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ABSTRACT

Silicon particle detectors are used in several applications and will clearly require better hardness

against particle radiation in the future large scale experiments than can be provided today. To achieve

this goal, more irradiation studies with defect generating bombarding particles are needed. Protons

can be considered as important bombarding species, although neutrons and electrons are perhaps the

most widely used particles in such irradiation studies. Protons provide unique possibilities, as their

defect production rates are clearly higher than those of neutrons and electrons, and, their damage

creation in silicon is most similar to the that of pions.

This thesis explores the development and testing of an irradiation facility that provides the

cooling of the detector and on-line electrical characterisation, such as current-voltage (IV ) and

capacitance-voltage (CV ) measurements. This irradiation facility, which employs a 5-MV tandem

accelerator, appears to function well, but some disadvantageous limitations are related to MeV-proton

irradiation of silicon particle detectors.

Typically, detectors are in non-operational mode during irradiation (i.e., without the applied

bias voltage). However, in real experiments the detectors are biased; the ionising proton generates

electron-hole pairs, and a rise in rate of proton flux may cause the detector to breakdown. This limits

the proton flux for the irradiation of biased detectors. In this work, it is shown that, if detectors

are irradiated and kept operational, the electric field decreases the introduction rate of negative

space-charges and current-related damage.

The effects of various particles with different energies are scaled to each others by the non-ionising

energy loss (NIEL) hypothesis. The type of defects induced by irradiation depends on the energy

used, and this thesis also discusses the minimum proton energy required at which the NIEL-scaling

is valid.
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1 INTRODUCTION

In particle detection, the most common semiconductor detector material is clearly silicon. The

advantages for using this second most abundant element in the earth’s crust are obvious. Not only are

availability and affordability important, but the mechanical properties of silicon are also favourable,

and advanced processing methods for silicon-based devices have been developed in recent decades

[1]. In addition, the ionisation energy of silicon is small enough to permit easy ionisation, yet large

enough to maintain a low dark current, thus making silicon an ideal material for particle detectors.

Silicon particle detectors are widely used in several applications (e.g., space, aviation, and ra-

diation detection). The operation of such devices, however, is compromised when they are irradiated

with high fluences (above 5 ×1014 particles/cm2) of 1-MeV neutrons [2]. In the upgrade of the Large

Hadron Collider (Super-LHC, S-LHC) at the European Organization for Nuclear Research (also

known as CERN), the silicon detectors will receive a fluence of 1016 particles/cm2 at a distance of

a few centimetres from the beam interaction point [3]. This is well beyond the operational limit

of current silicon detectors [4]. Thus, more irradiation tests are needed to develop radiation hard

detectors.

In addition to the neutron and the electron, a popular irradiation particle is the proton. Proton

is a good option for particle irradiation tests, as its defect production rates are several orders of

magnitude higher than those of neutrons and electrons, thus allowing shorter irradiation periods

with similar beam fluxes. Moreover, in the inner volume of the silicon trackers at LHC, the most

damaging particles will be pions. Naturally, such pion irradiation facilities are rare and high fluence

pion irradiations are almost impossible to perform, thus it is absolutely necessary to perform proton

irradiations as these are the most similar particles to pions when it comes to damage creation in silicon.

Radiation causes in the detector irreversible crystallographic defects, which can be electrically

active [5], thus leading to a change in the space charge, leakage currents and trappings. In addition,

when traversed by particles, the oxide layers on the surface of the silicon particle detectors become

charged. Due to these effects, the risk of a breakdown builds up with the increase in voltage needed

to fully deplete the active volume of the detector. Furthermore, the noise of the charge signals rises,

and the charge collection efficiency decreases. These detriments can be partly minimised by carefully

designing the structure of the detector (e.g., oxygen-rich silicon [6, 7], guard rings) and by cooling

the detector.
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This thesis explores the development of an irradiation facility with a detector cryocooling sys-

tem that employs a 5-MV tandem accelerator. The facility allows for the on-line electrical

characteristics (current-voltage IV and capacitance-voltage CV ) of the silicon particle detectors. The

aim of this thesis was to find conceptual limits for the irradiation of silicon particle detectors with 2 - 9

MeV protons: the decay of proton-induced radionuclides affects electrical characteristics, ionisation

caused by the irradiating proton may lead to possible breakdown of the detector, and furthermore,

the type of the defect depends on the bombarding energy. A complete experimental assessment of

radiation hardness of detectors under operational conditions in future S-LHC experiments is difficult

to achieve, making MeV-proton irradiations, such as those used in this thesis, vital in providing

fundamental understanding of radiation hardness of silicon particle detectors. Part of the presented

work has been carried out in the framework of the CERN RD50 and RD39 collaborations.
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2 PURPOSE AND STRUCTURE OF THE STUDY

The main purpose of this thesis was to design, construct and test the irradiation facility for silicon

particle detectors. Secondly, the aim of this thesis is to establish conceptual limits for the irradiation

of silicon particle detectors with MeV-protons.

The thesis consists of this summary and six articles – printed or under review – in interna-

tional peer-reviewed journals. The contents of the articles have not been repeated in this summary,

but essential background information is provided. The articles are listed below, included after the

summary, and referred to in the text by their Roman numerals.

Structure of this summary is as follows. In this Section the list of the articles, as well as the

author’s contribution to these, are presented. The theory related to characterisation of silicon particle

detectors appears in Section 3. The effects of irradiation and their contributions to the electrical

characterisations are introduced in Section 4. The experimental arrangements and main results of the

articles are presented in Section 5. Finally, the conclusions are presented in Section 6.

2.1 List of articles

The articles listed below are included in the thesis.

Article I : S. Väyrynen, P. Pusa, P. Sane, P. Tikkanen, J. Räisänen, K. Kuitunen, F. Tuomisto, J.
Härkönen, I. Kassamakov, E. Tuominen, and E. Tuovinen, Setup for irradiation and characterization
of materials and Si particle detectors at cryogenic temperatures, Nuclear Instruments and Methods
in Physics Research A 572, 978 (2007).

Article II : V. Eremin, J. Härkönen, P. Luukka, Z. Li, E. Verbitskaya, S. Väyrynen, and I.
Kassamakov, The operation and performance of Current Injected Detector (CID), Nuclear Instru-
ments and Methods in Physics Research A 581, 356 (2007).

Article III : S. Väyrynen, J. Räisänen, P. Tikkanen, I. Kassamakov, and E. Tuominen, Effects
of activation by proton irradiation on silicon particle detector electric characteristics, Journal of
Applied Physics 106, 024908 (2009).

Article IV : S. Väyrynen, J. Räisänen, I. Kassamakov, and E. Tuominen, Breakdown of sili-
con particle detectors under proton irradiation, Journal of Applied Physics 106, 104914 (2009).
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Article V : S. Väyrynen, J. Härkönen, E. Tuominen, I. Kassamakov, E. Tuovinen, and J.
Räisänen, The effect of an electrical field on the radiation tolerance of Float Zone and Magnetic
Czochralski silicon particle detectors, submitted to Nuclear Instruments and Methods in Physics
Research A.

Article VI : S. Väyrynen and J. Räisänen, Effect of proton energy on damage generation in
irradiated silicon, in press, Journal of Applied Physics.

In addition, within RD39 collaboration, the author has contributed to other articles [8–11] related to

the topic of this thesis.

2.2 Author’s contribution

The author of this thesis is the corresponding author of each article except Article II, in which he is a

contributing co-author. In each article, the author has performed nearly all of the proton irradiations

as well as CV and IV measurements. The author has played a key role in the development, installa-

tion, and testing of the irradiation facility described in Article I. The author has coded all computer

software relating to the CV and IV measurements as well to temperature control. The author has car-

ried out all simulations and calculations in Articles III, IV, and VI. He has also played an active role

in interpreting the results and in writing the articles. Measurement results presented in this summary,

not provided in Articles I - VI, have been carried out by the author.
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3 SILICON PARTICLE DETECTOR

This section introduces the operation principle of the detector and the theory for the characterisation

methods used in this thesis and describes the processing of the silicon particle detector. The theory

presented here is based on references [5, 12, 13].

3.1 Operation principle of the detector

The detection of energetic particle is based on the collection of generated charge carriers [13]. Ion-

ising radiation (e.g., particles [III,IV], γ-rays, photons) generates electron-hole pairs (EHPs) inside

the detector. The average energy required to create electron-hole pair (EHP) is 3.62 eV (at 300 K) in

silicon, whereas the bandgap is 1.12 eV. The remaining of the energy goes to phonons and plasmons.

A depleted diode-junction, introduced in the next section, is used to improve the collection of these

charge carriers; the electric field drives the electrons to an anode, and the holes to a cathode. The

operation principle of silicon particle detectors is described in Fig. 1. Normally, the electric field is

high enough that the drift velocities of the charge carriers become saturated (about 107 cm/s). This

means that the charge collection time for the charge carriers of a typical detector (thickness 300 µm)

is less than 10 ns.

Figure 1: Operation principle of the silicon particle detectors. The particle generates electron-hole
pairs, which are collected at the electrodes by the electric field in the depletion region.
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Figure 2: (A) Space charge distribution in a one-sided abrupt junction (p+n) at thermal equilibrium.
(B) Corresponding electric field distribution.

3.2 Diode-junction

While p-type material contains a high concentration of holes with few electrons, the opposite is true

for n-type material. When physically separated p-type and n-type silicon chips are joined, the diode-

junction (a.k.a. pn junction) is formed. In device fabrication, the pn junction can be formed using a

process such as epitaxy, diffusion, and ion implantation (presented in Fig. 5).

The p-type region has a net concentration of acceptors NA (holes), and the n-type region has a net

concentration of donors ND (electrons). Due to the concentration gradient in the pn junction, the

holes diffuse into the n-side, and the electrons diffuse into the p-side. Consequently, a negative

space charge accumulates on the p-side and a positive space charge on the n-side. The space charge

distribution of an abrupt pn junction is illustrated in Fig. 2(A).

For the abrupt junction, Poisson’s equations hold:

d2ψ

dx2 = +
qNA

εS
for − xp ≤ x < 0 and (1)

d2ψ

dx2 = −qND

εS
for 0 < x≤ xn , (2)

where q is the elementary charge, and εS is the permittivity of silicon. The overall charge neutrality

requires space charges to be equal: NAxp = NDxn.

A typical silicon particle detector has the structure of a one-sided abrupt junction (p+n or n+p). This

thesis discusses only the p+n junction, but applicability for the latter is obvious. The depletion layer
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width is simply (cf. Fig. 2)

W = xp + xn ' xn . (3)

The electric field in the depletion region [Fig. 2(B)] is given by

E(x) =−Emax +
qNDx

εS
=

qND(x−W )

εS
for 0 < x≤ xn , (4)

where Emax is the maximum field that exists at junction. Note, at boundaries x = xp and x = xn, the

electric field decreases to zero.

The built-in potential Vbi over the junction is given by integrating Eq. (4) over the depletion region:

Vbi =−
∫ W

0
E(x)dx =

qNdW 2

2εS
=

1
2

EmaxW. (5)

Thus, the expression for depletion layer width W is

W =

(
2εSVbi

qNd

)1/2

. (6)

The previous equation is valid at thermal equilibrium without external bias. If we apply positive

voltage to the n-side, the p+n junction becomes reverse-biased, and the electrostatic potential across

the junction increases by applied voltage V ; in Eq. (6), the built-in voltage is replaced by V +Vbi or

simply by V , because in general, the applied voltage is clearly higher than the built-in voltage (< 1 V)

in detector applications. Consequently, the reverse voltage increases the depletion width W .

3.2.1 Capacitance-voltage (CV ) characteristics

The depletion capacitance per unit area is defined as C j = dQ/dV , where dQ is a change in the charge

of the depletion layer per unit area for a change in applied voltage dV . Charge dQ increases the electric

field by amount dE = dQ/εS, and the corresponding change in the applied voltage is approximately

WdE (see Fig. 2). Thus,

C j ≡
dQ
dV

=
εS

W
F/cm2 , (7)

which is the same as the standard expression for a parallel-plate capacitor, where the spacing between

the plates is equal to depletion layer width W .

By substituting W from Eq. (6), the junction capacitance is

C j =

(
qεSNd

2V

)1/2

⇔ 1
C2

j
=

2V
qεSNd

. (8)
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Figure 3: Principle of the determination for full depletion voltage.

This equation is valid when W is thinner than thickness d of the n-side. After full depletion (i.e.,

the positive space charge is extended to the whole n-side), the capacitance saturates. By plotting CV

data on capacitance-voltage characteristics to the (V , C−2
j ) graph, full depletion voltage Vf d , which

corresponds to the capacitance of C f d = εS/d, may easily be determined finding the intersection of

fitted lines, as shown in Fig. 3, and with this, the doping concentration of the n-side may be calculated

by

Nd =
2εS

qd2Vf d . (9)

The CV -characteristics can also be used to determine heterogeneous doping concentrations [VI]. By

using Eq. (6), where applied bias V replaces Vbi and by deriving Eq. (8), we have

dC−2
j

dV
=

dC−2/dW
dV/dW

=
2

qNdεS
,

which yields the equation for determining the doping concentration at depth W :

ND =
2

qεS
d(1/C2

j )

dV

. (10)

Depth W may be determined by using Eq. (7). Another form for Eq. (10) is expressed in reference

[14].

Capacitance is typically measured at room temperature and at a frequency of 10 kHz [15], but, for

irradiated silicon, capacitance depends on temperature as well as frequency. These dependencies are

discussed in Section 4.2.1.
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3.2.2 Current-voltage (IV ) characteristics

In detector purposes, only biasing with reverse voltage is sensible, leading to increased active volume.

The reverse current density (JR) of a pn junction is the sum of four components: the diffusion current

(Jdi f f ), the current generated at the surface (Jsg), the current generated in the depleted layer (Jg), and

the secondary ionisation current at high reverse voltages (Jsi). For silicon, Jg dominates (despite high

voltages), thus the reverse current density is

JR ' Jg =
∫ W

0
qGdx' qGW =

qniW
τg

, (11)

where G is the rate of electron-hole pair generation, τg is the generation lifetime, and ni is the intrinsic

charge carrier concentration in silicon. Only energy levels near the intrinsic Fermi level can contribute

significantly to generation rate G.

Both ni and τg depend greatly on temperature. Thus, the ratios of current densities J1 and J2 measured

at different temperatures T1 and T2 is given by [16]

J1(T1)

J2(T2)
=

(
T2

T1

)2

exp
[
−

Eg

2kB

(T1−T2)

T1 ·T2

]
(12)

with kB as the Boltzmann constant (kB = 8.6 ·10−5 eV/K), and Eg as the gap energy in silicon (Eg =

1.12 eV).

3.3 Avalanche breakdown

At high reverse voltages the secondary ionisation current dominates. This phenomenon is known as

the avalanche multiplication process. The generated electron acquires kinetic energy from the electric

field in the depletion layer. If the field is high enough, the energetic electron can break lattice bonds

upon collision with an atom, thereby creating an electron-hole pair (secondary ionisation). These

created charge carriers similarly acquire kinetic energy from the field and create additional pairs.

This process can continue, leading to the multiplication of charge carriers [III,IV].

In part of the depletion region, the electric field may be high enough for the multiplication process.

In such a case both electron (moving rightward in Fig. 2) and hole (moving leftward) concentrations

increase equally. The change in electron and hole concentrations in a thin region dx may be expressed

as

dn = dp = αnn(x)dx+αp p(x)dx , (13)
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where αn/p is a field-dependent multiplication coefficient. In general, the holes originate from the

multiplication process and hole concentration p(x) may be expressed as p(x) = n(W )− n(x) where

W is a boundary of a space charge region. Based on Eq. (13) and assuming that αn = αp = αe f f

(effective ionisation coefficient), the electron concentration may be expressed as

n(W ) = n(0)+
∫ W

0

dn
dx

= n(0)+n(W )
∫ W

0
αe f f (x)dx . (14)

Multiplication factor M is defined as the ratio between electrons leaving and electrons entering the

depletion region:

M =
n(W )

n(0)
=

1

1−
∫W

0 αe f f (x)dx
. (15)

The avalanche breakdown voltage is defined as the voltage where M approaches infinity. Thus, the

breakdown condition is expressed as

∫ W

0
αe f f (x)dx = 1 . (16)

For the effective ionisation coefficient, the following approximation is assumed [17]:

αe f f = aα ·E7 , (17)

where E is the electric field and aα is approximately 1.8 ·10−11 µm 6/V7 for silicon.

When the applied bias is greater than Vf d , the additional voltage V −Vf d drops uniformly over the

n-layer with thickness d. Using Eqs. (4) and (5), the magnitude of the electric field becomes [18]

E(x) =
∣∣∣∣2Vf d

d

( x
d
−1
)
−

V −Vf d

d

∣∣∣∣ , (18)

where Vf d may be solved from Eq. (9).

Regarding Fig. 4, the breakdown voltage as a function of the impurity concentration has been cal-

culated using Eqs. (16) - (18). The avalanche breakdown requires a bias voltage higher than 4 kV

for silicon particle detectors with a typical thickness of 300 µm. The avalanche process influenced by

surface damage is discussed in Section 4.3.1.
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Figure 4: Breakdown voltages calculated for p+/n/n+-diodes. The concentration of donors ND and
the thickness of d is for the n-layer.

3.4 Processing of silicon particle detectors

Silicon detectors have usually been processed using Float Zone silicon (Fz-Si). Fz-Si has relatively

high resistivity (> kΩ), so full depletion of the detector can be achieved at reasonable operating

voltages (< kV). Float Zone silicon has a low oxygen concentration (typically < 1015 cm−3), however,

it has been proved that oxygen improves the radiation hardness of the silicon devices [6]. Silicon

wafers made using Czochralski (Cz-Si) method intrinsically contain high concentrations of oxygen

(1017-1018 cm−3).The resistivity of Cz-wafers is typically not high enough for detector applications.

Fortunately, recent developments in the crystal growth technology of Czochralski silicon have enabled

the production of Cz wafers with sufficient resistivity and with well-controlled, high concentration of

oxygen.

The silicon particle detectors used in this thesis are processed at the Microelectronics Centre of the

Helsinki University of Technology using Fz-Si (Topsil, Wacker) and Cz-Si (Okmetic Ltd) wafers as

starting materials. The structure of the detectors was processed essentially in the following manner:

the p+-layer (boron) was implanted on the front surface (anode) of the n-type bulk material, and the

n+-layer (phosphorus) on the backside (cathode). The backside implantation enables overdepletion

of the detector. The aluminium layers (∼ 0.5 µm) are then sintered to the electrodes, thus providing

the electrical contacts. Fig. 5 shows the process steps of the silicon particle detector. A more detailed

process flow is described in references [19, 20].

In the actual detector concept used in this work, the active area (front electrode, 5 × 5 mm2) is

surrounded by one or several guard rings (p+-doped) against the effects of cutting edges and to smooth

the electric field. In general, the guard rings are grounded. The oxide layer (0.2 to 1 µm thick) covers

the non-metallised regions on the detector surfaces. The outer dimensions of the detectors were either
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7 × 7 mm2 or 8 × 8 mm2. A typical thickness for Si-detector is about 300 µm, whereas the thickness

is ∼ 7 µm for the n+-layer and ∼ 3 µm for the p+-layer. A cross-sectional view of the detector is

shown in Article IV (Fig. 1). A photograph of the detectors is shown in Fig. 6.

Figure 5: The principle of processing a silicon particle detector. The n-type Si-chip is implanted with
boron and phosphorus on the front and backside, respectively. Aluminium electrodes are then sintered
to provide electrical contacts.

Figure 6: Photograph of the silicon particle detectors. On the left, the detector is attached to a printed
circuit board (PCB) pad, which facilitates the characterisation measurements.
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4 IRRADIATION EFFECTS

This section discusses the interactions of detector materials, especially of silicon, with MeV-range

protons. Contributions of the irradiation effects to the detector operation are also introduced.

4.1 Interaction processes

When an energetic proton hits silicon, various types of interactions may occur, as is shown in Fig. 7.

For example, protons can scatter from the Si-atoms (elastic and inelastic scattering), which can then

recoil, or they can ionise the atom by kicking off the inner shell electrons, leading to the characteristic

emission of X-rays or Auger electrons. In addition, some proton-induced nuclear reactions can lead

to the emission of γ-rays. In this context, however, we are interested mainly in phenomena essential

to the operation of the detector, namely displacement damage resulting from proton bombardment,

the energy loss of protons in silicon, and radionuclide production [III].

Energy loss is an important term in ion beam physics and is often referred to as stopping power

[21]. Stopping power means the average energy loss of the particle per unit path length (S≡ dE/dx).

Depending on energies used, the stopping power is divided into two groups: nuclear and electronic

stopping. Only the former may cause displacement damage (i.e., the non-ionising energy loss), but

both classes contribute to the ionising process. Electronic stopping is orders of magnitude stronger

than nuclear stopping at MeV energies (Fig. 8), thus in practical terms, the ionising energy loss

corresponds to the total energy loss. One useful term relating to energy loss is projected range Rp,

defined as the mean depth from the target surface at which the ion stops. The Rp takes account of the

Figure 7: Interactions that occur when protons hit the matter.
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Figure 8: Electronic and nuclear stopping powers and projected ranges for protons in silicon.

real path of particles (i.e., of the lateral straggling) also. Fig. 8 shows the dependence of the stopping

powers and the projected range of protons in silicon on the bombarding energy. The stopping powers

and the projected ranges used in this thesis are calculated by SRIM-code [22].

4.2 Bulk damage - non-ionising energy loss

A low concentration of defects in silicon are already present before irradiation, and energetic particles

cause additional defects in the material bombarded. These defects are roughly categorised as clusters

and point defects. Low-energy electrons cause point defects, whereas neutrons cause mainly the clus-

ters. Protons create both of them, but the point defects predominate at several MeV energies. This

phenomenon is tested in Article I with positron annihilation spectroscopy by irradiating Si-sample

with 9.5-MeV protons.

The simplest defect in silicon is an interstitial-monovacancy pair, known as a Frenkel pair, in which

the Si-atom is displaced from its lattice site to the interstitial. An important parameter for describing

radiation damage is the threshold energy for displacement. For silicon, this is 36 eV, on average [23],

which indicates a minimum energy of 1 keV for protons colliding with a Si-atom at rest. However,

the probability of colliding with a small impact parameter, defined as a perpendicular distance from

the projectile’s path to an atom at rest, is very small [24]. Thus, the energy needed for protons to

displace a Si-atom is clearly higher on average. The Si-atom can acquire enough kinetic energy in

such a collision to form an extra Frenkel pair, and the initial displacement gives rise to a series of

cascades which stop when the kinetic energy of the dislodged atom is less than the threshold [25].

The monovacancies are already mobile at moderately low temperatures (> 100 K [26]) and can move
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some distance through the Si-lattice. They can disappear from the material by recombining with the

interstitial atom or by moving to the surface. Interstitials can behave similarly, but of course, recom-

bination occurs with the vacancy. If one of the components of the Frenkel pair is lost to the surface,

the remaining component is known as a Schottky defect.

Alternatively, monovacancies can combine to form a more complex and larger vacancy, which con-

stitutes a moderately stable defect. In the case of interstitials, they can accumulate in the Si-bulk to

form stacking faults. The mean free path between two successive collisions decreases towards the

end-of-range, where the interaction of defects strengthens. More commonly, mobile vacancies and

interstitials become trapped by impurity atoms, which gives rise to stable defects or defect complexes.

The most common impurities in Si include oxygen and carbon, and the doping impurities of phos-

phorus and boron which are used to modify the sign of charge carriers (n or p). Vacancies appear to

have an affinity for atoms which release electrons, such as P, As, and Sb (donor dopants), and less for

elements with a deficiency of electrons (acceptor dopants).

4.2.1 Effects of defects on detector properties

Many defects are electrically active and can be classified according to their electrical properties as

acceptors or donors. Some of the defects have more than one energy level in the band gap. These are

known as amphoteric defects with an acceptor and donor level in the band gap.

Radiation-generated defects have complicated electrical properties [5, 27]. The defects will have the

following main consequences. (A) They can change the charge density of the space charge region

[V,VI]. Usually levels in the lower half of the band gap are occupied by electrons in the depletion

region, while those in the upper half are not. This means that, if a donor exists below the mid-band

gap or if an acceptor exists above that, they are neutral in the space charge region. Conversely, when

an acceptor exists in the lower half of the band gap or if a donor is in the upper half, they are ionised

and contribute negative and positive space charges. Thus, the defects generated by irradiation affect

the full depletion voltage of the detectors (Eq. 9). (B) They act as recombination-generation centres

[I,V,VI]. The presence of a donor or acceptor near the conduction or valence band is known as a

shallow level. On the other hand, the levels near the mid-band gap, the deep levels, can serve as

generation and recombination centres, and if they are located in the depletion layer, they increase the

leakage current of the detector (Eq. 11). (C) They act as trapping centres [II,IV]. Electrons or holes

are captured and re-emitted with a time delay.

Several radiation-damaged mechanisms lead to a change in the space charge, which is categorised as

the removal of donors (e.g., vacancy-phosphorus complexes), the removal of acceptors (e.g., vacancy-

boron complexes), the creation of defects assuming positive charge states in the space charge region

(effective "donors"), and the creation of defects assuming negative charge states in the space charge
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region (effective "acceptors"). These are expected to depend on irradiation fluence Φ, and the effective

doping concentration is parameterised as [5]

Ne f f (Φ) = ND,0e−CDΦ−NA,0e−CAΦ +bDΦ−bAΦ (19)

where ND,0 and NA,0 are the initial concentrations of donors and acceptors, and cD, cA, bD and bA are

constants determined experimentally. Ne f f can be determined from CV -data by Eq. (9), but a simple

measurement of the detector depletion voltage provides information only on the difference between

effective donors and acceptors. Many papers [28–31] state that the depletion voltage of the p+/n/n+-

detector decreases with irradiation fluence until it begins to increase: the space charge region changes

the sign from n to p [32]. The type inversion leads to a p+/p/n+-structure in which the detector,

unlike non-irradiated detector, begins to deplete the pn+-junction. For heavily irradiated detectors,

the so-called double peak effect emerges: the depletion layer begins to deplete from both sides [31].

As may be noted, the CV characteristics depend on the temperature and frequency used for irradiated

detectors. In the CV measurement, an AC test signal is superimposed on the constant applied bias.

Due to this AC signal, those deep traps near the edge of the depletion region switch between the

depleted and the neutral regions. In the depleted region, they are empty and, thus, contribute to

the space charge of the device, whereas in the neutral region, they are filled being neutral. If the

frequency of the charging current of the capacitance device is sufficiently low, the process of filling

and re-emptying the traps will be measured. Conversely, at sufficiently high test signal frequencies,

the measurement will be insensitive to the presence of the deep traps, so the material seems to be

essentially intrinsic. The maximum frequency for a deep-level charging is proportional to temperature

T as follow [33]:

f ∝ T 2 exp
(
− Ea

kBT

)
, (20)

where Ea is an energy level between the energy level of the deep trap and of the conduction or valence

band. In conclusion, at lower temperature, the lower frequency for the charging signal of the CV

device is needed. The capacitance-voltage measurement will flatten for irradiated detectors at lower

temperatures, when a constant frequency is used, as is shown in Fig. 9.

Similarly, the defects with deep levels, which cause the bulk current, are expected to depend on the

fluence. If normalised to sensitive volume V , change of current ∆I has proved to be proportional to 1

MeV neutron equivalent fluence Φeq., and the following expression holds [34]:

∆I
V

=
∆JR

d
= αΦeq. , (21)

where α is a current-related damage rate. If α is determined after an annealing of 80 min at 60

°C and normalised to 20 °C, α is a universal constant independent of the detailed history of the
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Figure 9: The CV curves of an irradiated Czochralski detector measured at different temperatures (the
curve at top represents the lowest temperature). Reference curves measured at 290 K and 250 K prior
to irradiation overlap and are shown for comparison. The frequency used was 18 kHz.

actual irradiation and of the type of material (n or p, Float-zone or Czochralski, resistivity, etc.), or

irradiating particles (protons, neutrons, pions).

4.2.2 NIEL scaling hypothesis

Several experimental observations have led to the assumption that damage produced in the silicon bulk

caused by particle bombardment can be considered proportional to so-called displacement damage

cross-section D, which is equivalent to non-ionising energy loss (NIEL). The proportionality between

the NIEL value and the damage caused by particles is referred to as the NIEL scaling hypothesis,

and the NIEL values are used to normalise the different irradiation effects of various particles over

large energy regions. According to ASTM (the international standards organisation) standards, the

displacement damage cross-section for 1 MeV neutrons is set to a normalising value.

Proton irradiation fluence Φ is converted to the 1 MeV neutron equivalent with the following equation:

Φeq = κΦ =

(
1
d

∫ xd

x0

κ(Ex)dx
)

Φ , (22)

where κ is an energy-dependent hardness factor. Fig. 10 presents the hardness factor as a function of

proton energy. Because of the finite dimensions of detectors, the hardness factor must be determined

taking into account of the energy loss: in brackets in Eq. (22), d is the thickness of the active layer,

x0 is the width of the dead layer, and xd = x0 + d. The energy values at depth x may be determined

from Fig. 8.
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Figure 10: Hardness factor for an energetic proton as a function of proton energy. Data are from ref.
[37].

NIEL scaling is regularly used in comparisons between damages produced in experiments with differ-

ent particles and energies. However, studies have not established microscopic understanding of why

damage should scale with NIEL, and some experiments [35, 36] even argue against it. Violations of

NIEL scaling preclude its use as strict rule, but it is nevertheless a useful tool for comparing most

particles and energy dependencies of the damage observed in silicon particle detectors.

4.3 Ionising energy loss

4.3.1 Surface damage - oxide charge

The surface oxide already contains a large number of defects even before incurring damaging irradi-

ation. The highest concentration of damage is in the silicon-oxide interface.

Ionising radiation also creates electron−hole pairs in the oxide. In the silicon lattice, EHP creation

is a completely reversible process with no damaging effects. But this is not true of surface oxide [38]:

depending on the electric field, a part of the EHPs fails to recombine. The mobility of electrons are

rather high in the oxide and have a high chance of diffusing from the oxide, whereas for holes, the

mobility is low, leading to a positive charge buildup in the oxide [39]. In addition, the electric field

directed away sweeps the holes created elsewhere towards the oxide [38], thereby increasing the oxide

charge. Basically, the saturation of positive oxide charge buildup is achieved when all hole-trapping

defects are filled. Another explanation for this is that a positive trapped charge creates an electric

field which prevents the escape of electrons [40]. The irradiation creates more trapping defects to the

oxide, and the saturation value of the oxide charge is dependent on the irradiation fluence [38, 40].

The saturation value achieves its maximum at a fluence of about 3 · 1013 p/cm2 for 7 MeV protons.
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In the present detector structure, metallisation is slightly extended over the oxide [Article III, Fig.

1] forming a metal-oxide-semicondutor (MOS) capacitor structure, in which the oxide has the posi-

tive charge. The oxide charge saturates to a value of the order of 2·10−7 C/cm2 [38, 39]. Assuming

a thickness of 500 nm and a relative permittivity of 4 for surface oxide, the voltage change over

the oxide is ∆Vox = ∆Qox/C ≈ 30V. This leads to a strong electric field near metal-semiconductor

and metal-oxide-semiconductor interfaces, and thus the avalanche breakdown process would occur

[III,IV].

4.3.2 Detector polarisation

The main component of reverse current is the bulk generation current, which decreases exponentially

with temperature [Eqs. (11) and (12)]. Therefore, to minimise the reverse current, the detectors

are cooled during the experiments. When EHPs are generated in the detector by light illumination

or ionising particles, some charge carriers may be trapped. Unfortunately, the trapping of charge

carriers in deep levels increases at lower temperatures. The trapping causes changes in the electric

field, a phenomenon referred to as detector polarisation. Thus, when constant bias is applied, detector

polarisation can change the mode of the detector from full-depletion to partial-depletion [IV].

The concentration of trapped carriers increases with time [41], and the effective space charge density

changes by Ne f f (t) = Ne f f (0)± nt(t), where nt is the concentration of traps with a positive sign for

hole trapping and a negative sign for electron trapping, respectively. At a given bias V , full-depletion

is achieved with the critical effective concentration |N∗e f f |, and the depletion width is related to Ne f f

as follows:

W =

{
d for |Ne f f | ≤ |N∗e f f |√

2εSV
e|Ne f f | for |Ne f f |> |N∗e f f |.

(23)

When |Ne f f |> |N∗e f f |, W becomes smaller than full depletion width d, and the detector is changed to

the partial-depletion mode.

4.4 Nuclear reactions

Low energy protons scatter elastically from nuclear potential, but when energy increases, so does

the probability to penetrate the potential wall, and – depending on the reaction threshold energy –

nuclear reactions are possible. Fig. 11 presents on the left the most typical radiation-induced nuclear

reactions, and in the middle, the decay channels of radionuclides. In the case of protons, (p,n)-

and (p,γ)-reactions are possible, but cross-sections of the (p,n)-reactions are typically three orders of
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Figure 11: Particle-induced nuclear reactions. Left, nuclear reactions with the proton-induced reac-
tions shown in white. Middle, the decay schemes of the radionuclides. Right, part of the nuclide chart
in which the radionuclides are hatched. The graphics are modified from the Karlsruhe nuclide chart
[42].

magnitude higher than those of (p,γ)-reactions. The nuclides produced are often radioactive and decay

by emitting positrons [III] or by the electron capture process.

The nuclear cross-section is one important parameter needed to estimate the quantity of effects: the

higher the cross-section, the more daughter nuclides are produced. The number of nuclides A per unit

area produced in the sample with thickness d may be calculated as

A = Φ

∫ d

0
σ[E(x)]N(x)dx , (24)

where σ is the reaction cross-section, and N is number of isotopes per cm−3 in the sample irradiated

to the fluence Φ.

The other parameters include the threshold energy of the reaction and the half-life of the radionuclide

produced. With short half-lives compared to the duration of the irradiation or the measurement, the

decay of the radionuclide is affected instantly, whereas with longer half-lives, the effect arises later.

Si is used in detector concepts, of course, but aluminium and gold electrodes, for example are used

in electrodes with elements of the detector holder (e.g., steel and electric wires). The concentration

of dopant impurities (e.g., B, P, and As) is usually very low, and their contributions to the nuclear

reactions are negligible. The reactions with some materials in the detector concept and their threshold

energies for protons are tabulated in Table 1. In addition, the half-lives of daughter nuclides are also

presented. Fig. 12 shows the corresponding cross-sections.
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Table 1: Proton-induced reactions in detector-related materials. Data are taken from Ref. [43].

Reaction Threshold (keV) Product half-life
27Al(p,n)27Si 5804 4.2 s
29Si(p,n)29P 5924 4.1 s
30Si(p,n)30P 5183 2.5 min

56Fe(p,n)56Co 5183 77 d
63Cu(p,n)63Zn 4215 38.5 min
65Cu(p,n)65Zn 2168 244 d

197Au(p,n)197Hg 1390 64 h

Figure 12: Cross-sections of (p,n)-reactions for target materials used in the detector structure. Data
are taken from Ref. [44].
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5 EXPERIMENTS AND RESULTS

The facility for the irradiation of Si-detectors with protons is expressed in the beginning of this Sec-

tion. The characterisation methods are later introduced, and the main results of the Articles included

in this thesis are highlighted.

5.1 Irradiation facility

5.1.1 5-MV tandem accelerator

The accelerator is a vertical belt-driven 5-MV tandem of the EGP-10 type and was installed at the

University of Helsinki in 1982. Over the years, the accelerator has undergone several upgrades (e.g.,

the manual controls of all essential parameters are computer-controlled). Therefore, despite its phys-

ical dimensions, this accelerator is competitive to more recent ones. More detailed specifications of

the accelerator and its latest upgrades can be found in Refs. [45, 46].

The accelerator has three ion sources, of which a miniature ion-sputtering source is used to produce

negative hydrogen ions. From the ion source (electrically grounded), extraction voltage VS (max. 40

kV) steers the ions to the inclined-field accelerating tube via an injection magnet. The acceleration

tube and a high-voltage terminal (VHV ) is located in a pressure tank, where a gas mixture of CO2+N2

(20:80) at a pressure of 12-14 bar provides the electrical insulation. The negative ions entered the

accelerating tube gains kinetic energy in a high electric field, and in the terminal, the ions enter the

stripper gas (CO2 or Ar) channel, where their electrons are stripped, thus rendering them positively

charged (charge Q). The positive ions accelerate up to the analysing magnet (grounded), where the

mass and energy are chosen. Finally, the energy of the ion is E = q(VS +VHV )+QVHV . After the

analysing magnet, the ions are steered to the measurement chambers.

For protons, the maximum energy is 10 MeV (routinely 9.5 MeV), while the minimum is about 1.8

MeV. The difference in energy is less than 10 keV. Values for the ion beam currents in the measure-

ment chamber are a maximum of about 400 nA and a minimum of about 0.5 nA, and the fluctuation

is about 10%.

5.1.2 Cryogenically cooled sample holders

A novel facility for proton irradiation with sample cryocooling by a helium cryostat was developed in

2006 and employs the 5-MV tandem accelerator [Article I ]. The facility allows damage generation to

the detectors and their on-line studies of electrical characteristics as well as the positron annihilation
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Figure 13: Liguid nitrogen (LN2) cooled goniometer.

spectroscopy. For detector irradiation, the minimum temperatures achieved are about 50 K and 70

K both with and without a thermal radiation shield, respectively, while the maximum is about 400 K

(limited by degradation of the vacuum).

The irradiation temperature is often clearly higher than the minimum limits mentioned, so the liquid

nitrogen-cooled sample holder was developed primarily to quicken sample cooling and heating. For

this purpose, a sample holder in a four-axis goniometer was equipped with an LN2-cooling system.

In addition, the heating resistor was installed in the holder, so it is possible to keep the temperature

of the detector on the PCB-pad (Fig. 6) between 110 K and 400 K. This goniometer also permits

so-called channelling studies at different temperatures in other research activities.

Without the insulating pad, the minimum temperature for the sample would be about 90 K. The

cooling rate for the detector on the PCB-pad is about 11 K/min, and the maximum rate for heating is

about 40 K/min. The corresponding values for the cryostat are 4 K/min and 10 K/min, respectively.

For the goniometer, the new detector holder for characterisation purposes was designed to be easier

to use than its predecessor (Article I, Fig. 5) and to permit measurement of the the beam current by

the collimator [Article III, Fig. 1(b)]. The new holder is compatible with the cryostat. Photographs

of the goniometer and the sample holder appear in Fig. 13.
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Figure 14: Left, the wiring diagram for measurement of the current-voltage characteristics of silicon
particle detectors with a Keithley 2410 SourceMeter and a 6485 Picoammeter. Right, IV -curves of a
Czochralski-detector irradiated with 7-MeV protons up to a fluence of 1013 protons/cm2.

5.2 IV and CV measurements

The detector structures have at least one guard ring, which delineates the area of the detector and

protects it against edge effects. So, in practice, there are two parallel diodes: the actual detector (D)

and the guard ring-diode (GR). Thus, the overall current (Itot) from the voltage source is divided.

In our setup, the active area is grounded via a current meter (current Id), and the inner-most guard

ring is grounded directly (IGR = Itot − ID). An ungrounded guard ring can lead to drastically skewed

leakage current values due to the undetermined active volume of the diode [47]. The opposite side

of the detector (n+ side) is positively biased by a source meter, where the current (or voltage) meter

and the voltage (or current) source are combined. Keithley models 485, 6485 and 6487 served as the

current meters. The last device can also serve as a voltage source (up to 505 V), but usually Keithley

2410 is used with an extended voltage range (1 kV). The current noise in IV measurements is less

than 0.1 nA. Fig. 14 shows a schematic of electrical couplings as well as examples of the total and

detector currents.

Commonly, ammeters are believed to have very low impedance, but when the measuring current

decreases, the impedance of the ammeters increases. If the resistance between the front electrode and

the inner-most guard ring, which may depend on currents and applied voltage, is relatively small, a

careful interpretation is needed. This may be checked easily by also measuring IGR when the detector-

electrode is grounded or by using an additional current meter for IGR [48]. The sum of measured

currents ID and IGR should be equal to Itot .

A source meter combined with a capacitance meter enables determination of the CV characteristics

of the detectors. The capacitance meter used in this work was built at CERN and was developed espe-

cially for detectors with high reverse currents. This device uses a charging frequency of 18 kHz and

involves voltages of up to 600 V. The capacitance meter can measure capacitance up to 500 pF with a
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Figure 15: Screenshot of the graphical user interface for CV and IV measurements.

resolution of less than 0.1 pF. The capacitance meter has been compensated for parallel capacitances

(e.g., wires) on which its accuracy mainly depends.

In CV measurements, both front electrodes (D and GR) are grounded, and capacitance is measured

from the whole detector structure. Capacitance could be measured with the floating GR, but then full

depletion occurs at higher voltages.

The current meters and source meters are connected to a computer via GPIB (General Purpose In-

terface Bus), and the graphical user interface (GUI) for IV measurements was previously coded by

Matlab [Article I ]. But when measurements of the CV characteristics began, the interface was devel-

oped with LABVIEW. The screenshot of the graphical user interface for the CV and IV measurements

appears in Fig. 15.
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5.3 Determination of Si type inversion

Type inversion has been estimated to occur by following the evolution of the full-depletion voltage

determined by CV measurements with irradiation fluence (Fig. 16, left). At the turning point, the

space charge sign inversion is believed to arise. But a single Vf d-measurement makes no indication

of whether the detector type is inverted or not, although it is possible with a few other methods: by

using the transient current technique (TCT) [49], optical beam-induced current (OBIC) and surface

potential (SP) measurements [50], or a scanning electron microscope [30].

In this work, a new method was developed to exploit the short range of α-particles in silicon. Our

α-source is a mixture of α-emitting nuclides (233U,238Pu,239Pu) with the most intense peaks at 4.8

MeV, 5.2 MeV, and 5.5 MeV. An energy of 5.2 MeV for an α-particle corresponds to a range of

about 26 µm in silicon [22]. When the p+/n/n+-structure is used (cf. Fig. 5), the space charge layer

begins to increase from the p+-side. If α-particles enter the detector from this side, the collection

of EHPs generated by α-particles achieves the maximum value until the depletion layer width is

as wide as the range of the particle. However, if α-particles hit the detector from the opposite side

(n+), the collection of EHPs peaks when the detector is fully depleted. The opposite is true for a

p+/p/n+-structure.

The charge generated in the detector was collected with a low-cost charge-sensitive preamplifier

(Cremat CR-110 [51]) with a sensitivity of 1.4 V/pC, equal to 62 mV/MeV for Si-detectors. For

an output of the preamplifier that is proportional to the number of EHPs generated, the rise time is

about 12 ns for detectors with a capacitance of 12 pF, whereas the decay time is about 140 µs. A

basic oscilloscope (e.g., Tektronix TDS series [52]) may serve to determine the pulse height. The

evaluation board of Cremat CR-150 with a bias resistor of 10 MΩ, and a Keithley 2410 were used to

apply and to measure the bias voltage.

In Fig. 16, left, the full depletion voltages of irradiated Float-zone (Fz) and Czochralski (Cz) detec-

tors are shown. The Cz-detectors have not been type-inverted at fluences below 3.4 · 1013 p/cm2,

whereas the Fz-detectors seem to be type-inverted already at the lowest fluence of 6 · 1012 p/cm2.

For testing purposes, a non-irradiated n-type detector and a detector irradiated to the fluence of 1.7 ·
1013 p/cm2 were bombarded by α-particles from both sides and the collected EHPs as a function of

bias voltage are shown on the right in Fig. 16. For the non-irradiated detector, the collected EHPs

achieve maximum at low voltages, when α-particles hit the detector from the front side (p+), whereas

maximum of the collected EHPs is achieved at higher voltages for the type-inverted detector.
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Figure 16: Left, the full depletion voltage as a function of an irradiation fluence of 9 MeV protons.
The open symbols indicate the Float-zone detectors, and the filled symbols, the Czochralski detectors.
For the Cz-detectors, the space charge sign inversion is seen at a fluence of about 3.4 · 1013 p/cm2.
Right, the collected EHPs generated by 5.2 MeV α-particles from the Fz-detectors appear as a func-
tion of the bias voltage. The circles were measured from the non-irradiated detectors, and the squares
from the type-inverted detectors first irradiated with protons up to the fluence of 1.7 · 1013 p/cm2. The
filled symbols denote α-particles that hit the detector from the p+ side, and the open symbols, from
n+ side.

5.4 Summary of papers

In Article I, the irradiation facility was tested by irradiating magnetic Czochralski (MCz) detectors

at 240 K with 9 MeV protons to a fluence of 2.5 ×1015 cm−2. After irradiation, the temperature was

reduced to 116 K, and IV curves were measured at fixed temperatures between 184 K and 241 K.

The reverse current level of the irradiated detector was considered relevant, and its dependence on

temperature was observed to correspond to Eq. (12). In addition, a current-injected detector (CID)

was also irradiated in Article II. In a CID, current injection modifies the electric field distribution

in the detector bulk [53]. The injection of a charge took place via a forward-biased pn junction,

and in heavily irradiated detectors, the injected carriers will be trapped by the deep levels, as in the

polarisation of the detector (Section 4.3.2). Under this condition, the electric field extends through

the entire detector thickness, and the detector is fully depleted regardless of the voltage applied or

the concentration of deep levels. For heavily irradiated detectors, the charge collection efficiency of

CID is about three times higher compared to normally operated detector, thus the CID is a serious

candidate to be used in the innermost parts of the tracker systems in future LHC upgrades.

The previous IV measurements were performed at least 30 min after irradiation, but unexpected prob-

lems occurred in the measurements of CV and IV characteristics when measurements were performed

immediately after irradiation. The origin of the cause was traced to activation. In Article III, the Si-

detectors attached to the PCB-pad were irradiated with 7 and 9 MeV protons, and the evolutions
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of the IV and CV curves were measured after the irradiations. The following reactions, which in-

duce dominant interference in the IV and CV measurements, the 30Si(p,n)30P in the silicon and the
63Cu(p,n)63Zn in the copper electrodes of the PCB, occurred. Both radionuclides are positron emit-

ters, which generate electron-hole pairs in the detector, thereby increasing the reverse current. At the

same time, the generated holes charge the oxide on the detector surface, thereby leading to the possi-

ble breakdown of the detector. The observed time-dependent characteristics were verified in Article

III by modelling the activation of the detector structure.

In the above-mentioned activation studies, the positron-induced breakdown was observed for the de-

tector structure with one guard ring, and when the detectors with a multi-guard ring structure were

irradiated with applied bias voltage, we noted the proton-induced breakdown. In Article IV, the bi-

ased Si-detectors were irradiated with 7 and 9 MeV protons beginning with low irradiation flux and

increased until the detector breaks down. The breakdown was believed to be the result of a buildup of

oxide charge and was noted to depend on the flux and fluence of irradiation. Furthermore, a response

function (i.e., the conversion of ionising energy loss to the production of EHP) of the Si-detectors was

measured with a high particle rate being about 80%. For comparison, the response function is about

100% for single events.

Usually, the detectors are irradiated without the bias voltage, and only a few previous studies may be

found [54, 55], in which the detector remained in operational mode. In Article V, the Si-detectors

were irradiated with 7 MeV protons at 220 K. Half of the detectors were biased during irradiation,

and thus a low irradiation flux was used to avoid electrical breakdown. As a result, both the introduc-

tion of a negative space charge and the irradiation-induced bulk current were about 20% lower for the

detectors with simultaneously applied bias voltage than for unbiased detectors.

In all previous studies in this work, the irradiation energy was maintained high enough to penetrate

protons through the detectors. This limiting energy for the detectors with a thickness of 300 µm is

about 6.2 MeV (Fig. 8). For 7-MeV protons, the remaining energy after passing through the detector

is about 2.8 MeV, and the corresponding value for 9-MeV protons is 6 MeV. In Article VI, the Si-

detectors were irradiated with protons using energies between 2 MeV and 5 MeV, corresponding to

ranges of 48 µm and 215 µm. As a result, the type (n or p) of defect was observed by CV measure-

ments to depend on the energy: n-type defects are dominant for proton energies less than 1.7 MeV,

and p-type defects are dominant for higher energies. In addition, the current-related damage [Eq.

(11)] follows the NIEL scaling hypothesis for energies over 1.7 MeV, but at lower values, the damage

rate is clearly lower than assumed. Consequently, the NIEL scaling is valid for proton energies above

6.5 MeV corresponding to the remaining energy of over 1.7 when the protons have passed through

the 300 µm thick detector.
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6 CONCLUSIONS

The irradiation facilities purposing the electrical characterisation of the silicon particle detectors were

constructed in this thesis by employing a 5-MV tandem accelerator; they were then tested and proved

to function well. In the near future, proton irradiations may become even more vital in develop-

ing radiation hard detectors. This is as protons create defects in silicon similar to pions, and on the

other hand, MeV-proton irradiations are more efficient compared to neutron and electron irradiations.

This thesis provides fundamental groundwork for MeV-proton irradiations of silicon particle detec-

tors. Several limiting factors have resulted from material activation and irradiation-induced electrical

breakdown. Moreover, the thesis takes into consideration the minimum irradiation energies at which

the NIEL scaling hypothesis is valid.

It is recommended that about 15 min is waited after irradiation before starting the electrical measure-

ments of the detectors due to activation of silicon. Clearly all materials that may become activated

and lead to positron emitters with relevant half-life should be avoided in the detector concept. The

activation of materials is more prominent, when the irradiation energy approaches 10 MeV (cf. Fig.

12). On the other hand, the NIEL scaling is not valid for proton energies below 1.7 MeV, thus indi-

cating a required minimum irradiation energy of about 6.5 MeV assuming 300 µm detector thickness.

Furthermore, the hardness factor is higher at lower bombarding energies leading to shorter irradiation

times.

However, in order to avoid the breakdown of the detector, which is at operational mode (biased), the

irradiation flux must be limited: the higher the irradiation fluence is, the lower flux is required. Flu-

ences over 1014 p/cm2 may be even unfeasible for biased detectors. In addition, the used guard ring

structure and the oxide layer thickness on the detector surface affect the breakdown properties. Up to

7-MeV proton fluence of 1.25 · 1013 p/cm2 the presence of electric field decreases the introduction

of negative space charge. Similarly, the reverse current is lower in case of irradiations under bias

voltage.

Looking forward, the devices facilitating positron annihilation spectroscopy [Article I ] and the

microwave-probed photoconductivity transient technique (MW-PC) [9] have been installed and in-

terrelated to the cryogenic irradiation facility. The former method provides information on vacancies,

while the latter is used to determine excess charge carrier distributions. Thus far, these methods have

not been intensively used in radiation hardness studies of silicon particle detectors. In the near future,

emphasis will focus on extensive application of these novel facilities. In addition, in-depth studies

of the irradiation of detectors (including CID) kept in operational mode at wide temperatures are of

particular interest.
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