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Abstract

There have been several different definitions for a time dependent spectrum. They are
all based on various integrals over two time averages of certain operators. In paper I
we show a new method to determine the spectrum of a radiation field. The method
is closely related to a realistic spectrum measurement. The radiation we want to
analyze is directed into a kind of spectrum detector which consists of two-level atoms.
The radiation interacts with the detector and the spectrum can be read from the
quantum mechanical state of the detector. The two time averages used normally in the
determination of the spectrum are not needed. In paper I the method is applied to the
resonance fluorescence radiation of a laser-driven three-level atom and the spectrum
obtained is compared to the one calculated with traditional definitions. In paper V we
show that the same method can be used to detect the local mode spectrum.

In paper II we study the time evolution of a trapped electron inside an electromag-
netic trap. We use a phenomenological model for the dynamics. The electron moves in
a harmonic potential. The depth of the potential depends on the spin direction, which
changes stochastically. The ensemble density matrix is seen to approach a thermal-like
state.

In papers III and VI we present the results of simulations in a one-dimensional
cavity. Inside the cavity there are many two-level atoms. We have studied the atomic
decay near the mirrors and inside a crystal built of two-level atoms. In paper IV we
extend the one-dimensional simulations of papers III, V and VI to two dimensions. We
show that using two level atoms it is possible to build mirrors and beam splitters for the
radiation. Several layers of atoms which are exactly on resonance with the radiation
form a mirror. One layer of off-resonant atoms is a beam splitter. It is possible to build
complicated optical networks using quantum mechanical mirrors and beam splitters.
Using mirrors it is possible to build closed cavities of arbitrary shape. It is also possible
to use moving atoms which allows moving mirrors and beam splitters to be built.
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1 Introduction

It is an experimental fact that white light can be divided into light of different colors
with prisms. Mathematically white light is composed of light with several different
wave lengths. It has turned out to be difficult to give a good mathematical definition
of a spectrum. Almost all quantum mechanical definitions are Fourier transforms over
two time correlation functions. The natural spectrum is, of course, time dependent.
The usual method to include time dependence into the theoretical definitions has been
to restrict the correlations taken into account. It can be argued that this is because
every realistic spectrum detector has a filling time which restricts the accuracy of
the measurement. However, it is not obvious why spectrum detectors should detect
something which is related to two time averages. In papers I and V we develop a model
for a spectrum detector. The radiation we want to analyze is directed onto a group
of two-level atoms. The atoms have very small line widths. Only radiation which is
exactly on resonance can excite them. The excitation probability is proportional to
the intensity. When the excitation is measured with atoms with different resonance
frequencies, we can interpret the excitation as a function of frequency and time as
a time dependent spectrum. In paper I the method is used to determine the time
dependent spectrum of a laser-driven three-level atom. The method is shown to give
the same spectrum as the one calculated using two time averages. In paper V we use
the method in one-dimensional cavity QED simulations and compare the results to the
local mode spectrum obtained by filtered spatial correlation functions.

Mirrors and beam splitters are usually treated as classical objects which interact
with light. They are modelled by a 2x2 matrix which operates on the two input ports
and directs the modified beams to the outputs. Usually the canonical quantization
of the field is done in free space with periodic boundary conditions. It is possible to
do this in the presence of mirrors. The first thing to do is to determine the modes
of the system. The mirrors are included by using appropriate boundary conditions.
It is possible to do the same with beam splitters using more complicated boundary
conditions. After the modes have been calculated, the coefficients in the field expansion
should be interpreted as operators instead of complex numbers as in the quantization
of a free field. However, this approach is difficult, especially if the mirror and beam
splitter configuration is complicated. Even more difficult is to quantize the system if
the mirrors and beam splitters are moving. In that case the mode functions are time
dependent.

We have been able to treat mirrors and beam splitters in some special cases. We
consider many two-level atoms inside a two-dimensional cavity. The state vector of the



system is restricted to have only a single excitation. The interaction between the field
and the atoms is of the Jaynes-Cummings form, which guarantees that the state vector
preserves its single excitation form. In paper IV we show that it is possible to build
beam splitters and mirrors using two-level atoms with appropriate parameters. Several
layers of atoms form a mirror if the distance between the atoms is small enough, the
dipole coupling with the field is strong enough and the atoms are on resonance with the
incoming radiation. Similarly one layer of off-resonant atoms forms a beam splitter.
Both components may have an arbitrary shape. We have used plane, parabolic and
closed circular mirrors.

Special numerical techniques to integrate the time evolution have been developed.
A very important point is that it is possible to utilize the Fast Fourier Transform
(FFT) in the integration. This makes some simulations orders of magnitudes faster.
Because of FFT it is possible to include thousands, maybe tens of thousands, of atoms
in the simulations. This allows us to build complicated mirror and beam splitter
configurations used in real experiments. It is also possible to use moving atoms.

In these simulations, the whole system is in a quantum mechanical state. The
difficult calculation of the mode functions, which would be needed if the mirrors and
beam splitters would be treated classically, is not needed. The main limitation of the
simulations is that the field strength is restricted to one photon only.

It is possible to trap a single electron using magnetic field and laser light. It can be
shown that the electron experiences a harmonic potential inside the trap. The depth of
the potential is determined by the direction of the spin of the electron. The direction of
the spin changes stochastically. In paper II we study the time evolution of an electron
inside a trap. The initial state in the simulations is a pure state. The ensemble state
of the electron is seen to lose coherence at greater time values.

In paper III we study the decay of a two-level atom inside a dielectric material.
The dielectric material is modelled using different configurations of two-level atoms.
The general result is that the decay is slower than the free space decay. In paper VI
we study the scattering of the photon on an atom in one dimension. The photon has
various different initial states. The state of the field is seen to have a significant effect
on the atomic excitation.



2 Canonical quantization of the field

2.1 A free field

In the 19th century J. C. Maxwell was able to explain several phenomena related to
electric charges and electric and magnetic fields. He introduced the equations [1]

VxErt) = —5Br1), (1)
V x B(r,t) = %%E(r,t), (2)
V. E(r,t) = eﬁ (3)
V. B(r,t) = 0. (4)

These equations determine the time evolution of electric E and magnetic B fields if
boundary conditions including the charge distribution o are known. The same equa-
tions can be used to describe also quantum fields if the electric and magnetic vectors
are interpreted as operators. The quantization of the field was first done by P. A. M.
Dirac in 1927 [2, 3].

In the quantization process in free space (¢ = 0), the field is imagined to be
enclosed inside a box of length L. The values of the coordinates are restricted to
—% <uzy,z> % The usual choice is to use periodic boundary conditions (PBC) and
plane wave basis functions e**. Naturally the boundary conditions are not physical
but they can be used if the nonzero field is concentrated near the origin. The E and
B fields can be expanded using the basis functions as [4, 5, 6, 7]

) 1 ho\Y? "

et = gL () a0 e ©)
~ 1 hwks 1/2 R i(ker—w

B(r,t) = L3/2z<2€0> [idnes (0)ereae™ ™™ 4 hc ] (6)

The crucial point in the quantization process is to interpret the dimensionless coef-
ficients of the basis functions as creation a;., and annihilation ay, operators introduced
in the quantization of a harmonic oscillator. The operators obey the commutation

relations



[dksvdLs/] - 5kk’5ss’7 (7)

[&km&k’s’] - [&I{wdl]:’s’]zo'

For the electric and magnetic field operators at a specific time we get, using equations
(5)-(7), the commutation relations

[E:z(rh t), E:( t)) = 0, (8)
[Bi(r1,t), Bj(re, t)] = 0, (9)
. . RN

[Ei(rh t), Bj(I'Q,t)] = E Eeiﬂ%(S (I‘l — I'Q). (10)

The Hamiltonian for the free field is the integral of the energy density over the quan-
tization volume

i = /dgr[—eEQ( )+2%0B2( £) (11)
= Zhwks(dksaker%), (12)

ks

where the orthogonality of the basis functions is used. The formulation where the time
evolution of the system is included in the operators is called the Heisenberg picture
and is formally quite similar to the classical equations. In the Heisenberg picture the
equation of motion for operators is

3A P

where the Hamiltonian is given by the equation (11). For electric and magnetic fields
using the commutators (8)-(10) we get exactly Maxwell’s equations (1) and (2).

For a quantum mechanical system, all knowledge of a particle can be described by
the quantum mechanical state vector |¥). The time evolution of a state is given by
the Schrodinger equation

L)

5 = H|V). (14)



The same approach can be used for the field. The field is expanded using basis states
which are tensor products of single mode Fock-states

{n}) = l;[ ) (15)

The general state of the field can be written as

) =3 egl{n}) (16)
{n}
where cg,,) are coefficients of the basis vectors. The equation of motion for the field is
the same as in the single particle case (14), and the Hamiltonian is given by equation
(11).

The equations of motion for a field are easy to write down but for a realistic fields
almost impossible to solve directly. The difficulty is that the basis states with nonzero
coefficients are enormously numerous, and in computer simulations demand a lot of
memory. The weakness of the periodic mode functions e’*7 is that they are delocal-
ized over the whole cavity. Almost all realistic fields are more localized so a basis
with a localized spatial energy density distribution and a finite width of its frequency
distribution would be better.

2.2 An interacting field

So far we have considered the field in free space. Next we add an atomic Hamiltonian
H 4 and an interaction between the atoms and the field. The detailed form of H A
depends on the nature of the atomic part. There are several alternatives for deriving
the interaction between the matter and the field. One approach is to use the minimal
substitution. The momentum of the atomic Hamiltonian is replaced by the kinetic
momentum

p— P —eA(r,1), (17)

where A(r,t) is the vector potential of the field and —e is the charge of the electron.
This gives, if the field is weak enough, the interaction Hamiltonian within the dipole
approximation [4, 5]

Hi(t) = ——p(t) - Alro. ). (18)

The vector potential is evaluated at the position of the atom. The approximation
can be done if the width of the wave function is smaller than the wave length of the



radiation. It is convenient to apply the unitary transform U = exp(—ier - A(ro,t)/h)
to the Hamiltonian Hr + H4. As a result we get for the interaction term

A

H; = — 51 Dl(ro,t). (19)

€0

The dielectric displacement vector operator ]f)(r,t) can in most cases be replaced by
the electric field operator E = é]j

Using the expansion (5) for the electric field and the creation and annihilation
operator form for the position operator we get, after the rotating wave approximation
(RWA), for the interaction Hamiltonian with the two-level atom

Hr = g(12)(L]a +[1)(2[a"), (20)

where g is the coupling constant. In the RWA the terms [2)(1|a’ and |1)(2|a are
neglected. The coupling constant for these terms oscillates very rapidly and for time
scales of interest will have a zero average. In summary, the total Hamiltonian for the
system with atoms can be divided into three parts

ﬁ:[:]F+]:IA+]:II> (21)

where Hp is the field, H 4 the atomic and H; the interaction Hamiltonian.



3 Methods to solve the problem of interacting sys-
tems

The situation described by the Hamiltonian (21) is very typical in quantum optics and
there are several approaches to determine the time evolution of the system. One of the
tradiational approaches is to trace out the field part of the Hilbert space and get an
equation of motion, a master equation, for the atomic part of the system. There are
several possibilities to take the field part into account in the simulations. We have used
excitation expansion where the basis vectors of the field are restricted to have only a
few excitations. Another method would be to use correlation functions to describe the
state of the field.

3.1 Master equations

In the derivation of a master equation, two major approximations must be introduced.
First, the interaction between the atomic and field parts must be weak so that the terms
higher than second order in H; can be neglected. This is the Born approximation. The
second, Markov approximation, demands that the future time evolution of the atomic
part depends only on its present state and not on its state in the past. With these
approximations the master equation takes the form

i aaitA = [H 4, 0] + L[04], (22)
where 04 is the density matrix for the atomic part of the system. The first term on
the right gives the ordinary Hamiltonian time evolution. The second, relaxation term,
gives the decay of energy to the field modes. If the field is in the vacuum state the
usual form of the relaxation term is

Lipa] = 5(20—QAC+ — CLC_p4 — 04CLC), (23)

where [ is the decay constant characteristic of the system. The decay operator C_ can
be 6_, a, |n){m| etc. depending on the atomic part of the system.

In quantum optics master equations of form (22) have been popular. They can be
solved numerically and even analytic solutions to some simple systems are possible.
If the Hilbert space of the atomic system is large, the numerical integration of the
master equation takes a lot of computer memory, because density matrices must be
used. In the beginning of the 1990s a new stochastic Monte Carlo wave function
method was developed to integrate master equations [8, 9, 10, 11]. In this method, the

7



solution of the equation is obtained as an ensemble average of many stochastic time
evolutions called trajectories or Monte Carlo wave functions. If the system has N basis
vectors, only N complex coefficients are needed to represent a quantum state instead
of N? required if density matrices were used. There are several different "unravellings’
depending on how the integration is done. All different methods can be connected to
some measurement scheme [12]. One of the methods [8, 9] divides the time evolution
into ordinary Hamiltonian and stochastic quantum jump parts. Most of the time the
system evolves as determined by an effective atomic Hamiltonian. At random times, the
system undergoes a quantum jump determined by the relaxation part. Typically the
jump is the change of the atomic state from the excited state to the ground state. The
jump can be thought to be a consequence of the detection of the photon emitted by the
atomic part. Thus this jump is connected to a direct photon detection measurement.

This particular method is easy to parallelize, which is important in numerics. It
is interesting to note that quite a similar approach, the quantum diffusion model, was
suggested as early as 1984 by N.Gisin [13]. At that time its benefits for numerical
simulations were not realized.

One weakness of master equations is that the knowledge of the quantum mechanical
state of the emitted field is lost, because the field part of the Hilbert space is traced
out. For example, the spectrum of the radiation must be determined using the time
evolution of the atomic part, not directly from the field state.

3.2 Cascaded master equations

In the master equation (22), a photon radiated by the atom into the modes never comes
back. It is possible to generalize the approach to a case where the radiation or part
of it propagates to another quantum system [14, 15, 16, 17]. The system is shown in
Fig. 1. System A decays to the field modes. Part of this radiation propagates through
the field modes to a separate system B. System B decays to the vacuum. No radiation
propagates from system B back to the system A. The Hamiltonian of the total system
can be written as

]:I:ﬁA‘i‘ﬁB‘i‘ﬁAR‘i‘ﬁBR‘i‘ﬁRa (24)

where H 4 and H p are Hamiltonians for the two systems and H g is the field Hamilto-
nian. The interaction Hamiltonians H4p and Hgp have the form

Hag = ihn/2r4(aE(r;) — h.c.) (25)
Hpr = ihn/2rkp(bEf(ry) — h.c.), (26)

8



(1-p) I,

Laser

Figure 1: A cascaded open system. The system A is driven by a laser. The resonance
fluorescence radiation is divided to two decay channels. The proportion p of the radia-
tion propagates to the quantum system B. The rest of the radiation propagates directly
to the field modes. Radiation from the system B propagates to the reservoir.

where the operators a and b are annihilation operators of the systems A and B, re-
spectively. The interaction with the field is now at two different spatial points r; and
ro. Using methods similar to the derivation of equation (22), it is possible to derive
a master equation i.e. to trace out the field degrees of freedom. As a result we get a
master equation of the familiar form

do

ih— = [Hs, o] + L[], (27)
where
Hs = Hy+ Hp + ihn/rarg(a'b — h.c). (28)

The term L[] is the Lindblad operator
Lloa] = 2C_paCy — CL.C_pa — aC.C_, (29)

9



with the decay operator

C = \/2kai + /2. (30)
Because the decay term (29) has the same form as (23), the stochastic integration
methods described earlier can be used. The difference in the decay constants is due to
the fact that in the latter equation (29) the decay constant is for a cavity mode and in
the former one (23) for the atom.

We have used the method in the first paper to compute the time dependent spec-
trum. In these simulations the radiation emitted from system A is detected by system
B. The spectrum can be read from the quantum mechanical state of the system B. A
detailed explanation is given in section 5.5.

3.3 The excitation expansion

In the derivation of a master equation, the field part of the Hilbert space is traced
out. All information of the state of the field is lost. In our simulations we have used
an approach in which the time evolution of the field is explicitly present. The method
used is an excitation expansion around the vacuum. The basis vectors for the field are
restricted to have only a few excitations. In our simulations we have allowed only a
single excitation. Thus the method can be used only for fields of very small intensity.
For the fields of a single excitation the general state vector has the form

’\I/> = ch|1>k H |O>k/ = ZCk|1k>. (31)
Kk K’ £k Kk
The method is especially useful if the interaction Hamiltonian has the the Jaynes-
Cummings form (20). For such systems, if the initial state has only one excitation, the
number of basis vectors with nonzero components is restricted to a fixed number. If the
field gets additional energy from the outside, this method cannot be used because basis
vectors with higher excitation get nonzero coefficients. The method is restricted to very
small excitation numbers because the number of basis vectors increases exponentially
when the excitation number is increased.

In papers III, IV, V and VI we have also used the method in cases where there are
many two-level atoms in addition to the field. The total number of excitations of basis
vectors is still restricted to one. The general state vector can be written as

¥ = Yot ] |o>k/®ﬁ1 \o>j+g|o>k®§cju>jnro>j/

K/ #k J'#i
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Na
= > ol 0) + > ¢0,1;) (32)
k j=1

where Ny is the number of the atoms. The basis functions |0); and |1); are two internal
states of the j:th atom. The state vector has the same general form at later times,
because of the Jaynes-Cummings interaction.

3.4 The correlation function expansion

One possible method to represent the field state might be to use correlation functions.
The state of the field is determined uniquely if all the normally ordered correlation
functions [4]

PO (1, XN Yars o Y1) = Te[0F O (1) FO) (k) FO () FO(y1)], - (33)
where

1 ~ i(k-x—w
FP(x) = T3 3 Ggeserse’ (34)
ks

are known. The operator F'(7)(x) is the complex conjugate of F*)(x). The time evolu-
tion of the system is determined by coupled partial differential equations for correlation
functions. For many realistic fields the first few correlations determine the field state
uniquely.

Mathematically the equations of motion for the correlation functions are partial
differential equations for functions of several variables. In computer simulations, the
crucial point is how the functions can be represented using as little memory as possible.
Thus the model demands that effective compression methods are used. There are many
possibilities to compress smooth functions using as little memory as possible. One
fashionable alternative is a wavelet expansion [18, 19, 20] for the functions. In order to
use the method it is not necessary to determine the modes of the system. They will be
implicitly taken into account in the boundary conditions of the differential equations.
The method can also be used in the case when the field is coupled to atoms.

11



4 The stochastic harmonic oscillator

It is possible to build traps for atoms using laser light and magnetic fields. A very
active field in physics is to study the properties of the atoms inside the trap. One of
the greatest achievements has been the cooling of atoms to such low temperatures that
a macroscopic number of atoms are in the motional ground state of the trap. Then the
bosonic atoms can form a Bose-Einstein condensate [21, 22, 23, 24, 25, 26, 27, 28].

Long before the condensate research, H. Dehmelt et al. were able to trap a single
electron into a magnetic trap [29, 30, 31]. They used the Penning trap [31, 32]. In
this trap an electron experiences a parabolic potential. When the electron oscillates in
the trap, the frequency of the oscillation depends on the direction of the electron spin.
The spin can have two different values, so the frequency jumps between two different
constant values. In this respect, the spin behaves like a classical observable and always
has a definite value. It is possible to detect the oscillation frequency using a small coil.
The coil is placed close to the oscillating electron, which induces a current into the
wire. It is possible to determine the oscillation frequency by analyzing the changes in
the current [33].

Because the direction of the spin can be detected continuously, the measurement
is called a continuous Stern-Gerlach experiment. The times when the spin changes
direction are random. Using lasers it is possible to induce different transitions between
the quantum states. Using trasition rates of spin flips it is possible to determine the
energy differences between different states extremely accurately. The magnetic moment
of an electron g. can be determined using this data. Using quantum electrodynamics
(QED) it is also possible to calculate the constant g.. The calculated value agrees
with the measured one amazingly well. H. Dehmelt was honored by the Nobel prize in
Physics in 1989 for these experiments.

In paper II [34] we have developed a phenomenological model to study the time
evolution of the electron. The electron experiences a stochastic potential depending on
the spin direction. The Hamiltonian for its motion is

PPl
H=—+— t
o 5T (t)x=, (35)

where the frequency w(t) jumps between two different constant values stochastically.
We have used two different models to determine the jumping times. In the first model
the probability for a spin flip is constant At in a small time interval A¢. The frequency
v is the flip frequency. The main problem with this approach is that the electron absorbs
a lot of energy and in realistic experiment would escape from the trap. The reason for
this is that the jumps occur near the turning points were the electron is most of the

12



time. In order to avoid this we have used another method to get the flip times. Instead
of a constant we take the jump probability from state one to state two to be

Pia(t) = v[{U5[ W (1), (36)

where W) is the ground state wave function of the potential with frequency wy. The
probability for a jump from state 2 to state 1 is obtained by interchanging the labels
1 and 2. This choice of the jump probability favors jumps in the center of the trap
and thus the energy absorption is not a big problem. The stochastic models used here
are purely phenomenological and not the same as used in the integration of master
equations in Sec. 3.1.

The initial state of the electron used in our simulations is a Gaussian

—— constant
---- nonconstant

=3F

Figure 2: The time evolution of the z-coherence (39) as a function of time. In the
beginning when the system is in the pure state the coherence has an oscillating behavior.
The oscillations are damped at later times. At large time values, the density matrix in
the case of a constant jump probability becomes diagonal i.e. the coherence is lost. In
the nonconstant case there is a finite coherence asymptotically.

13



U(r) = (2m0%) VM exp (- @ An) | Yo (a2 s Z%’) (z — (z)) + w) . (37)

402 2hao?

Parameters (z) and (p) are expectation values of position and momentum. Parameters

o2 = (z?) — (z)* and 07 = (p*) — (p)* are the variances of position and momentum.
The cross variance is defined as o, = (xp) — (x)(p). The expectation value (xp) is

calculated using the symmetric operator ordering (zp) = 1((&p)+ (p2)). The variances
are not all independent, they satisfy the relation

—(02,)? = Z. (38)

The parameter 6 is a phase factor. Because the potential part of the Hamiltonian (35)
is harmonic, the state vector preserves its Gaussian form. The time evolution reduces

to the time evolution of the parameters (), (p), 07, 07, 07, and 6. We have calculated

Y
several ensemble expectation values using constant anz()i non-constant jump frequencies
described above.

As mentioned earlier, the energy the electron absorbs when a constant jump po-
tential is used increases exponentially. For a non-constant case the absorption is much
slower. The oscillation of the ensemble momentum and position is damped faster with
the non-constant jump probability. The off-diagonal elements of the ensemble density
matrix get smaller. When the jump probability is constant the value of the spatial
coherence

(2?) = /