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Abstract

Asteroid orbit computation can be taken to comprise of two problems, the orbital
inversion and prediction. For any new celestial object, the inverse problem needs
to be solved first and the result, typically a set of orbital parameters, or elements,
then serves as a starting point for the prediction problem, which may include topics
such as dynamical classification, ephemeris prediction, and planetary impact risk
estimation. The present work enlarges on the inverse problem for poorly observed
asteroids.

The importance of accurate initial orbit computation has been emphasized due
to the realization that asteroids and comets can impact the Earth, and constitute
a significant risk for the survival of human species. Unlike many other natural
disasters, a cosmic impact might be avoidable given a long enough warning time
and adequate knowledge of the dynamical and physical properties of the impacting
object.

Reliable predictions, whether for ephemeris or impact risk, rely on solid assess-
ment of orbital uncertainties. For the poorly observed objects, such as new dis-
coveries, orbital uncertainties are known to be large, and conventional techniques
giving a single orbit solution and possibly some error estimates can be misleading,
and fail to describe the real uncertainties.

In the present thesis, a statistical solution to asteroid orbit computation is de-
scribed. Following statistical inverse theory, the a posteriori probability density
function of the orbital elements constitutes the complete solution to the inverse
problem. In addition, adopting Bayesian inference can help to constrain complex
inverse problems by introducing a priori information to the statistical model. In
particular, two nonlinear numerical techniques for solving the orbital-element prob-
ability density are presented, and they are shown to successfully unravel orbital
ambiguities, such as nonlinear correlations between orbital elements or multiple
solutions.
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1 Introduction

The study of the motions of celestial bodies is the objective of celestial mechanics. The
variety of bodies cover in principle every object observed in the universe, from dust par-
ticles in interplanetary medium to stellar systems and galaxy groups, or to the currently
so topical planetary systems around other stars, i.e., the numerous exoplanets. However,
the present thesis focuses on an object group historically most closely connected to celes-
tial mechanics, the objects of our solar system, which have motivated some of the most
fundamental theoretical work.

An elementary problem in celestial mechanics is the orbit determination for the small
bodies in the solar system. As solar-system objects are identified due to their movement
against the apparently stationary background sky, it is possible to measure their motion as
positions on the sky at given times. This information can be used to derive the first quan-
tities characterizing a newly discovered object: the parameters describing its trajectory,
i.e., the orbital elements. They are traditionally expressed in terms of the six Keplerian
elements P = (a, e, i, Ω, ω, M), which are, respectively, the semimajor axis, eccentricity,
inclination, longitude of ascending node, argument of perihelion, and mean anomaly. The
first two describe the size and shape of the orbit, the three elements (i, Ω, ω) give the ori-
entation with respect to the adopted reference system (the Earth’s orbital plane, i.e., the
ecliptic at epoch J2000.0), and the last one (M) identifies the position of the object in the
orbit at a given epoch. In fact, orbit determination is the inverse problem of another basic
problem of celestial mechanics: the direct problem of computing the path, in particular,
the sky positions, of the object in the future when the parameters describing its orbit
are known. The inverse problem needs naturally be solved first to make the follow-up
observations possible and to enable any detailed physical and dynamical studies.

The (asteroid) orbital inversion is one of the oldest inverse problems in astronomy.
Historically, astronomy started as positional astronomy, and still the first information
obtainable for any new object is typically its sky positions. In theoretical work, one of
the earliest advances was the development of the classical theory of celestial mechanics
by Newton. Measuring and predicting of the positions of stars and solar system objects
remained in practice as the only objectives of astronomical research until the 19th century
when the field of astrophysics saw its first light. Chapter 3 of the thesis describes the
historical background in the field of celestial mechanics.

Although the methods developed by, e.g., the famous mathematician Gauss have lived
for over 200 years, major advances in the field have been made in the recent years. This
ongoing progress is in large part inspired by the impact risk from near-Earth asteroids and
comets. The realization of the cosmic threat has led to active monitoring of the impact
risk, and to the development of numerous novel techniques to improve the accuracy of
asteroid orbit computation. In particular, the emphasis has been on initial orbit com-
putation. The magnitude of the problem became evident when the number of asteroid
discoveries began to rise in the 1990’s due to several surveys dedicated to discover these
potentially hazardous objects. The increasing number of new, fast-moving objects has
brought about a situation where not all discoveries can be followed up long enough to se-
cure their orbits with an abundance of observations. In the late-90’s, the discovery of the
first impactor candidates, i.e., asteroids with non-zero probabilities for an Earth-impact
within the next century, boosted the need for efficient techniques to compute initial or-
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bits, which could then be used for predicting follow-up ephemerides, or evaluate the risk
of an impact. By then, the complicated nature of initial orbit computation had been
realized, and earlier methods had been found not to be applicable to such detailed studies
of objects with short observational arcs. The ambiguities of the orbital solution for short-
arc objects, such as non-physical parameters or the nonuniqueness, i.e., the existence of
multiple solutions, called for more rigorous techniques.

In the present thesis, a new class of rigorous methods for initial orbit computation is
presented, and they are shown to successfully unravel the ill-posed inverse problem. The
standpoint is that of statistical inverse theory, where the aim is to solve the probability
density for the desired, unknown parameters, here, the orbital elements. The orbital-
element probability density constitutes the complete solution to the inverse problem; there
is no need for additional error analysis, which can be a major obstacle in conventional
orbit computation.

While the traditional scheme of orbit computation proceeds from a preliminary orbit
using a minimum number of observations to orbit improvement with an abundance of data
(standard least-squares fit), today a large variety of techniques exists each with their own
application area in terms of observational data. The aim of the ongoing research, as is
presented here, is likewise to provide a continuum of optimized statistical techniques that
rise to the computational challenge produced by impending all-sky monitoring projects,
such as the space observatory Gaia (Chapter 6), that result in immense observational
databases for solar-system objects, among others.

A few words are in place about the adopted nomenclature in the present study. First,
the term orbit computation is adopted instead of orbit determination to emphasize the
non-deterministic nature of the problem as it is today understood (taken to include error
analysis). Here, orbit computation is further taken to encompass both the inverse and
the direct problem, that is, both orbital inversion and prediction.

Second, a diversity of terminology referring to small solar-system bodies exists. In
particular, the segregation between asteroids and comets has become difficult with the
observation that the activity of an object during its lifetime may vary from completely
dormant, asteroid-like stage to active cometary appearance. In the present thesis, the
word asteroid is in several occasions used in a broad sense in place of the more awkward
terms such as ”small solar-system body”, although the generic term object is generally
adopted for the purpose.

The thesis consists of the following papers:

Paper I Virtanen J., Muinonen, K., and Bowell, E. 2001. Statistical ranging of asteroid
orbits. Icarus 154, 2, 412–431.

Paper II Muinonen, K., Virtanen, J., and Bowell, E. 2001. Collision probabilities for
Earth-crossing asteroids using orbital ranging. Celest. Mech. and Dyn. Astron.,
81(1), 93-101. (In proc. of the US/European Celestial Mechanics Workshop, Poz-
nan, June 2000).

Paper III Virtanen, J., Tancredi, G., Muinonen, K., and Bowell, E. 2003. Orbit com-
putation for transneptunian objects. Icarus 161, 2, 419–430.

Paper IV Bowell, E., Virtanen, J., Muinonen, K., and Boattini, A. 2002. Asteroid orbit
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computation. In Asteroids III (W. Bottke, A. Cellino, P. Paolicchi, and R. P. Binzel,
Eds.), pp. 27–43. The University of Arizona Press, Tuscon.

Paper V Muinonen, K., Virtanen, J., Granvik, M., and Laakso, T. 2005. Asteroid orbits
using phase-space volumes of variation. MNRAS, submitted.

Paper VI Virtanen, J., and Muinonen, K. 2005. Time evolution of orbital uncertainties
for the impactor candidate 2004 AS1. Icarus, submitted.

Paper I addresses the problem of initial orbit computation, and describes a new nonlinear
inverse technique termed statistical orbital ranging (Ranging) which is based on statistical
inverse theory. In Paper II, the Ranging technique is applied in a fully nonlinear assess-
ment of asteroid collision probability. Paper III presents a dynamical study of the orbital
distribution of the transneptunian population, again making use of Ranging in orbit com-
putation. The recent advances in the field of orbit computation are reviewed in Paper
IV. Whereas Ranging is best suitable for short observational arcs and small numbers of
observations (exiguous data), a nonlinear statistical technique applicable to moderate ob-
servational data is presented in Paper V. Finally, Paper VI returns to the topic of Paper
II, and offers a detailed case study of an impactor candidate, asteroid 2004 AS1.

The thesis is organized as follows. In Chapter 2, the different populations of small
solar-system bodies are described, and a variety of related prediction problems are out-
lined. As a historical background, the early advances in asteroid orbit determination are
reviewed in Chapter 3. In Chapter 4, the inverse problem of asteroid orbit computation
is discussed; the fundamental equations of celestial mechanics are written out (Sect. 4.2),
and the conventional scheme for their solution is described (Sect. 4.3). Statistical orbit
computation is reviewed in Section 4.4, and the new numerical techniques presented in the
papers of this thesis are summarized. Section 4.5 reviews other recent advances in inverse
techniques and discusses their implication to the current work. Summaries of the papers
of the thesis are given in Chapter 5, and implications of future spacebased astrometry are
outlined in Chapter 6. Finally, conclusions and future prospects of the presented work
are offered in Chapter 7.
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2 Small bodies in the solar system

Figure 1: Asteroid Eros as imaged from the
NEAR-Shoemaker spacecraft. Eros was the first
NEO that was studied intensively at close range,
and in February 14, 2001, to complete a scientifi-
cally successful mission, the first asteroid (or any
atmosphereless planetary body after the Moon)
to be landed on (Image courtesy: NASA-JPL).

In our solar system as we know it today, the small planetary bodies have by far out-
numbered the nine major planets. Several dynamically different populations of objects are
recognized (Fig. 2). Their classifications are mainly based on the orbital parameters, but
also on more vague observational differences, such as cometary appearance. Proceeding
outwards from the Sun, first, there are the near-Earth objects (NEOs) that have been
named after their capability of approaching the Earth on their orbits. The NEO popu-
lation is further divided into the following three subclasses of asteroids. The Atens have
semimajor axes smaller than that of the Earth (a < a⊕ = 1 AU), but the orbits do not
reside entirely inside Earth’s orbit due to their higher eccentricities (aphelion distances
Q = a(1 + e) > q⊕ = 0.983 AU, where q⊕ is the perihelion distance of the Earth). As of
March 31, 2005, there are two well-observed asteroids, 2003 CP20 and 2004 JG6, that lie
permanently closer to the Sun than the Earth, and several other candidates have been
discovered.1 While there are no dynamical reasons why such orbits could not be present
in the solar system, their estimated proportion of the entire NEO population is only a few
percent (Bottke et al., 2002b). The small number of discoveries is further explained by
the difficult groundbased observing geometry. The two other subcategories of NEOs are
the Apollos (a ≥ 1.0 AU and q ≤ Q⊕ = 1.0167 AU) and the Amors (Q⊕ < q ≤ 1.3 AU). In
addition to asteroids, NEO population is typically considered to contain also those comets
that are on Earth-crossing orbits. Finally, a sub-population of NEOs called potentially
hazardous objects (PHOs) is distinguished based on their current Earth-approaching or-
bits. PHOs are generally defined as having absolute magnitude H < 22 mag (diameters
larger than ∼ 100 m) and orbits that can take them closer than 0.05 AU from the orbit of
Earth.2

The next population outwards is the asteroid main belt between the orbits of Mars
and Jupiter–corresponding to the historical location of the missing planet as predicted

1On various occasions such objects have been called Apoheles or Inner-Earth objects (IEOs), although
in practice the Aten group could be extended to include these objects, too.

2Distance corresponds roughly to the maximum amount of perturbation that could be caused by other
solar-system bodies in the object’s orbit within the next century.

4



Figure 2: Distribution of the orbital elements (a, e, i) and absolute magnitudes (H) of known
asteroids (based on the Lowell database for asteroid orbits, E. Bowell). The location of Mars
(M), Jupiter (J), and Neptune (N) are given as a reference (vertical lines), and Pluto is marked
with a diamond symbol.

by Bode’s law—the semimajor axes of the main-belt objects (MBOs) range from 2.1 AU
to 5.3 AU. The region is characterized by numerous resonances caused mostly by the
perturbative effect of Jupiter, the most well-known evidence are the Kirkwood gaps at
the 2:1 and 3:1 mean-motion resonances. Another feature of the main belt are the asteroid
families, dynamically tight groupings of objects which have been traced to be a result from
a catastrophic breakup of a large parent body. A separate group of objects is located in
Jupiter’s vicinity: the Jupiter’s Trojans share the same orbit with the planet but they are
locked on two specific stable regions around the so-called Lagrangian points, 60 degrees
from the position of the planet, the other region leading and the other trailing the planet.

Another large concentration of objects is found in the outer part of the solar system
(Fig. 3): the transneptunian objects (TNOs) form a second main belt beyond the orbit
of Neptune (a ∼ 30AU). As in the asteroid main belt, the TNO distribution is far from
uniform: the presence of Neptune has a strong influence over the region. In contrast
to the asteroid main belt, the mean-motion resonances of Neptune are populated, the
best-known example being the planet Pluto in the 3:2 resonance. The TNO region holds
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Figure 3: Distribution of known objects in the outer solar system projected to the semimajor
axis–perihelion distance (a − q) plane (based on the Lowell database for asteroid orbits, E.
Bowell). The location of the outer planets are marked with the horizontal lines. Several Neptune
mean-motion resonances are also shown along the abscissa as well as. (Courtesy of G. Tancredi)

several groupings of different dynamical behaviour, the definitions of which are not yet
fully established (e.g., Tancredi et al. 2005, in preparation), but the main belt is often
described as having a second component, an extension of objects on elongated orbits called
scattered disk.

The intermediate space between the main asteroidal populations does not remain
unoccupied, although the objects are dynamically more loosely grouped. Centaurs are
spread roughly between the orbits of Jupiter and Neptune, and they are typically on
outer-planet crossing orbits. These orbits are dynamically unstable, and although the
Centaurs are named as asteroids, many of them differ from objects of typical asteroidal
material (e.g., the MBOs) by the physical properties (Barucci et al., 2002). In particular,
the first Centaur (2060) Chiron has exhibited unusual brightness variations as well as other
indications of cometary activity, which has given support to the hypothesis that there is
link between the two seemingly different classes of objects, the asteroids and the comets.

Finally, the most dispersed dynamical population in the solar system are the comets.
Historically, comets are distinguished from asteroids through their activity observed in
terms of coma and/or tails of gas and dust, and they are divided into two groups based
on their orbital periods: short-period comets make one revolution in less than 200 years,
while long-period (> 200 yr) comets include objects on hyperbolic orbits making only one
perihelion passage during their lifetime.

2.1 Observations

The longest known class of small solar-system bodies are the comets, their observations
dating back at least to 600 BC in China, possibly even as far as 1500 BC (Sagan and
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Druyan 1997), where the oldest records of their appearance have been found. Asteroids
made their entrance to our skies millennia later in the beginning of the 19th century;
the first asteroid was (1) Ceres discovered by Giuseppe Piazzi in 1801. They then quickly
outnumbered the known comets. By the end of the century, there were some four hundred
known asteroids, while the number of comets can be estimated as having counted in
dozens. In the 20th century, the known asteroid population was in steady growth until,
in late-1990’s, the numbers practically exploded due to the dedicated NEO surveys; the
10,000th asteroid was numbered in 1999, and two years later the number had doubled
after which the increase has again been more steady (Table 1). MBOs were the first to be
discovered due to their relatively bright magnitudes compared to the smaller, although
closer NEOs.3 The first recognized NEO4, and also PHO, was in fact comet Lexell (see
Chapter 3), the first asteroid member (433) Eros was discovered in 1898, later classified
as the first member of the Amors (Fig. 1). The current number of known NEOs is 3,270
(March 31, 2005).

The distant objects are the newcomers in the known solar system, because only the
development of charge-coupled-device (CCD) technology has made it possible to observe
these faint targets. Although the existence of the Edgeworth-Kuiper belt was predicted
already in the 1940’s, the searches did not succeed before 1992. Since then TNO research
has become an active field in solar-system studies, and the known population has in a
decade grown to nearly 1,000 objects.

The majority of asteroid observations results from few active surveys operated mainly
in the United States. The longest-running NEO survey is the Spacewatch program of
the University of Arizona’s Lunar and Planetary Laboratory while, today, the LINEAR
program (Lincoln Laboratory’s Near-Earth Asteroid Research) outnumbers the other ob-
serving efforts, such as LONEOS (Lowell Observatory NEO Search) or NEAT (NEA
Tracking by the Jet Propulsion Laboratory, JPL), by both total and NEO discovery num-
bers (Stokes et al., 2002). Although all are dedicated to discover NEOs, large numbers
of other objects are routinely observed. Only the distant solar-system objects require
dedicated search programs due to their slow motions and faint magnitudes; while the first
TNOs were discovered in so-called pencil-beam surveys, most of the known objects result
from the Deep Ecliptic Survey, which is a broad-areal-coverage survey (Millis et al., 2002).

The increasing archive of astrometric observations is maintained by the Minor Planet
Center (MPC)5. Although the rate of increase seems already to have reached its maximum
(Table 1), the impending deep all-sky surveys, both groundbased and spacebased, will
change the trend with their immense databases. Before the end of the decade projects
such as the Large Synoptic Survey Telescope (LSST), the Discovery Channel Telescope
(DCT, coordinated by Lowell Observatory), Pan-STARRS (coordinated by the University
of Hawaii) and the ESA astrometric cornerstone mission Gaia (see Chapter 6) will increase
the rate of asteroid detection from 102 to 104 objects per night.

Large fraction of the discovered objects, currently some 30%, remains as so-called
single-apparition objects that have not been observed after their discovery apparition.
Due to the relative motion of the observer and the object, solar system objects cannot

3Largest MBO is (1) Ceres with a diameter of 930km, while the largest known NEO is ∼ 40km across.
4Comet Halley is probably the longest observed NEO.
5http://cfa-www.harvard.edu/iau/mpc.html
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Table 1: Discovery statistics of asteroids: numbers of orbits in the MPC database in the
beginning of the year. The numbered orbits correspond to well-observed asteroids, while the
total number of orbits does not necessarily equal the real number of known objects, since the
linkage of short-arc orbits corresponding to the same object (either to another short-arc orbit or
to a numbered orbit) may have failed. The growth factor is the ratio of the numbers of orbits
for the subsequent years.

Year Numbered orbits All orbits
(growth factor) (growth factor)

1997 7,000 (1.0) 33,000 (1.0)
1999 10,000 (1.4) 47,000 (1.4)
2001 21,000 (2.1) 110,000 (2.3)
2003 52,000 (2.5) 210,000 (1.9)
2005 96,000 (1.8) 264,000 (1.3)

be observed continuously. The typical time interval between successive apparitions varies
for the different populations: for MBOs, it is ∼ 15 months, and, for TNOs, only ∼ 6
months6 because the Earth’s orbital motion dominates the observing geometry. For NEOs,
the observing geometries evolve in a more complicated way, and the time between two
apparitions fluctuates from a few months to several years. In addition to the need of
efficient ephemeris predictions and optimized observing strategies for NEOs, efficient tools
for linking of the discrete sets of observations are highly called for.

2.2 Prediction problems

For any newly discovered object, the orbital elements serve as a starting point for further
analysis. Asteroid orbital prediction problems include topics such as ephemeris prediction
and uncertainty estimation, identification, collision probability assessment, and optimiza-
tion of observing strategies.

Ephemeris prediction

Asteroid ephemeris computation is the classical example of the direct problem. Since
asteroid observations consist of discontinuous sets, reliable ephemeris predictions are due
in order to keep track of the objects discovered.

Asteroids observed over short time arcs after their discovery stand the highest chance
of becoming lost. Efficient ephemeris predictions are particularly important for TNOs and
hazardous NEOs, which require observing time at large telescopes due to their typically
faint magnitudes and, thus, are expensive to recover. In the space era of asteroid research,
an extreme case of ephemeris prediction is faced with space missions (also with artificial
satellites), where the accuracy of the predictions for both the target’s and the spacecraft’s
position is of uttermost importance.

6In the long-term, large eccentricities complicate TNO observations, since the most favorable observing
circumstances correspond to perihelion passages, where most of the discoveries are also made.
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While predicting an object’s position at a given time is mathematically straightforward
when the orbital parameters are known, the planning of follow-up observations is by no
means a simple task. This stems from several factors. First, the orbital uncertainties have
to be considered. In the linear approximation (cf. Sect. 4.3.2), the projection of orbital
uncertainties to the sky-plane results in a relatively small and linear distribution, and can
be given in terms of a confidence ellipsoid, or even more simply, as a one-dimensional line
of variation.7 But for objects observed over short time arcs, the orbital uncertainties are
often large, and their projection to ephemeris uncertainties, the observation function, is
highly nonlinear. NEOs and TNOs represent two extreme cases of this behaviour. While
newly discovered TNOs have widely spread orbital-element p.d.f.’s and compact regularly
behaving sky-plane p.d.f.’s, NEO discoveries are characterized by compact orbital-element
p.d.f.’s and widely spread sky-plane p.d.f.’s (cf. Papers I and III). Second, uncertainties
in the position evolve with time, typically growing roughly linearly as a function of time
elapsed from the last observation; the longer an object remains unobserved, the more
difficult its recovery becomes.

Several online services have been established that offer assistance in planning asteroid
observations. These include the Minor Planet Center Web interface to the observation
archives and Lowell Observatory’s asteroid services that allow, e.g., the building of asteroid
observability plots and finding charts. Ephemeris computation systems are also provided
by the research groups on asteroid dynamics at the JPL and University of Pisa. However,
a defect of some of the existing services is that they make use of linear approximation when
giving uncertainty estimates also for single-apparition objects. TNOEPH service at the
Lowell Observatory site (Granvik et al., 2003; see also Paper III) relies on the nonlinear
technique presented in Sect. 4.4 and provides thus nonlinear ephemeris uncertainties. A
similar service for NEOs is ready for implementation by the same authors.

Collision probability

Since the realization that NEOs constitute a significant risk for the prosper and survival
of human species, a major effort has been coordinated world-wide to discover and follow
up these potentially hazardous objects as well as to predict the timing and likelihood of
impacts.

The collision probability estimation relies on the assessment of orbital uncertainty of
the given object. Since the uncertainty evolves rapidly after an object has been discovered,
also the asteroid collision probability evolves when the observational arc and the number of
observations grow. In fact, for most of the discovered impactor candidates the probabilities
for an Earth impact have been shown to vanish after days or weeks of observations from
the discovery. The desire to be able to deduce the risk of an impact as early as possible
after discovery calls for techniques for initial orbit computation.

Automatic monitoring systems with Web interfaces have been put out, such as the
Near Earth Object Dynamic Site (NEODys) at the University of Pisa and the Sentry
system at the JPL. They probe for possible impact intervals for typically the next 100
years for all new objects in a routine-like manner. While the current online services are

7Line of variation is aligned with the principle axis of the ellipsoid, corresponding to the principal
eigenvector of the projected orbital-element covariance matrix.
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restricted by the linear approximation, the rigorous assessment of collision probability for
short-arc objects is put forward in Papers II and VI.
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3 Fundamentals of orbits: From Kepler to Gauss

Nature and Nature’s laws
lay hid in night
God said, Let Newton be!
And all was light

– Alexander Pope (1688-1744)

The field of orbit computation saw its first light during the Copernican revolution
which begun with Nicholaus Copernicus and his heliocentric model for the solar system.
The new model called for a new explanation for the motion of the planets to replace the
Ptolemaic epicycle theory. Johann Kepler (1571-1630) came up with the laws describing
the planetary motion in 1601-1619 trying to find a theory that would fit to the accurate
observations of planet Mars made by Tycho Brahe. Kepler’s laws are:

I The orbit of each planet is an ellipse, with the Sun at one of its foci.

II The line joining the planet to the Sun sweeps out equal areas in equal intervals of time.

III The squares of the periods of any two planets are in the same proportion as the cubes
of their mean distances from the Sun.

Tycho Brahe was probably the first in the history of astronomy to attempt to find an orbit
for a celestial body other than a planet, namely for the comet of the year 1577. While
Kepler’s explanation of the planetary motion was in a way the first solution to the inverse
problem of orbit determination, the theoretical work matured with cometary orbits until
the discovery of the first asteroids 200 years after the times of Kepler and Tycho Brahe.
However, Tycho Brahe did not succeed in his task since he had not totally accepted the
Copernican model of the solar system, and could not detach himself from the theory of
epicycles. Although Kepler described the motion of the planets around the Sun, neither he
nor anyone at the time could make the obvious connection to the orbits of comets. Kepler
himself assumed that the trajectories of comets were straight lines which is in agreement
with his thought that they did not return periodically. Only shortly before Newton was
it supposed that the focus of cometary orbits could be the Sun.

Some 50 years after Kepler, sir Isaac Newton (1642-1727) gave the explanation and
mathematical form for the Keplerian motion in his famous Principia. However, history
was once again not made overnight. Edmond Halley and Robert Hooke have the credit for
bringing Newton’s achievements known to the world. Among others, Hooke and Halley
had been puzzled by the explanation of the motion of the planets around the Sun, and
had considered a law similar to magnetism, where the force is proportional to the inverse
of the square of distance. Hooke was offered 40 shillings if he could produce the proof
but, within the two weeks that were given to him, nothing more was heard. In 1685,
Halley found out that Newton had already solved the problem as a young student twenty
years ago. Halley was visiting Newton at Cambridge when he casually posed the question
: ’If the Sun pulled the planets with a force inversely proportional to the square of their
distances, in what paths ought they to go?’ ’Why, in ellipses, of course. I have already
calculated it and have the proof among my papers somewhere. Give me a few days and
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I shall find it for you.’ was Newton’s reply to Halley’s complete astonishment. The visit
from Halley together with the arguments between Newton and Hooke about the discovery
of the form of the force finally got Newton to publish his results in 1687. (Bate et al.
1971, Karttunen 1996).

In Principia, Newton introduced his three laws of motion:

I Every body continues in its state of rest or of uniform motion in a straight line unless
it is compelled to change that state by forces impressed upon it.

II The rate of change of momentum is proportional to the force impressed and is in the
same direction as that force.

III To every action there is always opposed an equal reaction.

Newton’s explanation for the Keplerian motion was given in terms of the law of universal
gravitation, which is still the fundamental law of celestial mechanics. It expresses how
particles act when impressed by forces:

F = k2m1m2

r2
. (1)

Newton did not really give proof to the original question of Halley–he had instead solved
the inverse problem and proved that force impressed on a body moving on a conic section
is of this form. Nevertheless, his work had importance beyond the application to the
motion of celestial bodies; in Principia, Newton laid the foundations for the whole field
of modern mechanics.

Halley (1656-1742) was the first to successfully apply Newton’s theories to orbit deter-
mination in 1705. He computed parabolic orbits for a bunch of comets and discovered that
they belonged to one single object (now known as comet Halley) that was on a periodic
orbit around the Sun. He also predicted that the comet would reappear in the year 1758
which it did although the accurate calculations were performed by a French mathemati-
cian and astronomer Alexis Clairaut. He computed the perihelion time for comet Halley
which was missed by only one month. Newton’s orbit computation method from three
observations was a graphical one and applicable only to parabolic orbits. The first purely
analytical method was proposed by Euler in 1744. Lambert generalized Euler’s method
for the other conic sections, i.e., for elliptic and hyperbolic orbits in his works of 1761
to 1771. The contribution of the mathematician Lagrange to this development was the
introduction of ’mathematical elegance’ (Bate et al. 1971).

A new chapter in the history of orbit determination began with two mathematicians,
Laplace and Gauss. Before, beginning from Newton, the aim of the methods had been
to find a set of elements that would satisfy as precisely as possible the three observations
chosen to the analysis. Pierre de Laplace, a French mathematician (1749-1827), was the
first in 1780 to introduce an orbit determination method, where the number of obser-
vations included was (in principle) not limited. This was accomplished by introducing
truncated power series expansions of position vectors into the computation and solving
the differential equations from their numerical values. Laplace’s method (see Danby 1992
for a modern representation) results in orbital elements that fit accurately to only one
chosen observation (in the case of three observations, usually the middle one), the rest of
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the data entering the computation through series of approximations. Although, analyt-
ically, the method is very complete, it never proved itself very useful in practice. In his
main work Traité de mécanique céleste (ca. 1800), he constantly turns to the expression
’Il est aisé à voir ’, ’it is easily seen’, which can still be found in mathematical textbooks
in place of complicated proofs.

German mathematician Johann Carl Friedrich Gauss (1777-1855) developed the first
practical method for computing an orbit from three observations in 1801 (published in
1809). What led Gauss to derive his theory, was the discovery and loss of the first minor
planet, asteroid (1) Ceres, observed by the Italian astronomer Giuseppe Piazzi earlier that
year. Gauss completed the work of Lagrange who had proposed the use of a constraining
equation based on the fact that three heliocentric position vectors are necessarily coplanar
if they represent the motion of the object on a Keplerian orbit. The method is based upon
an analytical solution of the differential equations and solves the numerical values of the
constants of integration. This method overcomes the one of Laplace by its accuracy
and applicability; Gauss’s method continues to be the standard method for initial orbit
determination even today. It also led to the recovery of the asteroid Ceres in 1802 by
Olbers who used the ephemeris computed by Gauss. Gauss also introduced the so-called
least-squares method to deal with large numbers of observations which is a standard tool
for anyone working with inverse problems or data analysis in general (see Sect. 4.3.2).

So far, all the orbital motion has taken place in a system consisting of only two bod-
ies, the central body (usually the Sun) and the orbiting body (planet or asteroid/comet).
However, already Newton realized that this was only a useful approximation for the pre-
liminary orbit and, for improvement, the perturbations of other major bodies in the solar
system had to be considered. He was able to explain most of the variations in the orbit
of the Moon caused by the gravitational effects of the Sun: the twisting of the orbital
plane and the motion of perigee. Also Clairaut, in his calculations for the orbit of comet
Halley in 1758, had included Jupiter and Saturn as perturbing bodies. He was also one
of the numerous mathematicians who tried to find an analytical solution for the problem
of three bodies.

It is worth mentioning the work of an mathematician and astronomer of Finnish ori-
gin, Anders Lexell (1740-1784), a co-worker of Euler at the St. Petersburg Academy of
Sciences. He demonstrated the importance of the perturbing effect of Jupiter on bound
cometary orbits in pursuance of calculating the orbit for an object that was in fact the
first near-Earth object.8 First, he deduced that the unusual elliptic orbit was a result
of perturbations by Jupiter before the discovery. Second, he predicted that the comet’s
second close approach to Jupiter in 1779 would flung the comet out of the inner solar
system, which received proof from the fact that it made no reappearance in 1782, nor
later, as it otherwise should have.

The next success with perturbation theory came with the prediction of the presence
of a new planet, Neptune, based on the perturbed motion of planet Uranus. Lexell was
also the first to compute the orbit for Uranus showing it was not a comet as had been first
thought. Although he did not predict the position of Neptune, his calculations showed that
Uranus was being perturbed, and he deduced that this was due to another more distant

8The comet was discovered by Messier in 1770 during its close-approach to the Earth but later named
after Lexell. The encounter to only six lunar distances still remains as the closest cometary approach.
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planet. Later, the independent analytical derivations of Adams and LeVerrier in 1845-46
resulted in the discovery of the planet immediately after the search was started. LeVerrier
further studied the orbit of Mercury and was able to explain most of the variation in the
motion of perihelion with Newtonian mechanics; the rest was left unresolved until the
theory of general relativity by Albert Einstein in 1915.
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4 Orbital inverse problem

In this Chapter, the inverse problem of asteroid orbit computation from astronomical ob-
servations is described. The current work is based on the statistical inverse theory. Thus
first, the basic concepts of inverse theory in general and the philosophy of statistical inver-
sion are outlined. Next, the fundamental equations for orbit computation, the equations
of motions, are written out for two dynamical models, the two-body approximation and
the full many-body model. After presenting the general solution for the equations, the
conventional scheme of orbit determination is described. Then, statistical orbit compu-
tation is formulated, and the solution is given in terms of two new nonlinear numerical
techniques which are described in detail in Papers I and V. Finally, a variety of other
recently developed inverse techniques are reviewed.

4.1 About inverse theory

The inverse theory tries to obtain useful information about physical phenomena by solving
for parameters that describe some desired properties which are not necessarily directly
measurable themselves but can be related to some measurable quantities (e.g., Menke
1989). What is needed is a physical (or mathematical) model that relates the model pa-
rameters to the outcome of the measurement, the observations. The model can usually be
expressed in terms of some function f , the value of which gives the theoretical, computed
result of the measurement m when the parameters x of the function are assumed known:
m = f(x). This corresponds to the direct problem of computing the observable quantity
when the parameters of the model are known, the solution of the inverse problem is then
obtained by inverting this equation for x. However, the physical world does not follow this
simple equation since real measurements of nature are corrupted by noise, both random
and systematic measurement errors. The general equations for the problem are thus the
following observation equations :

m = f(x) + ε, (2)

where ε is a vector containing the measurement errors.
The goal of statistical inversion is to solve the probability density function (p.d.f.)

of the desired, non-measurable parameters given the (indirect) observational data. The
fundamental idea is that our inference of natural phenomena is taken to be probabilistic
in nature. Since all measurements contain errors, our data points are just one possible
outcome of the measurement, and they can mathematically be considered as realizations
of random variables. This in turn requires that the physical quantities that are solved are
also modeled as random variables and assumed to follow certain distributions.

Now, in Eq. (2) the vector containing the measurements, m, should be interpreted as
realizations of the corresponding random variable m̃, and x and ε as random variables
with distributions p(x) and p(ε). The solution for the inversion can be written in terms
of the a posteriori probability density of the parameters, pp(x), which is the conditional
probability p(x | m). In Bayesian formulation (e.g., Lehtinen 1988, Vallinkoski 1988,
Vallinkoski and Lehtinen 1990ab), conditional probabilities can be written as follows:

pP(x) = p(x |m) =
p(x,m)

∫
p(x,m) dx

= C ppr(x) p(m | x), (3)
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where p(x,m) is the joint probability density of x and m, ppr is the a priori p.d.f. for the
parameters, p(m | x) is the likelihood function of the measurements, i.e., the probability
to obtain the measured values given the particular parameters, and C =

∫
ppr(x) p(m |

x) dx. In practice, p(m | x) is given in terms of the error p.d.f., p(ε) = p(m− f(x)).
The statistical model should thus contain the following ingredients: a physical model

interrelating the observations and the parameters, information of the noise statistics con-
nected to observational errors, modeling errors etc., and possibly some prior information
of the parameters to be determined (from previous measurements, physical constraints,
common-sense reasoning etc.).

In practice, solving an arbitrary a posteriori probability density can turn out difficult.
Localized p.d.f.’s corresponding to small parameter uncertainties can often be described
using mathematically well-defined distributions such as the Gaussian distribution. For
complicated p.d.f.’s, analytical solutions are rarely found–in fact, the whole problem can
be ill-posed–but Monte Carlo (MC) simulations can be used to map the discretized p.d.f.
as described in Sect. 4.4.

4.2 Equations of motion in celestial mechanics

The basic problem of celestial mechanics is to compute the trajectory of a body with
mass mi as a function of time, ri(t). In a system of N + 1 bodies, each body is subject
to reciprocal gravitational attractions according to Newtonian mechanics (Eq. 1), which
leads to the following equations of motion for the system in Cartesian coordinates,

d2ri
dt2

= γ
N∑

j=0,j 6=i
mj

rij
r3
ij

(i = 0, N), (4)

where γ is the universal constant of gravity, ri are the Cartesian position vectors of the
N + 1 bodies and rij = rj − ri their relative position vectors. Some assumptions have
already been made: (1) the rigid bodies are spherically symmetric, with their masses
concentrated at the center, (2) no external forces are impressed upon them, and (3) there
exists an inertial reference frame which is absolutely at rest and relative to which all
motion takes place. In the case of the solar system, the Sun (m0) can be adopted as the
origin of the coordinate system whereupon the relative positions now refer to ri ← ri−r0,
and the equations (4) become

d2ri
dt2

= −γ(m0 +mi)
ri
r3
i

+ γ
N∑

j=1,j 6=i
mj

(
rij
r3
ij

− rj
r3
j

)
(i = 1, N). (5)

The equations of motion now consist of two terms: the two-body motion of the central
body and mi, and the perturbative term which represents the effect of the gravity of
the other bodies on the Sun (an apparent force that causes perturbations from Keplerian
motion). In several applications, we can neglect the second term but, e.g., in the case
of close encounters between small bodies and planets (with asteroids usually the Earth
should be considered, with comets Jupiter), the gravitational effects of the planets become
significant.

Perturbations arise also from sources other than gravitational interactions. If the
restrictions we had to make in order to come up with the above equations of motion are
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Figure 4: Different choices of parameters describing the orbit: a) Cartesian position and velocity
at some epoch t0, b) angular momentum k and direction of perihelion e, c) Keplerian orbital
elements (see text). From Fundamental astronomy (Karttunen et al., 2003).

not fulfilled, also the equations in (4) are not valid. For example, the nonspherical shapes
of the Earth and the Moon have to be considered when computing the orbit of the Moon
or artificial Earth satellites (failure of assumption (1)). Also, nongravitational forces may
be present (failure of assumption (2)): for comets, the external forces result from the
momentum on the nucleus by dust and gas escaping due to sublimation; for asteroids, a
radiation force caused by the diurnal and seasonal heating of a rotating object–termed
Yarkovsky effect–can lead to large secular effects in the orbit (e.g., Bottke et al. 2002a).

The relativistic effects have been shown to be important in explaining the motion of
small solar-system bodies. Sitarski (1983) suggested a simple modification to the New-
tonian equations of motion in Eq. (5) by including a relativistic term due to the Sun
(one-body Schwarzschild problem). The relativistic equations of motion have also been
implemented for the work presented here (from Paper V onwards).

4.2.1 Two-body problem

In the particular case of N = 1, Eqs. (5) describe the Keplerian two-body system and
take the form

d2r

dt2
= −µ r

r3
, (6)

where µ = γ(m0 + m1) and r = r1 − r0. This is equal to three second-order differential
equations that require six constants of integration for their complete solution. Finding
and interpreting these constants constitutes the kernel of the two-body orbit computation
problem.

Choice of coordinates. There are several ways to choose the six constants but some
parameterizations have attained a more permanent status. For numerical purposes, the
solution of the equations can be given in terms of the Cartesian position and velocity,
r0 and ṙ0, of m1 at some epoch t0 (Fig. 4a). Another set of parameters is (k, e, τ)
(Fig. 4b), where k is the angular momentum vector, e is a vector along the major axis
of the orbit pointing toward the closest approach between the two bodies (perihelion
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if m0 is the Sun; |e| = e, the orbital eccentricity), and τ is the moment of time for the
approach. For illustrative purposes, it is common to use the six Keplerian orbital elements
(a, e, i, Ω, ω, M0) (Fig. 4c) describing a bound elliptic orbit and its orientation in space
and with M playing the role of time (with small adjustments applicable also to other
conic sections, i.e., cometary-type unbound orbits). The problem with the definition of
Keplerian elements is faced in practical computations; some of the angular elements are
not well defined when the orbit is nearly circular or the orbital plane is close to the ecliptic,
i.e., when e, i→ 0. This can be avoided by introducing non-singular parameters with the
following replacements: ω → ω̃ = Ω + ω, M → L = M + ω̃. The equinoctial elements
provide still another parameter set that avoids the singularities by defining parameters
which are functions of the Keplerian angles.

It is entirely application-dependent which set of parameters one should choose to
use. The Cartesian elements are attractive for physical approaches, such as numerical
integration, and we have adopted them as basic parameters for computational purposes
and use Keplerian elements for illustration. Also, for orbital inversion, the question of
which are the optimum parameters to be utilized has turned out to be case-sensitive.
Milani et al. (2005a) discuss the significance of the choice of coordinates when evaluating
orbital uncertainties.

Classes of inverse problems: constraints from observational data. The six
boundary conditions, or initial values, needed for solving the six integration constants
are obtained from the observations. The common astrometric observations consist of two
topocentric angular coordinates, right ascension and declination (R.A. and Dec.; (α, δ)),
at given observing dates, suggesting the minimum requirement of three such observa-
tions. This corresponds to an evenly determined inverse problem where the number of
parameters, Npar, is equal to the number of observations, Nobs. The problem has only one
solution that fulfils the exact observation equations in Eq. (2) where the vector containing
the errors is omitted. However, Bayesian a priori information can be used to impose addi-
tional constraints to the problem when the original observational data is inadequate (see
Sect. 4.4.2). Such an underdetermined case is the orbit computation from two astrometric
observations, a novel solution to which is given in the present thesis. Other techniques
for solving both even- and underdetermined inverse problem are discussed in Sects. 4.3.1
and 4.5.

While the inversion has historically been based on the angular astrometric data, other
types of observations may also be available and equally well used in inversion. Such data
as radar measurements or independent measurement of the angular coordinates and their
change rates (see Chapter 6) contain more information than the traditional astrometry,
and thus the number of data points needed for the inversion is reduced. In fact, a single
radar observation obtained with a tracking radar would be adequate since it gives us all six
boundary values: three from the position vector and three from the velocity vector (e.g.,
Bate et al., 1971). Unfortunately, radar observations (usually only time-delay or Doppler
shift measurements) are rarely available for short-arc asteroids; due to their high accuracy
they would efficiently improve the accuracy of initial orbit computation (Yeomans et al.
1987; 1992).

In the overdetermined inversion, the number of data points exceeds the number of
parameters to be estimated (Nobs > Npar) (Sect. 4.3.2). The problem no longer has an
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exact solution (unless both the model is exact and the data flawless), a typical approach
is to go for the next best solution: to find the orbital parameters that best describe the
data. The standard least-squares technique finds a unique solution by minimizing the O–C
(observed – computed) residuals. The nonlinear model between the data and the orbital
parameters requires a nonlinear technique, in orbit computation the nonlinear Eqs. (2)
are linearized with an iterative procedure (for a general scheme, see Menke, 1989).

4.2.2 Many-body problem

While in the two-body approximation only the mean anomaly changes with time, in the
real solar system, all the elements must be treated as functions of time. At a certain epoch,
the osculating elements describe the two-body orbit on which the body would move if all
perturbations were to cease instantaneously. The two-body orbit serves as a preliminary
solution but in practice it is often impossible to exclude the effects of planetary, or even
asteroidal, perturbations. In particular, in the improvement of the preliminary orbit
towards a definitive orbit, the full many-body approach has to be adopted. Also in
the initial orbit computation for near-Earth objects, perturbations should optionally be
included since the observations are often obtained at the time of a close-encounter with
the Earth.

There are two alternative approaches which can be used to solve the many-body equa-
tions of motion in Eqs. (5); the so-called special perturbations which are purely numerical
integration methods, and analytical methods under the theory of (absolute) perturba-
tions. The absolute perturbations are interesting because they give better understanding
of the source of the perturbations and give an insight into what is happening to the orbit
in a geometrical sense. However, they lead to the rather difficult and lengthy computa-
tion of series expansions. Thus, the absolute perturbations are not useful in numerical
applications, and special perturbations are adopted. Two classes of special perturbation
techniques are usually considered; one is concerned with the variation of orbital elements
and results in the osculating elements, i.e., the elements as a function of time, the other
works in terms of the coordinates and determines the perturbed coordinates themselves.
The latter technique is useful in many applications, where the actual orbital elements are
not needed (explicitly).

In applications involving large-scale integrations, e.g., over long time scales, the choice
of the numerical integrator should be considered in terms of its accuracy and efficiency.
One of the numerical integrators used in the current work is the Bulirsch-Stoer extrapo-
lation method (Press et al., 1994), which is well-suited for orbit computation due to its
robustness and accuracy.

4.3 Conventional orbit determination

4.3.1 Preliminary orbits

In initial orbit computation, one aims at finding a preliminary orbit from a minimum
number of observations. The inverse problem is then typically an even-determined one
(Nobs = Npar) or an underdetermined one (Nobs < Npar).

Gauss’s method from 1801 falls to the first class and is still attractive, in fact, there
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exist today a family of methods originating from the ideas of Gauss. Marsden (1985,
1991) outlines two three-observation methods, GEM (Gauss-Encke-Merton) and MVC
(Moulton-Väisälä-Cunningham), names referring to the various contributors (see also
Danby, 1992). For cases where three observations are not available or the observational
arc is very short, two-observation methods have been developed. As described in Sect. 4.2,
the problem is now underdetermined, thus orbit computation from two observations must
be carried out by introducing constraining assumptions about the motion of the body, of-
ten not verifiable until additional observations are obtained. In some cases, it is possible
to assume a circular orbit (e.g., Dubyago 1961), which reduces the number of elements
to be determined to four (e = 0 and ω is not defined). The methods of Väisälä (1939)
and Orlov (1939) assume that the object tends to be near perihelion at discovery and fix
one parameter a priori (perihelion distance or eccentricity, respectively). While a valid
assumption for earlier asteroid observations (Marsden, 1991), the current deep surveys
certainly result in a large fraction of their discoveries made far from perihelion. Neverthe-
less, Väisälä orbits are widely used for discriminating between newly discovered NEOs and
MBOs with observations from one or two nights as well as for their ephemeris predictions,
for example at the MPC.

Bowell et al. (1990) have studied orbit determination from asteroid motion vectors.
They made use of the correlation of opposition motion and semimajor axis and inclination
to restrict the position uncertainty for follow up. Kristensen (1995) has described an orbit
determination method that uses four observations from two oppositions. The method can
be used to link two groups of short-arc observations for orbital elements, even though
orbits cannot be derived from the separate sets.

4.3.2 Linear approximation

When an abundance of data is available, we can search for the best estimate orbit through
a weighted nonlinear least-squares analysis (see, e.g., Press et al. 1994). Assuming that
Nobs pairs of right ascensions and declinations ψi = (αi, δi) have been observed at certain
times ti, let the theoretical, computed sky-plane positions be described by the vector Ψ(P)
for the osculating elements P at a given epoch t0. The observation equations in Eq. (2)
are rewritten for orbit computation,

ψ = Ψ(P) + ε. (7)

We minimize the square of O-C (observed–computed) residuals, i.e. the difference
between the prediction of the model and observations ε = ψ −Ψ(P),

φ = εT W ε, (8)

where φ is the function to be minimized, and W = Λ−1 is the weight matrix for the
observations which is equal to the inverse of the covariance matrix of the noise. Thus,
the observational errors are assumed to follow a Gaussian distribution. If the data is
uncorrelated, the diagonal elements of W are the weights of individual observations, σ−2

i .
The condition for the existence of an extremum point, which in this case should be the
minimum, is ∂φ

∂P
= 0.

Since the observation equations of orbit determination (Eq. (7)) describe a nonlinear
relationship between the observations and parameters, we have to linearize them and use
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successive approximations. The method is now composed of the following steps (e.g.,
Muinonen and Bowell, 1993):

1. obtaining a good initial estimate for the parameters P ls = P 0

2. linearizing the observation equations in the vicinity of the P ls with a Taylor expan-
sion

α(P, t) = α(Pls, t) +
6∑

j=1

∆pj
∂α

∂Pj
(Pls, t)

δ(P, t) = δ(Pls, t) +
6∑

j=1

∆pj
∂δ

∂Pj
(Pls, t), (9)

where P = P ls + ∆p. The partial derivatives of right ascension and declination
with respect to the six orbital elements in two-body approximation are derived with
the help of partial derivatives of heliocentric coordinates.

3. solving for a new estimate for the parameters from

{
Pls ← Pls + Σ ΦT Λ−1 (ψ −Ψ(Pls))

Σ−1 = ΦT Λ−1 Φ
(10)





Φ2k−1,j = cos δk
∂α
∂Pj

(Pls, tk),

Φ2k,j = ∂δ
∂Pj

(Pls, tk),
j = 1, . . . , 6; k = 1, . . . , N

where Σ is the covariance matrix of the orbital elements.

4. iterating the procedure until convergence is reached, i.e., until the estimated correc-
tion ∆p becomes sufficiently small.

The widely used pseudo-Newtonian iteration is called differential correction. Together
with the covariance matrix, the least-squares orbit gives the solution for the linearized
inverse problem. Least-squares is the standard procedure for orbit improvement, where
one starts with an initial estimate obtained from, e.g., the Gauss’ method and stepwise
corrects it: First, approximate correction is carried out in two-body approximation and
with equal observational weights. Second, many-body approach in weighted least-squares
is adopted. However, since the solution is based on an approximation, the linearization
of observation equations, the convergence of the iteration and the existence of a unique
solution is by no means guaranteed (e.g., Menke, 1989). In particular, for poorly observed
objects convergence is uncertain, and the validity of the approximation itself is a subject
to a critical study (Papers II and V).

The weighted least-squares analysis actually accommodates a probabilistic treatment
of the inverse problem, since, to solve Eqs. (10), some a priori information on the noise
variances is needed. In fact, if the observational noise can be assumed to be Gaussian as
above, the solution can be expressed in terms of a Gaussian probability density for the
orbital elements. The covariance matrix defines a six-dimensional uncertainty region, a
hyperellipsoid, centered on the least-squares orbit: ∆χ2 = (P−Pls)

T Σ−1 (P−Pls).
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The orbital uncertainty analysis in the linear approximation has been a subject of
extensive research. Some of the pioneering work was carried out by Cappellari et al.
(1976) in their least-squares analysis of spacecraft trajectories, while Brower and Clemence
(1961) already gave an introduction to orbital error analysis. Herget (1965) described a
method that was a compromise between methods that make use of few observations,
which are satisfied precisely, and fitting procedures that aim to find the best estimate
orbit that minimizes the observational residuals of a set of observations. He varied the
topocentric ranges of two observations to find the values that minimize the residuals in
the least-squares sense.

4.4 Statistical inverse problem

The statistical interpretation of orbit computation was already put forward by Gauss
when he presented the least-squares method in the beginning of the 19th century. The
space-exploration era starting from 1960’s strengthened the probabilistic treatment of
orbits in astrodynamic applications such as in the analysis of spacecraft trajectories. But
although most of the work presented in previous sections can be taken to be probabilistic
in nature, only in Muinonen and Bowell (1993) was the asteroid orbit computation, i.e.,
orbits computed from ground-based observations, first given a fully statistical treatment
using the concepts of statistical inversion.

The statistical inverse theory for asteroid orbit computation has been described in
detail in Paper I of this thesis. An important addition to this formulation was put forward
in Paper II and expanded in Paper VI, where the statistical treatment was completed by
introducing a regularization that maintains the invariance of the statistical analysis in
parameter transformation. The main equations are summarized first, and then, two new
numerical inverse techniques based on MC simulations are described.

4.4.1 Orbital-element probability density

In Bayesian inference, the orbital-element probability density function (p.d.f.) pp is pro-
portional to the a priori (ppr) and observational error (pε) p.d.f.’s, the latter being evalu-
ated for the sky-plane (O-C) residuals ∆ψ(P ),

pp(P ) = C ppr(P ) pε(∆ψ(P )), (11)

where pε can usually be assumed to be Gaussian. The normalization constant is C =
(
∫
p(P, ψ) dP)−1 where the joint p.d.f. is p(P, ψ) = ppr(P ) pε(∆ψ(P )) (compare to Eq. (3)).

For the mathematical form of pp to be invariant in transformations from one orbital ele-
ment set to another (e.g., from Keplerian to equinoctial or Cartesian), we regularize the
statistical analysis by Jeffreys’ noninformative a priori p.d.f. (Jeffreys 1946, Box and Tiao
1973),

ppr(P ) ∝
√

det Σ−1(P ),

Σ−1(P ) = Φ(P )TΛ−1Φ(P ), (12)

where Σ−1 is the information matrix (or the inverse covariance matrix) evaluated for the
local (i.e., not in the global least-squares sense) orbital elements P , Φ contains the partial
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derivatives of R.A. and Dec. with respect to the orbital elements, and Λ is the covariance
matrix for the observational errors.

The final a posteriori orbital-element p.d.f. is

pp(P ) ∝
√

det Σ−1(P ) exp
[
−1

2
χ2(P )

]
,

χ2(P ) = ∆ψT (P )Λ−1∆ψ(P ). (13)

As a consequence of securing the invariance in orbital-element transformations, e.g.,
ephemeris uncertainties and collision probabilities based on the orbital-element p.d.f. are
independent of the choice of the orbital-element set (Paper VI). Although for localized
p.d.f.’s it is acceptable to assume constant ppr, the invariance principle should be consid-
ered in all inverse problems in which the parameter uncertainties can be substantial.

Propagation of probabilities: the prediction problem

The utilization of the orbital-element p.d.f.’s constitutes a prediction problem, where
additional p.d.f.’s are derived for parameters that are functions of the orbital elements.
Following Muinonen and Bowell (1993), the joint p.d.f. for a given set F = (F1, . . . , FK)T

of functions of orbital elements can be derived according to

p(F ) =
∫
dP pp(P ) δD(F1 − F1(P )) · . . . · δD(FK − FK(P )), (14)

where δD is Dirac’s delta function. In particular, the p.d.f.’s for other orbital element
sets, including sets propagated to other epochs, as well as ephemerides can be established
using the relationship in Eq. (14).

4.4.2 Statistical vs. deterministic inversion: discussion

In statistical inverse theory, the a posteriori p.d.f. is the complete solution to the inverse
problem. At the same time the p.d.f. provides a full error analysis for the problem in ques-
tion. In the deterministic framework one typically computes single (point) estimators for
the parameters, e.g., maximum likelihood estimates, together with some error estimates.
In statistical inversion this corresponds to summarizing the solved p.d.f. by finding values
for some parameters that describe the distribution, such as moments and confidence in-
tervals. For many practical purposes, in particular in the case of well-constrained p.d.f.’s,
such single estimates are often the objective of statistical inversion, too (compare to
Sect. 4.3.2 about linear approximation), and the classification between statistical and de-
terministic methods in somewhat arbitrary, the difference between the two approaches
being more one of emphasis.

Problems arise when the parameter uncertainties are expected to be significant, i.e.,
the a posteriori p.d.f. is complicated, which is the case with initial orbit computation. The
deterministic inverse problem may be ill-posed which can be manifested in different ways.
For one thing, the solved single estimates for the parameters may not be meaningful, e.g.
not physical, or in the worst case no solution is found (e.g., the differential correction
scheme in Sect. 4.3.2 does not converge). Or, the solution may not be unambiguous; the
function measuring the goodness of the fit (often called the merit function) may have
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multiple minima of which the global one might be difficult to find, or the parameter
space may just be very complex, e.g., multidimensional, both of which lead to ambiguities
in the inversion. Finally, the inversion may be unstable, i.e., sensitive to errors in the
measurement, which means that a slightly different data set may result in grossly different
parameter estimates.

From a deterministic point of view, all the information available for the inversion is
included in the observational data, and only some simple constraints can be posed, e.g.,
in terms of regularization schemes to make the solution stable. But it is not unremarkable
that the observational data can be problematic, e.g., it may be insufficient in number or
temporal coverage, or it may contain a lot of noise. As already discussed, the inverse
problem can be purely underdetermined so that the data does not suffice for finding a
unique solution. Even the model can sometimes be the cause of trouble: the model may
contain a large number of parameters, i.e., it is complex, or the adopted model may be
inexact, i.e., the model is noisy. In orbit computation, our model is completely physical,
and exact as far as Newtonian mechanics are considered.

Adopting the statistical approach to inversion does not make a complex inversion
simple. But it can help to discern the complexity of the problem, if not known a priori, and,
in ambiguous cases, give more realistic estimates for the parameters, and most importantly
provide meaningful estimates for their errors. Some of the above problems can be dealt
with in statistical inversion. The Bayesian a priori information can sometimes be used to
constrain underdetermined cases where the data alone does not suffice to find a solution
(e.g., two-observation methods). Also, the Gaussian assumption for the noise is typically
built-in in inverse techniques, as in the least-squares analysis. As shown by Carpino et al.
(2003), residual distributions of astrometric observations can deviate from Gaussian ones,
and Paper VI states one example of the critical effect of the false assumption. Adopting
non-Gaussian noise statistics has been put forward also earlier (Muinonen and Bowell,
1993), but its potential has not really been explored in practice.

For models that are not deterministic, an additional noise p.d.f. can be introduced
to take into account errors in the adopted model. On the whole, techniques that solve
the complete parameter p.d.f.’s are ”safest” when the distribution of parameters is very
complicated, even to the extent that it might be uninterpretable. The p.d.f. gives an
unambiguous answer to the inverse problem, even in the most ill-posed cases where the
answer may be that the model parameters cannot be well estimated with the data.

Some other advantages of the Bayesian approach are the sequential use of data, i.e.,
combining information from several experiments. The a posteriori p.d.f. of a previous
measurement can be adopted as the a priori for the next. Or the inference from mea-
surements of different kinds can be combined to a single a posteriori p.d.f., e.g., radar
observations can be used as a priori for optical astrometry, or vice versa.

4.4.3 Numerical techniques

Statistical orbital ranging

The technique of statistical orbital ranging (Ranging) is intended for initial orbit compu-
tation, that is, when the observational data is exiguous–consisting of small numbers of
observations and/or short observational arcs–and the phase-space of orbital parameters
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is not yet well-constrained (p.d.f. not localized). Ranging maps the orbital element p.d.f.
in topocentric spherical coordinates (ρ, α, δ), a coordinate space which is well-constrained
even for exiguous data because it is naturally partly coincident with the observation space
(α, δ), the extent of which is connected to the observational accuracy and cannot thus be
overly extended.

In Ranging, two observation dates (here A and B) are chosen from the complete
observation set. The corresponding topocentric distances (or ranges ρA and ρB), as well
as the R.A. (αA and αB) and Dec. (δA and δB) angles are MC sampled using intervals
subject to iteration, resulting in altogether 12 interval boundary parameters. Explicitly,





ρA ∈ [ρ−A, ρ
+
A],

αA ∈ [α−A, α
+
A],

δA ∈ [δ−A , δ
+
A ],





ρB ∈ [ρA + ρ−B , ρA + ρ+
B ],

αB ∈ [α−B , α
+
B ],

δB ∈ [δ−B , δ
+
B ].

(15)

As a starting point for the angular intervals, one may utilize the one-dimensional 3σ
variation interval based on assumed standard deviation σ of the noise p.d.f., i.e., the
accuracy of the observations. For the range intervals, an educated guess of the dynamical
class of the object based on its coordinate motion–taking typical values for NEO, MBO
and TNO–provides the first values. Note that it is computationally efficient to generate
ρB based on ρA generated at an earlier stage. The final boundary values ρ±A,B must be
carefully chosen/iterated so as to secure the coverage of the entire relevant interval in ρA,B.
Once the two sets of spherical coordinates have been generated, the two corresponding
Cartesian positions (XA, YA, ZA)T and (XB, YB, ZB)T lead to an unambiguous set of orbital
elements P , based on well-established techniques in celestial mechanics (Paper I; Danby,
1992).

The set of trial orbital elements P is included in the set of sample orbital elements if
and only if it produces an acceptable fit to the entire set of observations, that is, with the
help of Eq. (13),

exp
[
−1

2
(χ2(P )− χ2(P ref))+

ln
√

det Σ−1(P )− ln
√

det Σ−1(P ref)
]
≥ cmin, (16)

where cmin is the level of acceptance and P ref refers to the best-fit orbital solution avail-
able, constantly updated during the iterative computation. The acceptance criterion thus
becomes analogous to the ∆χ2 criterion for Gaussian p.d.f.’s. In addition, the residuals
of the individual observations must not exceed a given threshold, e.g., 3 arcsec.

Orbital sampling in volumes of variation

For moderately observed asteroids, that is, for observational time arcs and numbers of ob-
servations that result in well-constrained but nonlinear p.d.f.’s, the orbital-element p.d.f.
can be efficiently sampled in the element phase-space. In the volume-of-variation (VoV)
technique, we choose a mapping parameter Pm (one of the six orbital elements, for exam-
ple), march through its full interval of variation and, by correcting differentially for the
remaining five orbital elements, compute a discrete set of local maximum-p.d.f. points.
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Guided by these local linear approximations, we introduce MC sampling in the phase-
space volume for a fully nonlinear treatment.

Sample orbits are drawn from the rigorous orbital-element p.d.f. with the help of
the local linear approximations. First, we specify the variation interval for the mapping
element with the help of the covariance matrix Σ derived in the global linear approximation
(cf. Sect 4.3.2) and emphasize that the variation interval must be subject to iteration.
For example, one may utilize the one-dimensional 3σ variation interval as given by the
linear approximation so that

Pm ∈ [Pm,ls − 3σm, Pm,ls + 3σm], (17)

where Pm,ls is the global least-squares value for the mapping element. Second, the remain-
ing elements are sampled with the help of the local intervals of variation so that

P ′ = P ′ls(Pm) +
5∑

j=1

(1− 2rj) ·
√

∆χ̃2λ′j(Pm)S ′(Pm,ls)X
′
j(Pm), (18)

where rj ∈ (0, 1) (j = 1, . . . , 5) are independent uniform random deviates and ∆χ̃2 is a
scaling parameter to be iterated so that the entire orbit solution space is covered and the
final results have converged. Initially, one may start with ∆χ̃2 = 11.3 and slowly increase
its value. S ′(Pm,ls) designates the single standard-deviation matrix used throughout the
interval of the mapping parameter, which allows a straightforward debiasing of the sample
orbits at the end of the computation. Here, S ′(Pm,ls) is the S ′ matrix evaluated at the
global least-squares value of the mapping element Pm. Finally, λ′j(Pm) and X ′j(Pm) are
the eigenvalue and eigenvector of the orbital-element correlation matrix, respectively.

In practice, once the parameters for the variation intervals in Eqs. 17 and 18 have
been fixed, a value for the mapping element is then obtained from uniform sampling over
the mapping interval and the remaining elements are generated by interpolating their
variation interval based on the precomputed map. Finally, as in Ranging, the trial orbit
is accepted if it produces an acceptable fit to the observations.

4.5 Other advances

Several two-observation methods based on random or systematic variation of topocentric
coordinates or motions–resembling the Ranging technique just described–have been put
forward recently. Typically, the line-of-sight components are varied since they are not
determined from astrometric observations. McNaught (1999) and Tholen and Whiteley
(2000) derive sets of orbits from a single Cartesian position and velocity by varying the
topocentric range and range rate. The technique by McNaught is not readily applicable to
uncertainty estimation but that of Tholen and Whiteley provides a statistical treatment
by incorporating weights for the computed orbits. Although using the difference of two
angular positions to derive the angular motion works in the favor of removing the sys-
tematic observational errors, it sets limits to the timing of the two observations to allow
accurate estimation of the motion.

Subsequently, Goldader and Alcock (2003) described a Ranging-like technique that
Monte Carlo maps the possible orbits in topocentric coordinates. As that of Bernstein
and Khushalani (2000, see below), their technique is designed for transneptunian objects
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and makes use of their nearly linear motion. Compared to Ranging, they have restricted
the used data to only two observations and they do not provide any probabilistic inter-
pretation, although the techniques are congruent in mapping the extent of the orbital
uncertainty.

Milani et al. (2004, 2005b) have recently taken a geometric approach to uncertainty
estimation. For what they term ”too short arc”, they make a linear fit to the angular
observations and represent the observations with the average observation and angular
rates. By eliminating other than solar-bound orbits, the possible interval for the unknown
parameters, range and range-rate, is constrained and the boundary of the uncertainty
region sampled with ”virtual asteroids”.

Targeted for TNOs, Bernstein and Khushalani (2000) devised a linearized orbit–fitting
procedure in which accelerations are treated as perturbations to the inertial motions of
distant objects. The method can be used to produce ephemerides and uncertainty ellipses,
even for short–arc orbits.

Semilinear approximations. While orbit improvement is today routinely carried
out via least-squares, the limits of the linear approximation have also been intensively
explored. The differential correction in Eq. (10) regularly converges for well-observed
objects, but problems are known to arise for poorly observed single-apparition objects.
Already Muinonen and Bowell (1993) in their description of the statistical orbit compu-
tation problem offered a MC technique for assessing mildly non-Gaussian orbital-element
p.d.f.’s.

Using the linear approximation, Muinonen et al. (1994) carried out orbital uncertainty
analysis for the more than 10,000 single–apparition asteroids known at the time. Their
analysis captured the dramatic increase of orbital uncertainties for short–arc orbits. Sub-
sequently, studying the covariance matrix via eigenvalues Muinonen et al. (1997) found
that there exists a bound, as a function of observational arc and number of observations,
outside which the linear approximation can be applied, and inside which nonlinearity
dominates the inversion.

Milani (1999) discussed the linear approximation using six–dimensional confidence
boundaries. The ultimate simplification is a one–dimensional line of variations along the
principal eigenvector of the covariance matrix (Muinonen 1996), a precursor to the more
general one–dimensional curves of variation used in semilinear approximations. However,
as pointed out by Muinonen et al. (1997) and Milani (1999), there are risks in applying
the line–of–variation methods.

A cascade of one–dimensional semilinear approximations follows from the notion that
the complete differential correction procedure for six orbital elements is replaced, after
fixing a single orbital element (mapping parameter; for example, the semimajor axis or
perihelion distance; cf. Bowell et al. 1993 and Muinonen et al. 1997), by an incomplete
one for five orbital elements. Varying the mapping parameter and repeating the algorithm
allows one to obtain a one–dimensional, nonlinear curve of variation, following along the
ridge of the a posteriori probability density in the six-dimensional phase space of the
orbital elements.

The incomplete differential correction procedure has been used by several researchers
over the decades, typically as an intermediate phase in the case of convergence problems.
Only Milani (1999), in what he terms the multiple–solution technique (see also Milani
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et al., 2005a), has systematically explored its practical implementation. In Milani’s tech-
nique, the mapping parameter is the step along the principal eigenvector of the covariance
matrix computed in the linear approximation. However, the covariance matrix and the
eigenvector are recomputed after each step, allowing efficient tracking of the probability–
density ridge. Because of the nonlinearity of the inverse problem for short–arc asteroids,
Milani’s multiple–solution technique has turned out to be particularly successful in many
of the applications such as asteroid identification and impact monitoring described, e.g.,
in Milani et al. (1999, 2002, 2005a). The technique is attractive and efficient because of
its simplicity.

Aiming towards a fully nonlinear assessment, the line-of-variation approach can be
generalized to account for the remaining dimensions of the inverse problem. In a recent
work, Chesley (2005) introduces what can be called a plane-of-variation technique where
a two-dimensional plane of orbital elements (range and range rate) is obtained using
local linear approximations for the remaining four orbital parameters. The technique
resembles the VoV-technique described in Paper V and Sect. 4.4.3 but, instead of being
fully nonlinear, it is restricted by the linear approximation in four dimensions.
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5 Summary of papers

5.1 Paper I

Statistical ranging of asteroid orbits
In the paper, we introduce a new inverse method for initial orbit computation of

asteroids. We start with a review of the previously developed methods, and discuss their
applicability to single-apparition asteroids, the target group of the new method.

The foundations of the method of statistical orbital ranging are in statistical inverse
theory, and its Bayesian formulation for orbit computation is therefore summarized be-
fore the method itself is described. Instead of single estimates, Ranging characterizes the
probability density function of the orbital elements, which contains the complete solu-
tion to the inverse problem, using sample orbits. As illustrated with several examples of
main-belt and near-Earth asteroids, the orbital-element probability density can be highly
complicated for short-arc objects, strongly implying that the solutions from the tradi-
tional methods for preliminary orbits are not unique. Also the techniques relying on the
linear approximation can severely fail in describing the orbital uncertainties in terms of
covariance matrices.

Several implications of the ambiguities of short-arc orbital solutions are put forward.
To begin with, the classification of a newly discovered object based on a single orbit can
be misleading: main-belt objects with only a few observations were shown to have high
probabilities for being near-Earth asteroids. Instead, a probabilistic approach should be
adopted based on techniques such as the one described in the paper. Next, in ephemeris
prediction, the Bayesian inference was shown to be efficient when estimating sky-plane
uncertainties for recovery attempts of otherwise lost objects. Also, the potential of the
current technique for collision probability studies, as well as for unveiling systematic errors
in observations, was proposed. The need of numerical integrations was pointed out as a
possible black spot of this class of techniques that are based on MC simulations, although
two-body approximation was found adequate for all the case-studies presented in the
paper.

5.2 Paper II

Collision probabilities for Earth-crossing asteroids using orbital ranging
We illustrate the applicability of Ranging to collision probability computations with a

case study of 1998 OX4, an Earth-crossing asteroid for which non-zero collision estimates
had been computed but which was lost at the time of the study.9 Several improvements
are presented in both theoretical and numerical techniques. The formulation of the sta-
tistical inverse theory is completed by introducing a fundamental regularization to the
inverse problem in terms of a noninformative a priori probability density. The regular-
ization secures the invariance of the statistical model in case the probability densities are
transformed from one parameter set to another. In numerical techniques, an optimized
version of Ranging is introduced which is considerably faster, and makes the automation
of the technique more feasible. An MC technique for collision probability computation

9The dedicated negative observation campaigns aimed at eliminating the collision solutions failed, but
1998 OX4 was serendipitously recovered as 2002 PJ34 in August 6, 2002 by NEAT.
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is established using a rigorous orbital-element probability density available from Rang-
ing, which makes it currently the only six-dimensional technique applicable to short-arc
objects. For 1998 OX4, the fully nonlinear collision probability analysis is carried out,
and the computed estimates are compared to those published by others. We confirm the
earlier impact intervals, and find the collision probabilities to be in accordance with other
published values within two orders of magnitude, which is a satisfactory result.

5.3 Paper III

Orbit computation for transneptunian objects
Paper III presents a systematic application of Ranging to the entire population of

transneptunian objects. The aim was to improve our knowledge of the orbital distribution
of the known population, and to see if the current picture of the dynamical nature of the
region was correct. Most of the earlier studies, even the detailed dynamical ones, have
been based on the MPC database which only gives a single orbit per object. Since 50
% of the known objects had been observed over one apparition only, corresponding to
an orbital period coverage of less than 1 %, analyses based on a single orbit must be in
vain. This notion is also supported by our earlier studies of poorly observed objects in
Paper I. In Paper III, we conclude that Ranging turned out to be highly applicable to these
distant objects. In addition to solving the short-arc problem, a straightforward linkage was
performed for objects observed over several apparitions. The computed orbital-element
distributions are the basis for more detailed dynamical studies of the known population,
such as a more definitive dynamical classification scheme. We show that although the
orbital-element p.d.f.’s for short-arc TNOs are complicated, their projection to sky-plane
ephemeris results typically in linear although extended p.d.f.’s. The reason is that the
motion of the object as seen from the Earth during groundbased observations is nearly
linear. However, recovering these faint objects is challenging, and the need to use large
telescopes mandates accurate ephemeris prediction. We propose the use of dynamical
filtering to reduce the sky-plane search region. This work also set the scene for the
development of a Web-based TNO ephemeris prediction service10 (Virtanen et al., 2003;
Granvik et al., 2003). The ephemeris filtering was also put to practice in observing
programmes aiming at recovery and follow-up of TNOs and carried out at the Nordic
Optical Telescope in La Palma and at the European Southern Observatory in La Silla
during 2002-2004. In a follow-up paper (Tancredi et al. 2005, in preparation), we return
to the dynamical classification question and use the updated orbital element p.d.f.’s as a
starting point for a study of objects on peculiar orbits.

5.4 Paper IV

Asteroid orbit computation
We discuss the status of the problem of asteroid orbit computation, and review the

recent advances in techniques, from late-1980’s to date. One of the major factors that was
identified to have contributed also to this field is the development of the World Wide Web.
It has enabled the nearly real-time interplay between the observers and orbit computers

10see http://asteroid.lowell.edu
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through several Web-based services for both software and databases made available by
different institutes and researchers, the pioneer being the Minor Planet Center. The
latest decade has been the starting point for a statistical era of orbit computation, since
all modern inverse methods provide uncertainty analysis as part of the solution. We also
demonstrate the application of Ranging to the analysis of systematic errors as well as
to double solutions. Finally, an equivalence between observations and orbital elements is
foreseen to take place within the next decade, a prophecy that will need to be confirmed.

5.5 Paper V

Asteroid orbits using phase-space volumes of variation
We present a new nonlinear inverse technique for moderate, or transitional observa-

tional data. The volume-of-variation technique complements Ranging for exiguous data
and the least-squares technique for extensive data. VoV sampling is based on local linear
approximations which are used as guide for the nonlinear MC sampling of the orbital-
element phase space. The call for such a technique was already put forward by Muinonen
and Bowell (1993) who brought up the non-Gaussian (i.e., nonlinear) characteristics of
the orbital-element p.d.f.’s. Our preliminary studies had pointed out that the evolution of
orbital uncertainties for increasing observational arcs is, in fact, highly nonlinear across a
rather narrow transition regime. We termed the phenomenon phase transition, and also
noted that the existence of such an effect suggests that different computational methods
could be used across the transition regime. In Paper V, we illustrate the applicability of
the new technique over the phase-transition regime, and demonstrate how it tackles the
nonlinear features of the orbital-element p.d.f.’s.

5.6 Paper VI

Time evolution of orbital uncertainties for the impactor candidate 2004 AS1

We analyse the case of asteroid 2004 AS1, which was suggested to have a significant
risk for an Earth impact within 48 hours of the discovery. In particular, we demonstrate
the implications of noisy data in initial orbit computation, and discuss outlier detection
in exiguous data. We confirm the drastic first prediction, and also that it was due to the
discordance of the discovery night observations. We explore the possibility to have been
able to deduce the poor quality of the data at the time. Although outlier detection did
not succeed in the case of 2004ȦS1, we propose to develop a Ranging-based algorithm to
detect discordant observations even from exiguous data. We return to the question raised
in Paper II, that is, the importance of proper regularization of probability densities.
Securing the invariance is particularly important in collision probability studies of which
drastic conclusions from the human point of view might be due.

5.7 Author’s contribution

In numerical techniques, the author of this thesis has developed the Ranging technique
further from the original idea in Muinonen (1999), in particular by completing the proba-
bilistic modeling, such as the use of a priori distributions and derivation of end-products
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such as NEO probabilities (Paper I). The author initiated and carried through the au-
tomation of Ranging for more practical application (Papers II and III). Also the imple-
mentation of both Ranging and VoV-techniques into Fortran95 has been the responsibility
of the author (together with M. Granvik, T. Laakso and K. Muinonen). In all the pa-
pers, the author is responsible for the application of the orbit computation techniques to
the example cases of the selected asteroids as well as for illustrating and describing the
results. Papers I, III, and VI (first author) were written by the author with the exception
of Section 2.2 and part of Section 3.2 in Paper III concerning the stability studies which
were provided by G. Tancredi. In Papers II, IV, and V the author was responsible for
the interpretation and writing of the results from the practical computations, in Paper IV
only for the Ranging application.
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6 Simulations for spacebased surveys

The asteroid orbital inversion is a key task in the Gaia project. Gaia is the astrometric
cornerstone mission of the European Space Agency (ESA) scheduled for launch in mid-
2011. Gaia will survey the entire sky down to a limiting magnitude V = 20 mag with
unprecedented accuracy of, e.g., 10 microarcseconds at V = 15 mag. This is an accuracy
several orders of magnitude better than with current groundbased surveys, and this im-
provement will have a major impact on accuracy of the orbital elements. Moreover, the
entire problem of orbit computation will be affected (Muinonen et al., 2005; Virtanen
and Muinonen, 2005): the astrometric implications of the finite size and irregular shape
of the asteroids need to be modeled, because in measurements of these accuracies, the
photocenter and the center of mass of an asteroid do no longer coincide. Due to the inter-
twining of the asteroid dynamical evolution and physical properties, the global solution
for asteroid orbits from Gaia data will only be ready at the end of the survey. The full
statistical inverse problem encompasses solving for the sizes, shapes, and masses (also
for perturbing objects) as well as relativistic effects simultaneously for large numbers of
asteroids.

In simulations for Gaia by Muinonen and Virtanen (2002), a nonlinear collapse was
seen in the orbital uncertainties as a function of the improving accuracy of astrometric
observations (Fig. 5). This phase transition effect can also be recognized in the time evolu-
tion of the orbital uncertainty: there is a threshold for the length of the observational arc
(and the number of observations) over which the orbital-element distributions nonlinearly
evolve from extended to well-constrained ones. The existence of such an effect suggests
that different computational methods could be used to assess the uncertainties before, at,
and after the transition. Paper V of the present thesis focuses on transitional observa-
tional data, and the decribed phase-space sampling technique promises to be applicable
across the phase transition regime.

The case-studies in Virtanen and Muinonen (2005) further suggest that the phase
transition for high-precision MBO data may take place already at the discovery moment.
For Gaia, the results are encouraging, because the simulated asteroid observations have
turned out to very sparse in time, implying that weeks or months may pass before the
discovery data is replenished and the initial orbit improved.

NERO (Near-Earth objects Radiometric Observatory) is one of the six ESA studies
for possible missions dedicated to near-Earth objects. The general concept is a small
satellite equipped with both a detector for visible wavelengths and an array for thermal
IR measurements. NERO would address two of the major objectives of current NEO
science, namely the physical characterization of the objects and the discovery of NEOs
which are difficult to detect from ground, the objects residing entirely inside the orbit of
the Earth. In Cellino et al. (2005), the initial orbit computation for objects observed
at small solar elongations was studied, a matter of importance with a space mission
because no follow-up from ground can be effectively performed. The results from our
simulations with Ranging indicate that the uncertainties in the distances of the newly
detected objects at the epochs of observations should be sufficiently well constrained as
to allow the observers to apply the usual technique of reduction of radiometric data. The
successful data reduction in turn implies that NERO should be capable of obtaining sizes
and albedos for the discovered objects.
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Figure 5: Nonlinear collapse in the extent of the orbital distributions with improving observa-
tional accuracy for the near-Earth asteroids 1993 OM7 (left) and 1998 OX4 (right). From top
to bottom, we show the extent of the marginal probability densities for σ = 0.5 as, 5 mas, and
0.5 mas. The boxes in the upper plots indicate the extents of the corresponding plotting windows
below. The results indicated that there is a threshold value for the astrometric accuracy be-
low which the orbital-element probability density becomes well-confined even for exiguous data.
From Muinonen and Virtanen (2002).
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7 Conclusions and future prospects

The aim of the present thesis has been to provide a complete solution for the problem of
asteroid orbital inversion in terms of statistical methods. In particular, rigorous solutions
are called for in initial orbit computation, where the asteroid impact risk evaluation
mandates a firm understanding of the possible orbits for the newly discovered objects.
Two nonlinear statistical techniques based on Monte Carlo sampling of the orbital-element
probability density have been presented. The technique of statistical orbital ranging is
tailored for exiguous observational data, for which the orbital-element p.d.f.’s are shown
to be complicated, for example, having multiple maxima. Such ambiguities in orbital
inversion can be resolved with Ranging, the solution of which is the rigorous orbital-
element p.d.f., which is mathematically well-defined even if the parameters it describes
are not.

The Volume-of-Variation technique complements Ranging for exiguous data and the
least-squares technique for extensive data. It can be used to assess the nonlinearities in
the phase transition from complicated orbital-element p.d.f.’s to well-constrained ones.
Both techniques have been shown to be readily applicable to ephemeris predictions in
observing programmes run at the Nordic Optical Telescope in La Palma, Spain, and at
the European Southern Observatory in La Silla, Chile.

The criticism often expressed against the computationally demanding Monte Carlo
methods can be partially answered with the results from the large-scale application. Nev-
ertheless, the Monte Carlo based methods are most suited for case studies where rigour
is called for.

While the presented inverse techniques together with the standard least-squares anal-
ysis complete the spectrum by providing a continuum of techniques to meet the needs
imposed by the variety of available asteroid observational data, several optimizations are
due. First, the optimal application area of each technique in terms of both the observa-
tions and the dynamically different target groups needs to be found out. Fine-tuning is
also called for to find the optimal parameters to be used within each technique (Cartesian,
Keplerian, topocentric spherical coordinates/coordinate rates). Finally, prospects for fu-
ture work include several topics such as analysis of TNOs on peculiar orbits (Tancredi et
al., 2005), linking of short-arc objects (Granvik and Muinonen, 2005), population study
for the poorly observed sungrazing comets, and the outlier detection from exiguous data.
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197, (Z. Knežević and A. Milani, Eds.), Cambridge Univ. Press, Cambridge, UK,
pp. 255–258.

Chesley, S. R., and A. Milani 1999. Nonlinear methods for the propagation of orbital
uncertainty. Paper 99-418 in AAS/AIAA Space Flight Mechanics Meeting, 16-19
August 1999, Girkwood, Alaska.

Chodas, P. W., and D. K. Yeomans 1996. The orbital motion and impact circumstances

36



of comet Shoemaker-Levy 9. In The Collision of Comet Shoemaker-Levy 9 and
Jupiter (K. S. Noll, P. D. Feldman, and H. A. Weaver, Eds.), pp. 1–30. Cambridge
University Press.

Danby, J. M. A. 1992. Fundamentals of Celestial Mechanics. Willmann-Bell, Inc., Rich-
mond.

Dubyago, A. D. 1961. The Determination of Orbits. New York, NY.

Gauss C. F. 1809. Theory of the Motion of the Heavenly Bodies Moving about the Sun in
Conic Sections. Dover, New York, 326 pp., 1963.

Goldader, J. D., and C. Alcock 2003. Constraining recovery observations for trans-
neptunian objects with poorly known orbits. PASP 115, 1330–1339.

Granvik, M., and K. Muinonen 2005. Asteroid identification at discovery. Icarus, in press.

Granvik, M. J. Virtanen, K. Muinonen, E. Bowell, B. Koehn, and G. Tancredi 2003.
Transneptunian object ephemeris service (TNOEPH). In First Decadal Review of
the Edgeworth-Kuiper belt (John K. Davies and Luis H. Barrera, Eds.), Kluwer
Academic, Dordrecht, Netherlands, pp. 73–78 (Reprinted from Earth, Moon, and
Planets, Volume 92, Nos. 1-4).

Herget, P. 1965. Computation of preliminary orbits. Astron. J. 70, 1–3.

Jedicke, R., J. Larsen, and T. Spahr 2002. Observational selection effects in asteroid
surveys. In Asteroids III (W. Bottke, A. Cellino, P. Paolicchi, and R. P. Binzel,
Eds.), pp. 71. The University of Arizona Press, Tuscon.

Jeffreys H. 1946. An invariant form for the prior probability in estimation problems.
Proceedings of the Royal Statistical Society of London, Series A. 186, 453–461.
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