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REVIEW OF THE PAPERS 

 

Paper I reports volatile organic compound (VOC) emission measurements of Scots pine 

carried out during the growing season in 2003 in southern Finland and in spring and early 

summer in 2002 in northern Finland. A clear seasonal cycle was observed with high 

emission rates in early spring, and the emissions were found to be temperature dependent 

and well described by a simple exponential emission algorithm. For the first time the 

boreal Scots pine was identified as both sesquiterpene and 2-methyl-3-buten-2-ol (MBO) 

emitter. 

 

Paper II reports the VOC emission measurements of Scots pine in southern Finland for a 

second growing season (2004) with a higher temporal resolution to cover the gaps in the 

previous data set. The effect of new needle growth on the emissions was studied by 

sampling two identical branches, one of which was debudded while the other was 

allowed to grow new needles. The role of Scots pine as a copious sesquiterpene emitter in 

the summer months was confirmed as well as the stronger temperature dependence of the 

sesquiterpene emissions when compared to the monoterpene emissions. 

 

Paper III presents the first inventory of the biogenic VOC emissions from the North 

European boreal forest in Finland. A forest classification was developed based on 

LANDSAT land use data and Finnish forest inventory data. The Biogenic Emission 

Inventory System of the Finnish Meteorological Institute (FMI-BEIS emission model) 

was built based of the Biogenic Emission Inventory System of the U.S. Environmental 

Protection Agency (EPA). The model was adapted to the North European conditions and 

complemented with emission potentials measured in actual boreal forests. Isoprene, 

monoterpene and other VOC (OVOC) emission estimates were calculated for the 

growing seasons of the years 1995-1997 for the different boreal regions in Finland. 

Norway spruce was found to be the main isoprene emitter in the North European boreal 

forest due to its high biomass. 
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Paper IV presents a seasonal species speciated terpenoid emission inventory for the 

North European boreal forest for the year 1997. The FMI-BEIS model was upgraded by 

assigning early and late summer emission potentials and terpenoid emission spectra for 

the boreal trees. The seasonal development of the deciduous leaf biomass was included 

through a simple temperature sum parameterization, and the calculation period was 

extended to cover also the month of October. The main emitted compounds in the North 

European boreal forest were found to be �- and �-pinene, carene and linalool. 

 

Paper V presents the first estimate of sesquiterpene emissions from the North European 

boreal forest, together with improved isoprene and monoterpene estimates. The seasonal 

emission potentials in FMI-BEIS were revised to reflect the latest experimental data and 

the parameterization of the sesquiterpene emissions was built in the model. The VOC 

emission inventory was further complemented by the inclusion of wetland isoprene 

emissions. The emissions were calculated for the different boreal zones in Finland for the 

years 1997, 1999, 2000, and 2003. The main emitted compounds throughout the country 

were �-pinene and �3-carene. Due to the revised emission potentials the role of Norway 

spruce as the main isoprene and monoterpene emitter in the North European boreal forest 

was subdued. The sesquiterpene emissions were of the same order of magnitude as the 

isoprene emissions, with maximum emission rates in the summer months. 
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1. INTRODUCTION 

 

The exchange of gases between the biosphere and atmosphere is a fundamental element 

of the Earth System, and to a great extent responsible for the present composition and 

chemical properties of the atmosphere (e.g. Warneck, 2000). Plant life is an integral 

contribution to this exchange as plants are involved in photosynthesis, i.e. the uptake and 

processing of carbon dioxide and emission of water vapor and oxygen by living 

organisms, which also makes our planet fit for animal life. During the last decades, it has 

become evident that plants are also capable of emitting trace amounts of numerous other 

gases with important atmospheric effects – their role accentuated now that the human 

imprint is starting to show in the Earth System as altered atmospheric chemical 

composition and climate forcing (IPCC, 2007). 

 

A good understanding of both anthropogenic and biogenic emission sources is essential 

for the development of efficient emission control policies and climate strategies. A 

central instrument in their formulation are emission inventories, constructed based on 

information about anthropogenic and biogenic activities and emission source strengths, 

combined with mathematical modeling (e.g. Brasseur et al., 2004). The emission 

inventories are then used as input to regional or global models describing the atmospheric 

transport and chemical transformation of the emitted trace gases (e.g. Williams and 

Koppmann, 2007). The inclusion of the biogenic sectors in the emission inventories is 

especially important for gases such as the nonmethane volatile organic compounds 

(VOCs) which react readily with atmospheric oxidants and whose anthropogenic 

emissions are clearly surpassed by the natural ones (e.g. Atkinson and Arey, 2003; 

Guenther et al., 1995; Kanakidou et al., 2005). 

 

This thesis is focused on the volatile organic compound emissions from the boreal forest, 

especially those of terpenoids, i.e. isoprene and mono- and sesquiterpenes. These 

compounds have been identified as participants in tropospheric ozone chemistry and 

secondary organic aerosol (SOA) formation, both of which are major issues in the 

abatement of local and regional air pollution and the considerations of air quality and 
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climate change interactions (e.g. Chameides et al., 1992; Tunved et al., 2006). The boreal 

forest represents the largest terrestrial biome, forming an almost continuous belt across 

the Northern Hemisphere. It has characteristic vegetation patterns and strong seasonality, 

and it is one of the major sources of biogenic VOCs to the atmosphere at the global scale. 

 

The key questions which this thesis seeks to answer are: 

 

� What are the principal compounds emitted by the Scots pine, the most prevalent 

boreal tree species in Finland, and how do the emissions vary seasonally and 

spatially? 

� How well can the emissions of Scots pine be described using emission algorithms 

based on observed emissions of more southern plant species growing in warmer 

climates? 

� What are the emissions of the North European boreal forest in different parts of 

the boreal zone in Finland and are the strong seasonal features of boreal 

climatology reflected in the emissions? 

� What are the sesquiterpene emissions of the boreal forest in Finland? 

� What are the specific features in the emissions from the boreal forest in Finland 

when compared with emissions from other ecosystems? 

 

 

2. BIOGENIC VOC EMISSIONS 

 

In 1960 Went proposed that significant amounts of organic compounds are released to the 

atmosphere by plants, and that these compounds then oxidize in the air leading to the 

formation of the blue hazes commonly observed in summer over vegetated land masses 

and mountain areas (Went, 1960b). The first estimate of this emission source at the global 

level was 175 Tg a-1 - almost and order of magnitude higher than the contemporary 

anthropogenic emissions of 20 Tg a-1 (Went, 1960a). However, the global biogenic 

emission estimate was soon revised to be 438 Tg a-1 (Rasmussen and Went, 1965), 

surpassing the anthropogenic emissions even more clearly. 
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Table 1. Estimated annual global VOC and methane emissions from different sources 
according to Guenther (1999). 
 

 Annual emission (TgC a-1) 

Source Isoprene Monoterpenes Other VOCs Methane 

Canopy foliage 460 115 500 <1 

Terrestrial ground cover and 
soils 

40 13 50 175 

Flowers 0 2 2 0 

Ocean and freshwater 1 <0.001 10 15 

Animals, humans and insects 0.003 <0.001 0.003 100 

Anthropogenic (incl. biomass 
burning) 

0.01 1 93 220 

Total ~500 ~130 ~650 ~510 

 
 

After almost half a century of research, the global biogenic VOC emissions are now 

estimated to be 1150-1180 Tg a-1 (Guenther et al., 1995; Guenther, 1999) or, more 

recently, within the range of 312-1062 Tg a-1 (Wiedinmyer et al, 2004). Again, this is 

severalfold the estimated global anthropogenic VOC emissions of 110-149 Tg a-1 (Müller 

et al., 1992; Picott et al., 1992). Most of the biogenic emissions originate from canopy 

foliage, with lesser contributions by other terrestrial vegetation, water bodies and soils, as 

summarized in Table 1 (Guenther, 1999). 

 

The predominant VOCs emitted by vegetation belong to terpenoids, a family of over 

22 000 identified compounds. Terpenoids play diverse physiological, metabolic and 

structural roles in plants, and are also used for communication and defense (e.g. 

McGarvey and Croteau, 1995). The basic building unit of terpenoids is isoprene (2-

methyl-1,3-butadiene) which has the chemical formula C5H8. Isoprene is presently 

considered the single most important biogenic hydrocarbon because of its copious 

emissions and high chemical reactivity. Other important terpenoid classes are the 

monoterpenes (C10H16) and sesquiterpenes (C15H24).  The structures of some typical 

terpenoids emitted by vegetation are shown in Figure 1.  
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Figure 1. The structures of terpenoid compounds commonly emitted by vegetation. 
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Table 2. Chemical species that dominate the annual global VOC emission from 
vegetation according to Wiedinmyer et al. (2004). 
 
Annual emission 

(TgC a-1) 
Compound 

 
250-750 Isoprene 
50-250 Methanol, �-pinene 
10-50 Acetaldehyde, acetone, �-pinene, �-carene, ethanol, ethene, hexenal, 

hexenol, hexenyl-acetate 
2-10 Propene, formaldehyde, hexanal, butanone, sabinene, limonene, methyl-

butenol, butene, �-phellandrene, p-cymene, myrcene 
0.4-2.0 Formic acid, acetic acid, ethane, toluene, camphene, terpinolene, a-

terpinolene, �-thujene, cineole, ocimene, �-terpinene, bornyl acetate, �-
caryophyllene, camphor, piperitone, linalool, tricyclene 

 
 

In addition to terpenoids, plant emissions also comprise alkanes, other alkenes, carbonyls, 

alcohols, esters, ethers, and acids. Despite the overwhelming multitude of individual 

organic compounds found in plants only a relatively small number are considered 

relevant to atmospheric chemistry, either due to their large emissions or/and high 

reactivity. These compounds are listed in Table 2 ranked according to their average 

annual emission (Wiedinmyer et al., 2004). The processes leading to the synthesis and 

subsequent emission of biogenic VOCs in the various living organisms are complex - and 

quite beyond the scope of this thesis - with even the purpose of the emissions often 

widely under debate (e.g. Steiner and Goldstein, 2007). 

 

Once emitted, the biogenic VOCs enter intricate atmospheric reaction chains whose 

details, likewise, remain outside of the scope of this work. The reactions involve the 

principal atmospheric oxidants, the hydroxyl and nitrate radicals (OH, NO3) and ozone 

(O3), and occur in scales ranging from minutes to several days (Atkinson and Arey, 2003). 

It is now firmly established that the reactions of biogenic VOCs may significantly 

contribute to local and regional photochemistry and secondary organic aerosol (SOA) 

formation (e.g. Chameides et al., 1992; Carter, 1996; Hoffmann et al., 1997; Calogirou et 

al., 1999; Griffin et al., 1999a,b; Bonn and Moortgat, 2003; Jaoui et al., 2003; Claeys et 

al., 2004; Chung and Seinfeld, 2002; Kanakidou et al., 2005). The climatic impact of 

biogenic VOCs comes through the effect of SOA on the radiation balance of the 
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atmosphere and the consumption of the atmospheric oxidants in the reactions of the 

VOCs which may have implications on the lifetime of atmospheric methane (e.g. Tunved 

et al., 2006; Kaplan et al., 2006). The radiation balance is influenced by SOA both 

directly and indirectly. The direct effect is caused by the scattering and absorption of 

shortwave and longwave radiation by the aerosol particles, while the indirect effect is 

caused by the modification of the radiative properties, amount and lifetime of clouds (e.g. 

Kanakidou et al., 2005; IPCC, 2007).  

 

2.1. Isoprene 

 

According to a central biogenic volatile organic compound emission database maintained 

by the Biosphere-Atmosphere Interactions Research Group in the National Center for 

Atmospheric Research in Boulder, Colorado (http://bai.acd.ucar.edu/Data/BVOC/ 

(accessed March 27, 2008), hereafter referred to as the BAI database), cited and widely 

discussed by Wiedinmyer et al. (2004), close to a thousand plant species are presently 

classified as isoprene emitters. However, measured data is only available for about 20 % 

of the listed emitters and the classification is done under the broad assumption that 

species within the same genus exhibit similar isoprene emission characteristics 

(Wiedinmyer et al., 2004). The most notable isoprene emitters with measured data in the 

BAI database are woody species, especially deciduous trees such as oak, eucalyptus, 

poplar, aspen and willow. The observed isoprene emissions from conifers appear to be 

restricted to various spruce species. Besides trees, isoprene is also emitted by mosses and 

ferns. 

 

The reported normalized isoprene emission rates i.e. emission potentials in standard 

conditions of temperature (30 ºC) and light (photosynthetically active photon flux 

density, PPFD, 1000 �mol m-2 s-1) are usually expressed as the mass of emissions per 

mass of leaf biomass (dry weight) per time. Depending on the plant species and their 

growing environment the emission potentials can vary from not detectable to a few 

hundred �g g-1 h-1 (Kesselmeier and Staudt, 1999). Geron et al. (2001) have estimated the 

emission potential of isoprene emitting broadleaved trees in the U.S. to vary between 0.1-
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100 �g g-1 h-1. North American spruces (genus Picea) have emission potentials of about 

20 �g g-1 h-1 (Wiedinmyer et al., 2004) while Hakola et al. (2003) have reported the 

maximum isoprene emission potential of the Norway spruce (Picea abies) in the North 

European boreal forest to be 1.3 �g g-1 h-1. 

 

The prerequisite of isoprene synthesis and emission from plants is light, and the emission 

is also dependent on temperature (e.g. Sharkey and Yeh, 2001; Sanadze, 2004). Isoprene 

is not stored in the plant, and while the emission occurs through the stomatal pores it is 

not controlled by their aperture (Fall and Monson, 1992). In the atmosphere isoprene is 

oxidized via complex pathways, producing formaldehyde, methylvinylketone (MVK), 

methacrolein (MACR), organic nitrates and various other compounds which then react 

further (Atkinson and Arey, 2003). In the presence of nitrogen oxides, isoprene can be an 

important contribution to ozone and photochemical smog formation (Chameides et al., 

1992; Pierce et al., 1998). 

 

Why plants emit isoprene has been - and still is - under wide speculation. Steiner and 

Goldstein (2007) have summarized the suggested roles which include providing 

thermotolerance for the plant, acting as an antioxidant, and facilitating the release of 

excess energy and/or carbon. However, not all plants emit isoprene, and the reason for 

this, likewise, remains a mystery. Recently, Loreto and Fares (2007) have shown that 

isoprene helps protect the plant against damage caused by ozone. The role of isoprene as 

an ozone forming compound has then led Lerdau (2007) to speculate with a feedback 

loop in which isoprene released by plants as a response to elevated ozone concentration is 

consumed in reactions producing even more ozone. For plants without the capability of 

synthesizing isoprene and thus protecting themselves against ozone damage, the outcome 

of such a feedback loop could be devastating and result in the alteration of regional 

species diversity and also the atmosphere (Lerdau, 2007). 
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2.2. Monoterpenes 

 

The BAI database currently lists some 300-400 plant species which emit monoterpenes – 

of these measured data is presented for approximately 80 %. Prominent among the 

emitters are all coniferous species, but significant emissions have also been reported from 

several broadleaved trees, such as eucalyptus, oak, birch, aspen, and willow (Hakola et 

al., 1998; Kesselmeier and Staudt, 1999). 

 

All monoterpene-producing plants synthesize an array of monoterpenes instead of just 

one compound (Fall, 1999). Unlike isoprene, the monoterpenes are generally stored in 

specialized structures in the plants, such as resin ducts (pines) or resin blisters (firs), and 

catabolized along specific pathways, their emission dependent on the prevailing 

temperature and the volatility of the individual compounds (Lerdau, 1991; Tingey et al., 

1991; Fall, 1999). Recently, however, it has been found that monoterpene emission can 

also occur directly after synthesis without storage, in a similar light and temperature 

dependent manner as isoprene emission, and that in some plant species the monoterpene 

emission is a result of both of these pathways (e.g. Staudt and Seufert, 1995; Kuhn et al., 

2002; Rinne et al., 2002; see also summary by Wiedinmyer et al., 2004). 

 

The maximum normalized monoterpene emission rates (emission potentials) from plants 

are generally lower than the reported isoprene emission potentials, varying from not 

detectable to 50 or 60 �g g-1 h-1 (Kesselmeier and Staudt, 1999). Among the tree species, 

emissions of stored monoterpenes are thought to be highest in conifers (Pinus and Abies), 

which have emission potentials of 1-5 �g g-1 h-1 (at standard temperature 30 ºC) 

(Wiedinmyer et al., 2004). 

 

In the atmosphere, monoterpenes undergo oxidation, yielding various volatile or 

semivolatile reactive intermediates, as well as formaldehyde, acetone, formic acid, and 

organic nitrates (Atkinson and Arey, 2003). Ever since the insightful paper by Went 

(1960b) plant emissions have received attention as a possible source of secondary organic 
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particulate matter (SOA), and monoterpenes are now considered to be the major 

precursor for SOA from biogenic VOCs (Kanakidou et al., 2005). 

 

Monoterpenes are toxic to insects and fungal pathogens, which suggests a defensive role 

for their emission (Tingey et al., 1991). In his review, Fall (1999) lists the ecological 

roles for monoterpene emission as direct defense against herbivores and pathogens, 

attraction of pollinators or enemies of herbivores, and allelopathic (plant harming another 

plant with specific biomolecules) effects on competing plants. The light and temperature 

dependent (non-stored) monoterpene emissions are thought to perform a similar 

biological function as isoprene (e.g. Steiner and Goldstein, 2007). 

 

2.3. Sesquiterpenes 

 

Sesquiterpenes have long been known to be both contained in plants and emitted by them 

(Tingey et al., 1991 and references therein). However, as recently as 1999, a leading 

review of biogenic VOC emissions considered sesquiterpenes to be only of minor 

importance to atmospheric chemistry (Kesselmeier and Staudt, 1999). This early 

misconception was partly due to the fact that these compounds are highly reactive in the 

atmosphere, with lifetimes generally of the order of minutes (Atkinson and Arey, 2003), 

rendering them not detectable in ambient air samples (e.g. Hakola et al. 2000, 2003). The 

quantification of sesquiterpenes in plant emissions also presents several analytical 

challenges due to their low volatility and high reactivity (Ciccioli et al., 1999; Helmig et 

al., 2004), and it is only recently that more information about their emission 

characteristics is becoming available (e.g. Hansen and Seufert, 2003; Papers I and II; 

Helmig et al., 2006; Holzke et al., 2006). 

 

Like monoterpenes, sesquiterpenes are also emitted from storage pools (e.g. Wiedinmyer 

at al., 2004). However, the details of their synthesis or the factors controlling their 

emissions are not explicitly known at present (Wiedinmyer at al., 2004; Kanakidou et al., 

2005; Steiner and Goldstein, 2007). In plant emissions sesquiterpenes perform similar 

functions to monoterpenes (e.g. McGarvey and Croteau, 1995). 
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Despite the unpretentious outset, sesquiterpenes emitted by plants quickly gained 

momentum as participants in the atmospheric chemistry in forest environments and are 

now considered important sinks for oxidants and precursors to aerosols in rural regions 

(Wiedinmyer et al., 2004, Steiner and Goldstein, 2007). Especially the potential for SOA 

formation from sesquiterpenes is high (Hoffman et al., 1997; Griffin et al., 1999a; Jaoui 

et al., 2003) which implicates them as a potentially important contributor also to climate 

change (e.g. Kanakidou et al., 2005). 

 

2.4. Other compounds 

 

Besides terpenoids, plants also emit a variety of other reactive VOCs (Table 2). They are 

often referred to by the term other VOCs, or OVOCs. Among the most important OVOC 

compound groups are carbonyls, such as acetaldehyde, acetone and formaldehyde. The 

contribution of carbonyls to the total VOCs emitted by forest ecosystems has been 

estimated as 24% (Wiedinmyer et al., 2004). Janson et al. (1999) and Janson and De 

Serves (2001) have reported significant carbonyl emissions from two boreal tree species, 

Scots pine (Pinus sylvestris) and Norway spruce (Picea abies), and Rinne et al. (2007) 

have observed high methanol, acetaldehyde and acetone fluxes above a Scots pine stand 

in Central Finland. 

 

According to Steiner and Goldstein (2007), methanol is the OVOC with the highest 

concentration in rural areas. Apparently all plants emit methanol, especially when their 

leaves are expanding (e.g. MacDonald and Fall, 1993; Fuentes et al., 2000; Fall, 2003). 

Another important alcohol emitted by plants is 2-methyl-3-buten-2-ol (MBO), whose 

emissions have been estimated to be a an important contribution to the reactive carbon in 

the atmosphere (Harley et al., 1998) and e.g. the main source of atmospheric acetone in a 

pine forest region in the USA (Goldstein and Schade, 2000). MBO emissions have also 

been reported from Scots pine in the boreal zone (Paper I). 
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Compared to terpenoids, carbonyls and methanol are less reactive towards the principal 

atmospheric oxidants (Atkinson and Arey, 2003) and thus they may exit the boundary 

layer and be transported over large distances before entering the atmospheric chemical 

cycles. In addition, Nozière and Esteve (2005) have shown that the reactions of some 

biogenic carbonyls may affect the optical properties of atmospheric aerosol particles. 

 

2.5. Biogenic emission measurements 

 

Biogenic emissions have traditionally been measured using enclosure or micro-

meteorological methods with air sampling and subsequent off-line analysis of the VOC 

concentrations. Recently, however, new analytical techniques have been developed which 

allow also on-line measurement of the biogenic fluxes. The details of the measurement 

and analysis techniques are outside the scope of this thesis, and they are only briefly 

discussed here, based on the reviews of Cao and Hewitt (1999), Wiedinmyer et al. (2004) 

and Steiner and Goldstein (2007). 

 

The micrometeorological techniques used in biogenic emission measurements include the 

gradient profile, relaxed eddy accumulation and eddy covariance methods. All methods 

provide emission fluxes representative of canopy or larger areal scales and involve the 

measurement of meteorological parameters in addition to chemical concentrations. They 

often require fast response sensors and may set strict constraints to the measurement site 

or environmental conditions. Their primary use has been the evaluation and validation of 

emission modeling procedures, but after recent technological improvements they are now 

also used to establish average areal emission factors in regions with high species diversity 

where the characterization of individual plant emissions is not practicable (Wiedinmyer et 

al., 2004). 

 

Leaf, branch or even larger enclosures have been used to characterize the emissions from 

individual plant species ever since the early days of biogenic VOC emission studies (e.g. 

Rasmussen and Went, 1965). In a dynamic flow-through enclosure system a bag or 

container made of inert material, typically glass (in laboratory conditions) or Teflon (in 
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field conditions), is placed around the plant or plant part to be studied. Ambient air is 

then pumped into the enclosure or pulled through it and sampled at both inlet and outlet. 

The emission rate E (mass of emissions per mass of leaf biomass per time) is determined 

according to 

 

)( inout CC
m
FE 	
 ,        (1) 

 

where F is the flow rate of air through the enclosure, m is the biomass in the enclosure 

(dry weight) and Cin and Cout are the VOC concentrations in the air sampled at the inlet 

and outlet of the enclosure, respectively. The dynamic enclosure technique has been used 

in the emission rate measurements of Scots pine presented in Papers I and II. 

 

The sampling methods of biogenic VOCs include whole air sampling and adsorbent 

sampling, with the samples taken to a laboratory and stored until analysis by gas 

chromatography. Whole air samples are drawn or pumped into evacuated containers 

made of inert material, such as Teflon bags or passivated stainless steel canisters. Ozone 

must be removed from the air to prevent sampling losses of the more reactive 

compounds. Sample stability during storage has to be ensured, and the samples must be 

concentrated prior to being analyzed, especially if the concentrations of the studied 

compounds are low. Due to losses of the heavier molecules to the container walls, 

canister sampling is only suitable for truly gas-phase VOCs, which limits its use to 

compounds lighter than C10 (Cao and Hewitt, 1999). 

 

The most commonly used sampling methodology for atmospheric VOCs is adsorbent 

sampling, i.e. collection of the compounds onto solid adsorbents either by pumping or by 

diffusion (Cao and Hewitt, 1999). The adsorbents have different collection efficiencies 

for different compounds and often a combination of them is used to cover a wide range of 

VOCs. In the emission measurements presented in Papers I and II, the adsorbent 

cartridges were filled with Tenax-TA and Carbopack-B, which together cover the range 
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C4-C26 (EPA, 1999a). Prior to the analysis, the volatiles must be extracted from the 

adsorbent by thermal desorption. 

 

The most widely used and recommended method for the separation, identification and 

quantification of the VOCs from air samples has been gas chromatography (GC) 

followed by mass spectrometry (MS) (Cao and Hewitt, 1999; EPA, 1999b). The GC/MS 

technique has also been used in the analysis of the VOC samples collected during the 

emission measurements described in Papers I and II. 

 

Currently, the newly developed proton-transfer-reaction mass-spectrometry (PTR-MS) 

on-line measurement technique (Lindinger et al., 1998) is becoming increasingly popular 

in biogenic VOC measurements. In the North European boreal forest it has already been 

applied e.g. in studies of atmospheric VOC concentrations (Rinne et al., 2005), emissions 

of Scots pine (Ruuskanen et al., 2005), and the hydrocarbon fluxes above a Scots pine 

forest canopy (Rinne et al., 2007). 

 

 

3. BIOGENIC EMISSION MODELING AND EMISSION INVENTORIES 

 

In order to estimate the importance of biogenic emissions to the atmosphere their 

composition and magnitude must be assessed in representative temporal and spatial 

scales. This requires the parameterization of the emission fluxes as a function of the 

driving environmental variables, i.e. the development of emission algorithms for different 

compounds and plant species. To be viable when constructing regional or global emission 

inventories the emission algorithms should be robust, universally applicable, and 

computationally efficient. If the inventories are used as input to atmospheric chemistry 

models, the algorithms must be able to capture the short term variations of the emissions. 

In addition, the amount and distribution of the emitting biomass needs to be gleaned from 

various land use and vegetation surveys. Both the emission fluxes and the emitting 

biomass may exhibit seasonal behavior which should be included in the inventory 

calculations. 
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3.1. Emission algorithms 

 

The dependence of both isoprene and monoterpene emissions on temperature has been 

seen in all emission studies (e.g. Kesselmeier and Staudt, 1999), and also sesquiterpene 

emissions have been found to be temperature dependent (e.g. Ciccioli et al., 1999; 

Hansen and Seufert, 1999; Papers I and II). Tingey et al. (1980) found that while 

monoterpene emissions were not affected by light they increased exponentially with 

temperature, and presented a log-linear formulation of the temperature dependence. This 

formulation was also adopted by Guenther et al. (1993) as 

 
)()( STT

SeETE 	
 �         (2) 

 

where E(T) is the emission rate (�g g-1 h-1) at leaf temperature T, � is the slope 
dT

Ed ln , 

and ES is the emission rate at standard temperature TS (usually set at 30 °C) (Tingey et al., 

1980; Kesselmeier and Staudt, 1999). The emission rate at standard temperature is also 

called the emission potential of the plant species and while it is sometimes held to be a 

constant it may show variability related to e.g. season or the plant developmental stage 

(e.g. Hakola et al., 1998, 2001, 2003; Papers I and II). The value of the � coefficient is 

obtained from experimental data, and based on literature reviews the slope 0.09 is 

generally recommended to be used in monoterpene emission calculations (Fehsenfeld et 

al., 1992; Guenther et al., 1993). In the following, equation (2) is referred to as the 

TEMP algorithm. 

 

As discussed e.g. in the review of Sanadze (2004), the light dependent nature of isoprene 

synthesis and emission was discovered already in early studies of plant emissions. In 

1993 Guenther and coworkers proposed a parameterization for isoprene emissions which 

took into account both the temperature and light dependence and which still is a staple of 

the profession 
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Figure 2. The variation of the light correction (a) and temperature correction (b) factors 
of the G93 algorithm over typical PPFD and temperature ranges. 
 

 

TLS CCETLE 
),( .        (3) 

 

Here E(L,T) is the emission rate at photosynthetically active photon flux density L 

(�mol m-2 s-1) and leaf temperature T (K), ES  is the emission rate at standard conditions 

of radiation and temperature (usually set at 30 °C and 1000 �mol photons m-2 s-1) 

(Guenther et al., 1993; Kesselmeier and Staudt, 1999; Wiedinmyer et al., 2004). CL and  

CT are dimensionless environmental correction factors, accounting for the light and 

temperature effects on the emissions, with the formulations 
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respectively. Here R is the universal gas constant (8.314 J K-1 mol-1), and ��(0.0027), cL1 

(1.066), cT1 (95 000 J mol-1), cT2 (230 000 J mol-1), cT3 (0.961), and TM (314 K) are 

empirical constants obtained from experimental data (Guenther et al., 1993; Guenther, 

1997). In the following, equation (3) is referred to as the G93 algorithm. 

 

The light and temperature correction factors in equation (3) are shown in Figure 2 over 

typical ranges of photosynthetically active radiation and temperature encountered in plant 

emission measurements. The light correction is formulated as a rectangular hyperbola, 

based on the assumption that the light response of isoprene emission is similar to that of 

photosynthesis (Guenther et al., 1993). Thus, the light correction is nearly linear at low 

light levels and approaches saturation above 500 �mol photons m-2 s-1. The formulation 

of the temperature correction factor is adopted from simulations of the temperature 

response of enzymatic activity (Guenther et al., 1993), as isoprene emission is driven by 

the activity of the isoprene synthase enzyme, with increasing emissions at increasing 

temperatures. At high enough temperatures, however, the enzyme denatures and thus the 

temperature correction also exhibits a temperature optimum and high-temperature falloff 

(Guenther et al., 1993). 

 

The TEMP and G93 algorithms have been widely applied in simulating the short term 

variability of the emissions of stored (temperature control) and newly synthesized (light 

and temperature control) VOCs from plant foliage. They are still the generally accepted 

approach to biogenic emission modeling, although there are many regions of the Earth 

where they have not yet been validated against observations (e.g. Wiedinmyer et al., 

2004; Steiner and Goldstein, 2007). The applicability of the TEMP and G93 algorithms 

to the emissions of boreal tree species in boreal environmental conditions is studied in 

Papers I and II.  

 

3.2. Emission inventories 

 

Following the methodology developed by Guenther et al. (1993, 1995) for inventorying 

foliar emissions, the VOC flux F (in �g m(ground area)-2 h-1) can be described as 
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��DF 
         (6) 

 

where D is the foliar biomass density (g(dry weight) m(ground area)-2), � is the emission 

potential (�g g-1 h-1) i.e. the emission rate for a particular plant species at standard 

conditions (30 °C and 1000 �mol photons m-2 s-1), and � is a nondimensional 

environmental correction factor. The correction factor accounts for the temperature and 

light effects on the emissions but it can also incorporate other aspects such as seasonality 

or plant phenology. Thus a general form of the correction factor is 

 

otherLT ���� 
 .        (7) 

 

For pool emissions )( STT
LT e 	
 ��� , and for emissions occurring after de novo synthesis 

LTLT CC
�� , as described above. 

 

As discussed above, some plants may emit terpenoids via a combination of temperature 

controlled and light dependent pathways. In this case the total emission flux is obtained 

from a combination of the pool and synthesis emissions (e.g. Schuh et al., 1997) 

 

),()( TLFTFF synthesispooltotal �
      (8) 

 

This methodology has been employed when constructing global (e.g. Guenther et al., 

1995), continental scale (e.g. Simpson et al., 1999) and regional biogenic emission 

inventories (e.g. Guenther et al., 2000). In Papers III-V the methodology is applied in 

the calculation of the biogenic VOC emissions from boreal forests in Finland. 

 

Recently, the methodology of Guenther et al. (1993, 1995) has been further developed to 

include other processes such as the chemical reactions and deposition within the forest 

canopy, and to take into account past temperature and PPFD conditions when calculating 

the isoprene emissions (Guenther et al., 2006). In the future, when this new approach 



27 
 

 

called MEGAN (Model of Emissions of Gases and Aerosols from Nature) is extended to 

cover other compounds besides isoprene, it is likely to become the recommended method 

of constructing biogenic emission inventories. 

 

3.2.1. Land cover and foliar biomass 

 

The density of the emitting foliar biomass can be obtained in various ways utilizing e.g. 

local or regional vegetation inventories, general land use data, mathematical models of 

primary productivity or leaf area index measured from satellites (e.g. Steiner and 

Goldstein, 2007). In Paper III a methodology is developed for calculating boreal forest 

biomass densities from a detailed analysis of satellite land cover information and existing 

estimates of the relation of growing stock to leaf biomass in Finland.  

 

3.2.2. Seasonality 

 

In addition to the short term variability of temperature and light, biogenic emissions are 

profoundly affected by the seasonal cycles and developmental stages of the emitting 

plants. An obvious example is the emergence, maturing, senescence and falling of the 

leaves of deciduous trees which results in a constant change of the emitting biomass 

during the growing season. In the boreal region, the severe environmental conditions in 

winter keep the deciduous trees bare for a large part of the year and the evergreens 

dormant, resulting in very small or nonexistent emissions (e.g. Hakola et al., 2003). In 

addition to the seasonal variation of the biomass, the emission potentials and the spectra 

of emitted compounds also change during the growing season (e.g. Staudt et al., 1997, 

2000; Hakola et al., 1998, 2001, 2003; Llusià and Peñuelas, 2000; Papers I and II). 

 

In the boreal region, Hakola et al. (1998) observed high monoterpene emission rates from 

newly developing leaves of boreal deciduous trees in spring as well as the onset of 

isoprene emission from willow and aspen only after the early growth period was over. 

The main boreal deciduous trees, silver birch and downy birch were found to emit 

different monoterpenes at different stages of the growing season (Hakola et al., 2001). A 
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clear seasonality was also observed in both the emission potential and the spectrum of 

monoterpenes emitted by Norway spruce (Hakola et al., 2003), which is one of the main 

boreal conifers in Europe. The seasonal variation of the emissions of the other main 

European boreal conifer, Scots pine, is studied in Papers I and II. In Paper IV a simple 

parameterization is developed for the variation of the boreal deciduous biomass during 

the growing season. 

 

3.3. The BEIS approach 

 

The Biogenic Emissions Inventory System (BEIS) was developed at the U.S. 

Environmental Protection Agency (EPA) in order to obtain an estimate of biogenic VOC 

emissions required by the 1990 Clean Air Act Amendments and to provide hourly 

emissions of isoprene, �-pinene, other monoterpenes, and OVOCs for regional model 

calculations of tropospheric ozone concentrations (Pierce and Baugues, 1991). In 1995 

the model was updated to version 2 which also included soil nitrogen oxide emissions 

(Birth and Geron, 1995; Pierce, 1996; Pierce et al., 1998), and later to BEIS3 with state 

of the art emission algorithms and improved treatment of landcover data 

(http://www.epa.gov/AMD/biogen.html (accessed March 27, 2008)). 

 

In the BEIS approach a regional emission rate (ERi, �g h-1) of a chemical species (i) is 

calculated as a sum over all the vegetation types (j): 
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Here Aj is the land area (m2) of vegetation type j, FDj (g(leaf biomass) m(land area)-2) is 

the foliar density of vegetation type j, EPij (�g g(leaf biomass)-1 h-1) is the emission 

potential of chemical species i from vegetation type j, and Fij(L,T) is the dimensionless 

environmental correction factor accounting for the light and temperature control of the 

emission of chemical species i from vegetation type j. 
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The input data to BEIS consists of land use and emission factor data bases and the hourly 

time series of temperature and solar radiation. Alternatively, cloud cover data can be 

supplied, from which the visible solar radiation is then calculated in BEIS. A canopy 

parameterization is included in the model which adjusts the above canopy solar radiation 

to photosynthetically active radiation intercepted at 5 vertical levels within different types 

of forest canopies (Geron et al., 1994). The temperature is not adjusted, however, thus 

the model assumes that the above canopy ambient temperature applies throughout the 

canopy (Lamb et al., 1996). 

 

In Paper III, the methodology used in BEIS version 2.2 has been adapted for the 

calculation of isoprene, monoterpene and OVOC emissions from boreal forest canopies. 

The adapted modeling system is henceforth called FMI-BEIS. In Paper IV the 

parameterization in FMI-BEIS is further developed to account for the variation of both 

the emission potentials and emission spectra of boreal trees as well as the changes in the 

deciduous foliage along the course of the growing season. In Paper V FMI-BEIS is 

updated according to new experimental data on the emissions of boreal trees, and the 

compound selection of the model is expanded to cover also the calculation of 

sesquiterpene emissions from boreal forests. As a further improvement, Paper V also 

includes the first estimate of the isoprene emissions from wetland ecosystems. 

 

 

4. RESULTS 

 

4.1. Emissions of Scots pine 

 

The VOC emission rate measurements of Scots pine (Pinus sylvestris) described in 

Papers I and II cover two growing seasons at the site of Hyytiälä in the south boreal 

zone (61º51’N, 24º17’E). In 2003 the measurements were carried out from March to 

October and in 2004 from April to October. The 2003 measurements included an 

intensive three-week campaign period (24 March to 14 April) during which several 

samples were taken daily, while the rest of the data consisted of samples on one or two  
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Figure 3. Map of Finland with black dots denoting the locations where the emissions 
from boreal tree species referred to in this work have been measured. The division of 
Finland to the south boreal (dark grey), middle boreal (medium gray) and north boreal 
(light gray) forest zones is also indicated. 
 

 

days each month. For the measurements in 2004, samples were taken daily except on 

weekends. In addition, the emissions of Scots pine were also measured in Sodankylä in 

the north boreal zone (67º22’N, 26º39’E) on five selected days in spring and early 

summer 2002. The measurement sites, together with other locations where the emissions 

of the Finnish boreal tree species have been measured are presented in Figure 3. 

 

4.1.1. Emission spectra and seasonality 

 

The dominant monoterpenes emitted by Scots pine in the south boreal zone were �3-

carene and �-pinene. Other observed monoterpenes were �-pinene, camphene, sabinene, 

terpinolene, limonene, 1,8-cineol, and �-phellandrene. In addition, sesquiterpene and 
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MBO emissions were detected, especially during the summer months. The main emitted 

sesquiterpene was �-caryophyllene and two other compounds were tentatively identified 

as �-farnesene and �-caryophyllene. A small isoprene emission was also found, but as it 

occurred simultaneously with MBO emission and was well correlated with it, it was 

considered to be an artifact rather than a real finding (Papers I and II). The compounds 

emitted by the Scots pine measured in the north boreal zone were mostly the same, except 

that no carene emissions were detected and instead the emissions were dominated by �- 

and �-pinene (Paper I). 

 

The observed monthly average noontime emission rates (as nanograms per gram of leaf 

biomass (dry weight) per hour) during the two growing seasons in the south boreal zone 

are presented in Figure 4 together with the average noontime temperatures. The emission 

rates follow the course of the average temperature during spring and summer, but the 

emissions start to fall off already in August when the temperature is still high. In 

September and October the emission rates decline further. It is notable that the average 

emission rates in April are lower than in March. In the 2003 data this was at least partly 

explained by a severe cold spell which occurred during the April measurements (Paper 

I). However, the same type of behavior with high emission rates in early spring when the 

plants first start to emit and a decline towards late spring and early summer was also 

observed in the measurements carried out in the north boreal zone in 2002 (Paper I) and 

to a lesser extent also in the measurements in the south boreal zone in 2004, where the 

total monoterpene emission rate in April was 25% lower than in March even though the 

temperatures showed no anomaly. 

 

Sesquiterpene and MBO emissions initiated in early summer and their emission rates 

increased after midsummer. The emissions continued, although declining, all the way to 

September. Throughout the growing season the other monoterpenes consisted mostly of 

camphene, sabinene, and �-pinene, each with an average contribution of 20%. In 

addition, limonene and �-phellandrene were emitted in the early growing season, as well 

as terpinolene whose emissions then increased as the summer progressed, reaching 30%  
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Figure 4. Observed monthly average noontime emission rates  of Scots pine during the 
course of the growing seasons in 2003 and 2004 in Hyytiälä in the south boreal zone. 
Other monoterpenes include �-pinene, camphene, sabinene, limonene, 1,8-cineol, 
terpinolene, and �-phellandrene. Sesquiterpenes are mainly �-caryophyllene, with lesser 
contributions of two tentatively identified compounds (�-farnesene and �-caryophyllene). 
The monthly average noontime temperature during the measurements is also shown on 
right axis. 
 

 

in October. 1,8-cineol emissions initiated in April, increased to a maximum of 20% of 

other monoterpenes in July-August and then dropped close to zero. 

 

The percentage contribution of the different compounds to the VOC emissions of Scots 

pine in the south boreal and north boreal zones are shown in Table 3. The difference in 

the dominant emission in different parts of the boreal zone is most probably explained by 

the fact that there are two genotypes of Scots pine of Finland, one of which emits �3-

carene while the other does not (Paper I). Similar differences in the main emitted 

compounds have been found in the emissions of individual Scots pines growing in 

southern Germany (Komenda and Koppmann, 2002; Holzke et al., 2006). Unfortunately 

no other trees at these boreal locations were measured at the time, so it can not be  
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Table 3. The percentage contribution of different compounds to the VOC emissions of 
Scots pine in the south boreal zone during the growing seasons in 2003 and 2004. The 
corresponding values from the measurements carried out in the north boreal zone in 
spring and early summer 2002 are given in parenthesis. 
 

 ��-pinene �3-carene Other 
monoterpenes Sesquiterpenes MBO 

March 11% 71% 17% 0% 0% 

April 13% (36%) 67% (0%) 19% (64%) 0% (0%) 1% (0%) 

May 11% (70%) 73% (0%) 14% (28%) 0% (0.1%) 2% (0.3%) 

June 12% (41%) 67% (0%) 14% (32%) 3% (24%) 4% (1%) 

July 7% 53% 22% 16% 3% 

August 9% 58% 18% 12% 2% 

September 20% 61% 14% 3% 2% 

October 28% 59% 11% 0% 1% 

 

 

deduced from this data whether this finding can be generalized to represent the emission 

spectra of pine trees in the respective parts of the boreal zone. However, such a 

generalization might be warranted according to the results of Nerg et al. (1994) who 

studied the proportional amounts of �3-carene and �-pinene in Scots pine seedlings as a 

function of the latitude of seed origin in the boreal zone. The highest proportional 

quantities of �3-carene were found in seedlings originating in the south boreal zone and 

the lowest in seedlings originating in the north boreal zone, while the opposite was true 

for �-pinene (Nerg et al., 1994). 

 

A notable feature of the seasonal emission spectrum is the large contribution of 

sesquiterpenes to the total emission in the north boreal zone in June. The only 

sesquiterpene included in this analysis of the north boreal data is �-caryophyllene, 

although some other sesquiterpenes were also tentatively identified (longifolene and 

elemene) but not quantified (Paper I). The high contribution of other monoterpenes to 

the emission in the north boreal zone in early spring consisted mainly of �-pinene which 

equaled the �-pinene emission in April. 
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4.1.2. Emission potentials 

 

In order to be comparable with other work, the VOC emission rates measured in field 

conditions must be standardized to remove the effects of the varying environmental 

parameters. This is achieved by utilizing the known dependencies of the emission rates 

on light and temperature. The generally accepted method is to use equations (2) and (3) 

for standardizing the temperature and temperature and light dependent emissions, 

respectively, to 30 ºC and 1000 �mol photons m-2 s-1. 

 

The standardized emission rates, hereafter referred to as emission potentials, of Scots 

pine during the growing season in the south boreal zone are presented in Figure 5. The 

emission potentials were calculated using equation (2) for monoterpenes and 

sesquiterpenes and equation (3) for MBO. The � coefficients in equation (2) were taken 

as 0.10 and 0.19 for monoterpenes and sesquiterpenes, respectively (Papers I and II). 

 

The monoterpene emission potentials exhibit a maximum in early spring when the 

emissions start, after which they settle to a lower level which stays remarkably even for 

the rest of the growing season, except for an apparently temporary drop in August. The 

emission potentials of sesquiterpenes and MBO show a more sinusoidal distribution, with 

maxima in June (MBO) and July (sesquiterpenes). In July the sesquiterpene emission 

potential of Scots pine is about 260 ng g-1 h-1. This surpasses the concomitant �-pinene 

emission potential, is of the same order of magnitude than that of other monoterpenes and 

is approximately 30% of the emission potential of �3-carene which remains the main 

emitted compound throughout the growing season. 

 

When compared with the other main European boreal conifer, Norway spruce, the 

emission potentials of Scots pine show some noteworthy differences. Hakola et al. (2003) 

found that the main monoterpenes emitted by Norway spruce during the growing season 

were �- and �-pinene, and only very small �3-carene emissions were detected in the 

summer months. A small sesquiterpene emission was detected from spruce in June and 

October – however, in July, sesquiterpenes were the main emitted compounds with an 
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Figure 5. Monthly averages of the monoterpene (upper panel), sesquiterpene and MBO 
(lower panel) emission potentials of Scots pine based on the measurements carried out in 
the south boreal zone in 2003 and 2004. The error bars represent the 95% confidence 
limits calculated as NSTD /2 � where STD is the standard deviation of the emission 
potential and N the number of observations. 
 

 

emission potential close to 600 ng g-1 h-1, i.e. more than twice as high as the maximum 

sesquiterpene emission potential of Scots pine. In addition to mono- and sesquiterpenes, 
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spruce also emitted isoprene with fair emission potentials especially in early summer 

while no isoprene was found to be emitted by Scots pine. The seasonal pattern of the total 

emission potential of Norway spruce during the growing season showed no sudden 

emission burst in spring but was sinusoidal with maximum in May-June and a smooth 

decrease towards autumn  (Hakola et al., 2003). 

 

4.1.3. Temperature and light dependence - applicability of emission algorithms 

 

The 2003 Scots pine data set included experiments where samples were taken from an 

artificially darkened enclosure (Paper I). The results from these experiments suggested a 

possible light dependence of the MBO and 1,8-cineol emissions while all other measured 

compounds appeared to be unaffected by the darkening. Light dependent behavior of 

MBO emissions from North American pine species has been reported by e.g. Goldan et 

al. (1993), Harley et al. (1998), and Schade et al. (2000) and Kesselmeier et al. (1997) 

and Staudt et al. (1997; 2000) have observed that the 1,8-cineol emissions from 

Mediterranean pine trees are influenced by light. Shao et al. (2001), on the other hand 

found light dependence in some monoterpene emissions of Scots pine seedlings measured 

in laboratory conditions but this finding was not supported by our results. 

 

The dependence of the emissions of Scots pine on temperature and light was further 

studied by applying the TEMP and G93 emission algorithms to the observed data 

(Papers I and II). Nonlinear regression was used to fit the � and ES in equation (2) and 

ES in equation (3). It was found that, with the exception of the spring period, the emission 

rate variability of most of the compounds measured in 2002 and 2003 could be simulated 

using the TEMP algorithm whereas the G93 algorithm performed poorly (Paper I). The 

only exception was 1,8-cineol, which was well simulated also with the G93 algorithm. 

This was taken as a tentative confirmation of the light dependent nature of the cineol 

emission of Scots pine indicated by the darkening experiments. However, no similar 

conclusion could be made for the MBO emissions as their variability was much better 

simulated by the TEMP algorithm. 
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In addition to the TEMP and G93 algorithms the temperature and light dependence of 

sesquiterpenes and 1,8-cineol during their intense emission period in July (2004 data set) 

was investigated also using a modification of the G93 algorithm where the light 

dependence was more moderate (Paper II). It turned out that all three algorithms 

performed almost equally well in simulating variability of the sesquiterpene and 1,8-

cineol emissions – this illustrates the difficulty of discerning the effect of individual 

environmental parameters on the emissions in measurements carried out in field 

conditions, where the solar radiation and temperature are strongly correlated (Paper II). 

For instance the measurements carried out in the south boreal zone in 2004 were always 

conducted under high light conditions. This leads to the saturation of the light algorithm 

in most cases so that the only driver of any observed short term variability of the 

emission rates appears to be the temperature. Thus, even though these results can be used 

to show that the “universal” emission algorithms developed for more southern biomes 

are, with some exceptions, applicable also in the boreal regions, they can not be used for 

a proper validation or further development of the algorithms. 

 

An important result already discussed above and confirmed by the emission algorithm 

studies is the variability of the standard emission potentials of both the total terpenoids 

and individual compounds from Scots pine during the course of the growing season. This 

implies that e.g. annual boreal emission inventories should not be constructed using just 

one emission potential or emission spectrum per tree species for the whole year. An 

equally important finding is the variability of the strength of the temperature dependence 

– in the results presented in Paper I the � coefficient values obtained for different 

monoterpenes ranged from 0.025 to 0.19, with an average of 0.10. This is close to the 

generic value of 0.09 which is recommended to be used in the TEMP algorithm 

(Guenther et al., 1993). However, the nonlinear regression analysis of the observed 

sesquiterpene emission rates against temperature consistently produced higher values for 

�, indicating a much stronger temperature dependence for the sesquiterpene emissions 

than for monoterpenes (Papers I and II). Earlier Hakola et al. (2001) found similar 

strong temperature dependence of the sesquiterpene emissions from downy birch, with 

the beta coefficients ranging from 0.14 to 0.22. Thus, based on this and the previous work 
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we now recommend that the � coefficient 0.19 should be used when standardizing the 

sesquiterpene emissions of boreal trees. 

 

4.2. Emissions from the boreal forest 

 

During the last 15 years, the emission characteristics of the European boreal ecosystems 

have been intensively studied (e.g. Janson, 1993; Schürmann, 1993; Hakola et al., 1998, 

2001, 2003; Rinne et al., 1999, 2000a,b, 2005, 2007; Janson et al., 1999, 2001; Janson 

and De Serves, 2001; Papers I and II; Ruuskanen et al., 2005, 2007; Hellén et al., 2006; 

Haapanala et al., 2007). Especially the emissions of the main boreal tree species, Scots 

pine (Pinus sylvestris), Norway spruce (Picea abies), and the deciduous Downy birch 

(Betula pubescens) and Silver birch (Betula pendula) have been measured over extended 

periods in different parts of the European boreal zone. This now allows the compilation 

of a truly boreal VOC emission data base as a subset of the existing global data bases, 

with the immediate benefit that it represents the emission characteristics of the European 

boreal tree species in their natural environment, enabling the construction of more 

accurate boreal biogenic emission inventories. 

 

4.2.1. Development of the FMI-BEIS emission model 

 

The classification of the forests in Finland to south boreal, middle boreal and north boreal 

zones applied in this thesis is presented in Figure 3 (page 30). The development of the 

methodology of inventorying the biogenic emissions from the boreal forest has been a 

continuous process ever since the first inventory (Paper III) was published in 2000 as an 

outcome of the first large scale boreal VOC emission measurement project (Laurila and 

Lindfors, 1999). In this early inventory much attention was given to the manipulation of 

the 10x10 km grid analysis of LANDSAT satellite data in order to obtain the forest and 

species coverage and foliar biomass information in different parts of the boreal zone in 

Finland.  
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Table 4. The species profiles of the three boreal forest types used in the emission 
inventory calculations in Papers III-V. The deciduous species are classified as high-
isoprene, low-isoprene and non-isoprene emitters as explained in the text. 
 
Forest type 
 

Deciduous species Coniferous species 

high-iso low-iso non-iso pine spruce 
Pine 1% 16% 1% 82% 0% 

Spruce 0.5% 10% 0.5% 0% 89% 

Deciduous 3.5% 64% 3.5% 16% 13% 

 

 

For this, all forests in Finland were reallocated to two coniferous and one deciduous 

forest categories, each with a different species profile to account for the blend of the main 

tree species. The deciduous trees were further categorized in three classes based on their 

isoprene emission potential: high isoprene emitters (e.g. Populus and Salix sp.), low 

isoprene emitters (e.g. Betula sp.), and non-isoprene emitters (e.g. Alnus sp.). The profiles 

of the three forest types are presented in Table 4. 

 

In the first boreal emission inventory only three kinds of emissions were distinguished: 

isoprene, monoterpenes and other VOCs. One emission potential per tree species was 

used for each compound group in the calculations throughout the six-month modeling 

period (April to September). Moreover, some of the emission potentials were generic or 

based on literature rather than actual measured data, and the emitting foliar biomass, 

whether coniferous or deciduous, was assumed constant during the modeling period. For 

all tree species, the isoprene emission was parameterized using the G93 algorithm and the 

monoterpene and OVOC emissions were parameterized using the TEMP algorithm. 

 

In the second inventory (Paper IV) speciated monoterpene emission profiles were 

introduced for each of the main boreal tree species. Based on existing experimental data, 

the emission potentials were revised and separate emission potentials and monoterpene 

emission profiles were assigned for the deciduous trees for early and late summer. The 

additional temperature and light dependent monoterpene emission pathway suggested for 

Norway spruce and Scots pine (Steinbrecher et al., 1999) was incorporated in the FMI-
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BEIS parameterization according to equation (8). The second inventory was also 

temporally extended to cover the month of October. 

 

A simple temperature based parameterization for the seasonal variation of the boreal 

deciduous foliage was also incorporated in FMI-BEIS for the second emission inventory 

(Paper IV). The leaf development was assumed to initiate when the effective 

temperature sum (cumulative sum of daily average temperatures > +5ºC) reach a 

threshold value of 49 degree days (Lappalainen, 1993) and complete by July 31. During 

this period the percentage P(i) of full foliage on each day (i) is calculated from 

 

 �
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Here ETS(i) is the effective temperature sum on day i, and Sc is a scaling factor fitted 

individually for each study location so that P(July31) = 100%. After maturity, maximum 

foliage is maintained until senescence which is assumed to start two weeks before 

complete leaf shedding - this generally occurs between September 20 in the North and 

October 10 along the South-West coast (Havas and Sulkava, 1987). During the 

senescence P(i) is assumed to decrease linearly until the tree is bare (P(i) = 0%). Average 

P(i) in different parts of the boreal zone in Finland according to this parameterization, 

calculated at the meteorological stations used in the inventory for the years 1997, 1999, 

2000, and 2003, is presented in Figure 6. 

 

For the third emission inventory (Paper V) the biogenic emission data base in FMI-BEIS 

was completely revised to reflect the accumulated new experimental data on the seasonal 

variation of the emission potentials and emission spectra of the boreal tree species. In 

addition to the deciduous trees, early (April-June) and late (July-October) growing season 

emission potentials were assigned also for the conifers. The assumption of dual emission 

pathways (pool and synthesis) for Scots pine was relinquished as it was not supported by 

the findings in Papers I and II. While sesquiterpenes were included already in the second  



41 
 

 

0

20

40

60

80

100

A M J J A S O

D
ec

id
uo

us
 fo

lia
ge

 (%
)

south boreal
middle boreal
north boreal

 
Figure 6. The development of deciduous foliage in the south boreal, middle boreal and 
north boreal zones in FMI-BEIS. The lines represent the averages of the years 1997, 
1999, 2000, and 2003. 
 

 

inventory through their contribution to the total monoterpene emission spectra of the 

deciduous (Betula) species (despite the fact that they are not monoterpenes) the new 

findings (Hakola et al., 2003, Papers I and II) had revealed substantial sesquiterpene 

emissions also from Norway spruce and Scots pine. This warranted complementing FMI- 

BEIS with a separate parameterization for sesquiterpene emissions using the TEMP 

algorithm with seasonal sesquiterpene emission potentials and the recommended new � 

coefficient value of 0.19 based on this work (Papers IV and V) and the work of Hakola 

et al. (2001). The new early and late growing season emission potentials of boreal trees, 

recommended to be used in future emission inventories in the European boreal zone, are 

presented in Table 5. 

 

4.2.2. Emission spectra 

 

The main compounds emitted by the European boreal forests are �- and �-pinene and �3-

carene, which dominate the emissions almost through the whole growing season. The  
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Table 5. The emission potentials (in �g g-1 h-1) of boreal tree species at standard 
conditions (30 °C and 1000 �mol photons m-2 s-1) in early (April-June) and late (July-
October) growing season. The values recommended for the north boreal zone are given 
in parenthesis, and the emission potentials assigned separately for pool (pool) and 
synthesis (synth) emissions are indicated. 
 
 Isoprene Monoterpenes Sesquiterpenes 

 
Deciduous trees 

Early Late Early Late Early Late 

Betula pendula and Betula 
pubescens 0.1 0.1 0.84 3.35 0 2.69 

Populus, Salix sp. 34 34 3 0.3 0 0 

Alnus sp. 0 0 0.72 0.72 0 0 

 
Coniferous trees       

Pinus sylvestris 0.1 0.1 2.39 1.46 0.05 0.13 

Picea abies 
0.90 (0.6) 0.22 (0.6) 

0.81 pool 
0.45 synth 

0.81 pool 
0.45 synth 0 0.16 

 

 

average monthly emission spectra from forests in the middle boreal zone are shown in 

Figure 7 (upper panel). The emissions of the forests in the south and north boreal zones 

are quite similar, although somewhat higher in magnitude in the south and somewhat 

lower in the north. Isoprene is emitted mainly in the summer months and a prominent 

sesquiterpene emission starts after midsummer and then decreases towards autumn. From 

the end of June to September there is a large sabinene emission, contributed mainly by 

the birch species. Limonene and linalool are also emitted in summer and cineol in late 

spring and summer. 

 

Figure 7 (lower panel) also shows the monthly average atmospheric concentrations of 

terpenoids at a middle boreal forest research site, measured around midday during 1997 

and 1998 (Hakola et al., 2000). Compared to the emissions, the more reactive emitted 

terpenoids (such as sesquiterpenes, limonene and linalool) are depleted in the ambient air 

while the relative abundance of e.g. isoprene and �-pinene which have longer 

atmospheric lifetimes against oxidation (Atkinson and Arey, 2003) is amplified. Besides 

emissions from the trees, the atmospheric concentrations are affected by emissions from  
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Figure 7. Average terpenoid emission fluxes (mg m(forest area)-2 per month) from forests 
in the middle boreal zone (upper panel) and the monthly average midday concentrations 
(lower panel) measured at a forest measurement site in Pötsönvaara in eastern Finland 
in 1997 and 1998 (Hakola et al., 2000). 
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other vegetation and the forest floor, which are not parameterized in FMI-BEIS. A large 

amount of isoprene is also emitted by wetlands. In the middle boreal zone this 

contribution is close to 20% (Paper V). This may also explain why the enhancement of 

the atmospheric isoprene concentration in Figure 7 appears somewhat disproportionate 

when compared to �-pinene as there were large wetland areas in the vicinity of the 

measurement site. 

 

4.2.3. Seasonal and spatial variation of emissions 

 

The monthly average emission fluxes of isoprene, monoterpenes, and sesquiterpenes 

from forests in different parts of the boreal zone in Finland are presented in Figure 8. The 

values are calculated as the averages of the years 1997, 1999, 2000, and 2003, and the 

interannual variation of the emissions is indicated by the error bars which show the 

maximum and minimum fluxes. 

 

The isoprene emissions exhibit a maximum in June in the south boreal and middle boreal 

zones, whereas in the north the maximum emission occurs in July. In the southern parts 

of Finland the isoprene emissions are dominated by spruce which contributes 53% and 

49% of the forest isoprene emission in the south and middle boreal zones, respectively. In 

the north boreal zone, where the spruce biomass is assumed to be divided between the 

higher emitting Norway spruce (Picea abies) and its lower emitting subspecies Siberian 

spruce (Picea abies ssp. obovata), the contribution of spruce is 46%. On the other hand, 

the deciduous trees contribute 42%, 46%, and 50% in the south boreal, middle boreal and 

north boreal zones, respectively. Thus, in the north the seasonality of the deciduous 

biomass has a more profound effect on the seasonal pattern of isoprene emissions than in 

the southern parts of the country. 

 

The differences in the isoprene emissions in different parts of the boreal zone are most 

prominent in spring, when the forest emission fluxes in the middle and north boreal zones 

are approximately 65% and 30% of those in the south boreal zone, respectively. In July, 

however, the emission fluxes in the north boreal zone are almost equal to the emissions in  
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Figure 8. Monthly average terpenoid emission fluxes (ng m(forest area)-2 s-1) from forests 
in the south, middle and north boreal zones. The values are averages for the years 1997, 
1999, 2000, and 2003. The error bars give the range of the monthly averages in the 
individual years. 
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the south boreal zone, surpassing the emissions in the middle boreal zone. After this, the 

emissions in the middle and north boreal zones decline but remain of almost equal 

magnitude all the way until the end of the growing season. Thus, the relative shortness of 

the growing period in the north appears to be compensated by a more intense isoprene 

emission during the summer months. 

 

Paper V also includes an estimate of the wetland isoprene emissions in different parts of 

the boreal zone in Finland based on new experimental data (Haapanala et al., 2006). In 

the south boreal zone the total wetland isoprene emissions were 3% of the forest isoprene 

emissions, while in the middle and north boreal zones the corresponding percentages 

were 23% and 45%, respectively, indicating the increasing importance of the wetland 

ecosystems in the total isoprene budget in the northern parts of the European boreal zone. 

 

The monoterpene emissions are dependent on the temperature and this is also evident in 

their seasonal cycle which closely follows that of the temperature, with maximum 

emissions in July in all parts of the country. Spruce contributes about half of the 

monoterpene emissions in all parts of the boreal zone, with the contributions of pine and 

deciduous trees approximately 30% and 20%, respectively. A clear decreasing trend is 

seen in the monoterpene emission fluxes when moving from the south boreal zone 

towards north, with the emission fluxes between 80-90% and 50-70% of those in the 

south in the middle boreal zone and in the north boreal zone, respectively. 

 

The sesquiterpene emissions also depend on the temperature and thus their seasonal 

behavior in different parts of the boreal zone is similar to that of monoterpenes. Similarly 

to monoterpenes, the impact of different forest types to the sesquiterpene emissions is 

quite similar in all parts of the boreal zone in Finland, with the pine, spruce and 

deciduous contributions 7%, 23%, and 70%, respectively. During their main emission 

period, the sesquiterpene emission fluxes in the middle boreal zone are between 70-90% 

and those in the north between 40-60% of the fluxes in the south. The extremely low 

sesquiterpene emissions in early summer and the abrupt onset of high emissions in the 

beginning of July, however, are obvious artifacts produced by the choice of the 
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parameterization of the emission potentials in FMI-BEIS using only the early and late 

growing season categories. It would probably be beneficial, and not only for this 

compound group, to use monthly emission potentials in future emission inventory 

calculations. At present, however, Scots pine is the only boreal tree for which it would be 

feasible to develop monthly emission potentials – the emissions of Norway spruce and 

the deciduous trees still need to be investigated in closer detail to facilitate this. 

 

4.2.4. Comparison with other inventories – boreal characteristics 

 

The average forest emission fluxes in July obtained in the boreal emission inventory 

(Paper V) were 25 and 210��g m-2 h-1 for isoprene and monoterpenes, respectively. In 

global model calculations by Guenther et al. (1995) the July isoprene emission fluxes in 

Finland were estimated to be approximately 340 �g m-2 h-1 and monoterpene fluxes 

between 70 and 540 �g m-2 h-1 (rough estimates from color plates in the reference). The 

isoprene emission estimated by the global model is more than an order of magnitude 

higher that the results obtained in the boreal emission inventory, while the monoterpene 

emissions are of the same order of magnitude. Similar differences have been pointed out 

by the authors themselves between the global inventory and several regional inventories 

and attributed mostly to the use of different base emission factors or differences in land 

cover estimates in the respective models (Guenther et al., 1995). 

 

According to the boreal emission inventory the total annual biogenic isoprene and 

monoterpene emissions in Finland are 15 ± 5 and 114 ± 2 kilotonnes. This also includes 

the 2.4 kilotonnes of isoprene emitted by wetlands. In the detailed European biogenic 

emission inventory of Simpson et al. (1999), the annual isoprene and monoterpene 

emissions from the forests in Finland were estimated to be 39 and 168 kilotonnes, 

respectively, and the wetland isoprene emissions 1-5 kilotonnes. Thus, the boreal 

isoprene emissions are overestimated also in the European inventory – although not so 

grossly as the July emissions in the global model. The monoterpene emissions are also 

overestimated, but of the same order of magnitude with the boreal estimate. 
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In a biogenic hydrocarbon emission inventory for the U.S.A., Lamb et al. (1993) 

calculated maximum isoprene and terpene emission fluxes in the different EPA regions of 

the country. In EPA region 10, which includes the states of Alaska, Idaho, Oregon, and 

Washington, the maximum forest emission fluxes in July were 964 and 754 �g m-2 h-1 for 

isoprene and terpenes, respectively. In July the maximum isoprene emission flux from the 

boreal forests in Finland was 33 �g m-2 h-1 and the maximum monoterpene flux 260  �g 

m-2 h-1, i.e. the isoprene flux only 3% and the monoterpene flux 34% of the 

corresponding U.S. values. However, of the states in the EPA region 10, only Alaska lies 

at the same northern latitudes with Finland while the other states are between 40 and 50 

ºN; in addition, the vegetation in the U.S. forests is quite different from that in Finland, 

with a number of high isoprene emitters such as oak, poplar, cottonwood and aspen (e.g. 

Geron et al., 2001). 

 

In a Swiss emission inventory, the annual isoprene and monoterpene emissions from the 

forests in the country were estimated to be 87 kilotonnes (Andreani-Aksoyoglu and 

Keller, 1995). The forests in Switzerland are predominantly coniferous and dominated by 

Norway spruce which together with Scots pine represents over half of the total forest area 

(Andreani-Aksoyoglu and Keller, 1995). Taking the forest area of Switzerland to be 

10845 km2 as given by Simpson et al. (1999) this yields an annual average terpenoid 

emission flux of 900 �g m-2 h-1 for the Swiss forests. Komenda and Koppmann (2002), on 

the other hand, measured the emissions of Scots pine in a forest in southern Germany and 

calculated monthly monoterpene emissions. According to their results the emission fluxes 

in July varied between 58 and 936 �g m-2 h-1. The Central European emissions thus 

appear to be up to three times the emissions obtained in the boreal emission inventory, 

even though the same tree species are present in the forests. 

 

The above examples show that the characteristics of the European boreal forests, such as 

the small selection of tree species and the seasonally changing emission potentials which 

also appear to be dependent on the growth environment of the trees, are not necessarily 

adequately represented in large scale emission models. This can result in the 

overestimation of the boreal emissions, especially with regard to isoprene. Furthermore,  
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Table 6. Global and regional estimates of the mass percentage of some monoterpene and 
other reactive VOC emissions adopted from the review by Kanakidou et al. (2005) and 
the results of the present study (Paper V; growing season average over all boreal zones). 
 

Compound Mass % contribution 

 Global Southern 
Europe and 

Mediterranean 

North 
America 

North 
European 

boreal 
forest 

�-pinene 24.8 30 - 58 12 - 53 27.1 

�-pinene 16.4 8 - 33 10 - 31 10.8 

Sabinene* 10.0 2.5 - 14 2 - 5 11.9 

�3-carene 3.0 0 4 - 9 23.9 

Limonene 16.4 0 - 5 6 - 10 6.0 

Terpinolene 1.4 n.d. 0 - 2 1.2 

Myrcene 3.5 0 - 4 2 - 7 0.2 

Terpenoid alcohols (Linalool**) 14.9 0 - 20 n.d. 4.3 

Ocimene 1.5 0 - 1 0 - 1 1.5 

Sesquiterpenes 7.4 n.d. n.d. 4.6 

Other 0.6 2 - 5 0 - 6 1.5 
* Kanakidou et al. (2005) also include terpenoid ketones with sabinene. 
** Linalool is the only terpenoid alcohol considered in the present study. 
 

 

emission estimates carried out in other parts of the world appear not to be applicable as 

such to the North European boreal forest, even though the same tree species may grow in 

both environments. 

 

The emission spectrum of the boreal forest is also somewhat different than those in other 

parts of the world. Kanakidou et al. (2005) have summarized the relative contributions of 

SOA forming terpenoids from some recent studies representing North American, South 

European/Mediterranean and global emission estimates. This summary is presented in 

Table 6, complemented with the corresponding results of the present work. The 

conspicuous feature of the North European boreal emission spectrum when compared to 

the other regions is the high relative amount of �3-carene in the emissions. The boreal �-

pinene and sesquiterpene emissions are close to the global averages, while e.g. the 
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contributions of �-pinene, limonene and linalool are lower than the global values. When 

compared to the emissions in southern Europe and the Mediterranean region, the boreal 

emission spectrum is enriched with respect to carene and sesquiterpenes, while the other 

emissions mostly fit within the boundaries of the more southern estimates. Compared to 

North America, the notable differences in the emissions from the North European boreal 

forest are the high proportions of sabinene, �3-carene, linalool, and sesquiterpenes. 

However, regarding the missing sesquiterpenes in the Mediterranean and North American 

inventories, one should keep in mind that – partly due to their high reactivity and 

analytical difficulties – these compounds have only recently became the focus of 

attention in emission estimates. Thus, it must be only a question of time before they can 

be accounted for also in the other emission inventories. 

 

The anthropogenic VOC emissions in Finland in 2006 were 132.6 kilotonnes (Statistics 

of the Ministry of the Environment in Finland). This is slightly less than the annual total 

of 138.1 kilotonnes obtained as a sum of the terpenoid emissions in the boreal emission 

inventory (Paper V). In addition to terpenoids, however, the biogenic emissions also 

comprise a number of other VOC compounds, which probably contribute an amount of 

the same magnitude to the grand total (e.g. Simpson et al., 1999; Paper III). Thus, it can 

be estimated that the biogenic emissions from the boreal forest and wetland ecosystems 

in Finland are approximately twice the anthropogenic emissions. This is typical of remote 

sparsely populated areas in Europe, such as the boreal regions, while for instance at the 

European continental level, the biogenic emissions are not significant when compared to 

the anthropogenic ones (Simpson et al., 1999). 

 

4.3. Uncertainties 

 

Due to the many different aspects involved in generating biogenic emission inventories, 

they are prone to several kinds of uncertainties. One obvious source of error is the lack of 

sufficiently detailed information about the emission potentials and their temporal, spatial, 

genetic or phenological variability. Even though this work is based on the best available 

information on the emissions of the main boreal tree species, there are still gaps and open 
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questions regarding for instance the seasonal patterns of sesquiterpene emissions from 

deciduous trees or the extrapolation of the few measured tree specimen to represent the 

whole species in different parts of the boreal forest. A second important factor in 

emission inventory calculations is the level of accuracy of the land use and emitting 

biomass information, and the final aspect is the capability of the chosen emission 

parameterizations to depict the dependence of the emissions on the environmental 

conditions. 

 

When developing the U.S. national biogenic VOC emission inventory Lamb et al. (1987) 

estimated that the uncertainties involved with emission rate measurements range between 

±30 to ±55% depending on the measurement method, while the uncertainties involved 

with land use distributions and biomass densities were ±15% and ±25%, respectively. 

The overall uncertainty of the inventory was estimated to be a factor of three (Lamb et 

al., 1987). 

 

In their global model of natural VOC emissions Guenther et al. (1995) estimated that the 

uncertainties associated with isoprene and monoterpene emissions in some temperate 

regions are at least a factor of 3 and even higher in tropical regions. In the European 

emission inventory of Simpson et al. (1995), an uncertainty of a factor of 5 was 

associated with the model calculations of biogenic isoprene emissions to cover episodic 

situations when the emission data was used in tropospheric ozone simulations. Based on 

the review of Wiedinmyer et al. (2004) Kanakidou et al. (2005), however, conclude that 

the overall uncertainty of global isoprene emission estimates is a factor of 3 and that of 

the monoterpene and sesquiterpene emissions a factor of 5. 

 

In Paper IV, the overall uncertainty of the boreal emission inventory was estimated to be 

±70%, due to the fact that the emission potentials used in the model calculations were 

based on measurements carried out on plants growing in actual boreal conditions in 

Finland. In Paper V the emission potentials were further revised to reflect the latest 

experimental data and the variation of the monthly average emission fluxes (presented in 

Fig. 8) was within ±85%, ±43%, and ±107% for isoprene, monoterpenes, and 
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sesquiterpenes, respectively, which are of the same order of magnitude with the previous 

overall error estimate. Thus the uncertainty of the present emission inventory is a factor 

of 2-3 for monoterpenes, several times that for isoprene and even higher for 

sesquiterpenes, reflecting the strong interannual variability of the meteorological 

conditions in the boreal region. 

 

 

5. CONCLUSIONS 

 

According to the results obtained in this work the principal compounds emitted by Scots 

pine are �3-carene and �-pinene in the south boreal zone and �- and �-pinene in the north 

boreal zone. For the first time, Scots pine has also been found to be a copious 

sesquiterpene emitter, and emit MBO especially in the summer months. The emissions of 

Scots pine show a strong seasonality; the monoterpene emissions are very high in spring, 

then decline and closely follow the course of the temperature for the rest of the growing 

season. The sesquiterpene and MBO emissions, however, have a sinusoidal seasonal 

distribution, with maximum emissions in July. 

 

The variability of the observed monoterpene emissions of Scots pine is generally well 

described by the simple temperature dependent emission algorithm with the strength of 

the temperature dependence (� = 0.10) very close to the universally recommended 

parameter value (�� = 0.09). The only exception is the extremely high emissions in early 

spring, which are probably related to the plant developmental stages and thus not 

included in the simple emission parameterization. The observed variability of the 

sesquiterpene emissions can also be described using the simple temperature algorithm, 

although the dependence of the emissions on temperature is much stronger (� = 0.19) 

than that of monoterpenes. The only compound emitted by Scots pine whose emissions 

appear to be controlled both by light and temperature is 1,8-cineol – however, this 

allocation is only tentative. 
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The main compounds emitted by the boreal forest throughout the growing season in 

Finland are �- and �-pinene and �3-carene, with a strong contribution from sabinene in 

summer and autumn. The emission fluxes are highest in the south boreal zone, and 

decline steadily towards north. The terpenoid emissions generally follow the average 

course of the temperature during the growing season, with maximum emissions in July. 

The only exception is isoprene, whose emissions show a maximum already in June in the 

south boreal and middle boreal zones due to the strong dominance of spruce with its high 

early summer emission potential in these parts of the country. 

 

A first estimate of sesquiterpene emissions from the boreal forest is presented in this 

work. The highly reactive sesquiterpenes have now been shown to be emitted in copious 

amounts by all main boreal tree species in Finland, and an assessment of their emission is 

acutely needed. The sesquiterpene emissions from the boreal forests in Finland initiate 

after midsummer and are of the same order of magnitude as the isoprene emissions. 

Experimental data on sesquiterpene emissions from Norway spruce and the deciduous 

trees during the early growing season, however, is still sparse, and additional 

measurements of these species in spring and early summer would considerably improve 

the sesquiterpene emission inventory. 

 

The boreal forests in Finland are characterized by a relatively sparse selection of tree 

species, with the emitting foliage almost totally represented by Norway spruce, Scots 

pine, and the deciduous Downy birch and Silver birch. The main isoprene emitters in 

Finland are the low emitting Norway spruce and the high emitting willow and aspen 

species – the latter, however, only occupy less than one per cent of the total forest land 

area of the country. In addition to the low isoprene emissions, the second outstanding 

feature of the emissions from the Finnish forests is the strong dominance of �3-carene in 

the terpenoid spectrum. One must, however, be careful when interpreting this as a typical 

characteristic of the European boreal forests, as the emission spectra of the main 

monoterpene emitters, Norway spruce and Scots pine are still based on only a few 

measured trees. In particular, it would be important to study the relative distribution of 
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the two emitting genotypes of the Scots pine in different parts of the European boreal 

zone in order to obtain representative �3-carene and a-pinene emission potentials. 

 

The results presented in this thesis show that it is well warranted to develop biogenic 

emission inventories for specific ecosystems as they can account for the emission 

characteristics of the plants and the local environmental conditions in much closer detail 

than is currently possible when using global or continental scale emission models. The 

terpenoid emission fluxes obtained in the emission model calculations can be used as 

input to atmospheric chemistry and transport models for e.g. regional air quality forecasts 

or simulations of aerosol formation. The methodology developed in this work for the 

European boreal forests can also be adapted to cover the forested regions in e.g. western 

Russia and beyond when data on the emissions of the prevalent tree species become 

available. 
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