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Abstract

Compton scattering is inelastic scattering of x rays from electrons. The information

carried by the scattered photon is, within certain approximations, directly related to

the velocity distribution of the scattering electron. Possible research topics include, for

example, electron-electron correlation in all electron systems, as well as Fermi surfaces

and electron-ion interaction in metals.

This work presents a systematic approach to study the electronic structure of matter uti-

lizing high-resolution Compton scattering of synchrotron radiation. The main objective

has been to gain an experimental measure of the strength of correlation effects in different

electronic systems. For this purpose, Compton-scattering experiments were performed on

various samples, starting from one of the simplest electronic systems, namely the helium

atom, extending to the studies of the simple molecule N2 and metallic systems sodium and

beryllium. The experiments were carried out at the European Synchrotron Radiation Fa-

cility (ESRF) in Grenoble, France, utilizing two beamlines, namely ID16 for low-energy x

rays (10 keV), and ID15B for high-energy x rays (30-60 keV). The results show deviations

from calculations that have been generally regarded as highly accurate, especially in the

case of inhomogeneous electron gas. This is a manifestation of the fact that correlation

needs a more proper treatment in the calculations than is presently achievable.
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I Simo Huotari, Keijo Hämäläinen, Seppo Manninen, Aretzki Issolah, and Massimiliano

Marangolo: Asymmetry of Compton profiles, Journal of Physics and Chemistry of Solids

62, 2205–2213 (2001)
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1 INTRODUCTION 5

1 Introduction

Compton scattering is a unique and a highly useful tool for electronic structure investi-

gations. The mere discovery and correct interpretation [1] of Compton scattering repre-

sented a huge leap forward in our understanding of physics, because it was the Compton

effect which proved that x rays can act not only as waves but also as particles, i.e. pho-

tons. For this experimental discovery Sir A. H. Compton was awarded the Nobel Prize

in Physics in 1927. The triumph of the Compton effect continued when DuMond [2] used

the Compton lineshape, i.e. the Compton profile, of beryllium to prove experimentally

that electrons in a metal behave according to the newly-discovered Fermi-Dirac statistics,

so belonging to the class of fermions. These studies were a significant part of the birth of

quantum mechanics at the beginning of 20th century, and altered our view of the world

irreversibly.

Unfortunately the experimental accuracy and feasibility of the experiments at that

time were not very attractive to physicists, so the field of Compton scattering as a tool

in electronic structure studies was practically forgotten for almost three decades. The

revival of the Compton scattering technique took place in 1965 when Cooper et al. studied

the Compton profile of Li metal using x-ray tubes and crystal analyzers [3]. Further

development was provided by the introduction of solid-state detectors in the 1970’s,

making the experiments much easier to accomplish.

Other paths explored by inelastic x-ray scattering (IXS) studies were introduced by

the discoveries of non-resonant Raman scattering [4] and resonant Raman scattering [5].

Hence Compton scattering became only one branch of IXS studies. Today IXS can be

utilized in many different research areas [6], including the studies of phonons, plasmons,

resonance phenomena, and valence-electron excitations. Furthermore, Compton scat-

tering of elliptically-polarized photons (so-called magnetic Compton scattering) can be

utilized as a very unique probe of the spin polarization of samples with magnetic prop-

erties [7–9].

The most recent advance in the field of Compton scattering studies has been due to the

advent of high-brilliance synchrotron radiation sources, which allow feasible and accurate

Compton-scattering experiments. The first pioneering studies were accomplished using

solid-state detectors [10, 11], but soon also crystal spectrometers were introduced [12].

Novel experiments pushed the experimental resolution into a new level in the late 1990’s,

and the results were quite unexpectedly in large discrepancy with theoretical predic-

tions [13]. This created a new level of activity in Compton scattering studies, which

could be called the second Compton revival, and which this work is also a part of. Es-
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pecially magnetic Compton scattering studies have been largely possible only due to the

synchrotron radiation sources, which are able to provide highly intense elliptically po-

larized radiation. The development has culminated in the high-resolution spectrometers

currently installed at beamlines around the world. Today, Compton scattering experi-

ments are quite well presented in the field of condensed-matter physics [14–44].

The birth of synchrotron radiation sources has been a success story of its own [45].

Synchrotron radiation was first considered a nuisance in particle accelerators, because it

diminished the energy of the charged particles in the accelerator rings. However, it was

soon realized that the bending magnets of the synchrotrons could be used as a source

of high-intensity radiation in the x-ray range, and x-ray physicists could use the particle

accelerators as parasites. These sources are now known as first-generation synchrotron

radiation sources. Later on, synchrotrons purely dedicated for producing radiation were

built constituting the second generation of synchrotron radiation sources. So-called inser-

tion devices, i.e. wigglers and undulators, were installed into the straight sections of the

second-generation storage rings, providing much brighter radiation than the old bending

magnets. This lead to the birth of the third-generation synchrotron radiation sources,

like the European Synchrotron Radiation Facility (ESRF), where this work was accom-

plished at. These synchrotrons were optimized primarily for the insertion devices. The

scientific community is currently working on the fourth generation of synchrotron radi-

ation sources, for which a strong candidate is the free-electron laser, proposed to reach

photon energies of ∼10 keV [46].

As is the case generally in science, theoretical and experimental studies have had a

very intensive dialog in the history of IXS. Sometimes experimentalists have discovered

new phenomena with no obvious theoretical explanation and this has lead theoretical

studies forward. On the other hand, theoretical predictions have been made that have

demanded a completely new level of accuracy from the experiments. This work is a

part of the systematic experimental and theoretical studies of (i) electronic structure of

matter in its various forms and (ii) the Compton-scattering process as an interaction of

x rays and electrons. These studies have brought information not only on electrons and

electromagnetic radiation but also, indirectly, on ions in matter as well.

One of the most important problems in solid-state physics and also a main topic in this

thesis is electron-electron correlation. The simplest approximation in an electron system

taking into account the Pauli exclusion principle between fermions is the Hartree-Fock

approximation. However, the Coulombic repulsion between electrons is only taken into

account in this approximation statically, i.e. when calculating the behavior of an electron

in a system with N electrons, the states of the other N − 1 electrons are assumed not
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to change due to the electron under study. The dynamic response of the other electrons,

neglected in the Hartree-Fock approximation, is called correlation. Since the electron

density in a solid-state system is ∼ 1023/cm3, the effects of correlation are quite difficult

to calculate exactly. Moreover, correlation effects can be difficult to separate from such

factors as the electron-ion interaction, finite-temperature effects and final-state effects in

the scattering process. This work is a contribution to the research of these effects in

electron systems.

This thesis is divided into five parts. The present section constitutes of a brief review

on the history and literature of Compton scattering. In the Section 2 a brief introduction

to the theoretical background of the scattering process is given. The Section 3 describes

the relevant experimental details of the beamline constructions, sample environments and

data analysis procedures. The background for understanding the electronic structure of

the investigated samples as well as the main results are given in the Section 4. Finally, the

Sections 5 and 6 give a short summary of the main results of the present work.

The unit system adopted in this thesis is the atomic unit (a.u.) system, where ~ =

m = e = 1. The atomic unit for length is the Bohr radius a0 (0.529 Å) and for momentum

1/a0 (1.993 · 10−24 kgm/s). Photon energies are represented in electron volts (eV).

2 Compton scattering

Most of the experimental tools utilized in solid-state physics are based on scattering or

absorption of photons, electrons, positrons, neutrons or other particles. The interaction

between the probe and the system under study gives information on the properties of

the system, provided that the theory of the interaction itself is known well enough. A

particle impinging on a system creates an excitation and finally leaves the system with

its momentum, and sometimes also its energy and the polarization state changed. If the

energy of the probe changes, the scattering process is inelastic. In this case also the final

state of the system is different from its initial state, the energy difference between the

states being equal to the energy change of the probing particle. Relevant excitations

and energy ranges that can be probed with the inelastic scattering techniques are nu-

merous, and consist of phonons (∼1 meV), plasmons (∼10 eV), core-electron excitations

(∼100 eV–10 keV) and Compton scattering of high-energy x rays (∼10 keV), just to

mention a few examples.

The amount of momentum transferred to the system determines the type of excitation

in question. In the low-momentum transfer regime the excitations are mainly of a many-

particle (collective) kind. These can be, for example, phonons, plasmons, magnons, etc.
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In the high-momentum transfer region, the probe sees the particle as independent and

thus single-particle modes can be excited.

This thesis reports studies of the scattering of x rays from electrons when the energy

and momentum transfers are large compared to characteristic energies and momenta of

the scattering electrons, and when the incident-photon energy is far from resonances of

the electron system (absorption edges, etc). This branch of inelastic x-ray scattering is

called Compton scattering, and the following analysis will be confined to this specific

regime. For a review of other types of inelastic x-ray scattering, the reader is referred to

Ref. [47].

Compton scattering can be used to the investigations of the momentum density of the

electrons [48, 49]. Perhaps a somewhat more widely used concept is the charge density

ρ(r), measured as the absolute square of the electron wave function in position space,

ψ(r). The momentum density N(p) is correspondingly the square of the electron wave

function χ(p) in Fourier, or momentum, space:

ρ(r) = |ψ(r)|2 (1)

N(p) = |χ(p)|2 , (2)

where the wave functions are coupled through the Fourier transform,

χ(p) = (2π)−3/2

∫
drψ(r) eip·r (3)

ψ(r) = (2π)−3/2

∫
dpχ(p) e−ip·r (4)

Momentum densities of electron systems can also be measured using the positron-

annihilation [50], (γ, eγ) [51], and (e, 2e) [52] spectroscopic methods. These competing

techniques have their own advantages and disadvantages over Compton spectroscopy.

The positron-annihilation method requires perfect single crystals, and especially clean

surfaces. The (e, 2e) and (γ, eγ) methods are limited to gases or very thin foils due to

a high probability of multiple scattering of the electrons. All these methods are surface

sensitive, whereas Compton scattering probes the bulk material and does not require per-

fectly clean surfaces or thin samples. Thus the Compton scattering method can be applied

to all electronic systems, whether they are in a gaseous, liquid, or solid form. However,

Compton scattering can only provide a one-dimensional projection of the momentum

density, whereas the competing methods can be applied to measure two-dimensional pro-

jections. The three-dimensional momentum density can be reconstructed by measuring

several directional Compton profiles of single-crystalline samples and applying reconstruc-

tion methods based on e.g. Fourier analysis [44,53].
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Figure 1: Representation of the scattering process.

2.1 Basics of non-resonant inelastic x-ray scattering

In a photon-electron scattering process a photon with an incident energy E1, a wave

vector k1 and a polarization state ê1 collides with an electron possessing a momentum p

and an energy εi. The final state has an electron with a momentum p + q and an energy

εf , and a photon with an energy E2, a wave vector k2 and a polarization state ê2. The

energy transferred by the photon to the electron is denoted by E = E1 − E2 and the

momentum transfer by q = k1 − k2.

The probability for a scattering event is proportional to the double-differential cross

section, which, when far from all resonances of the system, can be written non-relativistically

as [54]

d2σ

dΩ dE2

= r2
e

E2

E1

(ê1 · ê2)
2
∑
i,f

∣∣∣∣∣〈f |∑
α

eiq·rα |i〉

∣∣∣∣∣
2

δ(E + εi − εf ), (5)

where re is the classical electron radius. The summations are taken over all electrons in

the system, located at rα, and over all initial and final states |i〉 and |f〉. The first part

of the cross section is the Thomson cross section,(
dσ

dΩ

)
Th

= r2
e

E2

E1

(ê1 · ê2)
2. (6)

The second part of the cross section is called the dynamic structure factor,

S(q, E) =
∑
i,f

∣∣∣∣∣〈f |∑
α

eiq·rα |i〉

∣∣∣∣∣
2

δ(E + εi − εf ). (7)

Using these conventions, the double-differential scattering cross section can be written as

d2σ

dΩ dE2

=

(
dσ

dΩ

)
Th

S(q, E). (8)
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2.2 The impulse approximation

The dynamic structure factor is related to the electron-density fluctuations in the sample.

The physical meaning is best shown by the representation of van Hove [55],

S(q, E) =
N

2π

∫ ∞

−∞
dt

∫
dr ei(q·r−Et) G(r, t), (9)

where G(r, t) is the pair distribution function of the electrons, and N is the number of

particles in the system. From this formulation it can be seen that the physical meaning

of the dynamic structure factor is to be the Fourier transform of the pair distribution

function over space and time. Relevant limits to S(q, E) are (a being the length scale of

the system, e.g. the average distance between neighboring atoms)

• q ≈ 1/a: The dynamic structure factor does not change appreciably within different

positions in space, and thus collective excitations are observed.

• q � 1/a: Different particles scatter independently, and one-electron excitations can

be observed.

When the momentum and energy transfers are large, the dynamic structure factor

can be approximated further to reach a very important result [56]. Expressing the delta

function in (7) in its Fourier integral representation, the dynamic structure factor can be

rewritten as

S(q, E) =
1

2π

∫ ∞

−∞
dt eiEt

∑
i,f

〈i|eiHt
∑

α

e−iq·rαe−iHt|f〉〈f |
∑

α

eiq·rα |i〉. (10)

Now we can make the approximation (H0 being the Hamiltonian for a free electron and

V the potential due to the nucleus),

ei(H0+V )t = eiH0teiV te−[H0,V ]t2/2 · · · ≈ eiH0teiV t. (11)

The last form is valid if the time scale of the scattering process is very short with respect

to the relaxation times of the system, so that the scattering happens very fast, or the

energy transfer is large. Assuming that the final states form a complete set, the dynamic

structure factor can be written as

S(q, E) ≈ 1

2π

∑
i

∫ ∞

−∞
dt eiEt

∑
α

〈i|eiH0te−iq·rαe−iH0teiq·rα |i〉. (12)

The potential V has disappeared from the expression above. This does not mean that

it is approximated to zero, but rather that it cancels out between the initial and final
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states. Another way of looking at this is that if the scattering process is very fast, the

electron has no time to react before the photon is already scattered away. Hence, the

scattered photon can carry no information about the final state of the electron. This

approximation is called the impulse approximation (IA) and it is essential to the analysis

of Compton-scattered photons. From the last expression we can approximate further [56],

S(q, E) ≈
∑

α

∫
dpα |χ(pα)|2 δ(E − q · pα −

1

2
q2). (13)

From this, the momentum density of the electron N(pα) = |χ(pα)|2 can be recognized.

By choosing the z-axis of the momentum pα to be along the vector q, the integral is

easily computed due to the delta function. We will drop the summation and the index α

for clarity, and assume that N(p) is the sum of the momentum densities of all electrons:

S(q, E) ≈ 1

q

∫ ∞

−∞

∫ ∞

−∞
dpx dpy N(p) =

1

q
J(pz), (14)

where we have defined the Compton profile

J(pz) =

∫ ∞

−∞

∫ ∞

−∞
dpx dpy N(p). (15)

The correspondence of the scattered photon energy and pz can be calculated from

relativistic kinematics and is [57]

pz =
q

2
− (E1 − E2)

√
1

4
+

c4

2E1E2(1 − cosφ)
. (16)

An example of a Compton profile is presented in Figure 2, which shows the experimen-

tal and theoretical Compton profiles of Be. The contributions of the 1s and 2s electrons

are shown separately. Since the scattering process is incoherent, electrons give additive

contributions to the scattering cross section and thus the Compton profile is the sum of

the profiles of the individual occupied orbitals.

The usual argument to justify the validity of the IA is that for the scattering process

to be fast, the energy transferred to the system should be large compared to the binding

energy of the electrons [56]. The highest energy transfer utilized in this work was 10 keV

(corresponding the backscattering geometry for an incident photon energy of 56 keV), and

even with these energies the Compton profile of the 1s electrons of Be (binding energy

111 eV) exhibits an notable asymmetry due to the failure of the IA.
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Figure 2: Example of how the energy spec-
trum of the scattered photons is transformed
to the Compton profile in the momentum
scale. The sample was a Be single crystal
with the scattering vector along the [100]
reciprocal lattice vector. The dashed and
dashed-dotted lines correspond to theoreti-
cal results by Bansil et al. [58–60] for metallic
Be. The dotted line is the free-atom 2s pro-
file [61] as an example of how sensitive the 2s
profile is to the chemical environment. The
incident energy is 56 keV, scattering angle
173◦ and the mean energy transfer 10 keV.
The slight asymmetry in the experimental
profile is due to the failure of the impulse
approximation for the 1s electrons, and the
excess of electrons above -1 and 1 a.u. is pos-
sibly due to electron-electron correlation ef-
fects.

There have been several studies to calculate and measure the effect of this phenomenon

on Compton profiles [62–68]. As a result, it is generally agreed that the failure of the IA

causes the Compton profiles to become asymmetric, but on quantitative level the agree-

ment of experimental and theoretical results is not yet satisfactory. On the experimental

side, asymmetry can also be caused by incorrect data analysis, background, multiple

scattering, misalignment of the experimental apparatus, etc. Especially the separation

of the asymmetry due to the failure of the IA and the asymmetry caused by multiple

scattering can be difficult.

The failure of the IA can be divided into two categories, the valence electron and

the core electron parts (paper I). It was found out that the valence electron Compton

profile can exhibit asymmetry and smearing of the Fermi surface signatures if the energy

transfer is of the order of 500 eV (the mean energy transfer in backscattering geometry

for E1 ≈ 10 keV). The valence electron part had no asymmetry when the provided energy

transfer was 3 keV or more. It can thus be concluded that for the IA to be valid for the

valence electrons in metals, the minimum energy-transfer value lies between these two

limits. This is rather surprising, since the binding energy of these electrons is only a

few electron volts. This fact is crucial, because it is often the valence electrons that the

solid-state physicist is interested in, and these results suggest that it may not be possible

to arbitrarily enhance the accuracy of the experiment if the transferred energy is below

the 3 keV limit, due to the failure of the underlying approximations. Recently this effect
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was also observed by Sternemann et al. in lithium [69], and the effect has been lately

studied also theoretically [69–72].

The Be 1s (core electron) Compton profile was found to exhibit asymmetry due to the

failure of the IA even with the highest energy-transfer value reached, i.e. 10 keV, as can

be seen from Figure 2. Fortunately, the core electron contribution does not contain sharp

structures, and while the core electrons are rather uninteresting from the point of view

of solid-state physics, their contribution can be quite easily subtracted from the signal

even when the IA is not valid. For this purpose, the asymmetric core-electron Compton

profile needs to be found, either accurately by calculation or empirically from experiment.

A rather good theoretical treatment to account for the failures of IA is the quasi-self-

consistent-field (QSCF) method by Issolah et al. [62,63]. The results of this method and

another one, a simple analytical expression for the first order correction to the Compton

profiles [64], were compared to the experimental asymmetries in the paper I. It was

discovered that the QSCF produced a reasonable, but by no means perfect, agreement

with the experimental results. This suggests that a more sophisticated method is needed

to account for the failure of the IA.

3 Description of the experiments

The experimental work for this thesis was done at the European Synchrotron Radiation

Facility (ESRF) beamlines ID15B and ID16. The beamline ID15B [73, 74] is capable of

producing monochromatic high-energy radiation (29–90 keV) with a flux of about 1012

monochromatic photons/s at the sample, while ID16 is built to produce lower-energy

photons (∼ 7–25 keV) with a roughly similar intensity. Both beamlines are designed

for inelastic x-ray scattering studies, but differ from each other in several ways. Besides

ID16 being optimized for lower energy photons than ID15B and having a different kind of

insertion device, it differs from ID15B by the possibility to change the energy of incident

photons continuously.

3.1 Beamline ID15B

The radiation source at ID15B was a seven-period asymmetric permanent-magnet wiggler,

which has a critical energy of 44.1 keV. The radiation was monochromatized by bent

focusing Si monochromators with a demagnification ratio of 5:1. At present, the beamline

has three separate monochromators installed, which can be operated one at a time. Thus

the beamline is able to provide photons with energies of 29 keV, 56 keV and 90 keV. In this
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Figure 3: Layout of the experimental station ID15B.

work, energies of 29 keV and 56 keV were used. The monochromators were Si(111) and

Si(311), respectively. The monochromators also acted as horizontally focusing elements.

The beam was cut with heavy-metal slits into a vertical line up to 5.0 mm high and

0.3 mm wide, the width essentially determining the resolution of the instrument due to

the angle-dispersive nature of the crystal spectrometer. A Si PIN diode was installed

before the sample to monitor the incident-photon flux and operated in the photovoltaic

(current) mode.

The spectra of the scattered x rays were recorded using a scanning crystal spectrome-

ter, except in the case of the high-pressure studies, where the spectra were recorded using

a Ge solid-state detector due to a low counting rate. The Ge detector has a poorer energy

resolution but is more efficient in terms of intensity than the spectrometer. Whenever the

spectra were recorded using the scanning crystal spectrometer, the Ge detector was used

together with the Si PIN diode to monitor the intensity of the incident photon beam by

recording the integrated intensity of photons scattered from the sample. As a monitor

it has the advantage that it is possible to separate the signal from the nominal Si(111)

reflection at E1 = 29 keV from the signal due to the third harmonic, i.e. the Si(333) re-

flection having the energy of 87 keV. With the Si PIN diode operating in the photovoltaic

mode it was not possible to separate photons with different energies. This is crucial since

the intensity ratio of the Si(333) reflection to the Si(111) reflection was not constant but

changed with the heatload of the monochromator, and hence as a function of time. With

the Si(311) reflection (E1 = 56 keV) the third harmonic did not have a significant role,

since the intensity of the 180 keV radiation coming from the wiggler source was minimal,

especially after the monochromator since the reflecting power of the monochromator is
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very small for these high-order reflections. The drawback of the solid-state detector is

that it is limited by statistical accuracy and it has a smaller dynamic range than the

current-mode Si PIN diode.

The spectrometer operated in Rowland geometry and was based on cylindrically bent

Si(400) and Ge(440) crystals, for incident photon energies of 29 and 56 keV, respectively.

The crystals were asymmetrically cut to obtain a demagnification ratio of 2:1. The

intensity of the reflected radiation was recorded with a NaI scintillation detector. The

spectrometer was controlled with the computer program spec [75]. The scattering angle

for the spectrometer was 173◦ and for the Ge detector 160◦.

The factor that dominated the instrumental resolution function in the experiments

utilizing the scanning crystal spectrometer was the illuminated effective sample size. In

the experiments where Be single crystals were used as samples, the resolution function

in momentum space had a full-width-at-half-maximum (FWHM) of 0.08 a.u. for E1 =

29 keV and 0.16 a.u. for E1 = 56 keV. The resolution in the case of gaseous samples was

lower since the illuminated sample volume was not that well confined. By utilizing the

focusing properties of the spectrometer and narrow slitting, a resolution function with

a FWHM of 0.3 a.u. was achieved. In the high-pressure studies, where a solid-state Ge

detector was used, the momentum resolution was dominated by the energy resolution of

the detector. The resolution function for this experiment had a FWHM of approximately

0.6 a.u. in momentum space.

3.2 Beamline ID16

The beamline ID16 is designed for high-resolution studies of electronic excitations and

phonons. It is used primarily for low energy-transfer studies (from 1 meV to a few eV),

and the possibility to scan the large energy range needed in Compton spectrometry (in

this case, ∼1 keV) posed a challenge of its own. The radiation source at ID16 consisted

of two consecutive undulators, and the radiation was monochromatized using two Si(111)

crystals. The double-crystal monochromator made it possible to change the incident-

photon energy continuously without the beam moving significantly. The undulators and

the monochromator were operated synchronously with the spec [75] computer program.

The utilized incident-photon energy E1 was tuned between 9.9 and 10.9 keV. At this

beamline the so-called inverse geometry was utilized, i.e. the scattered photon energy

was kept fixed and the incident-photon energy was scanned through the energy region of

interest. The spectrometer operated at a nearly backscattering geometry (Bragg angle

86◦) with a Si(555) analyzer crystal. A vacuum chamber was installed in the beam path

to minimize air absorption.
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It is possible to measure the intensity of scattered radiation with a fixed monochro-

matic energy as a function of the incident-photon energy, because in non-resonant x-ray

scattering the incident-photon energy can be chosen somewhat arbitrarily. This is not the

case for example in resonant scattering experiments, where the physics of the scattering

process change appreciably over even a small energy range. The advantage of this method,

compared to the scanning crystal spectrometer, is that the spectrometer becomes easier

to operate since it does not require movement and there is no need to correct for the

analyzer crystal and detector efficiencies with different photon energies. However, mon-

itoring the incident-beam intensity becomes now an energy-dependent problem. Widely

used ionization chambers would be quite easy to operate and the efficiency as a function

of incident-photon energy could be calculated quite accurately, but at ID16 their usability

is rather limited. This is due to the fact that the photon flux is so high and the beam

so well focused that the response of the ion chamber is no longer linear, and is very sen-

sitive to fluctuations in the beam shape and size. In this experiment the incident-beam

intensity was monitored by using a thin Kapton foil installed in the beam path, and a

PIN diode recording the number of photons scattered by the foil.

The resolution of the instrument at ID16 was mainly determined by the solid angle

seen by the analyzer crystal, i.e. the uncertainty of the scattering angle. In momentum

space the resolution function had a FWHM of 0.02 a.u.

3.3 The high-pressure cell

The paper III describes an experiment to measure the density dependence of the elec-

tronic properties of free electron gas. In practice this was done by applying a high pressure
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Figure 5: Schematic presentation of the LVC sample gasket for studying materials under high
pressure.

to a Na sample and then measuring its Compton profile with E1 = 56 keV at ID15B.

The pressure was applied by using a mechanical Paris-Edinburgh large-volume cell (LVC)

press [76, 77]. The highest pressure used was 4.2 GPa. The sample was enclosed within

a gasket made out of boron epoxy, which is a hard material but quite opaque for high-

energy x rays. The sample is stored inside the boron gasket and enclosed within a boron

nitride capsule. Boron nitride, in turn, is a soft material which ensures that the pressure

within the sample is uniform. The sample gasket is presented in Figure 5.

While the pressures attainable with the large-volume cell press are of the order of a few

GPa’s, much higher pressures (up to 300 GPa) have been reached by using diamond anvil

cells [78, 79]. An attempt to accomplish the high-pressure experiment with a diamond

anvil cell was also made. Besides offering higher pressures, it is a small, hand-held

device and thus would be also more practical in experiments than the large volume cell.

However, the sample volume in the diamond anvil cell was too small compared to the

incident beam size and the focusing power of the spectrometer, resulting in ∼ 60 %

of the measured signal to originate from the diamond anvils. Vertical focusing and a

optimization of the focusing properties of the spectrometer would probably make further

experiments with the diamond anvil cells feasible. A new construction of moissanite

(hexagonal silicon carbide) anvil cell was recently reported to allow sample sizes of three

orders of magnitude larger than in diamond anvil cells [80]. The achieved pressure was

50 GPa, so this new cell could be the next step toward more accurate Compton scattering

experiments under high pressure.

3.4 The gas cell

The gaseous systems He and N2 were studied at ID15B utilizing a gas cell, which is

schematically presented in Figure 6. The utilized incident photon energy was E1 =
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Figure 6: Overview of the gas cell in which the gaseous materials were studied.

56 keV. The gas cell was originally used by Paakkari et al. [81], and slightly modified

for our studies. The utilized gas pressure was 50 bar and its purpose was to increase

the count rate. This pressure does not affect the electronic properties of the atoms or

molecules under study. The cell was made of stainless steel and the entrance/exit window

was covered with a 1-mm thick Al plate. A Pb beam stopper was installed to minimize

multiple scattering events, which could take place from the walls of the gas cell.

3.5 Data analysis

Numerous issues have to be taken into account before the data recorded by the detector

can be analyzed as a Compton profile. The most important ones are the conversion of

the cross-section (as a function of scattered photon energy) to the Compton profile (as

a function of pz), background subtraction, and corrections for the detector and the ana-

lyzer crystal efficiency, absorption in the sample and air, dead time effects, and multiple

scattering.

The Compton profile was calculated from the measured cross section using the rela-

tivistic formulation of Holm [57]. The efficiencies of the analyzer crystals were taken into

account by calculating the reflectivity curves using a lamellar model [82]. The background

was measured whenever possible (e.g. empty gas cell) or was approximated as linear.

One crucial factor in the data analysis is the intensity normalization. Although the

ESRF is a very reliable photon source, the intensity of incident photons still changes

appreciably during the course of the experiment and has to be monitored. Unfortunately

this is not always such a simple task. The monitoring elements can be affected by higher-

order harmonic reflections from the monochromators, beam movement, dead time, etc.

This poses a problem especially because the heatload of the optical elements of the
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beamlines changes with time, combined to the fact that the detectors may suffer from a

dead time effect (the dynamic range of the detector being too small). In all experiments,

the spectra were measured several times and they were ensured to be identical after

normalization and dead-time corrections, within the statistical accuracy.

4 Electronic structure of matter

This thesis comprises of a systematic comparison of experimental and theoretical Comp-

ton profiles of electronic systems with a varying level of complicity. For this purpose, a

series of Compton-scattering experiments was accomplished with samples ranging from

the simplest possible system that can be feasibly measured, namely the He atom, up to a

much more complicated system, namely the inhomogeneous electron gas of Be. Systems

with much higher level of complicity, for example high-TC superconductors, can also be

studied by the Compton scattering method [28, 39] but they are out of the scope of this

thesis.

When discussing the electronic structure of matter, a distinction to the so-called core

and valence electrons is usually made. In solid-state physics the electrons of interest are

usually the valence electrons, since they carry the information necessary to understand

most transport phenomena and e.g. optical properties of the system. On the other hand,

the core electrons can in some cases be used as an indirect probe, for example in the

studies of defects in semiconductors [83]. In solid-state systems also the tightly bound

core electrons are affected by the crystal potential, and their wave functions are modified

from the free-atom wave functions, mainly due to the fact that they have to be orthogonal

to the valence-electron wave functions. Thus truly atomic systems can only be studied

in their non-solid (preferably gaseous) state.

The Compton profile of helium was measured as described in the paper II, and the

studies were later extended to the N2 molecule [84]. Both systems were studied in the

gaseous state. A more complicated system, the free-electron gas, was studied in the

paper III, which describes a Compton-scattering study on Na in high pressure. The

valence electrons of Na serve as a free electron gas to a good approximation, so in this

study the interaction between the valence electrons and the ions can be neglected. To

study this interaction, a two-fold study of the valence electron structure of beryllium

metal was performed, as described in the papers IV and V.

One of the main topics of this thesis is electron-electron correlation. i.e. all inter-

actions that are not accounted for in the Hartree-Fock approximation. Correlation and

its effect on electron systems are among the most important problems in many-body
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physics [85, 86]. An exact calculation of correlation effects in solids is quite difficult and

approximations are evidently necessary. Also electron-ion interaction, i.e. band structure,

can have effects on the electronic states that are similar to the effects of correlation, so

these effects can be difficult to separate from each other. On the other hand, the helium

atom constitutes only a three-particle problem and can thus be modeled quite accurately.

We would thus expect a quite good agreement between experimental and theoretical

Compton profiles of He, and more discrepancies when we reach inhomogeneous electron

gas, like the valence electrons of metallic Be.

4.1 Atoms and molecules

The many-particle wave function is in the Hartree-Fock approximation a Slater determi-

nant [87,88] (for simplicity, the following analysis will be confined to closed-shell systems):

Ψ(r1, r2, . . . , r2N , s1, s2, . . . , s2N) =∣∣∣∣∣∣∣∣∣∣
ψ1(r1)α(s1) ψ1(r1)β(s1) ψ2(r1)α(s1) . . . ψ2N(r1)α(s1)

ψ1(r2)α(s2) ψ1(r2)β(s2) ψ2(r2)α(s2) . . . ψ2N(r2)α(s2)
...

...
...

. . .
...

ψ1(r2N)α(s2N) ψ1(r2N)β(s2N) ψ2(r2N)α(s2N) . . . ψ2N(r2N)β(s2N)

∣∣∣∣∣∣∣∣∣∣
where the spatial parts of the individual orbitals are denoted as ψi(rj) and the spin parts

as α(sj) and β(sj). The spin parts of the orbitals are complete and orthogonal with

respect to integration in the spin space, i.e. the summation over possible spin values,∑
s

α(s)β†(s) = 0 (17)∑
s

α(s)α†(s) =
∑

s

β(s)β†(s) = 1. (18)

As the orbitals ψi(r) are orthogonal as well (being solutions to the same Schrödinger

equation), the charge density is

ρ(r) =
∑

i

ρi(r) = 2
∑

i

|ψi(r)|2. (19)

An often used method to calculate the wave functions of atomic and molecular systems

is the linear combination of atomic orbitals (LCAO) method, which assumes that the

orbitals ψi(rj) can be taken to be linear combinations of primitive orbitals,

ψi(rj) =
∑

µ

ciµφµ(rj). (20)
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The primitive orbitals are sometimes chosen to be Slater functions,

φnlm(rj) = Rnl(r)Ylm(θ, ϕ) (21)

Rnl(r) = rn−1e−ζr. (22)

The functions Ylm(θ, ϕ) are the spherical harmonic functions and ζ a parameter which

describes the effective radius of the orbital. It can be calculated variationally for a

specified atom and shell. These functions have the advantage that they are equivalent to

hydrogenic orbitals and provide a good representation of atomic orbitals with standard

ζ-values recommended by Slater [89]. They seem attractive but when it comes to large

molecular systems, their integrals become computationally quite cumbersome. For this

reason a more often used basis set is the Gaussian basis set, where

Rnl = rn−1e−ζr2

. (23)

The Gaussian integrals are much faster to compute, but the disadvantage is that the

Gaussian functions do not describe well even the hydrogenic radial function near r = 0.

This can be compensated by using a larger basis set, which, in turn, can again become

cumbersome.

Using the LCAO formalism, the charge density can be expanded in the individual

primitive orbitals as

ρ(r) = 2
∑
iµν

ciµciνφµ(r)φν(r) =
∑
µν

Pµνφµ(r)φν(r) (24)

where the summations run over occupied states. We have defined the density matrix Pµν ,

Pµν = 2
∑

i

ciµciν . (25)

In the Fourier transformation of the determinant wave function individual orbitals are

transformed separately [90], and thus the momentum density of the system is simply

N(p) =
∑
µν

Pµνχµ(p)χν(p), (26)

where χµ(p) is the Fourier transform of the primitive orbital φµ(r).

In the following, experimental and theoretical Compton profiles of He and N2 will be

presented. The wave functions were calculated using the LCAO method with the non-

relativistic quantum-chemistry program DALTON [91], which provided the density matrices

for each system. The program includes various Gaussian basis sets, of which the the cc-

pVTZ set [92, 93] was chosen for this study. It is designed to be correlation consistent
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Figure 7: Left panel: Compton profiles of helium. Experimental data are represented by the
dots, with error bars smaller than the symbol size. Two theoretical profiles are also depicted,
a solid line including correlation effects and a dashed line neglecting them, but they cannot
be distinguished from each others within the line thickness. Right panel: The difference
between the experimental and theoretical Compton profiles of He. The thick solid line represents
the deviation between the experimental and the theoretical cc-pVTZ Compton profiles with
correlation included. The dashed line depicts similar data but without correlation correction in
the theoretical profile. As in the figure in the left panel, the two lines can barely be distinguished
from each other. The dotted line in the middle represents the difference between the two
theoretical profiles, and the two symmetrically aligned thin solid lines represent the magnitude
of the experimental errorbars.

and it is generally regarded as being capable of giving quite accurate correlation-corrected

wave functions in simple systems. The momentum densities, their directional averages

and finally the Compton profiles were computed from the density matrices numerically.

Correlation effects were taken into account in DALTON by using the Møller-Plesset second-

order perturbation theory (MP2) [94,95].

Atomic and molecular systems have been studied via Compton scattering also ear-

lier but with much lower accuracy [81, 96–100]. These studies were performed by using

conventional x-ray tubes or γ-ray sources, combined with either crystal spectrometers or

solid-state detectors. Most of the earlier studies that include comparisons of experimental

and theoretical Compton profiles with and without correlation corrections, have obtained

the theoretical profiles from different sources and the comparability of the profiles is thus

questionable. In this work, the theoretical Compton profiles were calculated consistently

with the same computational method using the same basis set. The correlation correction

could be turned on and off easily, allowing reliable examination of the magnitude of the

correlation effects in the system.

The experimental and theoretical Compton profiles of He are presented in Figure 7.
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Figure 8: Left panel: Compton profiles of the N2 molecule. The experimental data are
presented as dots (the error bars are smaller than the symbol size) and the result of a cc-
pVTZ calculation including correlation is presented as the solid line. The dashed line is the
corresponding free-atom nitrogen Compton profile multiplied by a factor of two, for comparison
purposes. Right panel: The differences between the experimental and various theoretical N2

Compton profiles. Dashed line: cc-pVTZ without correlation; thin solid line: cc-pVTZ with
correlation; thick solid line: theoretical profile by Thakkar et al. [101]. The two symmetrically
aligned thin solid lines represent the size of the experimental errorbars.

The theoretical profiles have been convoluted with a Gaussian function with a FWHM

of 0.3 a.u., representing the experimental resolution function. The agreement between

experimental and theoretical Compton profiles is remarkable. From the data in the figure,

it can be also concluded that correlation effects are negligible in He. It thus serves as an

excellent test case for the studies of more complicated systems, since correlation effects

can be ruled out as being the source of e.g. broadening of the profile.

The advantage of the Compton scattering method is that it gives quite direct infor-

mation on the electron wave functions. In the paper II it is presented how accurate

measurements of the Compton profile can be utilized to directly extract the wave func-

tion from the data, and further propose that similar studies on more complicated systems

may become feasible in the future. Even if the wave function is difficult to extract directly

from Compton profiles of more complicated systems, the momentum density is sensitive

to wave function’s phase relation on different atoms by exhibiting oscillations with fre-

quencies which are directly connected to the bond distances. For example the hydrogen

bond in ice and urea has been studied by analyzing these oscillations [24,40].

A similar experiment to that of He was also performed on N2 to see if correlation

effects are more pronounced in this simple molecular system than they are in helium. The

results of the experiment and calculations are shown in Figure 8. Again, the experimental

resolution function is taken into account in the theoretical profiles. It is clearly evident
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that correlation plays a more important role in N2 than in He, and the agreement between

experimental and theoretical results is enhanced when correlation is taken into account.

However, even the state-of-the-art calculation by Thakkar et al. [101–103], explaining the

system fairly well, does not give a perfect agreement with the experimental results, the

experimental Compton profile being broader than the theoretical one. Multiple scattering

and background radiation being ruled out in the data analysis procedure, the effect can

be traced to correlation effects, which are probably not completely accounted for in the

calculation.

4.2 Metals

This part of the work concentrates on metals and especially on their ground-state valence

electron structure as probed by Compton scattering. One of the most important concepts

in metals is the Fermi surface. It is defined as the isosurface in k-space, k being the wave

vector of the electron and ε(k) its energy,

ε(k) = εF , (27)

where the constant εF is the Fermi energy. The importance of the Fermi surface comes

from the fact that all electronic transport phenomena are due to the electrons on or near

the Fermi surface. For example the electric and thermal conductivities depend on the

Fermi surface and on the relation ε = ε(k).

Much of this work is devoted to the electronic structure of beryllium. It is a good

candidate for electronic structure studies because of its large number of valence electrons

compared to core electrons and its Fermi surface, which has a non-trivial structure but

can still be calculated quite easily. It is also a very attractive target for inelastic x-ray

scattering studies because of its high relative inelastic x-ray scattering cross section and

low absorption. The electronic structure of Be has been studied extensively both exper-

imentally and theoretically throughout the 20th century [13, 104–112], but the present

accuracy has never before been achieved by Compton spectroscopy.

Free and non-interacting electron gas

It is not surprising that the simplest approximation for electron gas is the assumption

that the electrons are non-interacting and experience only a constant potential. What

really is surprising is that how well this approximation works in simple metals. The

only really important interaction that has to be taken into account to the free electron

gas theory is the Pauli exclusion principle; two electrons can not be in the same state
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described by the wave vector k and the spin s, i.e. the electrons obey the Fermi-Dirac

statistics. The probability for a state with wave vector k to be occupied follows the

Fermi-Dirac occupation number function, µ being the chemical potential, or the Fermi

energy in the low-temperature limit,

n(ε) =
1

1 + e(ε−µ)/kT
, (28)

which reduces in the low-temperature limit to a step function

n(ε) =

1, ε ≤ εF

0, ε > εF

or n(k) =

1, k ≤ kF

0, k > kF .
(29)

The momentum-space form n(k) is the most often used one, although it is well-defined

only for homogeneous electron gas. In the metallic density region the approximation (29)

is valid in solid-state systems, since the Fermi temperatures of metals are ∼ 104 K; well

above the melting point of most metals.

Real metals

In real metals there are two important issues that are not taken into account in the model

described above, namely correlation and electron-ion interaction.

Correlation

Correlation has an effect on the momentum density of electrons that is in a way similar to

the effect of finite temperature, i.e. it causes part of the momentum density to be shifted

to higher momenta. However, the discontinuity apparent in the Fermi-Dirac occupation

number remains, but its height is renormalized by a factor of ZF [113,114], as presented

in Figure 9. Several different approximations have been used to calculate this effect

quantitatively (i.e. to find ZF as a function of the electron gas density) [115–120]. Some

of the results for ZF are presented in Figure 10, where the renormalization parameter is

plotted as a function of rs = 3
√

3/4πρ, where ρ is the electron gas density.

The extraction of ZF from Compton scattering data has given puzzling results. One

of the first results of high-resolution Compton scattering studies by Schülke et al. [44] was

that the renormalization parameter for Li would be ZF ≈ 0.0–0.2, by far smaller than

any of the theoretical predictions depicted in Figure 10. On the other hand, a recent

experiment by Suortti et al. suggested that ZF ≈ 0.7–0.8 for Al [32], which would be

consistent with the calculations. It has been pointed out [121] that the results are largely

affected by the choice of the model for n(k) and not only by the values of ZF (rs). As
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a complementary study of this effect, a Compton-scattering experiment on the valence

electrons of Na was carried out as described in the paper III. By utilizing a high pressure

(up to 4.2 GPa) the free-electron gas density, and thus also rs and the Fermi momentum,

were changed directly.
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Figure 9: Example of how correlation modi-
fies the Fermi-Dirac occupation number and
the Compton profile of a free-electron gas.
The utilized analytical approximation to
n(k) with correlation is taken from Schülke
et al. [44], using the renormalization param-
eter ZF = 0.5. The occupation number and
the Compton profile drawn with a solid line
include correlation effects, and correspond-
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Donald et al. [118], and the solid line by
Lantto [119]. Some typical metallic densi-
ties are designated by vertical lines, ranging
from rs = 1.88 (Be) to rs = 4.86 (K).

Because the core-electron Compton profiles are not significantly affected by the pressure,

it is possible to subtract their contribution by simply observing the relative change of

the total Compton profiles as a function of pressure. Thus all contamination sources,

e.g. background, multiple scattering, and the asymmetry of the core-electron Compton

profiles due to the failure of IA, are canceled out and purely a signal from the valence

electrons remains.
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The most obvious change in the Compton profiles as a function of pressure was the

change of the Fermi momentum as the electron-gas density was changed. This effect

is quite accurately described by the non-interacting electron-gas theory, and thus does

not carry information on correlation. The magnitude of the correlation effects on the

difference profiles was of the order of the statistical accuracy of the experiment [122].

Although the results are still inconclusive, the work done here is a novel experiment

proving that high-pressure Compton scattering studies are possible, and the work will

continue in future.

Electron-ion interaction

When the interaction between the electrons and the ions is taken into account, the mo-

mentum density gets increasingly complicated, as the periodic lattice modifies the Fermi

surface. One of these effects is the formation of the so-called high-momentum compo-

nents, which are schematically presented in the Figure 11. Their origin can be seen if the

periodic lattice is written in its Fourier series representation

V (r) =
∑
G

VG e
iG·r, (30)

and the corresponding wave function

ψk,ν(r) =
∑
G

aν(k + G) ei(k+G)·r. (31)

The electron momentum density comes out then as

N(p) =
∑
k,ν,G

|aν(k + G)|2 nν(k) δk+G,p/~. (32)

From this formulation it is evident that there are components of the momentum density

centered around reciprocal lattice vectors G. These are the high-momentum components,

which can be described by Bragg scattering of the electron wave functions in the peri-

odic lattice potential. The reason why they are of interest is due to the fact that they

can give additional information on the lattice potential and especially on the effects of

thermal disorder on the electron wave functions. Unfortunately their contribution to the

Compton profiles of metals is rather small, making their direct observation quite chal-

lenging. However, even when they cannot be distinguished directly, their signal overlaps

with the valence and core-electron Compton profiles, making the knowledge of the high-

momentum components crucial if one wants to extract the occupation number function

n(k) from the Compton scattering signal of metals, as described earlier.
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Momentum density contours

Compton profile

HMC × 10

b*

a*

Figure 11: Outline of the formation of the
high-momentum components (HMC) in a
metal with a hexagonal symmetry, neglecting
correlation. In the upper panel the momen-
tum density contours centered in the middle
represent the primary Fermi sphere, whereas
the secondary Fermi spheres are centered
around the reciprocal lattice vectors of type
[100] (e.g. a∗ and b∗). In the lower panel
the corresponding Compton profile is shown.
The high-momentum components are exag-
gerated by a factor of ten. The Compton pro-
file peaks drawn with the dashed line are the
contributions from the four high-momentum
components drawn with a dashed line in the
upper panel, and correspondingly the peaks
drawn with a solid line are the contributions
from the components drawn with a solid line
in the upper panel.

In the experiment described in the paper V we were probably the first to be able

to distinguish the high-momentum components directly in a Compton scattering exper-

iment. Schülke et al. [44] reconstructed the three-dimensional momentum density of Li

and were able to find signatures from the high-momentum components. Sternemann

et al. [123] studied the temperature dependence of Li Compton profiles and found that

the difference between Compton profiles in different temperatures exhibited a signifi-

cant contribution from the temperature dependence of the intensity and position of the

high-momentum components. A similar experiment was carried out to study the tem-

perature dependence of the Compton profile of Be, especially paying attention in the

high-momentum-component region (paper V).

The experimental results were compared to a simple heuristic pseudopotential cal-

culation. It was found out that the temperature dependence of the high-momentum

components was quite small in Be, in contrast to the results for Li, proving that thermal

disorder does not play a significant role in the lattice potential modulation of the wave

functions of Be valence electrons.

Correlation in inhomogeneous electron gas

The free-electron model assumes homogeneous electron gas, i.e. it neglects the interac-

tion between the valence electrons and the ions. If there is no quantitative agreement on
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the correlation effects in homogeneous electron gas, it is even more difficult to compute

the effects of correlation on inhomogeneous electron gas. The correlation effect is usu-

ally taken into account within the local-density approximation (LDA) by the isotropic

Lam-Platzman correction [124] using the occupation number function for interacting

homogeneous electron gas. Being isotropic, this correction cannot take into account cor-

relation effects that have anisotropic effects on the momentum density. In the paper IV

differences were found between experimental and LDA based Lam-Platzman-corrected

beryllium Compton profiles [58–60], which were previously regarded as highly accurate.

The differences were direction-dependent and their magnitude was roughly twice the

magnitude of the Lam-Platzman correction. While the factor of two in magnitude is

still unexplained, similar results have been achieved computationally for Cr using an ex-

tension to an augmented-plane-wave (APW) scheme [125] and more recently using the

GW -approximation [126]. A quantum-Monte-Carlo study of the correlation effects on

Li [35] resulted in a correlation correction to the Li Compton profile that was very sim-

ilar to the Lam-Platzman correction. Although the results for Li and Be are difficult to

compare, it is evident that there is no agreement to the problem of how correlation effects

should be incorporated into theoretical Compton profiles.

A motivation for studying the temperature dependence of the Compton profiles was a

recent suggestion that the observed discrepancies between experimental and theoretical

Compton profiles would not be due to correlation but due to thermal disorder, which

would make the Compton profiles broader than anticipated [127]. Studies on lithium did

not support this picture [123], and the experiment described in the paper V acted as

a confirmation of that result for inhomogeneous electron gas. It was indeed found that

thermal disorder does not broaden the Compton profiles of Be, and other reasons for the

broadening must be sought, possibly originating from correlation.

5 Conclusions

This thesis describes highly accurate experimental Compton profiles and their comparison

with corresponding theoretical profiles. A systematic series of experiments was carried

out for He, N2, Na and Be to study the effect of interactions mentioned in the previous

section as a function of the complicity of the electronic system.

Attempts to push the experimental resolution to the level of 0.02 a.u. utilizing low-

energy (10 keV) photons suggested that final-state effects smear out the Fermi surface

signatures and thus the failure of the impulse approximation may prohibit accurate ex-

periments with these low photon energies. The failure of the impulse approximation
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concerning the core electrons was found to be simpler to account for, and the subtrac-

tion of the asymmetric core-electron Compton profiles was found to be feasible when the

utilized incident photon energy was 30 keV or higher.

Comparing the experimental and computational results it can be concluded that cor-

relation plays a significant role in solid-state systems. Especially the correlation effects in

inhomogeneous electron gas lack an accurate theoretical description. Also some disagree-

ment between theoretical and experimental Compton profiles of N2 was found. Adding

the effect of correlation to the theoretical profiles enhances the agreement, but even the

present state-of-the-art theoretical calculations do not describe this system exactly.

This work proves the usefulness and sensitivity of Compton scattering experiments

to research areas such as studies of correlation phenomena, electron-ion interaction and

effects of bonding, or more generally, chemical environment. The experiments can be

carried out with crystalline, liquid or gaseous samples without restrictions to pressure or

temperature, so the method can be applied to studies of electronic systems in extreme

conditions.

6 Summary of the papers

The publications in this thesis are examples of how modern synchrotron radiation sources

give a possibility to enhance the accuracy of Compton scattering experiments. The main

aspects are the electronic structure of atomic, molecular and metallic systems, especially

studying the effects of correlation, electron-ion interaction, and Fermi surfaces of metals.

Paper I introduces studies of the failure of the impulse approximation as being a

source of asymmetry in experimental core-electron Compton profiles. The observed asym-

metry was found to be quite well explained by a QSCF method but some disagreement

was found, suggesting that a better treatment to go beyond the impulse approximation

is needed.

Paper II presents novel studies of the wave function of helium atom using the Comp-

ton scattering technique. The electronic structure of He is simple enough to enable the

analysis of its 1s wave function directly from the measured Compton profile. Further

studies for wave functions of more complicated systems are proposed.

Paper III presents studies of the occupation number density of Na under high pres-

sure. A previously used method to compare electron momentum densities as a function

of rs was to measure Compton profiles of different metals, having different electron densi-

ties, but the comparison of the results is cumbersome. We presented a novel experiment

to change rs directly using the same sample material. The results show how the Fermi
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energy changes as a function of rs and the change is well explained by a simple RPA

model.

Paper IV discusses the experimental Compton profiles of Be as a function of the

incident-photon energy. Severe deviations from the impulse approximation were found

with low photon energies (∼10 keV) even for the valence-electron Compton profiles.

With high photon energies, when the impulse approximation is valid for the valence

electrons, deviations from the LDA-based theoretical Compton profiles were found, and

the differences were attributed to arise from correlation effects in the ground state of the

electron gas.

Paper V describes the temperature dependence of Be Compton profiles. The exper-

imental results were compared to a pseudopotential model. It was found that thermal

disorder has only little effect on the ground-state properties of the electron gas in beryl-

lium, suggesting that the observed discrepancies between experimental and theoretical

Compton profiles are due to other effects, possibly correlation.
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