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ABSTRACT

Fusion power is an appealing source of clean and abundant energy. The radiation resistance of re-

actor materials is one of the greatest obstacles on the path towards commercial fusion power. These

materials are subject to a harsh radiation environment, and cannot fail mechanically or contaminate

the fusion plasma. Moreover, for a power plant to be economically viable, the reactor materials must

withstand long operation times, with little maintenance.

The fusion reactor materials will contain hydrogen and helium, due to deposition from the plasma and

nuclear reactions because of energetic neutron irradiation. The first wall divertor materials, carbon

and tungsten in existing and planned test reactors, will be subject to intense bombardment of low

energy deuterium and helium, which erodes and modifies the surface. All reactor materials, including

the structural steel, will suffer irradiation of high energy neutrons, causing displacement cascade

damage.

Molecular dynamics simulation is a valuable tool for studying irradiation phenomena, such as sur-

face bombardment and the onset of primary damage due to displacement cascades. The governing

mechanisms are on the atomic level, and hence not easily studied experimentally. In order to model

materials, interatomic potentials are needed to describe the interaction between the atoms.

In this thesis, new interatomic potentials were developed for the tungsten-carbon-hydrogen system

and for iron-helium and chromium-helium. Thus, the study of previously inaccessible systems was

made possible, in particular the effect of H and He on radiation damage. The potentials were based on

experimental andab initio data from the literature, as well as density-functional theory calculations

performed in this work.

As a model for ferritic steel, iron-chromium with 10% Cr was studied. The difference between Fe

and FeCr was shown to be negligible for threshold displacement energies. The properties of small

He and He–vacancy clusters in Fe and FeCr were also investigated. The clusters were found to be

more mobile and dissociate more rapidly than previously assumed, and the effect of Cr was small.
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The primary damage formed by displacement cascades was found to be heavily influenced by the

presence of He, both in FeCr and W.

Many important issues with fusion reactor materials remain poorly understood, and will require a

huge effort by the international community. The development of potential models for new materials

and the simulations performed in this thesis reveal many interesting features, but also serve as a

platform for further studies.
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1 INTRODUCTION

Fusion power is an enticing solution to the energy production problems faced presently and in the

future. While the fusion process is well understood, fusion power production has, however, remained

elusive. Test reactors capable of producing almost as much energy as put in exist, but one of the

major problems in achieving commercial fusion power is developing materials able to withstand the

extreme environment in a reactor. There is particular interest in two types of materials, the structural

steel needed for the construction of the reactor, and the first wall material which is subject to the

heaviest heat load of ions from the plasma.

The study of radiation damage in materials is a vast field, with irradiating species ranging in size from

electrons up to large molecules and clusters, and in energy from eV to GeV. The irradiated materials

can be, among many others, nuclear reactor and accelerator walls, satellites or biological materials.

In this thesis the focus is on radiation damage in fusion reactor walls. While irradiation can have

positive and desired effects, generally it deteriorates the material, by causing structural damage at

the surface or in the bulk. In particular high energy particles can cause extensive damage, as well as

nuclear reactions, inside a material.

The first wall of the reactor will be bombarded with deuterium and helium, mostly of relatively low

energy, causing surface modification, and ejection of material from the surface. A thorough under-

standing of these phenomena is important in order to construct a wall capable of withstanding the

irradiation and not affecting the plasma during sustained reactor operation. With current technology

no material can last the full lifetime of a reactor, but shutting down the reactor to exchange the wall

plates must be kept to a minimum for commercial energy production.

As energetic neutrons are produced in the fusion process, they will irradiate the whole reactor, in-

cluding the first wall and the structural steel. As they hit atoms inside the materials, they will cause

displacement cascades, which lead to primary damage formation,i.e. defects that remain after the

cascades cool down. The neutrons also lead to production of helium due to nuclear reactions, and

thus the reactor materials will contain helium. As helium can affect the mechanical properties and

radiation resistance of the materials it is important to study the materials with a presence of helium.

As many important irradiation related phenomena take place on an atomistic level and a short time

scale, and while the material is being irradiated, studying them experimentally can be problematic.

Computer calculations can help improve the understanding of how the materials behave under irradi-

ation, as well as predict which materials could be used in a reactor. Electronic structure calculations

such as density-functional theory (DFT), can be used to calculate basic mechanical and defect prop-

erties, but are still too computer power intensive to be used for systems larger than a few hundred
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or thousand atoms. Molecular dynamics (MD), which does not explicitly include electrons, is well

suited for simulations of up to millions of atoms and times up to nanoseconds. Different Monte Carlo

(MC) methods can be used for even larger systems or longer times, but in order to go up in scale,

some approximations always have to be made.

There are two types of studies in this thesis. The development of potentials for modeling the interac-

tion between atoms for MD simulations, allowing study of previously inaccessible materials. These

potentials are based on experimental andab initio literature data, as well as DFT calculations per-

formed within this work. Some of these potentials, along with potentials by other groups, are used

to study production of irradiation damage, in particular the effect of helium and chromium in iron

chromium, and helium in tungsten.

2 PURPOSE AND STRUCTURE OF THIS STUDY

The purpose of this thesis is to develop interatomic potentials designed for molecular dynamics sim-

ulations of irradiation of fusion reactor materials, as well as to apply the potentials to study defect

structures and irradiation properties.

This thesis consists of six publications, referred to by roman numerals (I-VI ). The first five are pub-

lished in peer-reviewed journals, while the last one has been submitted for review. In this section, the

articles are summarized and the contributions by the author explained. In Sect. 3 an overview of the

fusion reactor concept and the irradiation of wall materials is given. In Sect. 4 the methods used for

the studies in this thesis are presented. The potential development work is described in Sect. 5. In

Sect. 6, the study of migration and clustering of He in Fe and FeCr is discussed and in Sect. 7 the

irradiation results are presented. Finally the work done in this thesis is summarized in Sect. 8.

2.1 Summaries of the original publications

In publicationI , a potential set for the W–C–H system was developed. Electronic structure calcula-

tions were performed to extend the database for fitting and testing of the potentials. In publicationII

a potential for helium in iron was developed and in publicationIII it was complemented with a po-

tential for helium in chromium, and the potentials are used to study migration and formation of small

He–vacancy clusters in Fe and FeCr using molecular dynamics simulations. In publicationIV the role

of Cr on displacement threshold energies in FeCr was investigated. The effort to understand the pri-
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mary damage formation continues in publicationV, with the study of the effect of He on displacement

cascades in FeCr, and further, the effect of He on cascades in tungsten in publicationVI .

Publication I: Analytical interatomic potential for modeling non-equilibrium processes in the

W-C-H system, N. Juslin, P. Erhart, P. Träskelin, J. Nord, K.O.E Henriksson, E. Salonen, K. Nord-

lund and K. Albe,J. Appl. Phys.98, 123520 (2005).

In order to be able to study the W–C–H system, bond-order potentials were created for W–W, W–C

and W–H to be used together with existing potentials for C–C, C–H and H–H. The W–C–H system is

of interest for studying deuterium bombardment of tungsten and tungsten carbide first wall materials

in fusion reactors. The bond-order potential fitting scheme from previous work was improved to

better describe body-centered cubic materials and metal carbides, by extending it to second-nearest

neighbor interactions. Density-functional calculations were performed to extend the data available

for fitting and testing. The mechanical, defect, surface and melting properties were tested for the new

potentials.

Publication II: Pair potential for Fe-He , N. Juslin and K. Nordlund,J. Nucl. Mater.382, 143-146

(2008).

As the steel in fusion reactor walls will contain helium due to nuclear reactions from high energy

neutron bombardment, it is of great interest to study the effect of helium on iron. A new potential for

the Fe–He interaction was developed, intended for use with the iron potentials best suited for radiation

damage studies. It was shown that a repulsive pair potential is capable of reproducingab initio He

interstitial properties.

Publication III: Fast 3D migration of He clusters in bcc Fe and Fe-Cr alloys, D. Terentyev, N.

Juslin, K. Nordlund and N. Sandberg,J. Appl. Phys.105, 103509 (2009).

The properties of small helium-vacancy (He-V) and pure He clusters in Fe and in Fe90-Cr10 (Fe-10Cr)

random alloy was studied. The focus was on the diffusion mechanisms of He-V clusters and whether

Cr influences the mobility and stability of He-V clusters in the Fe-10Cr alloy. The development of

the Cr–He potential is also presented. 10% Cr does not significantly affect the migration of He and

the dissociation energies of He-V clusters. Small pure He clusters were found to be more mobile than

previously assumed, but their mobility is retarded by the presence of Cr.

Publication IV: Simulation of threshold displacement energies in FeCr, N. Juslin, K. Nordlund,

J. Wallenius and L. Malerba,Nucl. Instr. Meth. Phys. Res. B255, 75-77 (2006).
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The role of chromium on threshold displacement energies in FeCr for the fusion reactor steel relevant

concentration 10% Cr was studied using molecular dynamics simulations. Threshold energies were

compared for pure Fe, pure Cr and FeCr with two different potential sets for Fe–Cr. No significant

differences were found between pure iron and FeCr with 10% Cr for the 100, 110 and 111 directions

and the average threshold energy, while they are different for pure Cr.

Publication V: Molecular dynamics simulations of collision cascades in FeCrHe, N. Juslin and K.

Nordlund,Nucl. Instr. Meth. Phys. Res. B267, 3420-3423 (2009).

The effect of He on displacement cascades in FeCr with 10% Cr was studied. The primary damage

formed in the material due to 1 and 5 keV recoils was analyzed with both interstitial and substitutional

He. The helium concentrations were 0.1%, 0.5% and 1%. At the lowest concentration there is no

discernible effect on the number of Frenkel pairs formed, while at higher concentrations, there is a

significant increase in damage for interstitial He and decrease for substitutional He. The positions

of the He interstitials and clusters depend on the Cr atoms and the amount of He inside the cascade

region is increased by about 30% due to the cascade.

Publication VI: Effect of He on displacement cascades in W, N. Juslin, V. Jansson and K. Nord-

lund,Submitted for publication to Phil. Mag. A(2009).

A fusion reactor divertor made of tungsten will contain helium due to implantation from the plasma

and transmutation reaction. He will affect the material properties and radiation damage. Molecular

dynamics simulation was used to study how the presence of He affects displacement cascades in W.

Three different W–W potentials were compared and found to agree that the overall effect of He is an

increase in damage for interstitial He and reduction for substitutional He. This is explained by the

interaction of He with vacancies as the cascade cools down. Differences between the potentials were

noted particularly in the clustering of vacancies.

2.2 Author’s contribution

In publicationI the author performed all theab initio calculations and all the work on W–H, as well

as parts of the development and testing of the W–W and W–C potentials. For publicationsII , IV and

V the author did all the work. In publicationIII the author did the potential development, except

the electronic structure calculations, as well as parts of the work on migration and clustering. In

publicationVI the simulation setup and interpretation of the results were done by the author, but most

of the simulations were carried out by a student supervised by the author. The author wrote articles

II , IV , V andVI in their entirety, and wrote parts of the text of articlesI andIII .
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3 FUSION REACTOR MATERIALS

At present, fusion appears to be a realistic power source for the future. If the scientific and techno-

logical problems associated with building a commercial fusion power plant are solved, mankind will

have the clean and safe energy production needed to replace fossil fuel and fission power plants. The

deuterium and tritium fuel needed for the fusion process can be produced in abundance from sea wa-

ter and lithium from the earth’s crust. There is no risk of a run away chain reaction causing a nuclear

meltdown, nor is any long term radioactive waste produced.

Fusion power has, however, remained elusive. The scientific and technological difficulties in starting

and maintaining a controlled fusion reaction has kept commercial fusion power “50 years away”

the whole second half of the 20th century. While many fusion reactor designs have been suggested,

currently the best candidate is considered to be the tokamak type reactor. There are high hopes that the

viability of commercial power will be shown within the next 20-30 years. While it today is possible to

approach a positive energy balance in a reactor, much remains to be done in order to keep the fusion

process sustained and the reactor materials from falling apart.

In the tokamak reactor concept, the hot plasma is contained and kept away from the walls, by strong,

toroidal magnetic fields. In the fusion process, hydrogen isotopes, deuterium and deuterium or deu-

terium and tritium, are fused into helium, producing energetic neutrons. While the neutrons carry

energy out of the plasma and are used to heat the coolant liquid that would be used to drive tur-

bines and produce electrical power, they are also a problem, as they irradiate the walls and structural

material of the reactor.

Presently, the ITER [1, 2] test reactor is being built (Fig. 1). It is planned to achieve a Q value, the

ratio between energy produced and that used to heat the plasma, of 10 and to be able to sustain plasma

operation for several minutes. It is a tokamak reactor, and the vacuum vessel, shown in Fig. 2 will be

built from steel, with beryllium wall plates covering the surfaces. The divertor (Sect. 3.1.1) in ITER

will initially be be made of carbon, and later switched to tungsten.

3.1 Irradiation of reactor materials

There will be two main types of irradiation of the materials in a fusion reactor. The leakage of ions

from the plasma is directed towards the divertor region, where mainly D (∼90%) and He (∼10%) in

the low energy range of 1-100 eV will hit the surface. High energy, 14 MeV, neutrons produced in the

fusion process will penetrate deeper into the reactor walls. As they are neutral, they are not contained

by the magnetic field and will irradiate all parts of the reactor.
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Figure 1: The ITER test reactor. In this thesis the focus is on the steel used for constructing the
vacuum vessel (Fig. 2), and the divertor materials. The picture is from the ITER webpage [3]c©ITER
Organization.

Figure 2: The vacuum vessel of the ITER test reactor. It will beconstructed from steel and covered
with beryllium wall plates. The bottom region, the divertor, will initially be covered with carbon
plates, and later switched to tungsten. The picture is from the ITER webpage [3]c©ITER Organiza-
tion.
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3.1.1 The divertor

The divertor (Fig. 2) in tokamak type fusion reactors, is the bottom region of the reactor vessel. As

some leakage from the plasma is unavoidable, and even desired, the magnetic fields direct it towards

the divertor, which has been designed to handle the intense heat load and irradiation of 1-100 eV

deuterium. Even with some of the strongest and most irradiation resistant materials available, it is

expected that the divertor plates will have to be exchanged every few years of operation.

The best elemental composition of the divertor has been widely debated. The material must have

excellent thermal and mechanical properties and low sputtering,i.e. erosion of material from the

surface, especially of heavy atoms. Sputtered material can end up in the plasma, cooling it depending

on the atomic number Z, as well as contaminate other parts of the reactor. For some possible materials,

such as carbon, significant loss of the wall material becomes a real issue.

Carbon was long considered the best divertor material, thanks to its suitable mechanical and thermal

properties. The problem with carbon, however, is that it is heavily eroded in the form of hydrocarbon

molecules due to deuterium bombardment from the plasma [4–9]. This also leads to radioactive

tritium being redeposited on the surfaces of the whole reactor. Tungsten also has excellent mechanical

properties, and is one of the strongest divertor material candidates presently. The erosion of tungsten

under reactor conditions is very low, but on the other hand any tungsten contamination of the plasma

will be a problem, due to its high Z. Solutions such as using a combination of carbon, tungsten or

beryllium have been considered, but the radiation resistance of divertor materials still requires a lot of

study.

As both hydrogen and helium bombard the surface, as well as, are created in nuclear reactions due

to high energy neutron irradiation, their interactions, mobility, clustering and effect on the materials

are of interest. He and H in tungsten and tungsten carbide bulk and on surfaces have been studied

extensively in the literature, both experimentally and with atomistic simulations [10–19].

3.1.2 Structural steel

A reactor cannot be constructed of wall plates alone. Steel will be needed for the construction, and

will be subject to the harsh environment in the reactor. Most steels are unsuitable for a prolonged

fusion reactor operation. Ferritic steels with a chromium content of around 10% are considered the

best alternative [20–22]. In addition, even though the amounts are small, the reactor steel may not

contain elements that under irradiation produce long lived radioactive isotopes [22]. For instance,

molybdenum is usually replaced with tungsten.
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The plan for the ITER reactor is to use the EUROFER steel [23, 24], which has been developed for

fusion reactors. The composition of a steel capable of withstanding the decades of operation needed

is, however, still a major limitation to achieving commercial fusion power in the future. Studying the

irradiation of steel will continue to be one of the most important fusion related tasks in the coming

decades [24], both in future experimental facilities such as ITER, DEMO [20] and IFMIF [25], and

with improved modeling.

Most of the ions from the plasma will be directed towards the divertor and hit plates designed for

that aspect, as discussed in Sect. 3.1.1. Thus the irradiation of the structural steel will mostly be in

the form of neutrons formed in the fusion process. As they are neutral, they are not confined by the

magnetic field and irradiate all parts of the reactor. These neutrons will have a relatively high energy,

about 14 MeV, and can cause transmutation reactions as they hit atoms in the reactor wall materials,

as well as considerable damage due to collision cascades.

The Cr concentration in irradiated ferritic steel has been shown to affect the macroscopic properties,

such as the ductile to brittle transition and swelling. The reason for this behavior is not well under-

stood [26–29] and whether the presence of Cr affects the displacement threshold energies in FeCr is

studied in Sect. 7.1.

As an energetic particle hits an atom in a material, it can cause a nuclear reaction, transforming the

atom into other elements or isotopes. In a fusion reactor, the most common transmutation reactions

are (n,p) and (n,α) reactions, leading to formation of hydrogen and helium in the material [30]. Due

to (n,α)–transmutation reactions, helium will be produced in any steel irradiated with high energy

neutrons. The production rate in a fusion reactor will be about 10-15 appm/dpa, which would lead to

about 0.05-0.1% He during reactor life time. Helium will deteriorate the material properties, and also

affect the production of further radiation damage [31–36].

Helium is known to form bubbles in iron and steel, but the exact interactions and mechanisms of He

micro-structure formation have recently been under extensive study. Helium is trapped by vacancies,

interstitials and impurities [37–41]. Recently, there have been efforts to study the interaction with

larger objects such as dislocation loops [42] and grain boundaries. [42]. Helium is relatively mobile

and can cluster with other He and vacancies to form bubbles [38, 43–49]. Most of the studies of

helium micro-structure have, however, been done with atomistic simulations or rate theory models,

and thus it is important to further test and improve the modeling.
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Figure 3: A typical 1 keV cascade for FeCr with 0.5% interstitial He. The color code is Fe: orange,
Cr: grey and He: pink. The first frame (0 ps) is actually after a 25 ps initial equilibration, at which time
a recoil energy is given. The second frame (0.25 ps) shows the peak of the heat spike, and the final
frame shows a close up of the center region after 25 ps, when most of the damage has recombined,
with only a few Frenkel pairs remaining as primary damage.

3.1.3 Displacement cascades and threshold energy

As a bombarding particle hits an atom in the material, the primary knock-on atom (PKA), it imparts

some of its energy onto the PKA. The PKA in turn hits other atoms, producing a collision cascade.

Generally enough atoms are so energetic that the collision cascade forms a molten region, called a

heat spike, around the PKA. As the heat spike cools down, most of the region crystallizes again. Some

of the atoms can, however, fail to recombine with a vacancy and remain as interstitials, thus forming

Frenkel pairs. A typical low energy heat spike and resulting damage for FeCr with He defects are

shown in Fig. 3.

The number of Frenkel pairs formed, and where they are formed in relation to each others, are im-

portant factors for determining the radiation resistance of a material. The damage caused by a dis-

placement cascade will continue to evolve due to long time scale processes such as diffusion, but the

damage formed during the first tens of picoseconds, the primary damage, will govern this evolution.

Another indicator of radiation resistance is the threshold displacement energy of a material. This is

the amount of recoil energy needed to displace an atom from its lattice position. The threshold energy

affects the size of the heat spike in a collision cascade, as well as determines Frenkel pair production

due to recoil energies too low to cause a cascade.
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4 METHODS

In this thesis, computational methods are used to study the basic properties, and irradiation, of mate-

rials. Computing power intensiveab initio calculations are used to improve the atomic interactions

in molecular dynamics, which is used to study larger systems over a longer time scale. Performing

calculations with different methods allows study on a larger scale, and the ability to compare results

where the methods overlap.

4.1 Molecular dynamics

In molecular dynamics (MD) simulations, the equations of motion of all the atoms in the system

are solved numerically. The forces between the atoms are calculated from a classical interatomic

potential energy function, and the atoms are moved accordingly over a small time step. By repeating

this, it is possible to simulate the time evolution of the system. Thermodynamic ensembles can be

studied applying algorithms to control the temperature and pressure in the system. One of the great

advantages of MD simulations is the atomic level detail available at all times.

With a short enough time step and accurate algorithms for solving the equations of motion, the calcu-

lational aspect of MD simulations is very precise. Whether the simulations describe reality depends

on the potentials, the system size and time scale available within reasonable computation time, and

how well the system can be described classically. While the properties of electronic, optical and mag-

netic phenomena can be mimicked with the interatomic potentials, they can not directly be simulated

using classical MD. The reliability of MD simulations is discussed further in Sect. 4.1.1.

With present computing power it has become possible to perform MD simulations applying electronic

structure calculations to obtain the motions of the atoms. It is, however, still limited to a small number

of atoms and short time scales [50].

The MD simulations in this thesis were mostly carried out using the PARCAS code developed by

Nordlund [51]. It applies the Berendsen temperature and pressure controls [52], a variable time-step,

the GEAR5 predictor-corrector algorithm, as well as methods to remove heat at periodic boundaries

and other features described in the thesis.
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4.1.1 Modeling real materials

Perfectly describing phenomena in real materials is usually impossible in MD simulations, as well as

other computational modeling. Length and time scale limits the system that can be studied. Today

it is possible to simulate with millions of atoms and for nanoseconds, but the macroscopic systems

of many experimental setups are still out of reach. The potentials themselves are often compromises,

sacrificing accuracy in some properties in order to describe others well. When developing and using

potentials, it is important to understand and critically assess which phenomena they are suitable for.

Another issue is that good potentials have not been developed for all interactions and desired prop-

erties. While acquiring the experimental andab initio data needed to base the potentials on, and

developing new potentials, is desirable, often it is not practically possible. If the existing poten-

tials can describe the most important features, it can be possible to simulate the system leaving out

non-essential elements. Thus for instance steel, which generally contains at least a dozen different

elements, is presently impossible to model with all of them. Currently the approach is to focus on

the main elements, for instance iron and chromium for ferritic steel. One must of course carefully

consider any comparison between results for FeCr with results for real steels.

4.1.2 Interatomic potentials

For many of the materials studied in this thesis, several different potentials have been developed over

the last decades. Discussing all possible options in detail would be excessive, as there are tens of

different potentials for the studied elements and compounds. The choice of potentials has been based

on careful consideration.

For the development of potentials for the W–C–H system, the existing potentials for the C–C, C–H

and H–H interactions by Brenner were used. The potential formalism for these potentials is discussed

in detail in Sect. 5.1.2. In MD, the only difference between isotopes of an element is the mass, as

the chemical and physical binding to other atoms are mostly independent of the isotope, and the same

potential can be used for the isotopes in MD simulations. Thus the same potential is used for hydrogen

and deuterium in this thesis.

Most of the iron simulations in Sect. 7 use the Ackland–Mendelev (AMS) Fe–Fe potential [53]. It

is generally considered to be good at describing defects and radiation damage. It is also the iron

potential used in the FeCr potential by Olssonet al. [54], the so called two-band model (2BM). There

are two versions of the 2BM, based on different sets ofab initio calculations. In this thesis the

PAW version (based on plane augmented wave DFT) is used, but the two versions can be expected to
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perform similarly at the studied concentration of 10% Cr. The Fe–He and Cr–He potentials developed

in Sect. 5.2 are intended to work in conjunction with the 2BM. In addition a potential set for the Fe–

Cr system by Chakarovaet al. [55] is used for comparison in Sect. 7.1 and the Fe–Fe potentials by

Dudarevet al.[56] and Finnis-Sinclair [57] in Sect. 5.2. For all He–He interactions, the pair potential

by Beck [58] is used.

For the tungsten displacement cascade simulations in this thesis, three different W–W potentials were

compared, the Ackland-Thetford (AT) potential [59], the Derletet al. (D) potential [60], as well as

the Juslinet al. (J) potential described in Sect. 5.1 and paperI . For the D potential, the repulsive part

is by Björkaset al. [61]. For W–He, the potential by Henrikssonet al. [62] was chosen over the old

potential by Wilson [63]. This W–He potential was developed for describing He defect properties and

migration in tungsten, but recent DFT results suggest that it overestimates the formation energies for

the interstitial [16].

Most of the metal potentials used in this thesis are of the embedded-atom method (EAM) formalism

[64, 65], or formalisms similar to it. The EAM formalism is generally considered good at describing

metals, as it is a many-body potential that derives the potential energy of an atom “embedded” in an

electron cloud, with the electron density at a certain point calculated based on the electron density of

the atoms in the vicinity.

4.1.3 Simulation setup

For most of the simulations used for testing potentials, small simulation cells of a few thousand atoms

were used, applying periodic boundary conditions. This is usually enough for describing mechanical

properties and point defects, but tests were done for larger cells as well to ensure that the system

sizes were large enough. The cohesive energies, bond lengths, defect formation energies and similar

properties are given for cells equilibrated to zero temperature and pressure.

For all the FeCr simulations in this thesis, 10% Cr randomly distributed, designated as Fe–10Cr, was

used. The simulation cells were created with the Fe and Cr atoms in body-centered cubic (BCC) lattice

positions. While studying other compositions as well would be of interest, due to time constraints the

focus is on the fusion reactor relevant conditions.

The simulations of small He and He–vacancy clusters in Sect. 6 were performed in(10×a0)
3 cells,

containing 2000 atoms before a cluster was inserted. Herea0 is the lattice constant at the appropriate

temperature. The simulations were run at 100–1800 K depending on which cluster was used, for
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simulation times of up to 100 ns, until the statistics were sufficient. Both the PARCAS code and the

DYMOKA [66] code were used.

In the cascade simulations in Sect. 7.2 and Sect. 7.3, a simulation cell was created with metal atoms

in BCC positions and He either in interstitial or substitutional positions. The size of the cell was

chosen to be large enough, so that the cascade would not overlap the periodic boundaries, which was

ensured during the simulation by monitoring the kinetic energy of border atoms. The sizes used where

n×n×n×a0 with n being 25, 31, 42 and 67 for 1 keV, 2 keV, 5 keV and 20 keV recoil simulations

respectively. The number of atoms were 2n3 plus up to 1% interstitial He atoms, or more than 600

000 atoms for the largest simulations.

This initial configuration was equilibrated at 300 K and zero pressure. This temperature was chosen

in order to compare with results for pure Fe[67, 68], FeCr [69–71] and W [61, 72]. As He is relatively

mobile at these temperatures, the He atoms migrate around and form clusters. The microstructure

will thus depend on the equilibration time. A simulation time of 25 ps was chosen, as the change in

microstructure is fastest in the first 1–10 ps, and because an equilibration time of about 20–25 ps is

needed after the recoil for the evolution of primary damage, thus allowing the He the same time to

cluster before and after the introduction of the recoil.

After the initial equilibration, a recoil energy of 1 keV, 5 keV or 20 keV was given to a random metal

atom in a random direction, however, chosen in such a way that the cascade would not get too close

to the periodic boundaries. The heat spike was allowed to cool down and the primary damage to form

for 25 ps. This was repeated for the same initial cell until sufficient statistics had been collected.

The cascade simulations had constant volume, and temperature scaling at the borders to remove heat

from the system, in order to simulate the features of a bulk material. For FeCrHe, where damage in

the metal matrix is also formed due to the clustering of He, the simulations were repeated without

introducing the recoil, in order to separate the clustering damage from that formed due to the cascade.

4.2 Density-functional theory

Density-functional theory (DFT), as discussed in more detail in Refs. [73, 74], consists of cer-

tain approximations in order to solve the Schrödinger equation for a system of atoms. The Born-

Oppenheimer approximation, according to which the electrons will always find their ground state

before the nuclei move, as they are much lighter and faster, is used to divide the Hamiltonian into

fixed ions and moving electrons. DFT is based on the Hohenberg-Kohn theorems [75] stating that the

electrons in the system can be described by an external potential from the ions, which only depends

on the electron density and that the energy cannot be less than the energy of the ground state. The
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other important basis for DFT is that we can use a Hamiltonian for non-interacting electrons with the

interactions hidden in an effective potential, according to the Kohn-Sham ansatz [76].

In the end it is possible to solve the Schrödinger equation exactly, except for an exchange-correlation

functionExc[ρ], which includes the approximations and depends on the electron densityρ. Several

different forms ofExc exist, one of the simplest being the local density approximation (LDA) [77],

which assumes a locally homogenous electron density, and the generalized gradient approximation

(GGA) [78–80], which uses gradients for the electron density.

One way to improve the accuracy and efficiency of the calculations is to describe the valence and

core electrons with different functions. This is often used successfully in periodic systems. Using

plane waves for the outer electrons works well, but the inner electrons are usually better described

by spherical harmonic functions. The precision of the results depends on the number of plane waves

used to describe the wave-functions of the valence electrons and the so called pseudo-potentials used

for the core electrons.

5 POTENTIAL DEVELOPMENT

The development of a new potential is a demanding process of acquiring the data required to fit the

potential to, choosing or developing the formalism best suited for the problem, finding the parameters

for it, and testing the potential. A good understanding of the capabilities and limits of the potential

formalism is needed, as well as a certain familiarity with the fitting techniques. Trying to fit all

parameters to all the data at the same time rarely succeeds, and it is important to make good initial

guesses for the parameters and fitting choices.

5.1 Tungsten-carbon-hydrogen

As described in Sect. 3.1.1, there is a lot of interest in studying deuterium properties in tungsten,

carbon and tungsten carbide bulk and surfaces. Until this work, potentials existed only for some of

the interactions needed to study the W–C–H system with MD simulations. As described in paperI ,

the development of potentials for this complex, ternary system required improved fitting methods,

extensive testing and DFT calculations to extend the database of experimental andab initio data from

the literature.

Since their development, the potentials have been used in several studies in the W, WC and WCH

systems [14, 18, 81–87]. In this thesis the W–W potential is used in the displacement cascade simula-



19

tions presented in section Sect. 7.3. Recently a W–W potential with improved point defect properties,

but somewhat worse bulk properties, was developed with the same potential formalism [88]. It was,

however, not fitted to work together with C–H and W–C. In addition, to include beryllium in the sys-

tem, Be–Be, Be–C and Be–H potentials have recently been developed [89] and a Be–W potential is

under development [90].

5.1.1 DFT calculations

In some cases the system of interest for the potential fitting has been studied, but with the focus

on other properties than those needed for potential development. In particular,ab initio studies on

molecules often include detailed geometrical and vibrational data, but not the cohesive energy, which

is of utmost importance for potential development. For the tungsten hydride molecules WHn, with

1,2,3,4 and 6 hydrogen atoms, the calculations by Wang and Andrews [91] were repeated, in order to

obtain the energies. The GAUSSIAN 98 code [92] was used, with the BPW91 method [93, 94] and

the 6-311++G(d,p) basis set for the hydrogen atoms and the SDD basis set for the tungsten atoms.

For W and WC, the known experimental structures and several hypothetical phases were studied. For

tungsten, the phases were the dimer, diamond, simple cubic (SC), body-centered cubic (BCC) and

face-centered cubic (FCC), and for tungsten carbide, they were the dimer, sodium chloride (NaCl),

cesium chloride (CsCl), zincblende (ZnS), hexagonal WC, wurtzite and hexagonal WC2. A spin-

polarized GGA method, GGS-PW91 [78, 93] with a norm-conserving pseudopotential was used with

the CASTEP code [95, 96]. To find the method and pseudopotential which describes the ground state

best, extensive testing of the available options was performed.

At short interatomic distances, the fitted properties do not give an indication of how the potential

should behave, as the atoms are too far from each other. The repulsive potential was modified with a

smooth fit to a pair potential calculated for the dimers with DFT using the DMOL97 program package

[97, 98]. Using hydrogenic orbitals [99], energy vs. distance in the repulsive region has been shown

to be accurate [100, 101]. Instead of DFT data it would also be possible to use the theoretical model

of the Ziegler-Biersack-Littmark (ZBL) universal potential [102]. The short range repulsive potential

is important for simulations with higher energies, such as displacement cascades.

5.1.2 Potential formalism

The potentials for deuterium bombardment of W–C surfaces must be able to describe bulk, surfaces

and molecules for all the elements, and both metallic and covalent bonding. They also need to be
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reactive,i.e. able to break bonds. While many potential formalisms are excellent for a certain appli-

cation, few are well suited for everything needed for the W–C–H system. There were a number of

W–W [57, 59, 64, 103–105] and hydrocarbon potentials [106–110] available in the literature. Devel-

oping W–C and W–H potentials able to join the different formalisms of the metal and hydrocarbon

potentials is not trivial.

The bond order potential (BOP) used by Brenner for hydrocarbons [106, 107] has, however, also been

successfully applied to a metal carbide, PtC [111], as well as many other elements and compounds.

Thus, while other options exist, it is reasonable to use a formalism with well known properties and

fitting schemes, and for which much tested C–C, C–H and H–H potentials already exist, and develop

new potentials for the W–W, W–C and W–H interactions.

Based on the original bond order concept by Pauling [112], and Abell’s early work on the relation

between bond length and bond energy [113], Tersoff developed the BOP formalism [114, 115] used

here. Originally intended for covalent materials, it has since been successfully applied to molecules,

metals and carbides, much due to a potent angle-dependent three-body term. The formalism has

subsequently been updated and written in a slightly different notation, by Brenner for the hydrocarbon

potentials used here, and more recently by Albe [111, 116, 117]. In the notation by Albe, the total

energy is given by:

E = ∑
i> j

fi j
[

V i j
R (r i j )−bi jV

i j
A (r i j )

]

, (1)

where f is a cutoff function that limits the potential to a computationally feasible interaction range.

f (r) =











1, r ≤ R−D,
1
2

(

1−sin π(r−R)
2D

)

, |R− r| ≤ D,

0, r ≥ R+D

(2)

The bond-order termb is the defining feature of the formalism, as it includes both the angular and the

coordination number dependence, as a sum over all neighboring atoms to a pair of atoms.

bi j =
bi j +b ji

2
, (3)
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bi j =

(

1+ ∑
k(6=i, j)

fik(r ik)gik(θi jk)e
2µik(r i j−r ik)

)−1/2

, (4)

where the angular dependent factorg is given by

g(θ) = γ
(

1+
c2

d2 −
c2

d2+(h+cosθ)2

)

. (5)

The repulsive and attractive potentials are of Morse type, with an additional S parameter:

VR(r) =
D0

S−1
e−

√
2Sβ(r−r0), (6)

VA(r) =
D0S
S−1

e−
√

2
Sβ(r−r0). (7)

Three of the parameters of the formalism are directly associated to the dimer properties: the diatomic

dissociation energyD0, the diatomic equilibrium distancer0, andβ, which is related to the ground-

state vibrational frequency. For this potential, the logarithm of the binding energyEb vs. the bond

lengthr0 is linearly dependent, with the S parameter setting the slope. Theγ parameter scales the

bond-order term, 2µ sets the effect of different distances between neighboring atoms, while thec, d

andh parameters set the type and strength of the angular dependence. The cutoff parameters R, which

sets the cutoff range, and D, which affects the steepness of the cutoff, are usually best determined

based on which neighbor atoms are to be included in the different structures.

5.1.3 Fitting methodology

As the purpose is to develop a potential that can be applied to study new and complicated phenomena,

such as deuterium bombardment of WC surfaces, it must be as transferable and sturdy as possible. A

method which has proven successful is fitting the potential to several real and hypothetical structures.

A phase that is not stable enough to be observable experimentally, can still be studied with DFT.

While the actual phase often is not of interest for further studies, it leads to a potential capable of

realistically describing local configurations with similar coordination number, bond lengths and bond

angles.
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The potential is numerically fitted to a database of experimental and DFT values, such as bonding

energes, bond lengths and elastic constants. As numerically fitting many parameters at once can be

tricky, it is beneficial to make educated initial guesses for the parameters, and keeping some of them

fixed. Thus the fitting will be an iterative process of fitting with different parameters, initial guesses

and weights for the fitted properties.

This methodology has been successfully applied for several potentials [111, 117, 118]. Generally the

fitting routine has included first neighbors only, but for W and WC it was extended to include different

bond lengths in a structure, as the first and second neighbors in the BCC structure are close, and the

cutoff would have to be steep in order not to include second nearest neighbors, and also because the

W–W and W–C bonds in hexagonal WC are different.

For the WH molecules, a different approach had to be taken, as tungsten hydride does not form a

bulk structure. The numerical fitting was modified to focus on the energetics and structures of the

molecules. The properties of the H interstitial in W were further fitted by manually tweaking the

parameters.

5.1.4 Potential testing

The fitted properties of both the W–W and W–C potentials are reproduced well, especially for the

ground state phases. A binding energy vs. bond length comparison between the W–W BOP and

DFT and experimental data, as well as some other W–W potentials is given in Fig. 4. For the other

data, see paperI . As the focus was on describing WC well, some compromises had to be made for

the W–W potential. The melting temperature is almost 1000 K lower than in experiments, and the

vacancy formation energy is only half the experimental value. This deficiency is unfortunate, but not

easily corrected without sacrificing other properties of the W–W potential and the WC system. The

melting temperature of WC is excellently reproduced, and while the point defect properties are not

experimentally well known, the BOP agrees with experiments in that C vacancies are energetically

more favorable than W vacancies.

As the potentials are intended for bombardment of surfaces, the surface properties are obviously

important. For tungsten, surface energies and structural parameters have been studied experimentally

and theoretically. The BOP reproduces the surface structures well, though the surface energy is only

half of that found in DFT. For WC, the comparison with DFT results is overall quite good, though the

BOP underestimates the surface energies for most surfaces. DFT calculations of surface properties

are, however, quite sensitive to system size and which methods are used. A more recent DFT study



23

6.0

4.5

3.0

2.0

1.5

1.2

dimer

dia

fcc

sc

bcc

expt.

DFT (shifted)

BOP

6.0

4.5

3.0

2.0

1.5

1.2
2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9

2 
× 

co
he

si
ve

 e
ne

rg
y / c

oo
rd

in
at

io
n 

nu
m

be
r 

 (
eV

/a
to

m
)

Nearest neighbor distance (Å)

dimer

dia

fcc

sc bcc
reference data
BOP
FS
MEAM

Figure 4: Bond energy vs. nearest neighbor distance for the W potential, compared with reference
data and previous potentials. In contrast to a BOP with only first nearest neighbors, which would
have a logarithmic dependence, the inclusion of second nearest neighbors allows the bump at the
BCC structure and therefore a better description of all the phases.



24

[15] reports mostly similar results as the DFT results compared with in paperI , though there are also

inconsistencies.

For tungsten hydride, the potential reproduces the smaller molecules, WH to WH4, used for the fitting

very well. WH6, which was not used in the fitting, has several structures that are close in energy. The

BOP ground state geometry and energy is a bit off from that in DFT, yet still reasonable. While it was

possible to achieve a fit to the correct ground state, which has two different H–W–H angles for two

triplets of W–H bonds, it deteriorated the other properties. Reconstruction of a hydrogenated surface

is described well compared to experimental and DFT data. The potential describes the formation

energy and position, as well as migration activation energy, of a hydrogen interstitial in tungsten very

well, while the diffusion constant is wrong by about an order of magnitude. Overall, the potential

works well for hydrogen both in bulk, on surfaces and for W–H molecules.

5.2 Iron-helium and chromium-helium

As helium is a noble gas, its properties in a metal can be described by a much simpler formalism

than the formalism described in Sect. 5.1.2. In many metals, pair potentials have been used for the

metal–He. Potentials for Fe–He [119] and W–He [63], which are relevant for this thesis, were created

by Wilson in the 1970s. DFT calculations have, however, shown that these potentials do not describe

the interstitial properties correctly [16, 37].

It has been suggested that the correct ground state for the He interstitial in Fe cannot be reproduced by

a pair potential due to magnetic effects not included in conventional MD [120, 121]. Recently a many-

body potential was developed for Fe–He by Seletskaiaet al. [121, 122], with improved description

of several properties. In paperII , we present a pair potential, which describes basic defect properties

in accordance with DFT results, showing that a pair potential is capable of reproducing the correct

ground state. In paperIII a Cr–He potential is developed using the same potential formalism and

methodology.

Both the Fe–He potential by Seletskaiaet al. and the one presented here perform well, somewhat

differing depending on the Fe–Fe potential and the properties studied. For further improvement,

a many-body term might offer more options to tweak the potential to specific structures, while a

pair potential allows easier implementation with Fe–Fe potentials using different formalisms. A pair

potential is also computationally more efficient.
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5.2.1 Data on He in Fe and Cr

For He in Fe, there is a generous amount of DFT data available in the literature. The basic defect

structural and migrational properties have been studied by Fu and Willaime [37] and Seletskaiaet

al. [120–122]. As the Cr–He potential was developed, very little data on He in Cr existed in the

literature, and thus DFT calculations for the basic properties were performed using the VASP code

[123]. Qualitatively He behaves very similarly in Fe and in Cr, though the ground state of the He–V2,

a helium atom and two vacancy complex, is different. There are known issues with calculating the

ground state of pure Cr with DFT [124, 125], and while calculations on the difference between states

should be reliable, this constitutes an additional uncertainty in the results. In addition, the short range

energies were acquired withab initio dimer calculations, as described in Sect. 5.1.1.

5.2.2 Potential formalism and fitting

Due to the repulsive nature of the interactions of He in a metal, a natural form for a potential describing

it is a screened Coulomb potential. For both the Fe–He and Cr–He potentials, the same function was

used to describe the interaction, with the potential given by:

f (r) = (a+
b
r
)e−cr (8)

Even with only one term,f (r) = aexp(−cr), it was possible to obtain a potential with adequate defect

properties, but adding ab/r term allowed further fitting options and the possibility to affect different

ranges of the potential. As for the W–C–H potentials in Sect. 5.1, a DFT dimer potential was used

for the short range interactions. This was joined to the screened Coulomb functional form with a

polynomial function. The same type of cutoff function as for the BOP in Sect. 5.1.2 was also used

here. Including these, the full form of the potential was

f (r i j ) =











DMol-potential, r i j ≤ r1

p3r3
i j + p2r2

i j + p1r i j + p0, r1 ≤ r i j ≤ r2,
(

a+ b
r i j

)

e−cri j fc(r i j ), r i j ≥ r2,

(9)

with fc given by Eq. 2.
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A fitting routine was then constructed that could fit any function to any defect structure and energy.

After numerically fitting to the defect properties, the parameters were tweaked manually to focus on

the desired properties. In particular the cutoff length was derived by carefully considering which

atoms were included in the interaction for certain He positions.

5.2.3 Potential testing

Both the Fe–He and Cr–He reproduce the fitted properties of the tetrahedral and octahedral interstitial

and substitutional He. The migration energy barrier from a tetrahedral to tetrahedral position is excel-

lently reproduced for Fe–He, while it is a bit high for Cr–He (see Fig. 5(a)). In addition to the Fe–Fe

potential by Ackland-Mendelev, which the Fe–He potential was developed to be used with, two other

Fe–Fe potentials were tested. The Dudarev-Derlet potential works well, though with slightly worse

formation energies for the interstitial. With the Finnis-Sinclair potential, the migration barrier shows

that the midpoint between the tetrahedral positions is actually more stable than the tetrahedral. Vari-

ous properties with more than one He are discussed in Sect. 6, and have also been studied by others

[49].

The migration of a substitutional He can be considered through the He–V2 complex, with a He mov-

ing between two vacancies in nearest to third nearest neighbor positions. The energy landscape in

Fig. 5(b) for Fe–He is DFT data from the literature [37], and for Cr–He three of the points were cal-

culated with DFT. For Fe–He the overall agreement is quite good, though the barrier between nearest

neighbors (positions e and f in Fig. 5(b)) is quite high, compared to DFT. For Fe–He the potential has

a meta-stable state between the first nearest and second nearest positions, which is seen as a double

peak. The literature DFT data, on the other hand, does not have enough points in that region to com-

pare with. The stability of this state is, however, quite low compared with the height of the whole

barrier. For Cr–He, the second nearest neighbor position is actually more stable than the first neighbor

position according to DFT, while the potential gives a similar behavior to that for Fe–He. An effort

to reproduce the DFT ground state was not made, as the accuracy of DFT calculations in Cr has been

questioned, as discussed in Sect. 5.2.1.

6 HE AND HE–VACANCY CLUSTERS IN FE AND FECR

The formation, mobility and lifetimes of the He–vacancy clusters, studied in publicationIII , are very

important for long time scale Monte Carlo (MC) studies of bubble formation and damage evolution

of the primary damage formed in displacement cascades. Many of the parameters used for these
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Figure 5: Migration barriers for a He in Fe and a He in Cr, (a) the tetrahedral to tetrahedral position,
and (b) a HeV2 complex. For Cr only a few points were calculated with DFT. The DFT results for
FeHe are from Ref. [37].

properties are, however, based on data with the old Fe–He potential, or on assumptions. Most models

treat the clusters as immobile, without proper justification. Small, helium rich clusters, which could

be mobile on a time scale available in MD, are studied with the recent potentials.

6.0.4 Cluster formation

The formation energies of point defects and small He–vacancy defects for Fe and Fe–10Cr are given

in Fig. 6. Overall the formation energies are very similar for Fe and Fe–10Cr, but there are neighbor-

hoods in the FeCr composition for which the formation energy can differ by up to 1 eV.

The binding and dissociation energy of a He or vacancy to a cluster was shown to depend strongly on

the He/V ratio, and only weakly on the cluster size. As the ratio goes up, the binding and dissociation

energies decrease for He and increase for the vacancy. The crossover where the He dissociation energy

becomes less than for the vacancy is a He/V ratio of∼1.1 and energy of∼2.4 eV, which corresponds

well with a ratio of∼1.3 and energy of∼2.6 eV with DFT [37, 40]. The Wilson Fe–He potential

has a significantly higher crossover ratio and energy [37]. While there are small differences for some

clusters, overall the presence of 10% Cr does not significantly affect the binding and dissociation of

He and vacancies to small clusters.
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Figure 6: The probability distributions for the formation energy of He defects in Fe (black bar) and
Fe–10Cr (shaded box). Overall the most probable energy for FeCr is close to the result for pure Fe,
but in some cases there are significant differences, in particular for He4 (f) and He2V1 (g).



29

� �� �� �� �� ��� ���

�

��

���

����
�
��
�
	�
�

�
�

�

�
�

�
�
�
�
��
���







����
��


��


��
�


��
�


��
�

�� �� �� �� ��� ���

���

�

��

���

����

�����







�
��
�
	�
�

�
�
�

�

�
�

�
�
�
�
��
���

��
�


����
��


��	����

� �� �� �� �� ��� ���
���

�

��

���

����

�
��
�
	�
�

�
�

�

�
�

�
�
�
�
��
���







��
�


����
��


��	����

� �� �� �� �� ��� ���

���

�

��

���

����

�
��
�
	�
�

�
�

�

�
�

�
�
�
�
��
���







��
�


����
��


��	����

���

��� � �

�!�

Figure 7: The diffusion coefficients for He1−4 clusters in pure Fe and FeCr with 10% Cr. In (a) the
diffusion is compared between clusters of different sizes, while in (b)-(d) it is compared between pure
Fe and FeCr.

6.0.5 The mobility and lifetime of clusters

In particular the pure He clusters were found to be very mobile. The migration energies of the clusters

are similar to that of a single He interstitial, and the migration mechanism is the same, with individual

He atoms jumping from one interstitial position to another in three dimensions. The diffusion con-

stants vs. temperatures for the different clusters are shown in Fig. 7. The presence of 10% Cr slightly

reduces the mobility of the clusters.

The He–vacancy clusters are less mobile than the pure He clusters, however, still more mobile than

a single vacancy. The effect of Cr is statistically insignificant in this case. The Hen–V1 clusters

migrate by temporarily pushing away a metal atom, creating a Hen–V2 cluster, after which the metal

atom recombines with one of the vacancies, thus allowing 3D motion of the cluster. As the migration

energies of the clusters, about 0.3 eV, are close to the migration energy for the Fe self-interstitial atom

(SIA), it can be assumed that the mechanism is governed by the SIA migration. The He2–V3 cluster

was found to perform a ring like diffusion with the mechanism controlled by single vacancy diffusion.

The diffusion of several different defect types in Fe are compared in Fig. 8.
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Figure 8: A comparison of diffusion for different defects anddefect clusters in pure iron. <110>-I1
is the self-interstitial in the <110> dumbbell configuration, and <111>-I7 a cluster with 7 SIAs from
Ref. [126].

The clusters can dissociate by emitting helium atoms. Usually, the Debye frequency of Fe is used for

the dissociation attempt frequency of the clusters in MC studies. This study, however, shows that the

attempt frequency can be up to two orders of magnitude higher for some of the clusters; for the He3–V

cluster it is even three orders of magnitude higher. Thus the previously often assumed properties for

both the mobility and dissociation of small He and He–vacancy clusters are shown to be unjustified,

and long–time scale damage evolution models will have to be justified accordingly.

7 IRRADIATION SIMULATIONS

7.1 Threshold displacement energies in FeCr

The threshold displacement energy, which is the minimum recoil energy needed to displace an atom

from its lattice position to produce a Frenkel pair, is one of the basic properties of radiation resistance.

It depends on the lattice direction and usually there is a minimum in one direction, which is clearly

lower than the average threshold energy. A comparison of 11 iron potentials was made by Nordlundet

al. [127], where they in detail discussed different definitions of threshold energy and the comparison

of simulations and experiments.
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Table 1: Threshold displacement energies for Fe, Cr and FeCr. The element in parenthesis is the
element which got the recoil energy. All energies are given in eV. The accuracy is± 1 eV for the
values for the threshold energies in the 100, 110 and 111 crystal directions.

Potential Ndirections Ed(θ,φ) Eav
d,ave Eav

d,med
all 100 110 111

Fe Chakarova 2386 19 19 47 29 53.5± 0.5 53
Olssona 3655 15 15 33 35 39.3± 0.3 35
Experimentsb 16-18 17 > 30 20

Cr Chakarova 3250 15 15 33 27 43.2±0.4 43
Olsson 2420 21 21 55 31 56.2±0.5 53

FeCr Chakarova(Fe) 2657 21 21 53 29 52.4±0.5 51
Chakarova(Cr) 2077 17 17 39 29 53.4±0.6 53
Olsson(Fe) 1491 15 15 33 39 39.1±0.5 35
Olsson(Cr) 4309 17 17 37 33 40.7± 0.3 37

a The Fe-Fe interaction is the Ackland-Mendelev potential [53]
b References [128–130].

In paperIV , the threshold energies for FeCr with 10% Cr and pure Cr were compared with results

for pure Fe for two different Fe–Cr potential sets, the 2BM and the potentials by Chakarovaet al.

(Table 1). The differences in threshold energies between the potentials are rather large for all the

studied compositions. The average and median threshold energies differ in the range 35–55 eV. The

potentials do agree that the 1 0 0 lattice direction has the lowest threshold energy in all cases, with an

energy of 15-21 eV, which is also seen experimentally for pure iron [128–130].

There is a significant disparity in the results for pure Fe and pure Cr, and it is interesting to note that

the 2BM Fe threshold energies are closer to those for Chakarova Cr than for Fe. The results for FeCr

with 10% Cr are, however, very close to those in pure Fe, both with Fe and Cr recoil atoms, though

the thresholds for a Cr recoil tend a bit towards those in pure Cr.

Just as for displacement cascades, as discussed in the following section, the effect of 10% Cr on

threshold energies does not explain the observed dependence on Cr seen on mechanical properties in

irradiated FeCr discussed in Sect. 3.1.2. It can be concluded that the primary damage is unaffected by

the Cr, and that the effect must be due to long time scale evolution of the damage.

7.2 The effect of He on cascades in FeCr

Simulations of displacement cascades in pure iron and FeCr with 5–15% Cr have been studied ex-

tensively in the literature [67–71, 131]. There are a few studies [35, 132–134] of cascades in Fe

with 0.1-1% He using the old Fe–He potential by Wilson, as well as one recent study [135] using
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the Fe–He potential developed in Sect. 5.2. In short, about 10% Cr does not affect the total amount

of cascade damage in FeCr, and He, especially at a concentration of 1%, can significantly affect the

damage production. Whether the presence of both Cr and He has an effect on cascades was studied

in paperV and is discussed below.

Depending on the He concentration, a certain amount of He clustering will take place during the

equilibration both before and after the cascade. A 25 ps equilibration at 300 K and zero pressure

will not lead to any large clusters for 0.1% interstitial He, and most He atoms will remain as single

interstitials. For the higher concentrations, small He bubbles form, containing up to tens of He atoms.

As more than 3-4 He cluster together, they can force a metal atom to leave its lattice point, forming a

Frenkel pair.

While 10% Cr does not on average affect the formation of small clusters, as shown in Sect. 6, Cr

plays a role in micro-structure evolution, as the He atoms tend to migrate away from Cr atoms. Thus

the He clusters mainly form in iron rich regions. The amount of Cr within the first 0.5–1.5a0 of a He

atom is much lower than the 10% of metal atoms in a random solution, as shown in Fig. 9(a). The

He clusters lead to high local concentrations of He within the nearest 2a0 of a He atom, but within

distances longer than 3a0, the concentrations are the same as the He concentration of the whole

system (Fig. 9(b)).

7.2.1 Damage production

By examining the occupancy of the Wigner-Seitz cells, vacancies, interstitials and substitutional He

were located. As shown in Fig. 10(a), He can affect the Frenkel pair production. With 0.1% interstitial

He, no effect on total damage is seen, but at higher He concentrations the damage is increased quite

significantly, especially for the 5 keV cascades, where the number of Frenkel pairs for the 1.0% He

case is almost quadruple that in pure FeCr. As vacancies are formed during the cascade, some combine

with He to form substitutional He or He–vacancy clusters, thus reducing the vacancies available for

recombination with metal atoms. All but a few of the vacancies produced in the cascade will be filled

with one or more He atoms, as shown in Fig. 10(b).

The amount of Frenkel pairs is also higher in FeCrHe than in FeHe [135]. The methods used for

FeHe were, however, not identical to those for FeCrHe. In particular, the equilibration time before

the cascade was much shorter, 1-2 ps, and thus the micro-structure of He in the metal matrix was

different. Recent unpublished results indicate that the micro-structure affects the damage production

more than the presence of 10% Cr.
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Figure 9: (a) The concentration of Cr among metal atoms in the vicinity of a He atoms, averaged
over all He atoms in the system. The concentration is a bit higher inside the cascade region. (b) The
concentration of He among metal atoms in the vicinity of a He atoms, averaged over all He atoms in
the system. The concentration is a bit higher inside the cascade region.

In order to further analyze the cascade, the simulation cell is divided into a cascade region (CR), and

the surrounding region (SR), with the CR consisting of the part of the cell that was molten during the

peak of the heat spike and the atoms adjacent to this part, with a simple kinetic energy criteria for an

atom being part of the molten region. An interesting result is that the amount of He in the cascade

region is increased due to the cascade. The increase is about 30%, though the variation from case to

case can be quite high, in particular for low energies and He concentrations, as there are just a few He

atoms in the cascade region. A likely cause for this is that the vacancies produced in the cascade trap

He atoms, which cause more He to migrate into the cascade region than out of it.

With the He in substitutional positions initially, the number of Frenkel pairs produced is reduced. In

a 5keV cascade with 1% substitutional He only a few Frenkel pairs are produced, compared with

∼15 for pure FeCr. This is explained by the fact that during the cascade, some He atoms end up as

interstitial He and in larger He–vacancy clusters, and the metal interstitials have a higher concentration

of vacancies to recombine with.

Based on these results, the following conclusions can be made. Several factors will govern the result-

ing primary damage in a real, prolonged irradiation of FeCr with He defects. As the He concentration

in the cascade region increases, the micro-structure formation is enhanced. The micro-structure is



34

5

10

20

50

100

F
re

nk
el

pa
irs

1 5
Energy (keV)

0.0% He
0.1% He
0.5% He
1.0% He

(a)

10

20

30

40

50

60

H
e n

-V
1

cl
us

te
rs

1 5
Energy (keV)

0.1% He
0.5% He
1.0% He

(b)

Figure 10: The damage produced by cascades in FeCr with different He concentrations and recoil
energies. In (a) the number of Frenkel pairs, and in (b) the number of He–vacancy clusters are shown.

likely to affect the amount of damage, possibly to a large extent. He in interstitial positions or small

clusters increase the damage production, while He in substitutional positions decrease it and cumu-

lative cascades can be expected to reach an equilibrium. Finally, further studies of how the He, and

FeCr, micro-structure affects cascade damage promise to be very interesting.

7.3 The effect of He on cascades in W

The W divertor will contain He, both due to He bombardment from the plasma, and transmutation

reactions. Most of the ions from the plasma have very low energy, but the divertor will be subject to

some ions energetic enough to cause cascade damage, as well as the high energy neutron irradiation

all reactor materials suffer from. Thus it is of interest to study how He affects displacement cascades

in W. As W, Fe and FeCr are BCC metals, the effect can be expected to be similar to that in Fe

and FeCr. There are, however, large differences in material properties, and in the pure materials, the

amount of damage is much smaller in W. A comparison of different W–W potentials, the Ackland-

Thetford (AT), Derletet al. (D) and Juslin (J) potentials described in Sect. 4.1.2 and the effect of He

on cascades was performed in paperVI .

First the basic interstitial and substitutional He formation energies were compared between the poten-
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Table 2: The fraction of vacancies (V) and self-interstitials (SI) that are in clusters, as described in
the text, for 2 keV cascades. The He atoms were initially in interstitial positions. The results for pure
W are, for the Derletet al.(D) potential from Ref. [61] and for the Ackland-Thetford (AT) and Juslin
(J) potentials from Ref. [72].

AT D J
Pure 1.0% He Pure 1.0% He Pure 1.0% He

V 0.28±0.04 0.04±0.01 0.24±0.08 0.23±0.02 0.22±0.04 0.07±0.01
SI 0.24±0.04 0.20±0.03 0.31±0.07 0.29±0.02 0.24±0.04 0.20±0.01

tials, and the most recent DFT results. The formation energy is overestimated in all cases compared to

DFT [16], except for the substitutional He for the J potential, due to the low vacancy formation energy

with this potential. The formation energy of the interstitital is relatively high both in the MD simu-

lations and in DFT, 7.8–9 eV and 6.2–6.5 eV respectively. This discrepancy can affect the cascade

damage, and development of a new W–He potential should be considered for future studies.

7.3.1 Damage production

As can be expected, the same mechanics that govern the effects of interstitial and substitutional He

described in Sect. 7.2.1 for FeCr, are found for tungsten. The total damage, and the increase in damage

due to interstitial He, is less than in FeCr, though the smaller effect of He can partially be attributed

to the difference in micro-structure. Studying the effect of the micro-structure is certainly of interest

for future studies.

A recoil energy of 2 keV is the highest energy, for which pure W has been studied for all the potentials.

As the effect of He can be expected to be more pronounced at higher energies, the potentials were

compared for this recoil energy. Both the amount of damage and the clustering of vacancies and

interstitials, are relatively similar, with the amount of Frenkel pairs and interstitial clustering slightly

higher for the potential by Derletet al. than for the others as can be seen in Fig. 11(a) and Table 2.

For substitutional He, the amount of damage compared with pure W is reduced for 1% He, while it is

unchanged for 0.1%, except for the W–W potential from Sect. 5.1, for which it is a bit higher. While

there are apparent differences between the potentials, the qualitative features of the damage are the

same.

For the D potential, higher energy recoils have been simulated. As can be seen in Fig. 11(b), the

damage production increases exponentially with recoil energy, as it does for pure W. The slope of

the fitted curve in a log-plot remains the same with 1% interstitial He as for pure W. The damage

production with 5 keV recoil with 0.1% He is surprisingly very similar to that with 1% He. Even for
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Figure 11: The damage produced by cascades in W with different He concentrations and recoil
energies for both interstitial (int.) and substitutional (subs.) He. In (a) the number of Frenkel pairs
are compared for the Ackland-Thetford (AT), Derletet al. (D) and Juslin (J) W–W potentials. In (b)
the number of Frenkel pairs for 2, 5 and 20 keV recoils for the D potential. The results for 0% He are
from Ref. [61] for the D potential and from Ref. [72] for the AT and J potentials.
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pure tungsten, the 5 keV recoil produces a high amount of damage compared to other energies. With

substitutional He, the amount of damage is reduced for 1% He, especially in the 5 keV case, where

the number of Frenkel pairs is reduced to about a quarter of that in pure W. For 0.1% the damage is

unchanged.



38

8 CONCLUSIONS

In this thesis, interatomic potentials needed for molecular dynamics simulations of irradiation of

materials have been developed and applied. The focus is on the fusion reactor relevant materials

tungsten and iron chromium, and the deuterium bombardment of tungsten and effects of helium in

both tungsten and iron chromium. While the motivation for the work was to study materials for

future fusion reactor applications, the research leans towards study of the basic science behind the

phenomena, rather than an engineering approach.

New potentials have been developed for the W–W, W–C and W–H interactions, based on data from

both literature andab initio calculations in this thesis. While the potentials have certain known short-

comings, they perform well for their intended use and they are still the only potential set for simulating

a WCH system. The W–C and W–H potentials are not used further in this thesis, but have been applied

by several groups for a wide range of studies.

Pair potentials able to describe He defect properties in Fe and Cr were developed in order to study

the effect of He on irradiation properties in Fe and FeCr, as model materials for fusion reactor steels.

The potentials are able to describe the interstitial and substitutional energies very well, as well as

migrational properties adequately. The Fe–He potential has also been widely used and tested by

others. For the Cr–He potential, the lack of known experimental orab initio data limits the testing

possibility. There are, however, groups performingab initio studies of He in Cr and FeCr and it

remains to be seen how well the potential can reproduce those results.

The presence of 10% Cr does not greatly affect the formation, mobility and lifetime of He and He–

vacancy clusters. The formation energy can be quite different depending on the local neighborhood,

but on average cluster formation, as well as the binding to and dissociation from a cluster, of a He or

vacancy, is not significantly affected by Cr. The mobility of pure He clusters is retarded by a small

degree due to 10% Cr. The mobility and dissociation frequency of the clusters were shown to be

higher than previously assumed, in some cases several orders of magnitude.

The effect of Cr on the displacement threshold energies in FeCr with 10% Cr was shown to be neg-

ligible. There is a small difference on whether the displaced atom is Cr or Fe, but even for the Cr

atom, the results are close to those for a Fe atom in pure Fe. On the other hand, there are considerable

differences between the results for FeCr and pure Cr. Together with the results that Cr hardly affects

the total damage in displacement cascades in FeCr, this indicates that the experimentally observed

effect that the dependence on Cr on the irradiation response of FeCr most likely comes from long

time scale damage evolution and is not due to primary damage formation.
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A concentration of 0.5-1% interstitial He significantly increases the displacement cascade damage

production, while He in substitutional positions reduces it. This is seen both in FeCr and W. At lower

concentrations the primary damage production is not notably different than for the pure materials.

The increase due to interstitials is explained by He atoms combining with vacancies produced during

the cascade, thus reducing the recombination of metal atoms and vacancies. The reduction due to

substitutional He has the opposite mechanism, as some of the He become interstitial or clusters,

leaving more vacancies for the metal interstitials to recombine with.

All of the studies performed on FeCr and FeCrHe in this thesis indicate that 10% randomly distributed

Cr influences the primary damage production or He migration and clustering to an insignificant de-

gree. Helium,on the other hand, can greatly increase the amount of primary damage, but only for

concentrations that approach the limit of what is expected to be produced during the lifetime of a

reactor. Also in tungsten a similar effect of He is seen. Local variations in concentration and micro-

structure of He could, however, play a significant role in a real material and are certainly of interest

for further studies.
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