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app. 46 p. 
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transport  

Abstract 

A new deterministic three-dimensional neutral and charged particle transport 
code, MultiTrans, has been developed. In the novel approach, the adaptive tree 
multigrid technique is used in conjunction with simplified spherical harmonics 
approximation of the Boltzmann transport equation. 

The development of the new radiation transport code started in the framework of 
the Finnish boron neutron capture therapy (BNCT) project. Since the application 
of the MultiTrans code to BNCT dose planning problems, the testing and 
development of the MultiTrans code has continued in conventional radiotherapy 
and reactor physics applications. 

In this thesis, an overview of different numerical radiation transport methods is 
first given. Special features of the simplified spherical harmonics method and 
the adaptive tree multigrid technique are then reviewed. The usefulness of the 
new MultiTrans code has been indicated by verifying and validating the code 
performance for different types of neutral and charged particle transport 
problems, reported in separate publications. 
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Symbols and abbreviations 
),( ErrΦ  Scalar flux 

),,( ΩΨ
rr Er  Angular flux 

rr  Position vector 
E Energy 
Ω
r

 Direction vector 
∇  Nabla operator 

),,( Ω
rr ErTσ  Total cross section 

),,,,( Ω′Ω′
rrr EErSσ  Scattering cross section 

),,( Ω
rr ErQ  Source term 

),( Errχ  Fission spectrum 
),( Errν  Number of neutrons emitted per fission 

),( Erf r
σ  Fission cross section 
keff Multiplication eigenvalue 
β Fraction of fission neutrons born delayed 
l Index for Legendre order 
L Maximum Legendre order in the Legendre expansion or 

tree multigrid subdivision level 

0µ  Incident angle 
)( 0µlP  Legendre polynomial 

g Energy group index 
G Maximum energy group number 

),( ΩΨ
rrrg  Group angular flux 

)(rg
t

r
σ  Group total cross section 

)(, rgg
ls

r→′σ  Group-to-group scattering cross section 

),( Ω
rrrQg  Group source term 

),( Ω
rrrS g  Effective group source term 
)(rS fiss
r  Fission source 

)(rg r
χ  Group value for the fission spectrum 
m Index used for discrete direction or for indexing spherical 

harmonics 
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M Maximum number of discrete directions 
{ }mΩ�  Set of discrete directions 
{ }mw  Set of quadrature weights 

mµ  Direction cosine 

mη  Direction cosine 

mξ  Direction cosine 
{ }mα  General direction cosine set 
C Constant 
i Spatial index 
j Spatial index 
k Spatial index 

T
gkji ,,,σ  Total group cross section in discrete ordinates formalism 

gmkjiN ,,,,  Angular flux in discrete ordinates formalism 

gmkjiS ,,,,  Source term in discrete ordinates formalism 

kjiV ,,  Cell volume 

kjiA ,,
2
1+

 Cell face area 

kjiA ,,
2
1−

 Cell face area 

kjiB ,, 2
1+  Cell face area 

kjiB ,, 2
1−  Cell face area 

2
1,, +kjiC  Cell face area 

2
1,, −kjiC  Cell face area 

θ Polar angle 
ϕ Azimuthal angle 

)(cosθm
lP  Associated Legendre polynomial 

),(, Erml
r

ψ  Angular flux expansion coefficient in spherical harmonics 

),(, Erml
r

γ  Angular flux expansion coefficient in spherical harmonics 

),(, Erq ml
r  Source expansion coefficient in spherical harmonics 

),(, Ers ml
r  Source expansion coefficient in spherical harmonics 

g
alσ  Group transport cross section 
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HE Sobolev space 
),( Ω

rrrψ  Arbitrary angular flux belonging to Sobolev space 
( )gf ,  Inner product 

gf ,  Inner product at boundary 

oK  Collision operator 
hS  Finite element subspace 

),( Ω
rrrh

iψ  Local basis function 
A Matrix 
Ψ
r

 Flux solution vector 
S
r

 Source vector 
x Spatial co-ordinate 
µ Angular direction cosine 

)(xiψ  Spatial one dimensional basis function 
)(µψ j  Angular one dimensional basis function 

),( µψ xn  Direct product of spatial and angular basis functions 
s Distance 
ζ Random number 

L
kjiu ,,  Cell in octree 

Xmin Minimum x co-ordinate of the root cell 
Ymin Minimum y co-ordinate of the root cell 
Zmin Minimum z co-ordinate of the root cell 
xmin Minimum x co-ordinate of an octree cell 
ymin Minimum y co-ordinate of an octree cell 
zmin Minimum z co-ordinate of an octree cell 
xmax Maximum x co-ordinate of an octree cell 
ymax Maximum y co-ordinate of an octree cell 
zmax Maximum z co-ordinate of an octree cell 
∆  Side length of the root cell 

min∆  Minimum cell side length of an octree 
ur  Column vector 
h Mesh size 

hS  Discretised source vector 

hu~  Approximate solution of the discretised system 
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hu  Exact solution of the discretised system 

hν  Error of the solution 

hν
~  Approximate error of the solution 

hr  Residual 
H Mesh size on a coarser grid 
ℜ Restriction operator 
℘ Prolongation operator 
γ Number of two-grid iterations 

),( θxΨ  Angular flux in slab geometry 

ll ′,δ  Kronecker delta 

)(xlΦ  One-dimensional angular flux expansion coefficient in 
Legendre order l 

)(rl
r

Φ  Three-dimensional angular flux expansion coefficient in 
Legendre order l 

)(xql  One-dimensional source expansion coefficient in 
Legendre order l 

)(rql
r  Three-dimensional source expansion coefficient in 

Legendre order l 
)(�

0 rrΦ  Variable defined relative to scalar flux and second 
moment term of the angular flux 

giD ,
0  A diffusion coefficient 

giD ,
2  A diffusion coefficient 

)(, rQ gi
l

r  Order l moment terms of the source 

)(, rS gi
l

r  Order l moment terms of the effective group source 

)(, rS gi r  Scalar effective group source 

)(� ,
1 rS gi r  A modified group source term 

)(� ,
3 rS gi r  A modified group source term 

nr  Normal vector of a surface 
),,()( ΩΨ

rr Eru  Uncollided angular flux 
gu

lm
),(ψ  Uncollided angular flux spherical harmonics expansion 

coefficient 
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gu
lm

),(γ  Uncollided angular flux spherical harmonics expansion 
coefficient 

)(),( rgu
l

r
Φ  Uncollided angular flux Legendre expansion coefficient 

)( rΩ−Ω
rr

δ  Delta function in angle 

sr
r

 Source point 
),( srr rr

β  Number of mean-free-paths 
g

tσ  Average total group cross section along the path 
Γd  Cell surface element 

)()( rS n
f

r  Fission source after n iterations 
)(nk  Multiplication eigenvalue after n iterations 

1ε  Variable used for criticality convergence criterion 

2ε  Variable used for fission source convergence criterion 
1D One-dimensional 
2D Two-dimensional 
3D Three-dimensional 
BFP Boltzmann-Fokker-Planck 
BNCT Boron neutron capture therapy 
BNCT_rtpe A Monte Carlo simulation code, predecessor of SERA 
BUGLE Coupled neutron and gamma-ray cross section library 
CAD Computer-aided design 
CEPXS A multigroup coupled electron-photon cross section 

generating code 
c.p.e. Charged particle equilibrium 
CSD Continuous slowing down 
CSDA Continuous slowing down approximation 
CT Computed tomography 
DORT A two-dimensional discrete ordinates (deterministic) 

transport code 
EGS �Electron Gamma Shower�, a Monte Carlo simulation 

system 
EGS4 A Monte Carlo code from the EGS system 
EGSnrc A Monte Carlo code from the EGS system 
EMERALD Past project of the SAFIR research programme at VTT 
ENDF Evaluated nuclear data file 
FBR Fast breeder reactor 
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FEM Finite element method 
FiR 1 Nuclear research reactor located in Otaniemi, Espoo 
Fluental� Neutron moderator material developed at VTT 
GEANT4 A toolkit for the simulation of the passage of particles 

through matter 
ICRU International Commission on Radiation Units and 

Measurements 
IMRT Intensity modulated radiotherapy 
INL Idaho National Laboratory 
IRDF International reactor dosimetry file 
KUCA Kioto University Critical Assembly 
LET Linear energy transfer 
LWR Light-water reactor 
MCNP General Monte Carlo N-Particle Transport Code 
Mesh2d An adaptive two-dimensional unstructured mesh 

generator 
MIT Massachusetts Institute of Technology 
MOX Mixed-oxide 
MRI Magnetic resonance imaging 
MSU Montana State University 
MultiTrans A three-dimensional simplified spherical harmonics 

(deterministic) transport code 
NCT_Plan A Monte Carlo simulation code based on MCNP 
NEA Nuclear Energy Agency 
NMF Nuclear metrology file 
OECD Organisation for Economic Co-operation and 

Development 
P1 Spherical harmonics approximation of Legendre order 

one, congruent with diffusion theory approximation 
P3 Spherical harmonics approximation of Legendre order 

three 
PMMA Polymethyl-methacrylate 
PN Spherical harmonics approximation of Legendre order N 
PSG �Probabilistic Scattering Game�, a Monte Carlo transport 

code developed at VTT 
PTV Planning target volume 
PWR Pressurised water reactor 
SAFIR Finnish Research Programme on Nuclear Power Plant 

Safety 
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SAND-II A fine multigroup structure of neutron cross sections 
SERA A simulation environment for radiotherapy applications 
SN Discrete ordinates approximation 
SP1 Simplified spherical harmonics approximation of 

Legendre order one, congruent with diffusion theory 
approximation 

SP3 Simplified spherical harmonics approximation of 
Legendre order three 

SPN Simplified spherical harmonics approximation of 
Legendre order N 

SSN Simplified discrete ordinates approximation 
STL Stereolitography file format 
Tekes Finnish Funding Agency for Technology and Innovation 
TLD Thermoluminescent dosimeter 
TORT A three-dimensional discrete ordinates (deterministic) 

transport code 
TPS Treatment planning system 
TRIGA �Training, Research, Isotopes, General Atomics�, a 

research reactor type 
VENUS �Vulcain Experimental Nuclear Study�, zero power 

critical reactor located in Mol, Belgium 
VENUS-2 VENUS reactor with mixed-oxide fuel, a NEA benchmark 
VENUS-3 VENUS reactor fuelled with partial length shielded 

assemblies, a NEA benchmark 
VTT Technical Research Centre of Finland 
X333 A utility program for multigroup data condensation 
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1. Introduction 

Ionising radiation is radiation in which an individual particle carries enough 
energy to ionise an atom or molecule by completely removing an electron from 
its orbit. Ionising radiation can cause DNA damage and mutations, and is 
therefore potentially dangerous to human health. 

There are both natural and artificial radiation sources, which are identical in their 
nature and their effect. Despite the potential dangers, sometimes the benefits in 
the utilisation of radiation sources outweigh the drawbacks. Ionising radiation 
can be used, for instance, in medicine to kill cancerous cells. Nuclear fission is 
used as an efficient source of power production to benefit all mankind, but as a 
harmful by-product also direct ionising radiation as well as long-term 
radioactive waste is produced. 

In many areas dealing with ionising radiation, it is important to be able to 
calculate the particle transport through matter. In radiotherapy applications it is 
required to estimate the radiation dose to the patient in order to ensure the safety 
and success of the therapy. In reactor physics one is interested in criticality 
safety, radiation shielding issues, activity inventories, and radiation damage 
induced to materials and components important for safety. 

Neutral and charged particle transport � referred hereinafter less strictly also as 
radiation transport � is a complicated problem especially in 3D, and generally 
requires the use of sophisticated computer codes. A variety of such computer 
codes exists, based on the development work of many person-years. These codes 
are used, for instance, in radiotherapy treatment planning and nuclear 
engineering, where the computational accuracy can be vital for safety. 
Therefore, many of these codes are carefully validated and verified for the 
purpose they are intended. 

Why should a new radiation transport code be developed, especially if it requires 
many years of development and validation work? Much of the answer depends 
on how well the current codes perform in different applications, and whether 
there are some new techniques that might supplement the computational 
radiation transport field. Naturally, the research and development process itself 
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has an educational aspect, and can give a much deeper insight into the already 
existing codes and their usage. 

The transport solution method described in this thesis is based on the tree 
multigrid technique, not utilised before in radiation transport. 

The development of the new radiation transport code started in the framework of 
the Finnish boron neutron capture therapy (BNCT) project. Patients suffering, 
e.g. from malignant brain tumours or head and neck cancer, are treated with 
epithermal neutrons obtained from FiR 1 TRIGA research reactor [1�5]. The 
radiation damage is chemically intensified in tumour cells by a boron carrier 
agent that accumulates into cancer tissue. The incident epithermal neutrons slow 
down to thermal energy range (E < 0.5 eV) in tissue, and have a high probability 
to be captured by the 10B isotope, producing short, cell range high-LET radiation 
(α-particle and 7Li recoil nucleus, see Figure 1) [6]. In addition to the chemical 
targeting of the dose, it is important to direct the epithermal beam (usually two 
fields have been used from two different directions) in an optimal way to 
produce a good thermal neutron field in the planning target volume (PTV) and to 
minimise the radiation risk to sensitive organs. To make an anatomical model of 
the patient with PTV, tomographic data of the patient is required. In BNCT, 
treatment plans are made individually for each patient based on computed 
tomography (CT) or magnetic resonance imaging (MRI), and detailed radiation 
transport modelling [7�10]. 

For treatment planning in Finland, the SERA code and its previous version 
BNCT_rtpe have been used [8, 9]. Both codes are based on the Monte Carlo 
method, and they have been developed by Idaho National Laboratory (INL) and 
Montana State University (MSU). 
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Figure 1. Nuclear reaction utilised in BNCT. A 10B nucleus absorbs a thermal 
neutron and promptly emits a 4He (alpha) particle. Together with the recoil 7Li 
nucleus, the resulting particles have a combined average kinetic energy of 2.33 
MeV and limited path lengths in tissue (5�9 µm) similar to cell dimensions [6]. 

The BNCT_rtpe code that was initially used in BNCT treatment planning was 
rather time consuming: each field calculation took about 7 hours, and the whole 
optimisation procedure for two field irradiation setup for each patient took about 
one week [11]. Since then (BNCT trials in Finland started May 1999) the SERA 
code has experienced a speed up due to some BNCT-specific algorithm changes 
and the general performance improvement of computers. To be more detailed, 
the SERA code uses integer arithmetic in the particle tracking method through 
uniform volume elements (univels), which has accelerated the transport 
calculations notably [9]. However, at that time when the first clinical protocols 
in Finland were about to start, there seemed to be an urgent need for a fast 
deterministic radiation transport code that could be used in BNCT to shorten the 
production time of treatment plans. 

There was some previous in-house experience (by Pawel Simbierowicz, a former 
research scientist at VTT) in solving elliptic differential equations (for instance 
diffusion equations) by using the novel tree multigrid technique [12, 13, 14]. It 
was soon realised that this technique might also be used for radiation transport 
problems. 
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During 1998�2001 a research and development project financed by VTT and 
Tekes, the Finnish Funding Agency for Technology and Innovation, was 
conducted. The aim of the project was to demonstrate the applicability of the 
tree multigrid technique to radiation transport modelling, especially in varying 
phantom geometries used in BNCT dosimetry. 

Radiation transport theory for neutral and charged particles [15, 16, 17] is 
discussed later in this thesis, but it is worth noting that, in practice, the basic 
transport equation is too ill-formed for a direct numerical deterministic solution 
and needs to be approximated. Therefore, full spherical harmonics approximation 
(PN) was first studied [18, 19], but the resulting equations were still found to be 
very complicated in 3D, and a simpler but somewhat more restricted, simplified 
spherical harmonics approximation (SP3) was adopted instead [20�25]. 

For treatment planning purposes, an algorithm for construction of the 
computation grid (tree multigrid) directly from segmented CT images was 
implemented. 

As a result of the project, a new code called MultiTrans was developed, capable 
of solving 3D radiation transport problems with the efficient tree multigrid 
technique, as reported in Publications I and II. The application of the new code 
to BNCT dose planning was also studied further in the BNCT dosimetry project 
co-ordinated by the University of Helsinki and funded by the Finnish Academy. 

It should be noted that 5 % accuracy of the patient dose is recommended by 
ICRU for external radiotherapy [26]. This is because the therapeutic window for 
the patient dose is usually quite narrow: often the adverse effects start to appear 
in the healthy tissue before the complete tumour control (Figure 2). Thus, the 
accuracy requirement for any new dose planning code is very strict, and careful 
verification of the code performance is needed. 
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Figure 2. An example of the effect of radiotherapy on the tumour and healthy 
tissue. The effect (cell kill) is a sigmoidal function of radiation dose. For a 
therapeutic dose, there is often only a narrow window before adverse effects in 
healthy tissue start to appear (this figure is freely modified from the book by 
Perez and Brady [27]). 

Obviously, MultiTrans as a 3D radiation transport code is not restricted to any 
specific BNCT problem, but is far more generic in nature. Algorithms for 
generating a 3D octree grid from stereolitography (STL) files already existed. 
These STL files can be exported from practically all computer-aided design 
(CAD) systems. The ability to generate octree grids directly from CAD models 
offers a flexible state-of-the-art interface for construction and upgrading of the 
calculation geometry. 

Since the first application of the MultiTrans code to a BNCT dosimetry planning 
problem, the applicability of the MultiTrans code in coupled photon-electron 
transport problems encountered in conventional radiation therapy planning was 
studied (Publication V). This work was financed by Varian Medical Systems 
Finland Oy. 

Lately, the MultiTrans code has also been applied to reactor physics problems, 
where the radiation transport codes are most commonly used. This has been 
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done within the EMERALD project of SAFIR, the Finnish Research Programme 
on Nuclear Power Plant Safety. For instance, a multiplication eigenvalue search 
algorithm has been implemented (Publication III). It should be noted that the 
accuracy requirement of computer codes is high in reactor physics as well. Some 
well-known 3D neutron transport benchmarks have therefore been conducted, 
such as the VENUS-3 reactor dosimetry benchmark (Publication IV). 

This thesis first provides the reader with a short introduction to the 
computational methods of radiation transport. After that, the basis of the new 
MultiTrans code � the tree multigrid technique and the simplified spherical 
harmonics approximation � are reviewed. The objective is to give a somewhat 
more general overview of radiation transport, in order to be able to piece 
together the special features of the new method. Finally, the applications of the 
new radiation transport code to various transport problems are reviewed, and 
both the benefits and the drawbacks of the new method are discussed. 
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2. Aims of the study 

The study aimed to develop and test a new 3D deterministic radiation transport 
code. The specific aims were: 

1. To study radiation transport theory in order to find a suitable 
deterministic 3D transport approximation to be used in conjunction with 
the tree multigrid technique. (Theoretical overview presented in this 
thesis) 

2. To apply the tree multigrid technique for the first time in 3D neutron 
transport modelling. (Publication I) 

3. To test the applicability of the new code in BNCT neutron and photon 
dose-planning problems. (Publication II) 

4. To extend the applicability of the new code to rector physics problems 
with multiplicative systems. (Publication III) 

5. To verify the accuracy of the code in reactor physics problems by 
calculating dosimetric responses for a real nuclear reactor. (Publication 
IV) 

6. To extend the applicability of the new code to coupled photon-electron 
transport problems and to test the code in conventional radiotherapy 
dose planning. (Publication V) 
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3. Overview of radiation transport theory 

The term �transport theory� is commonly used to refer to the mathematical 
description of the transport of particles through a host medium [15]. Transport 
theory arises in a wide variety of disciplines. The foundation of transport theory 
lies in the kinetic theory of gases developed by Austrian physicist Ludwig 
Boltzmann (1844�1906). In fact, there are at least three equations named after 
Boltzmann: a famous equation for entropy, an equation concerning particles in a 
gravitational field, and an equation for particle transport. The latter one is often 
called the Boltzmann transport equation. 

When time-dependence is suppressed, the Boltzmann transport equation for 
neutral particles � such as neutrons and photons � has a static form 

=ΩΨΩ+ΩΨΩ⋅∇ ),,(),,(),,(
rrrrrrr

ErErEr Tσ  

∫∫ ′Ω′Ω′′ΨΩ′Ω′+Ω EddErEErErQ S
rrrrrrrr ),,(),,,,(),,( σ  ,        (3.1) 

where ),,( ΩΨ
rr Er  is angular flux (function of position rr , energy E and angle 

Ω
r

), ),,( Ω
rr ErTσ  is total cross section, ),,,,( Ω′Ω′

rrr EErSσ  is scattering cross 
section, and ),,( Ω

rr ErQ  is a source term. The direction vector Ω
r

 is illustrated 
in Figure 3 in the Cartesian co-ordinate system. The fundamental equation (3.1) 
can also be seen as an expression of the equation of continuity: 

losses + leakage = production.                                (3.2) 

The Boltzmann equation is an integro-differential equation, which means that 
the integral scattering source term on the right-hand side depends on the solution 
itself. It is said that, in this form, the Boltzmann equation is almost impossible to 
handle [28]. Exact analytical solutions exist only for some very special cases, 
such as for point, line or plane source in an infinite homogeneous medium or for 
the so-called Milne problem (for an infinite homogeneous half-space) [16]. The 
complexity of the equation usually forces one to implement numerical (i.e., 
computer-based) methods of solution. For this purpose it is practically necessary 
to do mathematical approximations, which are always compromises between 
physical accuracy and feasibility. 
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Figure 3. Direction vector Ω
r

 illustrated in Cartesian co-ordinate system. 

Numerical methods in radiation transport can be divided into deterministic and 
stochastic methods. In the deterministic methods, the radiation transport of 
neutral particles is described by solving the Boltzmann equation numerically. In 
stochastic methods, i.e. the Monte Carlo method, individual particle trajectories 
are followed through the geometry, until particle escape or absorption. The latter 
method does not use the Boltzmann equation at all: instead it uses simple 
probabilistic laws for each emission, scattering and absorption event that the 
particles undergo in their history. Thus, the stochastic nature, the random walk in 
which particles stream in reality, is imitated by statistical computer simulation. 
As the Boltzmann equation represents the collective behaviour of the particles, 
simulating a large number of particle trajectories will lead to statistical flux 
density that will be the solution of the Boltzmann equation within the obtained 
statistical uncertainty. 

Neutrons and photons deposit their energy into matter indirectly through 
creation of secondary charged particles. The Boltzmann equation (3.1) holds for 
neutral particles. If charged particles are concerned, the situation is more 
complicated. Charged particles, such as electrons, interact with the matter 
through the long-range Coulomb force. Charged particle transport is in general 
described by the Boltzmann-Fokker-Planck (BFP) equation. 

Electrons are often those secondary particles which actually deposit the energy 
into material, e.g. induce the primary dose to the tissue in radiotherapy. If a 
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sufficient local secondary charged particle equilibrium (c.p.e.) condition exists, 
one can use mass-energy absorption coefficients (for photons) or kerma factors 
(for neutrons) to directly convert the calculated fluence rate to dose rate [29]. In 
other words, under the c.p.e. condition, the dose is equal to collision kerma 
(kinetic energy released in material subtracted by bremsstrahlung fraction). 
However, if the c.p.e. condition is not met, the transport of electrons might have 
a vital effect on the dose distribution, e.g. in a case with strong tissue 
heterogeneities [30, 31]. 

One approximative form of the BFP-equation is the Boltzmann-CSD 
(continuous-slowing-down) equation. It is possible to include the CSD-term into 
electron �pseudo� cross sections and the Boltzmann equation for neutral 
particles can be applied for electrons as well [32]. The deterministic solution of 
the electron transport can then be based on essentially the same concepts as the 
neutral particle transport. 

Also statistical simulation can be used to solve the charged particle transport. It 
should be noted that the stochastic Monte Carlo method is often very time 
consuming. The reason is that in order to get results � fluence or dose values for 
instance � with sufficiently low statistical uncertainty, usually a huge number of 
particle tracks have to be simulated. Especially the tracking of electrons is tedious, 
as the long-range Coulomb force results in a large number of scattering events. 

Whereas electron transport is sometimes important in radiotherapy, in reactor 
physics one is often dealing with fissionable material. This leads to a new class 
of problems, where instead of solving flux values for a certain fixed source 
distribution, the principal target is to solve the criticality eigenvalue for the 
multiplicative system of fission neutrons. This eigenvalue problem can be 
formulated with the Boltzmann transport equation by just adding a fission 
production term on the right-hand side: 
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In equation (3.3), ),( Errχ is the fission spectrum, ),( Errν  is the number of 
neutrons emitted per fission, ),( Erf rσ is the fission cross section, and keff is the 
multiplication eigenvalue. The keff parameter is introduced in order to bring the 
equation to a stable solution: physically the keff value can be interpreted as a ratio 
of the production rate of neutrons due to fission to the loss rate due to absorption 
and leakage. 

The system (e.g. a nuclear reactor or a nuclear fuel transportation cask) is said to 
be sub-critical when keff < 1. In this case, the fission power, i.e. the total energy 
released by fission events, and amount of neutrons are decreasing to zero, unless 
the system has already reached the zero power level. If keff = 1, the system is 
critical and maintains a constant chain reaction at a constant power level. In 
order to make the fission power increasing, e.g. to raise the power of a nuclear 
reactor, the keff value has to be > 1, where the system is called overcritical. 

Here one can make a general remark, not related to transport theory, but to 
reactor kinetics: a certain fraction β of fission neutrons is born delayed, in 
contrast to prompt neutrons which are released immediately in the fission event. 
For 235U, β = 0.65 %. These delayed neutrons make it possible to control a 
nuclear reactor, as they slow down the exponential time behaviour of the number 
of neutrons, and give control systems sufficient time to react to the changing 
power level. If all the fission neutrons were born promptly, a controlled chain 
reaction and the production of electricity in nuclear power plants would be 
impossible. 

Naturally, the radiation transport problems related to reactor physics are not only 
restricted to criticality problems, but there are many other types of problems as 
well. For example, calculated neutron flux is important for estimation of the 
embrittlement of reactor materials, such as the pressure vessel. The integrity of 
the pressure vessel is vital for nuclear safety. Or, as another example, calculated 
neutron flux distribution might be required for estimation of induced 
radioactivity of different reactor internals after an irradiation period. In these 
kinds of problems, a fixed source distribution (core power distribution) is 
usually used as a source term, without doing any criticality eigenvalue search. 

Criticality and other issues of nuclear safety naturally require reliable and well 
benchmarked computational systems with known accuracy in order to be able to 
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use large enough safety margins. It has already been mentioned that 5 % 
accuracy in dose determination is also recommended for radiotherapy in order to 
ensure the safety and the success of the therapy [26]. Thus, in almost every 
application of radiation transport, the computational methods used have a high 
accuracy requirement. 

3.1 Deterministic methods 

The numerical solution of the Boltzmann transport equation (3.1) in realistic 
heterogeneous 3D problems always requires some approximations. There are a 
few approximations which are common for all deterministic methods, such as 
the Legendre expansion and the multigroup approximation of the cross sections. 

With an assumption that scattering depends only on incident angle, an expansion 
of anisotropic scattering cross section can be made with the use of Legendre 
polynomials up to order L 

           (3.4) 

where the incident angle is 

µ0 = ⋅ ′
r r
Ω Ω  .                                      (3.5) 

Another approximation that is always used in deterministic methods, also related 
to cross sections, is called the multigroup approximation. As the Boltzmann 
transport equation is energy-dependent, there has to be some way to reduce the 
problem involving scattering from one energy to another into a manageable form 
for numerical solution. In the multigroup approximation (Figure 4), the 
continuous (point-wise) cross sections are condensed into some energy group 
structure, in which each group has different energy width. The group flux 
denoted with index g becomes 

                                      (3.6) 

∑
=

′+
≈Ω′Ω′

L

l

S
ll

S EErPlEEr
0

0 ),,()(
4

12),,,,( rrrr σµ
π

σ

 
dEErr

g

g

E

E

g ),,(),(
1

ΩΨ=ΩΨ ∫
− rrrr



 

 29

and the group total cross section, for instance, will be 

 

 

(3.7) 

where 

∫ ΩΩΨ=Φ
π4

),,(),(
rrrr dErEr                                (3.8) 

is the scalar flux. 

Similarly, the group scattering cross section becomes 

 

 

(3.9) 

It is worth noticing that, in equations (3.7) and (3.9), the scalar flux is used to 
weight the group cross section in order to define the exact and equivalent 
multigroup representation of the original transport equation. That is to say, to 
obtain the solution, ),( ErrΦ , one needs the solution, ),( ErrΦ . In practice, a 
certain approximative weighting spectrum has to be used in order to estimate the 
average group constants correctly. These weighting spectra are case-specific, i.e. 
they should represent a typical flux spectrum in the material and in the problem 
for which they are to be used. For instance, a very different weighting spectrum 
is used for the reactor core than for the concrete of the biological shield far from 
the core. The basic nuclear data also varies, some cross sections having strong 
resonance peaks within very small energy width. The multigroup approximation 
therefore always introduces some source of error, depending on how fine or 
broad the energy group widths are, and how accurately the used weighting 
spectrum represents the actual flux. 
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Figure 4. Division of the energy domain into G energy groups. 

The Legendre expansion coefficients of the microscopic scattering cross sections 
are tabulated in multigroup format for different isotopes in the standard cross 
section libraries, such as BUGLE-96 (with 47 neutron groups and 20 photon 
groups) for instance [33]. The macroscopic cross sections can be calculated with 
corresponding coefficients (atomic densities) for different material constituents. 

For a multigroup structure having G energy groups, the Boltzmann transport 
equation becomes 
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The terms ),( ΩΨ
rrrg  and ),( Ω

rrrQg  above are actually components of 1×G 
vector functions, where G is the total number of energy groups in the multigroup 
approximation. The group-to-group scattering cross sections )(, rgg

ls
r>−′σ  are 

components of G×G (possibly full) scattering matrix. 

One can solve the multigroup equations successively as a sequence of effective 
one-group problems [34] by treating the contribution from other groups as an 
effective source term: 
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The fission source can be defined as 

 .                   (3.12) 

It is important to note that the spatial dependence of the fission source is 
identical in each group equation [34]. The �in group� transport equation 
becomes 

),(),()(),( Ω=ΩΨ+ΩΨΩ⋅∇
rrrrrrrr

rSrrr ggg
t

g σ  

. 

(3.13) 

3.1.1 Discrete ordinates method 

In the discrete ordinates method (also known as SN method), the angular variable 
is discretised into a small number of directions or rays [15, 16, 35, 36]. The 
particle transport equation is written for each ray, including various coupling 
terms describing ray-to-ray transfer. In the following sections, the SN formalism 
presented in the book by Duderstadt and Martin [15] is more or less quoted. 

A set of M discrete directions { }mΩ�  and corresponding quadrature weights 
{ }mw  need to be chosen. The quadrature weights can be thought to represent an 
area on the unit sphere of direction cosine triplets ),,( mmm ξηµ . The numerical 
integration over angle in the Boltzmann transport equation can then be estimated 
as a weighted sum. 

The choice of discrete directions is not obvious in many cases � particularly in 
multidimensional geometries. In the following, only 3D Cartesian co-ordinate 
system is considered. 

Since mΩ�  is a unit vector, the directions cosine triplet ),,( mmm ξηµ  must satisfy 
equation 
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Furthermore, if no a priori information on the angular flux solution exists, a 
symmetric distribution of direction cosines can be assumed. The angular 
direction set should then be invariant under arbitrary 90° rotations about the co-
ordinate axes, and 180° reflections about the xy, xz, or yz planes. This means that 
only one octant of the unit sphere needs to be considered. The direction cosine 
sets have to be identical, i.e. { } { } { }mmm ξηµ == , and lie on latitudes on the 
unit sphere (Figure 5). Otherwise, the point arrangement would not be invariant 
under rotation of one axis into the other. The reflection property implies that 
each set { }mα  is symmetric about α=0. Therefore, one needs to choose only 
terms α1,α2,�,αM/2. 

The equation (3.14) means, for instance, that 

1       ,1 22
1

2
1

222 =++=++ +− kjikji αααααα . 

Subtracting these two equations and noting that i, j, and k are arbitrary, one finds 
that 

Cjjii =−=− +−
22

1
2

1
2 αααα , 

or 

Cii )1(2
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2 −+= αα .                                      (3.15) 

There is a direction mΩ�  corresponding to (α1,α1,αM/2), since there are M/2 
points for α>0. This implies 
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Combining equations (3.15) and (3.16) gives 
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Now one can calculate the constant C to derive a recursive relation 
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This means that choosing α1 will determine explicitly the direction cosine sets 
{ } { } { }mmm ξηµ == . By choosing α1 to be large or small, the points (Figure 5) 
can be clustered close to α=0 or near the poles α=±1. 

From a practical point of view, a variety of quadrature sets is usually supplied 
with the discrete ordinates transport computer codes. Actually, the sets can also 
be �biased� or �asymmetric� in ξ, e.g., additional directions can be supplied 
along the -Z direction in order to give fine detail to polar streaming. 
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Figure 5. Symmetric point arrangement on one octant of unit sphere. 

In addition to the selection of suitable quadrature sets, the resulting transport 
equations for each discrete direction have to be written as a set of algebraic 
equations adequate for numeric solution by computers. The SN equation in the 
3D Cartesian co-ordinate system has the form 
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1

2
1

2
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Subscripts such as i+1/2 refer to the internal boundaries and N represents the 
angular flux. The coefficients A, B, and C are cell face areas perpendicular to the 
axes from which the direction cosines µ, η, and ξ are measured, and T

gkji ,,,σ  is 
the total cross section. kjiV ,,  is the cell volume and gmkjiS ,,,,  is the source term. 

Whereas the integro-differential form of the Boltzmann transport equation can 
be converted to a set of algebraic SN equations by treating the angular integration 
with a weighted sum over discrete angular directions, this approach also causes 
certain problems. The rotational invariance of the original transport equation no 
longer holds for the SN approach, due to angular discretisation. This sometimes 
leads to so-called �ray effect�, i.e. non-physical artefacts in the flux solution by 
the discrete ordinates method [37, 38]. 

Another problem with the SN method is that also false negative flux values can 
easily be generated. Non-physical negatives can cause wrong overall results and 
thwart convergence [36]. There are different fix-up methods for preventing this 
to happen. The easiest fix-up is to set all emerging negative flux values to zero, 
but this will underestimate the true result. Additionally, if false negatives are 
easily generated, it is apparent that inaccurate positive numbers can also be 
generated, and these errors are much harder to detect. The prevention of negative 
flux values is a characteristic problem for the SN method. The undesired side 
effects of this problem can be avoided or at least minimised with a proper 
solution technique and by choosing suitable input parameters. 

There are several numerical flux evaluation strategies for the SN equations, such 
as the linear or diamond difference model, step model, linear zero and weighted 
difference model, as well as some semi-analytical methods like nodal and 
characteristic methods [36]. Details of these methods are beyond the scope of 
this review. However, the accuracy of the SN approximation depends a lot on the 
solution method used and all the input parameters, including the discrete 
ordinates set. A user of the SN codes should be aware of all the drawbacks and 
benefits of the different solution methods in order to be able to use these codes 
both efficiently and reliably in various transport problems. 
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3.1.2 Spherical harmonics method 

The angular flux can be expanded by using spherical harmonics. The 
trigonometric form (instead of the imaginary exponential form) is used here to 
obtain more practical real equations for the flux. The flux expansion can be 
written as [18] 

 

(3.19) 

where )(cosθm
lP  is an associated Legendre polynomial [28] 

.                         (3.20) 

Polar angle θ  and azimuthal angle ϕ  of the spherical co-ordinate system are 
illustrated in Figure 6. 
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Figure 6. Direction vector Ω
r

 in spherical co-ordinate system with polar angle 
θ  and azimuthal angle ϕ . 

Substituting the flux expansion (3.19) into the Boltzmann transport equation (3.1), 
multiplying it with an associated Legendre polynomial, and then integrating the 
resulting equation over direction space, a set of PN transport equations can be 
derived for each associated Legendre polynomial by using the orthogonality of the 
base functions. For ϕ-terms the orthogonality integrals [28] are 
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                                                                                               , 

 

and 

 

and the orthogonality integral for the associated Legendre polynomials is [28] 

                                                                                                                   . 

The resulting streaming terms 

 

and 

 

are calculated by writing the direction vector in the form 

 

and using the trigonometric identities 
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and the recurrence relations [28] of the associated Legendre polynomials 

                                                                                                  , 

 

and 

                                                                                                                           . 

The scattering integral 

 

is calculated with the use of the addition theorem [28] 

 

 

and the trigonometric identity 

cos ( ) cos cos sin sinm m m m mϕ ϕ ϕ ϕ ϕ ϕ− ′ = ′ + ′  . 

Separate equations are obtained for sine and cosine terms. The resulting PN 
equations (derived by the author) are 
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and 

 

 

 

 

(3.22) 

for each [ ]Nl ,0∈  and [ ]llm ,−∈ , with the constraints that 

0,, ≡= mlml γψ  for 0<l  or Nl > . 

The explicit spatial and energy dependency of the terms has been removed from 
the notation, for simplicity: e.g. the term Tσ stands for the total cross section 

),( ErT r
σ . It should be noted that also the source has been expanded in spherical 
harmonics 

 

(3.23) 

Fletcher [18] has derived equations which are very similar to equations (3.21) 
and (3.22), except that Fletcher�s equations do not take anisotropic source terms 
into account. Similar (mathematically equivalent) PN equations have also been 
derived for imaginary exponential form of the flux expansion [15], leading to a 
somewhat simpler approximation from the mathematical point of view, but less 
suitable for numerical solution (due to the resulting imaginary part). 

It can be seen from equations (3.21) and (3.22) that a set of 15 coupled equations 
for 15 unknowns is obtained for Legendre order 3 approximation (i.e. P3 
approximation). For numerical solution, the first-order equations (3.21) and 
(3.22) are problematic, as the first-order derivatives will not be positive definite. 
However, by substituting odd moment terms (with l odd) into the even order 
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equations, it is possible to obtain equations in the second-order form, and also 
reduce the number of equations and unknowns. For instance, in the second-order 
multigroup P3 approximation, �only� 6 coupled equations with 6 unknowns 
result: 

 

 

  (3.24) 
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(3.27) 
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The group transport cross sections are defined by subtraction of the 
corresponding Legendre component of the group scattering cross section from 
the group total cross section: 
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To the author�s knowledge, these second-order P3 equations (3.24)�(3.29) have 
not been explicitly published elsewhere. Fletcher has derived similar equations 
by setting extra constraints for the transport cross sections, that is, all alσ  are set 
equal except for 1aσ  [18]. 

It is worth noticing that only the scalar source term 00q  is taken into account in 
the source expansion (3.23) in the above second-order P3 approximation, 
equations (3.24)�(3.29), for simplicity. The higher source moment terms can be 
included, but they increase the complexity of the equations even more. 

The PN approximation has been well established in transport theory [16]. 
However, for numerical solution it is rather ill suited. PN equations have been 
used primarily for theoretical (i.e., analytical) investigations of solutions of the 
transport equation [15]. Especially in 3D, the complexity of the equations makes 
it very hard to construct a numerical algorithm. Despite these difficulties, 
Fletcher introduced as early as in the 1970s a small computer programme to 
derive second-order (odd) PN equations of different Legendre orders for slab 
geometry, and also obtained numerical P1 and P3 multigroup solutions in XY and 
XYZ geometries [18, 19]. 

There are certain features that make the application of the PN approximation for 
radiation transport problems very tempting. With the spherical harmonics 
approximation, the angular dependency of the flux actually becomes a property 
of the pre-Hilbert space with spherical harmonics as base polynomials of the 
vector function space. Thus, the resulting equations and unknowns depend only 
on energy and spatial co-ordinates. This is mathematically an elegant way to get 
rid of the problematic integro-differential form of the basic transport equation 
which contains implicit angular dependency! In addition, by using a higher 
Legendre order approximation, the solution will, in principle, approach the exact 
solution of the transport equation. Furthermore, the spherical harmonics base 
polynomials are rotationally invariant, so the rotational invariance of the original 
Boltzmann transport equation is also preserved. Thus, ray effects � encountered 
with the SN method � will not emerge in the PN approximation. 

One drawback of the PN approximation is that no exact vacuum boundary 
condition can be defined [16]. At the vacuum (or free surface) boundary, 
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particles escape from the geometry with no possibility to return. The problem is 
that this vacuum boundary condition [15, 16] 

0)( ≡ΩΨ
r

 for 0<⋅Ω nr
r

,                               (3.31) 

where nr  is an outward normal to external surface, means that the flux is 
discontinuous at 0=⋅Ω nr

r
, which cannot be exactly represented by the 

continuous spherical harmonics base functions. Many approximative conditions 
are possible, though. Mark or Marshak boundary conditions are the most well-
known [16, 39, 40, 41]. For instance, the Marshak vacuum boundary condition 
[41] is defined as 

∫
<⋅Ω

=ΩΨ⋅ΩΩΩ
0

0)()(
n

m
l nPd

rr

rrrrr
.                           (3.32) 

Concerning the second-order form of the PN equations, it is worth noticing, that 
by solving all the unknowns, only even moment terms are actually solved. 
Naturally, this includes the scalar flux (the 00ψ term), which is probably the 
most interesting quantity. However, if the angular flux has to be determined as 
well, then the odd moment terms should be solved in addition. As a final remark, 
it should be noted that spherical harmonics are sometimes used also with the 
discrete ordinates method discussed in the previous section in order to store the 
angular flux during the computation in a more compact manner. However, this 
has nothing to do with the actual PN approximation of the transport equation. 

3.1.3 Finite element method 

The finite element method (FEM) is the name commonly applied to the 
expansion of the solution to a set of partial differential equations in a set of local 
basis functions [15, 17]. Finite element methods can be adapted to problems of 
great complexity and unusual geometry. 

In radiation transport, the finite element method can be applied to both first and 
second-order forms of the transport equation. However, in the latter case, it is 
extremely difficult to implement anisotropic scattering in multidimensional 
geometries [15]. In the following, the theoretical background of the finite 
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element method found from radiation transport literature is briefly reviewed. The 
application of the method to second-order form of the transport equation will, 
however, not be covered in this context any further. In addition, the first-order 
form will only be covered superficially, just to give the reader a general idea of 
how the finite element method works. 

The finite element method is always applied to an integral formulation of the 
original partial differential equation of interest. The Boltzmann radiation 
transport equation can also be written in so-called integral law (or weak) form. 
Multiplying the Boltzmann transport equation (3.1) with an arbitrary angular 
flux belonging to Sobolev space EHr ∈Ω),(

rrψ  and integrating over the phase 
space, one can rewrite (considering for simplicity only one-speed form) the 
transport equation (3.1) as [15] 

),(),(),( ψψψ QK =Ψ+Ψ∇⋅Ω
r

.                          (3.33) 

Here, the real inner product has been defined as 

∫∫ ΩΩΩ≡
V

drdrgrfgf
rrrrrr ),(),(),(  

where f and g are two elements of the Sobolev space 

                                                                                                                           , 

which ensures that phase space integrals exist. In addition, a collision operator K 
has been introduced 

∫ Ω′Ω−≡ o
rrr

o
r

o ),,()( rrK ST σσ  . 

If one assumes inhomogeneous boundary conditions 

0   ),,(),( 0 <⋅ΩΩΨ=ΩΨ nrr ss
rrrrrr

 

and defines the inner product to characterise the boundary 

Ω⋅ΩΩΩ≡ ∫∫∂
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divided further for incoming and outgoing directions 0<⋅Ω nr
r

 and 0>⋅Ω nr
r

 as 

−+
−= gfgfgf ,,,  

then (after some manipulation including integration by parts of the streaming 
term) equation (3.33) can be rewritten in a form [15] 

−+
Ψ+=Ψ+Ψ+∇⋅ΩΨ ψψψψψ ,),(),(,),( 0QK

r
 .        (3.34) 

This is known as the integral law or weak form of the transport equation. 

It is worth noticing that the boundary condition is included in the integral law 
(3.34). This is an example of a so-called natural boundary condition, and is a 
consequence of integration by parts. 

In the finite element method one seeks the solution in a finite element subspace 
E

h HS ⊂ , i.e., a solution hh Sr ∈ΩΨ ),(
rr

 such that equation (3.34) is satisfied 
for all hh Sr ∈Ω),(

rrψ . Sh is a specially constructed subspace with local basis 
functions ),( Ω

rrrh
iψ , i=1,2,�,N, where N is the dimension of Sh, typically the 

number of nodes in the mesh. In other words, the solution is expanded as a series 

∑
=

ΩΨ=ΩΨ
N
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),(),(
rrrr ψ  , 

which is then inserted into equation (3.34), and a matrix system is obtained [15] 

SA
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 . 

There are different ways to construct the finite element subspace Sh. Just to 
illustrate how the basis functions could be chosen, a 1D triangular mesh is 
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considered next as an example. It should be noted that for multidimensional 
elements one can also formulate basis functions that are direct products of 
simple 1D basis functions [15]. 

Let x be the spatial co-ordinate and µ the angular direction cosine: a basis 
function for global node n is then defined [15] as a direct product of 1D basis 
functions for the spatial node i and angular node j 

)()(),( µψψµψ jin xx =  . 

Continuous standard �tent� functions can be used as local basis functions (see 
Figure 7): 
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1 1

ψ
i (x)

ψ
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ψ
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xi xi+1xi-1 µj+1µjµj-1  

Figure 7. Standard �tent� basis functions of 1D triangular finite elements. 

There are also other possibilities to construct the basis functions, such as using a 
higher order polynomial over a general element such as a triangle, or using a 
product of higher order 1D polynomials. For instance, in 1D one can introduce 
an additional node and define quadratic basis functions instead of triangular. 
However, higher order elements increase the coupling between the neighbour 
elements. For cubic elements the interaction would extend over the three nearest 
neighbours on either side. The increased coupling is undesirable, as it will also 
increase the bandwidth of coefficient matrix A of the matrix system (3.35). 

The advantages of the first-order FEM approach to radiation transport are the 
ease of incorporating anisotropic scattering, mitigation of the ray effect, and 
convenient treatment of boundary conditions as natural. The major disadvantage 
is that the resulting asymmetric matrix system has to be solved by using direct 
matrix inversion methods, which are time consuming and in large problems 
severely limited by the memory requirements. 

In the second-order FEM approach (not covered any further in this context) the 
resulting matrices are symmetric and positive definite, which makes it possible 
to use iterative solution techniques [15]. However, implementation of 
anisotropic scattering in multidimensional geometries is far from trivial. In 
addition, voids can present a problem because of the ( Tσ )-1 term [15]. Ray-
tracing has been used to overcome this problem [42]. 

The major advantage of FEM is the possibility to model complicated geometries 
with a variably sized, unstructured mesh (Figure 8). For instance, an adaptive 
tetrahedral finite element mesh can be used in 3D, providing gains in efficiency 
that may not be realisable on uniformly defined grids. In many cases, also 
dynamic mesh refinement can be used, based on local error estimate of the 
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solution [43]. Thus, the mesh is locally refined, not only to adapt to the 
geometry, but to ensure accuracy of the solution everywhere based on feedback 
from the obtained error estimate. 

 

Figure 8. An illustration of an unstructured triangular finite element mesh  
(a Mesh2d example picture with permission from UCL Département de 
mécanique http://www.mema.ucl.ac.be/~wu/mesh2d/mesh2d.html). 

There are also hybrid schemes where FEM has been combined with discrete 
ordinates or spherical harmonics solutions [42, 44�46]. FEM has been applied to 
reactor physics problems already for a long time [47�49]. FEM has been applied 
also to radiotherapy calculations, including solution of the Boltzmann-Fokker-
Planck equation for charged particle transport [50, 51]. The applicability of the 
FEM for inverse problems encountered, for instance, in intensity modulated 
radiotherapy (IMRT) has also been studied lately [52, 53]. 

An interested reader can find in-depth studies, e.g. from the book by Ackroyd 
[49], concerning the use of FEM in reactor and radiation physics. In general, 
FEM is widely used in structural analysis, electromagnetics and computational 
fluid dynamics. 
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3.2 Statistical methods 

3.2.1 Monte Carlo method 

Monte Carlo methods [54, 55] and deterministic transport methods are 
fundamentally very different. Deterministic methods solve the transport equation 
for the average particle behaviour. By contrast, Monte Carlo does not solve an 
explicit equation, but rather obtains answers by simulating individual particles 
and recording some aspects of their average behaviour. 

The Monte Carlo methods are based on statistical sampling techniques, and the 
term �Monte Carlo� naturally refers to the games of chance. It was Nicholas 
Metropolis who named this mathematical method during World War II at Los 
Alamos, where the first nuclear weapons were developed. However, the idea of 
random sampling to solve mathematical problems is much older: the method was 
used as early as in 1772 by Compte de Buffon, and in 1786 Laplace suggested 
that π could be evaluated by random sampling. Eventually, it was the 
development of computers that really made the Monte Carlo method a 
breakthrough. 

The Monte Carlo method can be used to duplicate theoretically a statistical 
process, such as the interaction of nuclear particles with materials. The 
individual probabilistic events for each particle are simulated sequentially, in 
order to produce a particle track through the problem geometry. The particles are 
followed until escape or absorption, or some other terminal category. Probability 
distributions are randomly sampled for each particle interaction. The probability 
distribution for scattering angle, for instance, can be found from the primary 
sources of nuclear data, such as the Evaluated Nuclear Data File (ENDF) system 
[56]. 

The probability of a first collision for a particle between s and dss +  along its 
line of flight is given by 

dsedssp TT
σσ−=)(                                          (3.36) 
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where Tσ  is the macroscopic total cross section of the medium and is 
interpreted as the probability per unit length of a collision. The distance to the 
next collision can then be calculated from the expression 

                                                 (3.37) 

where ζ  is a random number uniformly distributed between 0 and 1. 

After a collision occurs, the collision nuclide is identified, based on probability 
proportional to weight fractions of each material constituent. Then the collision 
type (absorption, elastic scattering, inelastic scattering, etc.) is sampled based on 
cross sections (i.e. probabilities for different events) taken from the material 
cross section library. In the case of the elastic scattering, for instance, the 
scattering angle is further sampled from the probability tables. The velocity of 
the scattered particle is then dictated by two-body kinematics, and the particle 
track can be continued. 

Monte Carlo methods are very time consuming: in order to get results with 
sufficiently low statistical uncertainty for some tally volume, generally a huge 
number of source particles and particle tracks have to be simulated. Especially 
the tracking of electrons is tedious, as electron transport is dominated by the 
long-range Coulomb force, resulting in large numbers of scattering events. 
Additionally, Monte Carlo methods very seldom provide comprehensive data on 
flux details, but merely give answers in some user-specified points or geometry 
volumes. On the other hand, Monte Carlo methods can be considered very 
reliable when sufficiently low statistical uncertainty is achieved. 

MCNP is the well-known successor of the early Monte Carlo codes developed at 
Los Alamos [57]. Among the radiation transport codes used in nuclear 
engineering, it has almost obtained the status of a standard, but there are also 
many other transport codes using the Monte Carlo method. In the medical 
physics community, Electron Gamma Shower (EGS) codes (e.g., EGS4 and 
EGSnrc) are widely used for photon and electron transport problems [58, 59, 60]. 
In electron transport problems, for example, in simulation of ionisation chamber 
responses in cases where c.p.e. condition is not met, EGSnrc seems to produce 
the most accurate results [60]. MCNP is capable for electron transport as well, 
but uses somewhat different algorithms from EGS codes, and can produce quite 

ζ
ζ )ln(

=s
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inaccurate electron dose results with default options [60, 61]. This poses some 
extra difficulties for ionisation chamber modelling in BNCT beams, as EGS 
codes are not capable for neutron transport, and therefore MCNP is in practice 
the only viable option for coupled neutron-photon-electron simulations. 
However, it seems that with suitable input parameter options, also MCNP can 
produce good results for electron dose, and is also widely used in radiation 
dosimetry applications [62]. For high-energy physics, on the other hand, a 
special Monte Carlo code GEANT4 exists, having unique capabilities to 
simulate all kinds of particle interactions and heavy particle transport [63]. Quite 
recently the capacity of GEANT4 to simulate neutron transport in the thermal 
energy region has also been tested [64]. 

A new Monte Carlo code has been recently developed also at VTT. It is called 
PSG (named after Probabilistic Scattering Game), and it uses a modification of a 
fast Woodcock tracking method [65, 66]. The Woodcock tracking method is 
based on introducing virtual collisions in such a way that the effective total cross 
section (majorant cross section) can be set equal in all material regions. 
Therefore, when simulating particle tracks, it is not necessary to calculate the 
shortest optical distance to the material boundaries each time the path length is 
sampled, which makes the code performance more effective. PSG is used for 
calculation of multiplication eigenvalues, group constants, reactor kinetic 
parameters, pin-wise nuclear fuel power distributions, discontinuity factors and 
other parameters needed for nodal diffusion calculations and nuclear reactor 
analysis [34, 67, 68]. It is also planned to be used for burnup calculations. For 
many applications, the new PSG code is considerably faster than MCNP, for 
instance. The PSG code is, however, still at an early stage and needs further 
development. 

In BNCT treatment planning, the Monte Carlo code SERA and its predecessor 
BNCT_rtpe have been used in Finland [7�10]. In SERA, uniform volume 
element (univel) reconstruction of the patient geometry is used, allowing integer 
arithmetics to be utilised in calculation of the distance to boundary, in order to 
speed up the particle tracking. In addition, SERA uses multigroup cross sections 
to improve efficiency even further. 

The NCT_Plan system [69] has also been used by the BNCT community. 
NCT_Plan has been developed in connection with the clinical research 
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programme centred at Harvard and MIT. NCT_Plan has algorithms for creating 
voxelised patient geometry and uses customised radiation transport routines of 
MCNP, with a significant increase in the execution speed of the calculations [70] 
compared to the standard version of MCNP. 

The Monte Carlo method has become more and more important over the years, 
due to increased computer capacity. Particle tracking by Monte Carlo method is 
also well suited for parallel computing. 
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4. Tree multigrids and simplified spherical 
harmonics approximation 

4.1 Tree multigrid technique 

4.1.1 Construction of the spatial tree structured domain 

The simplest way to discretise a spatial domain is naturally to divide it into 
uniform, equidistant mesh. However, a very fine mesh might be required in 
problems which are large but contain small geometrical details. This will both 
affect the memory allocation required for the data storage of the unknowns, as 
well as the total amount of required arithmetical operations in order to solve the 
original numerical problem. Especially when using uniform mesh in complicated 
3D problems, the required computational work and the overall dimension of the 
problem might become too demanding even for modern computers. 

In the majority of practical problems there are sub-domains which require fine 
discretisation, but there may be other sub-domains that allow a considerably 
coarser grid. For instance, a fine grid is required near the borders and material 
interfaces, but a coarse grid can be used elsewhere. In such a case, the traditional 
finite difference methods, which introduce the simplest discretisation process 
and equations, can lead to an unnecessarily large discrete system. 

There are methods in which the computational domain is divided into finite 
elements [15, 42�53], as already discussed in Section 3.1.3. These finite elements 
are often made triangular or polygonal. As the finite element method offers an 
elegant way to represent the geometry, the numerical algorithm for radiation 
transport is far from trivial, especially with anisotropic scattering in 
multidimensional geometry [15]. Also the generation of a suitable finite element 
mesh is more or less a difficult and time-consuming task, even though several 
algorithms and freeware codes exist. 

The method discussed here is somewhat different from the FEM approach. In 
this method, the resulting tree structured grid is called quadtree or octree, 
depending on whether one is focused on a 2D or 3D method, respectively [71]. 
The basic mesh elements are quadratic or cubic. The idea is to use a conditional 
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subdivision procedure to generate a nested non-equidistant, non-uniform cell 
system through adaptive meshing [13]. Here we concentrate on the 3D octree 
method. One starts from a cube (called a root cell) which embodies the original 
geometry. This is then conditionally divided into eight sub-cubes. The sub-cubes 
are called children of the parent cell. Each child-cube can become a parent and 
have their own children. The subdivision procedure is continued until a pre-
defined subdivision level is reached. The subdivision criteria can be based on 
some static geometrical features, such as number of points in a cell, or some 
dynamic features such as error estimate or flux gradient of some partial 
differential equation. The adaptive meshing is illustrated in Figure 9. 

L=0 L=1 L=2

L=3 L=4 L=5

L=6 L=7 L=8

L=0 L=1 L=2

L=3 L=4 L=5

L=6 L=7 L=8

 

Figure 9. Adaptive meshing. L = subdivision level. 

In 3D the octree cell structure can be indexed by spatial indexes i, j, and k and 
subdivision level L. Thus, if u is a cell in octree, it is indexed as L

kjiu ,, . Eight 
children cells of this octree cell would be indexed as 

1
2,2,2

+L
kjiu  
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+
++

L
kjiu  

1
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+
++

L
kjiu  

1
12,12,12

+
+++

L
kjiu  

The parent of each cell can be found simply by subtracting 1 from the 
subdivision level L and by dividing each i, j, and k integer index by 2 (and 
forgetting the modulus). A 1D example of the discretisation of the spatial 
domain is shown in Figures 10 and 11, as an additional illustration of the 
subdivision and cell indexing. 

When the minimum co-ordinates Xmin, Ymin, and Zmin of the root cell are known, 
the minimum and maximum co-ordinates of any octree cell L

kjiu ,,  are 

L
minmin iXx −⋅∆+= 2  

L
minmin jYy −⋅∆+= 2  

L
minmin kZz −⋅∆+= 2  

L
minmax iXx −⋅∆++= 2)1(  

L
minmax jYy −⋅∆++= 2)1(  

L
minmax kZz −⋅∆++= 2)1(  

where ∆ is the side length of the root cube. 
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Figure 10. Division of the spatial domain in 1D. 
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Figure 11. Tree structure of the spatial domain as a 1D example. Each cell 
division forms a branch, and the leaf cells are the cells which are not divided 
any further (e.g. 3

0u  and 2
1u  are both leaf cells). 

In principle, the recursive subdivision of octree cells can be continued 
unlimitedly. In practice, the computer memory and the numerical efficiency of 
the iterative solution set constraints on the maximal subdivision level L. Usually 
a subdivision level L=7 or L=8 already gives a very fine mesh. The minimum 
cell side length min∆  is relative to the overall dimension of the geometry 

L−⋅∆=∆ 2min  

where ∆ is the side length of the root cube (which embodies the original 
geometry). For instance, for a human head geometry (Figure 9), the minimum 
cell side length is 1.55 mm for subdivision level L=7 and 0.77 mm for L=8. 

The octree structure makes it possible to easily find parent or children cells and 
to build recursive functions for data handling on nested grids with different grid 
size (coarseness). 
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Self-adaptive quadtree or octree meshing is often used also as an intermediate 
stage in generation of the finite element mesh. However, this theme will not be 
covered in more detail here. 

The advantage of the octree grid compared to more sophisticated finite element 
mesh is that, as the resulting cell system can be made regular, it is much easier to 
construct straightforward difference schemes, which will also have lower 
computational cost [13]. It is also worth noticing, that the octree grid algorithm 
automatically produces all the coarser grids at the same time (as illustrated in 
Figure 9), which enables the utilisation of fast multigrid acceleration methods in 
the numerical iteration [13]. 

4.1.2 Multigrid acceleration methods 

Practical multigrid methods [72, 73] were first introduced by Brandt [74] in the 
1970s. These methods can solve partial differential equations discretised on N 
grid points in O(N) operations. For example Gauss-elimination would require 
O(N2) operations, and even �rapid� direct elliptic solvers require O(NlogN) 
operations for solving elliptic equations. Thus, the multigrid method is very 
efficient for large problems (number of grid points N being large). 

The efficiency of the multigrid methods is based on discretisation of the original 
problem on coarser and finer grids, i.e. with different mesh sizes. A multigrid is 
formed by nested grids with refined mesh size. On a coarse grid, much less 
iterations are required to obtain a converged solution. These coarse solutions can 
be interpolated into finer grids, and thus be used to accelerate the iteration 
process of the fine-grid solutions. In the multigrid methods, data is transferred 
both from coarser grids to finer grids, and backwards, in so-called multigrid 
cycles. 

If we consider a linear elliptic problem 

SuA
rr

=                                                    (4.1) 

where A is the matrix of the corresponding linear elliptic operator, ur  is the 
column vector, and S

r
 is the column source vector. If this problem is discretised 
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on a uniform grid with mesh size h, it can be written in a set of linear algebraic 
equations as 

hhh SuA =  .                                                (4.2) 

Let hu~  denote some approximate solution of the equation, and let hu  be the 
exact solution. Then the error of the approximate solution is 

hhh uuv ~−=                                                (4.3) 

A quantity called residual can be defined as 

hhhh uASr ~−=                                               (4.4) 

As A is assumed to be linear, also the error satisfies the equation 

hhh rvA =                                                   (4.5) 

This residual equation can be approximated on a coarser grid with mesh size H 

HHH rvA =                                                  (4.6) 

where H=2h, for instance. Since this equation has a smaller dimension, it will be 
much easier to solve. To define the residual on the coarser grid, some restriction 
operator ℜ is needed: 

hH rr ℜ=                                                    (4.7) 

Once the equation (4.6) is solved on a coarse grid, the error can be interpolated 
to the finer grid by a proper prolongation operator ℘: 

Hh vv ~~ ℘=                                                   (4.8) 

Both ℜ and ℘ are chosen to be linear operators. Finally, the approximation hu~  
can be updated: 

hh
new

h vuu ~~~ +=                                                 (4.9) 
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Thus, a solution on a next coarser grid can be used to accelerate the solution on a 
finer grid. By constructing a sequence of nested grids (fine and coarse grids), 
one can define the multigrid cycle, which recursively leads the discrete problem 
from finest grid to coarser grids and back to finest grid again. The exact structure 
of the cycle depends on the number of two-grid iterations γ at each intermediate 
stage. If γ=1 the structure is called V-cycle, and if γ=2, W-cycle (Figure 12). 
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Figure 12. Structure of V and W multigrid cycles. S denotes smoothing while E 
denotes exact solution on the coarsest grid (the root cell). Leaf cells are at the 
top level of each diagram. Each descending line corresponds to restriction, and 
each ascending line to prolongation. 

4.2 Simplified spherical harmonics approximation 

4.2.1 Theory 

Spherical harmonics PN approximation has been already discussed in Section 
3.1.2. Now, if only one-dimensional slab geometry is considered, the angular 
flux expansion can be made by Legendre polynomials 

(4.10) )(cos)(
2

12),(
0

θθ ll
l

Pxlx Φ
+

=Ψ ∑
∞

=
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Inserting this into a 1D Boltzmann transport equation, whose directional 
derivative becomes now 

                                                         , 

multiplying the resulting equation by Legendre polynomial and integrating over 
the angle, one can derive the corresponding PN equations in 1D slab geometry. 
The recurrence relation 

(4.11) 

and the orthogonality integral 

(4.12) 

are needed. The PN equations in one-dimensional planar geometry simply 
become 

 (4.13) 

where the group transport cross sections are defined by equation (3.30) as 
before. Also the source on the right-hand side of equation (4.13) has been 
expanded as a Legendre series. 

Now, solving the odd moment terms and inserting them into even-order 
equations, the second-order equations can be derived in a similar manner as 
explained in Section 3.1.2 for the full PN approximation. Furthermore, by 
replacing the 1D derivative in a formal manner with a 3D nabla operator ∇ , as 
suggested by Gelbard [20�22], the simplified spherical harmonics 3D 
approximation is obtained (in a general form derived by the author): 
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(4.14) 

for each ,...2,0=l up to arbitrary (odd) Legendre order N with constraints that 

0)()( ≡=Φ rqr ll
rr  for 0<l  or Nl ≥  . 

To the author�s knowledge, such general second-order SPN approximation for 
arbitrary (odd) Legendre order N, equation (4.14), has not been published 
elsewhere. From equation (4.14) one can derive also the SP3 approximation, 
which has been used in the MultiTrans code as an approximation to Boltzmann�s 
transport equation. SP3 approximation is the lowest odd-order approximation 
after the diffusion theory. It is worth noticing that diffusion P1 and SP1 equations 
are congruent. In matrix form, the SP3 equations are 
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The diffusion coefficients are defined by the transport cross sections as 

 (4.17) 

and 

.                                         (4.18) 

The effective source moment terms are 

 

 

(4.19) 

where also anisotropic group-to-group scattering is taken into account through 
the sum terms. Actually, anisotropic source terms or anisotropic group-to-group 
scattering are usually not taken into account. Second-order SP3 approximation 
including only scalar source terms and anisotropic in-group scattering would 
reduce to form 

 

                                                                                                                       . 

(4.20) 

The approximation (4.20) has been used in MultiTrans for most of the cases. 
However, in some cases it is useful to take the anisotropy of the source and the 
anisotropic group-to-group scattering into account. The first-order derivatives on 
the right-hand side of the equation (4.15) are in this form problematic for the 
numeric solution, as they distort the positive definite nature of the second-order 
SP3 approximation. In Publication V, a solution to this problem has been 
suggested. By using the first-order equations (4.13) for the odd-moment terms 
(with ∇  operator), 
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       ))(�)(3()( 0101 rrSDr gggg rrr
Φ∇−=Φ                             (4.21) 

and 

   ,                     (4.22) 

it is possible to transform the equation (4.15) into the form 
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This matrix equation we have called in Publication V �the extended SP3 
approximation�. The group source terms )(� ,
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group-to-group scattering are now 

     [ ]∑
≠′=′

′′>−′ +Φ∇+−∇=
G

ggg

gigigiggi
s

gigi rSrDrQrS
,1

,
1

,
0

2,
0

,
1

,
1

,
1 )(�3)(�)()(� rrrr σ     (4.24) 

and 

(4.25) 

where these odd-order source moment terms depend on the second-order 
derivatives of the even flux moment terms, and are much easier to solve 
numerically. 

To further clarify equations (4.24) and (4.25), one can remark that these 
equations are not recursive: the )(� ,
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 and )(� ,

3 rS gi r
 terms on the right-hand 

side of the equations are to take into account group-to-group scattering, i.e. with 
different energy group index g (inside sum terms) as on the left-hand side of the 
equations. 
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In addition to the ability to treat anisotropic group-to-group scattering, also 
anisotropies of any internal source terms can be treated by the variables 

)(,
1 rQ gi r

, )(,
2 rQ gi r

, and )(,
3 rQ gi r

: in this case, however, a first-order derivative is 
still encountered in source terms equations (4.24) and (4.25). Such anisotropic 
internal source terms emerge from first collision source algorithms, for instance. 
However, if an analytical solution exists for the uncollided flux in calculation of 
the first collision source, the derivatives can be calculated directly without problems. 
Also, if the uncollided flux is monotonically decreasing (which is true for an 
external beam source for instance), these source terms will always be positive. 

Brantley and Larsen have derived material interface conditions and Marshak-like 
boundary conditions for second-order SP3 approximation from the variational 
principle [25]. The material interface conditions for SP3 approximation are: 
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The Marshak-like boundary conditions suggested by Brantley and Larsen [25] are: 
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In the above, odd-SPN approximations (SP3, SP5, etc.) have been examined. It is 
also possible to solve even moment terms and insert them into odd-order 
equations, obtaining even-SPN approximations (SP2, SP4, etc.). The SP2 
approximation, for instance, consists of one diffusion-like equation instead of 
two, and would therefore have even lower computational cost compared to SP3. 
The problem is that, in even-SPN approximations, the flux will be discontinuous 
at material interfaces, which poses some extra problems for numerical solution. 
Brantley has suggested quite recently an approach where diffusion and SP2 
approximations are combined to solve these discontinuity problems [75, 76]. 
This mixed P1�SP2 synthetic method has given quite comparable results with 
SP3 approximation for some cases. A similar approach using mixed P1�DP0 

diffusion theory has also been suggested [77]. 

The original �derivation� of the SPN equations by Gelbard by simply replacing 
the 1D derivative operator in slab equations with a 3D operator has been viewed 
with suspicion [23, 25]. That is, the theoretical basis of the SPN approximation 
has historically been weak, though the numerical results obtained by the 
approximation have appeared promising. However, the theoretical basis of the 
SPN approximation has evolved. An asymptotic derivation of the SPN equations 
in the case of an inhomogeneous medium with multiple energy groups and 
anisotropic scattering was first provided by Larsen, Morel, and McGhee [23]. 
Pomraning has shown that SPN equations with odd N are a variational 
approximation to the transport equation in an infinite homogeneous medium 
with one-group isotropic scattering [24]. Neither Pomraning�s variational 
approximation nor the asymptotic derivation mentioned above produce outer 
boundary conditions. Only recently has it been shown by Brantley and Larsen that 
SP3 equations with Marshak-like boundary conditions can be derived from 
variational principle for an inhomogeneous medium with multigroup anisotropic 
scattering [25]. These boundary and material interface conditions, equations (4.26)�
(4.31), have been utilised for SP3 equations in MultiTrans code, as explained earlier. 

It should be noted that in a very similar manner compared to derivation of the 
second-order SPN approximation, one can also derive simplified discrete 
ordinates SSN approximation. Once again, one starts from the 1D slab equations, 
now written as a second-order SN approximation, which are then generalised to 
3D. Such Even-Parity SSN approximation, for instance, has been studied by 
Longoni et al. [78�81]. 
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There are certain limitations for the applicability of the SP3 approximation. Both 
the particle absorption probability and the particle escape probability from the 
system should be <0.5, and the mean scattering cosine should not be too close to 
unity [23]. Also, when the system is heterogeneous, the transport solution should 
have only weak tangential derivatives at material interfaces [23]. For problems 
that have strong multidimensional transport effects, the SP3 approximation is 
less accurate [23]. It is also well-known that with the spherical harmonics 
method in general, no exact vacuum boundary condition can be determined [15], 
and therefore the utilised Marshak-like boundary conditions are also 
approximative. For the above reasons, it has been necessary to test MultiTrans 
on various computational problems, in order to be able to see the applicability 
range of the SP3 approximation in practice. 

4.2.2 First collision source method 

The first collision source method has been used in MultiTrans to process an 
external beam source into a distributed fixed source. The reason is that the 
collided flux emerging from a highly anisotropic (even monodirectional) beam 
source will become at least to some extent more isotropic when treated in this 
manner, and can be better approximated with a low-order spherical harmonics 
approximation. Similar first collision source methods have been applied earlier 
as a source processing option also in other codes [82, 83]. 

In the first collision source method, the uncollided flux (the flux of photons that 
have undergone zero collisions) is solved analytically. This uncollided flux is 
then used to generate the distributed fixed source terms for the collided flux. The 
collided flux can be solved by the SP3 approximation with vacuum boundary 
conditions [25]. Total flux is then calculated as a sum of the collided and 
uncollided flux for each energy group. 

The spherical harmonics PN expansion of the uncollided flux in trigonometric 
form would be 

 

(4.32) 
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where the expansion coefficients of the uncollided flux can be calculated (using 
orthogonality of the base functions) from integrals 

 

           (4.33) 

and 

 

         (4.34) 

where )(cosθm
lP  are associated Legendre polynomials. 

In the case of the simplified spherical harmonics SPN approximation, the 
azimuthal dependency of the angular flux is suppressed: 

          .   (4.35) 

In this sense, the SPN approximation is more restricted than full PN 
approximation. Therefore, in the SPN approximation, the moment terms of the 
uncollided flux can only be calculated when the uncollided flux has no 
azimuthal dependency: 

                  .              (4.36) 

Here )(cosθlP  are the Legendre polynomials. It can be easily seen, that this 
equation also results in setting m=0 in equations (4.33) and (4.34). 

The first collision source moment terms are 

    )()( ,),(,, rrQ giu
l

gi
sl

gi
l

rr
Φ= σ                                  (4.37) 

where gi
sl
,σ  is the Legendre expansion coefficient of the order l of the within-

group scattering cross section and )(,),( rgiu
l

r
Φ  is the corresponding moment term 

of the distributed uncollided flux. 

 
∫ ∫ Ψ

+
−

=
ππ

ϕθθϕθϕθ
π

ψ
2

0 0

),(),(   sin),,( cos)(cos
)!(
)!(

2
1 ddrmP

ml
ml gum

l
gu

lm
r

∫ ∫ Ψ
+
−

=
ππ

ϕθθϕθϕθ
π

γ
2

0 0

),(),(   sin),,( sin)(cos
)!(
)!(

2
1 ddrmP

ml
ml gum

l
gu

lm
r

 
∑
=

Φ+≈Ψ=ΩΨ
N

l

u
ll

uu ErPlErEr
0

)()()( ),()(cos)12(),,(),,( rrrr θθ

 
∫ Ψ=Φ
π

θθθθ
0

),(),(  sin),()(cos)( drPr gu
l

gu
l

rr



 

 67

For an isotropic point source the uncollided flux is 

                              (4.38) 

where )( s
g rq r

 is the point source strength in energy group g, )( rΩ−Ω
rr

δ  is a 
delta function in angle, and ),( srr rrβ  is the number of mean-free-paths between 
the source point srv  and point rr . 

As an azimuthal dependency exists, only the scalar term can be calculated from 
the integral equation (4.36). Thus, for an isotropic point source the first collision 
source is 

                                       (4.39) 

and the higher moment terms cannot be taken into account. In other words, the 
SP3 approximation cannot treat the anisotropy of the uncollided flux emerging 
from a point source, as the angular representation of the flux in the SP3 
approximation is in a sense one-dimensional. In a homogeneous case, a problem 
with an isotropic point source would naturally reduce to a one-dimensional 
problem in spherical geometry: the intention is, however, to develop 
deterministic transport methods for true three-dimensional heterogeneous 
problems, without limiting the applicability to some special cases. 

Here we can remark that the underlying SP3 equations are rotationally 
symmetric. For a point source one could rotate the base functions locally to 
eliminate the azimuthal terms, but this cannot be accomplished in the entire 
domain in a uniform manner. 

For a monodirectional incident boundary surface flux, the uncollided flux is 

                                (4.40) 

where )( s
g rq r

 is the surface source strength in energy group g, and sΩ
r

 is the 
direction vector of the source surface. 
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Now the rotational symmetry of the SP3 equations can be used to make the 
incident monodirectional beam oriented to the z-direction. Then the equation 
(4.40) becomes 

                                       (4.41) 

and the first collision source moment terms can be calculated to be 

              .               (4.42) 

In a case of the extended SP3 approximation, the first-order derivatives needed 
for equations (4.24) and (4.25) are simply 

                                                                          (4.43) 

where g
tσ  is the average total cross section along the path between the source 

point srv  and point rr , parallel to z-axis. 

Additionally, second-order derivatives of the uncollided flux are needed for the 
even moments of the source terms (in order to consider the total flux in group-
to-group scattering, not only collided flux): 

.       (4.44) 

The first collision source produced by several point sources is easily calculated 
by superposition. In practice, the source is never exactly point-like, but will 
instead occupy a certain source volume. The first collision source method for 
point sources might therefore be more useful in computational exercises than in 
practice. As noted above, the SP3 approximation cannot treat the anisotropy of 
the uncollided flux emerging from a point source, and the first collision source 
method for (more mathematical than real) point sources in conjunction with the 
SP3 approximation is generally not so useful. Instead, small volumetric isotropic 
sources could be directly inserted as scalar source terms. 

With the beam geometry (an accelerator source for instance) the first collision 
source method should be applicable also in practice. The methodology described 
above has been restricted to monodirectional beams, albeit arbitrary shaped. For 
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divergent beams, the azimuthal dependency cannot be defined by the first 
collision source method: however, the source moment terms can, in principle, be 
calculated in the direction of beam orientation. The calculation of the uncollided 
flux would require some additional ray tracing technique in this case. 

4.3 Numerical transport algorithm 

For a numerical solution, it is necessary to discretise SP3 equations into the 
octree grid structure. The octree grid has been made regular, that is, the ratio of 
the sizes of any adjacent cells is restricted to be at most 2, which facilitates the 
discretisation of the equations. The tree structure still makes the grid non-
uniform, and some proper difference scheme must be used. In the MultiTrans 
code, the so-called integrated difference scheme has been chosen. 

Integrating the Laplacian of the function u over a cell C and applying Green�s 
formula, one obtains 

( )∫∫
∂

∇⋅=Ω∇
CC

u nu  dΓd 2 r
                             (4.45) 

where nr  is the normal vector of the cell surface. This is the basis of the 
integrated scheme. When the face neighbour cells are the same size, flux over 
the side of the cell is approximated by using central difference 

                                 (4.46) 

where h is the mesh size; Cu  and Nu  are the flux values in the cell and its 
neighbour, respectively. Otherwise, the parent of the smaller cell is used: 

 

                      (4.47) 

where the value of the parent cells )(CPu  and )( NPu  is the average of their 
children�s values. This averaging can also be seen as a special choice of the fine-
to-coarse restriction operation of the multigrid technique. 
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The discretised standard SP3 approximation solved by MultiTrans code in 
iterative diagonal form is 

 

 

(4.48) 

where ( )∇⋅nr  denotes the central difference determined by equations (4.46) or 
(4.47), depending on the local octree grid structure. Similarly, the discretised 
extended SP3 approximation is: 

 

 

 

(4.49) 

Now the multigrid acceleration technique from Section 4.1.2 can be utilised for 
these discretised matrix equations. 

Starting from an initial flux guess (usually set to zero) one first calculates the 
residual at the leaf cell level from the right-hand side of equation (4.48) or 
(4.49). Then the residual is restricted into coarser grids by simple averaging. The 
error terms are smoothed by using the diagonal part of the matrix on the left-
hand side of the equations. The error terms are then prolongated to finer grids. 
This is done in multigrid cycles: eight V-cycles have been used as a default in 
MultiTrans, but this value can be modified by the user. At the leaf cells, the flux 
terms are updated. The whole procedure is repeated until the total error at the 
leaf cells is small enough, that is, below pre-specified convergence criteria. 

The multigroup transport problem is solved by solving a nested sequence of one-
group problems, starting from the highest energy group. The down-scattering 
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from higher energy to lower energy groups is taken into account through an 
effective source term on each one-group problem, calculated with the use of 
corresponding group-to-group scattering cross sections. However, if up-scattering 
exists (at low thermal neutron energies this is the case), outer source iterations are 
required. In other words, the sweep through the multigroups has to be restarted 
from an energy level where up-scattering still has a contribution and repeated until 
the source converges. A similar need for outer source iterations is encountered also 
in the case of photon-electron calculation with full coupling, that is, when photons 
create electrons, but electrons also create photons (e.g. bremsstrahlung), and 
therefore �up-scattering� from electron groups to photon groups also exists. 

The outer source iteration strategy is required also in the multiplication 
eigenvalue search. The multiplication eigenvalue for criticality problems is 
solved by the MultiTrans code with an algorithm similar to the standard source 
iteration method for multigroup diffusion equations [34]. First, some initial 
guess for the fission source and the multiplication eigenvalue are set. Next, the 
multigroup SP3 equations are solved iteratively with the tree multigrid technique, 
by starting from the highest energy group and proceeding towards the lowest. 
Having done so, a new fission source 
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are calculated, and a new sweep for solving the multigroup SP3 equations is 
started. The whole procedure is repeated until the multiplication eigenvalue and 
the fission source converge. The convergence criterion is defined as 

                                                        and / or                                           . 

The solution strategy for multigroup problems including outer source iterations 
is shown on a general level in Figure 13. 
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Figure 13. Flow chart of the iteration strategy in the MultiTrans code for 
solving multigroup and outer source iteration problems (on a general level). 
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5. Applicational scope of the new radiation 
transport code 

The new MultiTrans radiation transport code � having no especial geometrical 
restrictions � could in principle be applied to any 3D radiation transport 
problem. However, the applicability range of the used SP3 approximation limits 
the accuracy of MultiTrans, and therefore careful validation between different 
computational methods and verification against measurements are required for 
different applications. The validation and verification process has been the major 
objective of the research work reported in Publications II�V. The main results 
and some application specific issues are reviewed and discussed in the following 
sections. 

5.1 Dose planning in BNCT 

BNCT patients can be different in their size and shape and have tumours in 
different locations. Individual treatment planning is therefore required for 
accurate absorbed dose delivery. The primary aim of the treatment planning is to 
ensure a high enough tumour dose for meaningful and ethically acceptable 
treatment, with sufficiently low radiation risk to sensitive organs and tissues 
outside the planning target volume (PTV). The accuracy requirements of 
radiation therapy have already been briefly discussed in the Introduction, 
Section 1. It is worth repeating, that 5 % accuracy is recommended for absorbed 
dose delivery in radiotherapy [26]. An important limiting factor is the 
narrowness of the therapeutic window for the patient dose: often the adverse 
effects start to appear in the healthy tissue at lower absorbed doses before the 
complete tumour control (see Figure 2 in Section 1). 

A treatment planning system (TPS) suitable for BNCT requires a verified beam 
model, methods for handling the patient geometry � e.g. software to create a 
voxelised geometry from computed tomography (CT) or magnetic resonance 
imaging (MRI) �, and some radiation transport algorithm to calculate the dose to 
various parts of the geometry [84]. The construction of an FiR 1 epithermal neutron 
beam model and dose calculations for verification of TPS used at the Finnish BNCT 
facility have been described in the academic dissertation of Tiina Seppälä [10]. 
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In addition to treatment planning, computational methods are required for 
dosimetrical purposes, e.g. for planning different measurement setups and 
suitable irradiation times for detectors. Comparison of the dosimetrical results to 
the dose planning calculations can supply important knowledge on the accuracy 
of the computational method. This is vital for verification of the computational 
system used for treatment planning. 

The whole MultiTrans code development started from the intention to replace 
the time-consuming Monte Carlo method in BNCT dose planning with a fast, 
deterministic and accurate radiation transport method. The tree multigrid 
technique was recognised as a promising tool for this purpose, as the self-
adaptive meshing could be used to model the complicated structure of organs 
and tissues with great accuracy. As one of the first progresses, the self-adaptive 
meshing was tested for segmented CT images of a human head. The cross 
section of the resulting tree multigrid is shown in Figure 14. 

 

Figure 14. Segmented CT image (left) and a cross section of the corresponding 
tree multigrid (right). 

As a radiation transport approximation, second-order P3 equations, Eqs. (3.21)�
(3.26), were first considered. However, the implementation of these equations 
into an iterative tree multigrid algorithm was found too complicated. Especially 
the discretisation of the mixed derivatives ( yx∂∂  for example) in an effective 
way on a regular but non-uniform 3D tree multigrid was far from trivial. For this 
reason, it was decided to implement a simpler but less accurate SP3 transport 
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approximation. However, the implementation of full P3 approximation with an 
iterative tree multigrid solver should not be entirely excluded. 

For BNCT dose planning purposes, it was necessary to be able to read the 
boundary source, i.e. the FiR 1 treatment planning source plane, into MultiTrans 
for dose-planning calculation. The treatment-planning source has been first 
derived by 2D calculations with the discrete ordinates code DORT [85], 
including the FiR 1 core model and subsequent transport calculation through the 
moderator and collimator structures of the FiR 1 epithermal beam [10]. The 
design of the Finnish BNCT facility is described elsewhere [4, 5, 10], but generally 
speaking, the fast fission neutron spectrum of the reactor core has been moderated 
into a more suitable energy range and collimated into a purpose-built treatment 
room. Special moderator material, Fluental�, has been developed at VTT in 
order to obtain a good epithermal neutron flux with high enough intensity and 
low, fast neutron and gamma contamination, even with a small research reactor 
such as FiR 1 TRIGA Mark II with 250 kW nominal power [4, 86]. 

Separate aperture plates of the FiR 1 BNCT collimator structure, made from 
lithiated polyethylene, can be easily added or removed, giving beam diameter 
options of 8, 11, 14, 17 and 20 cm. The 14 cm aperture has most often been used 
in patient treatments. The treatment-planning source for a 14 cm diameter beam 
aperture is situated 5 cm inwards of the beam direction into the collimator 
structures. It has been first calculated by DORT and then further processed for 
use in TPS by averaging the forward current over a 22 cm diameter circular area 
for each BUGLE energy group (47 neutron groups and 20 gamma groups) of 
DORT calculation [10]. Separate angular distributions by 10 cosine cut points in 
the forward direction have been defined for each energy group. 

The treatment planning source for a 14 cm aperture has been used in MultiTrans. 
However, for some reason, using the source plane directly in the boundary 
condition seemed to thwart the convergence with the tree multigrid technique. 
This was perhaps just due to some mistake in the implementation of source 
values on different grid levels. Yet, instead of defining the source as a boundary 
condition, it was decided to use the first collision source method. The first 
collision source method has already been discussed in Section 4.2.2. The 
advantage of the first collision source in conjunction with the SP3 approximation 
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is that the collided flux is more isotropic than the uncollided one, and therefore 
can be better approximated with a low-order spherical harmonics approximation. 

As a suitable benchmark for validation and verification of the MultiTrans code, a 
cylindrical polymethyl-methacrylate (PMMA) phantom situated in the FiR 1 
epithermal neutron beam with a 14 cm aperture was chosen. The solid PMMA 
phantom has a 20 cm diameter and 24 cm length, and PMMA is one of the tissue 
substitutes used in radiation dosimetry [87]. The phantom has removable centre 
pieces with 2 cm diameter and various shapes, e.g. to attach ionisation chambers, 
thermoluminescent detectors (TLD�s) or small diluted manganese-aluminium 
(Mn-Al) or gold-aluminium (Au-Al) foils at different depths at the central axis 
of the phantom. 

To be more specific, the above-mentioned Mn-Al and Au-Al foils are used for 
neutron activation measurements: 55Mn and 197Au have a large probability to 
capture neutrons and as a consequence to become activated. The activation 
products emit gamma radiation with distinctive energies. These photo-peaks can 
be measured after the irradiation with a gamma spectrometer, and taking the 
decay and the geometry of the measurement setup into account, the specific 
saturation activity of the foils can be defined [88]. The reason why Mn and Au 
ingredients have been diluted in Al is to avoid self-shielding in the neutron field 
due to strong neutron absorption, i.e. capture reaction. 

The neutron activation measurements are a very accurate method to measure the 
neutron field, and insensitive to other radiation qualities, which is usually not the 
case with other measurement techniques. If the energy cross sections for neutron 
capture reactions are known, it is possible to calculate the corresponding 
responses from neutron energy spectra. Thus, it is possible to directly compare 
the measured and calculated activation reaction rates. It is also possible to adjust 
a calculated spectra based on measurements over a large set of different 
reactions with different response energies: such a procedure has been applied for 
the TPS source of the FiR 1 epithermal neutron beam, to further improve the 
source model [10, 89�92]. 

An extensive number of measurements have been performed in the FiR 1 beam 
with different phantom geometries and phantom materials, and multiplicity of 
measurement techniques [89�102]. The cylindrical PMMA phantom has been 
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perhaps most widely used. For instance, in each week having patient irradiation, 
diluted Mn-Al (1 wt-% Mn) and Au-Al (1 wt-% Au) foils are irradiated in the 
PMMA phantom at 2 cm depth, in order to check the neutron activation for 
quality assurance of the beam monitors used to control irradiation [103]. 

In Publication II, MultiTrans calculations have been compared to measured and 
calculated 197Au(n,γ) and 55Mn(n,γ) reaction rates at the central axis of the 
PMMA cylinder. The computational comparison included the discrete ordinates 
(SN) code DORT and the Monte Carlo codes MCNP and SERA, the SERA 
calculations being made by Tiina Seppälä. Also different physical dose 
components, such as fast neutron hydrogen proton recoil dose, proton dose from 
nitrogen neutron capture reaction 14N(n,p), and the gamma dose (mainly from 
hydrogen neutron capture), were compared to the values calculated by DORT. 
The same BUGLE-80 cross section library with 47 neutron and 20 gamma 
energy groups was used with both MultiTrans and DORT. 

It was noted for instance, that 197Au(n,γ) and 55Mn(n,γ) reaction rates at 2 cm 
depth in the phantom (at thermal maximum) calculated by MultiTrans 
differed -3 % and +1 % from the measured values, respectively, and were within 
the measurement uncertainty, approximated to be 5 %. The total neutron dose at 
2 cm depth in the phantom calculated by MultiTrans differed -4 % compared to 
the DORT result. The major disadvantage in the MultiTrans calculations was the 
inability to calculate the neutron-induced gamma dose accurately enough. A 
notable discrepancy was found in the gamma dose calculated by MultiTrans, 
being -16 % at 2.5 cm depth (at gamma dose maximum) compared to the DORT 
result. The shape of the depth curve of the gamma dose calculated by MultiTrans 
was also different from that calculated by DORT. The reason for this 
discrepancy was probably the long mean free paths of energetic 2.2 MeV 
photons induced from the hydrogen neutron capture reaction: the transport 
problem for energetic photons might not be optically thick enough for SP3 
approximation to be valid. 

The MultiTrans calculations took 14 minutes on a desktop PC with a 200 MHz 
Pentium processor. The minimum octree cell side length was 0.38 cm. The 
MCNP and SERA simulations were run on a Sun Ultra60 SPARC station. The 
MCNP simulation was run for five days resulting in over 150 million particle 
histories. The SERA calculations took one hour with 10 million particle histories 
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and 1 cm3 voxel size. It should be noted, however, that in order to produce the 
same statistical uncertainty with SERA having a 0.38 cm voxel side length 
(0.055 cm3 volume) instead of 1 cm (1 cm3 volume), approximately 18 times 
longer running time and amount of particle histories would have been required. 
With the same resolution, MultiTrans would therefore be about 2 magnitudes 
faster. However, this value is only speculative. 

5.2 Radiation transport of photons and electrons in 
conventional radiotherapy 

Despite the difficulties encountered in calculation of the gamma dose in BNCT 
by MultiTrans, it was decided to study further the applicability range of SP3 
approximation in photon transport problems of conventional radiotherapy. In 
addition, also transport of electrons as secondary charged particles was 
considered. This work was done in collaboration with Varian Medical Systems 
Finland Oy, and the main results have been reported in Publication V. 

The idea was that, even though the photon transport seemed not to work so well 
for high-energy photons such as 2.2 MeV gammas from hydrogen neutron 
capture in BNCT, the SP3 approximation might still work for low-energy photon 
sources, used for instance in brachytherapy. The specific goal was to find out the 
applicability range of the SP3 approximation in coupled photon-electron 
transport problems. 

Brachytherapy, also known as sealed source radiotherapy or endocurietherapy, is 
a form of radiotherapy where a radioactive source is placed inside or next to the 
area requiring treatment [104]. Encapsulated 125I, 137Cs, and 192Ir are currently 
the most widely used sources in brachytherapy and are used to treat localised 
malignancies in nearly every body site. However, the influence of tissue and 
applicator heterogeneities on brachytherapy dose distributions is not well 
understood, despite widespread use of shielded applicators in intracavitary 
therapy [30, 31, 105�107]. 

Electrons induced in photon interactions are the secondary particles which 
finally deposit the energy into tissue and after all cause the physical dose. It is 
possible to estimate the dose from photon fluence by using mass-energy 
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absorption coefficients [29]. However, for this estimation to be valid, a sufficient 
local secondary charged particle equilibrium (c.p.e.) condition is required. By 
calculating the electron transport in detail, and then converting the electron 
fluence into deposited energy, the absorbed dose can be calculated more 
accurately, without the requirement of the c.p.e. condition. This is an important 
issue with strong material heterogeneities. 

Electron transport is in general described by the Boltzmann-Fokker-Planck 
equation, but using the continuous-slowing-down approximation (CSDA) and 
defining electron �pseudo� cross sections, the Boltzmann equation for neutral 
particles can be applied for electrons as well [32]. Thus, it was realised, that by 
suitable modification of the cross sections, it was possible to solve also electron 
transport by MultiTrans without any code changes, except for the library 
routines for handling the coupled photon-electron cross sections. The 
modification of the electron cross sections into �pseudo� cross sections was done 
with the CEPXS code [108]. 

Calculations were performed for different coupled photon-electron transport 
problems, which are described in detail in Publication V. These test problems 
included monoenergetic photon point sources from 10 keV to 2 MeV in water 
[109] representing a simplified brachytherapy source in homogeneous media, 
and different dose-planning problems for monoenergetic monodirectional beam 
sources, including also some heterogeneous test problems. Comparison 
calculations were performed by Varian using the EGS4 Monte Carlo code 
system [58, 110]. Both standard and what we have called �extended SP3 
approximation� (Section 4.2.1 and Publication V) were used in the MultiTrans 
calculations, the latter one taking also anisotropic group-to-group scattering into 
account. For example, in the case with monoenergetic photon point source, the 
dose calculated by MultiTrans agreed within 6 % compared to the EGS4 results 
with 25, 35, 70 and 125 keV energies. However, with higher energies the results 
were in larger disagreement, with maximal +18 % difference between 
MultiTrans and EGS4 for 1.75 MeV source photons, at about 10 cm distance 
from the point source. As another example, with a monodirectional 125 mm × 
125 mm beam source of 7 MeV photons exposed to a large water cylinder, the 
dose at 2, 5 and 10 cm depths along the beam centreline calculated by 
MultiTrans differed -6 %, -6 % and -9 % with extended SP3 approximation, and 
+7 %, 0 % and -4 % with standard SP3 approximation, respectively, compared to 
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EGS4 results. Even though the extended SP3 approximation disagreed more than 
the standard approximation from the absolute value of the EGS4 solution, the 
conclusion of the study was that the extended SP3 approximation seemed to be 
advantageous when compared to the standard formulation, as it better duplicated 
the shape of the depth-dose curve, the position of the dose build-up maximum 
and the profile shape of the off-axis ratios (Publication V). However, with high 
photon energies both approximations failed to produce accurate results. 
Therefore we further concluded that the method was not directly applicable for 
treatment planning in conventional radiotherapy, where the uncertainty of the 
dose to the patient should not exceed 5 % [26]. 

In the future, the accurate Monte Carlo method will probably be more and more 
applied in clinical radiotherapy treatment planning. At the moment, computer 
capacity limits the wider use of the Monte Carlo method, and semi-empirical 
methods (utilising measured dose distributions in water) are still often used for 
clinical dose planning. It is worth noting, that clinical treatment-planning 
software using the Monte Carlo method do exist [111, 112]. Fast deterministic 
transport methods such as MultiTrans would be advantageous compared to the 
semi-empirical approach, especially in the case of strong tissue heterogeneities 
that cannot be correctly taken into account with the traditional methods. 
However, the accuracy of the SP3 approximation used in MultiTrans seems not 
to be good enough for treatment-planning purposes. This is especially the case 
with the accuracy of the photon transport. For electron transport, the SP3 
approximation might work much better, as for electrons one can expect the 
system to be optically thicker. In Publication V we have suggested a hybrid 
scheme where photon transport would be solved by Monte Carlo and subsequent 
secondary particle (electron) transport by MultiTrans. This would use the best 
sides of both methods, as the Monte Carlo method is capable for accurate photon 
transport but handles electron transport very slowly due to Coulomb 
interactions; this electron transport might be solved by MultiTrans in an accurate 
and efficient way. Accuracy of the transport of secondary electrons with SP3 
approximation in 3D, however, remains to be seen. 



 

 81

5.3 Reactor physics 

Radiation transport codes have been traditionally developed and applied in the 
field of reactor physics. Typical radiation transport problems are, for instance, 
criticality safety analysis, radiation protection calculations, determination of 
various detector responses, and out-of-core neutron dose calculations. 

Fission source and neutron transport calculations of the reactor core are often 
handled by simplistic 1D or 3D nodal methods: the core is divided into 
homogenised segments and only few-group (for instance 2-group) nodal 
calculations are performed. Such simplistic but efficient methods for neutron 
transport and fission source modelling are especially needed in transient and 
accident analysis, where fission source and related power density and heat 
generation is coupled with thermal hydraulics in order to model the overall 
dynamic behaviour of the reactor core under different operating conditions. 

In more detailed calculations, such as 3D modelling of (unhomogenised) fuel 
bundles or modelling of the axial and radial leakage terms of the core, more 
sophisticated radiation transport methods are required. Especially 3D out-of-core 
calculations with streaming and deep penetration of the radiation are very 
demanding. Such calculations are needed, for instance, to estimate the pressure 
vessel steel embrittlement or in activity inventory calculations of a nuclear 
power plant for decommissioning planning. It should also be noted that reactor 
physics problems are not restricted to the reactor core, but often the problem is 
to determine the criticality safety, radiation protection or heat generation in 
transportation casks or fuel storage pools, etc. Such problems often require 
detailed modelling of the criticality eigenvalue or source terms, sometimes 
coupled with burn-up and depletion calculations in order to estimate the isotopic 
concentration. 

In the reactor physics field, the MultiTrans code was first applied to a simplistic 
two-group pressurised water reactor (PWR) benchmark with a fixed source, 
reported in Publication I. Since the demonstration of the applicability of the 
MultiTrans code to various dose-planning problems in BNCT and conventional 
radiotherapy, MultiTrans has increasingly been tested also in traditional reactor 
physics problems. Implementation of an outer source iteration method for 
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multiplication eigenvalue problems, for instance, has been described in 
Publication III, and discussed in Section 4.3. 

For testing the multiplication eigenvalue search algorithm, two problems were 
chosen from the proposal of 3D neutron transport benchmarks by the Osaka 
University to OECD Nuclear Energy Agency (NEA) Committee on Reactor 
Physics [113, 114]. The first one is a small light-water reactor (LWR) with a 
core model of Kyoto University Critical Assembly (KUCA), and the second one 
is a small fast breeder reactor (FBR). The LWR and FBR geometries and the 
cross sections of the corresponding octree grids are shown in Figures 15 and 16, 
respectively. 

The LWR benchmark was a 2-group problem, and the FBR benchmark a 4-
group problem. In both benchmarks, the objective was to calculate the control-
rod-worth. In the LWR benchmark the control rod was either inserted or 
withdrawn, the control rod position being empty void in the latter case. In the 
FBR benchmark the control rod was inserted or half inserted, the empty position 
being replaced by sodium coolant. The control-rod-worth was defined to be the 
value 

                                                                                     . 

For the FBR benchmark, the calculated multiplication eigenvalues and the 
corresponding control-rod-worth agreed well with Monte Carlo results reported 
by Takeda and Ikeda [114]. For the case with the control rod half inserted, the 
difference in MultiTrans results for keff was +0.37 %, and for the case with 
control rod inserted +0.32 %, compared to the Monte Carlo results, respectively. 
For calculated control-rod-worth, the difference between the MultiTrans and 
Monte Carlo results was +3.4 %. Also for the LWR benchmark, the keff agreed in 
the case when the control rod was inserted, with +0.24 % difference between the 
MultiTrans and Monte Carlo results. However, in the LWR rod-out case with 
void region, the MultiTrans value for keff was inaccurate with -2.6 % difference 
compared to the Monte Carlo result, which also led to negative control-rod-
worth. This inaccurate result for the rod-out case was concluded to happen due 
to long neutron streaming paths in the void region, which is problematic for the 
SP3 approximation. 

out rodin rod
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Figure 15. CAD model of the KUCA LWR core benchmark (left) and cross 
sections of the corresponding octree grid (right). 
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Figure 16. CAD model of the FBR core benchmark (top left) and cross sections 
of the corresponding octree grid. 

The calculated LWR and FBR benchmarks demonstrated the applicability of the 
new MultiTrans code to criticality problems for the first time. However, in order 
to test more thoroughly the applicability of the MultiTrans code in reactor 
dosimetry problems, two VENUS benchmarks were calculated. 

The VENUS Critical Facility is a zero power reactor located in Mol, Belgium, 
used to study LWR core designs. Measured data exists for verification of the 
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computational results, and benchmarks have been calculated with several 
different codes, offering a good resource for experimental and computational 
data to test a new transport code. 

Many commercial power plants in Europe and Japan use reprocessed mixed 
oxide (MOX) uranium and plutonium fuel (UO2-PuO2) in addition to the 
uranium oxide (UO2) fuel. The use of MOX fuel in LWRs presents different 
neutron characteristics, and therefore the VENUS-2 MOX-fuelled reactor 
dosimetry benchmark [115] was launched by OECD NEA in 2004 to test the 
current state-of-the-art computation methods of calculating neutron flux to 
reactor components against the measured data of the VENUS-2 MOX-fuelled 
critical experiments. 

Twelve groups worldwide participated in the VENUS-2 blind benchmark 
providing 15 different solutions [116]. VTT attended with 3 different codes: 
MultiTrans, TORT and MCNP [116, 117]. The task was to calculate 58Ni(n,p), 
115In(n,n�), 103Rh(n,n�), 64Zn(n,p), 237Np(n,f), and 27Al(n,α) reaction rates and the 
corresponding equivalent fission fluxes measured on the core mid-plane at 
specific positions outside the core of the VENUS-2 MOX-fuelled reactor. The 
benchmark geometry is shown in Figure 17. In the MultiTrans calculations, all 
material regions were modelled in detail, except that the fuel pin, fuel cladding, 
and water regions were homogenised over each fuel zone. The external regions 
outside the jacket inner wall (air, jacket outer wall, reactor vessel, water, and 
reactor room) were omitted from the model, as they can be assumed to have no 
significant effect on the responses at the measurement points. 

The BUGLE-96 cross section library with 47 neutron groups was used in the 
transport calculations by MultiTrans. 235U and 239Pu fission spectra were taken 
also from the BUGLE-96 library, weighted by the relative portions of the main 
fissile isotopes in the VENUS-2 core. The International Reactor Dosimetry File 
(IRDF) was used in calculation of the dosimetry responses. IRDF-90 version 2 
dosimetry cross sections for reactions 58Ni(n,p), 115In(n,n�), 103Rh(n,n�), 
64Zn(n,p), 237Np(n,f), and 27Al(n,α) were condensed into the BUGLE energy 
group structure from the SAND-II energy group structure (640 groups) by using 
X333 utility program from the neutron metrology file NMF-90 [118]. The 
combined Maxwell, 1/E, and fission weighting spectrum was used. The 
MultiTrans criticality calculation with 2,530,817 mesh cells took 16.0 hours on a 
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desktop PC with a 3.0 GHz Pentium4 processor [117]. TORT criticality 
calculation with 648,270 mesh cells took 18.7 hours on an AlphaServer ES45 
workstation with four EV6.8CB 1.0 GHz processors [117]. 

 

 

Figure 17. CAD model of the VENUS-2 MOX-fuelled reactor dosimetry 
benchmark (left) and a cross section of the corresponding octree grid at core 
mid-plane (right). 

The results obtained by MultiTrans were fairly comparable to other reported 
results of the VENUS-2 benchmark [116]. For instance, equivalent fission fluxes 
calculated in 32 58Ni(n,p) detector positions by MultiTrans were all within 
±20 %, and most of them within ±10 %, compared to measured values. The 
equivalent fission flux values calculated by MultiTrans for the 115In(n,n�) 
detector positions, on the other hand, showed about ±20 % of scatter band in 
stainless steel zones and about ±30 % in water zones [116]. Especially, 
discrepancies were noted in the MultiTrans results in the detector positions 
where the solution starts to behave more transport-like and the applicability of 
the SP3 approximation becomes more limited. 

In Publication IV, application of the MultiTrans code to VENUS-3 benchmark 
has been reported. The core loading in VENUS-3 is completely different from 
the VENUS-2 benchmark described above. VENUS-3 is a LWR pressure vessel 
steel benchmark with partial length shielded assemblies [119], and the results of 
the computational benchmark have been published by NEA [120]. The well-
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documented experimental and computational data has been a good resource to 
test the performance of the MultiTrans code. 

The VENUS-3 benchmark geometry is shown in Figure 18. Again, the material 
regions were modelled in detail, except that the fuel pin, fuel cladding, and water 
regions were homogenised over each fuel zone and external regions outside the 
jacket inner wall were left out of the model, as their effect is negligible. 

 

Figure 18. CAD model of the VENUS-3 LWR pressure vessel steel benchmark 
with partial length shielded assemblies (left) and a cross section of the 
corresponding octree grid at 10 cm below the core mid-plane (right). 

The partial length shielded assemblies make the VENUS-3 benchmark 
especially a 3D radiation transport exercise. The task was to calculate 58Ni(n,p), 
115In(n,n�), and 27Al(n,α) reaction rates in specific in-core and out-of-core 
detector positions distributed also axially: a total of 244 detector positions were 
defined for nickel, 104 detector positions for indium, and 38 positions for 
aluminium. The reaction rates calculated by MultiTrans agreed well with the 
experimental values: the majority of the values were within 5 % for Ni and Al, 
and within 7 % for In. The deviation was larger than 20 % only in 2 detector 
positions of Ni in the uppermost region of the partial length shielded assemblies, 
and in one detector position of In and Al in the core barrel near the corner of the 
partial length shielded assemblies. In these positions, the solution behaves 
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probably more transport-like and the SP3 approximation is, once again, less 
valid. In this VENUS-3 benchmark, the results obtained by MultiTrans are very 
comparable to the reported results obtained by other computational methods 
[120]. The MultiTrans calculations for 47 BUGLE neutron groups took 70 
minutes on a desktop PC with a 3.0 GHz Pentium4 processor. 

For the VENUS-3 benchmark, a fixed source from venus3.src file from NEA-
1517/69 SINBAD-VENUS-3 distribution CD was used. This required 
implementation of a new source routine that could read the source file and 
distribute the source into the octree cell structure with correct weighting. That is, 
the average source in each octree cell is calculated from an arbitrary source 
distribution given in an external file, with no need that this source distribution 
data should match the boundaries of the octree cells. The use of this source 
routine is not restricted to the VENUS core, but can be used to describe the 
power distribution of any reactor in a very general format. 

In addition to the distributed source routine, a special interpolation algorithm 
was developed and implemented into MultiTrans for both VENUS benchmarks. 
In order to be able to define the reaction rate in the precise detector position, the 
cell averaged values had to be interpolated correctly. Interpolation would be 
rather straightforward in an equidistant mesh, but in a non-uniform octree mesh 
the interpolation becomes more complicated. A kind of 2-step linear 
interpolation method was implemented, where one first interpolates the vertex 
values of the cubic voxel containing the specific point, and then uses these 
vertex values for the final linear interpolation inside the cell. 

An attempt to use MultiTrans code in the calculation of the C5G7 MOX 
benchmark extension has also been made [121, 122]. However, in this particular 
benchmark, no results could be obtained due to memory limitations. In the C5G7 
benchmark geometry the fuel assemblies are non-homogenised, that is, each fuel 
rod is included in the model, see Figure 19. With cubic elements the required 
number of octree cells becomes extremely high if one tries to distinguish the 
heterogeneous fuel and moderator material regions, resulting in an inevitable 
computer memory overflow. 
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Figure 19. CAD model of the NEA C5G7 MOX benchmark extension, excluding 
the moderator region. In the picture the different fuel pins of the core are shown, 
as well as the control rods and the fission chambers extending above the core 
into the upper axial reflector. 

The cubic cells are problematic in the C5G7 benchmark, as the axial meshing 
becomes oversized for heterogeneous fuel bundles. It might be possible, with 
some modifications to use a different axial length for the octree cells. The octree 
cells could perhaps be made rectangular in the axial dimension. In this way, the 
required number of octree cells for modelling a non-homogenised fuel bundle 
could be greatly reduced and the application of the MultiTrans code to such 
problems might become feasible. This would require further studying, however. 

In general, the applicability of the MultiTrans code to reactor physics problems 
has been demonstrated. The VENUS-2 and VENUS-3 benchmarks show that the 
calculated results by MultiTrans are fairly comparable to the results obtained by 
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other methods. Void regions are problematic for the SP3 approximation, though, 
as shown by the KUCA LWR rod-out case. At the moment, the ability of 
MultiTrans to model heterogeneous fuel assemblies is also restricted due to large 
memory requirement encountered in such cases: application of a deterministic 
code to such heterogeneous 3D problems would represent the real state-of-the-art. 
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6. Summary and conclusions 

Neutral and charged particle transport theory in conjunction with the tree 
multigrid technique has been studied. A new deterministic radiation transport 
method, based on the tree multigrid technique and simplified spherical 
harmonics SP3 approximation, has been developed and applied to 3D neutron 
transport modelling (Publication I) and to BNCT neutron and photon dose 
planning (Publication II). The applicability of the novel MultiTrans radiation 
transport code has been further extended to multiplicative systems (Publication 
III) and to coupled photon-electron transport problems (Publication V). In order 
to validate and verify the code performance, MultiTrans has been tested for a 
wide variety of different types of neutral and charged particle transport problems 
encountered both in radiotherapy and in reactor physics (Publications I�V). 

The results obtained with the new MultiTrans code are somewhat twofold: in 
some cases the results are pretty good and promising, but in some other cases 
obviously inaccurate. For instance, in BNCT dose-planning problems, the 
neutron dose and related dosimetric responses seem to be modelled rather 
accurately, but the calculated photon dose is in disagreement with other 
computational methods and measurements. The problems have been related to 
the used SP3 approximation of the transport equation. Especially geometrical 
areas with low density � or low optical thickness for the radiation quality, to be 
more specific � have been problematic for the simplified spherical harmonics 
approximation. For air inhomogeneities, some ray-tracing technique might 
overcome this problem [42]. 

Sometimes combining different methods can lead to the best results [123]. For 
example, deterministic radiation transport methods (even quite approximative) 
can be used to solve the adjoint flux and thereby determine the optimal 
importance distribution for Monte Carlo variance reduction [124, 125]. Then the 
accurate Monte Carlo method can be used in an effective manner to solve the 
actual forward problem. Another combination of different methods is to use an 
approximative solution (such as diffusion solution) as a preconditioner for some 
more accurate deterministic method. In other words, the problem is first solved 
with one method, and the solution is then used as an initial guess to accelerate 
the iterative solution by the more accurate method. Recently, Even-Parity SSN 
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approximation (very similar to SPN) has been used as such a preconditioner for 
SN method with great success [78�81]. The multigrid acceleration can also be 
seen as sort of preconditioner. 

In Publication V we have suggested a combination of Monte Carlo method and 
deterministic solution of SP3 approximation with the tree multigrid technique. 
The idea would be to solve the photon flux by the accurate Monte Carlo method, 
and then do the subsequent electron transport calculation by MultiTrans. The 
electron transport calculations are handled very slowly by the Monte Carlo 
technique, while MultiTrans might produce the solution both fast and accurately. 
The combined performance of the methods might prove to be both fast and 
accurate, and could be useful in radiotherapy dose planning, especially in the 
cases with strong material heterogeneities. 

As a conclusion, it seems that SP3 approximation is best suited for radiation 
transport problems which are diffusion-like and have low void fraction, such as 
homogenised PWR core calculations. In that kind of transport or criticality 
problems the SP3 approximation should produce much better results than simple 
diffusion theory. For out-of-core calculations SP3 approximation is less suited, 
especially if there is streaming or deep penetration of radiation, that is, if the 
solution behaves very transport-like. For such cases, more accurate methods 
exist and should be applied. In radiotherapy applications some hybrid methods 
would be required to meet the required accuracy. Such methods might be worth 
further study. 

The tree multigrid technique has proved to be efficient. The CAD interface 
makes MultiTrans a flexible design tool. The CT interface enables radiotherapy 
applications. The usefulness of the new MultiTrans code has been indicated by 
verifying and validating the code performance for different types of neutral and 
charged particle transport problems, reported in separate publications 
(Publications I�V). 
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