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Abstract

This dissertation consists of theoretical studies of dynamical interactions,
specifically cold collisions, between atoms trapped in optical lattices.

The invention of laser cooling methods for neutral atoms allows optical
and magnetic trapping of cold atomic clouds in the temperature regime
below 1 mK. An optical lattice is a periodic structure based on matter-light
interaction, and is created by polarization gradients of suitably arranged
laser beams. In addition to cooling of the atomic cloud, the optical lattice
traps atoms in a periodically ordered structure.

In the past, light-assisted cold collisions between atoms have been widely
studied in magneto-optical atom traps. The study presented here extends
the regime of cold collision research into the area of optical lattices. Cold
collision studies in near-resonant optical lattices are very complicated com-
pared to similar studies in magneto-optical traps. In the case of collisions in
lattices one has to account for the internal substates of atoms, position de-
pendent matter-light coupling, and position dependent couplings between
the atoms, in addition to the spontaneous decay of atoms.

The developed quantum-mechanical model combines atomic cooling and
collision dynamics in a single framework. The model is based on Monte
Carlo wave-function simulations and is applied when the lattice-creating
lasers have frequencies both below (red-detuned lattice) and above (blue-
detuned lattice) the atomic resonance frequency.

The relevant process for red-detuned lattices is the radiative heating of
colliding atoms. It is found that the radiative heating mechanism affects
the dynamics of atomic cloud in a lattice in an unexpected way. Atoms,
which are most mobile and energetic, are favored to participate in collisions,
and are more often ejected from the lattice, than the slow ones in the laser
parameter region selected for study. Thus, the atoms remaining in the
lattice have a smaller average kinetic energy per atom than in the case of
non-interacting atoms.

For blue-detuned lattices the efficiency of optical shielding process is
studied. Complete optical shielding makes the collisions between atoms
elastic, thus suppressing unwanted effects. It is found that in a blue-detuned
lattice the cooling and shielding dynamics do not mix and it is possible to
achieve efficient shielding process with a very simple arrangement.

The thesis is concluded with a simple study of collision rates in near-
resonant lattices. The developed method allows the simplication of cold
collision studies in optical lattices by combining quantum-mechanical and
semiclassical models.
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I A method based on Monte Carlo wave-function simulations is devel-
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sion is that, for the selected laser and lattice parameter region, the
colliding atoms usually escape the lattice. Moreover, the collisions se-
lectively accelerate mainly the hotter atoms in the thermal ensemble,
and thus affect the steady state which one would normally expect to
reach in Sisyphus cooling without collisions.

II We give the full description of our method to study cold collisions
in optical lattices, including the analytic calculations for interaction
potentials, our implementation of the Monte Carlo method, and the
various solutions to the computational problems. Compared to the
Paper I, the results are calculated also for other atomic species, and
we present a simple semiclassical analysis to support the conclusions.

III With the method developed in Papers I and II, we study the optical
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presented. The method is based on monitoring the atomic quantum
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applied to cold collision problems. The developed method has a po-
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1 Introduction

The rapid development of technology signals the ability of human beings to
understand the behaviour of nature in an increasingly detailed way. More-
over, the improving human skill to control nature has led to the increasing
rate of the appearance of technological applications, especially during the
last one hundred years.

Better control over nature also means the ability to control and manip-
ulate ever smaller material or electro-magnetical entities, that is, to control
or manipulate nature on the single atom or single photon level. The de-
scription and control of systems on atomic scales require the use of the
toolbox of quantum mechanics. This justifies the nowadays-fashionable la-
bel precision control of atoms or photons on the quantum mechanical level
for many contemporary experiments, for theories developed, and for new
technological solutions.

It is hard to avoid the well-advertised word nanotechnology when one
reads the science pages of common newspapers recently. It remains to be
seen, if the expression precision control breaks into the common knowledge
with its association to the technological development on the edge.

Anyhow, no matter what is the reader’s attitude to the recent techno-
logical developments, or to the expectations about the future technologies,
it is especially true that the development of theories and methods in the
field of laser cooling of a dilute gas of atoms has paved the way to the
impressive and exciting developments done in theoretical and experimental
physics research during the last two decades.

It has been known for a long time that light can exert a force on mate-
rial objects1. But, it is the success of applying the light force in a controlled
way to cool gaseous atomic clouds to temperatures around, and even be-
low, the µK range which has given huge impetus to the field of cold atomic
physics. In particular, the researchers working with atomic Bose-Einstein
condensates have seen rapid development of their research field. Nonethe-
less, Bose-Einstein condensation study is not everything that can be done
with cold atoms. There is a wide variety of topics ranging, e.g., from atomic
cold collision studies to atomic crystal structures bound by light, optical
lattices.

By now, researchers have not only learned how to cool gaseous atoms

1The first experiments which showed the effect of the radiation pressure of an elec-
tromagnetic field on matter predicted by Maxwell were done at the beginning of the last
century [1]. It is also interesting to note that in their article [1] Nichols and Hull refer to
Arrhenius who ”attempts to explain the aurora borealis on similar grounds”.
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to temperatures near absolute zero by using laser light, but they have also
learned how to trap and use these atoms for the exciting studies of the
quantum physical nature of matter. This is true even on the level of single
atoms. So far the emphasis has been on the fundamental research. But
there are most probably only very few researchers in the cold atom physics
field who doubt that important practical applications will follow in the fu-
ture. The improvement of the frequency standard and consequent building
of more accurate atomic clocks is an example of the influential practical
applications studied with laser cooled atoms.

The work presented in this thesis falls into the category of theoretical
atomic physics, and also into the field of laser cooling and trapping of atoms.
The interactions between the low temperature gaseous atoms obtained by
laser cooling methods are strikingly different compared ,e.g., to the atoms
in room temperature. The thermal velocities of laser cooled atoms are on
the scale of centimeters per second. This means that the interaction and
collision dynamics of atoms occurs on a time scale that allows new kinds of
phenomena to show up in the atomic interaction processes.

The study presented here concentrates on one particular laser cool-
ing and trapping scheme, optical lattices, and on interactions between the
atoms in near-resonant optical lattices. The optical lattice structure can
cool atoms by the Sisyphus laser cooling mechanism [2], and finally trap
atoms in an ordered lattice structure which is created by the light [3–6].
When the density of the atoms in the lattice is high enough, the interactions
between the atoms begin to affect the system dynamics.

So far, most of the dynamical interaction studies between the laser
cooled atoms, that is, cold collision studies, have been done for atoms in
magneto-optical traps [7, 8]. The motivation for the research done in this
thesis has been to extend the cold collision studies into the field of optical
lattices.

The questions for which I have tried to find the answers are conceptu-
ally simple on fundamental level2. For example: how do the properties of
the atomic cloud trapped in a near-resonant optical lattice change when
the occupation density of the lattice increases so that interactions between
the atoms can not be neglected? How does the outcome of the cold col-
lisions between the atoms in the presence of a near-resonant light change
when the coupling between the atoms and the trapping laser field becomes
position dependent? Is the outcome of the collisions different in optical

2Naturally, one can not in general take for granted the conceptual simplicity when
working with quantum mechanical descriptions of the systems.
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lattices compared to magneto-optical traps? Do the interactions between
the atoms prevent efficient cooling in optical lattices? Can optical shielding
of collisions be used in an effective and simple way in blue-detuned lattices?
Is it possible for the cooling and optical shielding mechanisms to coexist in
the optical lattice?

The questions above are asked from either the collision or the optical
lattice point of view. Thus the work presented in this thesis combines these
two subfields of laser cooling: the study of cold collisions and the study of
optical lattices. The questions asked are simple, but finding the answers
turned out to be a very complex process. Still, it was possible to find the
solutions within some simplifying assumptions and limitations.

I give here a short and simple introduction to the fields of optical lattices
and cold collisions with the emphasis on the points which are necessary to
understand the studies done in the included research papers. A thorough
introduction into the field of laser cooling, trapping, and optical lattices
can be found from a text book [9], various review articles [3–6,10–12], and
summer school lecture notes [13–16]. A detailed description of cold collision
theories and experiments is given in Refs. [7, 8, 17].

The thesis is organized as follows. Chapters 2 and 3 set the temperature
regimes, discuss various laser cooling techniques, and introduces red and
blue-detuned lattices3. In Chapter 4, I describe the basic cold collision
mechanisms in the presence of a near-resonant light. Chapter 5 gives our
formulation of the cold collision problem in optical lattices with the central
results. I conclude with a few remarks in Chapter 6.

3In the literature blue-detuned lattices are sometimes referred also as gray or dark
optical lattices due to the reduced number of scattered photons compared to ”bright”
red-detuned optical lattices.
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2 Temperature limits of laser cooling

Laser cooling and trapping of neutral atoms has been a very rapidly de-
veloping field of physics since the mid-eighties when experimentalists suc-
ceeded for the first time to optically trap laser cooled atoms [18]. Since then
the progress of the field has featured numerous surprises and has been a
fruitful combination of theory and experiments. In this Chapter I highlight
some of the laser cooling mechanisms which pin down the fundamental tem-
perature limits of laser cooling and give the temperature regime for atoms
trapped in optical lattices.

Doppler cooling is based on recoil effects which damp atomic motion
when an atom merely absorbs photons that propagate against its motion [9].
The photon recoil kicks an atom in a selected direction in the absorption
process; but, for spontaneously emitted photons there is no preferred direc-
tion. The overall effect is the slowing of the atomic motion. This happens
when two counterpropagating laser fields are detuned below, to the red side,
of the atomic resonance frequency. The atom sees the photons which prop-
agate against its motion as Doppler-shifted towards the atomic resonance
and consequently prefers to absorb photons from this direction. The basic
idea generalizes straightforwardly to three dimensions.

The limit of Doppler cooling in one dimension is given by the Doppler
temperature

Td = h̄Γ/2kB , (1)

where h̄ is Planck’s constant h divided by 2π, Γ the atomic linewidth, and
kB Boltzman’s constant. This limit arises due to the balance between the
cooling recoil kicks against the atomic motion, and the heating effects due
to fluctuations in the directions and number of the photons that the atom
emits.

The theoretical description of Doppler cooling is based on a two-level
model of an atom, and the semiclassical approach is typically sufficient
[19]. It is possible to reach sub-Doppler temperatures by other cooling
mechanisms. To understand these, the multilevel structure of an atom
with various Zeeman substates in the ground- and excited-state manifolds
have to be accounted for.

The first experiment, which showed that the atomic cloud can reach
temperatures well below Td, was quite puzzling for researchers [20]. More-
over, laser cooling did not seem to be as vulnerable to experimental tech-
nical errors as expected4.

4For example, the slight imbalance of the intensities of Doppler cooling lasers proved

4



Thus, below Td there exists another limit, the recoil limit Tr, for laser
cooling [9]5. This limit corresponds to the amount of energy of single photon
absorption or emission recoil, and is given by

Tr = (h̄kr)
2 /MkB . (2)

Here kr is the wavenumber of the cooling lasers, and M the mass of an
atom. The corresponding recoil energy,

Er = (h̄kr)
2 /2M, (3)

is the typical energy unit used in calculations.
The vicinity of Tr can be reached by the polarization gradient cooling

mechanism [2,22], which is based on cooling optical pumping cycles between
the various internal Zeeman substates of an atom [2]. Optical pumping
of Sisyphus cooling will be explained in a more detailed way in the next
Chapter.

The temperature regime of laser cooling can be lowered further since Tr

does not limit the temperatures which can be achieved. The trick is that a
random walk in velocity space can take an atom close to zero velocity, and
thus below the recoil limit. If at this point an atom stops to absorb and emit
photons, it remains trapped for a considerable time in the vicinity of the
zero velocity, and consequently Tr is broken. The technique is based on the
use of the dark state of an atom which is a particular superposition state.
The destructive quantum-mechanical interference of excitation processes
from different ground sublevels plays a key role, and the atom is prevented
from being excited at all [23].

Strictly speaking this is true only for an atom that has exactly zero
velocity in the laser field. With increasing interaction time between the
atoms and the field, all the atoms in the cloud could reach the zero velocity
region in principle. Of course, in practice the interaction time is limited,
but can be long enough to allow the breaking of the recoil limit.

Hence, there exists various techniques to reach the Doppler limit Td, and
then to go below the recoil limit Tr. Some of these techniques were described
above. The work presented in this thesis deals with a polarization-gradient
cooling and trapping mechanism which occurs at temperatures between Td

and Tr. Sisyphus laser cooling, and the consequent trapping of atoms in

inconsequential.
5For typical alkaline-metal elements used for laser cooling Td > Tr. Some alkaline-

earth-metals have cooling transitions which have Td < Tr due to the narrow linewidths
of the transitions [21].
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this temperature regime, is presented in the next Chapter. A typical alkali
element used for laser cooling and in the included research papers, cesium,
has Td = 120µK and Tr = 0.2µK.

The atoms in dilute laser cooled clouds interact weakly in the absence
of light fields. When a light field is present, the range of interactions be-
tween the atoms increases. Moreover, when the density of the cloud is
high enough, light induced inelastic collisions between the atoms begin to
dominate [7, 8]. It is also possible to manipulate the interactions between
the atoms by optical means, e.g., with optical shielding [8, 24, 25], which is
studied in the case of optical lattices in Paper III6.

Laser cooled atoms can be used for a great variety of purposes: 1) as
a starting point for magnetic evaporative cooling to make a Bose-Einstein
condensate (BEC) [11,12]7, 2) for photoassociation to produce cold molecules
[8], 3) for accurate spectroscopical studies of atoms [8] 4) for studies of fun-
damentals of quantum mechanics [29] 5) for building of atomic clocks [10],
to mention only a few examples.

6For atoms having extremely low nK temperatures and in the absence of light fields,
magnetic fields and Feshbach resonances can be used for a manipulation of collisions
between atoms [26]. See also Ref. [27] for optically induced Feshbach resonances.

7BEC has been created by now also by all-optical means [28].
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3 Optical lattices

The Doppler cooling technique, and consequent friction-like damping of
atomic motion, does not trap atoms directly. The amount of time that
the atoms spend in the cooling area provided by the lasers increases with
the decrease of temperature, but eventually the atoms diffuse outside the
cooling region.

A necessary step from a disordered gas to ordered structures of laser
cooled atoms is a periodic optical potential structure which can be created
by a suitable choice of interfering laser beams [3–6, 9]. An optical lattice
formed by optical potentials does not only trap the atoms, but they can
also cool down via optical pumping and Sisyphus mechanism before the
atoms are cold enough to localize into the optical lattice sites [2].

The analogous crystal structure in metals is created by the interactions
between the atoms. In a dilute optical lattice, atoms do not interact and the
lattice structure arises due to light-matter interactions. A periodic optical
lattice may be realized by polarization gradients of the laser field and the
consequent periodic coupling between the atoms and the laser field.

Optical lattices resemble in many respects solid-state lattices, but there
exists important differences. An optical lattice is free from defects which
prevent, e.g., the observation of Bloch oscillations in solid-state lattices. It
is easy to control optical lattice parameters by controlling the laser field
properties: lattice depth can be modified by changing the laser intensity;
and the lattice can be moved by changing the polarization of the light
or by chirping the laser frequency. Moreover, the optical lattice constant
is typically three orders of magnitude larger than the solid-state lattice
constant.

Because of the purity and ease of control in optical lattices, the atoms
trapped are almost ideal for the study of lattice phenomena which are fa-
miliar from solid-state lattice studies. A few examples of these phenomena,
which have been realized in experiments, include Bragg scattering [30, 31],
Bloch oscillations [32], and Wannier-Stark ladders [33]. Other interesting
observations include the quantum Zeno effect [34] and dynamical tunnel-
ing [35].

Modern work on optical lattices was preceded by the proposal of Letokhov
to trap cold atoms in one dimension by using a standing light wave [36], and
accompanied by the experiment of Burns et al. who created crystal struc-
tures of microscopic dielectric objects suspended in liquid by standing light
waves [37]. Nowadays there exists a great variety of optical lattice designs
and approaches to lattice studies. These will be explained to some extent in
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Figure 1: The level structure of a single atom for a red-detuned lattice. The
squares of the Clebsch-Gordan coefficients for various transitions are shown,
and the laser frequency ωL is typically detuned few atomic linewidths be-
low the atomic resonance frequency ω0 for efficient Sisyphus cooling. The
detuning of the laser is described by δ = ωL − ω0.

the following Sections but starting with a simple one-dimensional descrip-
tion of Sisyphus cooling in optical lattices for both red and blue-detuned
laser cases. These are the cases which we have studied. The inclusion of
interactions between the atoms complicates the originally simple Sisyphus
scheme but it is still possible to do a cold collision study for one-dimensional
lattices.

3.1 Red-detuned optical lattices

The simplest case of Sisyphus cooling and optical lattices can be described
by using the atomic level structure with the ground state angular momen-
tum Jg = 1/2 and the excited state Je = 3/2. A single atom has two
ground state sublevels |g±1/2 > and four excited state sublevels |e±3/2 >
and |e±1/2 >, where the half–integer subscripts indicate the quantum num-
ber m of the angular momentum along the z direction. This is shown
in Fig. 1 with the appropriate squares of the Clebsch-Gordan coefficients
which describe the relative strengths of the light-induced couplings between
the various levels.

This simple level structure features the necessary conditions for Sisy-
phus cooling in a red-detuned lattice. In a cooling optical pumping cycle,
the occupied internal ground substate of an atom changes. Spontaneous
emission via the excited state takes the atomic population into previously
unoccupied ground state Zeeman sublevel, so that more than one ground
substate is required for cooling. Moreover, the light shifts lower the energy
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of the ground state sublevels when a red-detuned light is used. Thus, in a
dissipative environment atoms become trapped around the points in space
where the atom-laser interaction has its maximum value. For trapping in
a lattice site this means that the strongest transition for the particular
ground substate should not lead to optical pumping out of the trapping
level at the middle point of a lattice site. This is avoided when the an-
gular momentum of the excited state is larger than for the ground state,
and when the coupling between the stretched ground and excited sublevels
gives the largest light shift contribution.

3.1.1 Sisyphus cooling

The laser field consists of two counter–propagating beams along the z-axis
with orthogonal linear polarizations and with frequency ωL. The total
field has a polarization gradient in one dimension and reads (with suitable
choices of phases of the beams and origin of the coordinate system)

E(z, t) = E0(exe
ikrz − ieye

−ikrz)e−iωLt + c.c., (4)

where E0 is the amplitude and kr the wavenumber. With this field, the
polarization changes from circular σ− to linear and back to circular in the
opposite direction σ+ when z changes by λL/4 where λL is the wavelength
of the lasers. See Fig. 2 for the points of pure circular polarization with the
corresponding lattice wells.

The periodic polarization gradient of the laser field is reflected in the pe-
riodic light shifts, i.e., AC–Stark shifts, of the atomic sublevels creating the
optical lattice structure. The relative strengths of the couplings between a
single ground state sublevel and various excited state sublevels vary spa-
tially according to the polarization of the light field due to unequal values
of the Clebsch-Gordan coefficients for different transitions. This induces
light shifts and produces a periodic optical potential structure such that
the shape of the light-induced potentials is the same for the two ground
state sublevels, but the potentials are shifted spatially with respect to each
other by λL/4, see Fig. 2. The top of the optical potential for one sublevel
coincides with the bottom of the other one.

When the atomic motion occurs in a suitable velocity range, optical
pumping of the atom between the ground state sublevels reduces the kinetic
energy of the atom [2]. In this case quantum jumps and optical pumping to
another ground state sublevel tend to occur when the atom is near the top
of the optical potential. The atom is transferred to the bottom of another
potential due to spontaneous emission and a consequent quantum jump.

9
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Figure 2: Schematic view of the optical potentials for the two ground state
Zeeman sublevels in a red-detuned lattice with the atomic level structure
Jg = 1/2, Je = 3/2. The lattice structure is created due to the periodic
polarization gradient of the laser field, and the points of pure circular po-
larization are indicated by dotted lines.

The subsequently emitted photon has a larger energy than the absorbed
one, and the kinetic energy of the atom is therefore reduced, and the atom is
cooled. After several such cooling cycles the atom localizes into the optical
potential well, i.e., into an optical lattice site. Figure 3 shows the optical
pumping cycles between the ground state sublevels cooling an atom, and
the oscillations of the atomic wave packet after localization into an optical
lattice site.

The intensity of the laser field and the strength of the coupling between
the field and the atom is described by the Rabi frequency

Ω = 2dE0/h̄, (5)

where d is the atomic dipole moment of the strongest transition between
the ground and excited states. The detuning of the laser field from the
atomic resonance is given by

δ = ωL − ω0, (6)

where ω0 is the atomic resonance frequency. As a unit for Ω and δ the
atomic linewidth Γ is commonly used.

The Hamiltonian for a single atom moving in the laser field given in

10



−1.5
−1

−0.5
0

0.5

0

500

1000

1500

z (λ)

(a)

m
g
=−1/2

t (Γ−1)

−1.5
−1

−0.5
0

0.5

0

500

1000

1500

z (λ)

(b)

m
g
=+1/2

t (Γ−1)

Figure 3: Sisyphus cooling and the localization of an atom into the optical
lattice. A possible time evolution for a single atom wave packet is shown for
two ground state Zeeman levels: (a) mg = −1/2 and (b) mg = +1/2. The
result shows the optical pumping cycles and the localization of a single atom
into the optical lattice. The discontinuous changes between the two ground
states are due to quantum jump events from the excited state (not shown),
selected to happen randomly with an appropriately weighted probability.
If the run is repeated, the jumps would appear at different times.

Eq.(4) is after the rotating wave approximation

H =
p2

2M
− h̄δPe + V . (7)

Here, p2/2M is the kinetic energy, δ the detuning of the laser, Pe =
∑3/2

m=−3/2
|em〉 〈em| is the projection operator onto the excited state, and

the interaction between a single atom and the field is

V = −i h̄Ω√
2

sin(kz)

{

|e3/2〉〈g1/2|+
1√
3
|e1/2〉〈g−1/2|

}

+
h̄Ω√

2
cos(kz)

{

|e−3/2〉〈g−1/2|+
1√
3
|e−1/2〉〈g1/2|

}

+H.c., (8)

where z is the position operator of the atom.
The modulation depth of the lattice is given by

U0 = −2

3
h̄δs0, (9)
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where s0 is the saturation parameter

s0 =
Ω2/2

δ2 + Γ2/4
. (10)

The spatially modulated optical potentials are

U− = U0 sin2(krz),

U+ = U0 cos2(krz), (11)

for ground states mg = −1/2 and mg = +1/2, respectively [38].

3.1.2 Localization in lattice

When the steady state is reached after a certain period of cooling, atoms
are, to a large extent, localized into the lattice sites. In our studies of cold
collisions with near-resonant optical lattices, the laser field is detuned a
few atomic linewidths below (Papers I, II, and IV) or above (Paper III)
the atomic transition. The optical lattice is in the oscillating regime if the
atom completes on average more than one oscillation in the site before being
optically pumped to a neighboring site. For less than one average oscillation
per site, the lattice is in the jumping regime. The laser parameters Ω and
δ determine in which of the regimes the lattice is in [38]8. It must be noted
that tight localization and occupation of the lowest vibrational levels of a
periodic lattice potential increases the optical pumping time, and the time
of localization within a single lattice site becomes longer compared to the
semiclassical values [2]. Since we are mainly interested in the case when
the two atoms undergo an intra-well collision, the chosen parameters in
the work presented in this thesis correspond to the jumping regime of the
lattice.

3.2 Blue-detuned optical lattices

In red-detuned lattices atoms are trapped around those spatial space points
where the coupling between the ground and excited states has a maximum
value, and consequently the number of scattered photons is large. It would
be possible to reduce photon scattering if the atoms could be trapped
around the points where the atom-laser coupling has a minimum value.
This is indeed the case when the sign of the detuning is set to the blue side

8For an experimental study of the jumping regime of optical lattices with a slightly
different laser field configuration, see Ref. [39].
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of the atomic transition, δ > 0, and, e.g., the atomic level configuration
Je = Jg or Je = Jg − 1 is used instead of the Je = Jg + 1 configuration
typical for the red-detuned case.

Hence the original motivation for the study of the blue-detuned po-
larization gradient cooling and trapping mechanisms was their ability to
exploit the dark states to increase the phase space density, either directly
by reducing the unwanted effects of reabsorption of scattered photons, or by
feeding the once cooled atoms to sub-recoil cooling. The latter is possible
since the blue-detuned polarization gradient and velocity selective coherent
population trapping (VSCPT) subrecoil cooling schemes may coexist for
the same atomic system, see Refs. [40, 41]9.

Two counterpropagating orthogonally polarized blue-detuned laser beams
can efficiently cool down atoms which have the level structure Je = Jg or
Je = Jg − 1. The lowest position-dependent eigenstate of the system be-
comes now completely flat and is not coupled to the light field at any point
of space. Thus despite of the cooling, the atoms are not trapped. The cool-
ing works efficiently for atoms which have Jg > 1 since the flat dark state is
not an eigenstate of the momentum operator, and there exists a motional
coupling to the non-dark states. This coupling is largest when the non-flat
state is energetically closest to the flat state. The consequence is the trans-
fer of the population from the dark state to the spatially modulated state
in the vicinity of the optical potential well, and subsequent Sisyphus-type
cooling mechanism [4].

The obvious drawback in this case is the lack of a periodic trapping
potential. The problem can be circumvented by the use of either transverse
[45] or longitudinal [46] magnetic fields with respect to the laser propagation
axis10. We have used in our studies the proposal of Grynberg and Courtois
with a magnetic field along the laser axis [48], and I present this scheme in
more detail in the following Section.

3.2.1 Grynberg-Courtois gray optical lattice

An applied longitudinal magnetic field removes the degeneracy of the atomic
states of blue-detuned optical molasses described above, and produces the

9These schemes use a laser configuration where the counterpropagating laser beams
have a non-orthogonal angle between their polarizations, instead of the typical orthogonal
one used in the red-detuning case. For this scheme see also Refs. [42–44].

10There exists also a proposal and an experiment creating blue-detuned lattice by all-
optical means, but this scheme uses two excited state hyperfine manifolds instead of only
one [47].
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necessary spatial modulation for the optical potentials and the lattice struc-
ture. This is easy to understand by considering the point in space where
the laser field has a pure circular polarization. For σ+ polarized light the
ground Zeeman state mg = +Jg is not coupled to light when Je = Jg or
Je = Jg−1, and the same applies for mg = −Jg in the point of σ− polariza-
tion of the light field. The two states mg = ±1 have opposite but equally
large Zeeman shifts

h̄ΩB = |µB|, (12)

where µ is the magnetic moment of the corresponding state and the mag-
netic field strength is B = Bz along the quantization axis z. The conse-
quence is removal of the completely dark and flat lowest state with the
spatially modulated lattice potential.

It is easy to vary the strength of the Zeeman shift h̄ΩB with respect to
the light shift U0 caused by the lasers. Obviously the two extreme regimes
are: a) the Zeeman shift is small compared to the light shift h̄ΩB � U0, b)
the light shift is small compared to the Zeeman shift U0 � h̄ΩB .

In case a), where the light shift dominates, the behavior of the lattice
is paramagnetic. With the increasing magnetic field strength the lattice
modulation becomes deeper. In this case the atoms are trapped only to the
points of σ− or σ+ polarization of the laser field depending on the direction
of the magnetic field. Due to the opposite Zeeman shifts only one of the
two circular polarization points correspond to potential minima, and the
period of the trapping potential is λ/2.

When the Zeeman shift dominates in the case b), the laser field produces
perturbations to the Zeeman shifted states, and the situation resembles the
traditional Sisyphus cooling scheme [2]. The optical pumping between the
ground sublevels cools the atom which can be trapped in many internal
states, causing an antiparamagnetic behaviour.

We have done our collision studies in this antiparamagnetic regime. See
Fig. 4 for the used atomic level configuration Je = Jg = 1 and Fig. 5 for the
corresponding optical lattice structure. We label the three ground state
sublevels with |g±1 >, |g0 >, and the three excited state sublevels with
|e±1 >, |e0 >, where the integer subscripts indicate the angular momentum
projection quantum number m along z-axis. Because the standing laser
field has only circular components, and the Clebsch-Gordan coefficient be-
tween me = 0 and mg = 0 states is zero, the atoms are rapidly pumped to
the Λ subsystem of the whole state structure; thus, in this level configura-
tion, the atoms are trapped to the ground substates which have an angular
momentum quantum number mg = −1 and mg = +1. The excited state
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Figure 4: The level structure of a single atom for a blue-detuned lattice
with the Clebsch-Gordan coefficients of corresponding transitions. This
structure corresponds to particular hyperfine states of 87Rb and can be
used for efficient cooling and trapping of atoms in the Grynberg-Courtois
blue-detuned lattice in the antiparamagnetic regime [48].

with me = 0 provides a way for cooling optical pumping cycles between the
two trapping ground substates.

The modulation depth of the lattice is in this case given by

U0 =
1

2
h̄δs0, (13)

where the saturation parameter s0 includes the Rabi frequency

Ω = 2dE0/
√

2h̄. (14)

Here the Clebsch-Gordan coefficient which has an equal absolute value for
all the allowed transitions is included in the definition of Ω.

After the rotating wave approximation the Hamiltonian for the atomic
system interacting with the laser field given in Eq. (4) is

H =
p2

2M
− h̄δPe + V + U. (15)

Here, Pe =
∑

1
m=−1 |em〉 〈em| is the projection operator, and the interaction

between a single atom and the field is

V = i
h̄Ω√

2
sin(kz) {|e0〉 〈g−1|+ |e1〉〈g0|}

+
h̄Ω√

2
cos(kz) {|e−1〉〈g0|+ |e0〉〈g1|}+H.c., (16)
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Figure 5: Schematic view of the optical potentials for the two trapping
ground state Zeeman sublevels in a blue-detuned lattice. The periodic
polarization gradient of the laser field creates the lattice structure and the
points of circular polarizations are indicated by σ+ and σ−. The dashed
lines give the Zeeman shifted energy levels which the light field modifies.

where z is the position operator of the atom. The interaction with a mag-
netic field in Eq. (15) is

U =
∑

i

mih̄ΩBi |i〉〈i|, (17)

where the sum over i includes all the ground and excited states, and the
Zeeman shift factors ΩBi are for the two tapping ground substates m = ±1
equal to ΩB.

The level structure which we have used in our studies for a blue-detuned
lattice can be found in 87Rb, which has F = 1 hyperfine states for both the
5S1/2 ground state and the 5P1/2 excited state11.

The reason for the choice we have made for the used level structure and
an antiparamagnetic regime of the Grynberg-Courtois lattice is in their
simplicity. The cooling mechanism resembles the traditional Sisyphus cool-
ing, making it more relevant to compare the results between the red and
blue-detuning studies. Moreover, it is necessary to use only three levels of
the Λ-subsystem instead of all the six levels of a single atom. Thus the
number of product state basis vectors for interaction studies between the

11This is actually the element and the level scheme which has been used in the blue-
detuned lattice experiment of Hemmerich et al. [45], even though in their case the lattice
structure and the orientation of the magnetic field differs from what is presented here.
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atoms can be reduced in the blue-detuned case. This reduces the computa-
tional resource requirements and speeds up the simulations when compared
to red-detuned case (which has to use all the six substates of a single atom
for the interaction studies). Thus for blue-detuned lattices it is easier to
make a wider exploration of parameter space, if required.

3.3 Basic theoretical approach

The essence of Sisyphus cooling is optical pumping between the various
internal states of an atom and it can not be treated as a simple two state
system consisting of only a single ground and a single excited state. Because
of the polarization gradients, the laser couples the multitude of Zeeman
substates of the atom in a position-dependent way and the spontaneous
emission caused by the coupling to the vacuum plays a crucial role in the
optical pumping process.

Thus to describe the atomic motion in optical lattices one has to solve
the problem of a multi-level atom coupled to a monochromatic laser field
and to a quantized electromagnetic environment in its vacuum state.

It is possible to treat the external laser field classically since the fields
which are considered weak from the Sisyphus cooling and the lattice point
of view still contain a large number of photons12. Moreover, the treatment
of the interaction between a classical field and an atom is typically done by
using the rotating wave approximation, which neglects the terms that do
not conserve the total energy.

The general form of the task is to solve the density matrix master equa-
tion

ih̄
dρ

dt
= [H, ρ] + Lrel [ρ] , (18)

where H is the atomic system Hamiltonian, see Eqs. (7) and (15), and L
includes the spontaneous emission part due to the coupling to the environ-
ment.

It is not possible to solve this equation analytically even in the case of
the simplest atomic level schemes used for optical lattices. One can try to
find approximations which allow an analytical treatment, or the combina-
tion of analytical and numerical calculations to Eq. (18). Another possi-
bility is to simulate the optical lattice system on a computer, especially,

12Typical laser intensities used in experiments are a few mW/cm2. Of course, when
laser cooled atoms are injected into cavities, the coupling field is quantized, e.g., see an
experiment where atomic trajectories are modified by single photons [49], or a proposal
to manipulate cold collisions by cavity QED effects [50].
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simulations by the Monte Carlo wave-function (MCWF) method may pro-
vide a convenient way to obtain the solution of Eq. (18) [51–54].

A common feature for analytical treatments of optical lattices is the
adiabatic elimination of the excited states, thus reducing the number of the
levels in the problem at hand [6]. One can then try to solve the master
equation directly by numerical integration, introduce further approxima-
tions, or exploit the translational symmetry properties of the system [55].
Short introductions to the various approaches can be found in review arti-
cles [3] and [6].

The MCWF method was originally developed for problems in quantum
optics, where in many of the cases the direct quantum-mechanical solution
of the system density matrix is very difficult or impossible to obtain13. For
example, in the case of laser cooling, one can develop combinations of ana-
lytical and numerical treatments to treat 2D case [60], but the 3D problem
has been solved so far only by MCWF simulations [57]. The difficulty usu-
ally arises because of a large number of system density matrix elements,
or a large number of degrees of freedom of the environment to which the
system is coupled. The key idea of the method is the generation of a large
number of single wave function histories which include stochastic quantum
jumps of the system studied. The final result for the system density matrix
and the system properties can then be calculated as ensemble averages of
single histories.

We have chosen for our collision studies in optical lattices the MCWF
method since it has been a widely used benchmark method for various semi-
classical theories in the field of cold collisions in MOTs [61]. The method
gives a full quantum-mechanical description of the atomic system14, and
treats spontaneous decay in a rigorous way. A semiclassical version of the
Monte Carlo (MC) method has also been developed for lattice studies [62].
This variant describes the external atomic degrees of freedom classically,
and is not valid when the spread of the wave packet influences the dynam-
ics of the system. This is the case when an atom is tightly localized into
a lattice site and the spread of the packet affects essentially the optical
pumping rate. Moreover, the semiclassical approach can not treat, e.g., the

13Problems which are solved with the aid of the MCWF method in quantum optics
can vary e.g. from the resonance fluorescence spectrum of 1D optical molasses [56] to 3D
laser cooling [57] and heating of a trapped ion [58]. For more examples, see Ref. [54]. By
now the method has also been applied outside the field of quantum optics, into transport
problems in condensed matter physics [59].

14The external laser field is still described classically.
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Figure 6: Branching of a wave packet. The time evolution of the total
atomic wave packet in position space is shown. In addition to treating
spontaneous decay in a rigorous way, the full quantum-mechanical MCWF
method can also account for the branching of the wave packet shown here
(unpublished).

branching of the wave packet in optical lattice shown in Fig. 615.
Previously developed analytical quantum-mechanical models for non-

interacting atoms in optical lattices become impossible to solve if we want
to find out the consequences of the dynamical interaction processes, that
is cold collisions, to the system dynamics. It is fairly simple to do MCWF
studies for a single atom moving in one-dimensional optical lattice, see
Figs. 3 and 6. Simulations become computationally heavy and are not
straightforward when describing interactions between moving atoms in op-
tical lattices. I give a detailed description of the formulation by MCWF
method of our lattice problem for interacting atoms in Chapter 5. Pa-
per IV presents some ideas how it might be possible to simplify the full
quantum-mechanical benchmarking methods by combining semi-classical
and quantum methods for lattice studies.

3.4 Variety of optical lattice designs

In our studies we have used for simplicity the 1D lin⊥lin laser configuration.
In this case the standing wave has only circular polarization components,
and the change of the relative phase between the two counterpropagating
and orthogonally polarized laser beams simply translates the lattice spa-
tially.

15For the branching of the packets, see e.g. discussion in Ref. [63].
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For lattices in two and three dimensions there are basically two different
approaches which are in the literature sometimes referred as Grynberg [15,
64] or Hänsch [16, 65] style lattices. The essential difference between the
two is in the consequence of the number of laser beams.

In Grynberg style n = d+1 beams are used. Here d is the dimensionality
of the spatial space, and n the number of the used beams. In this case, there
are d independent relative phases of the beams. If the phases fluctuate in
time, the consequence is simply a translation of the lattice in space. In
experiments the fluctuations in the phases of the beams are much slower
than the time scale for the dynamics of the atoms trapped in a lattice.
Thus the atoms follow adiabatically the translation of the lattice, and the
phases of the laser beams need not to be locked.

If the number of the used beams is more than d + 1, there are more
independent relative phases between the lasers than there are spatial di-
mensions. An obvious and unavoidable consequence is the change in the
topology of the lattice with fluctuating phases of the lasers. Hence, if more
than d+1 beams are used, the phases of the lasers need to be locked. This
is the case for Hänsch style lattice.

The crystal structure in lattices can vary, e.g., from a body and a face
centered cubic lattices [64] to quasiperiodic lattices [66]. It is a great benefit
to easily create a variety of structures by controlling the lattice parameters
in a simple way.

3.5 About applications of optical lattices

It is not possible to describe here in detail the development of the ideas and
the experiments dealing with optical lattices. These may vary e.g. from the
observation of Bragg scattering of light from a sparsely filled optical lattice
[30,31] and observation of Bloch oscillations [32] to the use of lattice bound
atoms as a quantum simulator [67] or to dynamical tunneling [35]. From
the technological application point of view the experimental realization of
a deterministic source and delivery of a single atom using an optical lattice
may be of interest [68]. Detailed descriptions of the development of the
ideas and the experiments can be found in the review articles [3–6].

Recently it has become possible to achieve high atomic occupation den-
sities in far off-resonant optical lattices [69, 70]16. The loading of the lat-
tice with a BEC [71–73] has allowed many delicate experiments involving

16In far off-resonant lattices the photon scattering is negligible and the atom-laser
coupling provides a conservative trapping potential for the atoms.
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quantum coherences [29, 35, 74–76]17. Especially the recent observation of
the quantum phase transition between a superfluid and a Mott-insulator
opens many new possibilities [79], e.g., filling the lattice with a controlled
number of particles per lattice site. This can make the proposals of per-
forming quantum computation in optical lattices more realistic [80, 81], or
it may allow the making of a molecular BEC [82, 83] by melting the Mott-
insulator [84].

Some other recent ideas and experiments related to optical lattices in-
clude having an atomic BEC directly in optical lattice without the prelim-
inary magnetic cooling steps [85], inducing a BCS transition in a fermion-
loaded lattice [86], particle number fractionalization [87], and feedback con-
trol of atoms in optical lattices [88].

17See also the comment [77] on Ref. [74] and reply [78].
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4 Cold collisions between laser cooled atoms

The thermal velocities of laser cooled gaseous atoms are roughly centimeters
per second. Because of the slow motion, the collision dynamics is strikingly
different when compared to room temperature atoms. In other words, the
kinetic energies involved in the cold collision process are on the order or
less than the energy of the atomic linewidth. For example, in the case of
cesium the linewidth of a typical cooling transition is 2400Er and a typical
collision energy is around 1600Er. This also means that the decay time
of the excitation becomes small compared to the time scale of the total
collision dynamics. This allows new phenomena in cold collision processes
to affect the thermodynamics of the cold atomic cloud [7,8]. A great benefit
of slow atomic motion is that it allows very precise spectroscopical studies
of atomic properties with cold atom gases [8].

A general categorization can be made by considering collisions occuring
between two ground state or between one ground and one excited state
atom. Here I describe binary collisions between atoms of same element,
i.e., a homonuclear diatomic molecule, and the emphasis is on the collisions
between a ground and an excited state atom. This is relevant for the case
with the presence of near-resonant light, which is the case in our lattice
studies.

The collisions between ground state atoms occur in a very short range
of atomic distances and the collision properties are important in defining
the efficiency of the magnetic evaporative cooling, a necessary step when
forming a BEC in a magnetic trap. In such case, inelastic collisions which
change the hyperfine state of the colliding atoms lead to a loss of atoms
from the trap.

In the presence of near-resonant light the excitation of a quasimolecule
formed by the colliding atoms may occur at extremely long range, even on
the order of few thousands of Bohr radii a0. Molecular potentials at these
long ranges are usually labeled by the Hund’s case (c) notation, where the
component of the total electronic angular momentum along the internuclear
axis is a good quantum number18. The electron clouds of the colliding atoms
do not overlap at longe range, and the dominant interaction between the
atoms is the resonant dipole-dipole interaction. I give a more detailed
description of the resonant dipole-dipole interaction in Section 5.1, and
previous calculations for alkali-metals can be found in Refs. [90, 91].

18For a clear presentation of various Hund’s coupling cases see e.g. Ref. [89]. See also
Fig. 11 for an example of attractive potentials at long range.
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The long range properties of molecular states and the sign of the detun-
ing of the laser define the possible consequences of collisions. A repulsive or
an attractive character of the molecular potential at long range arises due
to the relative orientation of the dipole moments of the colliding atoms. In
the case of a red-detuned laser, the resonance or Condon point rc, occurs
for an attractive state. For a blue-detuned laser rc occurs for a repulsive
state. Depending on the magnitude of the detuning and the strength of the
coupling laser, off-resonant excitation to non-resonant state may also play
a role, see Paper III.

A lively research field of its own is the photoassociation of laser cooled
atoms to molecules. This is typically done by using a large red detun-
ing of the laser so that free atom pair is excited at rc to a well defined
bound molecular vibrational state. Photoassociation has provided impor-
tant contributions when precise data on atomic interaction potentials or the
values of s-wave scattering lenghts for BEC studies have been obtained [8].
A great deal of study has also been done on the photoassociation in an
atomic Bose-Einstein condensate [82, 83, 92]. I will not discuss further the
field of photoassociation but the reader can find presentations of the field
from Refs. [8, 93].

4.1 Radiative heating by red-detuned light

With red-detuned light, the population of the quasimolecule formed by the
two collision partners may get resonantly excited into an attractive excited
state at the Condon point rc (see Fig. 7). The relative velocity of the atoms
increases due to the acceleration on the attractive state until spontaneous
emission terminates the process. When the atoms have again bounced
apart due to the short range repulsion in the ground state, the pair may
lose some of the gained kinetic energy in the reverse process. Anyhow, the
overall effect is the heating of the colliding pair, and the escape of the atoms
from the trap if the total gain in kinetic energy is large enough [8].

Figure 7 shows a semiclassical (SC) schematic view of the process. In
some of the parameter regimes SC descriptions, such as the Landau-Zener
level crossing model, can be used [61]. When the SC models fail, full
quantum-mechanical methods are needed. For example, MCWF simula-
tions [94, 95] can be used as a benchmark method for easier analytical
semiclassical calculations. It should be emphasized that it is difficult in SC
models to account for population recycling, which means that once-decayed
population may get re-excited in strong laser fields. A comparison between
various methods and their application range is given in Ref. [61].
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Figure 7: A schematic view of radiative heating of colliding atoms. The
quasimolecule is excited at the Condon point rc and accelerated on the
upper level before spontaneous decay terminates the process.

Most of the radiative heating studies done so far have used a simple
two-state description with one ground and one excited molecular electronic
state. An example of MCWF simulation results for MOT from Ref. [95] is
shown in Fig. 8. The results show clearly the effect of radiative heating and
consequent spreading of the momentum distributions. I emphasize that our
lattice studies include many attractive and repulsive states simultaneously,
see Section 5.1.

In addition to radiative heating, atoms may also escape from the trap
by the fine-structure change mechanism. If the population survives on the
excited state for small enough relative distance between the two atoms,
the point where two fine-structure states have a crossing may be reached.
Now, if the pair comes out from a collision region in an energetically lower
fine-structure state than the one in which they entered the collision, the
pair gains kinetic energy by the amount corresponding to the fine-structure
splitting of the states at large r. This energy difference is usually large
compared to the trap depths, and consequently in this case the atoms escape
from the trap [7, 8].

We deal in our studies with very small detunings, a few atomic linewidths
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Figure 8: An example of radiative heating study in MOT from Ref. [95].
Final momentum distributions for various initial values of a narrow Gaus-
sian momentum distributions are shown. The effects of radiative heating,
the spreading of the distributions, and the momentum increase is clearly
visible, especially for low initial relative momentum. For higher initial mo-
mentum some character of the initial distribution is still preserved in the
post-collision distribution.

only19, and strong laser fields. It is therefore reasonable to assume that the
effect of fine-structure changing collisions is very small compared to effect
of radiative heating processes, and we neglect the fine-structure change loss
mechanism in our lattice studies.

4.2 Optical shielding by blue-detuned light

When blue-detuned light is used, the resonant excitation at the Condon
point occurs to a repulsive excited quasimolecular state. This makes it
possible to shield the atoms from close encounters [8], see Fig. 9. If the
shielding is efficient, collisions between atoms may become completely elas-
tic. The mechanism would obviously be useful for preventing loss of atoms
in optical lattices formed with a blue-detuned light.

In an optical shielding process, resonantly excited quasimolecule popu-
lation reaches the classical turning point on the repulsive excited state and
the atoms begin to move apart again. The shielding becomes complete if all
the population has been excited, no spontaneous decay has occurred, and
all the population returns resonantly to the ground state at the Condon

19There can be an order of magnitude difference between the fine-structure state cross-
ing point and rc for the small detunings we have used.
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Figure 9: A schematic semiclassical presentation of optical shielding. The
quasimolecule is excited resonantly to the repulsive molecular state at the
Condon point rc. Then it reaches the classical turning point rtp, and is
finally transferred back to the ground state when arriving at rc again. If the
transfer back to the ground state is not complete, the atom pair may gain
kinetic energy as it is further accelerated by the excited state potential.
In this case shielding is incomplete and the collision is inelastic. If the
population transfer between the states is adiabatic, shielding is complete
and the collision between the atoms is elastic.

point. In this case, collisions become elastic (when photon recoil effects
are ignored), and no heating or escape occurs due to inelastic processes.
Moreover, the ground state is emptied at a relatively long range, and no
population reaches short distances where unwanted processes are possible,
such as hyperfine state changing collisions. Thus, the possibility to use op-
tical shielding in an efficient way allows further increase in the occupation
density of the lattice, in addition to the benefits of the reduced rate of scat-
tered and reabsorbed photons that are characteristic for the blue-detuned
lattices.

In the past MCWF simulations have described the efficiency of the
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Figure 10: An example of an optical shielding study in a MOT from
Ref. [25]. Shown is the shielding measure PS as the function of the
Rabi frequency Ω. PS describes the ground state population flux at very
short range. The dots are results of the Monte Carlo simulations and the
lines presents the results of various semiclassical Landau-Zener approaches.
When the laser field is strong enough, the ground state is effectively emptied
before the atoms have a chance to approach close to each other.

shielding process by a shielding measure PS , which essentially describes the
flux of the ground state population to the short range beyond the Condon
point rc [25, 96, 97], see Fig. 10. In the case of optical lattices, a more
descriptive result is the momentum distribution in a steady state compared
between interacting and non-interacting atoms, see Paper III. We have also
combined the cooling and shielding dynamics in a single framework, which
has not been done before to our knowledge.

In this Chapter we have described radiative heating and optical shield-
ing processes by using the molecular state description. This is how the
treatment has usually been done in the past when studying the heating
and loss of atoms in MOTs. In our calculations and simulations we use the
two-atom product state presentation instead. Our aim is to study the effect
of collisions in a near-resonant optical lattice. Most of the photon scattering
still occurs when the atoms are outside the range of a binary interaction.
It would be an unnecessary complication to describe photon scattering and
quantum jumps in a lattice by using a molecular basis. Moreover, we give
a simultaneous description for laser cooling and collision processes. Hence,
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in our case the molecular basis is only used for a qualitative description
of radiative heating and optical shielding processes, but it does not appear
directly in our calculations.

A wide overview of the theoretical approaches for radiative heating and
optical shielding is given in Ref. [8].
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5 Collisions in optical lattices

In the past cold binary collisions between atoms have been widely studied
under conditions which correspond to the atoms trapped in magneto-optical
traps [7, 8, 17]. Previous cold collision research has concentrated on the
effects of inelastic collisions on the properties of an atomic cloud, but has
neglected the co-existence of the cooling processes.

We are dealing with near-resonant optical lattices, and we have com-
bined in a single framework the Sisyphus cooling mechanism and cold col-
lision dynamics20. Thus our approach includes simultaneous dynamical
processes of cooling, trapping, and collisions in a gaseous atomic cloud.

Radiative heating and optical shielding studies in MOTs typically use
the molecular state description of the binary atomic system. After choosing
the specific excited molecular state and doing the partial wave expansion,
usually only the lowest relative angular momentum ground and excited
state are accounted21. Thus the descriptions in the past have been two-
state models, neglecting the multitude of internal states of the atoms, and
without the position dependent coupling between the atoms and the laser
field. For optical lattices the internal states of the atoms have to be ac-
counted because of the spatial periodicity of the coupling caused by the po-
larization gradients of the laser field. The system under study thus becomes
very complex and the requirement for computation time of the simulations
increases greatly, see Appendix B.

We use the two-atom product state basis [98]. For two six-level atoms in
the red-detuned case this means 36 basis states. If the basis is transformed
into a molecular one, there are manifolds of attractive and repulsive molec-
ular states buried in our description. We are forced to do the calculations
in one dimension since the finite amount of computational resources.

A resonant dipole-dipole interaction between the atoms in optical lat-
tices has been studied by some groups recently with nondynamic approaches
[99–103]. Usually these studies assume fixed positions for the atoms and
concentrate on the mean-field type descriptions of the lattice system. These
approaches neglect the dynamical nature of the cold collisions, and the in-

20For far off-resonant lattices the possibility to control the cold collisions coherently
has been proposed [81]. This would allow the creation of an entanglement between the
atoms, and the use of atoms trapped in optical lattices for quantum computing. A step
making the proposal more realistic was done recently by the experiment presented in
Ref. [79].

21Or independent pairs of partial wave states, neglecting the coupling between the
pairs in a weak field approximation [95].
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elastic processes of radiative heating or incomplete optical shielding. To
our knowledge, our studies are the only ones that include the dynamical
processes of Sisyphus cooling and cold collisions in the same framework.
It is important to note that once the atoms are localized into the optical
lattice sites, they are still able to move around in the lattice. For shallow
lattices this is because the quantum-mechanical tunneling probability be-
tween the lattice sites is not negligible. For deep optical lattices, which are
more relevant to our case, the atomic motion between the wells may be in-
duced by the recoil effects combined with the optical pumping process. An
atomic wave packet has a finite width, and thus a finite probability in the
center of the lattice site to be excited to the state from where spontaneous
decay may take it to another ground substate. The corresponding optical
potential in this case has a potential peak instead of a potential well around
that particular point in space.

For the lattice parameters we use, we have noticed that inter-well effects
are negligible and our interest lies in the case when two atoms end up in the
same lattice site and collide. The intra-well collision partners may then gain
kinetic energy due to an inelastic collision and escape from the lattice. In
the case of optical shielding, the possibility of making the collisions elastic
and preventing the atoms from close encounters would not allow the atoms
to escape from the lattice.

Numerical simulations are extremely heavy, especially in the case of red-
detuned lattices where the level scheme can not be simplified. Thus we are
forced to make some simplifications to our model. The details of these are
recorded in Paper II. Most importantly, we have to neglect the reabsorption
of the scattered photons. With increasing atomic density, reabsorption may
heat-up the atomic cloud and cause radiation pressure to outward direction
from the trap center [9], limiting the achievable atomic densities. In the
blue-detuned lattice, the number of scattered photons is largely reduced
because the center of each lattice site corresponds to a completely dark point
in space. For red-detuned lattices we merely describe the effects of collisions
on the thermodynamical properties of the cloud. The full thermodynamics
is not described since we neglect reabsorption. This poses some limitations
for the applicability of our results in red-detuned lattices, but for the blue-
detuned case our description is close to the complete thermodynamical
description because the scattering is generally low.

We have to also fix the position of one of the colliding atoms which re-
duces the dimensionality of the problem from an impossible two to tractable
one. The inelastic interaction process will not change the kinetic energy of
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both atoms, but we use the relative kinetic energy as an estimate for the
kinetic energy change per atom.

In the following Section I describe how we calculate the interaction ma-
trix elements between two multistate atoms, especially the resonant dipole-
dipole interaction matrix elements. The whole problem is then formulated
by using the MCWF method. At the first look, one might think that the
application of the MCWF method would be straightforward for the prob-
lem at hand. This is not the case. I will not present all the details here, but
refer to Paper II. This Chapter ends with the presentation of the central
results.

5.1 Resonant dipole-dipole interaction

One of the early treatments for resonant dipole-dipole forces between two
atoms was given already at the end of the 30’s [104], and the retardation
effects were discussed almost a decade later [105].

The resonant dipole-dipole interaction (DDI) is the first interaction to
come into play when the colliding atoms approach each other. It arises via
the coupling of the atoms to the quantized environment. Our derivation
follows the approach of Lenz and Meystre who considered two-level atoms
in a standing-wave field [106].

Since the interaction between the atoms is mediated by the quantized
environment, the natural starting point is the two-atom system master
equation and its damping part describing the coupling of the system to the
electromagnetic environment [106] [see also Eq. (18)]

ρ̇|sf = − 1

h̄2

∫ t

0

dτTrf {Hsf(t)Hsf (τ)ρsf (τ)−Hsf (t)ρsf (τ)Hsf (τ)

−Hsf (τ)ρsf (τ)Hsf (t) + ρsf (τ)Hsf (τ)Hsf (t)} , (19)

where Hsf denotes the system-field interaction Hamiltonian, and Trf the
trace over the field.

We expand the electromagnetic field in the standard way

E(rα) = E+(rα) + E−(rα)

E+(rα) =
∑

k

iE(k)ake
ik·rα

E−(rα) =
(

E+(rα)
)†
, (20)

where ak is the annihilation operator for mode k, rα denotes the position
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of atom α, and

E(k) =

√

2πh̄ω(k)

V
εj(k), (21)

where εj is the polarization vector and V the quantization volume.
We use the center of mass and relative coordinates of the atom pair

R =
r1 + r2

2
, r = r2 − r1, (22)

and the notation

S+,q =
∑

m

CGq
m (|em+q〉1 1〈gm|+ |em+q〉2 2〈gm|)

∆S+,q =
∑

m

CGq
m (|em+q〉1 1〈gm| − |em+q〉2 2〈gm|) , (23)

where CGq
m are the appropriate Clebsch-Gordan coefficients, q is the po-

larization label in the spherical basis, and sub-indices label the two atoms.
The interaction between the two-atom system and the vacuum electromag-
netic field can now be written as

Hsf = i
∑

k,εj

√

2πh̄ω(k)

V
d

{

εj,+

[

cos

(

k · r
2

)

S+,+ − i sin

(

k · r
2

)

∆S+,+

]

+εj,0

[

cos

(

k · r
2

)

S+,0 − i sin

(

k · r
2

)

∆S+,0

]

+εj,−

[

cos

(

k · r
2

)

S+,− − i sin

(

k · r
2

)

∆S+,−

]}

eik·Reiω0tak,j

+H.c., (24)

where ej,q is the projection εj,q = εj · εq on the spherical basis ε0, ε±, and d
the dipole moment of the atomic transition.

One can identify the DDI interaction terms between the atoms as those
having < nω + 1 >= 1 where nω is the number of photons in the mode
of the environment with mode frequency ω. In another words, the average
photon number in the interaction process is zero since the DDI interaction
can be viewed as an exchange of excitation between the two atoms via the
environment vacuum field. After lengthy analytical calculations following
[106], and using the arguments from Ref. [107], one can write down the
expression for the three-dimensional resonant dipole-dipole interaction as
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Vdip = −3

8
h̄Γ

{

1

3

cos q0r

q0r
[1− 2P2(cos θr)] (S++S−+ + S+−S−− − 2S+0S−0)

−2

[

sin q0r

(q0r)2
+

cos q0r

(q0r)3

]

P2(cos θr) (S++S−+ + S+−S−− − 2S+0S−0)

+
1

3

[

−cos q0r

q0r
+ 3

(

sin q0r

(q0r)2
+

cos q0r

(q0r)3

)]

×
[

1√
2
P 1

2 (cos θr) cosφr (−S++S−0 + S+0S−− − S+0S−+ + S+−S−0)

+P 2
2 (cos θr) cos 2φr (S++S−− + S+−S−+)

]}

, (25)

where q0 = ω0/c, P2 is Legendre polynomial, and P n
m are the associated

Legendre functions. The angles θr and φr are the angles of the relative
coordinate r in the spherical basis. We have also introduced the operators

S+qS−q′ ≡
(

S1
+,qS

2
−,q′ + S2

+,qS
1
−,q′

)

, (26)

where Sα
−,q =

(

Sα
+,q

)†
and

Sα
+,q =

m=Jg
∑

m=−Jg

CGq
m|em+q〉α α〈gm|. (27)

Here α labels one of the two atoms.
If the two atoms are positioned on the z-axis, the DDI potential reduces

to the one-dimensional potential

V axis
dip =

3

8
h̄Γ

{

1

3

cos q0r

q0r
+ 2

[

sin q0r

(q0r)2
+

cos q0r

(q0r)3

]}

×

(S++S−+ + S+−S−− − 2S+0S−0) . (28)

This is the expression which we have used in our calculations formulated in
the two-atom product state basis. It is worth noting that the interaction
potential (28) includes the retardation effects. By diagonalizing Vdip, it is
possible to obtain the molecular potentials shown in Fig. 11. I emphasize
again that the calculations are done in the two-atom product state basis
for reasons described above, and the molecular basis is occasionally used
only for the qualitative description of the collision processes.

33



0.2 0.4 0.6 0.8 1 1.2
−15000

−10000

−5000

0

z (λ/2π)

U
 (

E
r )

0
u
+1

g
2

u

0
g
−

1
u

Figure 11: The energy shifted ground state and the attractive excited state
[labeled by the Hund’s case (c) notation] molecular potentials of Cs2 for
δ = −3.0Γ. The repulsive potential manifold is not shown.

5.2 Monte Carlo wave-function formulation

We use a variant of the Monte Carlo (MC) method which was developed
by Dalibard, Castin, and Mølmer [51–53]. The core idea of the Monte
Carlo wave-function (MCWF) method is the generation of a large number
of single wave function histories including stochastic quantum jumps of the
system studied. Quantum jumps occur to the available decay channels of
the system whose environment is constantly monitored. In our case, de-
tection of a photon would correspond to a quantum jump from an internal
excited state to the ground state of an atom in an optical lattice. Solu-
tions for the steady state density matrix and system properties can then
be calculated as ensemble averages of single wave-function histories.

In the simulations quantum jumps to the appropriate decay channels
occur due to a non-Hermitian part in the total Hamiltonian. Thus, in
order to generate the ensemble members, one solves the time dependent
Schrödinger equation

ih̄
∂|ψ〉
∂t

= H|ψ〉. (29)

For the numerical propagation methods, see Appendix A.
We have to fix the position of one atom, as discussed in the beginning

of this Chapter and Paper II. If the position of atom 1 is fixed, the binary
system wave function in the two-atom product state basis depends now
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only on the position of the moving atom 2

|ψ(z2, t)〉 =
∑

j1,j2,m1,m2

ψj1,m1

j2,m2
(z2, t)|j1m1〉1|j2m2〉2. (30)

Here, j1 and j2 denote the ground and excited states of atom 1 and 2
respectively, m1 and m2 the z-component of the angular mometum, and
z2 the position of the moving atom 2 in the lattice. The atomic spatial
dimensionality of the problem is reduced from two to one. The relative
coordinate z between the atoms is now z = z2−zf , where zf is the position
of the fixed atom.

The non-Hermitian Hamiltonian H in Eq. (29) for the two-atom system
is

H = HS +HDEC , (31)

where the system Hamiltonian HS in our case includes the atom-laser in-
teraction Hamiltonians expanded in the two-atom Hilbert space, and the
resonant dipole-dipole interaction between the atoms, Eqs. (7,15,28).

The non-Hermitian part includes the sum over various decay channels
j,

HDEC = − ih̄
2

∑

j

C†
jCj, (32)

where Cj are the jump operators corresponding to particular decay chan-
nels.

During a discrete time evolution step of length δt the norm of the wave
function may shrink due to HDEC . The amount of shrinking gives the
probability of a quantum jump to occur during the short interval δt. Based
on a random number one then decides whether a quantum jump occurred
or not. Before the next time step is taken, the wave function of the system
is renormalized. If and when a jump occurs, one performs a rearrange-
ment of the wave function components according to the jump operator Cj,
corresponding to decay channel j, before renormalization of |ψ〉.

For example, if we denote the jump of atom 1 from |e−1/2〉1 to |g−1/2〉1
as channel 2 in our red-detuned lattice studies, the jump operator in the
product state basis for this jump is

C2 =
√

2/3
√

Γ
{

|g−1/2〉1 |g−1/2〉2 1〈e−1/2| 2〈g−1/2|
+|g−1/2〉1 |g+1/2〉2 1〈e−1/2| 2〈g+1/2|
+|g−1/2〉1 |e−3/2〉2 1〈e−1/2| 2〈e−3/2|
+|g−1/2〉1 |e−1/2〉2 1〈e−1/2| 2〈e−1/2|
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+|g−1/2〉1 |e+1/2〉2 1〈e−1/2| 2〈e+1/2|
+|g−1/2〉1 |e+3/2〉2 1〈e−1/2| 2〈e+3/2|

}

. (33)

Here, the factor
√

2/3 is the Clebsch-Gordan coefficient of the correspond-
ing transition. After applying the jump operator Cj, the wave function is
still in a superposition state, but it has collapsed into a subspace of the
product state basis vectors, leaving only one ground state level component
of the jumped atom populated.

In general, the jump probability into the decay channel j for each of the
time-evolution step δt is

Pj = δt〈ψ|C†
jCj |ψ〉. (34)

Thus, the jump probability for an example channel 2 in Eq. (33) for each
time step is

P2 =
2

3
δtΓ

{

|ψe
−3/2

g
−1/2

|2 + |ψe
−3/2

g+1/2
|2 + |ψe

−3/2

e
−3/2

|2

+ |ψe
−3/2

e
−1/2

|2 + |ψe
−3/2

e+1/2
|2 + |ψe

−3/2

e+3/2
|2

}

. (35)

Paper II presents in detail the implementation of the MCWF method
in our lattice studies. There is a large number of numerical problems one
has to solve for the MC implementation of two atoms in a lattice. A list of
these and their solution is also given in Paper II.

5.3 Red-detuned lattices

In this Section I present the main results from Paper I and Paper II which
deal with collision dynamics in red-detuned lattices. The main collision
process in this case is radiative heating, see Section 4.1.

Optical lattices, which are detuned a few atomic linewidths below the
atomic resonance frequency, provide a very efficient environment for Sisy-
phus cooling [2]. Once the atoms are localized into the lattice sites, they
are still able to move around in the lattice. When the occupation density
of the lattice increases one can ask what is the effect of collisions for the
Sisyphus cooling dynamics in optical lattices, and how the cold collisions
affect the atomic cloud once the atoms are localized.

At the beginning of the efficient cooling period a large fraction of atoms
have higher kinetic energy than the optical lattice modulation depth. Atoms
then have a high mobility and change their internal state frequently via the
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Figure 12: An example of a single wave packet history from the full MC
ensemble in position space (note the direction of z-axis because of the view-
ing angle). At the beginning of the time evolution the atom oscillates in
the lattice well which has the center at z = 0.25λ. It then approaches point
z = 0 (the position of the fixed atom), collides with another atom, and
gains enough kinetic energy to be ejected from the lattice (unpublished).

optical pumping cycles which cool them. A priori one might assume that
the possible consequence of collisions would be a slowing of the cooling pro-
cess, heating, and escape of the atoms from the lattice. Radiative heating
studies in MOTs show a smooth widening of the momentum probability
distribution corresponding to heating for large range of parameters [94,95],
see Fig. 8. A similar effect might be expected to occur in an optical lattice
as well.

It turns out that the internal structure of the atoms and the spatial
dependence of the atom-field coupling changes the consequences of the col-
lisions to some extent. Lattice structure introduces selectivity into the
collision processes and atomic dynamics. In a lattice, the mobility of an
atom between the lattice sites depends essentially on the kinetic energy, es-
pecially once the atoms are localized into the lattice sites. An atom, which
has a large oscillation amplitude (corresponding to a large kinetic energy)
in the lattice site, has a higher probability to change its internal ground
state by optical pumping than an atom which is tightly localized into the
vicinity of the center of the potential well22.

22The atomic wave packet here describes a superposition of the populations in the
vibrational states of a lattice potential. Thus the wave packet may have rich dynamical
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Figure 13: The same MC history as in Fig. 12 but shown here in momentum
space. The population is transferred to the high values of momentum due
to the collision (unpublished).

Since the high kinetic energy atoms are more mobile compared to their
low kinetic energy partners, the high kinetic energy atoms have also a higher
collision probability. During the same period of time the high-energy atoms
change their internal ground state and the corresponding optical potential
more often than tightly localized atoms. Thus, the coverage of various
lattice sites, and the corresponding collision probability, is higher for more
mobile atoms.

With these assumptions the consequence of collisions might be simple
heating of the atomic cloud, or escape of the atoms from the lattice. The
essential incredient for a large kinetic energy increase is a high excitation
probability of a quasimolecule. This depends on the curvature of the molec-
ular potentials at a resonant Condon point and especially on the relative
velocity between the colliding atoms. The optical lattice modulation depth
defines the initial velocity distribution of the atoms when they start to move
between the lattice sites after localization. It turns out that in a typical
lattice, detuned a few atomic linewidths below the atomic resonance, and
for lattice depths of a few hundred recoil energies, the surroundings are very
favourable for strong excitation of the quasimolecule and the corresponding
large kinetic energy changing collisions. The consequence is that the atoms
mainly leave the lattice when colliding, and the total effect is the ejection
of the hot atoms from the lattice. The ones which remain in a lattice have

features like breathing and oscillations in a single lattice site [108].
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Figure 14: Time evolution of the kinetic energy of the MC ensemble. For
critical momentum pc = 60h̄kr (dashed line) the steady state is not reached
indicating a too large choice for pc. Collisions increase the kinetic energy
and the collided atoms are out of the recapture range, and thus escape from
the lattice. For pc = 40h̄kr (solid line) the steady state is reached and the
atoms are recaptured in the lattice. The dotted line indicates the steady
state value.

lower average kinetic energy per atom than in the low occupation density
case of the lattice when there is no need to account for the interactions
between the atoms. Figures 12 and 13 show in position and momentum
spaces, respectively, an example of a collision which ejects the atoms from
the lattice.

It is a quite subtle point to define which atoms have flown out from the
lattice and which remain since it is not possible to give an exact critical
velocity. The nature of the cooling optical pumping cycles is stochastic. If
the velocity is in the critical range, some of the histories with equal velocities
may be recaptured into the lattice while the others escape. The solution
for the problem is given by the time evolution of the average kinetic energy
per atom, see Fig. 14. If the chosen critical momentum pc is too high there
is no steady state formation (dashed line in Fig. 14). For an appropriate
choice of pc the steady state is still reached (solid line in Fig. 14).

The selective escape mechanism resembles evaporative cooling used to
produce BEC in magnetic traps. Here the rethermalization of the remain-
ing atoms is more limited, though. Anyhow, spatial dependence of the laser
field introduces selective heating of the hot atoms, and the consequent es-
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Figure 15: An example of momentum probability distributions for inter-
acting and non–interacting atoms in a red-detuned optical lattice. The
momentum p is expressed in the recoil unit pr = h̄kr. For interacting
atoms the distribution gets narrower compared to non-interacting atoms.
The results correspond to a sodium lattice with lattice depth U0 = 339Er .

cape from the lattice. It would probably be too far reaching to claim that
this effect should be visible in an experiment. Our model neglects the re-
absorption of photons which may clearly affect the total thermodynamics
of the atomic cloud at high densities, and we neglect also the Doppler cool-
ing. Thus we have revealed one important aspect of the thermodynamics
of a densely-populated near-resonant optical lattice but the solution for
the complete problem is simply out of reach for the modern computational
resources.

Figure 15 shows an example of the results for collisions in a red-detuned
lattice. This example is for a sodium lattice of depth U0 = 339Er . The
comparison is done between the momentum probability distributions of
the interacting and non-interacting cases with occupation density of 25%
of the lattice. The central peak is clearly narrower when the interactions
between the atoms have been included. This central peak corresponds to
the atoms which are trapped in a lattice, and the wide wings correspond
to background atoms which are presumably out of the recapture range of
the lattice and ejected from the lattice.

One can calculate by semi-classical means the excitation and survival
probability for various molecular potentials. We have done a simple semi-
classical analysis by using Landau-Zener approach in Paper II. This analysis
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Figure 16: An estimate of the escaped atoms. The percentage of lost
atoms as a function of the occupation density of the lattice is shown. MC
stands for Monte Carlo and SC for the semiclassical results which take into
account only one attractive molecular state. The solid lines are linear fits
(unpublished).

supports the conclusions presented above and shows the high probability
for the atom pair to gain kinetic energy by the amount with which the
collision partners are kicked out from the lattice. Details of the semi-
classical analysis can be found in Paper II.

For our selected atomic level structure there exists five different attrac-
tive molecular states, see Fig. 11. The semiclassical analysis shows that
the potential which becomes resonant first (the one for which the Condon
point rc is the largest) has a dominant role in the heating process. This
conclusion is further supported by the results in Fig. 16 (unpublished).
This figure shows a comparison of the percentage of lost atoms given by
simulation, and by semiclassical analysis which takes into account only the
first-resonant potential. The semiclassical result is roughly half of the simu-
lation result suggesting that the first resonant molecular state is responsible
already for half of the escaped atoms. The molecular states which are left
make a smaller contribution to the heating process.

5.4 Blue-detuned lattices

The prospect of using the trapping and cooling lasers for efficient optical
shielding has been studied in Paper III. Complete optical shielding would
make collisions between atoms, when they end up in a same lattice, elastic,
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Figure 17: The momentum probability distributions for the δ = 5Γ blue
lattice case. The Rabi frequencies are: a) Ω = 1.5Γ, b) Ω = 2.0Γ, c)
Ω = 3.0Γ, and d) Ω = 5.0Γ. The momentum p is expressed in the recoil
unit pr = h̄kr. The dashed line is for the interacting and the solid line
for the non–interacting atoms. When Ω increases the regime changes from
incomplete shielding, a) and b), to complete shielding, c), and finally to
off–resonant heating in d). The momentum distributions also get wider
due to the deepening of the lattice with increasing Ω.

and it would also prevent atoms from close encounters, preventing, e.g., in-
elastic hyperfine changing collisions. Thus efficient optical shielding could
be beneficial in optical lattices in addition to the typical darkness of the
blue-detuned lattices. The number of scattered photons in gray-lattices
can be rougly two orders of magnitude smaller than in MOTs [45]. The
role of the radiation pressure due to the reabsorption of photons dimin-
ishes, and our simplified model describes in a more realistic way the total
thermodynamics of the atomic cloud, not only the collision aspect of the
thermodynamics.

In our studies we have used the antiparamagnetic regime of the Grynberg-
Courtois lattice, with the atomic level structure Je = Jg = 1 shown in
Figs. 4 and 5. Rubidium-87 has the corresponding ground and excited
state hyperfine components, and in the antiparamagnetic regime the cool-
ing mechanism resembles the traditional Sisyphus cooling.

Figure 17 presents the results of the simulations where the detuning is
fixed to δ = 5Γ. The results show clearly how the efficiency of the shielding
changes. When the coupling laser is weak, a large number of the collisions
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Figure 18: Momentum distributions for fixed U0 ∼ 710Er. a) δ = 1.5Γ
b) δ = 5.0Γ c) δ = 7.0Γ d) δ = 10.0Γ. The off-resonant processes play
a role at the small detuning, a). In the intermediate detuning shielding
may become complete and the collisions between atoms are elastic, b). For
larger detuning the shielding is incomplete, c) and d).

are still inelastic ones. Wide wings appear in the momentum probability
distribution, see Figs. 17 (a) and 17 (b). All the population, which is
excited at the Condon point, does not return to the ground state when
the atoms move apart again. The quasimolecule slides down on the tail of
the repulsive state producing a mild heating effect [25]. For a moderate
field strength it is hard to see differencies between the distributions for the
interacting and non-interacting atoms, Fig. 17 (c). The optical shielding has
become complete and atoms collide elastically when they end up in the same
lattice site. The collision partners begin to move apart at large internuclear
distances and also the short range unwanted effects are avoided. A further
increase in the laser field strength makes it possible for the population to
be excited into the attractive molecular state by off-resonant means [96].
This is the reason for the deviation of the two distributions in Fig. 17 (d),
where the appearance of the wings is also qualitatively different than in the
weak-field case of incomplete shielding.

Figure 18 presents another view to the shielding studies. Instead of
keeping the laser detuning fixed, here the lattice modulation depth is kept
nearly constant. It turns out that for a very small detuning, Fig. 18 (a), the
off-resonant effects heat the atomic cloud. This corresponds to the regime
where Ω/δ > 1, and the steady state formation between the ground and the
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excited states surpasses the dynamical resonant excitation process. When
the detuning is increased, the point of complete shielding is reached, Fig. 18
(b). In the region where Ω/δ � 1, Fig. 18 (c) and (d), shielding becomes
incomplete again due to the weak excitation and stimulated re-excitation
in Condon point.

The results demonstrate clearly that the co-existence of cooling, trap-
ping, and shielding processes is possible in blue-detuned near-resonant opti-
cal lattices. The shielding process is not always complete but by the careful
choice of parameters shielding becomes very efficient. Moreover, this can be
obtained within a very typical and convenient parameter regime for near-
resonant lattices, e.g., in Fig. 17 (c) δ = 5Γ, Ω = 3Γ, and U0 = 712Er . An
important benefit of complete shielding is that it can be produced with the
same lasers which provide the cooling and trapping. Thus there is no need
for additional shielding lasers as in MOTs.

Even though the available occupation densities in near-resonant optical
lattices have been very low so far, the metastable rare-gas atoms could
provide a convenient case for an experimental study of shielding in optical
lattices due to the clear ion signal that marks collision events [109, 110].

The experimental work on optical shielding in MOTs show the satu-
ration of the shielding phenomena when the intensity of the laser field is
increased [8]. The saturation has not been present in earlier theoretical
studies of shielding [25, 96], and we do not see the saturation of shielding
here either. The results presented in Paper III seem to confirm the view
that the saturation does not arise due to spontaneous emission effects [25].
The reason for the saturation of shielding is still unclear. It has been at-
tributed to various processes, in addition to the above-mentioned premature
termination of shielding via spontaneous emission [25]. Other possibilities
include counterintuitive or off-resonant processes involving different partial
waves, or other processes that similarly involve multiple states (in contrast
to the basic two-state approaches [8,97,111,112]). Anyhow, since our model
is limited, we can not conclusively say that saturation of shielding should
be absent in a lattice experiment.

So far there has been very few cold collision studies in optical lat-
tices [113, 114]. I hope that our work can serve as a motivation for ex-
perimentalists to do shielding studies in blue-detuned optical lattices.

5.5 Collision rates

The results of Papers I and II show that in our selected parameter regime,
i.e., the typical parameter regime for near-resonant lattices, the motion
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Figure 19: An example (U0 = 936Er, occupation density ρ0 = 20%) of the
accumulation region population |ψa|2 as a function of time. The binary
collision rate R is obtained from the slope of the curve β.

of the atom between the lattice sites (or in the lattice site occupied by
the single atom only) is not strongly affected by other atoms, not at least
for the occupation densities which we have used (maximum 25%). Hence,
binary interactions between the atoms come into play only when two atoms
simultaneously occupy the same lattice site. This makes it possible to
develop a method to calculate the average rate at which two atoms end
up in the same site, and the consequent cold collision rate in a lattice, by
following the trajectories of single atoms23. Paper IV presents this type of
method. Collision rate describes here the rate of occurrence of radiative
heating events in a red-detuned lattice, or optical shielding events, if blue-
detuned light is used. It is assumed that the two atoms always collide when
they end up in the same lattice site. For the parameters used here, this
assumption is confirmed by the results in Papers I and II.

The basic idea of the developed method is simple. It is possible to follow
the trajectory of an atom in a single atom MCWF optical lattice simulation.
Trajectories in position space can give information about the rate at which
atoms travel over the average distance za between the atoms, which in turn
gives information about the binary collision rate in a lattice24.

23Cold collision rate refers here to the average rate of atoms to reach the region of the
resonant Condon point in the presence of near-resonant light.

24The average distance between atoms za corresponds to the mean free path of atoms
between collision events in our one-dimensional model.
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simulation results, and the solid lines the quadratic collision rate curves
averaged from the simulation results for the specific lattice.

To calculate the collision rate, like presented in Paper IV, we need to
know how the atomic population, as a function of time, arrives to the region
of space |z| > za when the atom is located around the point z = 0 at the
beginning of the time evolution. In other words, we calculate

|ψa|2(t) =

∫

|z|>za

ψ∗(z, t)ψ(z, t)dz. (36)

Figure 19 shows an example of this. Specifically, it shows how the popu-
lation accumulates into the area beyond the average distance between the
atoms, i.e., into the area |z| > za called accumulation region, for a specific
case where occupation density of the lattice is 20%25. We get the accumu-
lation rate of the population by doing a linear fit to the simulation result
and taking the slope β of the accumulation curve. The collision rate per
unit time and unit volume (length in our 1D case) is then given by

R = β/za, (37)

where za is the average distance between the atoms.

25To calculate the collision rate correctly, the population flow into the accumulation
region has to be made unidirectional. A trick how to do this, see Paper IV.
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In Fig. 20 the calculated collision rates as a function of the occupation
density of the lattice for three different lattice depths are displayed. In our
simple 1D case the collision rate does not depend on the scattering cross
section and collisions are a measure of transport in a lattice. This was also
the case in the experimental study of Ref. [114]. In both cases the collision
rate has a quadratic behaviour.

The points in Fig. 20 are the simulation results and the solid lines
quadratic fits. It is interesting to note from the Monte Carlo point of view
that we get results for a wide density range by doing simulations for only a
very few values of density. The possibility of obtaining the result for all the
values of the variable, in this case occupation density, from single Monte
Carlo ensembe is a new feature in MCWF simulations to our knowledge,
at least when MCWF method is applied to cold collision problems.

Two-atom collision simulations in a lattice described in previous Sec-
tions are computationally very heavy. It would be useful to find more sim-
ple means to do collision studies in optical lattices. The method presented
above presents a step in this direction. For example, if the semiclassical
analysis shows that for particular parameter values the colliding atoms have
a high probability to be ejected from the lattice due to radiative heating,
then the collision rate described here gives directly the loss rate of atoms
from the lattice. MCWF simulations for one atom, like the ones reported
in Paper IV, are fairly simple and fast to perform. This is especially true
when compared to the two-atom case. Thus the combination of these sim-
ple one-atom simulations with semiclassical models for intra-well collision
effects have a potential to simplify the studies of binary collisions in optical
lattices.
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6 Conclusions

We have studied the cold collision dynamics between atoms in near-resonant
red and blue-detuned optical lattices. The applied methods have been
mainly based on the Monte Carlo wave-function method. A semiclassical
analysis has been done which supports the conclusions drawn from the full
quantum-mechanical calculations.

The implementation of the MCWF method to study cold collisions in
optical lattices is not straightforward and the simulations have been very
demanding from the computer resource point of view. This is due the
internal structure of atoms, coupling to the electromagnetic environment,
position dependent coupling of the atoms to the laser field, and position
dependent coupling between the atoms.

The results for near-resonant red-detuned lattices are in quite a sharp
contrast to the interaction studies in magneto-optical traps. Instead of
heating, a cooling due to the selection of collision partners from high kinetic
energy atoms is seen in the simulation results. The blue-lattice results
clearly show the applicability of optical shielding. Future collision studies
require simplifications, for which we propose a simple way to calculate the
collision rate in optical lattices.

In the past there has been many studies of cold collisions in magneto-
optical traps. The work presented in this thesis extends the regime of
cold collision studies into the realm of optical lattices. This is far from
being a trivial step. The major reason for this is that for sub-Doppler
cooling mechanisms, which exploit various polarization states of a laser
field, it is necessary to account for the internal structure of atoms, and this
greatly complicates the total system under study and the calculations done.
Moreover, it is not enough to formulate the problem using only the relative
motion between the atoms in a constant laser field. The position of the
atoms with respect to a lattice structure has to be accounted also.

We have shown that it is meaningful to study cold collisions in optical
lattices, even within the limits of our simple model, whose implementation
of the solution is far from being simple. Our lattice calculations present a
step forward in the understanding of the physics of atoms in near-resonant
optical lattices.
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Appendices

A Numerical methods

Since the method we have used is based on the MCWF simulations, the
essential incredient in the solution is the time propagation of the system
wave-function. In other words, finding the solution for the time dependent
Schrödinger equation

ih̄
∂|ψ〉
∂t

= H|ψ〉. (38)

Formally solving this equation over time step δt gives

|ψ(t0 + δt)〉 = U |ψ(t0)〉, (39)

where the time evolution operator U reads

U = exp

(

− iHδt
h̄

)

. (40)

The time evolution operator U , which includes the Hamiltonian H, can
be split into three parts as

H = HV +HK +HD. (41)

When H is in matrix form, HV has an off-diagonal part, which in our case
accounts for the atom-field coupling and the interaction between the atoms,
HK is the diagonal kinetic part, and HD includes the non-kinetic diagonal
part, i.e., decay and detuning.

For non-commuting operators A and B we can write to second order
accuracy [108]

exp (A+B) ' exp (A/2) exp (B) exp(A/2). (42)

It is important to note that the Hamiltonian H does not have any explicit
time dependence in our case, and as we take many consecutive time steps
during the evolution, we finally approximate the wave function at time
t0 + nδt by

|ψ(z, t0 + nδt)〉 '
[

n−1
∏

k=0

UV U
1/2

D UKU
1/2

D

]

|ψ(z, t0)〉. (43)

Here,
UD =exp(−iHDδt/h̄) (44)
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and

UK =F−1 exp(−iδt h̄k
2

2M
)F (45)

where F and F−1 denote the Fourier and inverse Fourier transforms. Fi-
nally, UV can be written as

UV = S exp(D)S−1, (46)

where S contains the eigenvectors and D the eigenvalues of HV . UV cor-
responds now to a change of basis, multiplication by exponentials of eigen-
values, and a change of basis back to the product state basis. The above
form for the temporal evolution of |ψ〉 is quite straightforward to imple-
ment and fast on a computer, e.g., 20% faster than the Crank–Nicholson
method [108]. The difference in the speed of the two methods is not very
large but still plays an essential role since the simulations done are at the
edge of the available computer capacity and CPU time. The relative speed
of the Fourier and Crank-Nicholson method may vary depending on the
system under study, computers used and available sub-routine libraries.
We have performed the simulations in Silicon Graphics computers and it
seems that the Fourier transformation routines have been well optimized
in the Silicon Graphics subroutine library for a good performance of the
computer.

B Required computational resources

The numerical simulations are demanding since we are dealing with a 36
level quantum system26 including various position dependent couplings and
dissipative coupling to the environment. We use 32 processors of an SGI
Origin 2000 machine, which has 128 MIPS R12000 processors of 1 GB mem-
ory per processor 27. The total memory taken by a single simulation (fixed
δ, Ω, occupation density ρo, and atomic species) is 14 GB, and generat-
ing a single history requires 6 hours of CPU time in red-detuned lattice
studies. A simulation of 128 ensemble members then requires a total CPU
time which is roughly equal to one month. The normal clock time is, of
course, much shorter (roughly 22 hours) since we take advantage of powerful
parallel processing for which the MCWF simulations suit very well28.

26For a blue-detuned case, the number of levels in the two-atom simulations can be
reduced to 9, see Section 3.2.1.

27See CSC, the Finnish IT center for science, webpage www.csc.fi for details.
28The communication between the processors occurs mainly at the beginning and at

the end of the simulation. From a parallel programming point of view, this type of
problems are sometimes referred in the literature as ”embarrassingly” parallel problems.
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