α2
3

+ 4m2
W − 2m2

Z , for 200. (2.103)

From these sum rules one can see that at the tree-level the average mass squared
difference between charginos and neutralinos is positive for the representations
1, 24 and 75, whereas for the representation 200 it is negative. In this respect
the representation 200 resembles the anomaly mediated supersymmetry breaking
scenario, where it was found that the average mass squared difference is negative
[1].

If all of the supersymmetric partners are not heavier than the Higgs particles,
it is possible that the decays of H0, A and H± to the supersymmetric particles
can be important or even dominant. In paper IV two specific decay chains were
considered, namely pp → (H0, A0) → χ0

2χ
0
2 → 4l and the cascade decay chain

q̃, g̃ → χ̃0
2 + X → χ̃0

1h(H0, A0) + X → χ̃0
1bb̄ + X, both in the LHC context. In

the first chain l is an electron or a muon (τ ’s may decay to pions etc. thus giving
hadronic signature, which is drowned by the hadronic background). The method
of producing Higgs bosons by cascade decays from supersymmetric particles does
not depend on the value of tanβ. This is due to the fact that the Higgs par-
ticle final states are produced by the strong production of squarks and gluinos
and their subsequent decays to gauginos and higgsinos. The significance of tanβ
is diminished by the presence of other relevant parameters [160], such as gaug-
ino and higgsino mass parameters, as opposed to the case of direct Higgs boson
production, where the parameter tanβ sits directly in the interaction vertices.
Thus, this method of producing Higgs bosons may help to cover a larger param-
eter space as compared to the more conventional methods of studying the Higgs
sector of supersymmetric models, including also the heavier Higgs bosons.

It was found that depending on the region of the parameter space, the Higgs
boson decay h(H0, A0) → χ̃0

2χ̃
0
2 may be observable in any representation in the

Eq. (2.90). However the region in which χ̃0
2 → 2l + X is large, and it is possible

for Higgs bosons to decay to the second lightest neutralinos, is rather limited
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in any of these models. Interestingly, for the production of the Higgs bosons
via the decay chain including χ̃0

2 → h(H0, A0)χ̃0
1, in addition to the singlet, a

relevant region of the parameter space was found only for the representation 24.
It should be noted that in these two cases the signatures are clearly different,
since in the representation 24 the cross section is largest at the lighter values of
the gluino mass as opposed to the case of 1 representation. Also the fact that
all the neutral Higgs channels are open in the 24 case distinguishes it from the
singlet case, where only the light Higgs channel is available.

Neutralinos are combinations of gauginos and higgsinos, so it is evident that
their properties vary greatly with respect to the chosen representation. The
composition and mass of the neutralinos and charginos will play a key role in
the search for supersymmetric particles. These properties determine also the
time-scale of their decays. They can play an important role in the decays of
Higgs bosons when they are kinematically allowed to decay to the second lightest
neutralino pair, which in turn may decay to the lightest neutralinos and two
leptons. Generally it is important to realize that the detection modes (e.g. of
Higgs particles) depend strongly on the parameters of the model. Thus the
investigation of non-minimal models is of a great importance in order to gain
understanding of the underlying model.
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Chapter 3

Extra dimensions

The four-dimensional Minkowski space is the fundamental spacetime structure,
within which the laws of physics are formulated. The goal of introducing extra
dimensions beyond the standard three spatial and one temporal dimensions is to
simplify the structure of a theory. This is not a new idea; the first to introduce the
fifth dimension to formulate electromagnetism and theory of scalar gravity into a
single unified theory was the Finnish physicist Gunnar Nordström in 1914 [161].
Later, in the 20’s, the idea of unification in extra dimensions was discovered
again by German mathematician Theodor Kaluza (in 1919, but published only
two years later) and Swedish physicist Oskar Klein (1926) [162,163,164].

3.1 Idea of compactification

An obvious difficulty in multidimensional theories is finding a mechanism that
hides the extra dimensions. Usually the extra dimensions are thought to be
compact as opposed to the infinitely ranging four standard dimensions. If all the
fields are allowed to occupy the possible extra dimensions, the characteristic size
(the compactification radius) of the new dimensions must be smaller than the
wavelength of the particle fields, since the extra dimensions are still hidden. This
is evident from the fact that the momentum of a field is quantized in the direction
of that dimension due to the periodicity of the dimension. In the standard non-
compact dimensions this looks like massive excitations of the field. In fact, an
infinite tower of massive new particles is seen in the non-compact dimensions.
This sets the limit of the size of the extra dimensions to be extremely small (of
the order of the inverse weak scale) [165,166,167].

If, however, only gravity is allowed to traverse the extra dimensions, the above
limits do not apply, and the size of the extra dimensions can be substantially
larger, even of the order of the parts of a millimeter. This kind of approach means
that ordinary matter is confined to a subspace of the multidimensional space.
This is common in string theory, where the consistency requires the existence of
non-perturbative soliton-like objects called Dirichlet p branes (Dp-branes) [168,
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169]. Particles are localized on the D-branes as endpoints of open strings (with
Dirichlet boundary conditions), hence confining matter to the brane. Branes
are embedded in the (p + δ)-dimensional bulk space. In the view of low-energy
theories, the “world” is confined to a D3-brane (1+3 dimensions) and embedded
into a (3 + δ)-dimensional bulk, where δ is the number of extra dimensions. It
should be noted that in addition to gravity, one may also allow other particles
that have no interactions with the SM particles, to occupy the bulk space. One
such candidate is clearly the right handed neutrino [170,171,172,173].

The idea of large extra dimensions have a couple appealing features: (1) They
may re-interpret the hierarchy problem (and solution) and (2) the gravitational
effects could be tested in colliders already in the TeV range. Recently a few
models based on the large extra dimensions have been introduced. The first of
the recent ones was a model by Arkani–Hamed, Dimopoulos and Dvali (ADD)
in 1998 [174, 175]. In their model there are in principle any number of extra
dimensions and the ordinary matter is localized on the brane. This model was
the subject of the paper V of this dissertation and will be discussed in the Sections
3.2 and 3.3.

Approximately a year later as the ADD model emerged, Randall and Sundrum
proposed their model of warped extra dimension (RS) [176]. In this model there
is only one extra dimension, but it is strongly curved due to the large negative
cosmological constant. This type of space is known as anti de Sitter (AdS) space.
The metric of the RS model is written as

ds2 = e−2krcφηµνdxµdxν − r2
cdφ2, (3.1)

where k is a scale of the order of the MP, x is the coordinate of the ordinary
four-dimensional metric and φ is the coordinate of the extra dimension. The
coordinate φ is bounded to the interval 0 ≤ φ ≤ π set by rc (i.e. rcπ). The metric
(3.1) is non-factorizable, i.e. the four-dimensional metric is not independent of
φ, but it is multiplied by an exponential warp factor depending on φ. The model
can be described by two 3-branes, which are situated at the orbifold fixed points
φ = 0 and φ = π of the extra dimension (the fifth dimension is an orbifold S1/Z2,
i.e. a circle with opposing points identified as φ = −φ). One (or both) of the
branes contains ordinary four-dimensional field theories. The four-dimensional
mass scales are then related to the five-dimensional by the exponential factor
of Eq. (3.1). In this setting, the large hierarchy between the Planck scale MP

and the electroweak scale is due to the exponential factor of a small number rc,
which then solves the hierarchy problem. The exponential factor suppresses also
the observable cosmological constant from the large value that originally induced
the warped metric (3.1). It must be noted, though, that the parameter k has to
be large for this to happen, thus introducing a new hierarchy. Therefore some
mechanism to stabilize the compactification radius rc should be found. Randall
and Sundrum also considered a model, where the compactification radius was set
to infinity [177], in which case only one brane is needed. They found that also
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this case is not in contradiction with the present observations of four-dimensional
gravity.

The supersymmetry is comfortably connected to the concept of extra dimen-
sions in the two-brane model of Randall and Sundrum [131,178]. This is closely
related to the case of anomaly mediated supersymmetry breaking, which was
discussed in the Section 2.6.2. The visible fields are located at the φ = π brane,
which is called visible brane. The other brane is called hidden brane in the spirit
of hidden sector supersymmetry breaking. In the effective low energy point of
view the actual SUSY breaking can occur also in the bulk, in which case the hid-
den sector is named a sequestered sector. The flavor violation is absent, since the
couplings that result from the heavy states are exponentially suppressed. If also
the gauge and gaugino fields are allowed to live in the bulk, the hidden sector is
not so hidden anymore, but the gauginos obtain masses through their direct cou-
plings to the supersymmetry breaking source [179]. The flavor changing neutral
currents are still suppressed giving motivation also for this model. Furthermore,
the scalar masses are positive solving the tachyonic slepton mass problem of the
pure anomaly mediated supersymmetry breaking scenario.

A third extra dimensional model suggested by Appelquist, Cheng and Do-
brescu [180] is called universal extra dimensions. In that model all the particles
are allowed to travel in the bulk space. The universal extra dimensional models
are able to produce a viable dark matter candidate through the Kaluza-Klein
decomposition of the fields.

3.2 Large extra dimensions (ADD)

Arkani–Hamed, Dimopoulos and Dvali [174,175,170] proposed that the standard
model fields live on a brane embedded in 2 to 6 extra dimensions. Since the
ordinary matter does not propagate in the bulk, the extremely small limits for
the size of the extra dimensions do not apply. With the flat metric, the gravity
cannot be restricted to the branes since it is a property of the spacetime. Thus
the upper limit of the size of the extra dimensions is set by the gravitational
interactions. There is only one fundamental scale MD in the theory, which is
identified with the electroweak scale.

To get an idea of the compactification radius, let’s now assume the spacetime
to be R

4 × T
D−4 (where T is a torus, or, in general, some other δ = D − 4

dimensional compact manifold Mδ, e.g. a δ-sphere Sδ) and the metric is thought
to be factorizable (i.e. it can be divided into a 4-dimensional metric g and into a
part, that does not depend on g). When calculating the effective action one can
integrate the extra dimensional part away, which then gives a relation between
the D-dimensional and the ordinary 4-dimensional Newton constant,

1

GN

=
VD−4

ĜN

, (3.2)
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Radius of compactified space

δ D (GeV)−1 m

1 5 5.93 × 1027 1.17 × 1012

2 6 2.44 × 1012 0.000481
3 7 1.81 × 107 3.57 × 10−9

4 8 49400 9.74 × 10−12

5 9 1430 2.82 × 10−13

6 10 135 2.66 × 10−14

Table 3.1: The compactification radius in the ADD-model in terms of (GeV)−1

and meters when the fundamental scale MD is supposed to be 1 TeV. Here D =
4 + δ.

where GN is the four-dimensional Newton constant, ĜN is the D-dimensional
Newton constant and VD−4 is the volume of the compact space.1 The reduced
Planck mass in four dimensions is M 2

P = 1/8πGN . Analogously, in D dimensions

M−2+D
D = 1/8πĜN . Therefore, using the fact that VD−4 = (2πR)D−4 for torus,

one gets

M P = R
D−4

2
[
(2π)

D−4
D−2 M D

]D−2
2 ≡ MD(RMD)

D−4
2 . (3.3)

This defines the relation between the reduced D-dimensional Planck mass and the
D-dimensional Planck mass (the fundamental scale) as M D = (2π)−δ/(2+δ)MD.
If one now assumes that the fundamental Planck scale is set as MD ∼ 1TeV, the
compactification radius R can be calculated as in the Table 3.1. Obviously the
case of one extra dimension is already ruled out, since the compactification radius
would be of the order of the orbital distance of Saturn from Sun. For distances
less than R the Newton’s law is modified, since the space is D-dimensional.
The smallness of the electroweak scale is explained by the largeness of the extra
dimensions and the gravity is weak since it is diluted by the large total volume
of the spacetime. But also here there is a hierarchy involved: One needs an
explanation for RMD ≫ 1 in Eq. (3.3).

To see the effects of extra dimensions in the colliders, one needs to consider
the effective model in the four dimensions [181, 182]. In the low energy limit
the spectrum includes just Standard Model particles in four dimensions with the
graviton in 4 + δ dimensions (and maybe some other light fields related to the
brane dynamics as in the reference [181]). Effectively the graviton is described in
the four dimensions by the massive Kaluza-Klein (KK) excitations. The couplings
between graviton modes and ordinary matter are of the gravitational strength.
When considering distances greater than 1/MD from the brane, the gravitons can

1Volume of an n-sphere is Vn = πn/2Rn

Γ(n/2+1)
and of an n-torus Vn = (2πR)n
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be derived from the linearized metric,

gAB = ηAB + 2
hAB

M
1+δ/2
D

, A, B = 1, . . . , D. (3.4)

The metric g is assumed to be factorizable. When the four-dimensional coor-
dinates are denoted as xµ, µ = 0, . . . , 3, the extra dimensional coordinates as
yi, i = 1, . . . , D − 4, and the periodicity of the translation in the compactified
space is required, the perturbed part of the metric (3.4) can be expanded as [182]

hAB =

∞∑

n1=−∞

. . .

∞∑

nδ=−∞

h
(n)
AB(x)√

Vδ
einjyj/R, (3.5)

where n = (n1, . . . , nδ), Vδ is the volume of the compactified space and the fields

h
(n)
AB(x) are Kaluza-Klein modes which occupy the four-dimensional space. In

the limit of weak gravitational field the energy-momentum (EM) tensor can be
written

TAB(x, y) = ηµ
Aην

BTµν(x)δ(y), µ, ν = 0, . . . , 3, (3.6)

where the delta function ensures that the matter is confined on the brane and all
the KK-modes of the EM-tensor are independent of n in the low energy region.

The equations of motion of the low-energy effective theory obey the D-
dimensional Einstein equation,

GAB ≡ RAB − 1

2
gABR = − TAB

M 2+δ
D

, (3.7)

where the RAB and R are the Ricci tensor and scalar in D-dimensions, respec-
tively. After substituting the linearized and expanded metric (3.4) and (3.5)
to Eq. (3.7), the equations of motion for the graviton fields emerge. The non-
propagating degrees of freedom can be eliminated by inspecting the gauge trans-
formation

zA → z′A = zA + ǫA(z), (3.8)

which has an effect in the variation of the metric as

δǫhAB = −∂AǫB − ∂BǫA. (3.9)

Some of the fields in expanded Eq. (3.7) are not invariant under the general
coordinate transformation of Eq. (3.8) (thus being not physical fields) and can
be rotated away. After this, there are four physical fields remaining:

G(n)
µν , V

(n)
µ,j , S

(n)
jk and H(bn), (3.10)

The n̂ in H(bn) is defined as n̂ ≡ n/R (n is from Eq. (3.5) and below). The Greek
indices run as µ = 0, . . . , 3 and the Latin indices as j = 4, . . . , D − 1.
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The first one of the fields in (3.10), G
(n)
µν , is the graviton (also called graviten-

sor). The choice of the gauge, which eliminated the non-propagating degrees of

freedom (d.o.f.) results in an emergence of a mass to G
(n)
µν . The mass is equal

to |n|/R. Because the mass splitting of subsequent KK-modes is proportional to
R−1, the masses are extremely close to each other in the ADD-model (see Table
3.1). In practical calculations the distribution of the graviton KK-modes is con-

sidered to be a (quasi) continuum. Gravitensor G
(n)
µν has five degrees of freedom

(five of the original ten d.o.f. turned into the mass of G
(n)
µν ). The second quantity

V
(n)
µ,j is a set of massive vector fields. δ− 1 of them are independent and they are

called gravivectors (or graviphotons). As opposed to gravitensors, they do not
couple to the EM-tensor (in the weak limit) and therefore they do not partici-

pate in the particle processes. The symmetric tensor S
(n)
jk is a set of massive real

scalars called graviscalars. They have (δ2 − δ − 2)/2 independent degrees of free-
dom and like gravivectors, they don’t couple to the EM-tensor. The remaining
field H(bn) is a scalar field, which is coupled only to the trace of the EM-tensor.
For conformally invariant theories the trace of the EM-tensor vanishes (on-shell),
and therefore the scalar H(bn) does not participate in the tree-level processes with
massless particles. For the massive particles the coupling is proportional to the
mass of the particle. The zero-mode of H(n̂) is called radion and it should not
be massless [170]. The mechanism that stabilizes the radius R is thought also to
give a sufficient mass to radion.

The astrophysical bounds (graviton emissions in supernovae and neutron
stars) limit the possible observation of graviton-induced processes at future col-
lider experiments in the case of 2 and 3 flat extra dimensions [183,184]. However,
modifying the compactification manifold it is possible to weaken these limits (and
even for δ = 1) [185].

3.3 Invisible Higgs

If large extra dimensions are realized in Nature, the consequences are seen as the
modification of the way that gravity behaves. In colliders, the effects of gravita-
tional strength are usually vanishing when compared to the gauge interactions, if
the fundamental scale is not very low (around a few TeV). However, the graviton
Kaluza-Klein modes that result from the compactification of the extra dimen-
sions offer a way to get in touch with the extra dimensional space. One way is to
look at particles that have the same quantum numbers as some of the graviton
KK-excitations. The Higgs field is a simple candidate: it is a scalar with no
baryon or lepton number, color or charge. The same applies to the graviscalar
field H(bn). So it is possible that the Higgs boson can decay invisibly by oscillating
into a graviscalar Kaluza-Klein tower. Then it is possible that the Higgs boson
can have a substantial branching ratio for decay into invisible final states. In
ADD-type models as discussed in Sec. 3.2, the projection on the brane leads to a
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continuum of scalar and tensor graviton states.

The effects of extra dimensions on the Higgs field decay modes depend on the
size of the extra dimensions. In the case of the large extra dimensions the major
effects are due to the closely spaced KK-levels. The amount of closely spaced
Kaluza-Klein states is so huge that even if the probability of transforming into
an individual KK-state is small, the total probability can be considerable. This
leads to the possibly effective invisible decays of the Higgs boson. In case of the
small extra dimensions the effect comes from the mixing of the Higgs boson with
the single radion [176,177].

The methods of detecting the invisible Higgs are usually based on tagging
of some other particle than the decay products of the Higgs boson. Mass lim-
its for a Higgs boson decaying dominantly to invisible particles have also been
obtained by the LEP experiments [186]. It is assumed that the Higgs boson is
produced in association with a Z-boson, which decays either to charged leptons
or hadrons. Moreover, a constraint that the invariant mass of the decay products
are consistent with the Z mass is also applied. This then leads to the mass limit
of mH > 114.4 GeV.

The energy-momentum tensor Tµν can be extended by a term of the type
ξ(ηµν∂α∂α − ∂µ∂ν) while it is still conserved [187]. Therefore one can add to the
Lagrangian a mixing term

S = −ξ

∫
d4x

√−gindR(gind)H
†H, (3.11)

where H is the Higgs doublet, ξ is a dimensionless mixing parameter, gind is the
induced metric on the brane, and R is the Ricci scalar. Once electroweak symme-
try is broken, the coupling of the trace of the additional part to the graviscalars
leads to a mixing between the physical Higgs field (h) and each member of the
graviscalar tower. One can parameterize such mixing by the following term in
the Lagrangian:

Lmix =
1

MP
m3

mixh
∑

n

H(bn), (3.12)

where m3
mix = 2κξvm2

h, MP is the reduced Planck mass, and v is the Higgs field
vacuum expectation value. The dimensionless parameter κ is expressed in terms
of the number of extra dimensions as

κ ≡
√

3(δ − 1)

δ + 2
. (3.13)

The specific choice of κ is due to arranging the H(bn) field to have a canonical
normalization.

One proceeds by considering the Higgs propagator in the flavor basis and
incorporating all the insertions induced by the mixing term. The effect of having
a large number of real intermediate states inserted leads to the development of
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an imaginary term in the propagator. This imaginary part can be interpreted as
an effective decay width entering into the propagator [187]:

ΓG = 2πκ2ξ2v2 m1+δ
h

M2+δ
D

2πδ/2

Γ(δ/2)
, (3.14)

where MD is the (4+δ)-dimensional Planck scale (sometimes also called the string
scale). A Higgs boson has a finite probability (proportional to ξ2) of oscillating
into the invisible states corresponding to the graviscalar tower. The transition is
favored when masses of the Higgs boson and the corresponding graviscalar are
close to each other.

Even though the probability of the Higgs field mixing with a single graviscalar
state H(bn) is suppressed by MP, summing the oscillation probabilities over the
huge Kaluza-Klein tower makes the resulting probability for the Higgs field trans-
forming into one of the many graviscalars large. The opposite is not true: the
probability of a graviscalar turning into a Higgs boson is practically infinitesimal.
Thus, once the Higgs boson is transformed into a graviscalar, it becomes invisible.
This is reflected in the “invisible” decay width developed by the propagator.

In the paper V of this dissertation the possibilities of detecting invisibly de-
caying Higgs boson in a future electron-positron collider were studied. The ef-
fective invisible decay width grows as m3

h for δ = 2. This implies that even
for mh < 2mW total Higgs boson decay width can be considerably larger than
the Standard Model width. As a consequence, even for a light Higgs boson, the
resonance may not be very sharp, hence complicating the reconstruction of re-
coil invariant Higgs mass peak. The Higgs boson can have a very large invisible
branching ratio to invisible states in large extra dimensions.

The process of producing Higgs bosons,

e+e− → Z(→ µ+µ−)h(→ inv), (3.15)

also known as the Higgs-strahlung process, at a linear collider with center of
mass energy of 1 TeV was studied. The final state consists of a µ+µ− pair with
missing energy/momentum. The direct graviscalar production have to be taken
into account. A similar final state can arise also in the production of a Z-boson
with towers of graviton (spin-2). Thus, in addition to the SM processes e+e− →
ZZ/WW → µ+µ−+ 6E, the gravitensor and graviscalar production together with
a Z-boson has to be considered, all leading to identical final states.

To filter out the Higgs boson effects from continuum gravitensor contributions
one reconstructs the recoiled invariant mass which peaks at the Higgs mass mod-
ulo the Higgs width and detector resolution. The other important factor is the
height of the peak against the continuum background. It is determined by the
Higgs-graviscalar mixing ξ, the same quantity which also determines the Higgs
width, making the width large for ξ ∼ O(1). This causes the invisible decay
recoil mass distribution to lose its sharp character even for a Higgs boson mass
of the order of 120 GeV.
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The Higgs boson mixing with graviscalars causes the Higgs particle to develop
an invisible decay width. In the context of a linear e+e− collider such invisibility
brings in additional problems in reconstructing the Higgs boson as a recoil mass
peak against an identified Higgs boson. This is because of (a) the simultaneous
presence of graviton continuum production in association with a Z-boson, and (b)
the broadening of the Higgs peak due to enhancement of the total effective decay
width. It was found that while an angular cut partially softened the difficulty,
the broadening of the peak remains a problem, particularly for mH > 2mW .

In hadron colliders, such as the LHC, the identification of an invisibly decaying
Higgs is in general a difficult task. In four dimensions, the associated production
of Higgs particles (such as WH) and the gauge boson fusion channel might be of
some use [188,189], but in the ADD model the gravitons can be produced by the
same mechanism as considered above. Therefore, the search for a Higgs boson
and the detailed investigation of its properties in the framework of this kind of a
scenario has wider implications than an invisibly decaying Higgs particle arising
in most other models.
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Chapter 4

Summary

One of the most challenging tasks for all current and future accelerators is to
discover the Higgs boson, whether it is the supersymmetric, Standard Model or
some other type of Higgs. At LHC one will be able to identify or exclude the
Higgs boson of mass below the TeV-scale. After finding the Higgs boson, the next
task is to determine its origin. Several clues point towards the physics beyond
the standard model, and a few features of conceivable models beyond the SM has
been discussed in this dissertation.

The supersymmetry is a beautiful concept that continues the idea of using
symmetries as the fundamental basis of physical theories. In the low energy ef-
fective theories it nicely removes the gauge hierarchy instability and incorporates
a pinpoint gauge coupling unification. However, without the knowledge of the
underlying, fundamental theory, the supersymmetry introduces an overwhelm-
ing amount of new parameters. All the predictability of the model is drowned
by the ignorance of the values of parameters. Some of this uncertainty can be
eased by making the supersymmetry a local symmetry. This is thought to be a
necessary feature at the higher energy scales and in models that relate general
relativity to supersymmetry. Local supersymmetry, i.e. supergravity, gives hints
of possible ways to eventually break the supersymmetry, which must happen at
some point, since the observed world certainly is not supersymmetric. Taking
inspiration from the supergravity and the possible underlying grand unified the-
ory, the number of over hundred soft supersymmetric parameters can be reduced
to only a few. This minimal SUGRA model is still far from being fixed, but some
predictability is restored. There are a few other well-studied means to gain su-
persymmetry breaking. One of them, the anomaly mediated SUSY breaking was
discussed in this dissertation. It is well motivated and somewhat more predictive
scenario than the minimal SUGRA breaking scenario, yielding a spectrum clearly
different from the other breaking scenarios. Especially the nature of the lightest
supersymmetric particle is changed. After masses of some of the supersymmetric
particles have been measured, a whole lot more can be said about the mechanism
that breaks supersymmetry. Some of the devices to determine the correct model
has been presented in this dissertation.

Yet, it is not excluded that Nature has chosen not to take the simplest way of
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organizing parameters. For theoretical grounds, the unification of certain param-
eters is only one possibility amongst others. This is the case with the gaugino
masses, which can well be non-universal. However, the predictability is not lost,
since in the simple case there are no more than four different representations that
can be chosen. The boundary conditions of gaugino masses have significant effect
on the composition of the neutralino masses. Since the lightest supersymmetric
particle in SUGRA and AMSB is in most cases the lightest neutralino, this has
also prominent consequences on the observed effects on the collider physics. Also
the composition of the neutralino LSP has cosmological significance, since the
LSP is a potential dark matter candidate.

If no sign of supersymmetry is shown in experiments, alternative explanations
must be sought. One possibility is that supersymmetry is not the explanation for
the hierarchy problem but rather for the gauge coupling unification. The interest
for abandoning the gauge hierarchy solution of supersymmetry is motivated by
the more extensive fine-tuning required by the proper value of the cosmological
constant. If the fine-tuning is accepted, then the spectrum can be vastly split and
the supersymmetric scalar particles can have very heavy masses. In addition to
the one light Higgs particle, only the gauginos and higgsinos are kept light in order
to produce a viable dark matter candidate. This split supersymmetry model,
however, has some restrictions. For example, the top Yukawa coupling fixed
point is nearly ruled out, as discussed in the Section 2.7. In split supersymmetry
model the Higgs boson is fine-tuned to be light, so the chances to find it in the
LHC are favorable.

A completely different idea in order to solve the hierarchy problem is to
extend the spacetime by extra dimensions. The new dimensions can be quite
large, or there might be a non-factorizable, highly curved metric. The both
scenarios have predictable consequences. This sets the viewpoint with respect to
the gauge hierarchy problem in a new position: There is only one fundamental
scale, and that can be as low as one TeV. Hence the gauge hierarchy problem
is swept away, or to be more precise, transformed into another problem, namely
determination of the size of the compactified space or the parameters of the warp
factor. The attractive feature in these models is the possibility to be able to
probe the Planck scale physics already in near-future colliders, like the LHC. The
observation of quantum gravity effects in the TeV range would give a great deal
of instructions how to build the Theory of Everything, which would incorporate
all the known forces of Nature in a consistent quantum level theory. With respect
to the Higgs physics there is a drawback: Higgs boson can be escaped into the
extra dimensions via mixing with graviton modes, thus avoiding the detection in
colliders.

If the Higgs boson is not found at the LHC, then for sure the perturbative
unitarity has broken down and the Standard Model can’t describe the physics at
that scale. This is an evidence that there must be some new physics just around
the corner waiting to be discovered. For a physicist, the times are thrilling!
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Appendix A

Notation, integrals and
RG-equations

Here is a collection of notation and some of the formulae used in the derivation
of results in the text. Also one-loop MSSM renormalization group equations are
given.

A.1 Notation

The flat metric used in this dissertation is

η =




1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


 (A.1)

For this choice, e.g. the sign of the fifth dimension in the Randall-Sundrum metric
Eq. (3.1) is negative, whereas in the original article it is positive [176].
Units: Reduced Planck constant and the velocity of light are put equal to one,
~ = c = 1.

Weyl spinors: (ψα, α = 1, 2) ∈ Lorentz representation (1
2 , 0). The spinor com-

ponents are Grassman variables: ψαψ′
β = −ψ′

βψα

Complex conjugate spinor: (ψ α̇ = ψ∗
α, α̇ = 1, 2) ∈ Lorentz repr. (0, 1

2).
Raising and lowering of spinor indices:

ψα = εαβψβ, ψα = εαβψβ , (A.2)

where εαβ = −εβα, ε12 = 1, εαβ = −εαβ , εαβε
βγ

= δα
γ , and the same for dotted

indices.
Pauli matrices:

(σµ

αβ̇
) = (σ0

αβ̇
, σ1

αβ̇
, σ2

αβ̇
, σ3

αβ̇
) (A.3)
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σ̄α̇β
µ = σβα̇

µ = εβαεα̇β̇σµ αβ̇ , (A.4)

(σµν)α
β =

i

2
[σµσ̄ν − σν σ̄µ]α

β , (A.5)

(σ̄µν)α̇
β̇ =

i

2
[σ̄µσν − σ̄νσµ]α̇β̇ , (A.6)

where

σ0 =

(
1 0
0 1

)
, σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
, (A.7)

σ̄0 = σ0, σ̄i = −σi = σi, (A.8)

σ0i = −σ̄0i = −iσi, σij = σ̄ij = εijkσk, i, j, k = 1, 2, 3. (A.9)

A.2 Volume of an n-sphere

Volume of n-dimensional sphere is of the form Vn = cnrn by dimensional grounds.
The surface area is then Sn = dV/dr = ncnrn−1. The constant cn can be cal-
culated using the n-dimensional Gaussian integral by converting it to a radial
integral by integrating the angular part away,

πn/2 =

∫
dnR e−|R|2 =

∫ ∞

0
dre−r2

ncnrn−1. (A.10)

After the familiar change of variables, x = r2, the Eq. (A.10) becomes

πn/2 =
ncn

2

∫ ∞

0
dxe−xxn/2−1, (A.11)

which is just the definition of gamma function Γ(n/2). Hence

cn =
πn/2

(n/2)Γ(n/2)
. (A.12)

A.3 Integrals

Cut-off integral in n Euclidean dimensions is easily calculated using the above
result:

∫

|k|<Λ
dnkE f(k2

E) =

∫ Λ

0
drSn(r)f(r2)

=

∫ Λ

0
dr[n

πn/2

(n/2)Γ(n/2)
rn−1]f(r2)

=

∫ Λ2

0
dy

n

2

πn/2

(n/2)!
yn/2−1f(y)

=
πn/2

(n/2 − 1)!

∫ Λ2

0
dyyn/2−1f(y),

(A.13)

which proves the Eq. (1.13).
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Definite integrals in quadratically divergent mass corrections

The finite integrals of Sec. 1.2 can be evaluated and expressed in terms of ele-
mentary functions.

Ĩ1(a) =

∫ 1

0
dx

(
1 + a2(x − 1)x

)(
3 ln(1 + a2(x − 1)x) + 2

)

=
1

a
(4 − a2)3/2 arctan

a√
4 − a2

− 1

2
(4 − a2),

(A.14)

which converges if 0 < a < 2. This is equal to Eq. (1.15) by replacing a = mS/mF

and multiplying Eq. (A.14) by m2
F . The Eq. (1.21) is

I2(a) =

∫ 1

0
dx ln

(
1 + a2(x − 1)x

)

=
2

a

√
4 − a2 arctan

a√
4 − a2

− 2,

(A.15)

where again 0 < a < 2. This is equal to 1.21 by replacing a = mS/mi. It can be
noted that integral (A.15) is just part of the integral (A.14).

A.4 Note about regularization

In supersymmetry the renormalization is done as in any field theory: Apply a de-
sired regularization scheme, use Ward-Takahashi/Slavnov-Taylor identities and
a renormalization scheme to subtract divergent parts. Dimensional regulariza-
tion [38] is the most convenient way to regularize divergent integrals. The main
advantage in dimensional regularization is that it preserves gauge invariance (and
most of the other symmetries), thus there is no need to use Ward-Takahashi or
Slavnov-Taylor identities. This method does not, however preserve supersym-
metry, because the fermionic and bosonic degrees of freedom are equal only in
specific spacetime dimensions, while dimensional regularization continues the in-
tegrals to an arbitrary dimensionality. In the case of ultraviolet divergences it
is only necessary to continue integrals to lower dimensions. A method called di-
mensional reduction employs this fact [190]. The Lorentz indices of spinors and
matrices are kept in usual four-dimensional space but the momentum integrals
are calculated in the d < 4 dimensional spacetime. For example, N=1 supersym-
metry in d = 4 dimensions can be regarded as extended N=2 supersymmetry in
d = 3 dimensions. This preserves the number of bosonic and fermionic degrees
of freedom.

In dimensional reduction Kronecker delta-functions resulting from field and
matrix operations are treated four-dimensional, and deltas coming from momen-
tum integrals are treated d-dimensional (as in usual dimensional regularization).
If the theory contains only scalars and spinors, the dimensional regularization is
the same as regularization by dimensional reduction, except for the spinor field
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normalization. Thus, in the case of Higgs self energy of Sec. 1.2, the corrections
can be calculated in the dimensional reduction scheme just like in the dimen-
sional regularization. Therefore the equation Eq. (1.12) can be regularized using
dimensional reduction scheme. The trace contribution does not change, and af-
ter Wick rotation to the Euclidean space, the d-dimensional integral gives Euler
gamma-functions and the self-energy correction becomes

ΣS(m2
S) =

λ2
F

16π2
(6m2

F − m2
S)(

1

ǫ
− γ + O(ǫ)), (A.16)

where ǫ = 2 − d/2. Also in Eq. (A.16) the mass correction is proportional to
the mass of the heaviest particle of the model as in Eq. (1.14). The first of the
bosonic graphs (Fig. 1.3) contribute to the Higgs radiative mass correction as

(δM2
H)four =

λS

16π2
(m2

1 + m2
2)(

1

ǫ
− γ + O(ǫ)), (A.17)

while the second graph gives the three particle vertex contribution

(δM2
H)three = − 2m2

F

16π2
(
λS

λF

)2[2(
1

ǫ
− γ +O(ǫ))− I2(m

2
S, m2

1)− I2(m
2
S, m2

2))], (A.18)

where the integral I2 is defined in Eq. (1.21) and given in Eq. (A.15). Arranging
the couplings to be −λS = λF

2, the divergent terms exactly cancel, provided that
the mass formula m2

1 + m2
2 − 2m2

F = 0 is valid:

δM2
H =

λ2
F

16π2

[
(2m2

F − m2
1 − m2

2) − m2
S

](1

ǫ
− γ + O(ǫ)

)

+
λ2

F m2
F

8π2

[
I(m2

S, m2
1) + I(m2

S, m2
2)

]

= − λ2
F

16π2
m2

S(
1

ǫ
− γ) + finite,

(A.19)

The mass trace formula m2
1 +m2

2 −2m2
F = 0 (see discussion about the supertrace

of Eq. (2.35)) is weaker requirement than the equality m2
1 = m2

2 = m2
F that was

required to cancel all divergences in the cut-off scheme. There still remains a
term proportional to the scalar mass itself, but that can be renormalized in a
usual way. The brute momentum cutoffs are not a good choice in QFT since
they destroy the Poincaré invariance. However, in the specific case of Higgs self
energy calculation, the breakdown of gauge invariance or translation invariance
does not give (relevant) contribution, so the cut-off method gives the same result
as the dimensional reduction, as has been shown above.

A.5 One-loop RG-equations of MSSM

For completeness, the renormalization group equations for the MSSM at the one-
loop order are given here. The two-loop expressions are given in Ref. [191].
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Here only the third family Yukawa couplings are taken to be significant. The
equations are in DR scheme, which is the modified minimal subtraction scheme
using the dimensional reduction. The RGEs for the gauge couplings and gaugino
masses were already presented in Eq. (2.42). The dimensionless scale is defined
as t = ln Q

MGUT
. The renormalization group equations for the Yukawa couplings

are

dyt

dt
=

yt

16π2
[6|yt|2 + |yb|2 −

16

3
g2
3 − 3g2

2 − 13

15
g2
1], (A.20)

dyb

dt
=

yb

16π2
[6|yb|2 + |yt|2 + |yτ |2 −

16

3
g2
3 − 3g2

2 − 7

15
g2
1], (A.21)

dyτ

dt
=

yτ

16π2
[4|yτ |2 + 3|yb|2 − 3g2

2 − 9

5
g2
1]. (A.22)

Equations for the first and second family squark and slepton squared masses are

dm2
φ

dt
= − 1

16π2

∑

i=1,2,3

8g2
i C

φ
i |Mi|2, (A.23)

where the coefficients Cφ
i are the quadratic Casimir group theory invariants for

the scalar φ for each gauge group. They are defined as Cφ
i δb

a = (T iT i) b
a , where

the T i are the group generators acting on the scalar φ. Explicitly, Cφ
1 = (3/5)Y 2

φ ,

where Yφ is the weak hypercharge, Cφ
2 = 3/4 for φ = Q̃i, L̃i, Hu, Hd and 0 for

other scalars, and Cφ
3 = 4/3 for φ = Q̃i, ũi, d̃i and 0 for other scalars. Third family

squark and slepton (mass)2 parameters also get contributions which depend on
Xt, Xb and Xτ (defined in Eqs. (2.46)-(2.48))

dm2
Q3

dt
=

1

16π2
(Xt + Xb −

32

3
g2
3|M3|2 − 6g2

2|M2|2 −
2

15
g2
1|M1|2), (A.24)

dm2
u3

dt
=

1

16π2
(2Xt −

32

3
g2
3|M3|2 −

32

15
g2
1|M1|2), (A.25)

dm2
d3

dt
=

1

16π2
(2Xb −

32

3
g2
3|M3|2 −

8

15
g2
1|M1|2), (A.26)

dm2
L3

dt
=

1

16π2
(Xτ − 6g2

2|M2|2 −
6

5
g2
1|M1|2), (A.27)

dm2
e3

dt
=

1

16π2
(2Xτ − 24

5
g2
1|M1|2). (A.28)

In above, the possible contributions proportional to the Tr[Y m2] are neglected.
The equations for m2

Hu
and m2

Hd
were given in Eq. (2.45).
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RGEs for the trilinear soft SUSY breaking terms (in models, where they are
proportional to the corresponding Yukawa couplings) are

dat

dt
=

at

16π2
[18|yt|2 + |yb|2 −

16

3
g2
3 − 3g2

2 − 13

15
g2
1]

+
1

16π2
[2aby

∗
byt + yt(

32

3
g2
3M3 + 6g2

2M2 +
26

15
g2
1M1)], (A.29)

dab

dt
=

ab

16π2
[18|yb|2 + |yt|2 + |yτ |2 −

16

3
g2
3 − 3g2

2 − 7

15
g2
1]

+
1

16π2
[2aty

∗
t yb + 2aτy

∗
τyb

+yb(
32

3
g2
3M3 + 6g2

2M2 +
14

15
g2
1M1)], (A.30)

daτ

dt
=

aτ

16π2
[12|yτ |2 + 3|yb|2 − 3g2

2 − 9

5
g2
1]

+
1

16π2
[6aby

∗
byτ + yτ (6g2

2M2 +
18

5
g2
1M1)]. (A.31)

The equations for the Higgs doublet mixing parameter b and the supersymmetric
mass parameter µ are

dµ

dt
=

µ

16π2
[3|yt|2 + 3|yb|2 + |yτ |2 − 3g2

2 − 3

5
g2
1], (A.32)

db

dt
=

b

16π2
[3|yt|2 + 3|yb|2 + |yτ |2 − 3g2

2 − 3

5
g2
1]

+
µ

16π2
[6aty

∗
t + 6aby

∗
b + 2aτy

∗
τ + 6g2

2M2 +
6

5
g2
1M1], (A.33)

which complete the set of RG equations of the MSSM parameters. The two-
loop equations for the gauge couplings can be found also in the paper III of this
dissertation.
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