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Abstract

In this thesis we examine multi-field inflationary models of the early universe
and compute deviations from a Gaussian spectrum of primordial perturba-
tions by extending the δN -formalism. Non-Gaussianities (NG) offer a test-
bed to discriminate between models in upcoming observations. We focus on
N -flation, a specific type of assisted inflation motivated by string theory,
and find that these models are generically indistinguishable with regards to
non-Gaussianities as long as the slow roll approximation remains valid. In
N -flation NG are suppressed even after the slow roll conditions are violated.

Due to the challenges faced by existing single field models of inflation we
are motivated to investigate further multi-field scenarios. Since the theory of
preheating is not fully developed in the latter models, we examine quantita-
tively Cantor preheating, a generic multi-field preheating setup, again within
the framework of N -flation. By numerical and semi-analytic analysis we find
that preheating via parametric resonance is suppressed, indicating that it is
the old theory of preheating that is applicable.

We then shift gears and propose a mechanism to generate primordial
magnetic fields via rotating cosmic strings loops. Magnetic fields in the µG
range have been observed in galaxies and clusters. Yet, the evolution and
especially the origin of primordial magnetic fields is an area of research that
has baffled scientists for more than half a century. Though, as of today,
cosmic strings have not been observed, they arise in many models of the
early universe, for instance after brane inflation. Considering a network of
strings, we find that rotating cosmic string loops, which are continuously
produced in these networks, provide viable candidates to produce magnetic
fields with relevant strength and lengths on galactic scales, as long as we
assume reasonable high string tension (still within observational bounds)
and also an efficient dynamo, as advocated by some authors.
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Chapter 1

Introduction

Our current understanding of the early universe is primarily due to the study
of the nearly scale invariant spectrum of primordial perturbations as observed
in the temperature fluctuations of the cosmic background radiation (CMBR)
or large scale structure (LSS). Since most simple models of inflation pre-
dict quasi scale invariant, nearly Gaussian perturbations, in the advent of
improved observational constraints, any deviation from non-Gaussianity af-
fords a test-bed to make a clear cut distinction between models. Hence non-
Gaussianity is at present one of the most important tests to discriminate
between models of inflation.

However, there may be other non-perturbative effects which differentiate
between models, such as the presence of cosmic strings. If observed, cosmic
strings may act as discriminators, since their properties depend on their
origin. Further, the presence of string networks might help explain puzzles
of the late universe, such as the presence of large scale magnetic fields in the
micro-Gauss range.

The content of this thesis is entirely devoted to two distinct, major subject
areas spanning three papers [1–3]: the first one comprises non-Gaussianities
and reheating from N -flation [1,3], a concrete model of multi-field inflation1.
Our motivation is that in order to discriminate between models of the early
universe, and ultimately confront them with high precision experiments, it is
necessary to theoretically extract observable quantities such as the non lin-
earity parameters characterizing non-Gaussianities. After estimating param-
eters characterizing the bi- and trispectrum in the horizon crossing approxi-
mation, we focus on the non-linearity parameter fNL, a measure of the bis-
pectrum; we compute its magnitude for narrow and broad spreads of masses,
including the evolution of modes after horizon crossing. We identify addi-

1In this realization of assisted inflation, the masses of the many inflaton fields conform
to a known distribution, meaning, the mass spectrum is known.
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tional contributions due to this evolution and show that they are suppressed
as long as the fields evolve slowly. This renders N -flation indistinguishable
from simple single-field models in this regime. Larger non-Gaussianities are
expected to arise for fields that start to evolve faster. However, we show that
such fast roll during inflation is not expected in N -flation, leaving (p)re-
heating as the prevailing candidate for generating non-Gaussianities. Also
within the framework of multi-field inflation, and again taking N -flation as a
case study, we investigate preheating. The goal here is to attain a thorough
quantitative theory for multi-field preheating, a subject which has not been
widely explored in the literature.

The second major topic concerns the generation of magnetic seed fields [2]
needed in order to account for large-scale coherent magnetic fields that are
observed in galaxies and clusters. We propose a mechanism whereby large
vortices are created in cosmic string networks due to the presence of rotating
string loops. These vortices cause magnetic fields through the Harrison-Rees
mechanism. We present numerical results obtained by evolving semi-analytic
models of string networks (including both the one-scale and the velocity-
dependent one-scale model) in a ΛCDM cosmology, including the forces and
torques on loops from Hubble redshifting, dynamical friction, and gravita-
tional wave emission. Our predictions include the magnetic field strength as
a function of correlation length, as well as the volume covered by magnetic
fields. We conclude that string networks could account for magnetic fields
on galactic scales, but only if coupled with an efficient dynamo amplification
mechanism.

The concrete outline of this thesis is as follows: firstly, we give a detailed
introduction to various aspects of cosmology that are needed to comprehend
the articles [1–3]. We start by introducing the big bang cosmology and out-
lining its inherent problems (section 1.2). Some of these are alleviated by
inflation (section 1.3), which we present in some detail. Within the frame-
work of scalar field driven inflation we briefly outline the theory of cosmo-
logical perturbations and the δN formalism (section 1.4.1), followed by a list
of problems encountered in single field inflation. We conclude our review of
single field models by an account of preheating (section 1.4.3), a preamble for
multi-field preheating discussed in section 1.5 and chapter 4; we continue with
a discussion of multi-field inflation, including perturbations with a special fo-
cus on non-Gaussianities (section 1.5.1). As a concrete multi-field model we
consider assisted inflation and its realization in N -flation. We conclude our
introduction to multi-field inflation with a summary of the qualitative as-
pects of preheating, a prelude for chapter 4. We then shift our attention to
cosmic strings and loops (section 1.6), their origin, evolution, and effect on a
primordial plasma. Finally, we discuss magnetic fields (chapter 1.7), possible
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origins and subsequent evolution hitherto current observation, serving as an
exposition needed in chapter 5. Closing the introduction, we enter the main
part of the thesis which is comprised of original work that has been published
in [1–3].

In chapter 2 we examine a certain class of multi-field inflationary models,
focusing on N -flation, a model that employs the many axion fields of string
theory as inflatons, providing an implementation of assisted inflation. Guided
by the hope of distinguishing these models from simple single field ones, we
compute non-Gaussian signatures. For later comparison, we first compute
analytically the non-Gaussianities using slow roll and the horizon crossing
approximation. We then move a step up and compute non-Gaussianities be-
yond the horizon crossing approximation by studying two cases: narrow mass
spectra and general mass spectra, including broad ones. Observational lim-
its on non-Gaussianities will improve considerably in imminent experiments.
However, for the model studied here, our results show that the existence of
a signal that is strong enough to be observed is not feasible is not feasible
during slow roll.

In chapter 3, we comment on the feasibility of non-Gaussianities after the
slow roll conditions are violated. However, within the framework of N -flation,
the fields evolve even slower than during slow roll, so that non-Gaussianities
remain suppressed.

In chapter 4 we investigate preheating in multi-field inflationary models,
with N -flation as its focus. We use the slow roll approximation to set the
initial state for preheating, and provide numerical results on Cantor Preheat-
ing 2. Based upon these results, we comment on the efficiency of multi-field
preheating as compared to non-perturbative preheating in single field models.

Finally in chapter 5 we provide a mechanism to generate primordial mag-
netic fields in galaxies via rotating cosmic string loops that stir up the plasma.
We first develop an analytic model of loop dynamics, including translational
and rotational movement as well as changes in loop size. We then give an
analytic derivation of how the rotating cosmic string loops generate vorti-
cal flows in the primordial plasma as well as an analytic estimate of the
expected magnetic field strength near decoupling. These analytical findings
are accompanied by a numerical code which enables us to predict not only
the magnetic field strength at a given length scale, but also what fraction of
the horizon is imbued with such fields.

We conclude with a brief summary and outlook in chapter 6.

2Cantor Preheating is the generic type of preheating when more than one inflaton field
contributes to the effective mass of a matter field.
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1.1 Notation

The default units employed throughout this work are known as fundamental
or natural units where ! = c = 1. In addition, we set the reduced Planck
mass m−2

pl = 8πG ≡ 1 in most of the text, with the exception of sections on
string networks and magnetogenesis where we keep G explicit. Throughout
we adopt the following notation: spacetime indices are denoted by Greek
letters and run through the four values 0, 1, 2, 3. Spatial indices are denoted
by Latin letters and run through the three values 1, 2, 3 (or x, y, z). Capital
Latin indices (I, J, K, . . . ) indicate fields in multi-field inflation. Implicit
summation over repeated indices is assumed, unless stated otherwise. A
semicolon indicates the covariant derivative.

1.2 Big-Bang Cosmology

The standard model of the early universe can be traced back to two seminal
observations: galaxies are receding faster the further away they are, indicat-
ing an expanding universe, and the cosmic microwave background radiation
(CMBR) is highly homogeneous and isotropic.

The first observation of the velocity recession is due to Hubble (1929) [5],
who found that redshifts of galaxies, and thus their velocity, are roughly
proportional to their distance from us

v = Hr . (1.1)

Here H is the Hubble parameter, usually written as

H = 100 h kms−1 Mpc−1 . (1.2)

This observation put an end to static models of the Universe, replacing them
by an expanding model starting from a “big bang” about 13.4 × 1012 years
ago [6]. Naturally this observation has been improved over the years, leading
to the current estimate of the Hubble parameter of [6]

h # 0.732+0.031
−0.032 . (1.3)

Furthermore, recent observations of type IA supernovae show that the uni-
verse is not only expanding, but the expansion is speeding up [7, 8]; this
acceleration is attributed to dark energy, a form of energy with negative
equation of state, or a cosmological constant.

The other unprecedented observation is the one of the CMBR, first per-
formed by Penzias and Wilson in 1965 [9]; this radiation has a very accurate
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blackbody spectrum with a temperature of 2.726K [10], indicating that the
universe was very homogeneous and isotropic in its youth. To be precise, the
CMBR is composed of the redshifted photons that were emitted when the
universe was dense and hot and just became transparent to photons around
300 000 years after the big bang. This relic radiation was theoretically pre-
dicted by Alpher and Gamov in 1948 [11], but no one at the time envisioned
that it could be detected. The observation of the CMBR is a strong indicator
for the validity of the cosmological principle: the universe is homogeneous
and isotropic on large scales, namely it looks the same in every direction from
every point in space. Further evidence for the homogeneity and isotropy of
the universe on largest scales originates from measurements of the large scale
structure, such as by the Sloan Digital Sky Survey SDSS [12] or the 2dF
survey [13] among others. Of course, the primary motivation for these ex-
periments is the detection of deviations from homogeneity, which opens up
a window into the very early universe.

Based on the cosmological principle, the line element in general relativity
can then be written in the simple Friedmann-Robertson-Walker (FRW) form

ds2 = dt2 − a2(t)dx2 , (1.4)

where t is the physical time, a(t) is the scale factor, and dx2 is the line element
on a three-dimensional space of constant curvature. In spherical coordinates,
this metric can be written as

dx2 =
dr2

1 − kr2
+ r2(dθ2 + sin2 θdφ2) , (1.5)

where k is the curvature constant that determines the spatial topology of the
universe, giving a universe that is closed, flat or open for k > 0, k = 0, and
k < 0, respectively.

The scale factor in the metric (1.4) obeys Einstein’s equations

Rµν −
1

2
gµνR = 8πGTµν , (1.6)

which relates the Ricci tensor Rµν , and the Ricci scalar R to the matter
content with energy momentum tensor Tµν . If the latter takes the form of a
perfect fluid (without anisotropic stress) it has the same symmetries as the
homogeneous FRW-metric (1.4) and can be written as

Tµν = (ρ + p)uµuν − pgµν , (1.7)

where the energy density ρ and the pressure p are functions of time t only,
and uµ is the four velocity of the comoving matter, namely, u0 = 1 and
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ui = 0. Local energy conservation T µν
;ν = 0 implies,

ρ̇ + 3
ȧ

a
(ρ + p) = 0 , (1.8)

as the universe expands. The second term accounts for the dilution of the
energy density, whereas the third represents the work done by the pressure
of the fluid. In simple cases the energy density and pressure can be related
by a constant p = wρ where w is the equation of state parameter (w = 0 for
dust or non relativistic matter, w = 1/3 for radiation, or relativistic matter,
and w = −1 for a cosmological constant). Then it follows from (1.8)

ρ ∝ a−3(1+w) . (1.9)

Hence, it is evident that although in the past our universe was dominated
by radiation, at some point dust appropriated because ρm/ρr ∝ a, and even
later dark energy ultimately took over, since wde ∼ −1 so that ρde ∼ const.

Given the FRW metric and an ideal fluid, the Einstein equations can be
simplified to the Friedman equations

(

ȧ

a

)2

=
ρ

3
− k

a2
, (1.10)

3
ä

a
= −1

2
(ρ + 3p) , (1.11)

where the Hubble parameter is identified as H = ȧ/a. It is customary to call
H−1 the Hubble radius, Hubble horizon or just horizon 3. From the second
equation, which follows from the derivative of the first one in case H '= 0, it
is evident that w < −1/3 is needed in an accelerating universe such as ours.
If the equation of state parameter is constant and k = 0, (1.10) is solved by

a = a0t
2/(3+3w) . (1.12)

There is exactly one (time dependent) density for which the universe ap-
pears to be flat (see (1.10) ), ρcrit ≡ 3H2. It is customary to define the
dimensionless density parameter for each energy constituent

Ωi =
ρi

ρcrit
, (1.13)

so that a total density parameter is Ωtotal =
∑

i Ωi. For Ωtotal < 1, Ωtotal = 1,
or Ωtotal > 1 we have an open, flat or closed universe respectively. Since
Ωtotal − 1 = k/(a2H2), any small deviation of Ωtotal from one will increase in
an expanding universe if w > −1/3. Current observations place Ωtotal close
to unity [6].

3The Hubble horizon should not be confused with the causal horizon.
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1.2.1 Problems

The big-bang cosmology described above explains the Hubble expansion and
the cosmic background radiation. In addition, the abundances of light ele-
ments can be computed [11] and they agree to high accuracy with observa-
tions. Thus, this model provides a successful description of the evolution of
the universe back to a fraction of a second after its birth. However, if we
extrapolate to the time t = 0 we encounter several inexplicable problems:

• The horizon problem: a main assumption above is the large scale ho-
mogeneity and isotropy of the universe. This is in agreement with the
cosmic background radiation, whose temperature, if measured in two
different patches of the sky, say opposite to each other, is the same to
within at least one part in 104. The problem is that these patches have
never been in causal contact in the standard big-bang model. Thus
one has to assume that the universe was originally highly homogeneous
and isotropic on scales larger than the causal horizon, indicating a high
degree of fine-tuning.

• The flatness problem: the present density of the universe is close to
the critical density, that is Ωtotal ∼ 1. Nevertheless, deviations from
Ωtotal = 1 grow in time. In order to have Ωtotal ∼ 1 today, it must have
been extremely close to one in the early universe, indicating another
fine-tuning.

• The density fluctuation problem: today, we know that present day
structure in the universe originated from small density fluctuations
in the early universe. The statistical properties of these fluctuations
cannot be accounted for by, for instance, thermal fluctuations in the
big-bang model.

• The exotic relics problem: topological defects, exotic particles and black
holes should be created during phase transitions in the early universe.
One example is the overproduction of monopoles as predicted by grand
unified theories. These remnants are not observed.

• The initial singularity problem: if we go back in time, we reach a singu-
larity where density, curvature and temperature become infinite. Gen-
eral relativity is not reliable once Planckian densities are within reach,
and a theory of quantum gravity, that is string theory, should be in-
voked.
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Other problems include the cosmological constant problem (why is its
value so small?), the baryon asymmetry problem (why do we have more mat-
ter than antimatter?) or the the dark matter problem (what is dark matter?).
Some of these problems can be resolved by the inflationary paradigm accord-
ing to which the universe goes through a period of rapid expansion during
its early stages.

1.3 Inflation

In the previous section we outlined the successes and shortcomings of big-
bang cosmology. Inflation was first conceived by Guth [14] to rid the hot big
bang model from the monopole problem, but it was soon realized that the
horizon and flatness problems could also be addressed. Furthermore, inflation
makes concrete predictions for the statistical properties of perturbation, in
agreement with recent observations.

The inflationary stage of the early universe begins about 10−35 seconds
after its birth and lasts until about 10−32 seconds. During this time, the
universe is in an unstable vacuum-like state at high energy density leading
to an exponential4 expansion of space

a ∼ eHinf tinf , (1.14)

where tinf is the duration of the inflationary phase and Hinf sets the energy
scale of inflation. This implies that regions that were initially within the
causal horizon blow up to sizes much larger than the present Hubble horizon.
This solves the horizon problem if the expansion lasted for about 60 e-folds
or more. Furthermore, the initial curvature radius of the universe increases
by a large factor so the universe becomes locally indistinguishable from a flat
one with ρ = ρcrit.

During inflation any matter content is diluted, so the universe is empty
and cold at the end of inflation. Thus, directly after inflation there needs
to be a phase of reheating, whereby the energy driving inflation is to some
extent converted into relativistic matter.

In the following sections, we give a brief account of inflation driven by a
single scalar field, including reheating, which will serve as a basis for more
complex multi-field models. See also [15–18] for reviews.

4Note the possibility of non-exponential inflation such as power law inflation.
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1.4 Single-Field Inflation

Consider a scalar field with a canonical kinetic term so that the action takes
the form

S =
1

2

∫

d4x
√−g

(

1

2
∂µϕ∂µϕ + V (ϕ)

)

. (1.15)

Variation with respect to the metric leads to the energy momentum tensor
of an ideal fluid; assuming homogeneity we obtain

ρϕ =
1

2
ϕ̇2 + V (ϕ) (1.16)

pϕ =
1

2
ϕ̇2 − V (ϕ) . (1.17)

Variation of the action with respect to the homogeneous ϕ yields the Klein
Gordon equation

ϕ̈ + 3Hϕ̇ + V ′ = 0 , (1.18)

where a prime denotes a derivative with respect to the inflaton. This needs
to be solved in conjunction with the Friedman equations (1.10) and (1.11)
(for simplicity we consider a flat universe without any other energy sources,
except the scalar field)

H2 =
1

3

(

V +
1

2
ϕ̇2

)

, (1.19)

Ḣ = −1

2
ϕ̇2 . (1.20)

Inflation occurs when the inflaton field evolves slowly ϕ̇2 ) V . This is the
case if the slow roll parameters

ε ≡ 1

2

(

V ′

V

)2

, (1.21)

η ≡ V ′′

V
, (1.22)

satisfy ε ) 1, |η| ) 1 5. Then the equations of motion become

H2 # V

3
, (1.23)

3Hϕ̇ # −V ′ . (1.24)

5The SR conditions are sufficient but not necessary for inflation to occur.
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Thus the number of e-folds of inflation becomes

N ≡
∫ tend

t

H dt (1.25)

#
∫ ϕ

ϕend

V

V ′ dϕ. (1.26)

For instance, for a simple polynomial potential V = λϕα we get N # (ϕ2 −
ϕ2

end)/2α. Inflation ends when the slow roll parameters become of order one,
which occurs around ϕend ∼ α. Thus we see that we need super-Planckian
initial field values to achieve the desired 60 e-folds of inflation. In this case
we may then approximate N ≈ ϕ2/2α.

The need for super-Planckian field values is a generic feature of single
field inflationary models, and indeed problematic from a field theoretic point
of view: if the inflaton is to be identified with some fundamental field in
e.g. supergravity, we expect corrections to the Lagrangian whenever the
field traverses a super-Planckian stretch in field space. This problem can be
alleviated in multi-field models, as we shall see later.

Inflation with a simple quadratic potential (α = 2 and λ ≡ m2/2) is
known as chaotic inflation (in [19] only λϕ4 was considered, but potentials
have been subsequently generalized; given that λϕ4 potentials are excluded
by current observations of the CMBR, it is customary to associate chaotic
inflation via m2ϕ2 potentials): if the inflaton field is high up in its potential,
quantum fluctuations can dominate over the classical force from the potential
∝ V ′. Due to the possibility of fluctuating up in the potential, most of the
universe is eternally inflating 6 and only occasionally bubbles with a smaller
value of the inflaton will form. Within those bubbles, the inflaton is then
slowly rolling downhill. In this picture, our observable universe is enclosed
in one single bubble. This differs from the erstwhile historical inflationary
models, which were based on a first order phase transition; these models were
hampered by the necessity of bubble nucleation which could not provide an
observable universe resembling ours.

1.4.1 Perturbations and the δN-formalism

So far, we have been concerned with the homogeneous part of the inflaton.
However, during inflation quantum fluctuations are constantly being seeded

6It is problematic to define a measure in eternal inflation, meaning, statements like
”most of the universe” are ill-defined. More accurately, there are regions which continue
to inflate, and since the inflaton is high up in its potential, these regions will inflate more
than others.
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at small scales. These fluctuations get stretched during inflation to super-
horizon scales, at which point they freeze, up until they re-enter the Hubble
horizon at later stages. As a result, the statistical properties of the fluctua-
tions in the CMBR can be computed by means of cosmological perturbation
theory from first principles, see [17, 20] for reviews.

The computation is complicated by the necessity of accounting not only
for the perturbations in the inflaton δϕ(x, t), but also in the gravitational
sector, that is, perturbations in the metric [20]. The perturbation of the
latter can be decomposed into scalar, vector and tensor degrees of freedom,
which decouple at the linear level. Focussing on the scalar sector there are
four degrees of freedom,

ds2 = (1 + 2φ)dt2 + 2a∂iBdxidt − a2 ((1 − 2ψ)δij + 2∂ijE) dxidxj . (1.27)

Two of these can be eliminated by a gauge transformation, for instance E and
B if we choose the longitudinal gauge; the remaining two degrees of freedom
are the two (gauge invariant) Bardeen potentials Φ = φ and Ψ = ψ. In the
absence of anisotropic stress, they are related via the i-j-Einstein equation
resulting in Φ = Ψ. Further, the 0-0 equation relates the perturbation in the
metric to the perturbation in the inflaton field, so that only one degree of
freedom remains, which can be straightforwardly quantized and evolved in
time [20].

At the end of the day, we are interested in the curvature perturbation7

on uniform density surfaces [21]

−ζ ≡ ψ +
H

ρ̇
δρ . (1.28)

The usage of this variable is advantageous, since it is constant on super
horizon scales ( at least in simple models); that is, after horizon crossing
when k = aH , where k is the comoving wavenumber8. A further commonly
used variable is the curvature perturbation on hypersurfaces orthogonal to
comoving worldlines [20], or short comoving curvature perturbation

R =
2

3

H−1Φ̇ + Φ

1 + w
+ Φ , (1.29)

which is identical to −ζ on large scales [17]9. Since we are primarily interested

7Physically the curvature perturbation is responsible for temperature fluctuations that
are observed in the CMBR.

8To be precise, ζ is constant in the absence of isocurvature perturbations, which will
become important when we discuss multi-field inflationary models.

9On large scales and for single field inflation we may use −ζ ≈ R = ψ + H
ϕ̇ δϕ. Note

that in [20], R is denoted by ζ.
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in Fourier modes leaving the horizon early during inflation, we can readily
switch between the two whenever needed.

Statistical information about primordial perturbations can be extracted
from correlation functions of the temperature fluctuations in the CMBR.
Thus, the correlation functions of ζ , or R, are of prime interest. We can
efficiently compute these correlation functions by means of the δN -formalism,
which is based on the simple realization that ζ is identical to the perturbation
in the local expansion rate, that is

ζ(x, t) = δN (1.30)

=
∂N

∂ϕ
δϕ (1.31)

where N is the number of e-folds from (2.39). To evaluate N one has to
consider an initially flat hypersurface as well as a final uniform density hy-
persurface [22]. The linear formalism goes back to Starobinsky [23] and was
extended by Sasaki and Stewart [22] among others [24–26]. It is then straight-
forward to compute the two point correlation function commonly denoted as
the power-spectrum Pζ , (〈ζk1, ζk2〉 = (2π)3δ(k1 +k2)Pζ), and extract observ-
ables such as the scalar spectral index ns ≡ ∂ ln Pζ/d ln k. Higher order
correlation functions, characterizing non-Gaussianities (NG), can be evalu-
ated by the non linear δN -formalism put forward in [27, 28]. Here ζ is still
conserved on large scales in simple models [29, 30]10. We will discuss non-
Gaussianities in more detail after introducing multi-field inflation, where the
advantages of this technique will become apparent.

Back to single field slow roll inflation, the resulting spectral index reads
[31]

ns − 1 = −6ε + 2η . (1.32)

Considering again the case of a polynomial potential V ∝ ϕα we have ε =
α2/2ϕ2 and η = α(α − 1)/ϕ2. Since N ≈ ϕ2/2α we can express the spectral
index as

ns − 1 = −α + 2

2N
, (1.33)

that is we get a slightly red spectrum. Chaotic inflation with α = 2 is thus
still in agreement with recent observations of the CMBR nobs

s = 0.958±0.016
[6].

10The separate Universe formalism developed by Rigopoulos and Shellard in e.g. [30] is
equivalent to the δN -formalism.
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The overall magnitude of the temperature fluctuation, commonly referred
to as the COBE (Cosmic Background Explorer) normalization [10], sets the
overall scale of single field inflation. To be precise, the density contrast
δ2
H ≡ (4/25)Pζ at the pivot scale kpivot ≡ 7.5a0H0 is δH(kpivot) = 1.91× 10−5

[31]. For single field inflation, this gives (V 3/2/V ′) = 5.2 × 10−4. Corre-
spondingly, for chaotic inflation with V = m2ϕ2/2 we have m = mpl 5.2 ×
10−4/(

√
2Npivot), where we reinstated the reduced Planck mass. Thus, the

mass has to be quite small so that the potential is very shallow. This is a
fine tuning problem shared by most models of inflation.

Higher order correlation functions are usually suppressed rendering non-
Gaussianities unobservable. One can also compute the spectrum of gravita-
tional waves, which is in agreement with current upper bounds.

1.4.2 Problems of Inflation

The simplest single field inflationary models, for instance slow roll models
with a quadratic potential, are able to solve many cosmological puzzles and
are still in agreement with the observed statistical properties of fluctuations
in the CMBR. However, even though simple and compelling, these models
are unsatisfactory from a theoretical point of view for several reasons, see
e.g. [32]

• Fine tuning of the potential [33]: usually parameters in the inflaton’s
potential, such as the mass in m2ϕ2 potentials, have to be extremely
small in order to provide the correct magnitude of fluctuations set by
the COBE normalization (counter examples can be constructed).

• Super Planckian field values [18]: the inflaton has to traverse a distance
in field space larger than the Planck mass in natural units. This is prob-
lematic from a field theoretic point of view, since non-renormalizable
quantum corrections to the field’s action are expected. Thus, the po-
tential, which has to be severely fine tuned, would change drastically,
potentially spoiling inflation. This is also known as the η-problem.

• The trans-Planckian problem [34, 35]: Fourier modes of the inflaton
field have to be given initial values on length scales much smaller than
the Planck length. At these length scales general relativity combined
with ordinary quantum field theory is not applicable; a theory of quan-
tum gravity, that is string or M-theory, should be used.

• Fine tuning of initial conditions: the inflaton has to start high up in
its potential – why is it so far away from its true vacuum expectation
value?
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• Initial Singularity [36]: the initial singularity does not vanish but is
merely pushed into the far past.

• Identity of the inflaton: scalar fields are not abundant in the stan-
dard model; furthermore, it has been challenging to identify an infla-
ton in e.g. extensions of the standard model (see however [37–39]) or
in string theory. In recent years, several models arose within string
theory, such as the KKLT construction (and followups) which stabi-
lizes all but one degree of freedom during inflation [40, 41], or multi-
field models such as N -flation [42] or the proposal within M-theory
by Becker/Becker/Krause considering multiple M5-branes [43]. Mean-
while, all reasonably successful models come with the price of high
intricacy, a far cry from the simplicity of single field models previously
discussed.

• Entropy problem: The low initial entropy of the initial state has to be
assumed, just as in big-bang cosmology.

In the next chapters we will focus on multi-field models, which are able
to address some of the above problems, such as the identity of the inflaton,
super Planckian field values or tuning of the potential, while others remain.
In addition, certain aspects of multi-field models, such as non-Gaussianities
or reheating, are not worked out in great detail at present; hence, we will
develop them further in the main part of this thesis (using N -flation as an
example).

1.4.3 Reheating

During inflation, the universe is homogenized leaving it devoid of particles
and very cold. How then is the universe reheated after such an inflationary
period?

Old Theory of Reheating

In the old theory of reheating [44,45], the inflaton field oscillates as a coherent
wave of scalar particles, with a finite probability of decaying; such decays are
determined by the the inflaton’s (ϕ) coupling to other scalar χ or fermionic
ψ fields in its Lagrangian, e.g. in the form of g2σφχ2 or hφψψ; here σ has the
dimensions of mass and g as well as h are dimensionless. When the mass of
the inflaton is much larger than those of χ and ψ, that is, when m ≫ mχ, mψ
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the decay rates are

Γφ→χχ =
g4σ2

8πm
, (1.34)

Γφ→ψψ =
h2m

8π
. (1.35)

To describe the damping of the scalar field ϕ during the rapid oscillation
near the minimum of its potential, one adds an extra friction term to the
equation of motion (1.18)

ϕ̈ + 3H(t)ϕ̇ + Γϕ̇ + m2ϕ = 0 , (1.36)

where Γ = Γϕ→χχ + Γϕ→ψψ. Since the newly formed particles are ultra-
relativistic, their energy density decreases faster than that of the oscillating
inflaton. Thus, reheating ends only when H ∼ 2/(3t) < Γ. The time when
reheating ends is then given by

treh ∼ 2

3Γ
. (1.37)

At this point, most of the matter becomes ultra-relativistic and one can easily
obtain an upper limit on the reheating temperature Treh, since ρ(treh) =
3H2 = 3Γ2 and ρ ∝ T 4

reh so that [46]

Treh = 0.2

(

100 · 8πm2
pl

g∗

)1/4 √
Γ , (1.38)

where g∗ is the effective number of massless degrees of freedom which has the
value of g∗ = 102 − 103 in realistic models and we kept the reduced Planck
mass explicit. To make sure that monopoles are not reintroduced into the
theory [17], the reheat temperature should be below Treh < 106GeV, a limit
which is well below the GUT scale. This constraint is usually satisfied, since
m ∼ 10−5mpl due to the COBE normalization.

Non-perturbative Effects and Parametric Resonance

Before addressing reheating in multi-field inflation, we review non-
perturbative preheating via parametric resonance [47,48] (see also [46,49,50]
and [17] for a review), whereby particles in a scalar matter field χ coupled
to the inflaton field ϕ via the effective potential

V (ϕ, χ) =
1

2
m2ϕ2 +

1

2
m2

χχ2 +
1

2
g2ϕ2χ2 , (1.39)
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are produced in short bursts while ϕ oscillates around the minimum of V .
The produced particles interact with one another until a state of thermal
equilibrium at the temperature Trh is reached; the process of thermalization is
non-trivial and may take much longer than the actual preheating process [51].
After preheating most of the energy initially stored in the inflaton field is
transferred into the matter sector.

In the simple case of chaotic inflation, the exponential expansion of the
universe ends when the slow roll conditions are violated at ϕ ∼ 1. As an illus-
tration, consider the case m ≫ mχ and ignore back-reaction11 of χ particles
so that (1.18) becomes

ϕ̈ + 3Hϕ̇ = −m2ϕ , (1.40)

which has the solution

ϕ(t) = Φ(t) sin ωt , (1.41)

where

Φ(t) =

√
8√

3mt
(1.42)

is the amplitude of oscillations, which decays due to Hubble friction as
1/a3/2 ∝ 1/t, and ω ≡ m is the frequency. After inflation, H ) m, meaning,
many oscillations take place in just one Hubble time. During preheating, the
amplitude of oscillations of the inflaton would decrease faster than (1.42) if
backreaction of the matter field were included.

Ignoring metric perturbations, the equation of motion for a fourier mode
of the matter fields χ is

χ̈k + 3Hχ̇k +

(

k2

a2
+ m2

χ + g2ϕ2

)

χk = 0 , (1.43)

where p = k/a is the physical momentum and the effective, time dependent
mass of the matter field is

m2
χeff

≡ ∂2V (ϕ, χ)

∂χ2
= m2

χ + g2ϕ2(t) . (1.44)

Note that (1.43) is reminiscent of the harmonic oscillator with a time depen-
dent mass.

11ignoring back-reaction is only justified in the early stages of reheating. Once sufficient
χ particles are produced, its back-reactions may shut off reheating. Any complete theory
of preheating covering also thermalization, necessarily needs to incorporate back-reaction.
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In order to study preheating, ignore the expansion of the universe for
the time being, consider mχ = 0 and introduce q = g2Φ2/4m2, τ = mt
(dimensionless time, a prime denotes a derivative with respect to τ in this
section), Ak = 2q + k2/m2a2 as well as Xk ≡ a3/2χk so that (1.43) becomes

X
′′

k + (Ak − 2q cos(2τ))Xk = 0 . (1.45)

Here the term −(3/4)(2a
′′

/a + a′2/a2) drops out since a ∝ τ 2/3. Treating Φ
and Ak as constants, Eq. (1.43) is the Mathieu equation. It is well known that
parametric resonance occurs for wavenumbers k within resonance bands [52].
The strength of the resonance within a given instability band is determined
by the values of Ak and q. If k is within the n′th resonance band, the
corresponding mode increases as

Xk ∝ eµ
(n)
k

τ , (1.46)

where µk ≫ 0 is the Floquet index [52]. This corresponds to an exponential
growth of the occupation number nk (see Eq. 1.50) i.e., particle production.
If we do not consider a quadratic potential for the inflaton but a λφ4/4 type,
the model becomes conformally invariant. In this specific case, expansion
effects can be kept and the resulting equations for χk reduce to the Lame
equation [50], which also exhibits well defined resonance bands.

The equations of motion for the Fourier modes of the matter field (1.43)
becomes

X ′′
k +

(

k2

a2m2
+

g2

m2
ϕ2 + ∆

)

Xk = 0 , (1.47)

where

∆(τ) ≡ m2
χ

m2
− 3

2

a′′

a
− 3

4

a′2

a2
. (1.48)

As we saw, neglecting the expansion of the universe leaves us with the Math-
ieu equation, which, depending on the given value of g, can exhibit narrow
(g ) m/Φ) and broad resonance (g ≫ m/Φ). If on the other hand, expan-
sion effects are allowed, the behavior changes drastically, leading to stochastic
resonance [46], which is a very efficient way of reheating and will be discussed
in more detail below.

Notice that we have kept the mass term for the matter field in (1.48). A
small non-zero mass doesn’t change reheating qualitatively, but a large mass
will immediately shut off parametric resonance. Thus we set mχ ≡ 0 from
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now on, but keeping in mind that this constitutes fine tuning. As initial
conditions for the matter field we take the usual Bunch-Davies vacuum state

Xk =
e−iωkt

√
2ωk

. (1.49)

In order to compute the generalized Floquet index, it is useful to examine
the occupation number [46] of a given mode Xk

nk =
ωk

2

( |X ′
k|2

ω2
k

m2 + |Xk|2
)

− 1

2
, (1.50)

where the energy per particle is defined as

ω2
k(τ) ≡ k2

a2
+ g2ϕ2 + m2∆ . (1.51)

We can interpret Eq. (1.50) as the ratio of the kinetic and potential energy
to the energy per particle. Thus we can identify the maximal index as being
twice the slope in an ln(nk) over τ plot,

µk ≡ 1

2(τmax − τmin)
ln(sup(nk(τ)/nk(τmin), τ ∈ [τmin...τmax]|ϕ′(τ) = 0)) .(1.52)

Notice the factor of two due to nk being quadratic in Xk. The supremum
is introduced here since it is possible for the occupation number to decrease
during stochastic resonance [46]. Another subtlety concerns the occupation
number (1.50), which is ill defined whenever ϕ ≈ 0, since during those in-
stances particles are produced in bursts causing nk to spike. Thus we evaluate
µk only at the turning points of ϕ. Lastly, τmin should be chosen such that
nk(τmin) is already reasonably large.

Before we elaborate on specific resonances, we would like to mention an
elegant mathematical tool to compute the existence and position of insta-
bility bands, spectral theory [53–57]: here the equation of motion of χk is
first rewritten in the form of a Schrödinger equation (or more general Hill
equation). If one now computes the spectrum, one can show that the com-
plement of the spectrum is a subset of modes with a positive generalized
Floquet index. This tool is quite useful when confronted with more fields, as
is the case in multi-field inflation, and we will come back to it later.

Narrow Resonance

In this simple case, we ignore all expansion effects so that a = 1 as well as
a′ = a′′ = 0 and consider g < m/Φ. The amplitude of oscillation of ϕ can be
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estimated to Φ ≈
√

8/
√

3 and we obtain narrow resonance for modes in well
defined bands [52]. For instance, the first, and strongest resonance band is
located between

1 − 3q !
k2

m2
! 1 − q , (1.53)

with

q =
g2Φ2

4m2
) 1 . (1.54)

and the resulting maximal Floquet index is µk ≈ q/2.

Broad Resonance

Neglecting expansion effects, we consider now the case g > m/Φ so that

q = g2Φ2/4m2 ≫ 1 . (1.55)

During broad resonance, a given Fourier mode scans many resonance bands
during any given oscillation of the inflaton field. µk can be approximated
analytically to [46]

eπµk = |cos(θk − ϕk)|
√

1 + e−πκ2 +
√

(1 − e−πκ2) cos2(θk − ϕk) − 1 , (1.56)

where κ2 ≡ k2/k2
∗, k2

∗ ≡ 2m2q1/2, and θk − ϕk ≈ 4
√

q + k2

8
√

qm2 (ln q + 9.474).

Stochastic Resonance

Due to expansion effects, a given Fourier mode of the matter field shifts to
lower resonance bands over time until it passes the first resonance band and
resides in a stable region. Due to the shifting, the occupation number appears
to be changing erratically, hence the name stochastic resonance. However, it
should be noted that the qualitative behavior can still be understood and even
quantitatively estimated using the instability chart of the Mathieu equation
[58]. Nevertheless, looking at the spectrum of µk, the latter appears to be
a random variable which is more prone to be positive than negative, for
example, if πκ2 ) 1 the ratio is 3 : 1 [46]. The envelope within which µk

resides can be derived analytically to [46]

µ±
k =

1

2π
ln

(

1 + 2e−πκ2 ± 2e−πκ2/2
√

1 + e−πκ2

)

. (1.57)
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Other Approaches and Subtleties

We have only given the most basic description of (p)reheating, ignoring for
instance backreaction/rescattering between the matter field and the inflaton
field. If more and more χ particles are created, the term ∝ χ2ϕ2 acts as an
effective mass, driving ϕ back to its origin, where production of χ-particles
occurred. Further, once ρχ becomes comparable to ρϕ, the expansion of
the universe is affected. Backreaction can lead to interesting effects such as
moduli trapping [59]. Naturally rescattering is especially important in the
late stages of preheating too [46]. Other interesting models of (p)reheating,
which we do not explain in detail, include:

Instant Preheating [60], where the scalar field is coupled to a Bosonic
field χ which in turn is coupled to a Fermionic field ψ. When ϕ goes through
zero, light χ particles are produced copiously. As the values of ϕ increase,
the χ particles become more massive increasing the energy in the χ sector.
However, before backreaction of χ particles onto ϕ becomes dominant, they
decay into Fermions. Hence most of the energy of ϕ can be transferred to the
matter sector in a few or even without oscillations [61]. The latter feature
makes instant preheating attractive to frameworks which do not posses a
confining potential.

Tachyonic Preheating is a form of fast preheating whereby the coupling
term in the potential is replaced by gϕ2χ2/2 with g < 0, leading to an
instability. This in turn causes an increased particle production, a process
that can terminate fast within one oscillation [64], and implying larger µk

as compared to the parametric resonant case (g2 > 0). In order for the
potential to be bounded from below, additional terms of the form αχ4 or ϕ4

have to be added to it. Cosmic strings are also produced during tachyonic
preheating [63–65].

Cantor Preheating [66] can occur when more than one inflaton field is
coupled to the same matter field. For two fields, a numerical study exists in
the literature [57], Cantor preheating is expected to be an efficient means of
preheating in multi-field models of inflation, since stability bands dissolve into
a nowhere dense set (see section 1.5.4). We will discuss Cantor preheating
in more detail in section 1.5.4 and in chapter 4.

Other approaches to preheating include Geometric Preheating [67] and
Fermionic Preheating [68]. After preheating, the universe is in a highly non-
thermal state. How thermalization occurs is in itself an interesting and chal-
lenging field of research, see e.g. [51] and references therein.
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Efficiency and potential problems of non-perturbative effects

By efficiency we mean primarily how non-perturbative effects compare to
the old methods of reheating, which are surely at work in the early uni-
verse. The efficiency of most of the aforementioned non-perturbative meth-
ods hinges crucially on well chosen values of the coupling constants as well
as bare masses. For instance, a non zero bare mass of the matter field larger
than the inflaton mass can shut off parametric resonance entirely [58]. Since
the inflaton field is usually unnaturally light, this constitutes a serious fine-
tuning. The same goes for the coupling constants, which need to be in a
certain range for efficient reheating to occur. Thus it has been claimed [58],
that parametric resonance effects are expected to be unimportant in generic,
not fine-tuned, models of the early universe. In addition, too efficient pre-
heating models might also be problematic, due to the possibility or producing
unwanted relics, such as magnetic monopoles. This is corroborated by the
fact that the state is highly non-thermal after preheating. As we will see
later on, non-perturbative effects are not actually the norm for multi-field
models of inflation, and the old theory of preheating is applicable.

1.5 Multi-Field Inflation

Multi-field models of inflation, see [69] for a review, have been considered
ever since the introduction of hybrid inflation [70]. Here, only one field
evolves during inflation and the role of the second field is to end inflation by
creating an instability in a direction orthogonal to the classical inflationary
trajectory. In contrast, true multi-field models employ at least two dynamical
fields during inflation.

Consider N scalar fields ϕI , I = 1 . . .N , with canonical kinetic terms
and for simplicity a flat metric in field space

S =
1

2

∫

d4x
√−g

(

1

2

N
∑

A=1

∂µϕA∂µϕA + W (ϕ1, ϕ2, ...)

)

(1.58)

The generalized Klein Gordon equations read

ϕ̈I + 3Hϕ̇I = −WI (1.59)

where we introduced WI ≡ ∂W/∂ϕI , and the Friedman equation becomes

3H2 = W +
∑

I

1

2
ϕ̇2

I . (1.60)
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At the background level one can replace any multi-field model by an effective
single field model, where the sole degree of freedom σ is identified with the
distance traversed along the trajectory in field space [71–73]. Given a flat
metric in field space, this yields

σ ≡
∫

∑

I

σ̂Iϕ̇I dt , (1.61)

where

σ̂I ≡ ϕ̇I
√

∑

J ϕ̇J

. (1.62)

This effective inflaton obeys

σ̈ + 3Hσ̇ = −
∑

I

σ̂IWI . (1.63)

It should be noted that this effective model is not sufficient at the perturbed
level since it only captures adiabatic fluctuations.

1.5.1 Perturbations and non-Gaussianities

A common approach to study perturbations with more than one field consists
of employing the Sasaki-Mukhanov variables

QI ≡ δϕI +
ϕ̇I

H
ψ . (1.64)

which coincide with the corresponding field perturbation in the spatially flat
gauge QI = δϕI |ψ=0. In terms of these variables, the comoving curvature
perturbation is R =

∑

I φ̇IQI/
∑

J φ̇2
J . The full equations of motion for

these variables read [71]

0 = Q̈I + 3HQ̇I +
k2

a2
QI +

∑

J

(

WIJ − 1

a3

(

a3

H
ϕ̇Iϕ̇J

).)

QJ . (1.65)

In this formalism, the distinction between adiabatic and isocurvature (or en-
tropy) perturbations is not apparent. The easiest approach to visualize both
is due to Gordon et. al [71]: the adiabatic perturbation is the perturbation
along the field trajectory, that is δσ where σ is defined in (1.61), and hence it
corresponds to a local shift in time. Correspondingly, isocurvature modes are
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perturbations perpendicular to the field trajectory (see [71] for a proper defi-
nition)12. The instantaneous adiabatic mode is seeded by isocurvature modes
whenever the trajectory in field space makes a turn. This becomes apparent
after a rotation in field space and rewriting (1.65) accordingly [69,71]. Duly,
R does not need to be frozen on large scales after horizon crossing.

To compute correlation functions, we employ again the δN -formalism,
generalized to higher orders and more fields [27, 28]. The curvature pertur-
bation ζ is then given by

ζ #
∑

I

NIδϕIψ +
1

2

∑

IJ

NIJδϕIψδϕJψ +
1

3!

∑

IJK

NIJKδϕIψδϕJψδϕKψ + . . . ,(1.66)

where δϕIψ ≡ δϕI |ψ=0 and we used the short hand notation NI = ∂N/∂ϕI ,
NIJ = ∂2N/∂ϕI∂ϕJ etc. N I = δIJNJ using Einstein’s summation conven-
tion. The power spectrum after Hubble exit is then given by

Pζ =
∑

I

N2
I PδϕIψ

, (1.67)

and higher order correlation functions, such as the bi- and tri-spectrum
can also be computed. The ratio of the bispectrum to the power-spectrum
squared is a measure of the non-Gaussianity, since the bispectrum vanishes
identically for purely Gaussian perturbations. This ratio is measured by the
non-linear parameter fNL which was computed in [24–26] to

−6

5
fNL =

r

16
(1 + f) +

NINJN IJ

(NKNK)2 , (1.68)

where repeated Latin indices are to be summed over. Here r is the usual
scalar to tensor ratio (r/16 < 0.1 from [6]), and f characterizes the shape
of the momentum triangle ( 0 ≤ f ≤ 5/6 [25, 74] and it is largest for an
equilateral triangle). It follows then that the first term is small. However,
the second contribution

−6

5
f

(4)
NL ≡ NINJN IJ

(NKNK)2
. (1.69)

may be larger13. To estimate the magnitude of the four point function, we

12For instance, in a two-field model where θ denotes the instantaneous angle between
the trajectory and the ϕ1-axis, the entropy perturbation is δs = (cos θ)δϕ2 − (sin θ)δϕ1 .

13Note that f
(4)
NL is denoted as fNL in [69].
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use the momentum independent parameters14 [76, 77],

τNL =
NABNACNBNC

(NDND)3
, (1.70)

gNL =
25

54

NABCNANBNC

(NDND)3
. (1.71)

Parameters characterizing higher order correlation functions can be de-
fined systematically using the elegant diagrammatic approach found in [78].
It should be noted that the above expressions do not depend on the slow roll
or the horizon crossing approximation.

Observationally, fNL is constrained: −54 < fNL < 114 by the WMAP3
data alone [6, 79, 80]. However, recent re-evaluations suggest a detection of
a non-zero fNL at 2σ [81]: 26.9 < fNL < 146.7, see also [82]15. Future
experiments [84–87] such as Planck will be able to unambiguously determine
if fNL is indeed so large or consistent with Gaussian perturbations (Planck
alone will narrow down |fNL| ! 5 [84]).

The other parameters are constraint to |τNL| < 108 [75] (to be improved
down to |τNL| < 560 by Planck [88])

1.5.2 Assisted Inflation

One well studied multi-field model is assisted inflation; originally proposed
to relax fine tuning of potentials (see e.g. [89–92]), assisted inflation relies
on N scalar fields, preferably uncoupled, assisting each other in driving an
inflationary phase. Even though each individual field may not be able to
generate an extended period of inflation on its own, they can do so cooper-
atively. The key feature is the increased Hubble friction, which slows down
all fields. This phenomenological model is attractive, since super Planck-
ian initial values of the fields can be avoided [89, 91, 92] if the number of
fields is large. A string motivated implementation of assisted inflation is N -
flation [42, 93]: here the many fields are identified with axions arising from
some KKLT compactification of type IIB string theory [93]. An additional
implementation of assisted inflation within M-theory, making use of multiple
M5-branes, is given in [43, 94, 95].

To see how assisted inflation works, lets us consider N uncoupled fields

14For gaussian fields the tri-spectrum can be written as Tζ(k1,k2,k3,k4) = τNL[Pζ(|k1+
k3|)Pζ(k3)Pζ(k4) + (11perms)] + 54

25gNL[Pζ(k2)Pζ(k3)Pζ(k4) + 3perms.]
15This is in agreement with WMAP5 [83].
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with potential

W ≡
N

∑

I=1

VI(ϕI) (1.72)

and VI = m2
Iϕ

2
I/2. This type of assisted inflation is realized in N -flation. It

does not possess a global attractor solution as opposed to models with ex-
ponential potentials [90]. Nevertheless, the solutions are stable with respect
to classical perturbations [96] and one may even include some small cou-
pling between the fields, which are expected in N -flation, without spoiling
stability [96].

To estimate the amount of inflation, let us work within the slow roll
approximation, that is assume

εI ≡
1

2

V ′2
I

W 2
, ηI ≡

V ′′
I

W
, (1.73)

are small (εI ) 1, ηI ) 1) and

ε ≡
∑

I

εI ) 1 (1.74)

holds. The number of e-folds (1.26) becomes

N(tend, t) # −
∑

I

∫ ϕend
I

ϕI

VI

V ′
I

dϕI . (1.75)

Thus, if all fields have the same initial value ϕI ≡ ϕ, we get N #
(ϕ2 − ϕ2

end)N /4 ≈ ϕ2N /4. Comparing this result to the single field model
summarized in section 1.4, Nsingle = ϕ2/4, we observe an additional factor of
N . On the other hand, for randomly chosen sub-Planckian initial field values,
ϕI ∈ [0 . . . 1], the number of e-folds becomes N ≈ N /12 [97], independent
of the mass spectrum. Thus if the number of fields is large enough, super-
Planckian field values can be avoided while still supplying sufficient inflation.
This is a generic feature of assisted inflation, making it rather appealing.

The fields evolve during slow roll according to

3Hϕ̇I ≈ −∂VI

∂ϕI
≡ −V ′

I , (1.76)

3H2 ≈ W , (1.77)

leading to

ϕend
I

ϕI

=

(

ϕend
J

ϕJ

)m2
I/m2

J

. (1.78)
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As previously mentioned, this is not a global attractor solution, and as a
result, there is an unavoidable dependence on initial conditions if quadratic
potentials are used.

Shifting our attention to perturbations, the scalar spectral index can be
computed in the horizon crossing approximation (using the δN -formalism)
[22, 98] to

ns − 1 = −
∑

I

(

V ′
I

W

)2

− 2
∑

I (VI/V ′
I )

2 +
2

W

∑

I (VI/V
′
I )

2 V ′′
I

∑

J (VJ/V ′
J)2 . (1.79)

In the equal mass/initial condition case, this reduces to the single field slow
roll result ns − 1 = −2/N . In chapter 2 we investigate non-Gaussianities
using N -flation as a concrete example.

1.5.3 N -flation

In N -flation16 the many inflatons needed for assisted inflation to work are
conjectured to be axions in some KKLT compactification [42]. Closely related
models were investigated in [91,92,99]. Even though a concrete construction
has not yet been given, N -flation provides a test-bed for multi-field inflation.
In [93] it is argued, but not proven, that an effective quadratic potential
for each field without cross couplings may be attainable. Based on results
of random matrix theory, it is further argued in [93] that the masses for
the N fields, originally considered identical in [42], would conform to the
Marčenko-Pastur (MP) distribution [100]

p(m2) =
1

2πβm2σ2

√

(m2
1 − m2)(m2 − m2

N ) , (1.80)

where β and σ completely describe the distribution: σ is the average mass
squared and β controls the width and shape of the spectrum, see Fig. 1.1.
The latter parameter may be identified with the ratio of the number of axions
to the total dimension of the moduli space (Kähler, complex structure and
dilaton) in a given KKLT compactification of type IIB string theory; β ∼ 1/2
is preferred due to constraints arising from the renormalization of Newton’s

16Recently [83], it was argued that N -flation is ruled out for β = 1/2 and N = 50, lying
outside of the 95% CL. However, within N -flation, the value of β is not tightly constrained;
the preferred value of a 1/2 merely indicates that 0.1 < β < 0.9 is a preferred range. In
this study we consider this whole range. For β = O(0.1), N -flation is still viable similar
to m2φ2 single field potentials. We tested all conclusions with different values of β and
they remain qualitatively identical.
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Figure 1.1: Probability of a given mass according to the Marčenko-Pastur
distribution from (1.80), depending on β and the dimensionless square mass
x = m2/m2

1, rescaled with the expectation value 〈x〉 (also dependent on
β): β1 = 1/4, β2 = 1/2 and β3 = 3/4; the closer β is to one, the broader
the mass spectrum becomes.

constant [42]. In terms of β, the smallest and largest mass are given by

m2
1 = a ≡ σ2(1 −

√

β)2 , (1.81)

m2
N = b ≡ σ2(1 +

√

β)2 . (1.82)

The effect of this distribution on the power-spectrum has been computed
in [93,101], yielding a slightly redder spectral index. Further work on differ-
ent aspects of N -flation include [97, 102–111]. We will use this model as a
concrete realization of multi-field inflation and investigate non-Gaussianities
during slow roll in chapter 2 and beyond slow roll in chapter 3 as well as
reheating in chapter 4.
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1.5.4 Reheating

The old theory of reheating is still applicable in the presence of multiple
inflatons, but little is understood whether or not non-perturbative effects
play an important role. In the mathematical literature, an elegant method
determining the presence of instabilities is known: spectral theory [53, 112].
The basic idea consists of recasting the equation of motion for the matter field
χ into the form of the Schrödinger equation, and compute its spectrum. The
complement of this spectrum will be a subset of modes with a positive Floquet
index [66]. Expressly, renaming x ≡ τ , y ≡ Xk as well as λ ≡ Ak (compare
to section 1.4.3) we arrive at the one dimensional Schrödinger equation

−d2y

dx2
+ Q(x)y = λy , (1.83)

where the potential is determined by the time dependent mass of χ. In case
of single field reheating, it is given by Q(x) ≡ 2qP (2x) with P (2x) ≡ cos(2x)
for the Mathieu equation and P (·) ≡ cn2(·) [50] for the Lame equation.
Naturally, this transformation can also be performed for more intricate time
dependent masses. If one solves (1.83) for the spectrum S in case of the
Mathieu equation one recovers correctly the resonance bands by considering
the complement S̄ [57]. Further, as long as the potential Q is periodic, it is
reasonable to expect well defined resonance bands.

Lets turn our attention to more than one inflaton field and assume that
they are all coupled to the same matter field. Again neglecting the matter
field’s mass, we can write its equation of motion as follows,

χ̈k + 3Hχ̇k +

(

k2

a2
+

∑

I

g2
Iϕ

2
I

)

χk = 0 . (1.84)

Each inflaton will oscillate as ϕI(t) = ΦI(t) cos(ωIt+αI) with frequency ωI =
mI , some phase αI and a decaying amplitude ΦI(t) due to Hubble friction.
If the masses are not related via rational numbers the resulting potential
Q will only be quasi-periodic. In this case, analytic expressions for µk are
not known even if one considers only two fields, in phase, without Hubble
damping and with identical couplings. Nevertheless, spectral methods can
still be applied to find instabilities. Roughly speaking, if Q is quasi-periodic
the band structure of the spectrum of the Schrödinger equation will dissolve
in most cases into a nowhere dense set on the real numbers, similar to a
Cantor set [54, 66, 113]. Therefore the complement of the spectrum will be
dense, and thus almost all modes will have µk > 017. This way of preheating

17Note that there are a few known cases of quasi-periodic potentials that still exhibit a
band structure similar to the periodic case [56].
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is sometimes referred to as Cantor Preheating [57].
Inflationary reheating for two inflaton fields and one matter field was

studied numerically in [57, 66]; it was shown that the stability bands of the
Mathieu equation indeed vanish for the quasi periodic potential under consid-
eration [57]: in the strong coupling limit the stability bands of the Mathieu
equation completely dissolve, resulting in µk > 0 for almost all modes, ac-
companied by large peaks at certain wavenumbers. This is agreement with
predictions of spectral theory [66]. To achieve a quasiperiodic potential in
(1.84), the ratio of the inflaton field masses is chosen such that they are
irrationally related; however, further investigations into more fields or a sys-
tematic variation of the masses and couplings is absent.

Before concluding this short review on multi-field reheating, we would
like to point out another perspective onto the problem, indicating that non-
perturbative effects could be important in multi-field reheating. Given a
reasonably large number of fields, the potential Q will appear as if dominated
by noise. Further, the effect of noise onto reheating has been studied in [114,
115], where it was found that even small amounts of noise on top of a periodic
potential Q (which comes about in a m2ϕ2 theory), lead to an instability of
almost all modes. This study relies on a different analytic technique by
casting the equations of motion in terms of matrix equations and using the
Fürstenberg theorem. The analytical findings are confirmed numerically; It
is shown that a generic µk in the presence of noise is larger than the largest
µk in the absence of noise. This indicates that multi-field reheating could
be much more efficient than its single field counterpart. However, more
recently the effect of white noise was re-examined in a model including a λϕ4

term [116], with the result that amplification is almost always suppressed by
the presence of noise.

Therefore, a careful numerical investigation of multi-field reheating is
needed for a definite evaluation of its efficiency, which we provide in chapter
4.

1.6 Cosmic Strings and Loops

Cosmic strings are one dimensional topological defects with a mass per length
µ. Through their movement they stir up the surrounding matter content, and
as a result, if they are present in the early universe, they source perturbations
in the CMBR [117]. Since the resulting CMBR spectrum does not exhibit
acoustic peaks, strings are ruled out as the primary source of structure.
Current observations of the CMBR indicate that they have to contribute
less than about 10% of the primordial anisotropy, leading to an upper bound
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on the mass density of Gµ ≤ 2 × 10−7 [118, 119]. (Here and in the following
we keep Newtons constant G explicit). Nevertheless, string networks remain
attractive subjects of study because they persist throughout the history of
the universe without over-closing it and they constantly source scalar, vector
and tensor perturbations.

Recently, interest in cosmic strings has been revived, mainly because dif-
ferent kinds of such strings occur within many early universe models moti-
vated by string theory. The primary difference lies in their intercommutation
probability P , which is one for ordinary cosmic strings, but smaller for F and
D strings [120]. Note that in any string network there will also be a popula-
tion of loops which are being chopped off by intersecting strings.

String networks have been the subject of numerical studies for some time,
and accurate semi-analytic network models have been developed. In the fol-
lowing we will summarize possible origins of string networks, how they evolve
according to simple network models and what kind of loops are produced.
We then proceed to discuss how individual strings interact with matter.

Further review material can be found in [117,121].

1.6.1 Origins

String networks are a by-product of many models of the early universe. In
this section we investigate a few examples. Perhaps the most commonly
known strings are those originating after symmetry breaking phase transi-
tions: a network of topological defects will generically arise due to the Kibble
mechanism [122]. For instance, a solitonic string solution arises in any gauge
theory with a broken U(1) symmetry. At the phase transition, when the
universe cools below a critical temperature Tc, the Higgs field rolls from the
origin to one of the supersymmetry breaking vacua. A string network is gen-
erated because strings do not return to their original starting point, instead,
as shown by numerical simulations, they are in an infinite random walk. The
underlining reason is due to causality, meaning that over large distances, the
phase is not correlated.

Such phase transitions occur in breaking down of GUTs but also at the
end of hybrid inflation models within supersymmetry and supergravity the-
ories. As the universe expands and cools, it undergoes a number of phase
transitions, breaking symmetry along the way.

The resulting cosmic strings form a network composed of infinitely long
strings and a distribution of closed loops, which are constantly produced in
the network: whenever two strings intersect (or one string self intersects),
there is a chance of reconnection so that a loop gets chopped off [123]. In
turn, a newly formed loop, one without cusps and intersections, may rapidly
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intercommute with itself and fragment into smaller loops through excision
of the cusp regions. The work of [124] suggests that as much as 80% of the
total string length goes into small loops while 20% remains in large loops.

Braneworld models can also generate cosmic strings [125]: the low energy
dynamics of D-brane annihilation at the end of many brane inflation models
produce D-strings [125] 18.

Heterotic cosmic strings can arise from M5-branes wrapped around 4-
cycles of a Calabi-Yau in heterotic M-theory compactifications [126], avoiding
the known problems [127].

1.6.2 String Network Models

In the many numerical studies performed on string networks, it is shown that
such networks evolve towards a scaling solution; meaning that the ratio of
the characteristic length-scale of the network, the correlation length, to the
Hubble radius is a constant, see [117] for a review. Two such semi-analytic
loop network models are the one-scale model (OSM) and its extension, the
velocity-dependent one-scale model (VOS). The acquisition of the equations
determining the evolution of the long string energy density is provided by
both models. Then, energy conservation is employed to determine the energy
supplied to the loop population, in the form of newly formed loops. Our
primary interest is the length spectrum

N(ℓ, t) =
dNloops

d ln ℓ
(1.85)

where ℓ is the loop length and Nloops the number of loops per comoving Hub-
ble volume. This spectrum can be extracted in both models and exhibits a
distinctive loop size. The existence of a peak can be understood heuristically:
at large loop size the spectrum decreases since these loops are created later,
during a time of slower loop production. Additionally, the spectrum has to
fall off for very small loops, since these loops are rapidly disappearing due to
the emission of gravitational waves. Thus, there must be some intermediate
scale where the spectrum peaks. Knowledge of this spectrum will be a cru-
cial ingredient to make quantitative predictions of magnetic fields caused by
rotating loops in chapter 5.

18Braneworld models of inflation, in geometries such as the Klebanov-Strassler (KS)
throat, allows the formation of fundamental cosmic strings or F -strings and Dirichlet
brane cosmic strings, or D-strings.
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The one scale model (OSM)

According to the OSM [117, 128, 129] we can write the absolute number of
loops Nloops as

dNloops

dLH(t)
=

V (t)

LH(t)4

C

α
(1.86)

where V (t) is the physical volume, C is constant (different in matter- or
radiation-dominated epochs), α is the size of newly created loops as a fraction
of LH(t), the particle horizon measured in physical units defined as

LH(t) = a(t)

∫ t

0

dt′

a(t′)
. (1.87)

Consider next a loop formed at some time tF with initial length ℓ(tF ) =
αLH(tF ). Due to the emission of gravitational waves the loop loses energy
and shrinks. This emission of gravitational waves also influences the loop’s
movement, which will be discussed in more detail in chapter 5. Nevertheless,
in this section we are interested on the length at time t of a loop formed at
tF < t; this is given by

ℓ(t, tF ) = frαLH(tF ) − ΓℓGµ(t − tF ) (1.88)

where fr accounts for the energy loss from the redshifting of the loop’s pecu-
liar velocity immediately after formation, and Γℓ is a dimensionless parameter
controlling the efficiency with which the loop emits gravitational radiation.

We would like to compute the length-spectrum N(ℓ, t) based on the fun-
damental OSM equations (1.86) and (1.88). First, assume that the volume
simply follows the Hubble expansion V (t) = (a(t)R)3. With this in mind, we
can simply integrate (1.86) so that (1.85) yields the absolute number of loops
per (cubical) comoving volume R3. Further, we take LH(t) = 2t = 1/H(t) in
the radiation dominated epoch. To calculate the length-spectrum we rewrite
(1.85) as

N(ℓ, t) =
dNloops

dLH(tF )

dLH(tF )

d ln ℓ
. (1.89)

To continue, we need LH(t): a loop that has a length ℓ at time t must have
formed at a time tF when, using (1.88), the particle horizon LH(tF ) had a
size of

LH(tF ) = 2

(

ℓ + ΓℓGµ ct

2αfr + ΓℓGµ

)

. (1.90)

Taking the derivative provides the second factor in (1.89). To obtain the first
one, we pick a fiducial time t0 during radiation domination, set a(t0) = 1,
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and fix R = LH(t0). This yields the number of loops per logarithmic interval
in ℓ, at time t, in a comoving volume equal to one Hubble volume at a time
t0, as

N(ℓ, t) =
30

α

(

αfr +
ΓℓGµ

2

)3/2
LH(t0)

3/2ℓ
(

ℓ + Γ"Gµ
2

LH(t)
)5/2

, (1.91)

where we have taken the value C ∼ 30 during radiation domination, as
in [128]. The spectrum possesses a peak at the characteristic length

ℓpeak(t) =
ΓℓGµ

2
LH(t) ∼ 50 · Gµ · ct (1.92)

taking Γℓ ∼ 50 [128,130,131]. As expected, the spectrum falls off for ℓ > ℓpeak

(slower loop production), and also for ℓ < ℓpeak (loop vanishing). Similar
expressions can be derived in the matter era.

The velocity-dependent one-scale model (VOS)

The VOS model of refs. [132, 133] is a more realistic extension of the OSM.
Here the string population is characterized by a length scale L, a velocity
v, and a string number density n. Like the OSM model, it has several di-
mensionless parameters, which are commonly called c1, c2, and c3. These are
fixed by matching to numerical simulations [132], but differ in the radiation
and matter era. Comparing with [132] the scaling values of H , L and v, we
find c1 = 0.21 (0.2475), c2 = 0.18 (0.3675) in the radiation (matter) eras.
The third parameter, c3 = 0.28, fixes the scaling string number density. The
physical origin of the VOS equations and their parameter inputs is discussed
extensively in ref. [132]; matching between the equations used below and
those of ref. [132] is explained in ref. [133]. In the VOS model the length
scale evolves according to

dL

dt
= HL + c1v (1.93)

where the loop parameter c1 ≤ 1 is dimensionless. The velocity v obeys

dv

dt
=

−2Hv + c2/L

1 − v2
, (1.94)

and the comoving number density of long strings N = a2n is governed by

dN

dt
= −c2Nv

L
− c3N

2Lv

a2
. (1.95)
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To derive the loop creation rates from the above equation, we plug the rate
of change of cosmic string energy density into the loop creation rate formula
from ref. [128] and taking ρ∞ = nµ we arrive at

dNloops

dt
= − V (t)

µαLH(t)

[

ρ̇∞ + 2
ȧ

a
ρ∞

(

1 + 〈v2〉
)

]

. (1.96)

Here LH is again the Hubble radius, V the horizon volume and α is the ratio
of the loop size to the Hubble radius.

1.6.3 Effect on Plasma

Whenever massive objects, such as cosmic strings or loops, move through a
plasma, they will interact with it gravitationally. As a result, the plasma
might drift or even get stirred up. Below we review the dragging effects
due to a straight string, first via a the full GR treatment, followed by an
approximate Newtonian derivation. The latter can easily be generalized to
rotating cosmic string loops and will be used in chapter 5.

Gravitational Dragging: GR computation

Let us investigate gravitational effects onto a plasma through which long,
straight strings move following [134,135]: consider a stationary straight string
stretching in the z-direction

T ν
µ = δ(x)δ(y)diag(µ, 0, 0, T ) , (1.97)

where µ is the energy per unit length and T is the tension. Working in the
weak field limit such that

hµν = gµν − ηµν (1.98)

is small, one can integrate the linearized Einstein equations to

h00 = h33 = 4G(µ − T ) ln(r/r0) , (1.99)

h11 = h22 = 4G(µ + T ) ln(r/r0) , (1.100)

where r0 is a constant of integration and r the distance from the z-axis. For
a straight string without any small scale wiggles on it we have µ = T ≡ µ0,
so that the only non-zero components of hµν are h11 = h22 = 8Gµ0 ln(r/r0).
After a coordinate transformation, the metric becomes identical to the one
of an Euclidian space where a wedge of deficit-angle ∆0 = 8πGµ0 is removed.
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Let the string move in the −x̂-direction with velocity vs such that it
sweeps over the x-z-plane in time. Further, consider a test particle of mass m
a distance R away from the x-z-plane, e.g. at r = Rŷ. One can now integrate
the geodesic equation in the weak field limit for the test particle’s trajectory
due to the gravitational interaction [134–137]. The resulting velocity after
the encounter becomes [134]

vy = −4πµ0Gvsγs (1.101)

where γs = (1 − v2
s)

−1/2.
So far we ignored any small scale structure on the string. The origin of

the string wiggles is due to string crossings and the fact that the expansion
does not smooth out modes falling well within the horizon. If we do not
probe in close proximity of the string, that is if R is much larger than the
amplitude of the wiggles, we arrive again at an (effective) straight string.
However, its mass density does not match up with its tension any more. To
be precise, if one averages over the wiggles the effective tension and mass
density satisfy [134, 138]

µT = µ2
0 , (1.102)

where µ ≈ 1.9µ0 in the radiation era and µ ≈ 1.5µ0 in the matter era [117].
Using again the metric from (1.99) and (1.100) in the linearized geodesic
equation for the test particle one gets [134]

vy = −2πG(µ − T )

vsγs
− 4πGµvsγs . (1.103)

The new first term, which can be recognized as the classical gravitational
attraction of an infinite rod with mass density λ = µ−T = µ(1−µ2

0/µ
2) (see

Sec. 1.6.3), will dominate for a small drift velocity vs. If we confine ourselves
to the matter era, that is t ≥ teq, a small drift velocity is expected for a
wiggly string: even if the wiggles move very fast, e.g. with an RMS velocity
of vRMS ≈ 0.6, the velocity of the string averaged over a correlation length
is very small vs ≡ v̄RMS ≈ 0.15 [134]. Therefore, we may focus on the first
term only with λ ≈ 0.56µ0, but keep in mind that we should not probe the
space in close proximity to the string. In addition, we are justified to use the
non-relativistic limit, since γs ≈ 1.

Newtonian limit and plasma dragging

We now derive the infall velocity vy before estimating the dragging velocity
vx, both in the Newtonian limit. Again, assume an infinite straight string
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stretching in the ẑ-direction and moving in the −x̂-direction with velocity vs

(which we assume to be small right from the start vs ) 1), along with a test
particle located a distance R away from the x-z-plane, e.g. at r = Rŷ. The
Newtonian gravitational force becomes

dF = −Gmλd z
r

r3
, (1.104)

where r measures the distance between the test mass and the line element dz
of the string with mass per unit length λ = µ−T . Thus, the total attractive
force towards the string becomes F = 2mGλ/R. If we now let the string
move from −∞ to ∞, we see that to first order the particle acquires a net
velocity towards the x-z-plane of

vy = −2GλR

∫ ∞

−∞

1

R2 + xs(t)2
d t , (1.105)

where xs(t) is the x-coordinate of the string. Noting that dt = d xs/vs we
arrive at

vy = −2πG(µ − T )

vs
, (1.106)

where we plugged in λ = µ − T . This is of course nothing else than the
non-relativistic limit of the first term in (1.103) derived in [135, 137]. To
first order, the force in the x-direction averaged over the encounter cancels
out. However, the velocity in the y-direction towards the x-z-plane in (1.106)
induces a net drag behind the string. This is easily understood as follows: the
test particle is closer to the plane during the departure of the string, resulting
in a net force in the direction of the string movement. To derive the drag
velocity, we first compute vy(xs) in order to arrive at the particle’s trajectory
ym(xs) to first order, which can then be used to evaluate vx. Leaving the
upper bound in (1.105) finite, we get

vy(xs) = v0

(

1 +
2

π
arctan(xs/R)

)

, (1.107)

where v0 = −πGλ/vs, so that

ym(xs) = R +
v0

vs

(

xs

(

1 +
2

π
arctan(xs/R)

)

−R

π
ln(1 + x2

s/R
2)

)

(1.108)

≈ R +
v0

vs
xs , (1.109)
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where we set ym(0) = R and we expanded around xs/R = 0 in the last step.
Consider next the x-velocity

vx =
Gλ2

vs

∫ ∞

−∞

xs

y2
m(xs) + x2

s

d xs . (1.110)

If we Taylor expand the integrand for xs ) R we see that the term propor-
tional to x in ym(xs) causes a net drag velocity of vx ∼ v2

y/vs.
Based on the above, we see first of all that a straight string attracts

matter towards its trajectory with a net velocity of vy ∼ G(µ − T )/vs after
the encounter. This velocity increases with a decrease of the string velocity vs,
since the plasma particle spends more time in closer proximity to the string so
that the overall gravitational attraction is larger. This flow is obviously not
rotational. Furthermore, due to the symmetry of the flow with respect to the
x-z plane, there is no net momentum of the plasma after the encounter. We
also computed the drag velocity vx ∼ v2

y/vs. This flow has a net momentum
in the direction of the string movement and slows the string down. This flow
is not rotational either.

1.7 Magnetic Fields

The existence of large-scale magnetic fields in galaxies and galactic clusters
today is an observational signature of magnetism in the primordial universe
(see [138–141] for reviews).

Faraday rotation measurements in galaxies and galactic clusters have
confirmed the existence of fields in the µG range [139, 140, 142]. If mag-
netic fields of this strength were present in the very early universe, they
would have drastically altered the history of structure formation [143–145].
This constraint suggests that magnetic fields formed at much weaker fluxes,
then grew through some kind of dynamical amplification. While magneto-
hydrodynamic processes in such collapsed structures can magnify pre-existing
magnetic fields in a process known as a dynamo, all presently known dynamo
mechanisms require the existence of a magnetic seed field prior to the oper-
ation of an amplification mechanism.

Primordial magnetic seed fields cannot arise from first order scalar den-
sity perturbations present after simple models of inflation. Many out-of-
equilibrium early universe processes can produce reasonably strong magnetic
fields, but the fact that the observed cosmological magnetic fields are on
scales of kiloparsecs means that any field formed in the very early universe
would have to be expanded, after formation, to length-scales far larger than
those on which it was formed. This expansion would have to be much faster

37



than the simple stretching due to the Hubble expansion. There are some
proposals, such as inverse cascades, but whether they truly work or not is
still under debate. In addition, the field strength suffers dramatically under
this stretching, making it challenging to achieve the desired µG strength.

On the other hand, the non-perturbative remnants of early universe phase
transitions can naturally exist on cosmological length scales and can survive
far beyond the very early – and very tiny – epoch in which they were formed.
In particular, cosmic strings, which are formed generically in braneworld
models of inflation and which are present in many unified field theory mod-
els, are just such a non-perturbative artifact. We are going to examine the
possibility to seed magnetic fields in string networks in chapter 5, but first
we review the evolution of magnetic fields and alternative proposals of their
origin.

For background material on the observations that have identified these
fields, the operation of the dynamo mechanism, and other review material,
see Refs. [139–141].

1.7.1 Possible Origins and Problems

When one thinks for a plausible explanation of large scale magnetic fields,
inflationary perturbations come immediately to mind: such perturbations
are naturally stretched to super-Hubble scales during inflation, so coherence
length is not a problem. However, to first order in perturbation theory, the
vector perturbations required to create magnetic fields decay with cosmic ex-
pansion. Thus any field generation caused by inflationary perturbations must
be a second order effect [146]. A different approach asserts that fields initially
formed at very small scales (through, for example, phase transitions), and
were subsequently amplified by an “inverse cascade” arising from turbulent
MHD processes [140, 147,148].

Ultimately all of these mechanisms come up against the correlation length
problem, which itself arises since causal mechanisms can only operate on sub-
horizon scales: except for redshifts close to decoupling, such mechanisms pro-
duce fields on comoving lengths that are too small to explain the correlation
length of fields observed in galaxies and clusters. For most mechanisms, this
problem can only be solved by invoking large scale field averaging, inverse
cascades, or the super-horizon correlations produced by cosmic inflation [147].
The speculative nature of these proposals is an indication of how challenging
it is to generate fields with the proper length scales.

Another proposal, which we build upon in chapter 5, breaks up the prob-
lem into two separate challenges: first, a coherent, reasonably strong mag-
netic seed field is created before galaxy collapse, but not necessarily in the
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very early universe. Thus, it is possible to achieve the needed correlation
length by causal physics within the horizon. Thereafter, one needs an effi-
cient amplification by means of a dynamo. Whether the latter is efficient
enough or not is still uncertain. We will elaborate on this proposal below.

1.7.2 Harrison-Rees Mechanism

Harrison [149] considered a model in the radiation era, inside the Hubble
radius, whereby a magnetic seed field is generated by vortical perturbations
of the ionized plasma. He noted that a circular current develops when there
is a differential rotational flow between ions and the electron-photon gas.
Due to Thompson scattering non relativistic electrons are tightly coupled to
the radiation bath; the result of this coupling is that the angular momentum
of ions is damped more efficiently due to the expansion of the universe, than
that of electrons. Hence, a net current carried by the electron fluid develops,
which in turn generates the magnetic field. In analogy to Harrison’s scheme,
Rees [150] suggested a method by which the angular velocity of the electron
fluid is hindered through Compton drag on the microwave background, while
the ions remain unchanged.

If the vorticity is assumed to be present prior to decoupling, the magnetic
field can be related to the vorticity by [151]

B =
2m

e
ωplasma ≈ 10−4ωplasma , (1.111)

where ωplasma has to be specified in 1/seconds to get B in Gauss. The problem
with this mechanism, however, is that it can only produce magnetic fields
when Compton scattering is efficient, which means that it ceases to work
after decoupling.

1.7.3 Evolution since Matter-Radiation Equality and
Constraints on Magnetic Seed Fields

Once magnetic fields are produced at a redshift zF , their (proper) correlation
length ξ grows with the expansion of the universe as

ξ(z) =
1 + zF

1 + z
ξ(zF ), (1.112)

and their field strength evolves according to

B(z) =

(

1 + z

1 + zF

)2

B(zF ), (1.113)
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as a result of flux conservation. Once galaxy formation begins, the evolution
of magnetic fields becomes far more complicated. As a protogalactic cloud
becomes non-linear and begins to collapse, the correlation length decreases
but the field strength is amplified. While there may be some amplification
of the field during collapse [152,153], we assume that no dynamo is active at
this stage and the field strength is primarily governed by flux conservation
[154,155]. The net pre-dynamo amplification factor in a spiral galaxy can be
estimated to [141]19.

Bi

Bgf

≈ 8 × 103 , (1.114)

where Bgf = B(zgf ). Once the protogalactic cloud collapsed, the field can
be amplified exponentially by a dynamo mechanism [141], such as the αω-
dynamo 20. This dynamo begins operation when stellar winds and explo-
sions generate interstellar turbulence, which transforms into cyclonic motions
through the Coriolis forces associated with the galactic rotation [156, 157].
The magnetic field surrounding the galaxy has two modes, a toroidal and
a poloidal component. The dynamo converts the poloidal to toroidal flux
by differential rotation of the galactic disk (the ω-effect) and the toroidal
to poloidal through cyclonic motions (the α-effect) [158]. The combined
effects can amplify the magnetic field strength by many orders of magni-
tude [141, 158–160].

We parameterise the dynamo by an efficiency factor Γdy, such that Γ−1
dy is

the field strength e-folding time, and the field B0 measured today is related
to the initial field Bi by

ln
B0

Bi

= Γdy (tf − ti) , (1.115)

where ti " tgf indicates the onset of dynamo amplification, tf ! t0 is the time
at which the fields reach the observed value and tgf is the time at which the
protogalactic cloud collapses. We take ti = tgf and tf = t0 to arrive at the
most optimistic lower bound of the seed field. The resulting amplification is
weakly sensitive to the choice of tgf , and here we take tgf = 475 Myr, which
corresponds to zgf = 10. Although the value of Γdy is crucial to estimate the
necessary seed field, its value is a matter of considerable debate.

In the literature, one finds many values for Γdy scattered in the range
0.2 Gyr < Γ−1

dy < 0.8 Gyr [159, 161, 162]. Recently, some have contended

19This expression includes: formation of a halo, gain of angular momentum through
tidal interactions with neighboring galaxies, and disc formation, see [141] for a review.

20The αω-dynamo assumed here applies to galactic magnetic fields growing in discs only.
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galaxy formation Γ−1
dy

zgf tgf 0.2 Gyr 0.3 Gyr 0.5 Gyr 1.0 Gyr

6 1 Gyr 3.8 × 1027 2.4 × 1018 1.1 × 1011 3.3 × 105

10 475 Myr (⋆) 5.2 × 1028 1.4 × 1019 3.1 × 1011 5.5 × 105

Table 1.1: The amplification factor B0/Bi, tabulated with a variety of
assumptions regarding the time tgf and redshift zgf of galaxy formation
and the efficiency Γdy of the galactic dynamo. The value we take to get
the most optimistic lower bound on Bseed in (1.116) is marked with a “⋆.”

that even larger values, Γ−1
dy " 1.1 − 1.4 Gyr, are more likely [141]. The

amplification factors for various choices of Γdy and tgf are given in Table 1.1.
To obtain the present field of B0 = 10−6 Gauss under these assumptions, the
field Bseed that must be present at decoupling with zdec = 1089 is

Bseed ≈ 2 × 10−35 G . (1.116)

This is a very optimistic lower bound for the seed field at tdec. For seed fields
between this limit and 10−20 G, only the most efficient dynamos might work,
though the existence of such dynamos in nature remains controversial [141].

In addition to constraints on its strength, the seed field must possess a
sufficiently large correlation length. The correlation length after protogalac-
tic collapse ξgf must satisfy ξgf ≥ 100 pc for the dynamo to commence [155].
Estimating the comoving correlation length xcorr before galaxy collapse (us-
ing a simple spherical collapse model for galaxy formation) leads to [155]

xcorr > η xgal = 0.95 η (Ωmh2)−1/3M
1/3
12 [Mpc] , (1.117)

where M12 = M/1012MJ, M is the mass of the galaxy, xgal is the comoving
length of the galaxy at formation, and η is the fraction of a galaxy over which
the magnetic field has to be correlated. Taking M12 ≈ 0.1 and η ≈ 1/150
(corresponding to ξgf ≈ 100 pc) yields

xcorr ≈ 5.8 kpc , (1.118)

Consequently, the seed fields must have a physical correlation length ξseed at
decoupling of

ξseed =
xcorr

1 + zdec
> 5.4 pc . (1.119)

which compares favorably with the particle horizon of about 200 kpc at
z ≈ 1000. Larger seed field correlation lengths are even better: the 5.4
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pc minimum quoted here should cover only about 10% of the protogalactic
cloud, which is only marginally adequate. A seed field with a longer length
scale – say 50 pc – would comfortably imbue the whole protogalactic cloud
with a single coherent field.
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Chapter 2

Non-Gaussianity in N-flation

2.1 Introduction

Observations of the CMBR show a nearly scale-invariant spectrum of pri-
mordial perturbations. These perturbations are observable to us today be-
cause prior to re-entering the late universe, inflation stretches them out
beyond the Hubble radius. Single field inflationary models exhibit nearly
scale-invariant, almost Gaussian, adiabatic perturbations. Thus, deviations
from purely Gaussian statistics allows, in principle, to discriminate between
different incarnations of inflation, namely, single-field or multi-field inflation-
ary models or scenarios involving the curvaton mechanism. Due to the fact
that fluctuations freeze when their wavelength crosses the Hubble radius,
non-Gaussianity in single field models are rather small, of order of slow roll
parameters. For multi-field models, on the other hand, a deviation from a
purely Guassian spectrum is expected; the reason being that the presence
of multiple degrees of freedom perpendicular to the adiabatic direction al-
lows for isocurvature perturbations; as a consequence the comoving curvature
perturbation ζ can evolve after horizon crossing, leading to potentially larger
non-Gaussianity. This is the case in curvaton models, where the sudden
turn of trajectory in field space leads to a conversion of isocurvature per-
turbations into adiabatic ones while simultaneously causing reasonably large
non-Gaussianities.

To quantify non-Gaussianities one needs to study higher order correla-
tion functions, such as the bi- and tri-spectrum. As a case in point, the
non-linearity parameter f

(4)
NL introduced in (1.69) estimates non-Gaussianities

measured by the bi-spectrum, otherwise known as the three-point correlation
function. The WMAP3 data alone leads to −54 < fNL < 114 by [6, 79, 80],
but recent re-evaluations suggest 26.9 < fNL < 146.7 at 2σ [81] (see also [82]).
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Future experiments such as Planck will improve upon these [84–87].
In this chapter we compute non-Gaussianities in N -flation, a concrete

realization of assisted inflation with an arbitrary, but large number of fields
(N ≫ 1), quadratic, uncoupled potentials VI and a known mass spectrum –
see section 1.5.2 and 1.5.3. We use this model primarily because the known
mass spectra makes an analytic approach possible. We focus on the non-
linearity parameter fNL and compute its magnitude for narrow and broad
mass spectrum. We incorporate the evolution of modes after horizon crossing
(HC), but stay within the slow roll regime in order to use analytic techniques.
The formalism employed in this study was developed in [4], its application,
however, was limited to simple toy models. A comparison with simple esti-
mates as well as the HC-limit, which is re-derived for completeness, reveals
that additional contributions due to the evolution of modes after horizon
crossing are present, but their magnitude is limited to a few percent of the
HC result.

This chapter is an abbreviated version of [1] and aimed to be easily ac-
cessible based on the foundation laid out in the introduction.

2.2 Obtaining Non-Gaussianities

In N -flation the masses conform to the Marčenko-Pastur distribution (1.80).
Inflation is achieved by the collective input of many scalar fields; it is thus
appropriately called assisted inflation. The winning feature of these models
lies in the fact that no field must traverse a super-Planckian stretch in field
space. Further, the many existing axion fields in string theory provide suit-
able candidates for the many inflaton fields. We work specifically with the
three-point correlation function and the associated non-linear parameter f

(4)
NL

from (1.69), within slow roll, to describe non-Gaussianities. In the horizon
crossing approximation, assisted inflation is indistinguishable from its sin-
gle field counterpart, where the evolution of modes is absent after horizon
crossing, leading to indistinguishable spectra of scalar and tensor perturba-
tions [18]. We compute f

(4)
NL by the non-linear δN -formalism [27, 28], see

section 1.4.1 and 1.5.1.
We begin by writing the unperturbed volume expansion rate from a flat

hypersurface at t∗ to a final hypersurface at tc

N(tc, t∗) ≡
∫ tc

t∗

Hdt . (2.1)

Consider N ∼ 1000 scalar fields responsible for driving inflation. Each of
these fields is identified with axion fields; all cross-couplings vanish when
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expanding the periodic axion potentials in the vicinity of their minima. Thus
we can write this potential as

W (ϕ1, ϕ2, ...ϕN ) =
N

∑

I=1

VI(ϕI) , (2.2)

with VI = m2
Iϕ

2
I/2 and arrange the fields according to the magnitude of their

masses, that is mI > mJ if I > J . The mass spectrum is evaluated by means
of random matrix theory and conforms to the Marčenko-Pastur law [93], see
section 1.5.3,

p(m2) =
1

2πβm2σ2

√

(b − m2)(m2 − a) , (2.3)

where σ is the average mass, set by the COBE normalization (see the end of
section 1.4.1). β ∼ 1/2 is identified as the ratio of the number of axions con-
tributing to inflation to the total dimension of moduli space [93] and controls
the width and shape of the spectrum. We treat β as a free parameter but
note that due to constraints from the renormalization of Newton’s constant,
a value of β = 1/2 is preferred.

Let’s define

xA ≡ m2
A

m2
1

, (2.4)

z ≡
√

β , (2.5)

ξ ≡ m2
N

m2
1

=
(1 + z)2

(1 − z)2
. , (2.6)

so that expectation values with respect to the Marčenko-Pastur-distribution
can be written as

〈f(x)〉 ≡ 1

N
N

∑

A=1

f(xi) , (2.7)

=
(1 − z)2

2πz2

∫ ξ

1

√

(ζ − x)(x − 1)
f(x)

x
dx . (2.8)

Since f(x) = xα+1yλx will appear frequently in our analysis, we introduce
a more convenient notation and define functions Fλ

α by

Fλ
α(y) ≡ Fα(yλξ) , (2.9)

where

Fα(ω) ≡
∫ 1

1/ξ

√

(1 − s)(s − ξ−1)sαωs ds , (2.10)
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so that the expectation values become

〈

xα+1yλx
〉

=
(1 − z)2

2πz2
ξα+2Fλ

α(y) . (2.11)

2.2.1 The Fα Functions

Let us digress for a moment and gather some properties of the Fα functions.
First note that analytic expressions are known if ω = 1: for α ≥ −1 the
functions become [93, 100]

Fα(1) = 2πz2 (1 − z)2

(1 + z)2(α+1)

α+1
∑

i=1

1

α + 1

(

α + 1
i

) (

α + 1
i − 1

)

z2(i−1) , (2.12)

by relating F to the moments of the Marčenko-Pastur mass distribution, as
analyzed in [100]. Furthermore, the expectation values 〈x−1〉 and 〈x−2〉 were
computed in [93], yielding

F−2(1) =
(1 − z)2

1 − z2

ξ

a
, (2.13)

F−3(1) =
(1 − z)4

(1 − z2)3

ξ2

a
, (2.14)

with a = (1 − z)2/2πz2.
We can also write down analytic expressions for general ω in the limit

ξ → ∞, which corresponds to the limit z → 1: first note that

F̄0(ω) ≡ lim
z→1

F0(ω) (2.15)

=
π
√

y

2 ln(y)
I1(ln(y)/2) , (2.16)

where I is a Bessel function of the first kind. All other F̄α can be computed
via recursion since

Fα+1(ω) = ω
∂Fα(ω)

∂ω
, (2.17)

Fα−1(ω) =

∫ ω

0

1

ω̃
Fα(ω̃)dω̃ , (2.18)

follows directly from the definition (2.10).
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2.3 Slow Roll and Horizon Crossing Approx-

imation

Since we restrict our analysis to the slow roll approximation, we can use the
solution to the field equations in (1.78), that is

ϕc
I

ϕ∗
I

=

(

ϕc
J

ϕ∗
J

)m2
I
/m2

J

. (2.19)

Note that a unattractive feature of N -flation is its dependence on initial
conditions. This fact is crystallized by the fact that (2.19) is not an attractor
solution. For the case of interest, a broad spectrum of masses with β ∼ 1/2
leading to ξ ∼ 34, the heavier fields drop out of slow roll before the lighter
fields, even as inflation proceeds.

We want to estimate the magnitude of the three and four-point correlation
function using the δN -formalism, as described in section 1.5.1. Thus, we
would like to compute

−6

5
f

(4)
NL =

NINJN IJ

(NKNK)2
, (2.20)

τNL =
NIJN IKNJNK

(NLNL)3
, (2.21)

gNL =
25

54

NIJKN INJNK

(NLNL)3
. (2.22)

Since we assume that modes do not evolve once they cross the Hubble radius
at t∗, we set

ϕc
I = 0 , (2.23)

and because we make use of the slow roll approximation we have

N(tc, t∗) = −
N

∑

I=1

∫ ϕc
I

ϕ∗
I

VI

V ′
I

dϕI . (2.24)

Using for simplicity equal energy initial conditions

m2
Iϕ

∗2
I = m2

Jϕ∗2
J , (2.25)

we obtain

NI =
VI√
2ǫIW

, (2.26)

NIJ = δIJ

(

1 − ηIVI

2ǫIW

)

, (2.27)

NIJK = 0 . (2.28)
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Here we replaced first derivatives with respect to ϕ∗
A by

V ′
I =

√
2ǫIW , (2.29)

and all potentials and slow roll parameters, defined in section 1.5.2, are
evaluated at t∗. The non-Gaussianity parameters evaluated to leading order
in slow roll approximation become

−6

5
f

(4)
NL =

1

2N
, (2.30)

τNL =
1

(2N)2
, (2.31)

gNL = 0 . (2.32)

Note that this result is independent of the mass spectrum of N -flation, and
it is indistinguishable from that of single field inflationary models with a
quadratic potential [76]. The value of gNL is zero because the third derivative
of a quadratic potential vanish. This result is expected since the evolution
of perturbations after HC is neglected.

2.4 Beyond the Horizon Crossing Approxi-

mation

As we saw in the previous section, neglecting the evolution of perturbations
leads to results that are indistinguishable from single field models. Here we
would like to include the evolution of modes after horizon crossing, still within
slow roll approximation. Under these conditions, the general expression of
f

(4)
NL was derived in [4]

−6

5
f

(4)
NL = 2

∑N
I=1

u2
I

ǫ∗
I

(

1 − η∗
I

uI

2ǫ∗
I

)

+
∑N

J,K=1
uJuK

ǫ∗
J
ǫ∗
K
AJK

(

∑N
L=1

u2
L

ǫ∗
L

)2 , (2.33)

where

uI ≡
∆VI

W ∗ +
W c

W ∗
ǫc
I

ǫc
, (2.34)

with

∆VI ≡ V ∗
I − V c

I > 0 , (2.35)
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and the symmetric A-matrix

AJK = −W 2
c

W 2
∗

[ N
∑

I=1

ǫI

(ǫK

ǫ
− δKI

)(ǫJ

ǫ
− δJI

)(

1 − ηI

ǫ

)

]

c

. (2.36)

We evaluate this expression by first computing the field values at t∗ and
tc. The needed 2N conditions are given by: the N − 1 dynamical relations
between fields from (2.19)

ϕc
1

ϕ∗
1

=

(

ϕc
I

ϕ∗
I

)m2
1/m2

A

, (2.37)

the N − 1 initial values, chosen to satisfy equal energy initial conditions,

ϕ∗
I =

m1

mI

ϕ∗
1 , (2.38)

the requirement that t∗ be N e-folds before tc

4N =

N
∑

I=1

[

(ϕ∗
I)

2 − (ϕc
I)

2
]

, (2.39)

and lastly, demanding that a slow roll condition gets violated at least for one
field at tc, which in our case occurs when

ηc
N = 1 . (2.40)

Once we specify the masses, finding a solution for these conditions is pos-
sible. To this aim, we concentrate on two distinct cases: first, we consider
narrow mass spectra with β ) 1, which result in a simple analytic expression.
Second, we study more realistic broad mass spectra for which β ∼ 1/2.

2.5 Narrow Mass Spectra

For simplicity we consider narrow mass spectra (β → 0), an unrealistic, yet
easier case and we define

δA ≡ 1 − m2
1

m2
A

) 1 , (2.41)

δ ≡ 1

N
N

∑

A=1

δA ) 1 . (2.42)
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Using the Marčenko-Pastur distribution, we obtain a relation between δ and
z =

√
β

δ = 1 −
〈

x−1
〉

= 1 − (1 − z)2

1 − z2
. (2.43)

Using eqns (2.40)-(2.43) we can evaluate the field values ϕ∗
I and ϕc

I and the
corresponding slow roll parameters. In [4] it was found that the second term
in (2.33) becomes second order in the slow roll parameters and δ, that is

∑N
J,K=1

uJuK

ε∗
J
ε∗
K

AJK

(

∑N
L=1

u2
L

ε∗
L

)2 = O(δ2/N2) . (2.44)

By the same method, the first term in (2.33) becomes

∑N
I=1

u2
I

ε∗
I

(

1 − η∗
I

uI

2ǫ∗
I

)

(

∑N
L=1

u2
L

ε∗
L

)2 =
1

2(2N + 1)

(

1 − δN − δ

2N + 1

)

+ O(δ2) , (2.45)

which includes a contribution proportional to 1/N as exhibited in the ex-
pression for the horizon crossing approximation. Therefore we obtain all in
all

−6

5
f

(4)
NL =

1

(2N + 1)

(

1 − δN − δ

2N + 1

)

+ O(δ2) , (2.46)

where we only kept the leading order contribution in δ. If we now use (2.43)
and

δN = 1 − (1 − z)2

(1 + z)2
, (2.47)

we attain after expanding in z =
√

β our first major analytic result:

−6

5
f

(4)
NL =

1

(2N + 1)

(

1 − 2
√

β

2N + 1

)

+ O(β) . (2.48)

Comparing this expression with (2.30) we see an extra term proportional to√
β. This term vanishes if all the masses are the same, as expected in this

case since modes would not evolve after horizon crossing. On the other hand,
for a mass distribution of non-zero width, isocurvature modes are sourced,
leaving an imprint onto f

(4)
NL. From this result we conclude that if the mass

spectrum is narrow, single field models of inflation and multi-field models,
such as N -flation, are indistinguishable during slow roll with respect to the
bi-spectrum.
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2.6 Broad Mass Spectra

The preferred mass spectrum for N -flation is the broad mass spectrum with
β ∼ 1/2. Here we compute the exact value of f

(4)
NL for this case and compare

it to the small β expansion obtained in (2.48).

2.6.1 Computation and Results

As we saw in section 1.5.3, the mass spectrum in N -flation conforms to the
Marčenko-Pastur distribution (1.80). To compute f

(4)
NL we proceed as follows:

first, we calculate the field values at tc and t∗ using (2.37)-(2.40), where we
take t∗ to be the time when the heaviest mass violate the slow roll condition
(2.40); since there is no cross coupling between fields, the remaining fields
can proceed to drive inflation. That is, t∗ does not correspond to the end
of inflation if the mass spectrum is stretched out. After tc several e-folds of
inflation are expected, which means that the volume expansion rate may be
smaller than the usual N ∼ 60. Second, we compute the potential and slow
roll parameters in (2.33)-(2.36). Finally, given the expectation values (2.8)
and (2.11) we evaluate all sums in (2.33).

Firstly, we compute the field values ϕ∗
1 and ϕc

1 ≡ ϕ1 (we drop the super-
script “c” from here on): inserting (2.19) into (2.38) we obtain

ϕ∗2
1 =

4N

N
1

〈x−1〉 − 〈x−1yx〉 (2.49)

where all sums are replaced by the expectation values introduced in (2.8),
and we defined

y ≡ ϕ2
1

ϕ∗2
1

. (2.50)

Furthermore, after using (2.19), (2.38) and (2.49) in (2.40) we obtain the
uncoupled equation

ξ

2N
=

〈yx〉
〈x−1〉 − 〈x−1yx〉 . (2.51)

This equation needs to be solved for y. Using the definition (2.11), (2.51)
can be equivalently written as

0 = 1 − 2N
F1

−1(y)

F0
−2 − F1

−2(y)
. (2.52)

To solve this equation, we employ a standard numerical routine as imple-
mented in MAPLE, and we denote the solution to (2.52) with ȳ(β) (see
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Figure 2.1: Solving (2.52) numerically leads to ϕ2
1/ϕ

∗2
2 ≡ ȳ(β) for (a)

−9 ≤ log10(β) ≤ −1, (b) 0.1 ≤ β ≤ 0.9. We took N = 60 in all plots.

Fig. 2.1 for a plot of ȳ over β for N = 60). From here on all F -functions are
to be evaluated at ȳ.

The field values ϕ∗2
I and ϕ2

I and slow roll parameters can be computed in
a straightforward, but tedious way (see [1] for details).

The value of uI in (2.34) appearing in (2.33) becomes

uI =
1

N (1 − ȳxI + c̄xI ȳ
xI) , (2.53)

where we defined

c̄ ≡ F0
−2 − F1

−2

2NξF1
0

. (2.54)

After some more algebra, we can evaluate the two components of f
(4)
NL in

(2.33)

−6

5
f

(4)
NL(β) = 2 (f(β) + F (β)) . (2.55)

to

f(β) ≡
∑N

I=1
u2

I

ε∗
I

(

1 − η∗
I

uI

2ǫ∗
I

)

(

∑N
L=1

u2
L

ε∗
L

)2 (2.56)

=
G

4Nα
×

(

F0
−2 − F1

−2 −F2
−2 + F3

−2 + c̄ξ
[

F1
−1 + 2F2

−1 − 3F3
−1

]

+c̄2ξ2
[

−F2
0 + 3F3

0

]

− c̄3ξ3F3
1

)

×
( (

F0
−2 − 2F1

−2 + F2
−2 − 2c̄ξ

[

F2
−1 −F1

−1

]

+ c̄2ξ2F2
0

)2 )−1
(2.57)
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Figure 2.2: −f
(4)
NL(2N + 1)6/5 over log(10)(β) computed using: a. the

horizon crossing approximation −f
(4)
NL(2N + 1)6/5 = 1, b. the δ-expansion

from (2.48), c. the ”exact” expression from (2.55) and d. the approximation
from (2.62). We took N = 60 in all plots. Note that b. and d. are both
good approximations up until β ∼ 0.1.

and

F (β) ≡
∑N

J,K=1
uJuK

ε∗
J
ε∗
K
AJK

(

∑N
L=1

u2
L

ε∗
L

)2 (2.58)

with

α ≡ (1 − z)2

2πz2
, (2.59)

G ≡ α
(

F0
−2 − F1

−2

)

. (2.60)

The analytic, yet cumbersome, expression for F can be found in [1]. This is
our second major result.

2.6.2 Discussion

A plot of f
(4)
NL versus β can be found in Figures 2.2 and 2.3. In these figures

we compare the analytic approximation (2.48), the horizon crossing approx-

imation −f
(4)
NL6/5 = 1/(2N + 1) and the approximation in (2.62) with the

full analytic result (2.55). The approximation in (2.48) is good in the range
β ≤ β̄ ∼ 1/10. In this region, the leading order contribution to the exact
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Figure 2.3: −f
(4)
NL6/5 over β computed using: a. the horizon crossing

approximation −f
(4)
NL(2N + 1)6/5 = 1, b. the δ-expansion from (2.48),

c. the exact expression from (2.55) and d. the approximation from (2.62).
We took N = 60 in all plots. Note that both approximations fail to recover

the turn of f
(4)
NL observable in Figure (b).

expression in (2.55) originates from the prefactor in (2.57), which includes a
dependence on β via G defined in (2.60), and the first summands. Hence we
may also use

−6

5
f

(4)
NL(β) ≈ G

2Nα

1

F0
−2

(2.61)

=
1

2N

F0
−2 − F1

−2

F0
−2

(2.62)

as an approximation for small β. Here F0
−2 = (1 − z)2/(1 − z2) from (2.13)

and F1
−2(ȳ) is defined in (2.9) where ȳ(β) is the solution to (2.52). Naturally,

we recover the horizon crossing result in the limit β → 0.
Both, the δ-expansion and the above approximation in (2.62), fail for

β ∼ 1/2, see Fig. 2.3. However, the contribution due to F defined in (2.58)
is negligible even for very broad spectra (e.g. up to β = 9/10 in Fig. 2.3 b),
in agreement with the conclusions of [4], where two-field models with a large
ratio of the two masses are solved analytically and an additional slow roll
suppression is found for F . Hence we may use

f
(4)
NL ≈ −5

3
f(β) (2.63)
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as an approximation in the preferred region of N -flation, β ∼ 1/2. In this

region, the magnitude of −f
(4)
NL is a few percent smaller than the horizon

crossing result (see Fig. 2.3). Such a deviation will never be observable. The

minimum is reached for β ≈ 0.74 and −f
(4)
NL increases for larger values of β

so that it intersects the horizon crossing result around β ≈ 0.88. For even
larger values of β the magnitude of the non-linearity parameter increases to
a point where it becomes significantly large. However, in the limit β → 1
this result should be taken with caution since it corresponds to an infinitely
broad mass spectrum. In the above result, we took the final time tc to be the
time at which the heaviest field leaves slow roll and we assumed that sixty
e-folds of inflation occurred between t∗ and tc. However, if the spectrum of
masses is indeed very broad, there will be a considerable amount of inflation
even after the heaviest fields leave/left slow roll; hence, the potentially large

value for −f
(4)
NL at tc might very well be a transient phenomenon, due to a

few heavy fields. Note that according to the Marčenko-Pastur distribution
the majority of fields will have relatively light masses in the broad spectrum
case, see Figure 2.1 and that the majority of the masses are smaller than the
average one for β close to one. As a result, one might actually neglect the
few heavy fields altogether, meaning, one might want to truncate the mass
spectrum, since heavy fields will rapidly settle in their minimum. Naturally,
once a field leaves slow roll, our formalism is not applicable any more up
until the field settled in its minimum.

It is beneficial at this point to stress the limitations of our approach:
first, we focused on potentials without cross-couplings between fields. In
the case of N -flation it is arguable that vanishing or very small couplings
are the norm if the fields remain close to the minima of their potential [93].
Nevertheless, such an assumption is rather artificial, especially if we assume
that the initial field values are randomly chosen in the interval [0 . . .mpl]
1. The presence of such couplings could lead to an enhanced production
of non-Gaussianities. Second, we considered only quadratic potentials with
mass spectra conforming to the Marčenko-Pastur distribution β ∼ 1/2. This
class is desirable since the MP-distribution properly describes the spread of
masses in the large N limit, though we do not expect qualitative differences
for other spectra. If on the other hand the potentials are not quadratic, but
say quartic, or even exponential, we expect additional suppression since an
attractor solution is present for potentials of this type (see e.g. [90]); then,
isocurvature perturbations will be suppressed and in turn any evolution of
modes after horizon crossing will also be suppressed, resulting in an addi-

1We thank F. Quevedo for useful comments regarding this point. Naturally, this means
that the conditions for successful assisted inflation are hard to satisfy.
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tional reduction of non-Gaussianities. Finally, we considered equal energy
initial conditions, mainly for simplicity. Since there is no attractor solution
for quadratic potentials, there is a dependence on the chosen initial state.
This unavoidable sensitivity to the initial configuration of fields is a serious
flaw of N -flation, since the model becomes less predictive. However, the ev-
ident slow roll suppression of non-Gaussianities is insensitive to the chosen
initial state, see e.g. the two-field cases studied in [4].

2.7 Conclusion

First, we evaluated the non-linearity parameters characterizing the bi and tri-
spectrum in the horizon crossing approximation. In this limit N -flation and
single field inflationary models are indistinguishable. To lift this degeneracy,
we incorporated the evolution of perturbations after horizon crossing, which
is merited to the presence of isocurvature modes. Taking into account this
evolution allows the possibility to differentiate between models, at least in
principle. Since fNL is a measure of the strength of the bi-spectrum and since
it is expected to be constraint by near-future observations, we focused on this
non-linearity parameter. We computed analytically the magnitude of fNL for
narrow and generic mass distributions, including broad ones that are favored
in N -flation. Additional contributions were found, but they constitute only a
few percent of the horizon crossing result at most, leading to the conclusion
that they will never be observable. The insignificance of these additional
terms is primarily owed to the slow roll approximation employed in this
study. However, larger, but perhaps transient contributions to fNL should
be expected from fast rolling fields, which might be present in multi-field
inflationary models other than N -flation.
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Chapter 3

Non-Gaussianity Beyond Slow
Roll?

3.1 Introduction

In chapter 2 we found that multi-field models of inflation such as N -flation
do not generate large non-Gassianities during slow roll. Here we consider
non-Gaussianity beyond slow roll. In other words, we want to investigate
analytically the evolution in N -flation after the slow roll condition is violated
for one or more of the axion fields and to establish whether non-Gaussianities
are generated. The general setup, notation and conventions are identical to
the previous chapter, with one notable exception: the field index will be
denoted with small latin indices i, j, k, . . . instead of I, J, K, . . . , since we
would like to use I and II to indicate two different effective single field
models.

3.2 Effective Single Field Models during In-

flation

Given equal energy initial conditions for the N axion fields, the slow roll
parameter ηN of the heaviest field will be the first one to become of order
unity [4]. During the preceding slow roll stage, non-Gaussianities are heavily
suppressed, see chapter 2. During slow roll, we can safely implement an
effective model composed of a single field σ which evolves according to an
effective potential Weff(σ), as introduced in section 1.5, equation (1.61).
However, after ηN became of order one, the corresponding field ϕN does not
speed up but slows down, since ηN > 0. Furthermore, the corresponding
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potential energy VN is very small compared to that of the lighter fields; this
is due to the fact that ϕN was the fastest rolling field up until this stage.
This particular behavior has two important consequences: first, if we were
to continue using the effective description with σ and Weff(σ), we arrive at
a lower bound to the true evolution of the total potential energy. Second,
if we were to hold ϕN fixed after ηN became of order one, we arrive at an
upper bound to the true evolution. Additionally, owing to the comparatively
small energy stored in the heavy field, the difference between the lower and
the upper bound will be equally small. Naturally, it is possible to continue
in a similar manner when the next heaviest field violates slow roll and so
on and so forth, up until either the total energy in the heavy fields becomes
comparable to the one in the remaining light fields, or slow roll fails for σ,
after which light fields will actually start to evolve faster and pre-heating
starts, a subject which we will delve into in chapter 4.

On account of both approximations corresponding to slowly evolving
fields, non-Gaussianities will not be generated during that regime. The rea-
son for this is that additional non-Gaussianities are attributed to the evo-
lution of the adiabatic mode ζ after horizon crossing. In order for this to
occur, isocurvature modes, which are present in N−flation, have to source
the adiabatic one. However, the source-term in the equation of motion for ζ
is proportional to the curvature of the trajectory in field space, which is small
when fields evolve slowly. Only a sharp turn will lead to an enhancement of
the non-Gaussianity; for instance, if the evolution of a field becomes indeed
faster.

In the following subsections, we derive the two approximations mentioned
above. It is important to note that we can trust our approximations up until
preheating starts, where there might be a possibility for the appearance of
non-Gaussianity.

We will see that the actual difference between the two approximations,
that is the difference between the two potential energies, is quite small. This
is the reason why we can use the slow roll approximation to set the initial
stage for preheating, even if the slow roll conditions are violated for the
majority of fields.

3.2.1 A Lower Bound on W

Here we derive an effective single-field model based on the slow roll approxi-
mation, which supplies a lower bound to the evolution of the total potential
energy. As introduced in section 1.5, we identify the effective inflaton field
σ as the path-length of the trajectory in the N dimensional field space. For
instance, for N scalar fields ϕi we defined (1.61) with (1.62) [69]. To reit-
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erate, the ϕi can be computed given the dynamical relations (2.37), which
are valid during slow roll, as well as the initial conditions (2.38). Note that
σ = 0 at the initial time t∗. We introduce a variable to parametrize how far
the lightest field rolled down its potential

y ≡ ϕ2
1

ϕ∗2
i

. (3.1)

Since y is smoothly decreasing in time up until reheating commences, we may
also use y as a time variable. Further, we use again the dimensionless mass
variable xi ≡ m2

i /m
2
1 ≥ 1 so that we can rewrite the dynamical relations in

(1.78) as

ϕ2
i = ϕ∗2

1

yxi

xi
. (3.2)

Since we would like to avoid super-Planckian initial conditions we set

ϕ∗
1 ≡ 1 , (3.3)

so that

ϕ2
i =

yxi

xi
. (3.4)

Moreover the Klein Gordon equations during slow roll along with the Fried-
man equation yield

ϕ̇2
i = m4

1

xiy
xi

3W
, (3.5)

so that the differential of y becomes

dy = − 2m2
1y√

3W
dt , (3.6)

with

W =
1

2
m2

1

∑

i=1

yxi . (3.7)

Using the above, the effective single field (1.61) becomes

σI(y) =

∫ 1

y

( N
∑

i=1

xis
xi

)1/2

ds

2s
(3.8)

=

√
N
2

∫ 1

y

√

〈xsx〉ds

s
, (3.9)
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where we used the definition of the expectation values from (2.8) in the last
step. Similarly, the corresponding potential in (3.7) can be computed to

WI(y) = N m2
1

2
〈yx〉 , (3.10)

where m1 is related to the average mass mavg , which is set by the COBE
normalization (see the end of section 1.4.1) by

m2
1 = m2

avg(1 − z)2 . (3.11)

Equations (3.9) and (3.10) provide an implicit means of computing WI(σI),
see Figure 3.2. Using the definition of the expectation values (2.8), the
number of e-folds from (1.75) becomes

N(y) =
1

4

N
∑

i=1

1

xi

−
N

∑

i=1

yxi

xi

(3.12)

=
1

4
N

[〈

x−1
〉

−
〈

x−1yx
〉]

. (3.13)

If we take N = 1500 we get Nmax ≡ N(0) ≈ 64.3, which is large enough to
solve the standard cosmological problems. Here and in the following we use
the preferred β = 1/2 so that the ratio of the heaviest to the lightest mass
squared in (1.82) is about ξ ≈ 34. It is important to realize at this point
that one cannot use (3.9) and (3.10) up until y = 0, since slow roll ends
earlier. Strictly speaking, our first solution is only valid as long as the slow
roll conditions are satisfied, that is until ηN = 1. This condition determines
ȳ along with the definition of ξ (2.6) as the solution of

〈ȳx〉 N
2ξ

= 1 , (3.14)

resulting in ȳ ≈ 0.487. The number of e-folds at this instant is N(ȳ) ≈ 55.6
and we see that there is still a breadth of inflation to come. If we ignore this
fact, we could use σI up until this effective degree of freedom leaves its own
slow rolling regime when

ǫσ ≡ 1

2

(

W ′
I

WI

)2

= 1 . (3.15)

This equation can be rewritten as

2 〈xyx〉 = N 〈yx〉2 , (3.16)
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where we used

W ′
I ≡ ∂WI

∂σI
=

N
∑

i=1

σ̂i
∂Vi

∂ϕi
(3.17)

=

N
∑

i=1

σ̂im
2
i φi (3.18)

= −m2
1

√

N 〈xyx〉 . (3.19)

Equation (3.16) can be solved to obtain yend ≈ 0.084 so that σI(yend) ≈
17.6 and N(yend) ≈ 63.8, indicating that inflation comes to an end and
pre-heating is about to commence. The potential at this instant is about
WI(yend) ≈ 0.13m2

avg. The solution provides a lower bound for the potential
energy at the end of inflation, Wend > WI(yend), because the heavy fields
evolve slower than it was previously assumed. In the next section we derive
an upper bound on the potential energy and discuss its implications.

3.2.2 An Upper Bound on W

As mentioned in the previous section, σI and WI from (3.9) and (3.10) can
only be used as long as the slow roll conditions for all fields are satisfied, that
is up until ȳ from (3.14). Heavy fields will violate ηi < 1 first and thereafter
they will evolve slower than anticipated due to the positive η. Thus, in order
to derive an upper bound on the potential energy, we could hold fields fixed
as soon as their slow roll parameter becomes equal to one. Naturally, dealing
with N = 15001 fields complicates the picture substantially. On that account,
in order to simplify matters we can proceed by first taking the continuum
limit so that we can make use of the Marčenko-Pastur law for the continuous
mass variable 1 ≤ x ≤ ξ. Second, we partition this interval into M bins
according to a simple rule and denote the upper boundaries of each bin with
XA, A = 1, . . . ,M, so that XM = ξ. Third, whenever ηA (corresponding
to some XA) becomes of order one, we hold fixed all fields with masses in
the (A + 1)’th bin. Naturally, one recovers the full microscopic model if one
takes M = N − 1 and uses the Marčenko-Pastur law as a rule for choosing
the bins so that XA = xA−1. If M < N −1, one gets a more tractable model
but with a larger estimate for W . In practice M ∼ 50 is fully satisfactory for
our purposes. The validity of this approximation is justified as long as the
energy left in the heavy fields is small compared to the energy in the light
fields; this will suffice for the range of y-values that we are interested in.

1We choose N = 1500 fields in order to achieve N > 60 with sub-Planckian initial field
values, see Table 3.1. Note that this number of axions is attainable within string theory.
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Naming the above described solution as WII (and σII), we arrive at WI <
W < WII , where W is the true value of the potential energy. At this point,
we would like to bring out a subtlety in our model, σI(y) does not need to
coincide with σII(y) for two reasons. Firstly, a number of fields are artificially
held fixed and no longer contribute to the path length σ. Secondly, since the
total potential energy is bigger, the light fields evolve slightly slower in the
second approximation. These two points yield only small corrections since
the fields which we held fixed are already near the minimum of their potential.
At that stage, they would not, anyhow, contribute much to σ. Moreover, we
only use the second approximation if the energy in the fixed fields is small
as compared to that of the dynamical ones. Consequently, we have yII ∼ yI

and σII ∼ σI .
We now proceed to compute WII and σII as outlined above. We assume

first a partition {X1, . . . , XM} of the interval 1 ≤ x ≤ ξ and denote with YA

the values of y where η(M−A+1) = 1 (note that YA < YB if A > B). If we
further denote the energy WII that is valid in the range YA < y < YA−1 with
WA, we can calculate the corresponding YA as the solution to

WA(YA) = m2
1XM−A+1 , (3.20)

starting with W1 ≡ WI from the previous section. Note that Y1 = ȳ from
(3.14), as it should. We can then compute WA for A ≥ 2 to

WA(y) =
m2

1N
2

(

〈yx〉
∣

∣

∣

XM−A+1

1
+

A−1
∑

n=1

〈Y x
n 〉

∣

∣

∣

XM−n+1

XM−n

)

. (3.21)

Similarly, if we denote with σA the effective field which is valid in the range
YA < y < YA−1 (so that σ1 = σI), we arrive at

σA(y) = σA−1(YA−1) +

√
N
2

∫ YA−1

y

1

s

√

〈xsx〉
∣

∣

∣

XM−A+1

1
ds , (3.22)

and finally the number of e-folds becomes

NA(y) = NA−1(YA−1) +

∫ YA−1

YA

WA(y)

2m2
1y

dy , (3.23)

with Y0 = 1.
In the large M-limit the above approximation becomes independent of

the partition, which is of course our aim. We would like to use WII up to
when WI is no longer a viable lower bound for the true energy W , that is,
until σ ≈ σI(yend). This is possible if we limit the first bin by X1 = 1.75
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while partitioning the remaining interval X1 < x < ξ into M− 1 = 49 bins,
according to Figure 3.1. That way, we achieve σII(YM) = σI(yend) with an
energy ratio of

R ≡ Wheavy

Wlight

(3.24)

=

2
Nm2

1
WII(YM) − 〈Y x

M〉
∣

∣

∣

X1

1

〈Y x
M〉

∣

∣

∣

X1

1

(3.25)

≈ 0.53 , (3.26)

which is still smaller than one, so that we can trust our approximation 2. The
number of light fields, that is fields in the first bin which are still dynamical
at YM, is about 70.

In addition, the ratio of the potential energies is

WII(YM)

WI(yend)
≈ 1.17 , (3.27)

with the real total potential energy sitting snugly between WI(yend) <
Wend < WII(YM). In other words the difference between the two approx-
imations is 17% whereby roughly twice as much energy is in the light fields
as compared to the heavy ones. Duly, we are justified in using our first ap-
proximation, which corresponds to using slow roll for all fields, to set the
initial conditions for preheating, even though the slow roll condition η < 1
is violated for the majority of fields; see also Figure 3.3, where it is evident
that the heavy fields do not contribute much to the total potential energy
and correspondingly, inflation.

3.3 Discussion

The approximations of the previous two sections can be visualized in Fig-
ure 3.2, which shows an exaggerated schematic for the potential W versus
the path length of the trajectory in field space, σ. In region A all fields
roll slowly, corresponding to the first approximation derived in section 3.2.1;
region B shows an additional upper bound to the true evolution, for which
fields with heavy masses are successively held fixed. This second approxima-
tion is described in section 3.2.2. Finally, region C starts at the breakdown

2Remember, if R > 1 one can not trust the approximation, since the heavy fields, which
we held fixed by hand, would dominate the dynamics of the Hubble factor.
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of slow roll for the effective degree of freedom σI when ǫσI
∼ 1, indicating the

end of inflation and the onset of preheating. Figure 3.3 provides the actual
plot of WI and WII vs the path length σI and σII . Note that the two curves
are nearly indistinguishable up until slow roll breaks down for σI ; further-
more, it is apparent from Figure 3.3 that the number of e-folds is insensitive
to the approximation used. We compare the upper and lower bound solution
in table 3.2, where we also vary the number of fields. It is evident that the
solutions approach each other in the large N limit3. Henceforth, the nu-
merical solution is well approximated by either one in the case of N -flation,
where we deal with thousands of fields, and consequently, we are justified to
use the slow roll approximation to set the initial stage for preheating.

Solution I Numerical
N yN σI(yN ) WI(yN ) NI(yN ) W (yN ) N(yN )

yend σI(yend) WI(yend) NI(yend) W (yend) N(yend)
100 0.964 0.541 34.0 0.758 34.0 1.10

0.502 3.27 2.43 3.67 2.83 4.34
200 0.879 2.00 34.0 3.72 34.3 4.14

0.331 5.40 1.97 8.00 2.27 8.83
400 0.762 4.37 34.0 10.9 34.4 11.4

0.211 8.33 1.73 16.6 1.95 17.6
1500 0.488 12.87 34.0 55.61 34.4 56.3

0.084 17.60 1.49 63.80 1.62 65.1

Table 3.1: Comparison of analytic and numerical solutions for the effec-
tive single-field values W and N at σ(yN ) and σ(yend), for the number
of inflatons N = 100, 200, 400 and 1500. The values of σI are found by
(3.9) and corresponding analytic and numerical values for W/m2

min and
N are shown. Apart from the conspicuous disagreement in the e-folding
number N for small N , the extrapolated slow-roll solutions (I) are rela-
tively in good agreement with the numerical solutions, roughly within 15%
difference. Typically, the results of solution (I) slightly underestimate the
potential W .

In addition, we know that the real evolution of the heavy fields after η < 1
was violated is very slow. Accordingly, non-Gaussianities are not produced up
until slow roll fails for the effective degree of freedom σI , which corresponds to

3As we decrease the number of fields, for instance, N = 200 fields, R increases, meaning
that the second approximation ceases to be valid. This is so because the fields were
artificially held fixed and as a result, the energy density does not decrease any more, thus
acting as a cosmological constant, which is unphysical.
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N X1 σII(YM) WII(YM) WII(YM )
WI(yend)

NII(YM )
NI(yend)

R

200 2.90 5.40 2.91 1.47 1.07 0.97
400 2.15 8.32 2.15 1.24 1.01 0.74
1500 1.75 17.57 1.75 1.17 1.00 0.53

Table 3.2: Comparison of the approximation II with the slow roll result I
from table 3.1. X1 is chosen such that σII(YM) ≈ σI(yend). Note that the
second approximation approaches the slow roll result for increasing N . The
numerical results in table 3.1 lie snugly between the two approximations.

individual fields starting to evolve faster. The reason why non-Gaussianities
do not arise is the rather smooth trajectory in field space; as a result, there
is no sourcing of the adiabatic mode via isocurvature modes after horizon
crossing and since it is this evolution which causes non-Gaussianities [1], it
follows that they will not be produced.
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P
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Figure 3.1: Schematic of the probability over the dimensionless mass
variable x = m2/m2

1, showing how the mass-bins were chosen. We use a
partition of M = 50 bins and distributed them by first choosing X1 as large
as possible in order for the ratio in (3.24) to be small, while keeping X1

small enough to ensure that the second approximation remains applicable
up until σI leaves slow roll (e.g. X1 = 1.75 in our case). To distribute
the remaining bins, we choose to have (M− 2)/2 narrow bins from X1 up
until XM/2 ≈ 11 (the MP distribution peaks in that region so that the
majority of fields resides here), followed by the remaining bins up until
XM = ξ ≈ 34. One could of course arrange a more refined spreading of
bins, for instance with bin sizes according to the MP-distribution, but this
simple method is sufficient for our purposes. Note that M should be large
enough so that there is no huge impact onto e.g. the ratio in (3.27) if it
were to be increased further. This is the case for M ≥ 50.
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Figure 3.2: Schematic of the effective potential W vs. the path length of
the trajectory in field space, σ. In our model, region A corresponds to the
first approximation (during slow roll (blue)), section 3.2.1. In region B we
have the additional upper bound from section 3.2.2, which is due to the
second approximation. Region C begins where (p)reheating commences
once ǫσ ∼ 1. Note that the scale in this picture is exaggerated and the true
W (red) is well approximated either by WI or WII , see Figure 3.3.
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Figure 3.3: A plot of the effective potential W/m2
avg vs. the path length

of the trajectory in field space σ corresponding to region B as illustrated
in Figure 3.2, using N = 1500, β = 1/2 and a distribution of bins as
explained in the caption of Figure 3.1. In this region, the first and second
approximation (derived in sections 3.2.1 and 3.2.2 respectively) are nearly
indistinguishable from one another. Hence, the true potential energy is
well approximated by either WI or WII .
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Chapter 4

Preheating in Multi-field
Inflation

4.1 Introduction

In this chapter we investigate preheating in multi-field inflationary models.
Even though single field models of inflation are considered the most economic
explanation of a Gaussian, nearly scale invariant spectrum of primordial fluc-
tuations, they are not easy to construct in string theory. Further, upcoming
observations of the CMBR such as by the Planck satellite [163] could reveal
non-Gaussianity and put single field models to the test (see [82, 164]). It is
for these reasons that multi-field inflationary models have sprang up in the
last few years. Among the setups are N -flation [42], inflation from multi-
ple M5-branes [43] or inflation from tachyons [165]. For concretness, in this
chapter, we take N -flation as a case study.

Recently, aspects of preheating in the context of N -flation have been con-
sidered in [106], pointing out the danger of transferring energy preferably to
hidden sectors instead of standard model particles. This reveals an additional
need for fine-tuning, a possible problem for many string-motivated models
of inflation. The study in [106] is based entirely on an effective single field
description of N -flation. Hence, the common lore of single field preheating
seems to be applicable. Here we take the optimistic view that preheating
does indeed occur in the visible sector. However, we go beyond the single
field model.
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4.2 Preheating

In chapter 3 we found that at the end of inflation the majority of the energy
is confined to only a few Ñ light fields in a very narrow mass range. The
remaining heavier fields have already evolved to the bottom of their poten-
tials. It is thus these light inflaton fields which are relevant to preheating. To
arrive at this conclusion we considered two approximate analytic solutions
during inflation as well as a direct numerical integration. These indicate that
slow roll is a good approximation although the heavier fields violate the slow
roll condition ηi < 1 long before preheating starts.

As a consequence, we take as initial values for preheating the slow roll
values of the Ñ light fields. Owing to the fact that these lightest fields
are highest up in their potentials, fields will join preheating in a staggered
manner, adding to the difficulty of the problem. This and the large number
of fields calls for a numerical treatment, which we provide.

4.2.1 Initial State of Preheating

We take as the initial state of preheating the one corresponding to the end of
slow roll for σI see chapter 3. The potential energy left over at this stage is
concentrated predominantly in a few light fields. To compute its magnitude,
we first calculate the overall mass scale given by the average mass mavg

defined in (3.11), which is set by the COBE normalization δH ≈ 1.91× 10−5.
The power spectrum for a multi-field model [101]

PR =
∑

i

m2
i ϕ

2
i

96π2m6
pl

, (4.1)

is related to δH by

δH =
2
√PR
5

. (4.2)

(Note that we restore the reduced planck mass mpl in this subsection to avoid
confusion). If we evaluate PR at t = t∗, meaning y = 1 in (3.1), and use the
equal energy initial conditions defined in (2.38) along with ϕ∗

1 = mpl we get

PR = m2
1

N 2 〈x−1〉
96π2m2

pl

, (4.3)

so that the mass of the lightest field is

m1 =
10
√

6πδH

N
√

〈x−1〉
mpl (4.4)

≈ 2.37 × 10−6mpl , (4.5)
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where we used
〈

x−1
〉

=
(1 − z)2

(1 − z2)
, (4.6)

with z =
√

β =
√

1/2 and N = 1500. Hence, the average mass defined in
(3.11) is

mavg =
m1

1 − z
≈ 8.07 × 10−6mpl . (4.7)

The number of light fields carrying 96.5% percent of the total energy WI(yend)
is Ñ = 150, corresponding to the mass range

1 <
m2

m2
1

< x̃ , (4.8)

where x̃ ≈ 2.435 is obtained by solving

Ñ = N
∫ x̃

1

p(x)dx (4.9)

numerically for x̃. At this point, let us note that the relevant mass scale for
preheating is set by the mass of the light fields and not the average mass mavg .
Employing a very naive picture of perturbative preheating by a single field,
which could be identified as a combined single degree of freedom, we obtain
the temperature of preheating according to (1.38) [46] (see section 1.4.3)1.
However this simplistic view would be insufficient if non-perturbative effects
are important. From here on we set the reduced Planck mass m−2

pl = 8πG ≡ 1
again.

4.2.2 Coupling to Bosonic Matter

Given the just computed overall mass scale mavg , the individual axion masses
follow from the MP-distribution; we further know that Ñ = 150 light axions
carry 96.5 % of the total potential energy at y = yend. For the matter into
which the axions decays we assume a massless bosonic field χ coupled to the
ϕi via 1

2
g2ϕ2

i χ
2; for simplicity, we take the coupling strength to each axion

to be the same. The model we consider is then described by the following
Lagrangian,

L = −
Ñ

∑

i=1

{

1

2
gµν∇µϕi∇νϕi +

1

2
m2

i ϕ
2
i +

1

2
g2ϕ2

i χ
2

}

(4.10)

−1

2
gµν∇µχ∇νχ. (4.11)

1On the other hand, if we set ρrh ≡ VI(yend) we get an upper bound Trh < 8.46 ×
10−13mpl ≈ 1.20 × 1020K.
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The equations of motion are

ϕ̈i + 3Hϕ̇i +
(

m2
i + g2

〈

χ2
〉)

ϕi = 0, (4.12)

χ̈k + 3Hχ̇k +

(

k2

a2
+ g2

∑

i

ϕ2
i

)

χk = 0, (4.13)

3H2 =
1

2

∑

i

ϕ̇2
i +

1

2

∑

i

m2
i ϕ

2
i (4.14)

+
1

2

〈

χ̇2
〉

+
1

2
g2

〈

χ2
〉

∑

i

ϕ2
i , (4.15)

where χk is the mode operator of the matter field and 〈·〉 is the mode sum
over k. We consider the axions and gravity as the background and ignore
backreaction from χk, since we are interested in the early stages of preheating;
hence, 〈χ2〉 and 〈χ̇2〉 can be ignored.

4.2.3 Parametric Resonance in the Equal-Mass Case

Before addressing the more involved preheating scenario of N -flation, we
discuss a toy model with Ñ = 150 inflatons, all having the same mass mi ≡
m. In this case, the equal energy initial conditions yield the same initial
field value for all Ñ axions, resulting in the identical (in phase) evolution
of the axions. Neglecting backreaction of the matter field we can write the
equations of motion as,

ϕ̈i + 3Hϕ̇i + m2ϕi = 0, (4.16)

χ̈k + 3Hχ̇k +

(

k2

a2
+ Ñ g2ϕ2

i

)

χk = 0 , (4.17)

3H2 =
Ñ
2

(

ϕ̇i
2 + m2ϕ2

i

)

. (4.18)

Defining ϕ ≡
√

Ñϕi, the equations of motion reduce to those of the well-
understood single field model of non-perturbative preheating [17, 46–48, 50]
(see chapter 1.4.3 for a short review). The Klein-Gordon equation for ϕ reads

ϕ̈ + 3Hϕ̇ = −m2ϕ , (4.19)

whose solution is approximated by

ϕ(t) = Φ(t) sin(mt) , (4.20)
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where Φ(t) =
√

8/(
√

3mt) [46] is a slowly decaying amplitude (due to Hubble
friction). The corresponding equation for a Fourier mode of the matter field
reads

χ̈k + 3Hχ̇k +

(

k2

a2
+ g2ϕ2

)

χk = 0 , (4.21)

where p = k/a is the physical momentum. Due to the inflaton field’s oscilla-
tions, the mass of the matter field becomes time dependent and resonances
can occur. To see this, introduce q = g2Φ2/4m2, τ = mt, Ak = 2q +k2/m2a2

and Xk ≡ a3/2χk so that (4.21) becomes

d2Xk

dτ 2
+ (Ak − 2q cos(2τ)) Xk = 0 , (4.22)

where we also neglected the term proportional to the pressure 2, −(3/4)(H2+
2ä/a). If we ignore the time dependence of the amplitude Φ in q and of Ak,
Eq. (4.22) is the Mathieu equation. It is known that parametric resonance
occurs for wavenumbers k within resonance bands (see [46,52] for the stabil-
ity/instability chart). This means if k is within the n’th resonance band the
corresponding mode increases exponentially

Xk ∝ eµ
(n)
k

τ , (4.23)

where µ
(n)
k > 0 is the Floquet index [52] defined in Eq. (1.52). Physical pa-

rameters evolve along the Ak = 2q line from large q to q ∼ 0, as the inflaton
amplitude Φ decays slowly. As it evolves, the system crosses resonance bands
where exponential particle production takes place. Particle production is ef-
ficient in the large q (q ≫ 1) region, broad resonance (or stochastic resonance
when expansion effects are included). For small q the resonance effect is lim-
ited as it is not strong enough to hold against redshifting χk ∝ a−3/2. Then
the main concern is whether it is possible to have large q in a given model.
A stringent constraint comes from radiative corrections, restricting the value
of the coupling to g ! 10−3 [46, 58].

From the above discussion we infer that having many inflatons does not
give larger q so that resonance effects are not enhanced. Given that the

equations of motion lead to the one of the single field model, ϕ(=
√

Ñϕi)
starts oscillating with initial amplitude ∼ 0.1mp. Each inflaton ϕi oscillates

with smaller amplitude Φ/
√

Ñ , while q is unaltered. Figure 4.1 illustrates
the evolution of the oscillating term ϕ2 in the equal mass case. Here we used
Ñ = 150 and m = m0 = 2.4 × 10−6. The initial values of ϕi are taken
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Figure 4.1: The evolution of the oscillating term ϕ2 that drives the para-
metric resonance. The horizontal axis τ is the dimensionless time using the

mass m = m0. Since ϕ =
√

Ñϕi and ϕi are chosen to start from mp = 1,
ϕ2 start from Ñ = 150 at τ = 0.

to be ϕi = mp = 1 and the initial velocities ϕ̇ = 0. Ignoring backreaction
and rescattering effects, Figure 4.2 shows the evolution of the matter field
mode function χk and the comoving occupation number of particles (defined
in equation (1.50) with (1.51)) for g = 10−3 and k/ainitial = 6.0 × m, corre-
sponding to a fast growing mode. Equation (1.51) reduces to

ωk =

√

k2

a2
+ g2ϕ2 . (4.24)

The condition on the resonance parameter q = g2Φ2/4m2 " O(1) corre-
sponds to |ϕ|2 " 10−5 for g = 10−3, resulting in τ ! 4000.

In the following section we investigate the effect of different masses, which
are present in N -flation. We show that contrary to the generic expectation,
preheating is less efficient for a large number of fields; this is still in agreement
with spectral theory (see section 1.5.4), since the latter makes no predictions
regarding the efficiency of preheating, specifically, about the magnitude of
the generalized Floquet index.

2The energy density of the axions scales as a−3 during the oscillations in a quadratic
potential, so that H2 + 2ä/a = 0.
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Figure 4.2: The evolution of (the real part of) the mode χk (a) and
the occupation number nk (b). The initial conditions for χk are set by the
positive-frequency solution at τ = 13.5, when the slow-roll conditions break
down. The coupling constant is g = 10−3 and the wavenumber is chosen as
k/am = 6.0 at τ = 13.5. One can see amplification due to typical stochastic
resonance, i.e. the overall amplitude grows exponentially while there are
occasional decreases of the amplitude. We are ignoring backreaction so
that resonances are present until q ≈ O(1), corresponding to τ ≈ 4000 for
g = 10−3. Backreaction from the matter field shuts off resonances earlier.

4.2.4 Parametric Resonance for spread out masses?

Still ignoring backreaction and rescattering3 (〈χ2〉 = 〈χ̇2〉 = 0), consider now
multiple fields whose masses obey the MP law, still coupled to the same
matter field. Recall that we focus on Ñ = 150 axion fields only, since the
heavier 90% of the fields do not contribute much to the late time dynamics
of N -flation.

As in the previous sections on N -flation, the Ñ fields ϕi have potentials

Vi =
m2

i

2
ϕ2

i +
g2

i

2
ϕ2

i χ
2 (4.25)

and masses according to

m2
i = xim

2
1 , (4.26)

where the xi are determined by solving

i − 1 = N (1 − z)2

2πz2

∫ xi

1

√

(ξ − x)(x − 1)
1

x
dx (4.27)

numerically. For simplicity, we still take all coupling constants to the matter
field χ to be the same, that is gi ≡ g for i = 1 . . . Ñ . Using again the

3This is justified, since in the end we find that the amplification of the matter field is
found to be suppressed.
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dimensionless time τ ≡ mt, where m2 = x̄m2
1 from

m2 ≡ m2
1

∫ x̃

1
p(x)x dx

∫ x̃

1
p(x) dx

(4.28)

= m2
1

N (1 − z)2

Ñ 2πz2

∫ x̃

1

√

(ξ − x)(x − 1) dx (4.29)

≡ x̄m2
1 (4.30)

where we have truncated the MP-distribution to x̃ = 2.435 from (4.9), z =√
β, ξ = (1 + z)2/(1 − z)2, m1 = 2.37 × 10−6 from (4.5) and we used (4.9),

we find x̄ ≈ 1.77.
The equations of motion for the axions read

ϕ′′
i + 3

a′

a
ϕ′

i = −xi

x̄
ϕi , (4.31)

which need to be solved in conjunction with the Friedmann equations

3
a′2

a2
=

1

2

Ñ
∑

i=1

(xi

x̄
ϕ2

i + ϕ′2
i

)

, (4.32)

a′′

a
− a′2

a2
= −1

2

Ñ
∑

i=1

ϕ′2
i . (4.33)

According to section 3.2.1, for each individual field we take as initial condi-
tions4

ϕi(τin) =

√

yxi

end

xi
, (4.34)

ϕ′
i(τin) = −

√

2xiy
xi

end

3x̄





Ñ
∑

j=1

y
xj

end





−1/2

, (4.35)

where yend = 0.084.

Short Time Scales

Figure 4.4(a) shows the evolution of
∑

i ϕ
2
i up to τ = 50. In the MP dis-

tribution, all the masses are different, resulting in a different evolution of

4The initial condition for the matter field is set by the positive frequency mode function,
χk(t) = a3/2χk(t) # e−imωk(t−τend/m0)/

√

2ωk , at τ = τend = 11.6, which corresponds to the
onset of preheating at y = yend.
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Figure 4.3: The evolution of the term
∑

i ϕ
2
i that couples to the matter

field. The oscillation is less sharp, never reaching zero, and the damping is
faster than in the equal-mass case.

∑

i ϕ
2
i from the equal mass case we discussed before. It is evident that the

oscillations are more obtuse and the damping is faster than in Fig.4.1. This
can be attributed to the dephasing of the axion oscillations owed to rela-
tive mass differences and the redshift due to the cosmic expansion. During
the oscillations, we may expect some resonance effects in the dynamics of
χk, analogous to the equal-mass example explained in the previous section.
Figure 4.4 shows the time evolution of the matter field (neglecting backreac-
tion and rescattering), for g = 10−3 and k/am0 = 6.0 at τ = τend as in the
equal mass case. The temporal enhancements of the amplitude (which are
clearly seen for small τ) is caused by parametric resonance with (the collec-
tive behavior of) the axions. In contrast to the equal-mass case, the overall
amplitude of χk decrease in time, indicating that resonances are not strong
enough to hold against damping caused by the cosmic expansion, even when
the coupling constant is as large as g ∼ 10−3.

Using again Xk = a3/2χk, we may separate out the effect of cosmic ex-
pansion. The equation of motion for Xk is

Ẍk +

[

k2

a2
+ g2

∑

i

ϕ2
i −

3

4
(2Ḣ + 3H2)

]

Xk = 0. (4.36)

Since the last term, proportional to the pressure p = −(2Ḣ + 3H2), is neg-
ligible during preheating, Xk satisfies the equation of motion for χk with
the friction term 3Hχk set to zero by hand. Figure 4.4(b) shows numerical

77



10 20 30 40 50
Τ

-20

-15

-10

-5

5

10

15

20

Χk !a"

10 20 30 40 50
Τ

-150

-100

-50

50

100

150

Xk !b"

Figure 4.4: (a) The evolution of the mode function of the matter field
χk, in N -flation using the MP mass distribution. The coupling is g = 10−3

and the wavenumber is chosen as k/am0 = 6.0 at τ = τend = 11.6. (b) The
evolution of Xk = a3/2χk for the same parameters. There are wiggles in
the oscillation amplitude (these are evident for small τ and become smaller
for larger times) indicating some effect of parametric resonance. This res-
onance is, however, weak and the amplitude of χk decays on average.

results for the evolution of Xk. First, note that there is small wiggling of the
amplitude5, a resonance effect since the peaks occur at the minima of the
mass term (see Fig.4.3). The minima of the mass term do not go to zero,
due to dephasing by the relative mass difference of the axion fields, yielding
a small value of ω̇k/ω

2
k and inefficient preheating; second, the envelope of

the amplitude exhibits power-law like growth6, which is slower than a3/2 so
χk as a whole still decays. In Table 4.1 we show the power χk ≈ a−γ that
approximates the numerical behavior of χk in larger time scales. The power
γ is within 3/4 ≤ γ ≤ 1. In the mass term of (4.36), k2/a2 remains dominant
since a−2 ∼ t−4/3, ϕ2

i ∼ t−2, Ḣ ∼ t−2 and H2 ∼ t−2 as a ∼ t2/3 during
preheating. Hence (4.36) becomes Ẍk + Ct−4/3Xk = 0 for some constant C.
This can be solved exactly in the form Xk ∼ tαF (t), where F (t) is a fast os-
cillating function. Discarding the decaying solution, we find γ = 3α/2 = 0.5.
For smaller k, Xk grows faster than ∼ a0.5, but the enhancement is minimal.

Long Time Scales

In the equal-mass case (section 4.2.3), with a large enough value of g, the
resonance parameter is q ≫ 1 and resonances arise for reasonably long time
scales, specifically, up until τ ≈ 4000 for g = 10−3 (ignoring backreaction).

5The peaks occur when
∑

i ϕ2
i in Figure 4.3 reach the local minima and ω̇k/ω2

k becomes
large (see Figure 4.5); whenever the system becomes less adiabatic, parametric resonance
can occur.

6This does not necessarily mean particle production because it is mainly due to red-
shifiting
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Figure 4.5: The adiabaticity parameter ω̇k/ω
2
k, for τ ! 50. The slight

negative shift is due to the cosmic expansion.

k2/a2
initm

2
0 0 10 102 103 104 105

g = 10−5 0.75 0.95 0.99 1.00 1.00 1.00
g = 10−4 0.75 0.76 0.87 0.96 0.99 1.00
g = 10−3 0.75 0.75 0.75 0.76 0.85 0.97

Table 4.1: Numerical results of the decaying power γ, where χk ≈ a−γ ,
for various coupling g’s and the wave number k’s.

Similarly, in the MP case, even though there is no well-defined q-parameter,
resonances can ensue during short time intervals for large τ , again assuming
a similar large coupling g. In this case, the collective behavior of the axions is
crucial and the adiabaticity parameter develops a complicated behavior (see
Figure 4.6(a)). Since the mass differences between the neighboring axions7

7Adding two oscillations leads to beats: since sin(ω1t)+sin(ω2t) = 2 cos((ω1−ω2)/2)−
t)(sin((w1 + ω2)/2) − t, the beat frequency is ωbeat = ∆ω/2 = |ω1 − ω2| /2. Our fields
oscillate as ϕi ∼ sin(ωiτ), where ωi = mi/m0 =

√
xi; in the mass term for X , they appear

as
∑

ϕ2
i , so lets lets look at nearest neighbors, for instance at ϕ2

1 + ϕ2
2. To get a rough

estimate we assume that initially all fields are in phase. Further, ∆x = xi − xi−1 ∼
O(0.01) (it is between 0.01 and 0.02 for most light masses) where xi = m2

i /m2
0; Thus

ϕ2
1 + ϕ2

2 ∼ sin2 √x1τ + sin2 √x2τ and since sin2(ωt) = 1/2(1 − cos(2ωt)), we obtain
ϕ2

1 + ϕ2
2 ∼ 1 − 1/2(cos2

√
x1τ + cos 2

√
x2τ). Then ω1 = 2

√
x1, ω2 = 2

√
x2, and the beat

frequency is ωbeat = |ω1 − ω2| /2 = |√x1 −
√

x2|. Let x2 = x1 −α with α ∼ 0.01 ) x1, x2.

Then
√

x2 =
√

x1 + α =
√

x1

√

1 + α/x1. Expanding the latter, we can write ωbeat ∼ α/2.
As a result, we expect nearest neighbors to be roughly in phase again after τ ∼ π/ωbeat ∼
π2/α. For 0.01 ! α ! 0.02 (roughly the range of α) we get 314 ! τ ! 628 so that τ̄ ∼ 471
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2
k. (b) The sum of axions’ squared amplitudes

∑

i ϕ
2
i , for the time scale

τ = 200 to 600. The coupling g and the wavenumber k are the same as in
Fig.4.4.
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Figure 4.7: (a) Long time behavior of χk, exhibiting short lived, weak
resonances around τ ≈ 450. The choice of parameters is the same as in
Fig.4.4. (b) The comoving occupation number nk calculated for Xk.

with N = 1500 is typically of order of ∆m2 ≈ O(10−2)×m2
0, once dephased,

the axions’ collective oscillations return to near-coherence in time scales of
order ∆τ ≈ O(102) ∼ O(103), causing beats in the effective mass for χk

(see Figure 4.6(b)). To be concrete, considering nearest neighbor fields with
0.01 ! xi − xi−1 ! 0.02 (relevant for the light fields under consideration)
we expect a beating frequency ωbeat ∼ (xi − xi−1)/2 in the effective mass
for χk. Hence, the time at which some fields are in phase again is between
314 ! τ ! 628, consistent with Figure 4.6(b).

Indeed, on these time scales, for g " 10−3, we find the occasional am-
plitude enhancement of a few orders of magnitude (see Figure 4.7): Figure
4.7(a) illustrates the evolution of χk up to τ = 2000; the evolution of the

is the expected time at which the nearest neighbors are in phase again, since all all fields
were more or less in phase initially (this is not exactly true, but sufficient for the present
argument). Henceforth, we expected most fields to be more or less in phase after τ̄ ∼ 471.
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Cantor Preheating for Ñ = 3. (b) Ñ = 5.

comoving occupation number nk calculated for Xk is shown in Figure 4.7(b).
Here we see that there is some amplification due to parametric resonances at
around τ ∼ 450. Here and later on we find the occasional amplitude enhance-
ment of a few orders of magnitude. For larger wavenumbers k/am0 " 104,
nk behaves differently. Since the overall amplitude of ω̇k/ω

2
k is smaller, the

resonance around τ ∼ 450 vanishes, but spikes at large τ are still present. As
a result, the late time dynamics features a behavior akin to a random-walk.
However, these resonance effects are not frequent or long enough to dominate
preheating.

Increasing the width of the mass distribution, that is taking β > 1/2, does
not change this conclusion, as can be seen in Figure 4.9, where we consider
β = 0.7 and β = 0.9. If we decrease β, we approach the equal mass case,
and resonances become more pronounced again.

If the number of inflatons that couple to a single matter field is decreased,
we encounter more pronounced resonances again, see Figure 4.8, in accord
with Cantor preheating.

4.3 Discussion

We saw that preheating is not due to explosive particle production in N -
flation if many axions couple to the same matter field; even though there is
some weak amplification, it is much too feeble to compete with the dilution
due to Hubble expansion. The physical reason for the suppression of para-
metric resonance is quite simple: the axions are all out of phase, averaging
out each other’s contribution to the matter fields effective mass, so that the
driving term ∝ ∑

ϕ2
i in the equation of motion for χk decays quite smoothly
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Figure 4.9: Increasing the value of β does not change the results. (a)
β = 0.7. (b) β = 0.9.

∝ a−3 after the first few oscillations, just like matter, since ρϕi
∝ a−3. Hence,

instead of an exponential increase, we observe power-law behavior χk ∼ a−γ

where γ increases from 3/4 to 1 for increasing wavenumber. This is consistent
with the conclusions of [58], where it was emphasized that a large “bare mass”
of the matter field (bigger than the amplitude of the oscillations) suppresses
resonances.

Our conclusion differs considerably from the common lore, namely, that
parametric resonance effects are crucial for preheating [17]. For instance, it
is argued in [57,66] that the oscillations of multiple inflatons (with irrational
mass ratios) can enhance drastically the decay rate (Cantor preheating). This
argument is based on two pillars: first, theorems in spectral theory indicate
that stability bands vanish [56,57,66] in the case of more fields whose masses
are not related by rational numbers. (Note that nothing is known about the
magnitude of these instabilities). Second, numerical evidence in two field
models indicate a slight enhancement of particle production for well chosen
parameters [57]. In the latter study, dephasing of fields is unimportant,
since only two fields are considered. Nevertheless, this effect is crucial if one
considers many fields, say O(100) instead of 2, all coupled to a single matter
field.

Of course, dephasing would be absent if each axion were coupled to a
different matter field, in which case, stochastic resonance would indeed be
important. Further, If only a few axions, say two or three, couple to a given
matter field, we saw that Cantor preheating is indeed efficient (Figure 4.8).
However, when hundreds of fields are coupled to the same matter field, it
is the old theory of perturbative preheating which remains applicable. This
may actually be desirable, since it is guaranteed that no unwanted relicts
such as magnetic monopoles are produced. Of course, there is the danger of
left over inflaton fields, which might disrupt nucleosynthesis.

At this point we would like to mention that to the best of our knowledge
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no systematic (numerical or analytic) study of Cantor preheating with more
than two fields exists in the literature. It would be interesting to investigate
the efficiency of preheating if one increases the number of fields one by one:
first, stability bands will dissolve, and an increase of resonant particle pro-
duction is expected. However, at some critical field number the driving force
of the matter field would become so erratic and out of phase, that resonances
are diminished. We leave this topic for future studies.

Before concluding, we would like to comment on yet another effect. It
has been shown in [114,115] that noise on top of an oscillating driving force
can also enhance resonant particle production. This phenomenon could also
occur in multi-field inflation if a single field carries the majority of the energy,
while the remaining fields provide only very little. Alternatively, all fields
could carry the same energy but have wildly different coupling constants to
the matter field. The oscillations of the many fields would then act similar
to noise during the oscillations of the main field. However, this effect goes
beyond the present study.

All in all, it is evident that preheating in multi-field scenarios is a lot more
model dependent than in simple single field models. To make any concrete
predictions, one needs to know precisely how the inflatons couple to matter.
Unfortunately, this knowledge is usually unattainable in stringy models of
inflation, at least for the time being.

4.4 Conclusions

In this chapter we studied preheating in N -flation, a string motivated real-
ization of assisted inflation, assuming the Marčenko-Pastur mass distribution
(arising from random matrix theory) and equal-energy initial conditions at
the onset of slow roll inflation. Using the analytic approximations of chapter
3 to set the initial stage for preheating, we consider only the lightest fields,
which carry the majority of the energy.

To study preheating, we coupled a single bosonic matter field χ to the
axions ϕi, assuming the same coupling constant g2 between χ and any ϕi.
Within this setup we solved for the evolution of the matter field numerically,
including the expansion of the universe, and found a power-law like behavior
in the parameter region that would otherwise give rise to stochastic reso-
nance in single field models. In particular, the growth of the matter field is
generically not strong enough to resist redshifting due to cosmic expansion.
As a result, the old theory of perturbative preheating (see e.g. [46]) applies
to this scenario and not parametric resonance models.

Our result differs considerably from the accepted view that parametric
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resonance effects are crucial for preheating [17]. As argued in [57,66], Cantor
preheating might be even more efficient than stochastic resonance. However,
in these studies the relevance of fields running out of phase was not apparent.
Nevertheless, this effect is crucial when considering many fields, provided
they are all coupled to a single matter field. This is at the core of the
weak amplification we observe. Indeed, instead of an exponential increase,
we observe power-law behavior. Of course, dephasing would be absent if
each axion was coupled to a different matter field, in which case stochastic
resonance will be important. If only a few axions, say two or three, couple
to a given matter field, we expect Cantor preheating to be the applicable
model.

Besides assuming a single matter field, the analysis presented here de-
pends upon several other assumptions. Firstly, we ignored backreaction and
rescattering during preheating; modifications due to these two effects should
be minor, since explosive particle production due to parametric resonance is
suppressed in N -flation, as argued above; in addition, their inclusion would
only diminish resonance effects further. We further assumed that the axion-
matter couplings are all set to be equal. Dropping this assumption might
change the scenario. To illustrate, Cantor preheating cannot be excluded in
N -flation, especially if only a few axions couple strongly to a given matter
field, while the vast majority has negligible coupling.

To summarize, preheating in multi-field models such as N -flation can
differ considerably from their effective single field analogs, as parametric
resonance effects can be heavily suppressed. If this is the case, the old theory
of perturbative preheating is the relevant one, a potentially desirable outcome
given that unwanted relicts are not produced.
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Chapter 5

Magnetogenesis via Rotating
Cosmic String Loops

5.1 Introduction

In this chapter we consider the generation of primordial magnetic seed fields
by a cosmic string network [2] (see section 1.6 for possible origins of cosmic
strings as well as semi analytic network models). These seed fields are needed
in order to account for observed magnetic fields in galaxies and clusters in
the µG range (see section 1.7 for a review of magnetic fields at cosmological
scales.)

Among the positive attributes of cosmic string networks for magnetoge-
nesis is the fact that they span over the cosmological horizon giving rise to
coherent effects over large length scales. Also, as the strings and loops pass
through the primordial plasma, they generate vector-type perturbations, a
necessary condition for magnetic field generation. These and other features of
cosmic strings make them attractive candidates for magnetogenesis. Hence,
magnetic field generation from long strings have indeed been considered in
the past [136, 137, 151]. We will re-investigate this case, finding that cosmic
string loops give the dominant contribution. Throughout this study, we av-
erage over small scale wiggles on the strings such that the effective mass per
unit length µ does not match up with the tensions T , giving a net gravita-
tional acceleration of the surrounding plasma towards the strings, see section
1.6.3.

In a nutshell, the magnetic field generation operates as follows: first, cos-
mic string loops generate vorticity in the primordial plasma via gravitational
dragging (see section 5.3). This vorticity is in turn converted into a mag-
netic seed field through the Harrison-Rees mechanism, a process reviewed in

85



section 1.7.2. Once the seed field is produced, the magnetic field strength is
diluted during the ensuing Hubble expansion, but amplified during the pro-
togalactic collapse, though the correlation decreases drastically, section 1.7.3.
From the time of protogalactic collapse till our present time fields can get am-
plified in spiral galaxies by means of a dynamo, such as the αω-dynamo. It is
then possible for the magnetic field to get amplified until its strength reaches
today’s observable value (see table 1.1 for possible amplification factors). If
we assume very efficient dynamos with Γ−1

dy # 0.3Gyr, we obtain reasonable
values for the magnetic field to account for today’s magnetic fields in spiral
galaxies.

We present analytic and numerical techniques to estimate the magnetic
fields produced by the cosmic string network. Our analytic estimates show
that loops give the dominant contribution to the total magnetic field pro-
duced by the network, and not long string encounters as was previously
claimed in [136,137]. Further, in addition to giving a prediction of the over-
all field strength, we compute the spectrum of field strength as a function
of correlation length and fractional horizon volume coverage. We do this by
considering two semi-analytic string network models, the velocity dependent
one-scale model (VOS) and the one-scale model (OSM), which are briefly re-
viewed in section 1.6.2. We also incorporate the evolution of loops (changes
in size, translational and rotational velocity) due to emission of gravitational
waves, Hubble expansion and dragging of the plasma. To that end, we also
provide approximate analytic solutions, which were used to test the numerical
code.

The values we take for various constants as well as their sources are
summarized in table 5.1.

5.2 Loop Dynamics

This section introduces an analytic study of loop dynamics and can be read
independently of the succeeding ones. The equations of motion are integrated
numerically within our code (our results are presented in section 5.4.2) and
we tested that the analytic approximations below are recovered correctly.

Loops are acted upon by a variety of effects: dynamical friction forces,
which are responsible for accreting matter around loops, slow the loops down,
both in its translational as well as its rotational movement. On the other
hand, the emission of gravitational waves can speed up the translational
movement, whereas the rotational one always decreases. Also, the size of
loops decreases as a result of gravitational wave emission. Further, redshifting
due to the Hubble expansion slows loops down, but leaves the rotational
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movement unscathed.
Based on these effects we derive the differential equations that govern

the evolution of the translational velocity vt(t), rotational velocity vr(t) and
length ℓ(t) of a loop.

Since we use a rigid loop approximation when we compute gravitational
dragging of the plasma, we need that vr, vt and ℓ evolve much slower than
the typical time-scale during which the plasma is affected by a loop whizzing
by. This will indeed be the case for the study presented here so that the
approximations we make in section 5.3 are valid.

5.2.1 Changes in Size and Shape

The length of the loop decreases due to gravitational radiation, so that

ℓ(t) = frαLH(tF ) − ΓlGµ0(t − tF ) (5.1)

≡ ℓ0 − GΓlµ0(t − tF ) , (5.2)

where fr ≤ 1 describes energy loss directly after formation, Γl ≈ 50 controls
the efficiency with which the loop emits gravitational radiation [128,130,131],
ℓ0 ≡ α̃tF = frαLH(tF ), and the time scale for loop shrinkage is

tshrink ≡ α̃

GΓlµ0
tF = 2000tF , (5.3)

for α̃ = 0.01 and Gµ0 = 10−7; so a loop with α̃ > 10−5 remains large
enough for magnetogenesis for many Hubble times. Further, large-scale loop
oscillations change the shape of the loop. (Small scale oscillations of the
string are averaged over to give the effective tension T and linear mass density
µ). If the oscillation timescale is comparable to the rotation period, the rigid
loop approximation does not apply. Since the initial velocity distribution on
the loop has to be quite peculiar to yield a fast oscillation affecting the loop
as a whole, we expect that these oscillations make only a small fraction of
loops unsuitable.

5.2.2 Translational Movement

Three effects determine the drift velocity of a loop: redshifting from Hubble
expansion, dynamical friction due to dragging of the plasma as computed in
(5.34) below, and recoil from gravitational wave emission [166] (often refereed
to as the rocket effect). The latter causes an acceleration of ΓpGµ0n̂/ℓ, where
n̂ is a unit vector in the direction of recoil and Γp ≈ 10 [166]. (It is µ0 and
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not λ = µ − T = µ(1 − µ2
0/µ

2) ≈ 0.56µ0 which determines the emission of
gravitational waves.) Incorporating these forces leads to

v̇t = −Hvt −
vt ln θ−1

min

t∗
+

ΓpGµ0

ℓ
n̂, (5.4)

where [167, 168] t∗ is

t∗ =
v3

t

8π2G2Rλρ
, (5.5)

and

θmin =
2Gλℓ

v2
t rmax

, (5.6)

and rmax =
∫

vtdt # 3vt. In the matter era, using H = 2/(3t) and 8πGρ =
3H2 gives

t∗ ≡
v3

t t
2

C1
, C1 =

2

3
Gℓλ . (5.7)

Since our arguments in the previous subsection show that the loop length
ℓ decreases very little over the timescales we are interested in, we take ℓ to
be a constant. Further, we ignore the time dependence in the logarithm and
estimate this factor by 1

ln θ−1
min ≈ ln

(

3v3
t (tF )tF
2Gλℓ

)

= const , (5.8)

where the time of loop creation is

tF = ℓ/α̃. (5.9)

Different initial values can lead to large differences in the long-term behavior
of vt. The loop either slows rapidly, or accelerates quickly to relativistic
velocities from the rocket effect. Below we integrate the dynamical equation
(5.4) in each regime, and derive the limiting velocity vlim that separates the
two regimes. Without the rocket effect term, equation (5.4) becomes

v̇t = − 2

3t
vt −

C1 ln(θ−1
min)

t2v2
t

, (5.10)

1We approximate rmax =
∫

vt dt ≈ 3vtt ≈ 3vt(tF )tF , anticipating vt ∝ 1/a ∝ 1/t2/3

initially, due to redshifting.
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which has the solution

vf
t (t) = t−2/3

(

−3C1 ln(θ−1
min)t +

ℓ

α̃2
(3C1 ln(θ−1

min)α̃ + v3
0ℓ)

)1/3

≈ v0

(

ℓ

α̃t

)2/3 (

1 − t

tf

)1/3

(5.11)

where the last step uses vt(tF ) = v0, neglects 3C1α̃ ln(θ−1
min), and employs the

time scale of dynamical friction defined by

tf ≡ v3
0ℓ

2λGα̃2 ln(θ−1
min)

. (5.12)

When dynamical friction is irrelevant (5.4) becomes

v̇t = − 2

3t
vt + C2 , (5.13)

where C2 ≡ ΓpGµ0/ℓ and we assume that the recoil is collinear with the
velocity. This has the solution

vr
t (t) =

1

5t2/3

(

3C2t
5/3 − ℓ2/3

α̃5/3
(3ℓC2 − 5v0α̃)

)

≈ v0

(

ℓ

α̃t

)2/3
(

1 +

(

t

tr

)5/3
)

, (5.14)

where we neglect 3ℓC2 in the last step (this is justified for the parameters we
are interested in, see Table 5.1) and introduce the relevant time scale tr for
the rocket effect

tr ≡
(

5v0

3ΓpGµ0

)3/5
ℓ

α̃2/5
. (5.15)

If tr and tf are of the same order of magnitude, both dynamical friction and
the rocket effect are important, but if tr > tf friction dominates and vice-
versa. Thus, we can introduce a limiting initial velocity by setting tr = tf

vlim = G1/6

(

λ5

µ3
0

)1/12 (

5

3Γp

)1/4

25/12α̃2/3(ln θ−1
min)5/12 , (5.16)

Hence, for vt ) vlim dynamical friction is more important, whereas for larger
velocities, the rocket effect predominates in the long run. What is a reason-
able initial value for vt? If large loops are created in the matter era, we expect
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their velocities to be comparable to the RMS velocity in the string network
vRMS ∼ 0.6 2. If we average over the small scale wiggles, the RMS velocity
drops down to v̄RMS ∼ 0.15 [134], so the initial translational velocity of the
loops should be smaller too. Rotating loops share kinetic energy between
translation and rotation, so an initial value of vt ∼ vr, say down to 0.4, may
be reasonable. This velocity is still larger than the limit velocity (5.16), even
for the largest loops produced in the network: for α̃ = 0.01 and the bound
Gλ/0.56 = Gµ0 ! 10−7, the limiting velocity becomes vlim ! 0.0072, where
we approximated ln θ−1

min ≈ 19, based on (5.8) with vt(tF ) = 0.4. Hence, the
translational velocity of loops which are created in the matter era is given by

vt(t) ≈ v0

(

ℓ

α̃t

)2/3
(

1 +

(

t

tr

)5/3
)

, (5.17)

for all relevant values of α̃. The loop initially slows due to redshifting, even
though the rocket effect dominates over dynamical friction. Indeed, for α̃ ∼
0.01, v0 = 0.4 and Γµ0 = 10−7 we have tr ≈ 197ℓ/α̃ = 197 tF . In this case, vt

drops down to the minimal value of vt ≈ 0.024 at t ≈ tr3/4, and it increases
linearly thereafter up until loop shrinking becomes important. Since it takes
more than 1000 tF for a loop to accelerate so that it moves faster than v0

again, we expect the majority of loops to have a translational velocities of
order vt ∼ O(10−1), which we use as a rough estimate of vt for loops created
between teq and tdec. Since tr < tshrink from (5.3), our assumption of a fixed
loop length ℓ is justified.

5.2.3 Rotational Movement

The rotational velocity vr of a loop is influenced by three effects: dynam-
ical friction from plasma drag, emission of gravitational radiation 3 which
produces a torque [170]

τgr = −ℓGµ2
0Γgr , (5.18)

where Γgr ≈ 5 [170], and the shrinking of the loop from gravitational wave
emission. The torque τdrag from dynamical friction is computed using the

2Recent simulations and analytic arguments suggest two distinct classes of loops [123,
169]: small, highly relativistic loops, and large ones, which have the velocities we consider.

3There is no rocket effect for angular momentum: numerical studies show that the
emission of gravitational waves always decreases the angular momentum [170], even though
a rigorous mathematical proof is lacking. The fundamental mass density µ0 determines
this effect and not the effective mass density λ.
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arguments of section 5.3, applied to a single loop rotation. During one rota-
tion, spanning a time ∆t ∼ ℓ/vr, the surrounding plasma acquires an angular
momentum of roughly

∆J ∼ ℓ∆pplasma ∼ ℓ4ρvx ∼ ℓ4ρv2
y

7vr

(5.19)

which gives the torque

τdrag ≈ −(2π)2

7

G2λ2

v2
r

ℓ3ρ. (5.20)

Loop shrinkage enters via the expression for the total angular momentum J ,

J̇ =
λ

4π

(

2ℓℓ̇vr + ℓ2v̇r

)

, (5.21)

with ℓ(t) from (5.2). We neglect redshifting of the rotational velocity for
loops well within the horizon. Unlike the translational velocity, it is possible
to obtain analytic solutions for the rotational velocity with dynamical ℓ(t).
Dynamical friction is negligible, since the ratio of torques is

τdrag

τgr

=
(2π)2

7

λ2α̃2

µ2
0v

2
rΓgr6π

t2F
t2

≈ 1.3 × 10−5 t2F
t2

) 1 (5.22)

where we use 8πGρ = 4/(3t2) as well as λ/µ0 ∼ 0.6, α̃ ∼ 0.01, vr ∼ 0.4 and
Γgr ≈ 5. This leaves J̇ = τgr, leading to

v̇r =
2GΓlµ0vr(t) − Cgr

ℓ0 − GΓlµ0(t − tF )
, (5.23)

where

Cgr =
4πGµ2

0Γgr

λ
, (5.24)

and ℓ(t) is given by (5.2). Assuming the initial condition vr(tF ) = v0, then
vr(t) is

vr(t) =
1

2

Cgrf(t) + 2v0α̃
2

GΓlµ0f(t) + α̃2
(5.25)

with

f(t) ≡ 2α̃

(

1 − t

tF

)

+ GΓlµ0

(

1 − t

tF

)2

. (5.26)
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As with the translational velocity vt, there is a critical initial rotational veloc-
ity that determines the future evolution of vr, given by vr

lim ≡ Cgr/(2GΓlµ0).
For the parameters in table 5.1 we get vr

lim > 1, indicating that vr decreases
for all loops under consideration. What is then the initial velocity of a loop?
Loops can be produced by self-intersections of a single string. In this case,
we expect the intersecting pieces to move roughly in the same direction. As
a consequence, most of the energy will go into translational movement and
a loop with very little angular momentum but large momentum results, so
that vr ) vt. However, Loops can also be created when two strings, moving
in opposite directions, intersect and chop off a loop. Loops formed in this
way have very little momentum, but large angular momentum, so that initial
rotational velocities comparable to the RMS velocity of the network result
vr ≈ vRMS , while vt ) vr. An ideal loop for magnetogenesis lies somewhere
in between. Optimally efficient loop magnetogenesis requires rotation to stir
up the plasma, but also rapid translational motion to sweep over a large frac-
tion of the universe. To account for kinetic energy in the form of the small
scale wiggles and oscillations of the loop, as well as the angular momentum
that is radiated away in gravitational waves immediately after its creation,
we take vr ∼ 0.4 < vRMS to be a conservative initial value.

5.3 Accretion

In this section we focus entirely on the generation of vorticity by a rotating
loop, since it is a precondition for the Harrison-Rees mechanism to create
magnetic flux, see section 1.7.2. Based on the results of section 5.2. we use
a rigid loop approximation, that is, we assume that loops do not drastically
change their size, shape, rotational or translational velocity, while the plasma
is affected by the loop. We also use a circular loop, not because we expect that
loops are circular in real life, but because this simplifies our computations
and should yield reasonable estimates.

Why do we expect loops, and the vortices they create, to be important
in the first place? Before we delve into the computational aspects, lets con-
template this question: Since vortices are real astrophysical objects, they
are subject to many physical processes 4. For instance, though there might
be a small vortical component to the plasma flow in the region between two
widely separated cosmic string wakes, this vast distance will encompass many
local over- and under-dense regions, complicating the physics. On the other
hand, the length scales perturbed by string loops are somewhat smaller, and

4In this study we will not consider all of them, and our comparisons of the length scales
and vortex velocities should be viewed in this light.
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should thus be less subject to the whims of small plasma variations. Fur-
thermore, the strings are doing more than generating vortical motions and
magnetic fields: they are accreting matter. This adds to local over-densities,
and makes the regions over-swept by strings somewhat more likely later to
collapse and develop structure. We should also have string loops attracted
to relatively overdense areas. We may thus expect regions that have been
affected by string-loop magnetogenesis to be, preferentially, those regions
which later form structure. Though small, we believe this phenomenon will
help to increase the effective coverage of loop-sourced magnetic fields, since
even if they fail to cover the whole universe, the parts that they do cover will
likely be the parts that will eventually host galaxies.

5.3.1 Gravitational Dragging by Loops

We mentioned repeatedly that rotational velocity flows in the plasma can
be sourced by a loop, but how does it work in detail? First, assume that a
loop is in a typical state of motion, meaning it possesses a nonzero angular
velocity ω and some translational velocity. Gravitational interaction causes
a drag force from the loop which then transfers angular momentum to the
plasma in a straightforward fashion. The correlation length of the rotational
flow, and thus of the magnetic field, is set by the size of the loop.

To compute this effect, we follow the procedure introduced in section
1.6.3, that is we use the Newtonian approximation to compute the infall
velocity and thereafter the drag velocity as a second order effect. Thus our
first task is to compute the gravitational impulse exerted on a test particle
by a passing rotating loop. We consider a rigid, circular loop of radius
R, length ℓ = 2πR, and linear (gravitationally relevant) mass density λ =
µ − T = µ(1 − µ2

0/µ
2), with its angular velocity ω and translational velocity

vt oriented along the z-axis. This situation is illustrated in Figure 5.1.
Although analytic solutions to the loop equations of motion are known

[171], in general the loop dynamics are quite complex, and certainly we do
not expect cosmic string loops to act precisely as the rigid loops we study
here. Nonetheless, we assume that the relevant physics operating on the
largest loop length scales is effectively captured by the idealization of a rigid
loop, and its “coarse-grained” properties such as velocity, angular momen-
tum, mass and size. The parameters ℓ, vr and vt are all functions of time,
thanks to the dynamical forces acting on the loop and its emission of gravi-
tational radiation. We described the equations that govern these quantities
in section 5.2, and find that ℓ, vr and vt change very little over the timescales
associated with test particle encounters. While we take all of these dynam-
ical forces into account when studying the long-term evolution of the loop
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Figure 5.1: A rotating loop with angular velocity ω and drift velocity vt

attracts the surrounding plasma with a net velocity of order v⊥ ∼ Gλ/vt,
which in turn causes a vortex with rotational velocity of order v‖ ∼ v2

⊥/vr

over the size of the loop. The resulting angular velocity of the plasma is of
order ωpl ∼ λ2G2/(Rv2

t vr).

population, for the purpose of estimating the drag on the plasma, we treat
ℓ, vr and vt as constants.

Switching to the loop’s rest frame, we consider a particle at rm = R̃ŷ. At
time t, we parameterise points rL on the loop by

rL = R





sin πσ cos ωt
sin πσ sin ωt

cos πσ



 (5.27)

where σ ranges over −1 . . . 1. We take the ratio

R =
R̃

R
(5.28)

to be larger than, but close to, unity. We further define the displacement
d = rL − rm with magnitude

d = R

(

1 − 2ym

R
sin πσ sin ωt +

y2
m

R2

)1/2

. (5.29)

Recalling that we have defined x as the direction parallel to the string’s
motion, we know that the acceleration component ax vanishes to first order
if we average over a full rotation. The net acceleration is in the y-direction,
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toward the loop, and given by

ay = πGλR

∫ 1

0

dτ

∫ 1

−1

dσ
dy

d3
= C1π

Gλ

R
, (5.30)

where τ = t/T , with T the loop rotation period T = 2π/ω and

C1 ≡ R2

∫ 1

0

dτ

∫ 1

−1

dσ
dy

d3
, (5.31)

which is of order one. (For example, one finds C1 ≈ −1/2 for R̃ = 2R). The
net velocity toward the loop after one rotation is then

vy ≈ 2π

ω
|ay| = |C1|2π2Gλ

vr
∼ π2 Gλ

vr
. (5.32)

Thanks to its drift velocity vt, the loop undergoes roughly 4Rω/(2πvt) =
2vr/(πvt) rotations before it moves away from the test particle, so the total
velocity acquired by the test particle during the encounter is

vy ∼ 2πGλ

vt
, (5.33)

which is similar to the straight string case in (1.106). Only the translational
velocity vt enters this expression, since the longer a particle experiences the
gravitational attraction towards the loop, the faster they approach each other
in the end.

The drifting loop drags the plasma behind it – just as a straight string
does – but unlike the string encounter, the flow has a rotational component.
The drag velocity in the x-direction is again of order vx ∼ v2

y/vt (see be-
low), resulting in a dynamical friction force on the loop of F ∼ R2ρv2

y ∼
R2ρG2λ2/v2

t . This has two effects on the loop. First, it feels a net force due
to dynamical friction of [167, 168]

v̇t = −vt

t∗
ln θ−1

min (5.34)

where θmin and t∗ are defined in (5.6) and (5.5) respectively. Second, because
the loop rotates, the drag force generates a vortical flow. As in the long string
case, this is a second-order effect. The acceleration in the x-direction due to
an infinitesimal element of the loop dσ is

dax =
πGλR2

d3
sin πσ cos ωt dσ (5.35)
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Substituting the first-order trajectory of the test particle, given by

ym(t) = R̃ + vy

(

t − π

ω

)

(5.36)

with ym(π/ω) = R̃, into (5.35), expanding in terms of ε ≡ vy(t − T/2)/R )
1, computing the drag velocity by integrating the first order term over a
single period (the zeroth order contribution vanishes due to symmetry), and
replacing Gλ in terms of vy results in

vx ≈ v2
y

vr

|C2| ∼
v2

y

7 vr

, (5.37)

where

C2 ≡ 12π

∫ 1

−1

dσ

∫ 1

0

dτ sin πσ cos 2πτ

(

τ − 1

2

)

× R− sin πσ sin 2πτ

(1 + R2 − 2R sin πσ sin 2πτ)5/2
. (5.38)

Numerical integration gives C2 ≈ −0.14 for R = R̃/R = 2, so we take
C2 = −1/7. The drift velocity vt enters (5.37) via vy ∼ 2πGλ/vt, so as a
result of the drag force, the plasma is stirred up with angular velocity

ωpl ∼
vx

ℓ
∼ v2

y

7ℓvr

∼ (2π)2λ2G2

7 ℓv2
t vr

, (loops) (5.39)

where we take the vortex size to be given by the loop length ℓ = 2πR.
As we have shown in section 5.2 vr(t) and vt(t) are comparable to the

average velocity of straight strings, vs. Therefore the ratio of vorticities is
essentially controlled by the ratio ℓ/R of loop length to long string separation.
Since the loop must linger in each region of space long enough to establish a
vortex, vortices are only created when vr > vt.

5.3.2 Comparison: Vortices between Straight Strings

In section 1.6.3 we computed the flow behind a single long string; a simple
superposition of the flow beyond two oppositely moving strings yields the
flow depicted in Figure 5.2, which is not rotational.

A rotational flow can be created by vortices that build up due to tur-
bulence in the string wake, as first proposed by Vachaspati and Vilenkin
[134,135] (see also [151,172]). The authors of [151] argue that a two-string en-
counter creates a vortex whose size is comparable to the interstring distance,
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Figure 5.2: Two straight strings with effective Newtonian mass density
λ = µ−T cause wakes in the surrounding plasma via gravitational interac-
tion. After the encounter, the magnitude of the dragging component of the
plasma flow velocity is approximately vy ∼ Gλ/vs and vx ∼ v2

y/(vs). The
resulting plasma flow carries at most a rotational component of velocities
up to vrot ∼ vx over interstring distances, so that an angular frequency of
order ω̃pl ∼ λ2G2/(Rv3

s ) results, see (5.43).

with rotational velocities comparable to the infall velocity of the plasma
vrot ∼ vy. Dimopoulos and Davis [136, 137] later investigated the two-string
encounter assuming the same plasma flow. The argument they employ runs
essentially as follows: plasma of density ρ in a region of volume V ∼ R2vsT ,
with post-encounter net momentum ∆p ∼ R3ρvx, leads to a force on the
string of F ∼ ∆p/T ∼ R2ρv2

y. Applied over a distance R, the string does
work Ws ∼ ρR3v2

y . If we were to assume that the overall flow in the region
V is rotational and were to set Erot ∼ ρR3v2

rot equal to Ws, this would im-
ply vrot ∼ vy

5. The keystone of these proposals is the assumption that the
vortex size is comparable to the interstring distance, and that it carries the
majority of the total kinetic energy imparted to the plasma. However, such a
vortex is not present immediately after the encounter as indicated in Figure
5.2. Indeed, the change in angular momentum of the strings due to the drag-
ging of the plasma is roughly ∆Js ∼ R∆p ∼ R4ρvx. Conservation of angular
momentum implies that the plasma may have, at most, a rotational compo-

5An additional factor of 2 in [137] stems from taking vrot ∼ u ≡ 2vy, where u is the
relative velocity of particles on opposite sides of the string.
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nent in the volume ∼ R3 with angular momentum Jplasma ∼ R4ρvrot ∼ ∆Js.
Therefore the net rotational velocity is closer to vrot ∼ vx, which is much
smaller than vy. This is illustrated schematically in Figure 5.2.

These simple estimates can be improved as follows. The wake behind a
single string, created at tF " teq, has a length lw, width ww and thickness
dw, given by the scaling relations [117, 173–175]

lw ∼ tF
zF

z
, ww ∼ vstF

zF

z
, dw ∼ vytF

(zF

z

)2

, (5.40)

which are valid for z > zF vy/vs. Turbulent eddies arise within the wake
shock [172], and could potentially lead to large rotational velocities of order
vy. However, the characteristic size associated with matter chunks due to
fragmentation of the wake is comparable with the thickness of the wake dw

behind an individual string [117,176,177]. We expect turbulent, gravitation-
ally supported vortices at this length scale. Comparing this thickness to the
interstring distance R(t) ∼ P βvst yields

dw

R
∼ vytF (zF/z)2

vsP βt
∼ 2π

√

zF

z

Gλ

v2
sP

β
, (5.41)

where we use vy from (1.106), P is the intercommutation probability 6,
1/2 ≤ β ≤ 1 [178], and tF /t = (aF /a)3/2 ∼ (z/zF )3/2. Considering mildly rel-
ativistic strings (vs ∼ 0.1 as an order of magnitude) and the largest possible
Gλ ∼ 10−7, we are left with

dw

R
∼ 2π

√

zF

z

10−5

P β
. (5.42)

The vorticies relevant for magnetogenesis are created toward the end of the
radiation era, so the redshifting factor is of order unity and vortices due to
turbulence in the string wake are much smaller than the interstring distance.
The seed fields necessary to initiate plausible galactic dynamos should be
coherent over distances of at least ξseed ∼ 5 − 50 pc at decoupling, but dw ∼
1 pc for turbulent eddies created around tdec. We reviewed the relevant length
scales in more detail in chapter 1.7.3.

Since the magnetic field is directly proportional to the angular velocity
of the plasma, our new estimate greatly reduces the expected strength of
magnetic fields produced by the long strings. Our arguments indicate that

6P ≈ 1 for cosmic strings, 10−1 ≤ P ≤ 1 for D-strings and 10−3 ≤ P ≤ 1 for F-
strings [120].
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the drag velocity vx is the relevant velocity for magnetic fields that are coher-
ent over interstring distances, not the infall velocity vy. This gives a plasma
vorticity

ωpl ∼
vx

R
∼ v2

y

2Rvs

∼ (2π)2λ2G2

2Rv3
s

. (long strings, this thesis) (5.43)

This is in contrast with [136, 137] which obtains the estimate

ωpl ∼
vy

R
∼ 2πλG

vsR
. (long strings, previous) (5.44)

We find that while rotational velocities ∼ vy are possible within the string
wake, by (5.42) their correlation length is much smaller than the interstring
distance R.

To summarize: vortices due to turbulence in the string wake are confined
to small scales, much smaller than the interstring distance R. Even though
these vortices may have large rotational velocities, their small size makes
them far less appealing for magnetogenesis.

5.4 Magnetic Fields

We have seen how vorticity can arise in a string network. Here, we present
our analytic and numerical finding of the magnetic fields created within a
string network.

5.4.1 Analytic Estimates Near Decoupling

Straight string encounters near decoupling produce vorticity given by ωpl

from (5.43), which by the Harrison-Rees mechanism creates a seed field of

Bs ∼ 10−4(2π)2 (µ − T )2G2

2v3
sR

! 1.6P−β × 10−26 G , (5.45)

where we use G(µ − T ) ≤ 10−7, vs ≥ 0.1 and an interstring distance of
R = P βvstdec. These fields have a correlation length at decoupling of

ξs ∼ 12 P β kpc . (5.46)

The field strength in (5.45) is several orders of magnitude smaller than the
corresponding one in [137], since our estimates of the vorticity on large scales
generated by a two-string encounter is much lower than that in [137]. Cosmic
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strings with P β ∼ 1 and the largest possible string tension produce fields that
are just strong enough to seed the most efficient dynamos. This improves
somewhat for F and D-strings, which can have a lower P β. In either case the
coherence length is larger than the minimal one in (1.119).

The vorticity from rotating loops with ωpl from (5.39) results in seed fields
of

Bℓ ∼ 10−4 (2π)2

7

(µ − T )2G2

ℓv2
t vr

. (5.47)

Taking G(µ− T ) ≤ 10−7, vt ≥ 0.1, vr ≈ 0.4 and defining a new parameter α̃
such that the loop length ℓ at formation is

ℓ = α̃tF =
frα

H(tF )
, (5.48)

at tF = tdec we obtain

Bℓ !
2.9 × 10−29

α̃
G . (5.49)

We use vt ≥ 0.1 since even a large initial velocity of vt ∼ vRMS decreases
due to redshifting in the matter era, before it speeds up again due to the
rocket effect (see section 5.2.2). Because redshifting is absent for the rota-
tional movement, the rotational velocity decreases only very slowly due to
the emission of gravitational waves, which is also counterbalanced by loop
shrinking to some extend (see section 5.2); hence we use use vr ≈ 0.4 (sec-
tion 5.2.3). Since α̃ < P βvs, we can achieve a larger field strength than for
a straight string encounter. Consequently, less efficient dynamos work, but
not all galaxies are so lucky as to have had a loop sweeping over them in the
past. The coherence length

ξl ∼ 117α̃ kpc . (5.50)

is large enough to seed the dynamo for α̃ ≥ 10−5, so that both the largest
loops and many of the smaller ones contribute to magnetogenesis. The
smaller the loops, the stronger the resulting seed field. The analytic esti-
mates suggest similar contributions in magnetic field flux from long strings
and loops. In fact, the results of the numerical estimates presented in sec-
tion 5.4.2, which include more details of the loop dynamics and population
characteristics, show that loops produce much stronger magnetic field fluxes
than long strings. Partly this is because the loop length spectrum peaks at
lengths much smaller than αLH , which effectively lowers the value of α̃ and
greatly increases the fields they create. In addition, redshifting slows the
loops, which then create stronger magnetic fields.
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5.4.2 Numerical Estimates

After combining the analytical results of section 5.3 with the semi-analytic
string network models introduced in section 1.6.2 and the loop dynamics of
section 5.2 into a numerical code (see the appendix of [2] for more details on
the code), we obtain the magnetic fields shown in Figures 5.3-5.4. We wish
to determine the dependence of the magnetic field on the following:

1. Gµ0, the string’s bare tension;

2. our model for string network evolution (OSM/VOS);

3. whether or not string loops are allowed to undergo dynamics;

4. the initial velocity at which a loop moves after formation;

5. α, the average length of a new loop after it has formed.

This last parameter is under active study at present from both analytical
[123,179,180] and numerical [124,181–183] perspectives. The average length
is important to understand because large loops live much longer than small
loops. Loops lose their length by generating gravitational radiation, which
will be, in the near future, under observational limits; since longer loops emit
gravity waves later, they are more tightly constrained (see ref. [169] for much
more detail). For the discussion of our numerical results, we will first treat
the above parameters as free and independent parameters so as to study how
each affects magnetogenesis. On the other hand, we will take our test values
for Gµ0 from observational constraints: a fiducial value of 2×10−7 [118,119],
an optimistic value of 7 × 10−7 [184], and the most constrained value of
2 × 10−8 [185]; the former two come from combining CMB data with other
cosmological observations, while the latter one is from pulsar timing and the
worst case scenario. At the end, we present constraints on what we consider
to be the best motivated combination of parameters, which differs slightly
from our fiducial model. Our fiducial model, used wherever nothing else is
specified, includes: the VOS model for long strings; loop dynamics turned
on; Gµ0 = 2×10−7; α = 0.01; and vt(t = tF ) = 0.1. Where relevant, we have
drawn a line demarcating the minimum correlation length necessary to seed
galactic dynamos and a line indicating the minimum magnetic field strength
necessary, given a particular dynamo amplification time, Γ−1

dy .
In Figure 5.3a we show the scaling of the magnetic field spectrum with

Gµ0. In this plot, it is shown that as Gµ0 decreases each loop becomes
less effective at generating magnetic fields; as a result, the magnetic flux
is reduced. In addition, the loop length spectrum peaks at a characteristic
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length determined by Gµ0 as derived in (1.6.2) for the OSM/VOS model.
Reducing Gµ0 causes the characteristic loop size to fall, shifting the magnetic
field spectrum to smaller correlation lengths.

For several values of α the magnetic field strength as a function of corre-
lation length is given in Figure 5.3b. The magnetic field is weakly dependent
on α due to two effects: firstly, even though α sets the size of the largest
loops, at any fixed time, the greatest number of loops have a characteristic
length set by Gµ0, as described by the OSM model ( see section 1.6.2). Hence
the magnetic field flux and the peak correlation length depend weakly on α.
Second, loops will always decrease to smaller sizes even if they are created
in models with much larger α, thus mimicking models with smaller α. The
slight dependence of magnetic field strengths on α is evident. Note that
the peak magnetic flux grows only slightly with α. This can be understood
heuristically in the following way: as α decreases, the network must give off
energy to an ever growing number of smaller loops, as a result, the fraction of
the loops capable of creating magnetic fields at the peak correlation length,
grows slowly as α decreases.

Figures 5.3c, 5.3d and 5.4a show, for different values of Gµ0, α, and
translational velocity vt at the time of formation, the fraction of the universe
covered with different magnetic field strengths. For viable magnetogenesis to
occur, cosmic string loops must not only produce sufficiently strong magnetic
fields, but must be produced over nearly the entire volume of the universe.
Figure 5.3c shows a fall in peak magnetic field strength with decreasing Gµ0

like in Figure 5.3a. As Gµ0 decreases, the magnetic field strength decreases,
although the overall shape of the curves looks almost the same. It can be
heuristically argued that as the value of Gµ0 diminishes, the loop network
has about the same size and number of loops, thus producing the same
volume coverage, though at much lower magnetic field values. Along the
same lines, Figure 5.3d shows a similar weak dependence of the magnetic field
strength on α as we saw in Figure 5.3b. The fraction of the volume swept out
decreases with every lower value of α, the reasoning behind this relationship
is that the network is saturated with a large number of of smaller loops.
Strictly speaking, the volume swept out by a single loop is proportional to
α2, while that of the number of loops being produced is proportional to α−1.
Combining these two scaling gives an approximate linear scaling with α. In
Figure 5.4a we note that decreasing the loop’s translational velocity decreases
the fraction of volume swept out, giving larger magnetic field strengths. This
makes sense since slower loops sweep out less volume making them more
prone to remain in a specific area for a longer period of time. Thus the loops
have more time to produce stronger magnetic field strengths than if the loop
translational velocity is greater as is evident in the plot.
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Now we want to explore the effect of loop dynamics and the network
model on our conclusions. A plot of the fraction of the horizon volume swept
out versus the magnetic field strength is shown in Figure 5.4b. Note that the
inclusion of loop dynamics increases the strength of the magnetic field, but
decreases the volume swept out. This is so since loop dynamics decrease the
loop translational velocity over time, thus leading to stronger magnetic fields.
The model with the best physical motivation is the velocity-dependent-one-
scale model with loop dynamics. In this model, string loops are produced at
10% of the horizon size, and we assume that only 10% of the energy which
goes into loops is injected into loops of this size. The remaining 90% goes into
loops created near the gravitational radiation back-reaction scale, through
loop fragmentation, among other effects. Figure 5.4c shows a comparison
of magnetic field strengths generated from loops and long straight strings
encounters. For long string encounters, the vortices generated are spread
over large length scales, leading to much weaker magnetic field strengths
than those generated by rotating string loops. Thus, cosmic string loops
give the dominant contribution to the total magnetic field on present-day
galactic scales, and not long string encounters as it was previously claimed
in [136,137]. Finally Figure 5.4d shows a relationship between the fraction of
the horizon volume swept out and the correlation length for the five models
discussed above.

5.5 Conclusion

We computed magnetic fields generated by the loop population within a
cosmic string network. Our results give strong evidence that it is cosmic
string loops and not long string encounters (which we re-evaluated yielding
drastically different results as those previously claimed in the literature) that
give the dominant contribution to the total magnetic field. Coherence length
and field strength are large enough to account for magnetic fields observed
in spiral galaxies, given that the dynamo amplification during the galactic
rotations is reasonably strong. These magnetic fields are created by cosmic
strings with a tension Gµ0 " 10−8, a value still allowed by cosmological
observations. If cosmic strings with the relevant tensions are discovered in
the next few years, and if galactic dynamos turn out to be as efficient as we
assumed, our mechanism for magnetic field magnetogenesis is viable. On the
other hand, if cosmic strings are observed but the tensions are much smaller
than we assume, or if the dynamo efficiency is small, then our mechanism is
ruled out.
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Figure 5.3: For all plots we assume the VOS model with loop dynamics,
Gµ0 = 2 × 10−7, α = 0.01 and vt(t = tF ) = 0.1. The horizontal axis
gives the magnetic field strength at z=10, and the vertical axis shows the
fraction of the volume of the universe immersed with a magnetic field of
that flux or greater. a) represents a plot for different test values of the
bare string mass per unit length µ0; we plot the magnetic field strength as
a function of the magnetic field’s correlation length. b) shows a variation
of magnetic field strength as a function of string formation length fraction
α. In c) we again vary the mass density. Here we plot the volume of the
universe imbued with a seed field as a function of the magnitude of the seed
field flux. Finally, in d) we vary the initial loop size and show its effects
on magnetic field strength and volume coverage.
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Figure 5.4: a) shows a variation of the initial translational velocity. b)
shows the relationship between network model, OSM/VOS and loop dy-
namics (with or without). Since loops change their size over time, different
volumes of space will be endowed with seed fields of differing magnitudes.
Example to read the plot: the red line crosses 8% is at a magnetic field
strength of approximately 10−30 G. What this means is that 8% of the
volume of the universe at the time of galaxy formation was saturated with
a seed field whose magnitude was equal to, or larger than, 10−30 G. Only
fields whose correlation lengths are sufficiently large (Lcorr > 500pc at
z = 10) are included. We have also included what we believe to be the
best motivated model: the VOS model for the long strings, loop dynamics,
and α = 0.1, but with only 10% of the string network’s energy loss going
into loops that large, with the rest lost to very small loops. c) shows a
comparison between magnetic fields strengths from loops and strings. d)
shows the fraction of the volume covered versus the correlation length for
all models considered.
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Param. Value Source description, first used in (eqn.)
Gµ0 2 × 10−7 [118, 119] string mass/length
µ 1.9µ0 [117], rad. era effective mass/length (1.102)

1.5µ0 [117], mat. era
α 0.01 [117,128] size of large loop/horizon (1.88)
fr 0.7 [128,186] loop redsh. energy loss (1.88)
α̃ frαH−1(tF )/tF Def. in (5.48) new loop length

over formation time
Γℓ 50 (⋆) eff. of grav. wave em. [129] (1.88)

50 ! Γℓ ! 100 [130]
45 ! Γℓ ! 55 [131]
50, 80 [128, 170,187]

Γgr 5 [170] grav. wave em. → torque (5.18)
Γp 10 [166,170] rocket effect (5.4)
Γdy 0.2 Gyr (⋆) dynamo efficiency (1.115)

0.2 < Γ−1
dy /Gyr < 0.8 [155,188]

Γ−1
dy " (1.1 − 1.4) Gyr [141]

Γ−1
dy = 0.3 Gyr [161]

Γ−1
dy = 0.5 Gyr [159]

Γ−1
dy = 2.2 Gyr [162]

zdec 1089 [6] redshift at decoupling
zgf 6 [136] redshift of galaxy formation

10 (⋆)
teq 1.6 × 1012 s = 51 kyr time of matter-radiation equality
tdec 1.2 × 1013 s = 380 kyr time of decoupling (5.45)
t0 13.7 Gyr [6] age of the universe
vRMS 0.60 [134], mat. era RMS vel. in network
v̄RMS 0.15 [134], mat. era RMS vel. avg. over corr. length
Ωmh2 0.1277 [6] mat. fraction (1.117)
h 0.732 [6] Hubble parameter (1.117)
β 1/2 ≤ β ≤ 1 [137] (5.41)
P 1 (⋆) cosmic strings intercommutation probability

10−1 ≤ P ≤ 1 D-Strings [120]
10−3 ≤ P ≤ 1 F-Strings [120]

c1 0.21 (0.2475) [132, 133] VOS parameters
c2 0.18 (0.3675) in radiation (matter) era
c3 0.28

Table 5.1: Our parameters. When several values are given, we select the
one marked by a (⋆).
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Chapter 6

Conclusions

The focus of this thesis was devoted to two distinct, major topics: non-
Gaussianities and preheating in multi-field inflationary models, using N -
flation as a concrete example, and magenetogenesis from rotating cosmic
string loops.

To evaluate whether non-Gaussianities are possible in N -flation, we con-
sidered the non-linearity parameters fNL, τNL and gNL (characterizing the
bi- and tri-spectrum) in the horizon crossing approximation. In this limit,
N -flation and simple single field inflationary models were found to be in-
distinguishable, with unobservable small non-Gaussianities. In order to lift
this degeneracy, the evolution of the comoving curvature perturbation af-
ter horizon crossing was considered. This evolution is due to isocurvature
perturbations, which can in turn cause additional non-Gaussianities. Thus,
this evolution can provide the possibility to differentiate between models. To
make the calculation concrete, we assumed the Marcěnko-Pastur mass dis-
tribution and equal energy initial conditions at the beginning of slow roll.
Based on this, we computed the magnitude of fNL for narrow and generic
mass distributions (including broad ones, as favored in N -flation). Even
though additional contributions were found, they constitute only a few per-
cent of the horizon crossing result, leading to the conclusion that they are
unobservable. The apparent insignificance of the additional terms stems
from the application of the slow roll approximation. For fast rolling fields,
we expect larger contributions to fNL, which may be present in models other
than N -flation. To illustrate, if a field suddenly begins to evolve faster, even
as inflation continues, the trajectory in field space makes a sharp turn, in-
ducing isocurvature perturbations to incite the adiabatic mode, generating
non-Gaussianities.

Next, we constructed two distinct effective single field models, to inves-
tigate N -flation in the era after the slow roll condition is violated for one
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or more fields, but before preheating commences; the first one consists of
the continued application of the slow roll result (beyond its domain of appli-
cability) yielding a lower bound of the potential energy up until preheating
starts. We then found an upper bound by holding subsequently fixed fields
whenever their slow roll parameter ηi became of order one. Since the fields
are still rolling slowly up until preheating starts and the trajectory in field
space remains smooth, we conclude that additional non-Gaussianities are not
produced in N -flation during this era. Subsequently, preheating starts and
non-Gaussianities may still be sourced – a topic that needs further investi-
gation.

We followed with a study of preheating in N -flation, coupling all axions to
a single, scalar matter field. Employing our analytic approximations as well
as numerical calculations we found that most of the energy is concentrated
in a few light fields at the end of inflation. As a consequence, we focussed
on these fields as the ones responsible for preheating. Our results differ
considerably from those obtained in the literature in that we find parametric
resonance effects to be largely absent during preheating. The reason why
parametric resonance is suppressed in N -flation is that the axions are out of
phase, thus conspiring to average out each other’s contributions to the matter
field’s effective mass. As a result, instead of an exponential increase of the
amplitude during the matter fields oscillations, we find power law behavior.
Thus, the old theory of perturbative preheating remains applicable in multi-
field models of inflation such as N -flation. For the sake of simplicity we
made a few assumptions that include the consideration of only one matter
field, while backreaction and rescattering were ignored during preheating.
We expect that incorporating these effects leads to minor effects only, since
explosive particle production due to parametric resonance is unimportant
in N -flation already. Indeed, the inclusion of these effects would cause a
further decrease of resonance effects. Additionally, we assumed axion matter
couplings to be equal to each other. Relaxing this assumption might in
principle change the scenario quantitatively, however, qualitative changes
are not expected.

We then shifted gears and focussed on the problem of seeding large scale
magnetic fields. We proposed a mechanisms by which the primordial plasma
is first stirred up by rotating, cosmic string loops within a string network
in the early matter era before decoupling. Subsequently, ions and electrons
are slowed down differently by interaction with the CMBR, causing currents
which in turn seed magnetic fields (the Harrison-Rees mechanism). We used
semi-analytic string network models as well as detailed loop dynamics to
model the loop population realistically in a numerical code. Our results give
strong evidence that it is cosmic string loops and not long string encoun-
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ters which give the dominant contribution to the total magnetic field. We
found that coherence length, field strength and horizon coverage are suffi-
cient to account for magnetic fields observed in spiral galaxies, given that
the dynamo amplification during the galactic rotations is reasonably strong.
The magnetic fields so produced are created by cosmic strings with a tension
Gµ0 " 10−8, a value still allowed by cosmological observations. If cosmic
strings with the relevant tensions are discovered in the next few years, and if
galactic dynamos turn out to be as efficient as we assumed, our mechanism
for magnetic field magnetogenesis is viable. On the other hand, if cosmic
strings are observed but the tensions are much smaller than we assume, or if
the dynamo efficiency is small, then our mechanism is ruled out.
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