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SUMMARY OF THE THESIS

This thesis consists of work carried out at the Observatory, University of Helsinki,
at the Department of Meteorology, University of Helsinki (at present: Division of
Atmospheric Sciences, Department of Physical Sciences), and at the division of
Geophysical Research, Finnish Meteorological Institute. The main theme of the
research is the importance of sophisticated single-scattering modeling, especially
the importance of realistic particle shape, in meteorological scattering problems.
Partially due to the restrictions of available single-scattering models, the work
has not been focused on the meteorologically most important scattering processes.
However, it does include a representative set of different kind of scattering prob-
lems, so that the results and conclusions might be generalized to other relevant
scattering problems. The papers included consider scattering problems that have
not been solved previously and present many new results that should be interest-
ing also to scientists working outside meteorological scattering applications.
This thesis consists of an Introduction and five original papers:

Paper I: Muinonen, K., Nousiainen, T., Fast, P., Lumme, K., and Peltoniemi,
J. 1., 1996: Light scattering by Gaussian random particles: ray optics ap-
proximation, J. Quant. Spectrosc. Radiat. Transfer, 55, 577-601.

Paper II: Nousiainen, T. and Muinonen, K., 1999: Light scattering by Gaussian,
randomly oscillating raindrops, J. Quant. Spectrosc. Radiat. Transfer, 63,
643—666.

Paper ITI: Nousiainen, T., 2000: Scattering of light by raindrops with single-
mode oscillations, J. Atmos. Sci., 57, 789-802.

Paper IV: Nousiainen, T., Muinonen, K., Avelin, J., and Sihvola, A., 2001:
Microwave backscattering by nonspherical ice particles at 5.6 GHz using
second-order perturbation series, J. Quant. Spectrosc. Radiat. Transfer,
70, 639-661.

Paper V: Nousiainen, T., Muinonen, K., and Réisédnen, P., 2002: Scattering of
light by large Saharan dust particles in a modified ray-optics approximation,
J. Geophys. Res. (in press).

In Paper I, light scattering by so-called Gaussian random particles was stud-
ied systematically in the ray-optics approximation, varying both the particle shape
statistics and the refractive index. This paper is the main publication of Gaus-
sian random spheres, introducing the general spherical-harmonics formalism for
well-defined Gaussian particles into light-scattering modeling. The author’s con-
tribution was to test and debug the scattering model, carry out the scattering
simulations, and analyze and compile the results.



In Paper II, the importance of accurate shape modeling of large oscillating
raindrops were studied. The oscillations were modeled using the Gaussian random
sphere model, as the information about oscillations were considered insufficient
for a deterministic model. Light scattering properties of oscillating raindrops were
studied systematically for two distinct sizes by varying the oscillation statistics.
Apparently for the first time, full 47 scattering matrix analysis was performed.
Most of the work involved was carried out by the author; the original scattering
model for Gaussian random spheres (not modified for raindrop geometries) was
written by Karri Muinonen.

In Paper III, the study of light scattering by oscillating raindrops was con-
tinued. The random oscillation scheme was replaced by more physical statistical
single-mode spherical harmonics scheme consistent with oscillation observations.
Light scattering properties of raindrops with single-mode oscillations were system-
atically studied varying the angle of incidence, oscillation modes and amplitudes,
drop sizes, and size distributions. For appropriate parts, the results were com-
pared with those given in Paper II. To the author’s knowledge, this work presents
by far the most sophisticated scattering modeling of natural raindrops to date.
Except for a few details, all the work was carried out by the author.

In Paper IV, microwave backscattering by nearly-spherical inhomogeneous
ice particles was studied using a second-order perturbation series approximation
adapted for Gaussian random spheres. De- and co-polarized backscattering cross
sections were computed for varying particle geometry, composition, and internal
structure. In this paper the radar backscattering is, apparently for the first time,
studied using statistically given nonspherical shapes resembling natural particles.
Most of the work was carried out by the author; the original scattering model was
provided by Karri Muinonen, and effective refractive indices for different mixtures
were provided by Juha Avelin and Ari Sihvola.

In Paper V, light scattering properties of Saharan mineral particles large
compared to the wavelength were studied both in a traditional and in a modified
ray-optics approximation. Particle shapes were based on a shape analysis of a
sample of real Saharan particles, and model results were compared with scattering
measurements carried out by Volten et al. (2001) using the same sample. This
paper proposes an ad hoc simple Lambertian modification to traditional ray-optics
approximation to take into account the small-scale surface structure and internal
inhomogeneity of mineral particles; this modification allows, for the first time,
good agreement between simulated and measured scattering properties for natural
mineral particles using realistic model particle shapes. Apart from the Lambertian
modification by Karri Muinonen, and the radiative transfer contribution by Petri
Réisédnen, all the work was carried out by the author.
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1 INTRODUCTION

Scattering of electromagnetic (EM) radiation, hereafter light scattering, is a man-
ifestation of the interaction between electromagnetic radiation and matter. If a
photon interacts with a scattering medium without interchanging energy, we have
elastic scattering with the scattered frequency equal to the incident frequency. If
the photon energy is changed in the process, we have inelastic scattering with the
scattered frequency not equal to the incident frequency. This thesis is confined
to elastic scattering, with the exception of absorption that needs to be taken into
account and is actually a special case of inelastic scattering. The EM radiation
is assumed to consist of plane waves, with the notion that an arbitrary radiation
field can be expressed as a suitable superposition of plane waves (e.g., Bohren and
Huffman, 1983).

The classical interpretation of elastic scattering is the following: a time-
dependent electric field associated to EM radiation forces charged elementary
particles (mainly electrons) within matter to oscillate at its frequency. The oscil-
lating charges are in accelerating motion and thus they radiate electromagnetic
radiation (e.g., Bohren and Huffman, 1983). Scattered light, which is distributed
in all directions with an angular dependence characteristic to the scattering event,
consists of this re-radiated energy and originates from the energy of the incident
radiation. Absorption can then be considered the part of the incident energy that
is lost from the incident radiation but is not re-radiated as scattered energy. This
energy is stored in the scattering medium as internal energy and is emitted with
a spectrum of wavelengths depending on, e.g., the temperature and the mate-
rial of the particle (e.g., Liou, 1980). In most meteorological applications, the
wavelengths of scattered and emitted light do not overlap significantly.

There are several reasons why scattering is an important phenomenon to
study. First, it is a very common phenomenon. All matter scatters light, and
indeed, most things are visible to us only because they scatter light. There are
only few objects, like the Sun, a candle flame, and red-hot lava that emit visible
light sufficiently to be seen. Second, the properties of the scattered light depend
on the physical properties of the scatterer, and this information is carried to an
observer at the speed of light. This allows remote sensing of the physical properties
of distant targets. Third, scattering affects the way radiation propagates in a
medium. It is often of fundamental importance to take scattering into account in
radiative transfer computations. Such computations are needed in a wide range
of applications from engineering to climate modeling.

Although the physics of scattering is well understood in principle, there is no
universal solution to a scattering problem — the resulting set of equations cannot
be solved analytically except in few simple cases. Numerically the solution can
be found, but this is practical only in some cases (when scatterers are sufficiently
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small compared with the wavelength). Thus, it has been necessary to develop
different methods, most of which are approximations, for different kind of scat-
tering problems. Indeed, there are quite a few different methods available today,
out of which it is often a problem itself to choose the one most appropriate for
the scattering problem at hand. As a consequence, ideal methods are not always
used.

Today, the development of scattering methods is mostly confined in develop-
ing better numerical techniques. On one hand, faster and more general scattering
models are being developed. On the other hand, methods to solve new problems
and take more details into account are looked for. Less effort is put into the
development of analytical methods, and it is unlikely that the number of spe-
cial cases that can be handled analytically will increase considerably in the future
(Mishchenko et al., 2000b). This thesis is largely based on applying existing meth-
ods. The model development involved is largely confined to modifying the models
for new geometries and to automate certain procedures such as an integration over
a size distribution. However, the models used are state-of-the-art products and,
in case of Papers IV and V, used for the first time for a real scattering problem.

In the thesis, several meteorological scattering problems have been solved
using sophisticated scattering methods, with two main goals in mind: first, to
establish the effect and the relative importance of different physical properties of
atmospheric scatterers on scattering; and second, to consider the possible errors
caused by the use of more simplified methods. It is hoped that this thesis would
provide some insight to factors considered important in different scattering prob-
lems and would thus help readers in choosing a proper scattering method for their
applications. In addition to providing guidance to scientists who apply scattering
methods in their work but are not necessarily deeply involved in the scattering
studies, it is hoped that the work would also be of interest to people specialized
in scattering.

Three different meteorological scattering problems are considered in detail:
scattering of visible light by oscillating raindrops (Papers II and III), scattering of
microwaves by nearly-spherical ice particles (Paper IV), and scattering of visible
light by large mineral dust particles (Paper V). In the following, a short summary
is given of the relation of these studies to the previous works. More thorough
discussions are given in the appropriate papers.

Paper I is not focused on any particular scattering problem imposed by na-
ture, but rather on the general features of scattering by irregular particles large
compared to the wavelength. In many ways, it also provides a foundation for
this thesis. It introduces the statistical random shape model called the Gaussian
random sphere, which is applied in all papers included in this thesis except in
Paper III. This statistical shape model for nonspherical particles originates from
the stochastically rough particle shape model by Peltoniemi et al. (1989) and was
later further developed to the Gaussian random sphere model by Muinonen (1996,
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1998, 2000b). For a recent review of the history and the present state of light scat-
tering modeling using stochastically shaped scatterers, see Muinonen (2000b). In
addition, Paper I introduces the Monte Carlo ray tracing geometric optics algo-
rithm, which was used, after appropriate modifications, in Papers II and III. This
algorithm performs ray tracing in a matrix form, so the full scattering matrix
can be solved simultaneously without the need to vary the polarization state of
the incident light. The entire ray tree is solved, differently to the Markovian
approach adapted by, e.g., Peltoniemi et al. (1989). Finally, the implementation
of the Kirchhoff approximation (e.g., Jackson, 1975; Muinonen et al., 1989) for
diffraction is introduced in Paper I and used also in Paper V.

The study of light scattering by oscillating raindrops, carried out in Papers 11
and III, is much benefited from the fact that the exact shapes, orientations, and
size distributions of falling raindrops are widely studied topics (see, e.g., Hendry
et al., 1976; Beard and Chuang, 1987; Beard et al., 1989; Pruppacher and Klett,
1997, and references therein). Perhaps the most important application for this
information is the rainfall measurement by dual-polarized radars, which allow a
comparison of backscattering by raindrops for horizontally and vertically polarized
radar beams (see, e.g., Goddard et al., 1982; Sauvageot, 1994). A good spatial and
temporal resolution of the rainfall rate can be measured reasonably only by using
radars, but so far the radar-measured absolute rainfall rates are not sufficiently
accurate for many practical applications. However, the knowledge of raindrop
shapes and orientations, especially as a function of drop size, together with the
use of dual-polarized radars, can increase this accuracy considerably (e.g., Oguchi,
1983; Herzegh and Jameson, 1992). An accurate measurement of rainfall rate
would be of great value, even if it was limited to the vicinity of the radar where
the radar beam is near the ground level. In addition, the same information is
beneficial also for optical applications. For example, the scattering model used in
Paper II has also been used in developing a new optical precipitation type sensor
at Vaisala Oyj (Lehtela et al., 1999). Such an instrument can be used, e.g., to
detect the presence of liquid water drops in subzero temperatures, a situation
hazardous to, e.g., traffic and power lines.

Natural raindrops do not have tear-like shapes, contrary to popular belief.
Rather, small raindrops are practically spherical, while larger drops are increas-
ingly flattened from the bottom side, resembling somewhat to an oblate spheroidal
shape (e.g., Beard et al., 1989; Pruppacher and Klett, 1997). In addition, large
raindrops tend to oscillate (e.g., Jones, 1959; Tokay and Beard, 1996). These os-
cillations consist, according to both observations and theoretical considerations,
of varying spherical harmonics modes (see, e.g., Trinh et al., 1982; Kubesh and
Beard, 1993, and references therein). Interestingly, the physics of the oscillations
of water drops (and jets) have been studied already in the 19th century (e.g.,
Rayleigh, 1879). The orientation of falling raindrops can be considered horizontal
with small deviations (see, e.g., Beard and Jameson, 1983; Pruppacher and Klett,
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1997, and references therein), following from the aerodynamic forcing. Raindrop
size distributions vary, but temporally or spatially averaged distributions resem-
ble the Marshall-Palmer type negative-exponential size distribution (Marshall and
Palmer, 1948), while “instantaneous” distributions tend to be more monodisperse
(Joss and Gori, 1978). For a thorough review of raindrop geometry, see, e.g.,
Nousiainen (1997) or Pruppacher and Klett (1997).

Microwave backscattering by large atmospheric ice particles, considered in
Paper 1V, is also a widely studied topic. Most operational radars apply the
Rayleigh theory as a basis for the so-called radar equation which connects the
backscattered signal to the total mass of scatterers. However, for typical weather
radars with a wavelength of about 5 cm, the assumptions of the Rayleigh theory
(see, e.g., Bohren and Huffman, 1983) are not satisfied in the case of large ice
particles, especially if the particles are also partially melted. There have been
many studies using more accurate methods (see, e.g., Oguchi, 1983; Aydin, 2000;
Haferman, 2000, and references therein), but these are largely confined to simpli-
fied shapes which have limited applicability especially when the (de)polarization
quantities are studied. Yet, these quantities include additional independent infor-
mation that can be taken advantage of by modern dual-polarized radars.

Natural ice particles impose a challenging light scattering problem. In Pa-
per IV, only nearly-spherical (e.g., the deviation from spherical shape can be
considered a minor perturbation) ice particles are studied, including—conforming
to the classification given in Pruppacher and Klett (1997)—graupel and small-hail
particles, sleet, and hailstones. These particles are typically rounded, irregular, or
conical in shape (see, e.g., Matson and Huggins, 1980), and are composed of ice
with varying amounts of air and liquid water trapped inside them (e.g., Chylek
et al., 1984). Melting particles often also have a liquid water coating. Fortu-
nately, the inhomogeneity can be approximately taken into consideration with a
straightforward way by applying a so-called effective-medium approximation (see,
e.g., Sihvola, 1989; Chylek et al., 2000). Falling hydrometeors generally prefer
orientations maximizing drag, but for the nearly-spherical particles drag is almost
independent of the orientation and thus the particles of interest here can be con-
sidered, as a first approximation, randomly oriented. The research carried out in
Paper 1V is different from the previous studies in the sense that truly irregular
and yet well-defined particle shapes are used, allowing different and well-controlled
study of the effect of particle shapes on scattering. This is especially relevant for
depolarization.

Scattering of visible light by large mineral dust particles is studied in Pa-
per V. Solving single-scattering properties of atmospheric mineral aerosol parti-
cles is a very relevant and contemporary scattering problem: they form the most
predominant aerosol class observed from space, they have considerable impact
on the radiative balance of the atmosphere, and they must be taken into ac-
count when atmospheric constituents, e.g. ozone, are monitored from space. At
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the same time, the single-scattering properties of mineral particles are needed in
many other applications, such as in studies of Martian atmosphere or modeling
scattering properties of particulate regolith. However, natural mineral particles
provide a very challenging single-scattering problem, especially at visible light
or wavelengths shorter than that. They are irregularly shaped, rather rounded
particles with surface covered with structures in many scales. They are also inho-
mogeneous, and the size scale of inhomogeneities is generally too large to be taken
into account by effective-medium approximations at visible light or wavelengths
shorter than that. In addition, their typical size variation is so large that there
is no single-scattering method available today which could handle it wholly and
accurately. Indeed, only a so-called Lorenz-Mie theory could handle such a size
range, but it is restricted to isotropic, homogeneous spheres. An accurate solution
can be looked for by applying several different methods for different size ranges,
but there are problems in this approach too: different methods make different
assumptions and it may not be simple to combine them together; in addition,
there is currently no practical and accurate method available for mineral particles
slightly larger than the wavelength.

Traditionally, mineral aerosol particles have been assumed isotropic, homo-
geneous spheres. Indeed, even modern applications such as the OPAC database
(Hess et al., 1998) or the AERONET network (Dubovik et al., 2002) adapt this
assumption, and most, if not all, retrieval algorithms of satellite applications are
based on similar assumptions. Considering the difficulty of an accurate modeling,
it is not surprising that operational products rely on the Lorenz-Mie theory, which
is fast, exact, and can handle the whole size distribution of particles. Nevertheless,
it is a well-established fact that scattering by nonspherical particles is generally
different to that of spherical particles (e.g., Mugnai and Wiscombe, 1980; Jaggard
et al., 1981; Bohren and Huffman, 1983). Lately, spheroidal shapes have been used
to evaluate the errors in satellite-borne retrieval of aerosol properties caused by
the assumption of spherical shapes (Mishchenko et al., 1995, 1997; Pilinis and Li,
1998). Although these studies show major differences in scattering by spherical
and spheroidal aerosol particles, they are not complete, as the effects of internal
inhomogeneity and rough particle surface are not accounted for. Thus, in Paper V
the importance of different factors on light scattering by natural mineral particles
is studied taking into account also surface roughness and inhomogeneity. Such a
study is largely made possible by the availability of laboratory measurements of
natural mineral particle scattering (Volten et al., 2001; Mufioz et al., 2001) which
can be used as a benchmark in the absence of an exact theoretical solution. The
research carried out in Paper V is different with other papers included in this
thesis also in that respect that shape modeling is not based on literature, but
instead, a shape analysis is part of the study.

The structure of this thesis is the following: In Chapter 2, theoretical aspects
of light scattering are considered. The basic physical characteristics, mathemati-
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cal tools, and basic definitions are discussed in Section 2.1. Section 2.2 considers
in further detail the geometrical aspects important for scattering. Different light
scattering methods are explained in Section 2.3, concentrating on the methods
applied in this thesis. Chapter 3 presents the main results of the papers included,
with Section 3.1 dedicated to scattering of visible light by raindrops, Section 3.2
to microwave backscattering by nearly-spherical ice particles, and Section 3.3 to
scattering of visible light by mineral aerosol particles. The summary and con-
clusions are given in Chapter 4. Finally, after the list of References and a short
Errata, Papers I-V follow.
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2 THEORETICAL CONCEPTS

2.1 PHYSICAL BACKGROUND AND DEFINITIONS

Scattering by a single particle is customarily called single scattering, and the
scattering properties of a particle single-scattering properties. These properties
define the single-scattering process, i.e., relate the incident and the scattered light.
As opposed to single scattering, multiple scattering consists of sequential single-
scattering processes. Multiple-scattering problems are always radiative transfer
problems and are not given much weight in this thesis. From a single-scattering
point of view, it makes no difference whether the incident radiation is emitted or
light that has already been scattered (van de Hulst, 1981).

Light scattering by a single particle depends on the properties of the inci-
dent radiation, the properties of the material the particle is composed of, and the
geometry of the particle and the scattering process. The most important proper-
ties of incident radiation are the wavelength and the state of polarization. The
amplitude (intensity) of the radiation is of secondary importance (as long as it is
sufficiently low not to affect the properties of the scatterer or the medium signifi-
cantly), as it does not affect the angle or the wavelength dependence of scattering.
There are many ways to describe incident and scattered EM fields, the choice of
which affects the mathematical formalism for the scattering process.

The most important characteristic of the matter is the complex (absolute)
refractive index N = n, +1in; which depends on the polarizability and the number
density of molecules. The refractive index is connected to the electric and magnetic
properties of matter by

Ept

N = ,
oMo

(2.1)
where ¢ and ¢; are the (complex) permittivities of the matter and free space,
respectively, and p and g the corresponding (complex) permeabilities. Usually,
within a sufficient accuracy, N = \/e/eo = /€, (Jackson, 1975).

N is a function of the wavelength, and the composition and the density of
the material. Its real part is related to the phase velocity of light in the material,
while the imaginary part describes the absorption of light by the material (e.g.,
Bohren and Huffman, 1983). As absorption and scattering are not independent
processes, Im(NN) also affects scattering but in a nonlinear way: if a scatterer
is much smaller than the wavelength, scattering is proportional to [N — 1], i.e.,
increasing absorptivity increases also scattering; if a scatterer is much larger than
the wavelength, increase in Im(/V) decrease the amount of energy scattered, until
at sufficiently large Im(N)’s, it becomes increasingly difficult for light to get inside
the scatterer, increasing scattering and decreasing absorption.

In general, Re(N) is easier to measure than Im(NN) (e.g., Patterson et al.,
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1977). Especially for Im(N), the wavelength dependence can be strong, so the
values need to be measured with sufficiently fine wavelength resolution. For-
tunately for meteorological applications, the refractive indices of water and ice,
which are the most common substances in the atmosphere, are well known for a
wide wavelength range (e.g. Ray, 1972; Warren, 1984). Aerosol particles are more
problematic, but much effort is put to get sufficient information also on their re-
fractive indices (see, e.g., d’Almeida et al., 1991; Hess et al., 1998, and references
therein). In many meteorological applications, at least Re(N) can be considered
a known parameter.

The concept of refractive index implicitly includes the assumption that the
material is locally homogeneous. How the combined effect of atoms and molecules
can be characterized macroscopically by using a single (complex) value is de-
scribed by the so-called optical theorem (see, e.g., Jackson, 1975). Indeed, even
macroscopic inhomogeneity can be characterized using a single (effective) refrac-
tive index if the size scale of inhomogeneity is smaller than the wavelength of
interest (see, e.g., Sihvola, 1989; Chylek et al., 2000, and references therein). This
is called an effective-medium approximation (EMA).

If a scatterer is in a medium, scattering is characterized by a so-called relative
refractive index m, which is the ratio of the refractive indices of the scatterer and
the medium. Absorption, on the other hand, depends always on N. Fortunately,
for most gases in typical conditions, the real part of refractive index is very close
to unity and the imaginary part is very small, so that the relative and the absolute
refractive indices of airborne particles are practically the same. It is noted that
if a scatterer is located in a strongly absorbing medium, the scattering problem
becomes quite complicated.

Geometrical factors of interest are the size parameter, the shape, and the
orientation of the particle. The size parameter z is defined

T = ——— = kor, (2.2)

where r is the radius of the particle, and \g and £y are the wavelength and the
wavenumber, respectively, in free space. The angular distribution of scattered
light depends on the size parameter, while the particle size directly only affects
the amount of light scattered. Thus, the size parameter is the essential parameter
instead of the size itself. The size parameter is well defined only for spherical scat-
terers; for nonspherical particles r is usually replaced with a radius of sphere with
equivalent volume, equivalent surface area, or equivalent cross-sectional surface
area. Typically, equivalent-volume approach works best for x < 1 and equivalent
cross-sectional surface area approach for x > 1. Indeed, the dependence of scat-
tering on the size parameter is so different for different x that the size parameter
space is customarily divided into three domains (or regimes): Rayleigh domain
(x < 1), resonance domain (z = 1), and ray-optics domain (z > 1).
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Size distributions are generally characterized by the so-called effective radius
7o and the effective variance (of radius) vy, defined by Hansen and Travis (1974)
as

1 /m ;
Teff =7ar mron(r)dr, (2.3)
=Sy )
1 fmas 2 2
= — 7, : 2.4
=Ty / (r — regPmr?n(r)dr (2.4)

(S) = /rmm wr’n(r)dr, (2.5)

min

where (S) is the ensemble-averaged geometric cross-sectional area and n(r) is the
size distribution function. Both these quantities are defined under the assumption
that scattering is proportional to the cross-sectional surface area and are strictly
valid only for non-absorbing particles with large size parameter. When the as-
sumption is valid, the quantities are often sufficient to characterize scattering by
a size distribution, regardless of the actual shape of the distribution (Hansen and
Travis, 1974). Unfortunately, these quantities are often used when the assumption
does not hold. An effective size parameter z.4 can be defined by replacing r with
rey in Eq. (2.2).

The orientation of a particle can be described with the angles of incidence,
¥; and ¢;, which are standard spherical coordinates. Similarly, scattered light
can be described in terms of scattering angles #; and ¢;. These angles can be
defined, e.g., as shown in Fig. 2.1. Let a unit vector &; define the direction of
incident radiation (¥;, ;) and é; the direction of scattered radiation (s, ¢5). The
plane defined by these vectors is called the scattering plane and it is unique except
when either exact forward- or backscattering is considered. The scattering angle
6, is the angle between é; and é; in the scattering plane. The azimuthal scattering
angle ¢, defines the angle between €y and the projection of & in the plane defined
by vectors é5 and €, e.g., the rotation of the scattering plane with respect to the
reference coordinate system given by éy and é,.

The total amount of scattered light is described with a scattering cross section
Clsca, which corresponds to the surface area into which energy equal to the scattered
energy is incident upon, and can be expressed as a product of the (dimensionless)
scattering efficiency and the geometrical cross section of the particle. Similarly, we
can define an absorption cross section (s and an extinction cross section Cgyy =
Csea+ Caps- The so-called single-scattering albedo is defined as @ = Cjy/Clyy and
is often used as a measure for the absorptivity of a scatterer.

As stated, the mathematical presentation of scattering process depends on
the presentation of radiation. Generally the most convenient way is to use the
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Figure 2.1. Definition of the scattering angles 85 and ¢, the angles of incidence ¥; and
©;, and the scattering plane. The unit vectors é; and és define the directions
of the incident and scattered radiation, respectively. The components of the
incident radiation with respect to the spherical reference coordinate system
are given by the unit vectors &y and é.

so-called Stokes parameters, defined by
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where w is the angular frequency, po the permeability of free space, * the com-
plex conjugate, || and L stand for the parallel and the perpendicular component
in a reference plane, and F is the amplitude of the electric field. The Stokes
parameter [ is the intensity of radiation, Q/I and U/I define together the de-
gree and the direction of linear polarization, and V/I is the circular polarization.
The degree of polarization for arbitrarily polarized incident radiation is given by
Q?+U?+V2/I, and for linear polarization specifically it is \/Q? + U2?/I. In
this thesis, the Stokes parameter formalism is chosen because Stokes parameters
can be easily measured (their time averages are meaningful and useful), and they
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are additive: this is useful when considering ensembles of particles or orientations
or, e.g., the net effect of different optical elements (Bohren and Huffman, 1983).

By applying the Stokes parameters, we can write the relation of the incident
and the scattered light by

I [SH Si2 Siz 514] I

Qs — 1 521 522 523 SQ4 Qz (2 7)
Us k2R2 531 832 SS3 834 Ui ’ ’
‘/s 541 S42 543 S44 V;

where 7 and s stand for the incident and the scattered light, respectively, R is the
distance from the scatterer, and S,, are the elements of the so-called scattering
matrix.

The definition of the scattering matrix is by no means unique. Indeed, there
are several differently defined scattering matrices which vary in terms of which
quantities are included in the matrix. The scattering matrix S is convenient if
there is need to add several scattering matrices together, e.g., when computing ori-
entation or ensemble-averaged scattering properties, for S’s are additive. Another
scattering matrix is the so-called scattering phase matrix P which is normalized
so that the P;; element, the so-called phase function, can be used as a probabil-
ity density function. This is useful, e.g., in radiative transfer applications. The
relation between S and P is written

4
P=_, S, (2.8)
Clron = ~ / S d92 (2.9)
sca — 7o 11 5 .
k? J(am)

where (2 is a solid angle.

The phase function P;; describes the angular dependence of scattered energy
for an unpolarized incident light. Its general shape is often characterized by the
so-called asymmetry parameter

Py
g= / ——cos f, dS2, 2.10
i dn (2.10)

which varies in a range g € [—1,1]. The degree of linear polarization for unpolar-
ized incident radiation is given as — P/ Py (note the sign difference between this
and the case with arbitrarily polarized incident radiation defined earlier: this is a
historical convention). The so-called depolarization ratio, describing the decrease
of the degree of linear polarization in a scattering process, is defined as 1 — Pyy /Py
and varies from 0 (no depolarization) to 1 (full depolarization).

The scattering process is fully known when the scattering matrix S and the
absorption cross section C; are known. In principle, these quantities include all
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the information about the scattering process, e.g., all the appropriate properties of
the scatterer and the geometry. In a direct scattering problem, the scattering ma-
trix and the absorption cross section are computed theoretically for given particle,
radiation, and geometrical characteristics; even this is a difficult task, as there is
no general solution for the problem. In the inverse problem, the scattering matrix
or part of it is known and the problem is to solve the properties of the scatterer
from it; inverse scattering problems can, in practice, only be solved numerically
and require also solving the direct problem.

2.2 GEOMETRICAL ASPECTS

The geometrical factors relevant for scattering are of special importance in this
thesis, so they are discussed more thoroughly here. Basically, there are two kinds
of geometrical factors: those that define the scatterer and those that define the
scattering process. The most important geometrical characteristics of the scatterer
are the shape, the size, and the internal structure, whereas the geometry of the
scattering process is described by the angles of incidence and scattering.

How scattering depends qualitatively on particle size, shape, and scattering
angle is explained schematically in Chapter 1 of Bohren and Huffman (1983). By
subdividing the particle into small regions that scatter light independently of other
regions, it is easy to understand how increasing size parameter leads to increasing
phase differences between different regions and thus constructive and destructive
interference at different scattering angles. In the forward scattering direction,
there is mostly constructive interference, as all parts of a scatterer within a given
ray path scatter in the same phase there. The larger the size parameter, the closer
to the forward direction the constructive interference is limited, and accordingly,
the narrower the forward scattering peak. Outside the forward direction, angles
of constructive and destructive interference depend on the size parameter and the
particle shape, and accordingly, the interference structure can largely be removed
by introducing a shape or a size distribution. For very small size parameters, there
is hardly any interference in any direction, indicating that the size parameter and
the shape have only a weak effect on scattering, and that the angle dependence of
scattering is weak. These observations are qualitatively true, although it must be
emphasized that in reality the different regions do not scatter light independently.

These same general features are illustrates in Figure 2.2, where an interference
of four independent point scatterers forming a square is shown. It is clearly seen
how the angular variation of interference is increased when the distance of the
point sources compared to the wavelength increases; at the same time, the zone of
constructive interference in the forward scattering direction becomes narrower. It
is also clearly shown how the interference field near the sources is complex, whereas
in the distance the field assumes spherical form. In light scattering applications,
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Figure 2.2. Schematic presentation of the interference fields of four independent point
scatterers (asterisks) forming a square with a width and height of (a) 0.4, (b)
0.75), (c) 1.33), and (d) 4.0A. The incident light goes from left to right in each
picture. Dark radial segments mark destructive interference and bright radial
segments contructive interference. For simplicity, the scattered amplitudes
are assumed constant.

the field far away from a scatterer, called the far field, is of main interest.

Modeling of particle size and orientation is straightforward. The modeling of
shape, on the other hand, can be quite difficult. Most natural particles, excluding
small liquid droplets, are irregularly shaped. For example, natural mineral par-
ticles have varying shapes, a surface filled with structures in many scales, they
can have internal structures, and they often compose of different minerals, some
of which can affect scattering considerably even in small quantities. Similarly,
natural ice crystals have seldom simple regular shapes; instead, they often have
air bubbles of varying shapes inside them, the prism angles and the width of facets
can vary, and there can be surface irregularities due to, e.g., particle collisions and
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riming (e.g., Yang and Liou, 1998). Not only is it difficult to express an irregular
shape simply and exactly, but each particle usually also has its own unique shape.
Clearly, as already noted by Bohren and Huffman (1983), when modeling shapes
of such particles, a statistical approach is called for. It is also obvious that when
different model particles are allowed to have different shapes, one needs to solve
ensemble-averaged scattering properties.

Indeed, a statistical shape modeling is one of the key elements of this thesis.
Except in Paper III, this is accomplished by applying the Gaussian random sphere
geometry (note that Gaussian random spheres are called Gaussian random shapes
in Paper I; later, the term Gaussian random sphere has been adapted to describe
Gaussian random shapes in a spherical geometry). Similarly, one can define, e.g.,
Gaussian random cylinders and Gaussian random planes (Muinonen and Saarinen,
2000). Here, this model is described rather generally (for a thorough description,
see e.g. Paper I or Muinonen (2000b)). Instead, the focus is in the application of
this model to real atmospheric particles.

The Gaussian random sphere model has three properties that have made it
a very successful approach in modeling shapes of many natural objects: 1) it is a
statistical model, 2) it uses Gaussian statistics, and 3) the radius function is given
in an exponential form. A statistical approach is very reasonable when particles
with varying shapes need to be modeled. It is not simple to describe accurately
even a single nonspherical shape unless it conforms to one of the analytical forms
such as an ellipsoid or a Chebyshev shape (e.g., Mishchenko et al., 2000a). Ob-
viously, such simplified nonspherical shapes are exceptions in nature. However,
when a whole population is considered instead of a single particle, the situation
becomes much simpler. One can then describe the shapes with statistical param-
eters. With the Gaussian random sphere model, one only needs a mean radius
and a covariance function (called autocovariance in Paper I; later, the shorter
term has been adapted) of (log)radius. With these parameters, one can control
the general type and the degree of nonsphericity in an easy manner, and generate
random shapes conforming to the given statistics. However, it means that one
cannot control directly the shapes of individual particles, and indeed, statistics of
single shapes and the whole population are often clearly different. While this may
seem a drawback, it can actually be beneficial: it is much simpler to derive the
statistical properties of a population than the exact properties of single particles,
and one needs only one set of parameters to characterize the whole population.
In addition, if the problem at hand allows, the difference between single-particle
and the population statistics can be minimized by a proper choice of covariance
function.

The use of Gaussian statistics make the random spheres more relevant for
real particles. It follows from the Central Limit Theorem that if particle shapes
are a net result of repeated random forcing, the resulting shape is likely to favor
Gaussian statistics; in spherical geometry, the lognormal probability density holds
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for the Central Limit Theorem. The exponential form for the radius vector, on
the other hand, guarantees that negative radii are not possible even in the case
of strong deformations, so generated particles are realistic. It is also obvious from
the Taylor expansion of exponent function that, for small deformations, the direct
expansion and the exponential expansions are quite similar: exp(y) =~ 1+ v.

The radius vector for the Gaussian random sphere is defined as

r(V,p) = ﬁexp [s(9, )] ér, (2.11)

sW,0) =) sim Yim(9, ), (2.12)

=0 m=-1

where 9 and ¢ are the spherical coordinates, a the mean radius, o the relative
standard deviation of the radius vector, s the so-called logradius, and &, a unit
vector pointing outward in the direction (¢, ¢). The logradius s, which defines the
shape of individual particles (single realizations of the Gaussian random sphere),
is given as a real-valued series expansion of spherical harmonics Y}, with degree
[ and order m. The (complex) weights s;,, depend statistically on the covariance
function of logradius (X;) which is related to the covariance function of radius
(a®%,) as B, = exp(Z,) — 1.

Single realizations of the Gaussian random sphere are generated by random-
izing the weights s, as explained, e.g., in Paper IV and Muinonen (1998). Note
that two seemingly different forms are given for the spherical harmonics expansion
of s in the papers included in this thesis. In Papers I and II, it is given in the
form

oo 1
s(9, @) = Z Z P (cos ) (ayy, cos me + by, sinme), (2.13)

=0 m=0

where P/™’s are the associated Legendre functions and a;,’s and b;,’s are the
weighting coefficients. In Papers IV and V, on the other hand, it is given as
Eq. (2.12). These two forms are identical, as long as the weighting coefficients s,
are defined properly. The Eq. (2.13) is automatically real-valued as long as az,’s
and by,,’s are real, while Eq. (2.12) is real-valued only if 5, ,, = (=1)™s},.
Although the papers included in this thesis consider particles with differ-
ent shapes, they all incorporate the Gaussian random sphere model, with the
exception of Paper III in which a different statistical shape model is used. As
the difference in the shapes arises from different covariance functions used, it is
reasonable to discuss the concept and the use of the covariance function in detail.
A covariance function is a product of a correlation function and a variance.
In general, the correlation function describes the correlation of a quantity or quan-
tities as a function of its parameter and varies in a range of [—1,1]. In the case of
the Gaussian random sphere, the quantity is the (log)radius, and the parameter is
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the angle v, so the correlation function describes the correlation of (log)radii sep-
arated by the angle v computed over all realizations. If the correlation function
is constant (unity), the resulting generated shapes are spheres (with lognormal
size distribution, unless o = 0). The faster the correlation drops from unity with
increasing angle, the smaller-scale features can be in the shape (see Fig. 2.3).
Naturally, at 0° the correlation is always unity. The variance, on the other hand,
defines the amplitude of the variation. Obviously, the larger the variance, the
more the radii vary. For ¥,, the variance is given as a?0?, whereas for X, it is
In(o? + 1).

In the Gaussian random sphere model, the correlation function C' is conve-
nient to express as a series expansion of Legendre polynomials P, e.g.,

Zs(y) =In(0” +1) C(v), (2.14)
03(7) = Z &) Pl(COS ’Y)’ (215)

where ¢; are the weights of Legendre polynomials, as there is a close connection
between the Legendre expansion of the correlation function and the spherical
harmonics expansion of the logradius: each s;, depends only on the ¢ of the
corresponding degree (for details, see e.g. the Egs. (3), (5), and (6) of Paper IV).
For the Legendre expansion to be valid, it is further required that

lmaa:

Y a=1, (2.16)
=0

where [,,,, indicates the maximum degree included in the expansion. All Legen-
dre polynomials are suitable as a correlation function, as they equal to unity at
v = 0° and vary in a range [—1,1] (see, e.g., Arfken, 1985). Indeed, a single-
Legendre-polynomial correlation function results in generated shapes consisting
only of spherical harmonics of the corresponding degree. The degree of spherical
harmonics, on the other hand, directly indicates the number of minima and max-
ima in the spherical harmonics function, and accordingly, the hills and valleys the
appropriate spherical harmonics causes in a shape. Thus, if a shape with small-
scale variability in the radius function is desired, high-degree spherical harmonics
are needed, and vice versa.

For the spherical harmonics, and correspondingly for the Legendre expansion
of the logradius, two lowest degrees are special: the degree [ = 0 corresponds to a
change in the mean radius a, i.e. it does not affect shape; similarly the degree [ = 1
is almost (almost, because the spherical harmonics expansion is in the exponent)
a pure translation, i.e. it moves the shape with respect of the origin without
altering the shape itself significantly, unless o is very large. All higher-degree
terms contribute mainly to the shape.

The correlation functions used in the papers included in this thesis will now
be reviewed. In Paper I, the so-called modified Gaussian correlation function of
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logradius (called spherical ‘Gaussian’ autocorrelation function in Paper I) was
applied. This correlation function has the form

2 51
Cs(7y) = exp <—£—2 sin? 57) (2.17)
I' = 2 arcsin (%K) ) (2.18)

where / is the so-called correlation length and I' is the correlation angle. Thus, the
correlation function (of logradius) is controlled by a single parameter ¢, and the
covariance function (and thus the shapes of generated realizations) by ¢ and the
variance o2. The value of £ is conveniently given by using an auxiliary parameter
', which represents the angle in which the correlation drops to 1/4/e. Due to
its intuitive parameters, the dependence of the shapes of generated realizations
on the correlation function can be conveniently demonstrated using the modified
Gaussian correlation function; this is shown in Fig. 2.3. Note how the radius
varies less within a single realization as I' increases, although o is not changed.

The drawback of the modified Gaussian correlation function is that the spher-
ical harmonics degrees [ = 0 and [ = 1 are included. They are not important for
the shape, and in some cases they are unrealistic (e.g., such oscillation modes
would be unphysical). The degree | = 0 is especially problematic if a size vari-
ation cannot be allowed. Indeed, in Paper IV, in which the modified Gaussian
correlation function is also used, the ¢y term has been eliminated from the corre-
lation function to suppress the size variation. The main effect of this suppression
is that the possible values for I are now restricted, because increasing I' beyond
60° would only increase ¢y and decrease all other ¢;’s: if ¢y term is set to zero,
such a situation would not satisfy Eq. (2.16). It is emphasized that the removal of
the [ = 0 term does not eliminate the volume variation completely, as the particle
volume depends slightly also on higher-degree variations.

In Paper II, single Legendre polynomials with degrees from [ = 2 to 5 were
used as a correlation function of logradius, i.e., one of the ¢; is unity and the others
are zero. It is emphasized that in Paper II the Gaussian random sphere geometry
is used only for the oscillation part of the shape, embedded on a size-dependent
equilibrium shape.

Paper V introduced yet another correlation function, this time one that is
based on measurements. As explained in the paper, the analysis of Saharan parti-
cle silhouettes show that for [ > 2, ¢; o< {7, where v &~ 4. The weights for degrees
[ = 0 and 1 have been set to zero (the value of ¢q does not affect the particle
shapes at all; c¢; affects slightly, but its derivation would require quite sophisti-
cated analysis method, such as that explained in Lamberg et al. (2001)). This
kind of correlation function, called the power law correlation function, appears
quite universal for irregular shapes (Muinonen, 2002b): the same ¢; oc [=* power
law holds surprisingly well also for asteroid shapes and the shape of (the gravita-
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Figure 2.3. Example realizations of Gaussian spheres and the corresponding correla-
tion functions of logradius, generated using the modified Gaussian correlation
function with ¢ = 0.2 and varying I'. On the top panel, I' = 10° has been
used, while the middle and the bottom panels correspond to I' = 30° and 90°,
respectively.

tional field of) Earth, for example (Kaula, 1968; Muinonen and Lagerros, 1998).
Naturally, the relative variance of the radius is very small for Earth compared
to asteroids or dust particles. It is quite possible that the power law correlation
function with ¢; oc [=* can be used to generate realistic overall shapes for typical
natural mineral particles within sufficient accuracy for light scattering problems.



27

Figure 2.4 illustrates the performance of the Gaussian random sphere model
in describing natural mineral dust particles. Although the Saharan particle in the
photograph is clearly larger (a ~ 500 pym) than those considered in Paper V, it
looks quite similar. Unfortunately, the CCD images used for the shape analysis
presented in Paper V have been erased years ago, so they cannot be used here. The
realization of the Gaussian random sphere shown on the right is generated using
the power law correlation function with v = 3.5 and [,,,, = 50, so v is slightly
smaller than the value derived from the shape analysis. A smaller value has been
used to increase the small-scale irregularity so that it would more resemble that
of real particles. This has the side effect of making the particle shape a fractal, so
that the Legendre expansion of the correlation function is no longer convergent.
There are alternative ways to increase the small-scale surface irregularity so that
the low-degree terms of the correlation function, for which the shape analysis
was limited to, are in agreement with the shape analysis, but this issue is not
considered further here.
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Figure 2.4. A photograph of a Saharan sand grain with a = 500 um collected in Libya
(left), compared with a realization of a Gaussian random sphere generated
with parameters o = 0.2 and 4, = 50 and a power law correlation function
with v = 3.5 (right). The particle looks very dark because it is photographed
against an illuminated class plate. (Photograph by Sanna Kaasalainen, Jukka
Piironen, and Martti Lehtinen).

Particle orientation is also an important factor when light scattering by non-
spherical particles is considered. If scattering by a single particle is considered,
the orientation must be fully accounted for. Scattering depends on the angles
of incidence (¥;, ¢;) and the resulting scattering pattern is a function of both 6
and ¢,. Thus, in effect, scattering matrices are functions of four angles. On the
other hand, if scattering by a population of particles is considered, i.e., ensemble-
averaged scattering properties are looked for, there are two different cases to be
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discussed. If particles are randomly oriented, then the properties of the popula-
tion are not changed by rotations and scattering matrix for the ensemble is only
a function of f,. If particles are oriented, however, the situation resembles that
of a single particle. If particles can be considered randomly oriented with respect
to the azimuthal incident angle ¢; (e.g., horizontally oriented ice crystals), the
resulting scattering matrix is a function of angles 9;, 6, and ¢. If particles are
also azimuthally oriented, then all four angles are needed. So, in this case, a non-
random orientation increases the number of variables in the ensemble-averaged
scattering matrix from one to three or four. Each additional free parameter dou-
bles the number of necessary computations in a systematic study, so additional
variables generally make such studies very laborious. In addition, accounting
for non-random orientation complicates statistical shape modeling; this could be
done, e.g., by computing the principal moments of inertia for each realization (see
Muinonen, 1998) and orienting the particles with respect to these. Obviously, both
the single-scattering computations and applying their results is more complicated
in case of oriented scatterers.

In addition, the orientation affects the general symmetry properties of the
scattering matrix. For a collection of oriented particles, all 16 scattering matrix
elements can be non-zero and independent. For a collection of randomly ori-
ented particles, however, there are only 8 non-zero and 6 independent scattering
matrix elements (unless particles are composed of optically active material; such
considerations are left outside of this thesis).

The effect of orientation on single-scattering studies can be seen in practice by
comparing results in Paper I with those in Papers II and III. In Paper I, ensembles
of randomly oriented particles are considered, and accordingly, there is only one
angle dependence to be considered. In Papers II and III, particles are oriented
and scattering depends on the angles 19;, 6, and ¢,. This means that scattering
needs to be solved for different angles of incidence, increasing largely the amount
of data to be studied. In addition, the results of Papers Il and III are difficult
to illustrate; curves are easier than full 47 plots to interpret accurately. Finally,
in Papers II and III, all 16 scattering matrix elements are non-zero and need (in
principle) to be considered, as opposed to 6 independent non-zero elements in
Paper L.

2.3 SINGLE-SCATTERING MODELS

In principle, the interaction between electromagnetic fields and matter is fully
described by Maxwell’s equations, material-dependent constitutive relations, and
boundary conditions on the particle surface (e.g., Bohren and Huffman, 1983). As
noted in Chapter 1, the resulting set of equations does not have a general analytical
solution. The equations can be solved numerically, but this is practical only for
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small size parameters. As a consequence, there exist a multitude of methods which
are typically usable only in a narrow range of the parameter space. So, knowledge
of different methods and their regime of validity, as well as the skill of choosing
the best method for the problem are important parts of the art of light scattering
research. The most important parameters to be considered are the size parameter,
the particle shape, and the complex refractive index.

There are some cases in which the resulting set of equations can be analyti-
cally and exactly solved. The best-known such solution is the Lorenz-Mie theory
(often called the Mie theory) for homogeneous, isotropic spheres. The Lorenz-Mie
solution is relatively simple, generally fast to compute, and can be applied to
spheres with an arbitrary size parameter and refractive index. These properties
have made the Lorenz-Mie theory very popular. Indeed, it is widely used in many
fields of science, often for scatterers that are neither homogeneous nor spheres.
Other analytical and exact solutions include layered spheres, circular and ellipti-
cal infinite cylinders, spheroids, and some other simple particles with a rotational
symmetry. The common element for these solutions is that they assume particle
geometries which are quite idealistic compared with typical natural particles.

There are also a number of different numerical methods, e.g., different surface-
and volume-integral methods. Some volume-integral methods are compared in
Peltoniemi et al. (1998) using Gaussian random spheres. While numerical methods
are usually much slower than analytical solutions, and often also approximations,
they extend largely the parameter space for which a solution can be looked for.
For a recent review of different single-scattering methods, see Mishchenko et al.
(2000b).

Unfortunately, there are still large gaps in the parameter space in which only
inaccurate solutions are available. In general, when solving a scattering problem,
one has to choose which is more important: an accurate solution for the “wrong”
problem, or an inaccurate solution for the “right” problem. Often, one has to
make this decision without being able to test the different options against the
accurate solution. Fortunately, an increase in computational power and advances
in computational algorithms are closing these gaps promisingly.

As to how different parameters affect the availability of an accurate solution,
some general rules can be given. For the refractive index, it is typically the better,
the closer the value of m is unity. For example, the small-particle approximations
(Rayleigh approximation) apply to larger size parameters if m is close to unity
(e.g., Rayleigh-Gans approximation), and volume-integral methods do not require
as large a number of volume elements. On the other hand, the large-particle
approximations (ray optics) work better if m is larger, and especially if Im(m)
is large, the scattering problem can be much simpler. If the medium in which
the scatterer is embedded in is (strongly) absorbing, on the other hand, things
become very complicated. Such cases are not considered in this thesis. For the
size parameter, the most difficult values are around 10-100, for which accurate
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solutions are practically available only for simple shapes with exact solution. For
values smaller than 10, there are many numerical methods that can handle almost
arbitrary particles, but these methods tend to become exceedingly slow for larger
size parameters. For size parameters larger than 100, the ray-optics approximation
is usually sufficiently accurate. It is emphasized that these limiting values are only
rough approximations and they depend on other parameters, e.g., refractive index,
as well as the available computational resources. For the shape, symmetric and
other simple shapes are easier to handle than irregular and more complex shapes,
but they also scatter differently.

The lack of a general solution is especially problematic if a scattering problem
includes a wide parameter range to be covered, because in practice this means that
different methods need to be applied to different parameter values. While this is
laborious, it can also introduce additional problems because most of the methods
are not exact. As a consequence, solutions obtained by different methods do not
necessarily agree well with each other. These sorts of problems are typical in
spectroscopy and in problems involving an integration over a size distribution.
It is not surprising that methods which can handle a wide parameter space, e.g.
the Lorenz-Mie theory, are popular in such applications even if the method used
would not be sufficiently accurate.

Only a few different methods have been used in this thesis. These include a
ray-optics approximation (ROA), a second-order perturbation series approxima-
tion, the Lorenz-Mie theory, and the discrete dipole approximation (DDA). The
latter two are used mainly as supplements and for providing comparison data for
testing. ROA is used most: it is used in all papers except in Paper IV.

ROA is based on the fact that incident plane waves of infinite extent can
be thought to consist of individual and independent rays of light (van de Hulst,
1981). If a scatterer is large enough compared to the wavelength, the interaction
of light rays can be solved independently and assuming that each ray interacts
with the particle only locally.

There are two distinct ways in which the rays can interact with the scatterer:
(1) rays are reflected or refracted at the boundaries where the refractive index
is changed, and absorbed inside the particle if the particle is composed of an
absorbing material; (2) alternatively, rays are diffracted if they “miss” the particle
close enough. The former, called geometric optics, is customarily solved with
Monte Carlo ray tracing, while the latter, called diffraction, can be solved by
a numerical integration. Geometric optics and diffraction are different both in
the appearance and in the dependences. Diffracted rays are confined closely to
the forward scattering direction, geometric optics contribute significantly to all
directions. In the first place, diffraction depends on the particle size parameter
and shape, but not on the material or internal structure of the particle. For
geometric optics both the material and the internal structure are important.

In geometric optics, the phase of light rays is not considered i.e. there is no



31

interference. Further, it is assumed that the particle surface can be considered
locally a plane for each incident ray. Both the exclusion of phase effects and
the assumption of locally planar surface account for the restriction of ray optics
to large size parameters. How large the size parameter should be is not well
established and it depends on both the accuracy desired and the characteristics of
the scatterer. For the most symmetric shape, a sphere, for which phase effects are
most important, the size parameter required may be as high as several hundreds
(Hansen and Travis, 1974). For particles with less symmetry, such as cylinders,
ray optics has been proven to work for size parameters somewhat below a hundred
(Mishchenko and Macke, 1999). For irregular shapes, especially when ensemble-
averaged scattering properties are considered, the lower limit is expected to be
even below that, but the lack of a fast and accurate solution for irregular particles
in this size-parameter range makes it very difficult to check this for sure. Also,
ray optics performs better with small size parameters if particles are absorbing.
This is because, in such a case, scattering is dominated by the external reflection
which involves only one surface interaction as opposed to refracted rays. Indeed, in
Paper V ray optics has been used for a size parameter as low as 28 with irregular,
absorbing particles.

The accuracy of ROA depends also on the scattering angle. Phase effects
are most important in the forward and backscattering directions. In the forward
direction, scattering is strongly dominated by diffraction which takes phase effects
into account and increases the accuracy of the solution as long as the diffraction
part is solved accurately. In the backscattering direction, scattering results from
geometric optics, which excludes phase effects, and, accordingly, the accuracy of
ray optics is poorer in the backscattering direction (see, e.g., Muinonen, 1990). In
side-scattering angles scattering results also from the geometric optics part, but
there the phase effects are of clearly less importance.

Different versions of the geometric-optics model have been used in the papers
involved. In Paper I, the model incorporates randomly oriented particles. In Pa-
pers II and III, the model is modified to handle fixed orientation, and in Paper III
the model also incorporates a size distribution. Due to different particle geome-
tries, the geometry routines are also different in these models. The model used in
Paper V is clearly different: it is a discretized version, i.e., the particles are repre-
sented as a wire frame of triangles instead of a continuous function; for details, see
Paper V and Muinonen (2000a). Also, the model is modified to account for both
the small-scale irregularity of the particle surface and the particle inhomogeneity
by using ad hoc simple Lambertian schemes. Again, size distributions and a new
kind of particle geometry are incorporated in the model.

With the surface Lambertian scheme, rays crossing the surface undergo ei-
ther a Fresnelian or a Lambertian reflection /refraction, a probability depending on
the surface fraction of Lambertian surface elements. Similarly, with the internal
Lambertian scheme, internal rays can hit randomly oriented Lambertian screens
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and undergo a Lambertian reflection/refraction, the probability depending on the
mean free path inside a particle. The Lambertian elements and screens also have
given plane albedos that are additional free parameters in the model. The intro-
duction of Lambertian schemes is such a fundamental change that it is actually a
matter of opinion if the model can still be called a geometric-optics model.

The diffraction parts have also been handled differently in different papers.
In Papers I and V, the diffraction part is solved by a numerical integration in the
Kirchhoff approximation (Jackson, 1975; Muinonen et al., 1989), assuming that
particles are spheres with equivalent cross-sectional surface area. For most prac-
tical applications, such an assumption provides sufficiently accurate solution of
diffraction. Indeed, if the size parameter is sufficiently large, the forward diffrac-
tion peak can be approximated with a delta spike; this approach was taken in
Papers IT and III.

In Paper IV, a second-order perturbation series approximation was used.
This method is an analytical approximation, resembling the Lorenz-Mie theory in
a sense that the particle nonsphericity is considered a minor perturbation in the
spherical shape, i.e., the shape is given as (6, ¢) = a[l + f(0, #)], where f is a
deformation function. The effect of deformation on scattering is taken into account
by an additional series expansion that modifies the Lorenz-Mie solution. Typically,
a perturbation series approach is applicable only to very slightly deformed spheres,
but if a statistical approach is taken, i.e., solving ensemble-averaged scattering
properties for a statistically given deformation, the perturbation series behaves
better and can be analytically solved for, at least, second order (Schiffer, 1989,
1990). In Paper IV, a statistical second-order perturbation series approximation
was applied. As a result, rather large deformations could be considered, but only
ensemble-averaged scattering properties could be obtained. This is not necessarily
a drawback, as the ensemble-averaged scattering properties are what usually are
needed, and they are laborious to compute by averaging scattering simulations
for single particles in single orientations. Because the Gaussian random sphere
model was used for deformation, implying statistically isotropic deformation, the
ensemble-averaged properties implicitly include a random orientation of shapes.
Finally, it is required that the size parameter is rather small, not much larger
than unity at most. For more nonspherical shapes or larger size parameters, a
higher-order perturbation series would be needed. Currently, no such model is
available.

There are also other methods that might have been used in some of the work
involved. In Papers I, II, and III, ray optics was the only practical option. In
Papers IV and V, however, other methods would have been, in principle, possi-
ble. In Paper IV, the ice particles could have been assumed spheroidal or simple
Chebyshev particles and apply the so-called T-matrix method (also called the
extended boundary condition method EBCM; see, e.g. Waterman (1971); Barber
and Yeh (1975); Mishchenko and Travis (1998)). However, most implementations
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of the T-matrix method are restricted to rotationally symmetric particles and thus
would have limited the possibilities to study the shape dependence of scattering
more than the use of perturbation series method did. In addition, the finding
that the depolarization depends mainly on the elongation of the shape at these
size parameters would have stayed uncovered. Alternatively, we could also have
used volume-integral methods such as a discrete dipole approximation (DDA) (e.g.
Lumme and Rahola, 1994; Draine, 2000), finite difference time domain method
(FDTD) (e.g. Yang and Liou, 2000), or jscat (Peltoniemi, 1996). These methods
could handle even more complex shapes than the perturbation series method can,
but they all are extremely laborious to compute compared with the perturba-
tion series method, especially because of the very high refractive index of liquid
water at microwave wavelengths which forces one to use a very large number of
volume elements to get accurate results. The speed of the DDA, for example,
was barely sufficient to compute a single set of comparison data that was used
in testing the accuracy of the second-order perturbation series approximation. In
Paper V, on the other hand, ray optics was the only practical method for the large-
particle part, but the small-particle part could have been computed, e.g., with the
T-matrix method or one of the volume-integral methods mentioned above. In ad-
dition, the second-order perturbation series approximation could have been used.
With the exception of the T-matrix method, however, these methods could not
have been used for sufficiently large size parameters to reach the lower limit of
ray-optics part, and the T-matrix method could not be used in the same particle
geometry. In addition, a sophisticated handling of the small-particle part would
have made the paper even more lengthy, and a simultaneous fitting of the small-
and the large-particle parts to the measurements would have been very compli-
cated. Thus, a sophisticated handling of the small-particle part was left for the
future.
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3 MAIN RESULTS

In the following, the papers included in this thesis are reviewed. Section 3.1
considers Papers I-III, whereas Paper IV is reviewed in Section 3.2 and Paper V
in Section 3.3.

3.1 SCATTERING OF VISIBLE LIGHT BY OSCILLATING RAINDROPS

As explained in Chapter 1, the basis for the study of light scattering by raindrops
was largely established in Paper I, in which deformed spheres with large size pa-
rameter was studied systematically. The most important findings of Paper I were
that (1) increasing nonsphericity (either due to increasing o or decreasing I') re-
sults in a decrease of the asymmetry parameter g; (2) further, an increase in o
affected less, the larger the amplitude already is, implying that the scattering ma-
trix might converge to some limiting matrix for “perfectly” irregular shapes; finally
(3), the shape mainly affected scattering in the side- and backscattering directions,
whereas changing refractive index also affected forward scattering. These results
can be considered quite general for irregular scatterers with large size parameter.

Light scattering by raindrops was studied in Papers II and III. The raindrop
shape was modeled as a product of an equilibrium base shape and an oscillation
part. The equilibrium shape was given as a size-dependent cosine series expansion
and was practically the same in both papers. The oscillation part was, however,
different. In Paper II, the oscillation part was modeled as a Gaussian random
sphere with the mean radius equal to unity, a correlation function of logradius
represented by single Legendre polynomials with degrees [ = 2 to 5 (oscillation
with degrees 0 and 1 are physically unrealistic), and o = 0.1. In Paper III, random
oscillations were replaced by oscillations of single-mode spherical harmonics with
sinusoidal time dependence. The size-dependent amplitudes for different modes
were derived from the axis ratio data given in Beard and Kubesh (1991), Kubesh
and Beard (1993), and Andsager et al. (1999).

Strictly speaking, neither paper adopts truly realistic particle shapes. As
explained in Paper II, a randomly oscillating shape is not physical and cannot
be used to model, e.g., evolution of drop shape, but it can be considered quite
reasonable as a first approximation for light scattering studies. The oscillation
scheme adapted in Paper III is more realistic and more physical, but it is still not
exactly physical because the volume and thus the mass of a drop is not exactly
constant while the drop oscillates. However, both papers adapt drop shapes that
are quite relevant for the studies carried out. For example, the volume of drops
could be kept constant by renormalizing the mean radius for each drop, but in
the absence of absorption, this would have very little effect on the scattering pat-
tern. The random oscillations, in turn, can be considered to model multiple-mode
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oscillations. It is not uncommon for raindrops to have multiple-mode oscillations
(e.g., compare Fig. 1 of Nelson and Gokhale (1972) with Plate 13 of Pruppacher
and Klett (1997)).

In Paper II, scattering properties of the non-oscillating equilibrium shape
were studied, and compared with scattering by randomly oscillating raindrops.
The study was confined to two distinct sizes. In Paper III, a different shape
model was used, and size distributions were introduced. For the size distribution
simulations, a size-dependent oscillation scheme was implemented. In addition,
the time dependence of scattering by a single oscillating raindrop was briefly
studied.

Papers II and III revealed that the most pronounced features in the scattering
patterns resulted from the equilibrium shape. In addition, single-mode oscillations
introduced some new features which were also different for different modes. The
random oscillations, on the other hand, smoothed away features. This is consistent
with the results in Paper 1. Interestingly, such smoothing was not evident even for
a collection of differently oscillating drops, as long as each drop was oscillating in
a single mode. In principle, then, the angular dependence of scattering could be
used to study raindrop oscillations if each raindrop oscillates only in a single mode.
It was also found that the asymmetry parameter ¢ is smaller for nonspherical than
for spherical drops except for equilibrium drops in some orientations, and both
the random oscillations and the single-mode oscillations decreased g.

One interesting finding was the existence of previously undocumented rain-
bow type, the so-called 90° rainbow, arising from the nonsphericity of the equilib-
rium shape. As discussed in van de Hulst (1981), ordinary rainbow phenomena,
and indeed, even their explanations (apart from minor details), have been known
for almost 200 years. Thus, the 90° rainbow, if it could be seen in nature, might
be the first new rainbow phenomenon in a very long time. This phenomenon can
only be seen for some angles of incidence, but it is sufficiently intense to be seen
also in the orientation-averaged scattering patterns. Interestingly, it can be seen
in Fig. 3 of Macke and Grofklaus (1998), but it has not been identified as an
independent phenomenon, because Macke and Grofklaus confined themselves to
randomly oriented drops and thus to azimuthally averaged scattering patterns.
The 90° rainbow, unfortunately, turned out to be strongly size dependent; this
and the tendency of large, sufficiently flattened drops to oscillate make it unlikely
to see this phenomenon in nature. On the other hand, instantaneous size distri-
butions are clearly more monodisperse than the averaged distributions, so some
rare conditions might allow the phenomenon to be seen.

Different size distributions resulted in a similar kind of smoothing in scatter-
ing patterns, indicating that the particle size distribution would be very difficult to
retrieve from the angle dependence of scattering. The same result, in the absence
of oscillations, was found by Macke and Grofklaus (1998). The time dependence
of scattering was found to be strong and should be taken into account in mea-
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surements. If time-dependent measurements can be carried out with sufficient
resolution, this can be used to obtain more information.

Finally, the scattering patterns for spherical and even weakly deformed drops
were found to be clearly different; the most obvious effect is the dependence on
the azimuthal scattering angle ¢, and the increased number of non-zero scattering
matrix elements for oriented nonspherical drops. In addition, there is a clear
difference in the polarization characteristics of features. This results from the
total internal reflection which can take place only in nonspherical shapes.

The evaluation of the performance of different oscillation schemes is limited,
because the results cannot be compared with measured scattering matrices and
because somewhat different aspects were studied in Papers IT and III. In addition,
one of the smoothing processes, the raindrop canting (variation of drop orienta-
tion), is excluded in Paper III, whereas in the random-oscillation simulations it
is mimicked by random oscillations. Nevertheless, it appears that the random
oscillation scheme is a good approximation for raindrop oscillations mainly in
the case of multiple-mode oscillations. However, usefulness of the random oscil-
lation approach increases when integrated scattering properties are considered:
azimuthally averaged scattering matrix elements are more usable than the whole
47 elements, and the asymmetry parameter more usable than either azimuthally
averaged or the whole 47 elements.

The results of both Paper II and III clearly show that the assumption of spher-
ical shape for raindrops can result in large errors, and accordingly, raindrop shape
effects should also be considered in optical applications. Most importantly, the
error caused by assuming spherical drops is systematic in the sense that spherical
drops are considerably more forward scattering than nonspherical drops, except
in few special cases.

3.2 MICROWAVE BACKSCATTERING BY GRAUPEL AND HAIL

Microwave backscattering by ice particles of interest was modeled using the second-
order perturbation series approximation. This method can handle rather complex
particle shapes, as long as they can be considered nearly spherical, i.e., the de-
viation from sphericity can be considered a minor perturbation. Thus, rather
realistic particle shapes could be used and the shape effects studied in a way
different from the previous studies. In addition, this method solves the ensemble-
averaged scattering properties analytically; this is a major advantage, as they are
what a radar usually measures, and ensemble averaging afterwards is typically
a very slow process. The model particle shapes were described using Gaussian
random spheres, sufficiently modified to be applicable to the perturbation model.
The size variation due to random deformation was minimized by modifying the
applied modified Gaussian correlation function properly. This was necessary be-
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cause scattering cross sections are strong functions of size for size parameters as
small as those considered here. The handling of composition and internal struc-
ture required additional modeling, as these factors cannot be explicitly taken into
account by the perturbation method used. Thus, we applied effective-medium
approximations (EMA) to replace inhomogeneous material with an equivalent ho-
mogeneous material with an effective (relative) refractive index meg (see, e.g.,
Sihvola, 1989; Chylek et al., 2000). The value of m.y depended on the relative
amounts of ice, air, and liquid water, the shape of liquid water inclusions (spherical
pockets, layered around air bubbles, or needle-like capillarities), and the mixing
assumed for the constituents (controlled by the mixing rule used). Thus, the
composition and internal structure were interconnected.

Light scattering simulations were carried out at 5.6 GHz (A = 5.3 c¢m), cor-
responding to the wavelength of Tuulia, the Doppler radar of the Department of
Meteorology (presently: Division of Atmospheric Sciences, Department of Physi-
cal Sciences), University of Helsinki. In theory, free parameters in the systematic
simulations were a, o, I', and m.g. In practice, m.y was an auxiliary parameter,
computed for the given combination of composition, internal structure, and mix-
ing. Particle sizes ranged from a = 0.5 to 4 mm, corresponding to size parameters
x = 0.059-0.47. Shape was varied using the values 20° and 40° for I' and the
values of 0.05 and 0.1 for ¢, thus confining to sufficiently small deformations so
that the perturbation series approximation would hold. The volume fraction of
liquid water varied in a range of 0 to 20 vol% and the volume fraction of air in
a range of 0 to 40 vol%. However, when the volume fraction of air was varied,
the volume fraction of liquid water was kept in constant 0 vol%, and when the
amount of liquid water was varied, the air content was kept constant at 10 vol%.

Unlike in the other papers of this thesis, the angular dependence of scattering
was not studied. Instead, having radar applications in mind, the study was re-
stricted to backscattering. The quantities of interest were the co- and depolarized
backscattering cross sections ocop and opgp, and the linear depolarization ratio
LDR which is simply the ratio opgp/ocop in the case of a collection of randomly
oriented particles and backscattering direction.

When particle shapes were varied in the range given above, it was found
that ocop was within about 20% of the Lorenz-Mie solution for the corresponding
mean radius and within 10% of the Lorenz-Mie solution for the corresponding
equivalent-volume distribution. Backscattering was stronger for deformed shapes,
with few exceptions. For deformed shapes, opgrp increased about fourfold when o
was doubled. This holds at least in the range of ¢ = 0.025 to 0.1. The dependence
on I" was, on the other hand, more complex and this is one of the key results of this
paper. It turned out that particles with the most elongated shapes produced the
largest opgp, whereas more complex deformations decreased opgp. Thus, opgp
(and, accordingly, LDR) are most sensitive to the elongation of particle shape,
whereas smaller-scale irregularities appear to be of secondary importance. This is
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surprising, as depolarization is traditionally considered a good measure for non-
sphericity. This result illustrates the importance of sophisticated shape modeling
even for small size parameters, especially when polarization quantities are stud-
ied. It also indicates that simplified shapes such as spheroids or general ellipsoids
might be surprisingly usable for modeling microwave backscattering by ice parti-
cles with small size parameter. For spheroids, there are very efficient scattering
methods available (separation of variables, the T-matrix method), whereas for el-
lipsoids similar methods are still under development. With small size parameters
the Rayleigh-ellipsoid approximation (Battaglia et al., 1999) can be used.

The qualitative effect of refractive index on scattering can be well approxi-
mated by the Rayleigh theory: scattering strengthens with increasing | —1|. As
liquid water content affects m most, it is also a dominating factor for scattering:
Indeed, for ocop, an introduction of 20 vol% of liquid water into moisture-free
particles increased scattering by a factor of 2-4 (depending on other parameters),
and for opgp by a factor of 4.5-15. The air content and the shape of liquid water
inclusions were also important factors, although clearly less important than the
amount of liquid water. The mixing assumption typically had rather little effect.

It is emphasized that these results apply only to the parameter values indi-
cated above and should not be extrapolated to, e.g., higher liquid water or air
contents, larger size parameters, or more nonspherical shapes. For example, there
are often much larger ice particles in the atmosphere than those studied here, and
there are radars that use significantly shorter wavelength than that of Tuulia. In
such cases, the results given here may not be applicable even qualitatively. In
addition, the results do not apply to cases with a pronounced liquid water coat-
ing on the particle, such as strongly melted particles. Nevertheless, it is obvious
that the shape effects need to be taken properly into account when polarization
quantities are considered. For co-polarized backscattering, the shape effects are
generally too small to affect measurements significantly: the inherent inaccuracy
of radar measurements is too large.

3.3 SCATTERING OF VISIBLE LIGHT BY SAHARAN MINERAL PAR-
TICLES

In Paper V, continuing the preliminary work presented in Nousiainen et al. (1995),
the light scattering properties of large mineral particles were studied by compar-
ing light scattering simulations with a scattering matrix of a sample of Saharan
mineral particles measured in laboratory by Volten et al. (2001). In the sample,
the particle sizes vary from about 80 nm to 180 um in radius and the size param-
eter varies in a range of 1.1 to 2560 at A = 441.6 nm. The study, however, was
restricted to particles a > 2 pym (z > 28) as the light scattering method adapted
would have not worked for smaller particles, and the restriction to a single method
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simplified the work significantly. In addition, Volten et al. had already shown that
ray optics, which can handle complex shapes, can be made to fit the scattering
matrix measured better than any other method in previously published studies.
The availability of measurement data allowed for a rough derivation of some phys-
ical parameters for Saharan particles as an inverse light scattering problem, but
the results have to be considered preliminary: the measurements include a con-
tribution from small particles that was not taken into account in the simulations,
so the results are subject to some (unknown) uncertainty.

Unlike raindrops, mineral aerosol particles are clearly absorbing at visible
wavelengths. For particles with a large size parameter, this means that scattering
is dominated by surface reflection. Because surface reflection from a collection
of randomly oriented convex scatterers is independent of particle shape (van de
Hulst, 1981), it could be expected that the shape is of less importance than, e.g.,
in the case of raindrops, although there are concavities in natural mineral parti-
cles. Indeed, ray-optics simulations confirmed this: particles with Im(m)z 2 0.7
scattered light very similarly; this corresponds to particles about 5 pm in radius,
if Im(m) = 0.01 derived from d’Almeida et al. (1991) for A = 441.6 nm is applied.
Actually, Mishchenko et al. (1997) show that the same seems to hold even for
particles with a relatively small size parameter (the size parameter corresponding
to the effective radius of the size distribution in their 7-matrix simulations was
Tey = 8.4), in which case surface reflection cannot be considered an independent
process. This result speaks for the applicability of ray optics for surprisingly small
size parameters in situations when scattering is dominated by surface reflection.

In order to take the particle shapes into account properly, a tentative shape
analysis was carried out to derive the shape statistics of natural mineral particles.
The results of this analysis are interesting in themselves, as they indicate that
the shapes of natural mineral particles resemble statistically those of asteroids
(Muinonen and Lagerros, 1998) or, indeed, the (gravitational) shape of Earth
(Kaula, 1968). It seems that there is something very general in shapes of natural
irregular objects.

Simulations with traditional (Fresnelian) ray-optics model showed that real-
istically shaped particles results in scattering with too strong linear polarization
and too weak depolarization compared with measurements, even if Im(m) was
decreased considerably from the literature values. Good fits with measurements
required the use of a very spiky shape (see also Volten et al., 2001; Nousiainen
and Muinonen, 2002). This indicated that Fresnelian surface reflection does not
work well for natural mineral particles, i.e., natural mineral particles reflect light
more diffusely. Thus, an ad hoc simple Lambertian scheme was introduced to
study the importance of small-scale surface irregularity on scattering. Similarly,
a Lambertian scheme was devised to mimic internal structure. When slightly
inhomogeneous model particles with a partially Lambertian surface were used, re-
alistic shapes could be used to obtain a very good agreement between simulations
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and measurements, although this required decreasing Im(m) somewhat below the
value derived from d’Almeida et al. (1991). If Im(m) was not decreased, equally
good fits were obtained, but only when using both Lambertian schemes and spiky
shapes. The Lambertian surface elements appeared more important than the
internal screens for good fits. This is easy to understand, considering the absorp-
tivity of particles and the resulting dominance of surface reflection on scattering.
It is emphasized, however, that internal screens alone also improved fits.

Simulations with a Lorenz-Mie model, on the other hand, showed clearly that
the assumption of spherical, homogeneous particles is quite dangerous in the case
of natural mineral particles. Even the phase function was in error, and the po-
larization characteristics were quite different from measurements. It appears that
the Lorenz-Mie theory is not sufficiently accurate even for those small particles
in the size distribution that could not be modeled using the ray-optics model.
The use of Lorenz-Mie theory is especially dangerous with nadir-looking satel-
lite instruments, because they generally measure scattering at angles larger than
f; > 90°, for which the Lorenz-Mie theory gives scattering that can be an order
of magnitude in error.

Radiative transfer simulations were used to illustrate the effect of sophis-
ticated single-scattering modeling by comparing results obtained using simple
Lorenz-Mie theory to those obtained by using the ray-optics model. Although
the test case is dominated by absorption rather than scattering, and the molecu-
lar Rayleigh scattering is very strong at the wavelength used, it was shown that
both the particle nonsphericity and the value of Im(m) are important for correct
results. Further, it is noted that the values of Im(m) for natural atmospheric
mineral particles are often measured by using simplified scattering models (see,
e.g., Dubovik et al., 2002). Considering the results given here, it is questionable
how accurate values can thus be obtained.

It is obvious that when large objects like rocks are considered, accurate scat-
tering modeling requires a proper handling of the surface texture. For example, a
glass object can be turned from transparent to white (diffuse scatterer) by rough-
ening its surface properly. While this does not change the global shape of the
object, it has a profound effect on scattering. For example, as shown in Paper II,
a spherical water drop with large size parameter has an asymmetry parameter
of 0.89, whereas for a corresponding perfect “white particle” it is 0.28 (computed
from van de Hulst, 1981). While there are no perfect white particles in nature,
this example illustrates well the potential impact of surface texture on scatter-
ing. The results of Paper V strongly indicate this applies to surprisingly small
particles, perhaps even those somewhat below the ray-optics domain. At the
same time, it appears that roughening the surface decreases the importance of
the large-scale shape on scattering (Nousiainen and Muinonen, 2002). Due to
the uncertainties involved, nothing can be said for sure at this point, but if this
indeed is true, then the implications are clear: one must use a method that can
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handle surface irregularity to get accurate results for scatterers with rough surface
and large size parameter. It appears that a simple Lambertian modification can
be used to improve the performance of ray optics, but the goodness of this ap-
proximation cannot be established at this point. It requires a physically rigorous
scattering method for comparison, scattering measurements in which all scatterers
are well inside the ray-optics domain, or, in case the measurements include also
small particles, a proper handling of the small-particle part. The last option is
uncomfortable, as one then has to deal with uncertainties involved in, at least,
two different methods, without a possibility to study them independently. If it
turns out that a more accurate, or a physically more rigorous replacement for the
Lambertian modification is needed, it could be based on an approximate mul-
tiple scattering treatment within each particle, accounting also for phase effects
(see e.g. Muinonen, 2002a). Obviously, such an approach would be quite time
consuming. Alternatively, one might model the reflection using, e.g., an infinite
plane surface with small scatterers close to it (Muinonen, 1990; Videen, 1992; Er-
mutlu et al., 1995). It is also noted that the introduction of a modified Kirchhoff
approximation for ROA (Muinonen, 1989) reduces polarization especially for the
smallest particles in the ray-optics domain. However, a computationally feasible
approach introduced here may be of great value in many practical applications.

It is emphasized that the modified ray-optics approach introduced here is not
yet ready for general applications, as measured scattering matrices are needed to
set values for the Lambertian parameters. The performance of the modified ray-
optics model seems impressive, but more work is needed. In addition, before
the method can be used for atmospheric applications, it must be combined with
another method to handle the particles too small for ray optics. If a method
can be developed that can describe scattering by irregular mineral particles of
arbitrary size as accurately as is shown in the best fits of Paper V without a need
to use measurements in fixing the free parameters, it will have a profound impact
on remote sensing applications dealing with natural mineral particles.
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4 DISCUSSION

In this thesis, the importance of sophisticated single-scattering modeling in an
example set of atmospheric scattering problems are studied. This is an important
topic, as too simplified scattering models are often used in meteorology and in
other fields of applied physics.

The results of this thesis are in agreement with previous studies showing that
the use of too simple a scattering method can introduce large errors in scattering
properties, and that polarimetric quantities respond differently and often more
sensibly to the particle shape than the intensity does. Thus, whenever polarimetry
is involved, one should pay special attention to scattering modeling. In addition,
the results show that sophisticated modeling is important both at small and large
size parameters. There is a clear indication that, at least in the case of ensemble-
averaged scattering properties of irregular particles, the importance of shape on
scattering increases with increasing size parameter, until at sufficiently large values
the surface texture becomes the dominating factor, provided that the surface is
not smooth and featureless. Apparently, this dominance can be sufficiently strong
to make scattering considerably insensitive to the large-scale shape.

The angular dependence of scattering is only considered in the case of large
size parameters, but to some extend, the results may apply also to smaller parti-
cles. As shown in Papers I-1II (and a number of previous studies), nonspherically
shaped particles with large size parameter generally have asymmetry parameters
smaller than the corresponding spherical particles. Thus, assuming a spherical
shape for scatterers will likely cause a systematic error when estimating the flux
of scattered energy. This is especially important to take into account in radiative
transfer applications. In addition, it appears that the effect of size distributions
on scattering is practically purely that of smoothing. This makes it very difficult
to retrieve size distributions from the angular dependence of scattering. There
are also other apparently systematic effects in scattering as the nonsphericity of
particles increases; for details, see Papers I and II. The forward scattering direc-
tion appears to be clearly less sensitive to detailed particle properties than other
directions. In ray-optics, the forward scattering is dominated by diffraction which,
in a first place, does not depend on the particle material or the internal structure.
However, it seems that even the geometric optics part is insensitive to particle
shape at forward-scattering angles. In general, it seems that the refractive index
affects scattering in all angles, but the shape affects mainly side- and backscatter-
ing. There is one notable exception to this rule: in Paper III the time-dependence
of scattering resulting from the time-dependent shape showed some variation in
the scattering pattern in the forward direction. This implies that this rule is more
valid for irregular than for regular shapes, and is probably due to the absence of
focal effects in ensembles of irregular shapes.
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The inhomogeneity of particles is considered in Papers IV and V. In Pa-
per 1V, it affects scattering indirectly by modifying the effective refractive index
and is thus subject to the assumption that effective-medium approximations can
be safely used. In Paper V, the inhomogeneity is modeled using an ad hoc simple
Lambertian idealization. Thus, neither of these papers directly model inhomo-
geneity, and neither study systematically the importance of the inhomogeneity
for accurate scattering modeling. In Paper IV different assumptions about inter-
nal structure and composition lead to quite different scattering. The results in
Paper V indicate that the inhomogeneity would be of secondary importance, but
in this case scattering is dominated by surface reflection so the result should not
be generalized. In addition, the internal inhomogeneity alone can also be used to
increase the agreement between measurements and simulations in Paper V. This
can be qualitatively seen in Fig. 6 of Paper V: decreasing the free path length
inside particles drives the phase-matrix elements closer to the measured values
(shown, e.g., in Fig. 3 of Paper V). It is also noted that in the case of absorbing
particles the exclusion of internal inhomogeneity can bias the single-scattering
albedo, especially for particles with a large size parameter. Inhomogeneities can
scatter a part of the radiation that is refracted inside the particle back towards
the surface before it is significantly absorbed, resulting in higher single-scattering
albedos for internally inhomogeneous particles.

Accurate single-scattering modeling is especially important in inverse prob-
lems. First, due to nonlinearities, they can respond to small differences in scat-
tering patterns quite unpredictably. Second, polarization characteristics, which
are more sensitive to details, provide additional independent information; this is
of special importance in inversion problems. In this thesis, inverse light scatter-
ing approaches have not been given much weight; the main focus has been in
the direct scattering problem. However, the direct problem has been considered
keeping in mind the inversion applications. As light scattering simulations have
been compared with real measurements only in Paper V, any inversion would have
been irrelevant in other papers. In Paper V, rough inversion is carried out: the
imaginary index of particles and the values for the Lambertian parameters are
estimated by fitting the simulations to measurements.

The lack of general, exact, and efficient solution to a scattering problem means
that there is going to be a continuous need for simplifications in future. Indeed,
the very concept of modeling means simplified representation of reality. There are
two basic approaches that can be taken: one can either simplify the scattering
problem or the method used to solve it. The former includes, e.g., assuming
idealized shapes for scatterers, while the latter corresponds to using approximative
solutions such as a perturbation series approximation or neglecting some physics,
e.g., not accounting for phase effects, or applying empirical scattering laws. When,
what, and how much to simplify are key questions, but do not have simple answers.
One could say that the art of scattering modeling, like all modeling, is largely
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an art of proper simplification. Not only is it often difficult to estimate which
approach provides the most accurate results for a given scattering problem, but
one also usually has quite limited computational resources, and thus, may not be
able to use the most accurate approach but rather the most cost-effective one. In
addition, if scattering computations are carried out for an external application,
the application itself may set some extra constraints. For example, most radiative
transfer models cannot handle oriented scatterers. Finally, there is the issue of how
much is known about scatterers. The more detailed scattering modeling is carried
out, the more information on the scatterers is required, or more assumptions about
the details need to be made.

Bearing in mind these facts, some guidelines for the single-scattering modeling
are suggested:

e The larger the size parameter, the more important small details are. For
example, Paper IV indicates that in the case of small size parameter, de-
polarized backscattering is well modeled using correctly elongated particles,
whereas Paper V indicates that in the case of large size parameter even a
correct global shape may not be sufficient but the surface texture needs also
be taken into account properly.

e When irregular natural particles are considered, a statistical particle model
is strongly suggested. This decreases the amount of information needed for
scatterers, makes it easier to control the properties of model particles, and
decreases a risk of artificial scattering features such as caustics (e.g. haloes
and rainbows). Naturally, the statistical model used should be appropriate
for the objects modeled, i.e., Gaussian random spheres should not be used
for hexagonal ice crystals.

e Even small deviations from a symmetrical shape can be important, especially
in the case of large size parameter. On the other hand, differently irregular
shapes often scatter light rather similarly. Thus, in the case of irregular
particles, it is often better to use wrongly (but reasonably) irregular shapes
than to assume a symmetric shape.

e Integration tends to compensate errors, so integrated quantities are often
rather insensitive to simplifications. However, the errors introduced by sim-
plifications in particle shapes are usually systematic. Thus, even if only
integrated quantities are needed, sophisticated modeling may be quite im-
portant.

e Scattering patterns can be quite dependent on the orientation, but on the
other hand, the use of non-random orientation makes single-scattering mod-
eling much more laborious and complicated.
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e There are few methods which can apply to wide parameter ranges, such
as to a wide wavelength range or a wide size distribution. This can cause
additional problems, especially if methods with different kind of assumptions
are used.

Considering future research, it is apparent that some projects in this thesis
could and should be continued, while others represent more or less completed
cases. For example, modeling scattering of visible light by raindrops mainly re-
quires more data on raindrop shape and its variations, whereas there appears to
be little need for developing the scattering model further. On the other hand,
Paper V appears more like an introduction to a new way of handling scattering
by natural mineral particles. Whether or not a ray optics augmented with Lam-
bertian schemes is the best way of doing it (even cost-effectively) remains to be
seen, but it is clear that more work is needed especially with small particles. The
importance of this problem guarantees that more work will be done. Likewise,
the results obtained in Paper IV should be tested also with size distributions.

One intriguing “non-scattering” result given in Paper V is the apparent uni-
versality of shape statistics of natural irregular particles. Considering that from a
light-scattering point of view the exact shape of irregular particles is not as crit-
ical as the irregularity itself, the possibility of generating irregular particles that
have sufficiently accurate shape statistics allows one to devise a universal mineral
particle shape model to be used in scattering simulations. Indeed, it has already
been noticed that many natural particles scatter light similarly, and accordingly,
an average mineral particle scattering matrix has been suggested to be used in
applications (Volten et al., 2001). Along these lines, it appears plausible to use
the power law correlation function used in Paper V as a first approximation when
modeling light scattering by irregularly shaped natural particles. This is espe-
cially reasonable if particle shapes are unknown and cannot be measured, e.g. in
case of extraterrestrial mineral particles.

In order to improve the usefulness and the quality of light scattering mod-
els, it is crucial to have more measured light scattering data with many different
particle classes and size ranges. Both the model development and estimating the
performance of models greatly benefit from available high-quality measurements.
Paper V is a good example how measurements, although not ideal for the work
at hand, can help a model development. The same also holds the other way,
measurements need to be compared with simulations, e.g., to calibrate the equip-
ment and to notice possible problems such as misalignment of optical components.
In addition, computer models can be used to map the most useful measurement
arrangements and the quantities one should pay special attention to.
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A ERRATA
e In Paper I, Eq. (11) should read:

2 1
Cs(y) = exp (_1_2 sin? —fy)

e In Paper II, page 648, Fig. 1, vectors e; and e, are erroneously indicated
as components parallel and perpendicular to the scattering plane, when in
fact they refer to the reference spherical coordinate system and should be
written ey and ey, respectively. The results are not affected.

e In Paper III, page 794, 17th line below Eq. (20), the maximum amplitude
of Ay should be 0.05.

e In Paper IV, page 649, 9th line from the bottom: 0.0059 should be 0.059.
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