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Abstract

This study focuses on atomistic simulations of polyesters, the main interest being in the
performance of classical models. The Polymer Consistent Force Field (PCFF), developed
for synthetic polymers, forms the basis for the simulations. The calculated properties of
synthetic polymers depend strongly on the conformational statistics of the polymer chains,
and the force field is, therefore, of crucial importance for the reliability of the simulations.
Thus, the PCFF has been tested by comparing its results for model molecules of the
polyesters studied with those of quantum mechanical ab initio and density functional theory
(DFT) calculations regarding the rotational behaviour of typical bonds in these polyesters.
The calculations showed that there were severe disagreements between the quantum
mechanical and the PCFF studies, leading thus to re-optimisation of the particular torsion
potentials of the PCFF. The quantum mechanical methods used were also compared, and
though they gave mostly similar results, the DFT methods were found to underestimate
some of the torsional barriers. The modified PCFF was shown to yield results in good
agreement with experimental data for single chain properties of the selected polyesters
(poly(methyl acrylate), poly(methyl metacrylate), poly(vinyl acetate) and some main chain
polyesters having alkyl chains of various lengths between the carboxyl groups). The
dependence of the RIS Metropolis Monte Carlo (RMMC) method, used for these property
calculations, on different run parameters, such as cut-off for non-bonded interactions, was
discussed in more detail. The RMMC method, using the original and modified PCFFs, was
also used in studies on the flexibility of some polyesters, which are known to be
biodegradable, i.e. of polylactic (PLA) and polyglycolic (PGA) acids and some of their
copolymers. The original PCFF was found to reproduce the flexibilities of these polyesters
in contradiction with the results obtained with the modified PCFF. Finally, the modified
PCFF was applied to molecular dynamics simulations on the constructed amorphous models
for PLA and PGA and some of their copolymers to sudy the probability for hydrolysis as
the first stage of biodegradation.

The main conclusion of this study is, that re-optimisation of the torsion parameters was
necessary to reproduce the torsional behaviour obtained by QM methods. The modified
PCFF can, thus, be reliably used in single chain property calculations and in studies on bulk
material properties of polyesters containing structural units studied in this work.
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In puldicaions | and Il quantum mechanical ab initio and density functional theory (DFT)
calculations on selected model moleaules for polyesters gudied in this thesis are described.
This work was done to test and improve the performance of the Polymer Consistent Force
Field (PCFF) to yield the rrect torsional behaviour for typical bonds in polyesters. Also
the results obtained by ab initio MP2, and DFT B3-LYP and B-LYP methods were
compared with each other to obtain the best reference method for computation of
conformational properties of molecules. Especially the torsional behaviour and the
conformational dependence of the valence -ordinates and of the @&omic charges were
discussed. The first pubication discusses esters with an isolated carboxyl group and the
seoond one esters with two non-isolated carboxy! groups.

In pubications Il and IV the properties of single polymer chains were studied with the RIS
(Rotational Isomeric State) Metropolis Monte Carlo (RMMC) method using the PCFF, as
improved in papers | and II. In paper Il the modified PCFF was applied to RMMC
calculations on selected main chain and side group polyesters with isolated carboxyl groups
to test the reliability of the modified PCFF and to study the performance of the RMMC
method with different choices of run parameters. In paper IV the RMMC method was
applied to investigate the flexibility of the duains of a few important biodegradable
polyesters with non-isolated carboxyl groups (i.e. poly(L-lactic) (PLLA), poly(L,D-ladic)
(PLLA/PDLA) and polyglycolic (PGA) acids). Comparisons between the results obtained
with the original and modified PCFFs are shown in paper 1V. In pubication V amorphous
state properties, i.e. solubility, free volume and pair correlation functions, of PLLA,
PLLA/PDLA, PGA and PGA/PLLA were studied by the Amorphous Cell -method utilising
the modified PCFF.

Thisthesis includes also some unpublished results.
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ABBREVIATIONS

AM1 Austin Model 1

B-LYP Bedke-LeeYang-Parr

B3-LYP Threeparameter Bedke-Lee Y ang-Parr

BO Born-Oppenheimer

CFF consistent forcefield

CHELPG Breneman’ s procedure for cdculating eledrogatic potential derived atomic
charges

COMPASS Condensed-phase Optimised Molecular Potentials for Atomistic Simulation
Studies

D Debye

DP degreeof polymerisation

DFT Density Functional Theory

ESP eledrogatic potential

FF forcefield

HF Hartree Fock

LJ Lennard-Jones

MC Monte Carlo

MD moleaular dynamics

MM moleaular mecdhanics

MP2 Magll er-Plesset 2" order perturbation (theory)

PCF pair correlation function

PCFF polymer CFF

PDLA poly(D-lactic) acid

PES potential energy surface

PGA polyglycolic ecid

PGA/PLLA  copolymer of L-ladic and glycolic acid

PLA polyladic acid

PLLA poly(L-ladic) acid

PLLA/PDLA poly(L,D-lactic) acid

PMA poly(methyl aaylate)

PMMA poly(methyl metaaylate)

PVA poly(vinyl aceate)

QM guantum mechanics or quantum mechanical

RIS rotational isomeric state

RMMC RIS Metropolis Monte Carlo

rms root-mean-square

rrms relative root-mean-square

SCF self-consistent field



1 Introduction

Development of the performance of computers and of the theory has made wmputational
simulations an important tool also in materials science Today increasingly accurate results
can be obtained in areasonable time for even large axd complicated molecular systems. Still
more reliable methods are, however, needed to obtain more reglistic determinations of
moleaular properties to be utili sed in different applications and to understand the physics of
moleaular systems. The basic question is how to describe real materials by simplified
theoretical models. For example in a classcal atomistic description, in which the detailed
chemicad structure of a moleaular system is taken into acount, still more reliable models
have to be found to represent the interadions between atoms.*

One way to classify the most frequently used methods in moleaular modelling is illustrated
in Fig.1. The methods can roughy be divided into atomistic simulations, in which every
atom is explicitly included, and non-atomistic simulations, in which groups of atoms, or
entire dhains, are olledively modelled.

According to the Born-Oppenheimer (BO) approximation® the motions of eledrons and
nuclei can be separated due to their different masses. Thus, quantum medhanical (QM)
methods (ab initio, density functional theory (DFT) and semi-empirica)>**>®’ are based on
solving the time-independent Schrodinger equation for the eledrons of a molealar system
as afunction of the positions of the nuclei. In classicd atomistic simulations, instead, atoms
are treated as basic units, and the interadions between the @oms are described by classica
potential energy functions (forcefields (FFs)). High-level ab initio and DFT calculations are
computationally demanding. The cmmputing time depends on the number of electrons, and
therefore QM methods are usually limited to moleaules and moleaular systems consisting of
lessthan about 30 non-hydrogen atoms. Classcal FF methods, such as moleaular mechanics

(MM)2® and moleaular dynamics (MD)>*°

methods, on the other hand, can be gplied to
much larger moleaular systems containing thousands of atoms. The FF contains parameters,
which are derived from QM and/or experimental data. These parameters and the functional
forms of the energy terms determine the aility of the FF to describe the moleaular system

under investigation.
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Fig. 1. The most frequently used methods in molecular modelling.

The microscopic details of the molecular behaviour are unnecessary to know, when the long
time-scale motion of large molecular systems is considered. In these cases coarse grained
methods, such as wormlike chain- or mesoscale models't413141516.17181920 "o gtatistical
mechanical methods, such as lattice models™?*?*?* Rotational Isomeric State (RIS)
model 2% or Monte Carlo (MC) method?®®, can be applied. In coarse grained molecular
theories the motion of a polymer chain is simplified by describing it with parameterised

models such as a bead and spring model****** or as continuous wormlike chains™'%+"18,

The most frequently used lattice models of polymers, that aso are parameterised models,

are based on the Flory-Huggins mean-field theory”?%%%2*

and typically used in modelling
of polymer blends or polymer-solvent systems. Lattice models do not provide detailed

information about the atomic-scale structure of polymer chains, and if this is needed, RIS



models can be utilised. The RIS theory®™??" is used especialy in the calculations of
statistical conformation-dependent properties of polymer chains under ©-conditions, where
the effective long-range intrachain interactions are neglected. In practice a ©O-state is
achieved either in the melt or in a specific ©-solution. Statistical weights, needed in the RIS
theory, can also be used in a MC scheme, in which the polymer conformation is changed
randomly according to certain rules, to generate independent chain conformations with the
correct statistics (RIS MC?). One practical drawback of the RIS methods is that statistical
weights must be derived for each possible minimum energy conformation of the polymer
chain. However, in less complex cases RIS methods are preferred for calculation of single
chain properties, due to their high computational efficiency. These methods can mainly be
applied to homopolymers and polymers with small or iff side groups. The RIS Metropolis
Monte Carlo (RMMC) method® has similarities with the conventional RIS theory but is not
atrue RIS method despite its name. In the RMMC method, the conformational energies of
the polymer chains are calculated directly from the selected FF. Since the bond rotation
(torsion) angles are allowed to vary continuously in the RMMC method, RMMC can easily
treat copolymers and polymer chains with flexible side groups. More detailed discussions of
the coarse grained and Statistical mechanical methods can be found in textbooks or
publications in this field™?*3% The RMMC method® is presented in more detail also in
chapter 2.3 of thisthesis.

To obtain reliable conformational statistics for polymer chains, the selected FF has to
estimate the potential energy surface (PES) of the systems studied as realistically as
possible. An accurate representation of the bond rotations in the chain is extremely
important, since especially the properties of synthetic polymers depend highly on the
conformational statistics of the polymer chains. As regards the conformational analysis of
large molecules and polymers, the most important terms of the FF are torsion and non-
bonded potentials, out of which the latter usually contains van der Waals and Coulomb
interactions. Correlation between the parameters of the model function is a serious problem
in derivation of FFs. The non-bonded parameters are strongly correlated with all other
parameters of the FF. The torsional potential, on the other hand, is local in nature, and its
parameters are strongly correlated with the non-bonded parameters. Due to correlations, FF
parameters are usually not uniquely determined. Therefore, optimisation of only part of the
parameters may improve some calculated results for molecular properties, though
simultaneously new discrepancies are easily introduced in other properties. However, re-



optimisation of torsion parameters does not significantly affect other molecular properties
than conformational energy features of the concerned bonds. An incorrect torsional
behaviour can, therefore, be corrected by re-optimising the torsion parameters. Although
this re-optimisation may not be physically completely correct, it is technically the only easy
way to safely improve the FF. It should, however, be noted that the need to re-optimise
torsion potentials may also reflect inadequacies in other energy terms of the FF which the
re-optimisation tries to compensate. An other notable point is that due to correlations, the
parameters that are optimised for one FF are not directly transferable to other FFs. The
reliability of the FF to be used should always be tested when studying new kinds of
molecules. There exist no accurate universal FFs®, and all commonly used FFs are optimised

for special purposes.

In this study, interest is focused on the reliability and applications of the PCFF (Polymer
Consistent Force Field)3334323637.38394041 "\yhjich is a member of the CFF**44 family
and optimised for synthetic polymers. In most FFs the parameters are optimised to
reproduce QM and/or experimental data on various molecular properties. Compared with
experiments, QM calculations have the advantage that they easily yield a consistent and a
sufficient amount of data for determining the FF parameters. As regards the torsional
behaviour, QM results are favoured in the test as well as in the re-optimisation of the torsion
potentials, since in this way the entire rotational behaviour over the whole range of dihedral
angles can be obtained. If the level of the QM method used is high enough and the basis set
large enough the results that are to be used as reference data will be reliable. A flow chart
picture showing the goal of this study is presented in Fig. 2.

Polymer chains can be thought to consist of smaller units. By investigating these units as
neutral model molecules, information about the properties of the polymer chain can be
obtained. In this thesis the conformational energy behaviour of the studied polymer chains
was determined through QM studies carried out for selected model molecules (in this study
esters) (see papers | and I1). With the aid of these model molecules the reliability of the
PCFF was then investigated. If the torsional behaviour of the QM and FF results disagreed,
the torsion potential of the FF was modified. The reliability of the modified FF was further
investigated by RMMC calculations on single chain properties for such polyesters for which

10
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Fig. 2. A flow chart picture showing the goal of this study.

there was reliable experimental data available (paper 111). In this work aso the parameters
which affect the RMMC results were studied. The modified PCFF was further applied to
RMMC studies on the chain flexibility of a few polyesters known to be biodegradable
(paper 1V), and in amorphous phase studies of biodegradable polylactic and polyglycolic
acids (paper V). The amorphous phase studies were carried out to find factors, which affect

11



the biodegradability of the studied polyesters. The final goal is to obtain a PCFF for general
use on polyesters.

The model molecules and polyesters studied in papers |-V are presented in Fig. 3. Esters A
and B (molecules| and 11 in paper I) represent model molecules for aliphatic main chain and
side group polyesters with isolated carboxyl groups, and esters A-E (molecules C-E are
molecules I-111 in paper 11) model molecules for biodegradable polylactic and polyglycolic
acids, which are polyesters with non-isolated carboxyl groups. Polylactic (PLA),
polyglycolic (PGA) acids and their copolymers are used for example in paper coatings, food
packaging and in biomedical applications, such as in surgical sutures, bone fixation devices
and in drug delivery system in pharmacology*®*’#34%%° The flexibility is of interest due to
the possible applications of these biodegradable polyesters for example in packaging
materials or baby diapers. The side group polyesters poly(methyl acrylate) (PMA),
poly(methyl metacrylate) (PMMA) and poly(vinyl acetate) (PVA) were chosen for these
studies because they have been very carefully studied and are widely used in many
applications, PMA for example in packings, PMMA in paints and plastics and in a range of
glazing applications and PVA in coatings and in adhesives™.

2 Theoretical aspects

In the following, the theory related to the methods used in the calculations of this thesis is
presented. Chapter 2.1 contains a brief review of the ab initio and DFT methods. The FF
methods and especially the PCFF are presented in chapter 2.2. The RMMC method, which
applies aFF in the calculations of single chain properties of polymers is presented in chapter
2.3. Properties of an amorphous polymer material were studied by the Amorphous Cell -
method, which is described in chapter 2.4.

2.1 Quantum mechanical methods

Despite the fact that they are the most correct atomistic computational methods available,
the QM methods use approximations and simplifications of the theory. In the following the
main features of the QM methods used in this thesis are briefly presented. More detailed
descriptions can be found in for example Refs. 3-7.

12
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Fig. 3. Model molecules (including the numbering of the atoms) for studied polyester chains.

Acoording to the BO approximation?, motions of electrons and nuclei can in most situations
be studied separately due to their different masses. Thus, QM (both ab initio and DFT)
methods are based on solving the time-independent Schrédinger equation for the eledrons

of amoleaular system

13




HeWa = EqWy. @
In eg. (1) Hy isthe eledronic Hamiltonian, Wy is the electronic wave function and Eg is the
total eledronic energy of the moleaular system for a given arrangement of the nuclei. The
total energy Ewi({R}), in which {R} describes the m-ordinates of the nuclei, provides a
multidimensional PES for nuclea motion. To simplify the eguations all quantities in the
following discussion will be in atomic units and Hg, Wg and E4 are given without a

subindex sincein this chapter only the eledronic problem is considered.

The electronic Schrodinger equation of the many-electron problem can be solved using the
Hartree Fock (HF) approximation, in which the many-eledron problem is replacel by a set
of one-eledron problems. The eledron-eledron repulsion is taken into acount through an
average potential. The HF equations comprise aset of independent equations for eat one-
eledron orbital. For an orbital a it is

{h()+v"* }o,() =£.0.0). @
The Hamiltonian is, thus, presented as an approximate Fock operator, which is a sum of

one-eledron operators h(i) = —;Df - ZZA and v (i) = ; [3,(1) =K ,(i)].in which Zx
iA Za
Is the charge of nucleus A, ria is the distance between eledron i and nucleus A, Jy is a
Coulomb operator and K, an exchange operator. The effedive one-electron potential v"'*
describes the interadion of eledron i in the spinorbital a with the average field formed by
all the other eledrons in spinorbitals b (bZa). In eq. (2) & is the energy of the spin orbital
@,(i) of eledron i. The wave function of the eledron hes to satisfy also the aiti-symmetry
principle that is known as the Pauli exclusion principle. To solve the wave function from the
HF equations, a moleaular orbital, containing all the electron wave functions of the

moleaule, is usually written as a linear combination of atomic orbitals ¢ as follows
K
WY=3co. ihbj=12,...,K (3)
; j T
Here ¢ is the moleaular orbital expansion coefficient. Substitution of eg. (3) into the HF
equations and use of the variation principle gives the Roothaan-Hall equations, which can

be solved iteratively by a Self-Consistent Field (SCF) method. The results of the Roothaan-
Hall equations yield the HF wave function for the ground state of an N eledron system as a

14



Slater determinant and the eledronic energy in the field of M point charges (i.e. nuclei). By
varying the -ordinates of the nuclei a PES is obtained, and by minimising the energy the
global minimum energy information of the moleaule can be achieved. Due to computational
reasons, the g@omic orbitals ¢ are usually expressed as a linea combination of gaussian-type
basis functions. This is utili sed in the software pacage GAUSSAN>?, which has been used
inall QM calculations of thisthesis.

Since the electron-eledron correlation in the HF theory is taken into account only through
an average potential, for example bond lengths and dissciation energies can be
underestimated. In the Mgl er-Plesset perturbation theory this defed is corrected by treating
the rrelation energy as a small perturbation®®. The Hamiltonian is

Hx =Ho +AV, (4)

in which Hq is the gproximate Fock operator of the HF method and AV is a small
perturbation applied to Ho, in which A is a parameter and V a perturbation operator. The

perturbed wavefunction ), and energy E, are expressed in terms of the parameter A:
Py = l]J(O) + )\l.IJ(l) + )\zl.IJ(Z) + )\3LIJ(3) +
Ex=E@ +AEW + NE@ + \EO® + . (5)

The Mgller-Plesset second order perturbation (MP2) theory has turned out to be the most
satisfadory for most applicaions, when the cmmputing times and the acaracy of the results
are mnsidered.> Computationally more inexpensive methods, which also take dedron
correlation into acount, are the DFT methods based on the density functional theory for a
uniform eledron gas (local spin density approximation)®°>°, The DFT methods have their
origin in the Hohenberg-Kohn theorem® and are based on the knowledge that the dedron
density p(r) determines the external potential and, thus all molecular properties. Eledron
correlation is calculated through general functionals of the eledron density. It has been
proved that the functionals satisfy the variational principle, and that the functional has a
minimum at the right ground state density. From this general theory different approximate
methods to calculate an electronic structure and a total energy of a moleaule have been
developed. In the Kohn-Sham equations the eledronic behaviour of the moleaules is
described by a sum of exchange and correlation functionals. The eledronic energy can be
partitioned into different terms as follows

15



E=Er+Ev+ Ej+Exc. (6)

Here Er is the kinetic energy of the eledrons, Ey is the potential energy of the nuclear-
eledron attraction and of the nuclear-nuclea repulsion, E; is the eledron-eledron repulsion
term and Exc is the exchange-correlation term. The rrections due to the non-uniform
eledron density of molecules have been made to the exchange term (e.g. Bedke's functional
(B88 or B>"°#)) and/or to the correlation term (e.g. the functional by Lee Yang and Parr
(LYP*)). Also hybrid methods have been developed, in which the exchange functional is
replacel by the HF exchange term and by some density functional (e.g. Bede's 3-parameter
model with the LY P-correlation functional, B3-LYP®). By including the HF term a hybrid
method reduces the overestimation of bond lengths given by pure DFT methods.

In semi-empirical QM methods approximations are made to the overlap, repulsion and
nuclea integrals by introducing empirica parameters and/or omitting terms. Though in
paper | some semi-empiricd calculations using the Austin Model 1 (AM1)®! method were
performed, further discussion of semi-empiricad methods has been left out from this thesis.
Semi-empirical methods are known to be uncertain in many cases ®%%3%* and special care
has to be taken that they are goplied to moleaules smilar to those for which the methods
have been parameterised. Due to the smaller computing effort needed as compared with the
ab initio methods, the semi-empirical methods are mainly utilised in studies of large

moleaular systems.

Atomic net charges are not QM observables, and they cannot be determined diredly with
QM calculations or by experiments. Different methods exist for the estimation of atomic
charges of the moleaular system®®. Basically, the @omic charges are best derived by a least-
sguares fit to the dedrostatic potential (ESP), caculated in a large number of points around
the moleaule of interest®®. For example Sigfridson and Ryde®’ have mmpared different QM
methods for deriving atomic charges from ESPs. The CHELP®®, CHELPG® and Merz-
Kollman’®"* schemes are the methods included in GAUSSAN®2 They differ from eah
other mainly in the choice of the points where the ESP is calculated. In the CHELPG
method, which also is used in the present studies, the points are seleded on a regularly
spacel cubic grid (with the distance of 0.3 A between the grid points). All potentia points
that are not within the van der Waals radius of the gom are negleded, as well as all points
that are farther than 2.8 A from the nuclei. The point density is over 10times higher than for
the other two methods.®” With the default settings of GAUSSAN, Sigfridson and Ryde
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noticed that the CHELPG scheme gave the most stable (atomic) charges. Wiberg and
Rablen’® have also noted that the CHELPG method best describes the non-bonded
interadions compared to the other methods available in GAUSSAN.

2.2 Forcefield methods

Compared to QM methods, the classicd MM and MD methods®®°, are computationally
much faster, though more gproximate ways to compute the molecular structures and
energies. In these methods the nuclei are taken as interadion centres of the molecular
system. With MM, minimum energy geometry structures, their energies and static properties
are obtained. MD solves the clasdcal set of equations of motion for a system of N
interading atoms and can be used to derive dynamic properties. The potential energy of the
moleaular system is described by a FF, which includes different parameterised energy terms
to describe the interadions between atoms.

Several different FFs have been developed for various purposes. The best known ones are
MM3 and MM4 by Allinger et al 273747576777879 the CFF family by Lifson et a.*** and
Hagler et a.®°, CHARMM by Karplus et al.3>%283 AMBER by Kollman et al.?*%>% OPLS
by Jorgensen et a.8’, MM FF by Halgren et a.2%%° and GROMOS by van Gunsteren et al.%°.
Out of these FFs the PCFF (Polymer CFF)***! and the COMPASS (Condensed-phase
Optimised Molecular Potentials for Atomistic Simulation Studies) force field®*, belong to
the CFF family and are especially developed for synthetic polymers. The main interest in
this thesis is in the PCFF, though some clculations were also caried out using the
COMPASS H in paper .

,92,9394,95,96 ;

The general form of the potential energy given by aF is as follows

1
V= Ez [Fii (@ = ai0) + Fi & (a = ai0)® + Fi W (a; —ai0)* + ]

+z Fiy (Qi = Qio)(a; —ajo)+ Z Vior +z Vaor

1< ]

+Z Vtor,tor +Z an' (7)

In eg. (7) the first two sums comprise the valence part of the FF, and they describe the
energy related to changes in valence m-ordinates. Here o is the reference value of the
valence m-ordinate g, Fii is the harmonic diagonal force onstant, F;® is the aharmonic

diagonal force ®nstant of order k and F; is the interadion force @nstant between the
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valence co-ordinates g and g;. Regarding computation of polymer properties by MC
methods, the bond lengths and valence angles usually are constrained, and then the valence
terms of the energy function affect conformational properties of molecular systems only
indirectly through the optimised geometry. The torsion potential Vior (and its interaction
terms) and the non-bonded potential Vn,, on the other hand, directly affect the
conformational properties of system (direct effect on the population of the conformational
states of molecules in MD and MC simulations), and are thus the most important potential
energy terms as regards conformational analysis of molecular systems. In the PCFF and the
COMPASS FF, the torsion potential Vior, Which describes rotations about chemical bonds in
molecular systems, is expressed as follows

Vior i V(1 - cosng). (8)

In eg. (8) n is the periodicity of the term related to a torsion co-ordinate @ and V, is the
corresponding torsion barrier parameter. Vgior ad Vioror in €9. (7) describe interactions
between a valence co-ordinate g and a torsion co-ordinate @ or between two torsion co-
ordinates, respectively. There exist more advanced representations for torsional behaviour,
e.g. by Allinger et al. in the MM4”>™ and by Mannfors et al. in the CFF %2%"%_ Both these
models contain a fourfold term and the latter an additional one-fold term (1+cos @, mis an
odd integer), which was needed to reproduce correctly the ab initio gauche conformation
and its torsional frequency in 1,3-butadiene and in a few of its methyl substituted
derivatives. The non-bonded potential Vi, describes interactions between atoms that are not
chemically bonded to each other or to a common atom (1,4 and higher interactions). It is
usually represented by a Lennard-Jones (LJ) type (long-range attractive and short-range
repulsive) potential for the van der Waals interactions and a Coulomb potential for the
electrogatic interactions. This is the representation also used in the PCFF and the
COMPASS FF. For a LJ 9-6 potential Vi, has the analytic form

V. (r)=E EQHRO_'g 3HRL§EI+1< bk 9
nb(ru) OI] H ! H H ! HD £(r”)r” ()

Ineg. (9) rij isthe distance between atomsi and j, Eqj; and Ryj; are parameters which depend
on the type of atoms (i and j), & (g) isthe partial charge of atom i (j), &(rij) is the dielectric

constant, that in some FFs is distance dependent, most often though taken as 1.0, and k is a
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constant. The LJ 9-6 potential has been found to give better results than the 12-6
potential %, and it is also used in the PCFF and the COMPASS FF. As already mentioned,
the electrogatic interactions in the PCFF, as well as in the most currently used FFs, are
described by a Coulomb potential, i.e. as a fixed point charge model. More advanced
electrostatic models have been developed, for example by Mannfors et a.®®® for the
SDPFF (Spectroscopically Determined Polarizable Force Field). In addition to aomic
charges the model includes atomic dipoles and is further enhanced by the possibility to
explicitly account for polarisability in the form of induced charges and anisotropically
induced atomic dipoles. Other models also exist in which polarisability is at least partly
accounted for,101:102103104.105| 5 || other electrostatic models charge and dipole changes as

afunction of geometry are taken into account.'*'%’

2.3 RIS Metropolis Monte Carlo (RMMC) method

In the RMMC method, which was developed by Honeycutt®, conformations of polymer
chains are generated with the MC technique®® using potential energy functions (FFs)
directly. The generated conformations of the polymer chains are then used to calculate
average values for single chain properties such as characteristic ratio, radius of gyration and
persistence length, i.e. properties, which can also be computed with the conventional RIS
method.

In Ref. 30 and in paper 111 some of the main features and differences between the RMMC
and conventional RIS methods are presented. Since the RMMC method uses continuous
torsion co-ordinates it can easily be applied to, for example, copolymers and branched
polymers with flexible side groups. The quality of the selected FF is, however, crucial for
the RMMC method. In the RMMC method, as well as in the RIS theory, the bonds and
valence angles are constrained, in the conventional RIS method to mean values and in the
RMMC method preferably to values corresponding to the initially optimised minimum
energy structure. In most QM or FF calculations such constraints are not used.

An RMMC simulation scheme is presented in Fig.4. The RMMC simulation of a polymer
chain starts by choosing an arbitrary conformation for the chain. In a MC step a change is
done to that conformation, and based on the temperature and the energy of the new
conformation relative to the old one, it is decided whether this new conformation is accepted

or not. This process is repeated several times in order to get a distribution of conformations
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which is characteristic for the studied chain at the specified temperature. Then
conformational property calculations are carried out and running averages updated. The
whole process is repeated until a sufficient number of iterations is achieved. The RMMC
method is discussed in more detail in Papers i1, IV and in Ref. 30.

Energy minimisation (Eoiq)

v

> Random selection of a rotatable bond

v

Random selection of a
torsion angle for the bond
Repeat until
alarge enough +
number of Energy calculation of the
conformationsis new conformation (Enew)
obtained

v

Generation of a random number R (between 0 and 1)

o if exp[-(Enew -Eold)/KT] > R, the newtorsion
angle is accepted (Eoig™ Enew)

* €eserestorethe old value

Repeat until

a sufficient v

number of ) :
iterationsis Conformational property calculations
obtained

v

Update running averages of the
computed properties

Fig. 4. The RMMC simulation procedure.

There is a number of parameters that significantly affect the results of a RMMC simulation,
such as the parameters of the selected FF, the cut-off for non-bonded interactions and an
effective dielectric constant. The energy terms of the selected FF considered in the RMMC
simulation are the torsion and non-bonded potentials. For a polymer chain in ©-conditions
interactions between distant atoms along the chain vanish and, in order to simulate these
conditions, a non-bonded cut-off has to be imposed. There are two methods to treat cut-off
in the RMMC method. In the distance dependent method, interactions beyond the defined
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maximum distance between interading atoms are not included. This treatment, however,
allows non-bonded interadions also between distant atoms along the diain in flexible
polymer chains. In the Max_Bonds method, instead, the non-bonded distance is determined
between a minimum and maximum number of bonds along the dain. The latter method
takes, thus, proper care that the non-bonded interadion is kept a a short range along the
chain, as required for a ©-gate of a polymer chain. The Max_Bonds method, which is used
to treat the ait-off in all RMMC studies of this thesis, is clarified in Fig. 5 in the cae of
PLLA, without and with charge groups, using Min_Bonds=3 and Max_Bonds=6.

a)

CHs; CHs CHs CHs CHs;

NEE B AN aRNGE B LEE

b)
CI|-|3 C=‘|3  / CPE ClH: C||43
—T C—O0— — 00— — 00— —O0— —O0—
A

Fig. 5. The Max_Bonds method a) without and b) with electrically neutral charge groupsin the case of PLLA.
The minimum distance (Min_Bonds) is 3 bonds and the maximum distance (Max_Bonds) is 6 bonds. The non-
bonded interactions are taken into account between all the atoms in shadowed boxes. The arrow marks the
atom from which the count of the bonds is started. Each charge group contains an atom assigned as a
switching atom (*) to define the starting point for counting the number of bonds.

If charge groups are not used, the Coulomb interadions may not be in balance (because of
the ait-off). By dividing the polymer chains into neutral charge groups unbelanced
Coulomb interadions can be avoided, as sen in Fig. 5 for PLLA. The coice of charge
groups is discussed in more detail in paper Ill. Asregardsthe parameter values, Min_Bonds
is usually defined to be threebonds as the non-bonded interadions in most FFs are restricted
to 14- and higher interadions. Max_Bonds typically range from 4 to 6"V, but larger
values may be required depending on the dain architedure. The dfedive dieledric
constant €« can be used to account for the dhain’s environment, but mostly it is taken as 1.
The doice of the parameters is not a priori evident, and has to be based on careful tests for

various types of polymer chains.
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The most significant single chain property is the flexibility of a polymer chain. The

charaderigtic ratio (C,, = lim C,,) is determined for flexible polymers as follows®

n- o

C, = <rzz 10
nl,

In the @ove ejuation <r?> is the mean squared end-to-end distance of the chain, n is the
number of bonds and |, is the length of a real or a virtual bond. Virtual bonds are more
commonly used for polymers having rigid urits in the dain, and it is defined as a “bond”
conrecting the @oms on the opposite sides of a rigid unit.>> As regards lessflexible chains
such as liquid crystals, a persistence length is a better measure of stiffness than the
charaderistic ratio. It can be defined in various ways. It may be defined as the average sum
of the projections of all bond vedors onto the first bond of a dain. Alternatively, it may be
defined as the projedion of all succeealing bonds (including the bond itself) onto an internal
bond of the dain. The persistence length is, thus, a measure of the distance over which a
chain retains "memory" of its initial diredion. The latter way is preferred in this thesis. A
ratio of the mean squared end-to-end distance over the mean squared radius of gyration
(<r?>/<s*>) can also be @lculated. The theoretical value of this ratio is 6 for ided random
walk chains, which are chains that obey gaussian statistics. However, it is of no significant

pradical importance

2.4 Simulations of amorphous polymers

In the following a simulation method avail able in an MSI (Moleailar Simulations Inc.)*%®

software padkage and used in this thesisto study the amorphous gate of a polymer material
Is presented. First the construction and the refinement of the amorphous model is described,
then the methods used for cdculation of the properties of the cnstructed model are briefly

presented. More detail s can be found in textbooks and research articles,108109110111112113

Construction and refinement of the model

The Amorphous Cell -procedure is shown in Fig. 6.
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Fig. 6. The Amorphous Cell-procedure
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The amorphous models were built in two steps. First, an initial structure was generated for
the polymer chains in a box (or amorphous cell) using the Theodorou and Suter method
(step 1 in Fig. 6). Second, the constructed structures (i.e. polymer chains in the cell) were
optimised to obtain low-energy structures of the model (steps 2a and 2b in Fig. 6). In the
Theodorou and Suter method, the three first backbone atoms together with the pendant
atoms of the first two are placed in a box with periodic boundary conditions. Thereafter the
chain is constructed stepwise so that one bond at a time is added to the chain. The torsion
and the non-bonded potentials of the selected FF (or the datistical weights in the RIS
method) determine the value of the dihedral angle of the added bond. The periodic boundary
conditions and minimum image convention, used in calculations to avoid artificial surface

effects, are shown in Fig. 7.

Fig. 7. A minimumimage convention and periodic boundary conditionsin a two-dimensional system. (L=the
length of the cell edge). °

With the periodic boundary conditions, the system is considered to be surrounded by
replicas of itself forming an infinite macrolattice. When a molecule moves in the original
box, its periodic images in the neighbouring boxes move in the same way. When a molecule
(C) leavesthe central box, one of its images will enter through the opposite face, since there
are no walls at the boundaries of the central box and no surface molecules. In the minimum
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image convention, only the shortest possible distances between the atom pairs, the lengths
of less than half of the box edge length, are taken into account in the calculation of the
forces between the atoms. For example, in the box constructed (dashed line) with molecule
As at its centre, the molecule As interacts with all the molecules whose centres are inside the
constructed box, i.e. with the closest periodic images of the other molecules (Bs and C,).
Charge groups, as described in section 2.3, can be used also in the Amorphous Cell -
procedure. The number of chains constructed and the degree of polymerisation (DP), i.e. the
length of the chain, together with the density determine the size of the constructed cell. The
FF and the temperature determine the conformational statistics of the chains. Lower density
than the experimentally observed one can be used in the initial construction of the cells to
facilitate the proper packing of the cells. The constructed initial model structure usually has
a high potential energy, and the cell has regions in which the density fluctuates a lot (see
Fig. 6). Several cells are required to obtain sufficient statistics for the conformational states
of the polymer chains for averaging of the calculated properties.

The initial structures are then refined using repeated MM and MD steps to obtain low-
energy cells. A canonical ensemble is selected. Inthisthesis, the relaxation was made in two
steps (2a and 2b in Fig. 6) to facilitate the proper equilibration of the structures. In step 2a
the densities of the cells were kept lower than the experimentally observed ones and a
smaller cut-off value for the non-bonded interactions was used. The torsion and non-bonded
parameters of the FF were scaled. MD steps with higher temperature than in the
experimental studies were carried out to avoid the cells trapping into local high-energy
minima, since MM energy minimisation always leads into the nearest downhill minimum.
InaMD simulation the system can travel over potential energy barriersif the kinetic energy
is large enough. In this way, the system can adopt conformations in the low-energy region,
even when there are several barriers between the starting point and the low energy region.
The systems were considered to be equilibrated when the cohesive energy densities of the
cells did not grow further, the energies of the different cells were close to each other and the
cells by visual inspection also seemed to be evenly distributed. After the first relaxation, the
structures were optimised using the experimental conditions (the correct density and
temperature) and realistic parameters (non-scaled torsion and non-bonded parameters and a
cut-off value, which is less than half of the cell-edge length due to the minimum image
convention used). Corrections to the energy and pressure (tail corrections’) were included in
this work to compensate for the missing long-range part of the non-bonded potential. All
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atoms were, thus, explicitly taken into aacount. After the relaxation, the cells were realy for

further analysis and for calculation of the properties of interest.
Calculation of properties

In this gudy, solubility parameters, free volumes and pair correlation functions were
calculated. These static properties of the amorphous material, which are cmmputed as mean

values of several cells, can be obtained using the optimised structures.

The Hildebrand solubility parameter expresses the interadions between the polymer and the

solvent, and is defined as'!?

8= Uean/V)"2. ®
Here Ucoh = Uinra — (Ucac + AUwil) and V is the volume of the system. Uiy IS the
intramoleaular energy of the @nstructed moleaules, Ucyc is the energy given by the
simulation using the potential cut-offs and AUy is the @rrection for the non-bonded energy

caused by the use of cut-offs.

The free volume @n be studied by different methods. The Gusev and Suter method™'°
calculates the Helmholtz free energy of the penetrant molecule & ead point on a uniform
grid. Eadh grid point is then assgned to the neaest local minimum and a graph of the size
distribution of unoccupied sites is produced. In the Gusev-Suter method, the interadion
energy between the polymer matrix and the penetrant moleaules is calculated using aLJ 9-6
potential but the Coulomb interadions are neglected. The other method to sudy free volume
is the Voorintholt method*'? which uses a geometric algorithm to cdculate a value
describing the distance of a probe moleaule & a grid point from the nearest atom. Free
volume distribution can also be estimated by constructing Voronoi tessellations. In the
Voronoi method'®®3 a Voronoi polyhedron, identifying the available free space is
constructed around a cantre atom, and a distribution of polyhedra with various shapes and
sizes is generated. Thus, in the Voronoi method only the available free space without

penetrant molecules, is considered.

The pair correlation functions (PCFs) give adistribution of the @oms located at a distancer
from the reference @om. They, thus, yield information about pading of the gaomsin a a&ll.

Intramolecular PCFs were used to study the structure of the polymers and intermoleaular
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PCFs to study the pading of the dains. The total PCF gives the sum of the intra- and
intermoleaular PCFs.

3 Computational details

3.1 Programs used

All the omputational results were obtained using a CrayC94 or an SGI Power Challenge
computer a8 CSC (Center for Scientific Computing Ltd., Espog Finland). The QM
calculations of papers| and Il were performed using GAUSS AN 94/98 (Revisions B.1 and
E.2)*? and the FF calculations using the Insightll 3.0.0 and Discover 4.0.0P of MS| software
packages'®® The RMMC calculations of papers Ill and IV were performed wsing the RIS
module and the amorphous phase @lculations of paper V using the Amorphous Cell -
module of the particular MSI software. In addition, an in-house wde (written by Pietil &%)
was used to cdculate the distributions of the aljacent dihedral angle pairs of the constructed
amorphous structures”.

3.2 QM andFF studies

The QM methods used in papers | and Il were ab initio MP2>® and DFT with ron-hybrid B-
LYP>" and hybrid B3-LYP*® functionals. The semi-empiricall AM1°* method was aso
tested in paper |. The B-LYP and B3-LYP functionals were chosen because they are
generally used and well studied functionals.®%**>® |t has aso been found that most
moleaular properties (such as geometries, conformational energy differences and vibrational
frequencies) are not so sensitive to the wrrelation functional used in the DFT calculations
but clealy sensitive to whether a non-hybrid or a hybrid method is used.®® In paper | the
polarised basis st 6-31G(d) and the diffuse basis st 6-31+G(d) were studied. The latter was
tested because of the presence of the lone pair eledrons on the oxygen atoms. In the 6-
31G(d) basis %t d-orbitals have been added to non-hydrogen atoms (here to the cabon and
oxygen atoms), in addition to which diffuse functions (i.e. large-size versions of s- and p-
type functions) are alded to the heavy atoms in the 6-31+G(d) basis %t. FFs chosen for the
calculations were the PCFF and the COMPASSFF.

Constraints are necessary in the re-optimisation of the torsion parameters < that the studied
rotation is not affeded by the other torsions in a moleaular system. To have wmpatible

results for comparisons, the same nstraints were used in QM and FF calculations. The
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neighbouring rotations for the studied rotation were nstrained to trans (dihedral
angle=180°) conformations. In the methyl groups, except the C13 methyl group in moleaule
E (seeFig. 3), one of the hydrogen atoms was constrained to the trans conformation with the
bad<bone. In the C13 methyl group the H15 atom was fixed to the trans conformation with
resped to the H12 atom. All dihedral angles containing the C=0 bonds were mnstrained to
the cis conformation along the badkbone and all other C-O and C-C bonds to the trans
conformation, when rotating either C-O or C-C bond. These constraints on the C-O and C-C
rotations, instead of the real minimum energy conformations were chosen, since the
minimum energy conformations in different moleaules and/or methods gudied may differ

from each other.

Potential energy scans were caried out at al the diosen levels of theory by optimising the
geometry at ead fixed dihedral angle of the rotation under investigation and with the
congtraints explained above. The minima and maxima of the QM potential energy curves
were separately determined and, in situations where difficulties arose with convergence,
potential energy scans using smaller steps were caried out to locae the extrema. To find the
potential energy minima in the FF studies of papers | and Il the stegest-descents method
was first used as a minimisation algorithm to locate the low-energy structures. The
conjugate gradient method (Polak-Ribiere)'* "% was then applied nea the minima. The final
minima were locaed using a quasi-Newton-Raphson method BFGS (Broyden-Fletcher-

Goldfarb-Shanno)**"1%®,
3.3 RMMC studies

The polyester chains of papers Ill and IV were @nstructed following the RMM C scheme
presented in Fig. 4. The dains in paper Ill were constructed with two dfferent chain
lengths, DP=100 or 200, to study the effea of chain length on the results. In paper 1V
DP=50 a 100 were used to produce dout the same number of rotatable badbone bonds as
was used in paper IIl. All polymer chains were divided into eledricaly neutral charge
groups (seeFig. 5), and the Max_Bonds=4, 5 and 6 were studied in paper I11. In paper IV,
the Max_Bonds=4 and 6 were used de to the different choice of charge groups. For PLLA
also the Max_Bonds=9 was tested becaise of the large deviations between the different
experimental results and to sudy the effed of longer-range interadions on the results.
Coulomb patential was included and the dielectric constant was st to 1.0 in all caculations.
The temperature was 298 K. The energy minimisation was caried out using a wnjugate
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gradient method (Polak-Ribiere). In the RMMC studies of paper IlI, the number of
equilibration and production steps were 800,000 and 3,000,000 for the 100 repea-unit
chains, and for the longer chains 1,500000 and 5,000,000 respedively. The equilibration
and production steps in the alculations of paper 1V were 3,000000 and 6,000000. The
results were updated every 600" step. All RMMC calculations were caried out using the
modified PCFF and in paper IV for DP=100 also with the original PCFF. In this thesis,
RMMC calculations using the original PCFF were caried out also for polyesters dudied in

paper 111

3.4 Amorphous phase studies

The amorphous polymer structures, studied in paper V, were constructed with the
Amorphous Cell - procedure shown in Fig. 6. Several cells, which were aubes in this work,
were built. For PLLA and PGA ten amorphous cells containing five identical chains with
DP=50 were constructed. Since the differences in the final optimised cells of PLLA and
PGA were small, only four cells containing five dissmilar chains were built for the
copolymers; dissimilar chains were used to obtain sufficiently random structures. In steps 1
and 2a of Fig. 6 the densities of the allswere set to about 90% of the experimental value. In
step 2b they were increased to the experimental ones, i.e. for PLAs 1.25 kgm?®, 8 for PGA
1.50 kgm?, **° and for PGA/PLLA 1.375 kgm® (average of the first two). All constructed
structures were fully optimised using a mnjugate gradient method (Polak-Ribiere) with
1000 steps and with MD using the velocity Verlet agorithm®® with 10000steps. The time
step in the MD calculations was 1 fs, and the NVT (constant volume and temperature)
ensemble was used. For the relaxation in step 2a the temperature was raised to 500K, the
group-based cut-off value for non-bonded interactions was set to 7 A, and torsion and non-
bonded parameters were scaled by a factor 0.5. In step 2b the respedive values were 298K,
11 A and 10 (non-scaled). Tail corrections were included in the final relaxations. Usually
about 5-10 MM/MD cycles were neaded to achieve statistically stable systems.

To sudy the effed of water moleaules on the padking of the cells in the amorphous phase of
the polyesters gudied ten H,O moleaules were included in the final cdls. Two cycles with
1000MM and 15000MD steps and a final energy minimisation were caried out to optimise
the allswith the water moleaules.

29



4 Main results and discussion

In the following the main results of papers |-V are discussed. In section 4.1 the
conformational properties related to the studied rotations of the model molecules, calculated
by the QM and FF methods in papers | and Il, are considered. The reliability of the FF,
modified in papers | and 11, is investigated in section 4.2.1 by performing single chain
property -calculations for the selected polyester chains. In section 4.2.2 the applications of
the modified FF are considered.

4.1 Conformational properties of the selected model esters

In paper |, the rotations about the C(sp?)-O(sp®) and C(sp®)-C(sp?) bonds adjacent to the
carbonyl C=0 group were studied in esters A and B. In paper |l the rotations about the
neighbouring C(sp®)-O(sp®) and C(sp*)-C(sp?) bonds adjacent to the methylene CH, group
in molecule D or the CH(CHs) group in molecule E were investigated. The C(sp®)-O(sp°)
rotation of molecule C was studied as a reference for those in D and E. Molecules D and E
represent the structura units of polyglycolic and polylactic acids. The ability of the PCFF,
and in paper | also of the COMPASS FF, to reproduce the ab initio conformational
behaviours of the C-O and C-C rotations in question was evaluated. As general results, both
the PCFF and the COMPASS FF computations, especially for the C-C rotations, were in
severe disagreement with the QM results. Since the COMPASS FF reproduced the C-O
rotations of paper | even worse than the PCFF, the PCFF was chosen for re-optimisation and
later for the calculations of papers 111-V. Similar disagreements between the QM and PCFF
results have been found also for esters with a tartaric unit.*** The results of the semi-
empiricall AM1 method for the torsional behaviours presented in paper | were aso in
disagreement with the results of other more accurate QM methods, and the method was not
considered in later sudies. In paper | the results obtained with the basis sets 6-31G(d) and 6-
31+G(d) were compared, but no significant differences between the results were obtained.
Therefore in paper 1l the 6-31G(d) basis set was automatically chosen for the QM
calculations. The Coulomb potential may strongly affect the conformational properties of
esters, which are molecules with polar bonds. Therefore the conformational dependence of
the ESP derived CHEL PG atomic charges are also considered in section 4.1.2.

In the following the relevant QM and PCFF results of the model molecules studied in papers
| and |1 are discussed in more detail.
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4.1.1 Torsional behaviour

When a bond rotation is gudied, the effeds of other bond rotations on the studied one have
to be eliminated. Therefore, excluding the rotated one, in papers | and Il the bonds are
constrained to allow a systematic comparison of the results with each other. The exad
congtraints are presented in sedion 3. These mnstraints are justified, which can be proved
with the results of the 2D potential energy maps. The effed of neighbouring bond rotations
on ead other are shown in Figs. 7 and 8 of paper Il for moleaules D and E. The C(sp®)-
O(sp®) and C(sp®)-C(sp®) bonds were rotated, while the rotations around the other bonds
were kept fixed. The points of fully optimised minima (with no constraints), cdculated by
the PCFF, MP2 and B3-LYP methods and presented in Table 5 of Paper I, fall into the
calculated minimum energy regions. These results are in agreement with the 1D results, and
as examples the 1D C(sp?)-O(sp®) and C(sp®)-C(sp?) rotations of moleaule A and the C(sp°)-
O(sp®) and C(sp®)-C(sp?) rotations of moleaule E are presented in Fig. 8.

The PCFF was found to gve the C-O curves in reasonable agreement with the MP2 and
DFT ones. In general, the C-O bonds were not o flexible as the C-C bonds. The C(sp?)-
O(sp®) rotation of moleaule A has a high barrier at about 80° (14.0 kcd/mol by the MP2
method) and a global minimum at 18C° with all the seleded methods. The C(sp®)-O(sp°)
rotations of moleaules C, D and E, as well, have high (cis) barriers (7.7 kcal/mol, 16.8
kcal/mol and 17.8 kcd/mol, respedively) and a smaller barrier at about 13C°. Global
minima were alculated to be & about 83°, 74° and —75 (E is not symmetric aound the cis
conformation), respedively. The C-C curves obtained with the PCFF were in total
disagreement with the ones obtained by the QM methods. In fad, the PCFF C-C torsion
profiles sem to be reversed in all the studied moleaules as compared to the @rresponding
MP2 o DFT curves. The C(sp*)-C(sp?) rotation barriers of the PCFF were also calculated to
be much higher than the barriers calculated by the QM methods (see eg. Fig. 8). Re-
optimisation of the torsion potential of the PCFF is, thus, definitely needed to correct the
wrong torsional behaviour.
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The torsional behaviours obtained by the ab initio (MP2) and DFT (B3-LYP, B-LYP)

methods were also compared with each other in papers | and 1. The curves were mostly in
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good agreement with each other. There were, however, some deviations between the MP2
and DFT results such as the cis-trans energy difference in the C-O rotations. The heights of
barriers, calculated with the DFT methods, were also systematically smaller in the C(sp?)-
O(sp®) and C(sp®)-O(sp®) rotations than those calculated with MP2 (0.7-1.5 and 0.5-3.1
kcal/mol, respectively). Locations of the energy minima and maxima were, though, close to
each other with both methods. The MP2 results were chosen as a reference data, due to the
better description of dispersive interactions by MP2 as compared with that of the DFT
methods. 1%

The PCFF torsion parameters (Vi1, V2 and Vs in eg. (8)) relevant to the studied rotations were
re-optimised to reproduce the MP2 torsional behaviour. The non-bonded potential and the
valence FF in the PCFF were not re-optimised. Thus, the O6=C3-04-C5 dihedral angle for
the C(sp?)-O(sp®) rotation and the C1-C2-C3=06, C1-C2-C3-04, H-C2-C3-04 and H-C2-
C3=06 dihedral angles for the C(sp®)-C(sp®) rotation were optimised in paper | (see Fig. 3.).
For all the other dihedral angles belonging to the particular C-O and C-C rotations the PCFF
torson parameters were not changed in order to retain the transferability between the
parameters of molecules with corresponding functional groups. The re-optimised FF
obtained in paper | was used as a starting point for the similar optimisation in paper 11 in
which the C1-02-C3-C4, C1-02-C3-C13 and C1-02-C3-H dihedral angles for the C(sp°)-
O(sp°) rotation, and the O2-C3-C4-05, 02-C3-C4=014 and C13-C3-C4-05 dihedral angles
for the C(sp®)-C(sp?) rotation were optimised for molecules D and E. The original and the
re-optimised results are presented in Table 8 of paper | and Table 4 of paper I1.

The torsional behaviours obtained by the modified PCFF for the molecules A and E are also
given in Fig. 8. The modified PCFF now reproduces the MP2 torsional behaviours of the
studied rotations, though some minor differences can be seen. Further improvement would
require re-optimisation of the non-bonded potential. This was not done, as aready
mentioned, due to the strong correlation of the non-bonded parameters with the other
parameters of the FF. Since the differences are small, the present accuracy of the FF is
sufficient for a reliable generation of chain conformations and further computation of

polymer properties for polyesters containing the studied structural units.
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4.1.2 Coulomb interactions

Electrostatic interactions in the PCFF and the COMPASS FF are represented as a Coulomb
potential, i.e. as interactions between fixed point charges. An average set of charges is
usually optimised for all conformations, assuming that the variation of charges due to
changes in conformation is small. However, this assumption may not be valid for molecules
with polar groups. Thus, in papers | and |1 ESP derived atomic charges were calculated for
different conformations of the model molecules using the CHELPG method, as
implemented in GAUSSIAN 94/98. It was found that the most significant atomic charges of
the model esters as regards the ESP, depended only slightly on conformation (detailed
results are in Tables 5-7 of paper | and in the supplementary material (Tables A-E) of paper
[1). The atomic charges of the less polar alkyl groups, however, were more sensitive to
changes in conformation, especially during the C(sp?)-O(sp®) rotation. In total, the
conformational changes in atomic charges were less than 0.2e. A large part of this effect on
the conformational statistics is accounted for by the torsion parameters in the fitting
procedure. Thus, the approximation of conformationally independent partial charges in the
FF of the esters studied should be valid, as the polar carboxyl groups dominate the ESP.
This is not aways the case, and for example in esters with tartaric units also eletrically
significant charges experience larger conformational changes.’* As regards the
performance of the different computational methods used, the absolute values of the most
significant atomic charges at the global minima are about the same using the MP2 and B3-
LYP levels of theory, whereas B-LYP usualy gives smaller absolute values. The
conformational dependence is however similar in al these methods. The conformationally
independent PCFF charges, with a few exceptions, also are rather close to the QM atomic
charges (see papers| and I1).

The relative root-mean-square (rrms) deviations of the ESP charge fits at the different
minima of model molecules were rather satisfactory. They were slightly better for the C-O
rotations (9.0-16.6%) than for the C-C rotations (15.1-17.4%). The absolute root-mean-
square (rms) deviations were in volts 0.04-0.07 for the C-O and 0.05-0.07 for the C-C
rotations. The MP2 molecular dipole moments for the different minima were 1.5-4.3 D
(Déebye) for molecule A, 1.6-1.7 D for B, 1.6-1.9 D for C, 2.0-2.6 D for D and 2.2-2.6 D for
E. The deviation between the dipole moments calculated using the optimised atomic
CHELPG charges for each conformer and those calculated as expectation values of the



dipole moment operator was 0.002-0.050 D at the MP2 level. Since also the changes in the
ESP derived atomic charges due to conformation changes in the different rotations were
small for electrically significant charges, a set of average values for the charge parameters
should be appropriate to describe Coulombic interactions in a FF model in this case.

4.2 Properties of the polyesters studied
4.2.1 Reliability of the modified PCFF

The RMMC method is especially sensitive to the FF and cut-off for non-bonded
interactions. Thus, the reliability of the PCFF, modified in papers | and Il, was studied in
paper |11 by performing single chain property calculations with the RMMC method for such
polyesters for which there exists reliable experimental data. The effect of the choice of run
parameters in the RMMC procedure, mainly the cut-off limit for non-bonded interactions
and the chain length, on the results was also studied in more detail in paper IIl. The
characteristic ratios, persistence lengths and ratios of mean squared end-to-end distance to
the mean squared radii of gyration were calculated for a few side group polyesters, such as
poly(methyl acrylate) (PMA), poly(methyl metacrylate) (PMMA) and poly(vinyl acetate)
(PVA), as well as for a set of aliphatic main chain polyesters (see Fig. 3). For details about
the calculations see section 3.3.

The ratios of mean squared end-to-end distance to the mean squared radii of gyration were
close to the ideal value of 6 in all studied polyester chains. The calculated persistence
lengths were much shorter than the contour lengths for each chain indicating the sufficiency
of the selected chain lengths for reliable RMMC calculations. They were also found to
follow the behaviour of the calculated characteristic ratios as a function of run parameters.
Therefore, in the following only the characteristic ratios, which give the best measure for
chain flexibility in the case of flexible polymer chains, are considered.

Some relevant results of paper 111 are presented in Table 1. There were no major differences
between the results obtained with different chain lengths in the main chain polyesters, and a
chain length of 100 repeat units was therefore considered to be large enough. The
Max_Bonds value 4 was also found to be sufficient for main chain polyesters. The chain
length of 200 repeat units was more recommendable for the side group polyesters and also a
larger Max_Bonds value (5) was needed to properly account for the interactions between the
bulky side groups.
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Table 1. Characteristic ratios for the main chain and side group polyesters studied in paper I11. The characteristic
ratios cal culated using the original PCFF are given in parentheses. (at=atactic, it=isotactic, =syndiotactic)
(See paper 111 for references.)

DP 100 200
Max Bonds 4 5 6 4 5 exp. QSPR
Main chain polyesters
EC6 5.80+0.06 8.70+0.09 853+0.09 6.03+0.07 - 5.9 6.01
(5.05 £ 0.06)
EC10 6.35+0.06 8.66+0.09 8.27+0.08 6.51+0.07 - 5.1 6.54
(6.17 £ 0.06)
EC2E'C6 550+0.06 9.54+0.11 9.97+0.12 5.67 £0.07 - 5.25 5.49
(2.69 £ 0.03)
ECB8E'C6 590+0.06 8.77+0.09 831+0.08 5.78+0.07 - 5.8 6.18
(4.98 £ 0.05)
EC8E'C16 6.42+0.06 9.01+0.09 8.26+0.08 6.60+0.07 - 6.5 6.7
(6.33 £ 0.06)
Side group polyesters
PMA-at 7.59+0.13 11.93+0.19 - 7.78+0.19 9.39+0.23 84-94 -
PMMA-it 3.65+£0.09 8.77+0.21 - 5.65+0.18 11.67+0.37 9.4-10.8 -
(11.04 £ 0.20)
PMMA-at 596 +0.14 8.66+0.20 - 511+0.16 8.64+0.28 6.05-9.0 -
(9.03 £0.15)
PMMA-st 10.12 £0.22 10.22 £0.22 - 10.15+£0.27 10.07+0.32 7.3-9.8 -
(6.62 +0.13)
PVA-at 6.15+0.10 10.73+0.17 - 6.19+0.14 9.51+0.22 9.0-11.3 -

In Table 1 are also given the characteristic ratios calculated using the original PCFF for
main chain polyesters with DP=100 and Max_Bonds=4 and for PMMAs with DP=200 and
Max_Bonds=5. The characteristic ratios of PMMA as a function of chain tacticity are
presented also in Fig. 9, calculated using the original and modified PCFFs with DP=200 and

Max_Bonds=5.
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Fig. 10. The characterigtic ratio C, of PMMA as a function of chain tacticity (in % of racemic dyads). The C,
calculated using the original and modified PCFFs (Max_Bonds=5 and DP=200) and the experimentally
determined C,, (see Paper |1l for details) are expressed by x, O and *, respectively.

The characteristic ratios of the main chain polyesters using the original PCFF differ much
more from the experimental values than the ones obtained using the modified PCFF. For
EC10 both calculated results differ from the experimental value. The fact that the
experimental and calculated results are otherwise very compatible indicates that the
experimentally determined characteristic ratio for EC10 may be inaccurate. The QSPR
(Quantitative Structure Property Relationship) method, which is based on topological
indices™, gave similar results compared with the RMMC ones, also for EC10. As regards
the side group polyesters, the RMM C results with the modified PCFF for PMMA agree with
the experimental values which, however, partly deviate rather much from each other.}231%
The respective calculations performed with the original PCFF give results that deviate much
more from the experimental values, especially for tacticities of 40, 60 and 100%. This is as
expected since the original PCFF could not produce the conformational states of the chains
correctly, whereas the modified PCFF does, due to the re-parameterisation. The modified

PCFF is, thus, able to give reliable results for polyesters with the structural units studied.

In RMMC calculations the bond lengths and valence angles are constrained to the values of
areasonable energy conformation, which is one without large repulsions. However, changes
in conformation may significantly affect geometries especially in molecules with polar
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bonds. Therefore the mnformational dependence of these m-ordinates was gudied in papers
| and Il using the MP2, B-LYP and B3-LY P methods. There were no significant differences
between the results of the different methods. It was found that in the model esters the
conformational dependence of the bond lengths was small, the largest changes being 001-
0.02 A. Espedally in the C-O rotations, conformational changes in the valence angles were
large, up to 18°. These changes, however, occurred in high-energy and thus low-population
conformations. The effed of the conformational changes of the valence angles on the
RMMC results was thus in pradice small. Errors in the RMMC results caused by small
conformational changes in valence m-ordinates can be reduced by randomising the dhain
conformation prior to the energy minimisation of the dhain, which is then used for the adual
RMMC calculation.

4.2.2 Applications of the modified PCFF

4.2.2.1 Flexibility of the PLA and PGA chains

In paper 111 the RMM C method using the modified PCFF and with a @rrect choice of run
parameters was found to be areliable method for computing single chain properties also for
polymer chains with side groups that are alowed to rotate. In paper 1V the same gproad
was used for the RMM C studies on chain flexibility of seleded hiodegradable polyesters
with strongly interading polar carboxyl groups. The polyesters gudied were poly(L-lactic)
(PLLA), poly(L,D-ladic) (PLLA/PDLA) and polyglycolic (PGA) acids (Fig. 3). Becaise
the exad chain configuration in the experimental studies of the mpolymer of L-ladide and
D-ladide units was not known,*?°
alternating L-ladide and D-ladide units (alternating PLL A/PDLA) and for a copolymer

with random combinations of L,D- and D,L-dyads (random PLLA/PDLA). Corresponding

calculations were caried out for a copolymer with

calculations were caried out also for a random combination of G,L- and L,G-dyads
(random PGA/PLL A). For detail s about the clculations se sedion 3.3.

In general, the results for the dharaderistic ratios did not depend significantly on the dain
length. The differences between the results with DP of 50 and 100were small, though the
results of DP of 100 were dightly closer to the available experimental values (only for
PLLA and PLLA/PDLA). The chain length of 50 repeda units was thus considered large
enough for all the studied polyester chains. The alculated charaderistic ratios with DP=100
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and Max_Bonds=4 or 6 are compared with the experimental valuesin Table 2. Detail s about
the experimental results are given in Paper 1V.

Table 2. The characterigtic ratios of PLAs, PGA and PGA/PLLA with DP=100 and Max_Bonds=4 (6 in
parentheses) using virtual bonds (See paper |V for references and details about the experimental values).

Polyester chain Original PCFF Modified PCFF Exp.
PLLA 5.62 £0.13 7.68 £0.16 7.2,20,11.7
(3.69 £ 0.05) (10.01 £ 0.21)
PLLA/PDLA 7.98£0.18 6.49 £ 0.14 4.0
(alternating) (9.22 £ 0.21) (6.64 + 0.14)
PLLA/PDLA 8.53+0.20 6.84 £ 0.15 4.0
(random) (9.31+£0.22) (6.97 £ 0.15)
PGA 5.98 £0.12 7.53+0.13
(5.49 £ 0.11) (6.84 £0.12)
PGA/PLLA 6.30 £ 0.13 7.03+£0.14
(random) (5.72+0.12) (7.16 + 0.14)

The dharaderistic ratios are given using Mrtual bonds (see sedion 2.3) determined from the
generated polymer chains in the RMMC calculations. The virtual bonds are average values
of all corresponding bonds in the dhains, and are between 3.73-3.78 A (see paper IV for
detail s).

In general, the dharaderistic ratios increased as a function of the Max_Bonds value, except
for the dharaderistic ratio of PGA. In the cae of the PLLA chains, the charaderistic ratio
was drongly dependent on the Max_Bonds value, and the dhain became less flexible, when
the Max_Bonds value was increased from 4 to 6 (the dharaderistic ratio increased by 29
30%). The orresponding values obtained with the original PCFF showed a reverse trend
(the tharaderistic ratio deaeased by 34%). With the aut-off value of 9, the dharaderistic
ratio of PLLA was clealy larger than with smaller cut-offs.

The experimental results, available for PLLA and PLLA/PDLA, vary a lot (see Table 2).
Therefore, suggestions concerning recommendable aut-off values for the kind of polyesters
studied, based on comparison of the experimental and calculated charaderistic ratios, are
difficult to make. More acarrate measurements in the ©-state would be needed for a better
determination of this relation. However, the Max_Bonds value of 4, which was siggested
also in paper 11 for main chain polyesters, gave also here results closest to the most reliable
experimental results, i.e. 7.2 for PLLA and 4.0 for PLLA/PDLA. Thus, ac®rding to the
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RMMC calculations of Papers Il and 1V, using the modified PCFF, it seems that for
polyesters with small side groups the Max_Bonds value of 4 would be appropriate. On the
other hand, for polyesters with larger side groups the value should be larger.

Due to its definition, a smaller characteristic ratio corresponds to a more flexible polymer
chain. Based on the calculated characteristic ratios with the modified PCFF (DP=100 and
Max_Bonds=4) the flexibility of the polyester chains studied is predicted to increase in the
following order: PLLA, PGA, PGA/PLLA (random) and PLLA/PDLA (random,
alternating). The differences between the characteristic ratios, however, are not large. The
original PCFF predicted the flexibility to increase as follows: PLLA/PDLA (random,
alternating), PGA/PLLA (random), PGA and PLLA, in contradiction with the results
obtained with the modified PCFF. The differences between the characteristic ratios using
the original PCFF are also larger than those obtained with the modified PCFF. The order in
flexibility for PLLA and PGA calculated using the modified PCFF also agrees with the

potential energy maps presented in Paper |1, and with the results of other studies. 8%

The tacticity is known to affect on flexibility of the polyester chains. Thus, the effect of
tacticity on the characteristic ratio was studied in PMMA, and the results are shown in Fig.
9. The characteristic ratio varies between the values 7.1 (for 60 % of racemic dyads) and
11.7 (for 0 % of racemic dyads). The various lengths of the alkyl chains between the
carboxyl groups in the main chain polyesters, studied in paper 111, were found to have
practically no effect on the flexibility. The characteristic ratios of polyesters with isolated
carboxyl groups were calculated to be 5.5-6.4 (with real bonds and the modified PCFF,
Max_Bonds=4 and DP=100). The characteristic ratios for polyesters with non-isolated
carboxyl groups (with real bonds and the modified PCFF, Max_Bonds=4 and DP=50) were
close to these values, 6.1 for PLLA, 5.7 for PGA, 5.3 for PGA/PLLA and 4.6-5.1 for
PLLA/PDLA. The flexibility of the polyester chains studied seems, thus, to be practically
independent of the chemical environment of the carboxyl groups. It should be noted,
however, that the large conformational changes in the valence co-ordinates are not explicitly

taken into account and may have some effect on the calculated characteristic ratios.
4.2.2.2 Amorphous state properties

The amorphous state properties of PLLA, PLLA/PDLA, PGA and PGA/PLLA were studied
in Paper V. The reason for these studies was that hydrolysis, as a first step of the
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biodegradation, first takes place in the amorphous phase of the polymer*®*°: The polymer
chains are broken by a random hydrolytic scission into shorter chains. After that a rapid
metabolisation occurs, first in the non-ordered structures (the amorphous phase), and then in
the more ordered dructures (the crystalline phase), while the resistant material (highly
ordered structures) remains unchanged. The final metabolisation depends on the temperature
and other external conditions. Hydrolysis is, therefore, directly related to the
biodegradability of the polymers, and the probability for hydrolysis gives estimates for the
biodegradation probability, though no information is obtained concerning the dynamics of
biodegradation. Amorphous Cell -models were therefore constructed to study the probability
of these polyesters to hydrolyse. The properties of interest concerning the hydrolysability
are the solubility parameters, the free volume and the pair correlation functions (PCFs). The
ability of the polyesters in question to form hydrogen bonds with water molecules was
studied by including water in the cells. For details about the calculations see section 3.4.

The x-ray scattering curves, calculated for PLLA, PLLA/PDLA and PGA to estimate how
realistic the constructed models are, came out in agreement with the experimental curves
(see Fig. 2 in paper V). The distributions of the adjacent dihedral angle pairs also give
information about the reliability of the constructed structures. In Fig. 10 the adjacent C(sp°)-
O(sp®) and C(sp®)-C(sp?) rotations are shown as an example for one cell of PLLA,
PLLA/PDLAsand PGA.

The calculated distributions of the dihedral angle pairs of PLLA/PDLAS resemble more the
distribution of PGA than that of PLLA. This is due to the fact that PLLA/PDLA consists of
an alternating sequence of D- and L-lactide units, i.e. is syndiotactic with respect to the
methyl group, while PLLA is regular consisting only of L-lactide units, i.e. is isotactic. The
points of the dihedral angle pairs in Fig. 10 fall into the minimum energy regions of the 2D
potential energy maps presented in Figs. 7 and 8 of Paper Il for the model molecules of
PGA and PLLA. The constructed models were, thus, accepted for further calculations.
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Fig. 10. The distributions of the adjacent dihedral pairs (C(sp®)-O(sp®) and C(sp*)-C(sp?) rotations) as an

example for one cdl of PLLA, PLLA/PDLAs and PGA.

Some of the main results and features of PLLA, PLLA/PDLA, PGA and PGA/PLLA

regarding the hydrolysability of these polyesters are presented in Table 3.

Table 3. Some of the main results of PLLA, PLLA/PDLA, PGA and PGA/PLLA regarding hydrolysability in

the amorphous state.
PLLA PLLA/PDLA PLLA/PDLA PGA PGA/PLLA
(alternating) (random) (random)
Solubility parameter 22.0 23.2 234 34.0 26.6
(Jlcm®)*
Free volume (Voronoi) (in 8.5-25.0 A%
* % ofthetotal free
volume 68.5 67.9 68.3 68.1 68.3
« absolute amount (A% 5.65 5.23 5.34 4.45 5.30
PCF, hydrogen bonds (1.95,5.76)  (1.85,7.79) (1.85,7.79) (1.85,3.95) (1.85,5.50)

(separation (A), Intensity )
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As regards the solubility parameters, the most easily hydrolysable polyester is the one,
which hes its Slubility parameter closest to that of water (about 40 (Jcm®)”). The degreeof
crystallinity should be low, since the non-ordered structures are known to hydrolyse and
biodegrade more eaily than the ordered part of the polymer. If enzymes take part in the
biodegradation process the polymer chains must also be flexible enough to fit into the
adive site of the enzyme. The solubility parameter of PGA (34.0 (Jcm®)*) was calculated
closest to that of water. The respedive parameters for the other polyesters were somewhat
smaller but close to eadt other (from 22.0 of PLLA to 266 of PGA/PLLA). The reason for
the better solubility of PGA is the larger amount of hydrophilic groups in PGA than in the
PLAS.

The freevolume alculations, which tell about the pading of the polymer, were caried out
using the Voorintholt method™'? instead of the Gusev-Suter method.™® The Voorintholt
method was chosen, since the Gusev-Suter method was found not to be valid dwe to its
approximations in some @ses.*?’ The freevolume distributions were also estimated utilising
Voronoi tes=llations. The free volume is given for the PLAs, PGA and PGA/PLLA using
the Voorintholt method in Fig. 11. The maximum radius of the probe moleaule, in the cae
of water moleaules as penetrants, was st to 1.0 A. The size of the water moleaule was taken
to be smaller than the average dimension in different diredions to take into account the
flexibility of the penetrant moleaule.

According to the Voorintholt free volume results the padcing of the studied amorphous
materials was ©mewhat different. All PLAs and PGA/PLLA had lots of small free sites,
while PGA was the most tightly paded one. In the distributions of the Voronoi tessllations
the free volumes with various shapes and sizes are taken into acmunt, but the adual
penetrant molecules are not considered. The Voronoi tessllations reveded that the pading
of the studied polyesters was very similar, though PGA had less freevolume as compared to
the other polyesters. The largest fradtion of polyhedra (Fig. 4 of Paper V) has sizes of 8.5-
25.0 A3, which corresponds to the spacein which water molecules fit well. About the same
relative amount of the available free space of the PLAs, PGA and PGA/PLL A occurs in that
particular region (about 68%, see Table 5), but the dsolute anount is slightly smaller for
PGA.
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Fig.11. The free volume of the PLAs, PGA and PGA/PLLA using the Voorintholt method.

According to the calculated PCFs (Paper V), there were no significant differences between
the packing of the amorphous structures in the studied polyesters, at least before the water
molecules enter the amorphous structures. The PCFs with water molecules in the cells,
instead, revealed that there were dightly less hydrogen bonds formed between the hydrogen
atoms of water and the carbonyl oxygen atoms in PGA than in the other polyesters (see
Table 3). This can be due to the effect of hydrophobic methyl groups in PLAS that force the

water molecules close to the carbonyl groups.

These studies show that the most significant differences between the amorphous state
properties of the polyesters in question occur in the solubility parameter and in the PCFs
when water molecules are included in the cells. Thus, the ratio of the amounts of
hydrophilic and hydrophobic groups of the chains seems to be an important factor affecting
the hydrolysis and, hence, biodegradability. Other factors that are significant for
biodegradability are the degree of crystallinity of the polymeric material and the flexibility
of the chains. The copolymers are usually introduced in biodegradable applications due to

their more amorphous nature compared to the respective homopolymers. The degree of
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crystallinity of PLLA istypically about 40 % and that of PGA about 50%. The flexibilities
of these polyesters according to our studies are close to each other, though the copolymers
and PGA are calculated to be more flexible than PLLA.

5 Conclusions

In this study, the performance of the PCFF regarding the torsional behaviour of different
type of bonds in selected polyesters was improved by re-optimising some of the torsion
parameters. The ab initio (MP2) and DFT (B-LYP and B3-LYP) torsional behaviours were
found to be close to each other, and both methods could thus be used in the (re-)
parameterisation of the torsional potential. However, the MP2 method was chosen as a
reference method due to its better description of dispersive interactions.*** The MP2 and
original PCFF C-O torsional behaviours were in reasonable agreement with each other, but
the C-C curves were in total disagreement. These disagreements between the MP2 and
PCFF torsional behaviours could here be reduced by re-parameterisation of the torsional
potential. Further improvements of the torsion potentials would require a re-optimisation of
the non-bonded potential, which cannot be performed without re-optimisation of the whole
FF, due to strong correlations with the other terms of the FF. The quality of the non-bonded
potential should be improved in the future, however, for better estimation of polymer
properties, such as solubility parameters or other properties that depend on molecular
packing.

The RMMC method was used in single chain property calculations on selected main chain
and side group polyesters to test the reliability of the modified PCFF and to study the
performance of the RMMC method with different choices of run parameters. The results
obtained with the modified PCFF agreed well with the experimental ones. For main chain
polyesters the combination of DP=100 and Max_Bonds=4 as a cut-off for non-bonded
interactions was found to best reproduce the experimental values. For the side group

polyesters, DP=200 and Max_Bonds=5 were more favourable.

In studies on the flexibility of biodegradable PLAs, PGA and PGA/PLLA, the RMMC
results were found to be extremely sensitive to the selected FF model. Re-optimisation of
the pertinent torsion potentials, to avoid incorrect conformational statistics of the polymer
chains, was shown to be absolutely necessary for a redlistic prediction of the chain
flexibility with the RMMC method. The amorphous state properties of PLAs, PGA and
PGA/PLLA were studied by the Amorphous Cell -method. The probability of hydrolysis
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was estimated by calculating solubility parameters, free volumes and PCFs (with and
without water molecules in the cells). The most significant differences in the properties of
the amorphous models studied were found in the solubility parameters and in the PCFs
when water molecules were included in the cells. The ratio of the amount of
hydrophilic/hydrophobic groups was found to be an important factor affecting the
hydrolysability and, thus, the biodegradability. Also the degree of crystalinity in the
amorphous material is known to affect the hydrolysability, since the biodegradation starts in
the amorphous state. Therefore, the more amorphous copolymers are preferred over the
respective homopolymers in biodegradable applications. Flexibility of the polymer chain
also makes biodegradation easier, and of the polyesters studied the copolymers and PGA
were found to be the most flexible ones with almost equal flexibility. Thus, according to this
study the ratio of the amounts of hydrophilic/hydrophobic groups and the flexibility of the
chains affect the biodegradability of these polyesters.

For the polyesters studied in this thesis, the re-optimisation of the torsion parameters of the
PCFF to correct the wrong conformational statistics led to very successful results as regards
the conformation-dependent properties. However, a mere re-optimisation of the torsional
potential may not necessarily be a sufficient correction for all polymers, when the
conformational statistics is not reproduced well. Better FF models are needed, and, for
example, the non-bonded potential has also a large impact on the conformational properties
especially, when the system studied contains strong steric or electrogtatic interactions.
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