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Abstract

This is a study of ultra-cold Fermi gases in different systems. This thesis is focused
on exotic superfluid states, for an example on the three component Fermi gas and
the FFLO phase in optical lattices. In the two-components case, superfluidity is
studied mainly in the case of the spin population imbalanced Fermi gases and the
phase diagrams are calculated from the mean-field theory. Different methods to
detect different phases in optical lattices are suggested. In the three-component
case, we studied also the uniform gas and harmonically trapped system. In this
case, the BCS theory is generalized to three-component gases. It is also discussed
how to achieve the conditions to get an SU(3)-symmetric Hamiltonian in optical
lattices.

The thesis is divided in chapters as follows: Chapter 1 is an introduction to the
field of cold quantum gases. In chapter 2 optical lattices and their experimental
characteristics are discussed. Chapter 3 deals with two-components Fermi gases
in optical lattices and the paired states in lattices. In chapter 4 three-component
Fermi gases with and without a harmonic trap are explored, and the pairing
mechanisms are studied. In this chapter, we also discuss three-component Fermi
gases in optical lattices. Chapter 5 devoted to the higher order correlations, and
what they can tell about the paired states. Chapter 6 concludes the thesis.
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Chapter 1

Introduction to ultra-cold

atomic gases

1.1 Quantum statistics

Identical particles in classical physics are distinguishable. This means that one
can label them and one can identify them at every moment by following their
trajectories. The energy distribution of a large number of classical particles, in the
thermal equilibrium, follows the Maxwell-Boltzmann distribution. Contrary to
classical mechanics, in quantum mechanics, this kind of identification of identical
particles is impossible. The intuitive concept of a trajectory does not belong
quantum mechanics. Thus in quantum mechanics if one identifies the particles
at time t1, the particles cannot be identified at another time. Since one cannot
follow the trajectories. Because the particles cannot be identified the energy
distribution of particles in quantum mechanics is not the Maxwell-Boltzmann
distribution.

It is an experimental fact that in three-dimensional space there are two kinds
of particles, i.e there are two families of particle which have different energy distri-
butions, or statistics. The families are called fermions and bosons. This is a main
postulate of many body quantum mechanics. But this can be reasoned as the fol-
lowing way. Let us assume a system of two identical particles. The wavefunction
of the system, in quantum mechanics a wavefunction i.e a complex function of all
quantum numbers describes the system completely, is given by Ψ(χ1, χ2), where
χ1 and χ2 describe the quantum numbers of the particles. The square of the ab-
solute value of the wave function gives probability of finding the system in a given
quantum state. Because the particles are identical the probability does not change
when the particles are reversed i.e. |Ψ(χ1, χ2)|2 = |Ψ(χ2, χ1)|2. Since the global
phase of the wavefunction is not an observable in the three-dimensional system,
there are two possibilities to achieve this condition, either Ψ(χ1, χ2) = Ψ(χ2, χ1)
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2 Chapter 1: Introduction to ultra-cold atomic gases

or Ψ(χ1, χ2) = −Ψ(χ2, χ1). The former holds for bosons and the later holds for
fermions. In the other words the wavefunction for bosons is symmetric under the
particle exchange for fermions it is asymmetric. Experiments have confirmed that
all the particles belong either one of these groups. Both of these groups have their
own energy distributions, Bose-Einstein distribution for bosons and Fermi-Dirac
distribution for fermions. However, in two-dimensional system the phase of the
wavefunction is an observable,and thus the equation |Ψ(χ1, χ2)|2 = |Ψ(χ2, χ1)|2
does not imply that Ψ(χ1, χ2) = ±Ψ(χ2, χ1). That is why in two dimensions par-
ticles are not either fermions or bosons, and their energy distributions can be,in
principle, something else that the Fermi-Dirac- or the Bose-Einstein distributions.
In two dimensions, the quantum mechanical particles are called anyons.

When the wavefunction is antisymmetric under the particle exchange and
the quantum numbers of the particles are same, i.e. χ1 = χ2, then Ψ(χ1, χ1) =
−Ψ(χ1, χ1) and from this follows Ψ(χ1, χ1) = 0. This implies that the probability
to find two identical fermions in the same quantum state is zero, and hence it is
impossible for two or more identical fermions be in the same quantum state. This
feature is known as the Pauli exclusion principle. Bosons or classical particles
do not obey the exclusion principle. Arbitrary number of identical bosons can
occupy the same quantum state.

The question whether a particle is a fermion or a boson is connected to the
spin of the particle. If the spin is a half-integer (s = ~/2, 3~/2, . . . , where ~ =
h/(2π),and h is the Planck’s constant) the particle is a fermion. If the spin is an
integer the particle is a boson.

A composite particle, a particle which consists of two or more particles, is
a fermion if it includes odd number of fermions and it is a boson if it includes
even number of fermions. An atom is a composite particle, which consists of
fermions (protons, neutrons, and electrons) and its total number of fermions is
2F + N , where F is the number of protons (and electrons) and N is the number
of neutrons. Thus it is the number of neutrons that determine whether the atom
is a fermion or not. If the number of neutrons is odd the atom is a fermion
if even the atom is a boson. Although the chemical properties of an atom are
determined, by electron cloud, the quantum statistical properties of an ultra-cold
dilute gas are determined by the neutrons.

Originally the study of ultra cold atomic gases can be tracked back the studies
of Satyendra Nath Bose and Albert Einsten [1, 2], they predicted theoretically a
phenomenon which is nowadays called Bose-Einstein condensation (BEC). Their
prediction was that when the a cloud of bosons is cooled down below some critical
temperature a macroscopic number of the particles occupies the lowest energy
state, and this macroscopic part of the cloud behaves like one coherent matter
wave. First indications of BEC were seen from experiments with superfluid liquid
helium. However, due the strong interactions in liquid helium these experiments
lack the proof of pure BEC. The conclusive experimental proof of pure BEC
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was given in year 1995 by groups of Carl Wieman and Eric Cornell at JILA
and Wolfgang Ketterle at MIT. These experiments were done by using ultra-cold
clouds of rubidium (JILA) and sodium (MIT) [3, 4]. After this atomic BECs
have been observed in numerous laboratories all over the world.

1.2 Trapping and cooling

In experiments with ultra-cold gases, typically alkali metals are used. Alkali
metals are in the order of the increasing number of protons, lithium (Li), sodium
(Na), potassium (K), rubidium (Rb), cesium (Cs), and francium (Fr). Francium
has not any stable isotopes, but the others have. Since the ground state phase of
an alkali metal is solid,the alkali gases are unstable. However, if the gas is dilute
and col enough the collisions, especially the three-body collisions, between the
atoms are so rare that relaxation times become so long that the gas is almost
stable. This is one of the main reasons why the gas has to be dilute.

The outermost electron of an alkali atom is in an s-orbit, other shells are
closed, i.e they are full. For this reason inner shells have no net total angular
momentum. Because the outermost electron is in an s-orbit, it has no orbital
angular momentum. Thus the electron cloud has no total orbital angular mo-
mentum. The total angular momentum of the atom is connected to the total
spin Z of the atom. The spin of the nucleus and the spin of the outermost
electron interact between each other, and this interaction is called the hyperfine
interaction. The total spin of the alkali atom is given by Z = I ± 1/2, where I
is the spin of the nucleus. The different hyperfine states have different hyperfine
magnetic momenta mf = −F,−F +1, . . . , F . In the zero external magnetic field,
the states with different total spin F have energy splitting between each other,
but the hyperfine states with same total spin are degenerate. However, when the
external magnetic field is switched on, the energy levels of the degenerate states
split. This effect is called Zeeman effect and this energy splitting is called Zee-

man splitting. Some of these hyperfine levels are called high field seeking levels.
Since their energies decrease with increasing magnetic field, and others are called
low field seeking levels.Since their energies increase with increasing magnetic field
(bosons have also the neutral state, i.e. the state whose energy does not depend
the magnetic field). This is seen in figure 1.1.

One way to trap cold atoms is to use a so-called magneto optical trap (MOT).
In MOT there are two coils in an anti-Helmholtzian configuration [5]. This way
one can create a magnetic trap, where the minimum of the amplitude of the
magnetic field is at he center of the trap. This kind of trap can trap low field
seeking hyperfine states. There is one major problem with these kind of traps,
the magnetic field vanishes at the center of the trap. If the external field is zero,
the hyperfine states become degenerate and the atoms can flip from one hyperfine
state to another. This problem can be solved, for an example, by rotating the
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Figure 1.1: Schematic picture of the Zeeman effect for an atom with nuclear spin
I = 1 (6Li). The atom has two hyperfine states with the total spin Z = 1/2 and
four the total spin Z = 3/2. In this picture three lowest energy states are high
field seekers, other are low field seekers.

trap fast. This rotation forms a repulsive pseudo-potential at the center of the
trap (JILA). Another way to solve this problem is to create an optical repulsive
potential in the center of the trap by lasers (MIT).

The atoms can also be trapped optically. The trapping potential in an opti-
cal trap arises from the dipole electric field interaction as shown below. When
an atom is in the external electric field it becomes charge polarized. In other
words the electric field displaces the positively charged nucleus and the nega-
tively charged electron cloud relative to each other, which renders the atom an
electric dipole. When a charged particle is on the external electro-magnetic field
it feels the Lorentz force, which is given by

F = q

(

E +
dr

dt
× B

)

,

where q is the charge of the particle and E and B are the electric- and the
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magnetic fields, respectively. Now one can consider the atom as a dipole where
two charges q and −q with a displacement r1 − r2 = d, thus the atom feels the
force

F = F1 − F2 = q

(

E1 − E2 +
dd

dt
× B

)

.

The displacement can be assumed small, and thus the force can be approximated
as

F = F1 − F2 = q

(

(d · ∇)E +
dd

dt
× B

)

,

Furthermore one can determine the dipole moment as p = qd, and assume that
the polarization is linear p = αE, the force becomes

F = α

(

(E · ∇)E +
dE

dt
× B

)

.

By using the following identities

(E · ∇)E =
1

2
∇E2 −E × (∇× E),

∇× E = −∂B

∂t
,

one finds

F = α

(

1

2
∇E2 +

d

dt
(E × B)

)

.

The last term averages to zero, thus the force can be written as

F = ∇αE2

2
.

Now the corresponding potential is given by

V = −αE2

2
.

The atoms are attracted to the locations of the highest or the lowest intensity of
the electric field (depending on the sign of α). Thus the atoms can be trapped
in the middle of intersecting laser beams or in the local region of a single laser
beam. The sign of the α depends on the frequency of the laser beams. Let us
assume that the transition frequency between two different states |1〉 and |2〉 of
an atom is f0, and the frequency of the trapping laser is f . If f > f0 (the laser
is blue tuned), then α < 0 and the atoms are attracted to the location of the
lowest intensity. If f < f0 (the laser is red tuned), then α > 0 and the atoms are
attracted to the location of the highest intensity.

Experiments are done the regime of quantum degeneracy at ultra-low temper-
atures (tens of nano Kelvins), therefore the gas has to be cooled. The requirement
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for cold temperatures arises from the fact that superfluidity or the BEC are quan-
tum phenomena. Temperatures have to be so low that atomic (center of mass)
wavefunctions overlap. In other words, the de Broglie wavelength of the atoms
has to be longer than the inter-particle distance. Since alkali gas are very dilute,
temperatures, where the previous condition is achieved, are very low. There are
different ways to cool the cloud. In a MOT one can use laser cooling. In laser
cooling, perpendicular laser beams are directed to the cloud of the atoms, and the
frequency fl of the laser beams is chosen to be just below a transition frequency
ft between the ground state and an exited state of the atom. The cooling effect
arises from the Doppler effect, when an atom is moving toward the laser beam it
feels that the frequency of laser is higher than it really is, that is why the laser
can excite the atom. When the excited state decays the atom emits a photon,
which has frequency ft. Now the atom looses from its kinetic energy the energy
hft − hfl (h is the Planck’s constant), and the gas cools.The temperature limit
for this cooling method is the order of 10 − 100 µK, and it comes from that the
photon emmission from the atom is istropic, but excitation is direction depended
(thus the laser beams are along side the axis) [5, 6, 7]. These temperatures are
not often low enough for the experiments.

Lower temperatures can be achieved by using, for an example, the Sisyphus
cooling [7]. In the Sisyphus cooling, laser beams, which are polarized in differently,
connect different hyperfine states to each other. When the polarizations of the
laser beams alternate, for an example, in z direction, the energy levels of of the
hyperfine states also alternate, see figure 1.2. When the polarization of the laser
changes the atom can jump from one hyperfine state to another. When the atom
reaches the maximum of the potential of one hyperfine state, it can relax to the
minimum of the potential of another hyperfine states, see figure 1.2. Thus the
atoms climb constantly and looses its kinetic energy, - the gas cools. By using
the Sisyphus cooling one can achieve temperatures order of 0.1 − 1 µK [7].

If even lower temperatures are required, an useful cooling method is the evap-
orative cooling. The basic idea of the evaporative cooling is that the hottest atoms
i.e the atoms, which have most kinetic energy, are allowed to leave the trap. This
is done by lowering the trapping potential of the edges of the cloud. This lowering
has to be done so slowly that the gas has time to thermalize. In other words,
after lowering the trapping potential one has to wait until the gas has achieved a
new thermal equilibrium and it has a new lower temperature energy distribution.
By repeating this process very low temperatures can be achieved, even as low
as 10 nK. Of course during the evaporative cooling a significant number of the
atoms are lost.

One possible method to cool a gas, which is difficult to cool by using lasers, is
called sympathetic cooling [8]. In the sympathetic cooling one uses two different
types of atoms which interact with each others. These interactions can create
some dissipation i.e. the interaction between atoms can excite atoms and gas
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Figure 1.2: Schematic figure of the Sisyphus cooling. Lines g+ and g− describe
the energy levels of two different hyperfine states of the same atom as a function
of z. In this case the polarization of the laser beams alternate as a function of z.
The units are arbitrary (E corresponds the energy).

can cool. Due to the interactions, the thermalization is much faster than without
them. Lack of the s-wave interaction makes hard to cool a one component Fermi
gas, since thermalization times are long. This is the reason why the evapora-
tive cooling is much easier with a two-component Fermi gas than with an one
component Fermi gas.

1.3 Interactions between atoms

Ultra-cold atomic gases are very dilute, with densities on the order of 1020 1/m3.
This means that the inter-particle distance is on the order of 200 nm, and hence
the two-body collisions are dominant. Thus the scattering phenomenon in the
system can be handled as a two-body problem.

The interactions between two neutral alkali atoms arises from van der Waals
interactions between electron clouds of the atoms. These van der Waals interac-
tions occur only when the atoms are close to each other, i.e., in collisions. The
real van der Waals potential considered here is of the following type, a hard core
repulsion when distance between atoms r ≤ 2ra (ra is a radius of the atoms),
and an attractive r−6 type potential when r >> 2ra. This type of potential is
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quite complicated and because the range of interactions is much smaller than the
average distance between atoms, we can approximate the potential as a contact
potential, which is given by [7]

V (r1, r2) = gδ(r1 − r2) =
2π~

2a

mr
δ(r1 − r2),

where a is the s-wave scattering length, δ(r1 − r2) is the Dirac’s delta-function
and the reduced mass is given by

mr =
m1m2

m1 + m2
,

with mσ the mass of the atom σ. All the properties of this potential are char-
acterized by one parameter, the s-wave scattering length a. This parameter can
be controlled almost freely using magnetic fields and employing a phenomenon
called the Feshbach resonance [9, 10, 11]. In the Feshbach resonance, in a scat-
tering process a molecular state can couple resonantly to a free state via a virtual
process. The s-wave scattering length depends on the energy difference between
the molecular state and the free state and it can have, in principle, any value.
When the energy of the free state is the lower one and difference is quite large,
the scattering length is small and negative and the atoms form loosely bound
Cooper pairs (BCS). When the energy of the free state is the higher one and
difference is quite large, the scattering length is small and positive and the atoms
form tightly bound molecules (BEC). On the resonance the energy difference be-
tween the molecular state and the free state becomes zero. This can be seen from
figure 1.3.

By using the Feshbach resonance one can choose the effective interaction
between atoms almost freely. This flexibility is one of the reasons why cold
atoms are a good tool for modeling different quantum mechanical and solid state
problems.

1.4 Superfluidity

At very low temperatures certain materials can lose their electric resistance, in
other words they become superconductors. An analogous phenomenon for neu-
tral particles is called superfluidity, where a fluid can flow without any friction.
Actually one can think that superconductivity is superfluidity of charged parti-
cles. There two types of superconductors: low temperature superconductors and
high temperature superconductors [12]. Low temperature superconductors are
conventional metallic superconductors. A typical critical temperature Tc (below
which the conductor is a superconductor) of a low temperature superconductor
is a few Kelvins at maximum, and compared to the Fermi temperature TF of
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Figure 1.3: Schematic figure of the Feshbach resonance. Atom-atom s-wave scat-
tering length as a function of external magnetic field near the resonance.The units
are arbitrary.

electrons, it is order of Tc/TF ∼ 0.001. The theory by Bardeen, Cooper and Schi-
effer (BCS) [13] describes these low temperature superconductors very accurately.
The critical temperatures of the high temperature superconductors are typically
order of a few hundred of Kelvins, and Tc/TF ∼ 0.01. These high temperature
superconductors are ceramic compounds. There is not a theory which describes
well all the properties of these high temperature superconductors.

One of the reasons to study ultra-cold alkali gases is to achieve a better
understanding of superconductivity. In superconductors the charge carriers are
electrons, fermions, and thus it makes sense to study alkali Fermi gases. The
superfluidity of bosons arises from the fact that at low temperatures they can
condense to the same quantum state and form a Bose-Einstein condensate (BEC).
In the case of fermions, the situation is more complicated, since fermions cannot
form a BEC. However, the superfluidity of fermions can arises when the two
different types of fermions form a pair, and these pairs can considered as (a kind
of complicated) composite bosons.

Due to the Pauli principle, two identical fermions cannot form a pair. This
is due to the lack of the s-wave interaction in a one-component Fermi gas unlike
a two-components Fermi gas. That is why in experiments, two or more different
hyperfine states of the same isotope are typically used. There are two different
types of pairing mechanisms. Firstly the simple one is pairing in the real space, in
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this type of pairing the interaction potential between the atoms is such that the
two particle state is a bound state, a molecule. These molecules are bosons, thus
they can form a BEC. This kind of pairing does not depend on the Fermi sea, i.e.,
the other fermions, it is only a two particle problem. The other type of pairing
is called the BCS type of pairing, where the atoms with attractive interactions
form pairs in the momentum space, these pairs are called Cooper pairs. In the
simplest case, these pairs have zero net momentum, i.e., the paired atoms have
momenta k and −k. These pairs are not localized in the real space. This kind
of pairing cannot happen without the Fermi sea, thus this pairing rises from the
interactions between the atoms and the Fermi sea [14]. In this thesis we mainly
deal with the generalization of the BCS pairing to more complicated systems,
such as a three-component Fermi gas.

Molecules of ultra-cold fermions were observed the first time in year 2003 [15,
16, 17, 18]. In the same year the evidence of BEC of these molecules was re-
ported [19, 20, 21, 22]. In year 2004, the first experimental evidence of the BCS
type of pairing in ultra-cold alkali gases was reported [23, 24, 25, 26], and in year
2005 the phase transition between the normal phase and the superfluid phase was
observed by measuring the heat capacity as a function of the temperature [27].
Finally, in 2005 the first direct observation of the superfluidity of an alkali Fermi
gas took place, when the MIT group produced quantized vortices [28].



Chapter 2

Optical lattices

An optical lattice is made by counterpropagating lasers. The laser beams give rise
to a periodic potential as shown below [29]. As shown in the previous section,
interaction between light and an atom gives a potential which depends on the
absolute value of the electric field. Two counterpropagating laser beams in the x
direction, which have same amplitudes and wave lengths form a standing electric
field wave which is given by

E = 2A(r, θ) cos(kx)ê,

where A(r, θ) is the amplitude of the electric field, θ is the polarization angle
k = 2π/λ is the wavenumber, and ê is a unit vector. Thus the potential in the x
direction is given by (see the previous section)

V (x) = −α|A(r, θ)|2 cos2(kx).

Thus the laser beams form a one-dimensional periodic lattice, whose period is
d = λ/2, where d is called the lattice constant. By adding one more standing
wave one gets a two-dimensional lattice, and adding third the lattice becomes a
three-dimensional lattice.

When all the beams are orthogonal, the lattice is cubic. By varying the
amplitudes, wave lengths of the lasers, or the angles between the lasers one can
create lattices with different topologies [30, 31, 32, 33, 34, 35, 36]. The lattice
potential can also be quasi-periodic. In this work, all the lattices are assumed to
be cubic lattices.

The Schrödinger equation of a particle in a lattice is given by

(

−~
2∇2

2m
+ V (r

)

Ψ(r) = EΨ(r),

where V (r) is the lattice potential. The solutions to this equations are called the
Bloch functions [37], and they are given by Ψk(r) = uk(r)eik·r, where uk(r) is

11
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a periodic function and k is a reciprocal lattice vector. These Bloch functions
are global functions, i.e., they are not localized in any lattice site. Instead of the
Bloch functions, for deep lattices, it is often useful to use so called the Wannier
functions. The Wannier functions are localized in each lattice sites, and one can
calculate the Wannier functions from the Bloch functions by summing the Bloch
functions [38] as follows

wi(r) =
1√
M

∑

k

e−ik·RiΨk(r),

where M is the number of lattice sites, and Ri is a lattice vector. Although the
Wannier functions are localized in the lattice sites, they decay exponentially, and
thus the Wannier functions reach into the nearest neighbour sites and beyond.
This makes the tunneling of the atoms possible. The question how fast the
Wannier functions decay depends on the lattice depth, i.e., the intensity of the
lasers. The deeper the lattice, the more localized are the Wannier functions. The
lattice potential at the center of a lattice site is almost harmonic. Thus in the deep
lattice, the Wannier functions can be approximated by using the eigenfunctions
of the harmonic potential. This approximation is better for deeper the lattices.

The physics in the lattice is often described by using the so-called Hubbard
model. If the lattice is deep enough, the tunnelling between other lattice sites than
the nearest neighbours can be neglected. This nearest neighbours tunnelling is
described, in the Hubbard model by the hopping strength J . If the atoms interact
between each others and the absolute value of the s-wave scattering length |a| is
smaller than the lattice constant d, the interaction is a point like interaction, i.e.,
the atoms can interact only if they are in the same lattice site. This interaction is
described by effective interaction parameter U . In the next chapter, the Hubbard
model is described more precisely.

In experiments, the intensity profile of the laser beam as a function of the
distance from the laser beam axis is not constant but almost like a Gaussian
function. On the good side without this Gaussian profile the atoms would escape
from the lattice, since the pure lattice potential allows the atoms to move. How-
ever, this Gaussian profile breaks the translational symmetry of the lattice, and
because the profile is not a pure Gaussian profile it does not have the elliptical
symmetry of the harmonic potential. The absence of these symmetries makes it
more difficult to create accurate theoretical models.

Some great physics has been done by using optical lattices. For example, the
Zürich group observed the Fermi surfaces of a two-components Fermi gas and
fermionic molecules in optical lattices in years 2004 and 2005 [35, 39]. The same
group has reported that they have achieved a fermionic Mott insulator state [40].

Another group in Mainz Germany observed the fermionic antibunching effect
using the noise correlations [41]. This group made the pioneering observation of
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quantum phase transition, a transition which is driven by the quantum fluctua-
tions, using an optical lattice. This transition was the phase transition between
the Mott-insulator phase, and it was observed using the noise correlations [42].
In 2006, the MIT group saw the first direct evidence of fermionic superfluidity in
optical lattices [36].



Chapter 3

Two-component Fermi gases in

optical lattices

We discuss in this chapter mainly the results, which have been published in paper
III.

3.1 Exact Hamiltonian

Here we study a two-components Fermi gas in an optical lattice. Where the
components are two different hyperfine states of the same isotope or two different
isotopes. The components are labeled, as in the electron gas, by ↑ and ↓. The
almost exact many body Hamiltonian is given by

Ĥ =
∑

σ=↑,↓

∫

dr′ Ψ̂†
σ(r)

(

−~
2∇2

2mσ
+ Vσ(r)

)

Ψ̂σ(r)

+

∫ ∫

drdr′ Ψ̂†
↑(r)Ψ̂

†
↓(r

′)U(r, r′)Ψ̂↓(r
′)Ψ̂↑(r),

(3.1)

where Ψ̂† and Ψ̂ are fermionic field operators, Vσ(r) is the lattice potential for
the component σ, and U(r, r′) is the interaction between the components. In the
Hamiltonian we have neglected other than two-body interactions, since the gas
is assumed to be very dilute.

The standard way to approximate the interaction between atoms is to take the
interaction to be s-wave interaction. Under this approximation the interaction
turns to be

U(r, r′) =
2π~

2a

mr
δ(r − r′),

where δ(r − r′) is the Dirac’s δ-function and a is the s-wave scattering length,

14
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and the reduced mass is given by

mr =
m↑m↓

m↑ + m↓
.

Thus the Hamiltonian is simplified as

Ĥ =
∑

σ=↑,↓

∫

dr′ Ψ̂†
σ(r)

(

−~
2∇2

2mσ
+ Vσ(r)

)

Ψ̂σ(r)

+
2π~

2a

mr

∫

dr Ψ̂†
↑(r)Ψ̂

†
↓(r)Ψ̂↓(r)Ψ̂↑(r).

(3.2)

The cubic lattice potential is given by

Vσ(r) =
∑

α=x,y,z

Vσ,α sin2(kαα),

where kα = π/dα and dα is a lattice constant in the α direction.
As said in the previous section the eigenstates in a lattice are Bloch functions.

Bloch functions can be represented as a series of well localized Wannier functions.
The field operators can be expanded by using these localized Wannier functions
as follows

Ψ̂σ(r) =
∑

i

wσ,i(r)ĉσ,i

Ψ̂†
σ(r) =

∑

i

w∗
σ,i(r)ĉ

†
σ,i,

where wσ,i is Wannier function centered at a lattice site i of the component σ,

ĉσ,i and ĉ†σ,i are annihilation and creation operators of the component σ. This
is the lowest band approximation. In the other words, here it is assumed that
the atoms occupy only the lowest energy state of the sites. This is reasonable
assumption, when temperatures are low i.e. kBT << Ebg, where Ebg is the energy
gap between bands, and the filling fractions nσ = Nσ/M < 1, where Nσ is the
number of particles of component σ and M is the number of the lattice sites.

3.2 Lowest band Hubbard model

When the lattice is deep enough the nearest neighbours approximation (also
known as the tight binding approximation) can be used. Under this approxima-
tion the kinetic part of the Hamiltonian becomes

∑

σ

∑

〈i,j〉

∫

drw∗
σ,i(r)

(

−~
2∇2

2mσ
+ Vσ(r)

)

wσ,j ĉ
†
σ,iĉσ,j ,
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where 〈i, j〉 means sum over the nearest neighbours, and the interaction part of
the Hamiltonian becomes

2π~
2a

mr

∑

i

∫

dr |w↑,i(r)|2|w↓,i(r)|2ĉ†↑,iĉ
†
↓,iĉ↓,iĉ↑,i.

We assume that the Wannier functions wσ,i are the same in every lattice sites, in
other words the form of the Wannier function does not depend the lattice site.
This condition holds when the depth of the lattice does not change from a lattice
site to another. We can then define

Jσ,α = −
∫

drw∗
σ,i(r)

(

−~
2∇2

2mσ
+ Vσ(r)

)

wσ,i+dαα̂(r)

U =
2π~

2(m↑ + m↓)

m↑m↓

∫

dr |w↑,i(r)|2|w↓,i(r)|2,
(3.3)

where α̂ is a unit vector in the α direction (α = x, y, z). One finds the lowest
band Hubbard Hamiltonian which is given by

Ĥ − µ↑N̂↑ − µ↓N̂↓ = −
∑

i

(µ↑ĉ
†
↑,iĉ↑,i + µ↓ĉ

†
↓,iĉ↓,i) + U

∑

i

ĉ†↑,iĉ
†
↓,iĉ↓,iĉ↑,i

−
∑

σ=↑,↓



Jσ,x

∑

〈i,j〉x

+Jσ,y

∑

〈i,j〉y

+Jσ,z

∑

〈i,j〉z



 ĉ†σ,iĉσ,j ,

(3.4)

where µσ is a chemical potential of the component σ. When we take the depth
of the lattice to be a form Vσ,α = sσ,αEr,↑, the recoil energy Er,↑ = ~

2π2/(2m↑d
2)

(dα = d), and approximate the Wannier functions with the harmonic oscillator
ground states, the values of U and J are

Jσ,α =
m↑

mσ
Er,↑e

−
π2√sσ,α

4

[(

π2sσ,α

4
−

√
sσ,α

2

)

− sσ,α

2

(

1 + e
− 1√

sσ,α

)]

U = Er,↑
4π1/2(s↑,xs↑,ys↑,z)

3/12(s↓,xs↓,ys↓,z)
3/12(m↑ + m↓)a

m↓((s↑,xs↑,ys↑,z)1/6 + (s↓,xs↓,ys↓,z)1/6)3/2d
.

For fermions, the lowest band Hubbard Hamiltonian can be used only when
the filling fractions nσ are smaller than one. Due to the Pauli exclusion principle
if the filling fraction is larger than one, the component starts occupy also the
second band. Furthermore the interaction between the components is too strong,
the lowest band Hubbard model is of limited accuracy. More precisely, when the
interaction energy is larger than the band gap between the bands, one has to take
into account also the higher bands.
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3.3 Mean-field approximation

The exact Hubbard Hamiltonian can be solved only when the lattice is very
small. The states used for solving the exact Hubbard Hamiltonian are the Fock
states and the number of the relevant Fock states scales as 4M a function of
the number of sites M . When the lattice is bigger than 12 lattice sites the
exact diagonalization of the Hubbard Hamiltonian cannot be done at reasonable
time. When the lattice is small (M < 100) we cannot say that the system is
macroscopic. Thus if we deal with a macroscopic system, we have to approximate
the Hubbard Hamiltonian. Here we approximate the interaction part by using
mean-field method. An operator Ô can be written as Ô = 〈Ô〉+ Ô − 〈Ô〉, where
〈Ô〉 is the mean value (i.e, the quantum mechanical expectation value) of the
operator and δÔ = Ô − 〈Ô〉 is the fluctuation around the mean value. Now we
can rewrite the four-operator product of the interaction part as

ĉ†↑,iĉ
†
↓,iĉ↓,iĉ↑,i = (〈ĉ†↑,iĉ

†
↓,i〉 + ĉ†↑,iĉ

†
↓,i − 〈ĉ†↑,iĉ

†
↓,i〉)(〈ĉ↓,i ĉ↑,i〉 + ĉ↓,iĉ↑,i − 〈ĉ↓,iĉ↑,i〉)

= 〈ĉ†↑,iĉ
†
↓,i〉〈ĉ↓,iĉ↑,i〉 + 〈ĉ†↑,iĉ

†
↓,i〉(ĉ↓,i ĉ↑,i − 〈ĉ↓,iĉ↑,i〉) + 〈ĉ↓,iĉ↑,i〉(ĉ†↑,iĉ

†
↓,i − 〈ĉ†↑,iĉ

†
↓,i〉)

+ (ĉ†↑,iĉ
†
↓,i − 〈ĉ†↑,iĉ

†
↓,i〉)(ĉ↓,i ĉ↑,i − 〈ĉ↓,iĉ↑,i〉).

Now if it is assumed that the fluctuations are small the last term

δĉ†↑,iĉ
†
↓,iδĉ↓,i ĉ↑,i = (ĉ†↑,iĉ

†
↓,i − 〈ĉ†↑,iĉ

†
↓,i〉)(ĉ↓,iĉ↑,i − 〈ĉ↓,iĉ↑,i〉),

can be neglected. Thus the four-operator product can be approximated as

ĉ†↑,iĉ
†
↓,iĉ↓,iĉ↑,i ≈ ĉ†↑,iĉ

†
↓,i〈ĉ↓,iĉ↑,i〉 + ĉ↓,iĉ↑,i〈ĉ†↑,iĉ

†
↓,i〉 − 〈ĉ†↑,iĉ

†
↓,i〉〈ĉ↓,iĉ↑,i〉.

This is the key approximation of the usual BCS theory of superconductivity. It
is clear that this approximation is poor if the fluctuations are large or if they
dominate the system. In one-dimensional systems, the fluctuations are usually
dominant. Thus mean-field approximation does not work well. Also if the interac-
tions between the components are strong i.e. near the Feshbach resonance thermal
fluctuations are important. Quantum Monte-Carlo calculations have shown that
the BCS theory overestimates the critical temperature [43]. Furthermore if the
filling fraction is quite large in the lattice the fluctuations are important.

Let us introduce the pairing field ∆(i) = U〈ĉ↓,iĉ↑,i〉 as the order parameter of
the system. Because the lattice the translational symmetry, it is reasonable to
assume that the simplest pairing field, which breaks down this symmetry has a
periodic phase. For now on the pairing field is assumed to be of the one mode
FFLO (Fulde, Ferrel, Larkin, Ovchinnikov) type [44, 45]. With the one mode
FFLO ansatz the pairing field is given by

∆(i) = ∆e2iq·Ri ,
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where ∆ ≥ 0 is the absolute value of the pairing gap, q is a quasi-momentum
vector and Ri is a lattice vector. The position dependence of the pairing field
could be multimode, but these types of pairing fields can only make the FFLO
areas larger in the phase diagram. Therefore, the above ansatz gives the ”worst
case” behaviour for the appearance of states breaking the translational invariance.

When the mean-field approximation and the pairing gap ansatz are put in the
Hubbard Hamiltonian, the Hamiltonian becomes

Ĥ − µ↑N̂↑ − µ↓N̂↓ = −
∑

l

(µ↑ĉ
†
↑,l ĉ↑,l + µ↓ĉ

†
↓,lĉ↓,l)

+
∑

l

(

∆e2iq·Rl ĉ†↑,lĉ
†
↓,l + ∆e−2iq·Rl ĉ↓,l ĉ↑,l −

∆2

U

)

−
∑

σ=↑,↓



Jσ,x

∑

〈l,j〉x

+Jσ,y

∑

〈l,j〉y

+Jσ,z

∑

〈l,j〉z



 ĉ†σ,lĉσ,j .

(3.5)

This Hamiltonian is easier to handle in the (quasi-)momentum space. To repre-
sent the Hamiltonian in the momentum space one has to take the Fourier trans-
form of the operators

ĉσ,l =
1√
M

∑

k

eik·Rl ĉσ,k

ĉ†σ,l =
1√
M

∑

k

e−ik·Rl ĉ†σ,k,

where the sum goes over all the (quasi-)momenta of the reciprocal lattice. Let us
calculate the Fourier transform of the Hamiltonian. in parts, starting from the
Fourier transform the density part

∑

σ,l

µσ ĉ†σ,l ĉσ,l =
1

M

∑

σ,l

µσ

∑

k,k′

ei(k−k′)·Rl ĉ†σ,k′ ĉσ,k

=
1

M

∑

σ,k,k′

ĉ†σ,k′ ĉσ,k

∑

l

µσei(k−k′)·Rl

=
1

M

∑

σ,k,k′

ĉ†σ,k′ ĉσ,kµσMδk,k′

=
∑

σ,k

µσ ĉ†σ,kĉσ,k.

The Fourier transform of the interaction part is not more complicated and is
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given by

∑

l

(

∆e2iq·Rl ĉ†↑,lĉ
†
↓,l + ∆e−2iq·Rl ĉ↓,lĉ↑,l −

∆2

U

)

=
∑

l





1

M

∑

k,k′

(

∆ei(2q−k−k′)·Rl ĉ†↑,kĉ†↓,k′ + ∆ei(k+k′−2q)·Rl ĉ↓,k′ ĉ↑,k

)

− ∆2

U





=
1

M

∑

k,k′

(

∆Mδ2q,k+k′ ĉ†↑,kĉ†↓,k′ + ∆Mδ2q,k+k′ ĉ↓,k′ ĉ↑,k

)

− M∆2

U

=
∑

k

(

∆ĉ†↑,k+qĉ†↓,−k+q + ∆ĉ↓,−k+qĉ↑,k+q − ∆2

U

)

.

Finally the Fourier transform of the kinetic part is given by

−
∑

σ,α

∑

〈l,j〉α

Jσ,αĉ†σ,l ĉσ,j = −
∑

σ,α

∑

l

Jσ,α(ĉ†σ,l ĉσ,l+dx̂α
+ ĉ†σ,l ĉσ,l−dx̂α

)

=
−1

M

∑

σ,α

Jσ,α

∑

k,k′

∑

l

(

e−i(k−k′)·Rl+ik′
αdĉ†σ,kĉσ,k′ + e−i(k−k′)·Rl−ik′

αdĉ†σ,kĉσ,k′

)

=
−1

M

∑

σ,α

Jσ,α

∑

k,k′

(

Mδk,k′eik′
αdĉ†σ,kĉσ,k′ + Mδk,k′e−ik′

αdĉ†σ,kĉσ,k′

)

= −
∑

σ,α

Jσ,α

∑

k

(

eikαd + e−ikαd
)

ĉ†σ,kĉσ,k

=
∑

σ,α

∑

k

(−2Jσ,α cos(kαd)ĉ†σ,kĉσ,k).

By combining all these terms, we find the mean-field Hubbard Hamiltonian
in the momentum space

Ĥ − µ↑N̂↑ − µ↓N̂↓ =
∑

k

ǫ↑,kĉ†↑,kĉ↑,k + ǫ↓,kĉ†↓,kĉ↓,k

+
∑

k

(

∆ĉ†↑,k+qĉ†↓,−k+q + ∆ĉ↓,−k+qĉ↑,k+q − ∆2

U

)

,
(3.6)

where ǫσ,k =
∑

α=x,y,z 2Jσ,α(1 − cos(kαd)) − µσ are the single particle disper-
sions. To get these single particle dispersions we have added a constant term
∑

σ,α 2Jσ,αN̂σ, where the number operators are N̂σ =
∑

k ĉ†σ,kĉσ,k. Of course this
term does not change the physics of the system, because the term commutates
with the Hamiltonian.
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The mean-field Hamiltonian can be rewritten in an equivalent matrix form as

Ĥ − µ↑N̂↑ − µ↓N̂↓ =
∑

k

ǫ↑,k+qĉ†↑,k+q
ĉ↑,k+q + ǫ↓,−k+q(1 − ĉ↓,−k+qĉ†↓,−k+q

)

+
∑

k

(

∆ĉ†↑,k+qĉ†↓,−k+q + ∆ĉ↓,−k+qĉ↑,k+q − ∆2

U

)

=
∑

k

(

ĉ†↑,k+q ĉ↓,−k+q

)

(

ǫ↑,k+q ∆
∆ −ǫ↓,−k+q

)

(

ĉ↑,k+q

ĉ†↓,−k+q

)

+
∑

k

(

ǫ↓,−k+q − ∆2

U

)

.

(3.7)

We can diagonalize this Hamiltonian by using unitary matrices, as,

∑

k

(

ĉ†↑,k+q ĉ↓,−k+q

)

U †
k,qUk,q

(

ǫ↑,k+q ∆
∆ −ǫ↓,−k+q

)

U †
k,qUk,q

(

ĉ↑,k+q

ĉ†↓,−k+q

)

where U †
k,qUk,q = 1. Now the unitary matrices have to be chosen in a way that

they diagonalize the 2 × 2-matrix in the Hamiltonian i.e. the following equation
holds

Uk,q

(

ǫ↑,k+q ∆
∆ −ǫ↓,−k+q

)

U †
k,q =

(

E+,k,q 0
0 −E−,k,q

)

,

where the minus sign is only a convention. The eigenvalues can be solved from
the determinant equations and it turns out that

E±,k,q = Ek,q±
ǫ↑,k+q − ǫ↓,−k+q

2
=

√

(

ǫ↑,k+q + ǫ↓,−k+q

2

)2

+ ∆2±ǫ↑,k+q − ǫ↓,−k+q

2
.

Furthermore it turns out that the unitary matrices can be chosen as

Uk,q =

(

uk,q −vk,q

vk,q uk,q

)

,

where

u2
k,q =

1

2

(

1 +
ǫ↑,k+q + ǫ↓,−k+q

2Ek,q

)

v2
k,q =

1

2

(

1 − ǫ↑,k+q + ǫ↓,−k+q

2Ek,q

)

.

We can determine quasiparticle operators by using this unitary transformation

γ̂+,k,q = uk,qĉ↑,k+q + vk,qĉ†↓,−k+q,

γ̂−,k,q = uk,qĉ↓,−k+q − vk,qĉ†↑,k+q.
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This transformation, which is called the Bogoliubov transformation, is a canonical
transformation. In other words it preserves the anticommutation relations

{γ̂†
α,k,q, γ̂β,k′,q} = γ̂†

α,k,qγ̂β,k′,q + γ̂β,k′,qγ̂†
α,k,q = δαβδk,k′

{γ̂α,k,q, γ̂β,k′,q} = {γ̂†
α,k,q, γ̂†

β,k′,q} = 0.

The quasiparticles are linear combinations of particles and holes.

The diagonalized Hamiltonian is given by

Ĥmf =
∑

k

E+,k,qγ̂†
+,k,qγ̂+,k,q + E−,k,qγ̂†

−,k,qγ̂−,k,q − E−,k,q + ǫ↓,−k+q − ∆2

U
.

(3.8)

The diagonalized Hamiltonian is the Hamiltonian of a two-components free gas,
where the components are two different types of quasiparticles, and furthermore
the eigenenergies are the quasiparticle dispersions. Thus we can write down the
eigenstates of the diagonalized mean-field Hamiltonian as

|i〉 =
∏

k∈G2

γ̂†
−,k,q

∏

k∈G1

γ̂†
+,k,q|0〉,

where G1 and G2 are domains in the momentum space and |0〉 denotes the vacuum
state. The eigenstates of mean-field Hamiltonian are the Fock states for the
quasiparticles. However, the ground state is

|GS〉 =
∏

k∈G2

γ̂†
−,k,q

∏

k∈G1

γ̂†
+,k,q|0〉,

where in domain G1 E+,k,q < 0 and in domain G2 E−,k,q < 0.

The one mode FFLO ansatz which is used above includes four different phases.
Firstly the standard BCS phase, where the quasimomentum q and the polariza-
tion

P =
N↑ − N↓

N↑ + N↓
=

n↑ − n↓

n↑ + n↓

vanish and the pairing gap is finite. Physically this means that the Fermi surfaces
of the components totally overlap, and the total momentum of a pair is zero. Fur-
thermore the pairing gap is uniform. Secondly the Sarma/BP (Breach Pairing)
phase [46, 47], corresponds to P 6= 0, ∆ > 0, and q = 0. This means that the
Fermi surfaces do not fully overlap and a part of the atoms remains unpaired.
Basically this Sarma/BP phase is the phase separation in the momentum space, a
part of the momentum space includes non-polarized paired gas and another part
polarized normal gas. In this phase, the pairing gap is also uniform. In the coor-
dinate space of course the pairs occur everywhere. Thirdly, the one mode FFLO
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phase corresponds to situation where P 6= 0, ∆ > 0, and q is non-zero. Also in
this phase, the Fermi surfaces do not fully overlap, but they have been shifted
by the momentum q and the pairs have total momentum 2q. The momentum
q has to be chosen such that the free-energy is minimized, which turns out to
be roughly equivalent with the condition that the overlapping between the Fermi
surfaces is maximized. The normal phase means vanishing order parameter, i.e,
∆ = 0.

3.4 Self consistent equations and free-energy

3.4.1 Gap and number equations

Using the inverse Bogoliubov transformation, we can derive three equations: the
gap equation, and the number equations for the both components. From these
equations, one can solve the order parameter ∆ and the chemical potentials µσ

self consistently. The gap equation can be derived from the definition of the order
parameter by substituting the quasiparticle operators into the definition. More
precisely we get

∆ = Ue−2iq·Ri〈ĉ↓,iĉ↑,i〉

=
U

M

∑

k,k′

ei(k+k′−2q)·Ri〈ĉ↓,kĉ↑,k′〉

=
U

M

∑

k,k′

ei(k+k′−2q)·Ri〈(u−k′+q,qγ̂−,−k′+q,q + v,−k′+q,qγ̂†
+,−k′+q,q)×

(uk−q,qγ̂+,k−q,q − vk−q,qγ̂†
−,k−q,q)〉

=
U

M

∑

k,k′

ei(k+k′−2q)·Ri

(

u−k′+q,quk−q,q〈γ̂−,−k′+q,qγ+,k−q,q〉

− u−k′+q,qvk−q,q〈γ̂−,−k′+q,qγ̂†
−,k−q,q〉 + v−k′+q,quk−q,q〈γ̂†

+,−k′+q,qγ̂+,k′−q,q〉

− v−k′+q,qvk−q,q〈γ̂†
+,−k′+q,qγ̂†

−,k−q,q〉
)

=
U

M

∑

k

uk,qvk,q[1 − f(E+,k,q) − f(E−,k,q)]

=
−U

M

∑

k

∆[1 − f(E+,k,q) − f(E−,k,q)]

2Ek,q
,

(3.9)

where the Fermi-Dirac distribution is given by

f(E) =
1

eE/kBT + 1
.
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Here, kB is the Boltzmann constant T is the temperature. Above, we have used
results of the equilibrium statistical physics

〈γ̂†
α,k′,qγ̂β,k′,q〉 = δαβδk,k′f(Eα,k,q)

〈γ̂†
α,k′,qγ̂†

β,k′,q〉 = 〈γ̂α,k′,qγ̂β,k′,q〉 = 0.

When the gap equation (3.9) is divided by ∆, we get the standard BCS gap
equation

1 =
−U

M

∑

k

1 − f(E+,k,q) − f(E−,k,q)

2Ek,q
. (3.10)

In the same way, we get the number equations and they are given by

N↑ =
∑

k

u2
k,qf(E−,k,q) + v2

k,q(1 − f(E+,k,q)),

N↓ =
∑

k

u2
k,qf(E+,k,q) + v2

k,q(1 − f(E−,k,q)).
(3.11)

Because the Fermi-Dirac distribution becomes the Heaviside step function in the
zero-temperature limit, i.e.

lim
T→0

f(E) = Θ(−E) =











0, E > 0

0.5, E = 0

1, E < 0,

if the system is polarized at least one of the quasiparticle dispersion has to change
its sign at zero temperature.

If q is assumed to be zero, there are only three unknown variables to solve:
the chemical potentials and the absolute value of the gap. In this case we can
solve the gap equations and the number equations iteratively.

There are some limits where the solution is even simple. When the interac-
tion between components is weak the chemical potentials can be approximated
with the Fermi energies (as is done with metallic superconductors). If the gas
is balanced, i.e, the number of particles are equal (and the masses or hopping
strengths are same), the chemical potentials can be chosen to be same µ↑ = µ↓.
Thus there is only one number equation left in this case.

If q is not assumed to vanish one has three extra unknown variables to solve:
qx, qy, qz. Thus it can be more convenient to calculate the Helmholtz free en-
ergy and minimize that, rather than solve the gap- and the number equations
separately.
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3.4.2 Free energy

To calculate the Helmholtz free energy F = Ω + µ↑N↑ + µ↓N↓, we must first
calculate the grand canonical potential

Ω = −kBT log(Z) = −kBT log
(

Tr
[

e−βĤmf

])

,

where β = 1/kBT . The grand canonical partition function Z it is easy to calculate
for the free Fermi gas, as shown below.

Z = Tr
[

e−βĤmf

]

=
∑

i

〈i|e−βĤmf |i〉

=
∑

i

〈i|
∏

k

e−βE+,k,qγ̂†
+,k,q

γ̂+,k,qe−βE−,k,qγ̂†
−,k,q

γ̂−,k,qe−βck |i〉,

where |i > is an eigenstate of the mean-field Hamiltonian, and

ck = −E−,k,q + ǫ↓,−k+q − ∆2

U
.

Since
e−βEα,k,qγ̂†

α,k,q
γ̂α,k,q |i〉 = |i〉e−βEα,k,qnα,k,i ,

nα,k,i is the occupation number of a quasiparticle type α in the momentum state
k in |i〉,

Z = e−β
P

k ck
∑

i

∏

k

e−βE+,k,qn+,k,ie−βE−,k,qn−,k,i .

Since the sum over the eigenstates runs over all possible combinations once and
the occupation number nα,k,i is either 0 or 1, the grand canonical partition func-
tion becomes

Z = e−β
P

k ck
∏

k

(

1 + e−βE+,k,q

)(

1 + e−βE−,k,q

)

.

Thus the grand canonical potential is given by

ΩFFLO =
∑

k

[

− kBT log
(

1 + e−βE+,k,q

)

− kBT log
(

1 + e−βE−,k,q

)

− E−,k,q + ǫ↓,−k+q − ∆2

U

]

,

(3.12)

and furthermore

FFFLO =
∑

k

[

− kBT log
(

1 + e−βE+,k,q

)

− kBT log
(

1 + e−βE−,k,q

)

− E−,k,q + ǫ↓,−k+q − ∆2

U

]

+ µ↑N↑ + µ↓N↓.

(3.13)
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In the thermal equilibrium the right value, of the order parameter minimizes
the free energy. It depends on the system whether it is useful to use the grand
canonical potential or the Helmholtz free energy. If the lattice is in a trap, the
number of particles can change as a function of the distance from the center of
the trap, and in this case it is better to use the grand canonical potential. But if
the external potential is uniform, it is better to use the Helmholtz free energy.

If the grand potential is used, there is a so-called Clogston limit [48], which
tells how big the chemical potential difference |δµ| = |µ↑ −µ↓| (in the case where
the masses or the hopping strengths are equal) has to be for it to be possible to find
other solutions than the standard BCS solution at zero temperature. Clogston
showed [48] that in the free space, the limit is |δµ| =

√
2∆0, where ∆0 is the

gap when |δµ| = 0. In a lattice the value of the Clogston limit is the same [49].
However, this work did not consider phase separation, which could be relevant in
some systems.

Even in the case where q = 0 one can find a non-zero gap solution for
the gap equation above the Clogston limit, but this solution, which is called
the Sarma/BP phase, is unstable at zero temperature. It turns out that this
Sarma/BP solution is a local maximum of the grand potential at zero tempera-
ture [50], thus it is not energetically favorable. However, due to thermal fluctua-
tions it becomes energetically favorable at non-zero temperatures.

If the external trapping potential is flat or uniform, it is useful to fix the
numbers of the particles and use Helmholtz free-energy. In the case of the one
mode FFLO ansatz, one can find non-BCS type solution for arbitrary polariza-
tions. But at low temperatures and low polarizations this FFLO type pairing
is not the minimum energy state, since one should take into account also the
possibility of the phase separation between the normal gas and the BCS pair-
ing. This means that in a part of the lattice there is a polarized normal gas and
parts are occupied by a non-polarized superfluid gas, at low temperatures and low
polarizations this phase separation is the minimum energy solution. When the
phase separation is taken account, we have to compare two different free energy
densities F̃FFLO = FFFLO/M and

F̃PS =
x

M
FBCS +

(1 − x)

M
Fnormal,

where FBCS is same as FFFLO in the case where q = 0, µ↑ = µ↓, and N↑ =
N↓ = NBCS , and Fnormal is FFFLO in the case where ∆ = 0, and Nnormal,↑ =
N↑ − NBCS , Nnormal,↓ = N↓ − NBCS . The x above represents the fraction of the
lattice sites, which is occupied by the BCS phase. In this phase separation free
energy formula we have two new free minimization parameters NBCS and x.

The one mode FFLO phase occupies a large part of a polarization-temperature
phase diagram as shown in figure 3.1. This is a main difference between the free
space - and the lattice phase diagrams. In free space the FFLO area is almost
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Figure 3.1: Polarization-temperature phase diagram for a two-components Fermi
gas in a three-dimensional cubic lattice. The average filling fraction nav = (n↑ +
n↓)/2 = 0.2. The other parameters which were used are U = −0.26Er , J =
0.07ER, and wavelength of the laser λ = 1030nm. The components are two
different hyperfine states of Lithium-6. Here ∆0 means the gap at T = 0 and
P = 0. The color coding is such as: FFLO=yellow, Sarma/BP/BCS=blue (BCS
only when P = 0), Phase separation=red, and Normal=white.

negligible. This difference between the free space and the lattice phase diagrams is
due the shape difference between the Fermi surfaces. In a cubic lattice the Fermi
surfaces are like dodecahedrons, but in the free space they are spheres. If the
Fermi surfaces are dodecahedrons, the overlapping of the surfaces can be made
much greater by shifting the surfaces than if they are spheres. This phenomenon
is called nesting.

Figure 3.1 shows that there are several phase transitions in the phase diagram.
The FFLO-Sarma/BP phase transition is a second order phase transition, where
the order parameter is q. The Sarma/PB phase is transnational symmetric, but
the FFLO phase is not. Thus the FFLO phase breaks spontaneously the trans-
lational symmetry. All the phase transitions which include the phase separation,
i.e., the BCS-phase separation transition, the phase separation-Sarma/PB transi-
tion and the phase separation-FFLO transition, are first order transitions [50, 51].
The phase transitions to the normal phase are second order transitions, where the
order parameter is the absolute value of the pairing gap. The normal-superfluid
phase transition breaks the local U(1)-symmetry of the Hamiltonian.
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3.5 Interband model in optical lattices

If the interaction strengths are strong or the filling fractions are larger than unity,
the lowest band Hubbard model is not valid. One has to use a multiband model.
Both experimental and theoretical multiband studies have been already done in
optical latices [35, 52, 53].

Here we study the case where the components can have filling fraction larger
than unity, but smaller than four (the maximum filling fraction of the p-band
is three) in order to explore novel paired phases. Since the gas is fermionic, the
component, whose filling fraction is bigger than unity not only occupies the lowest
band, but also the first excited band. This is due to the Pauli exclusion principle.

The exact Hamiltonian of this system is the same as before and is given by

Ĥ =
∑

σ=↑,↓

∫

dr Ψ̂†
σ(r)

(

−~
2∇2

2mσ
+ Vσ(r)

)

Ψ̂σ(r)

+
2π~

2a

mr

∫

dr Ψ̂†
↑(r)Ψ̂

†
↓(r)Ψ̂↓(r)Ψ̂↑(r),

(3.14)

Let us assume that component ↑ has filling fraction bigger than unity. The field
operators can be expanded by using the Wannier functions, and are given by

Ψ̂σ(r) =
∑

i

wσ,0,i(r)ĉσ,0,i + wσ,x,i(r)ĉσ,x,i + wσ,y,i(r)ĉσ,y,i + wσ,z,i(r)ĉσ,z,i,

where wσ,α,i(r) (σ =↑, ↓ and α = 0, x, y, z) are the Wannier functions and ĉα,σ,i

are the annihilation operators. There are three different types of fermions (x,y,z)
in the excited band, and they have their own Wannier functions and creation and
annihilation operators. This is due the fact that the excited band is the p-band
and it has three different states.

If the lattice is deep, we can derive the corresponding Hubbard Hamiltonian,
as we did in the lowest band case. The Hubbard Hamiltonian is given by

Ĥ = −
∑

α,σ







Jσ,α,x

∑

〈i,j〉x

+Jσ,α,y

∑

〈i,j〉y

+Jσ,α,z

∑

〈i,j〉z



 ĉ†σ,α,iĉσ,α,j





+
∑

α,i

(Epg,↑,α − µ↑)ĉ
†
↑,α,iĉ↑,α,i + (Epg,↓,α − µ↓)ĉ

†
↓,α,iĉ↓,α,i

+
∑

α,β

Uαβ ĉ†↑,α,iĉ↑,α,iĉ
†
↓,β,iĉ↓,β,i

(3.15)

where Epg,σ,α (Epg,σ,0 = 0) are the band gaps, 〈i, j〉β denotes sum over the nearest
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neighbours in the β direction, and

Jσ,α,β =

∫

drw∗
σ,α,i(r)

(

−~
2∇2

2mσ
+ Vσ(r)

)

wσ,α,i+dx̂β
(r),

Uαβ =
2π~

2a

mr

∫

dr |w↑,α,i(r)|2|w↓,β,i(r)|2,

where d is the lattice constant and x̂β is the unit vector in the β direction. When
these integrals are calculated, one finds that Jσ,α,α is negative, when α 6= 0. Note

that the Hamiltonian does not include the terms like ĉ†σ,α,iĉσ,β,j , (α 6= β) this
is due to the (anti-)symmetry of Wannier functions, i.e. when one calculates
the corresponding hopping term, one finds that it is zero. This implies that the
fermions cannot change their type through the hoping. The particles can change
their type through the interactions, but in this work this types of interactions are
not considered.

One can do the same mean-field approximation as we did in the lowest band
model, and under this approximation the Hamiltonian becomes in the momentum
space

Ĥ =
∑

σ,α,k

ǫσ,α,kĉ†σ,α,kĉσ,α,k+

∑

α,β,k

∆αβ ĉ†↑,α,kĉ†↓,β,−k
+ ∆∗

αβ ĉ↓,β,−kĉ↑,α,k −
∑

α,β

|∆αβ|2
Uαβ

,
(3.16)

where the pairing fields are defined by ∆αβ = Uαβ〈c↓,β,ic↑,α,i〉 and the one particle
dispersions are given by

ǫσ,α,k = Epg,σ,α +
∑

β=x,y,z

2Jσ,α,β(1 − cos2(kβd)) − µσ.

Here we have, for simplicity, assumed that the pairing fields are constants i.e. the
pairings are the BCS type of pairings.

To simplify the situation we assume that only the ↑-component has filling
fraction larger than unity. Since ↓-component lies on the lowest band, only pair-
ing fields, which can be non-zero are ∆α0. In this special case the mean-field
Hamiltonian becomes

Ĥ =
∑

k

ǫ↓,0,kĉ†↓,0,kĉ↓,0,k + ǫ↑,0,kĉ†↑,0,kĉ↑,0,k + ǫ↑,x,kĉ†↑,x,kĉ↑,x,k

+ ǫ↑,y,kĉ†↑,y,kĉ↑,y,k + ǫ↑,z,kĉ†↑,z,kĉ↑,z,k

+
∑

α,k

∆α0ĉ
†
↑,α,kĉ†↓,0,−k + ∆∗

α0ĉ↓,0,−kĉ↑,α,k −
∑

α

|∆α0|2
Uα0

.

(3.17)
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This Hamiltonian can be written in the matrix form as

Ĥ =
∑

k

Ψ̂
†
k













ǫ↑,0,k 0 0 0 ∆00

0 ǫ↑,x,k 0 0 ∆x0

0 0 ǫ↑,y,k 0 ∆y0

0 0 0 ǫ↑,z,k ∆z0

∆∗
00 ∆∗

x0 ∆∗
y0 ∆∗

z0 −ǫ↓,0,−k













Ψ̂k

+
∑

k

ǫ↓,0,−k −
∑

α

|∆α0|2
Uα0

,

(3.18)

where the five component spinor is defined by

Ψ̂k =













ĉ↑,0,k

ĉ↑,x,k

ĉ↑,y,k

ĉ↑,z,k

ĉ†↓,0,−k













.

This Hamiltonian can be diagonalized by means of the Bogoliubov transfor-
mation and we can write the diagonalized Hamiltonian

Ĥ =
∑

k

E1,kγ̂†
1,kγ̂1,k + E2,kγ̂†

2,kγ̂2,k

+ E3,kγ̂†
3,kγ̂3,k + E4,kγ̂†

4,kγ̂4,k + E5,kγ̂†
5,kγ̂5,k

+
∑

k

ǫ↓,0,k − E5,k −
∑

α

|∆α0|2
Uα0

,

(3.19)

where Ei,k are the quasiparticle dispersions, and γ̂†
i,k and γ̂i,k are the quasiparti-

cle creation and annihilation operators, respectively. Term
∑

k ǫ↓,0,k−E5,k arises
from the normal ordering of the operators. One can find the quasiparticle disper-
sions, and the quasiparticle operators by the diagonalization of the Hamiltonian
numerically.

Since the diagonalized Hamiltonian is the ideal Fermi gas Hamiltonian for the
quasiparticles, we can write the grand canonical potential as

Ω = −kBT
∑

i,k

log
(

1 + e−βEi,k

)

+
∑

k

ǫ↓,0,k − E5,k −
∑

α

|∆α0|2
Uα0

. (3.20)

Of course, one obtains also the Helmholtz free-energy F = Ω + µ↑N↑ + µ↓N↓.
We can vary many different variables of the system such as the chemical

potentials, interaction strengths, temperature, or filling fractions. By minimizing
the free energy, one can find the phase diagrams describing possible paired phases.
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Figure 3.2: Phase diagram with a fixed scattering length a = −80aB and (aB is
the Bohr radius) the minority component chemical potential which corresponds
to half-filling for the ideal system at T = 0. The x-axis shows the filling fraction
of the ideal gas of majority atoms at T = 0 Shading: symmetric state = light,
on-axis state = gray, normal state=dark. Er is the recoil energy.

For a cubic lattice in the case where the components are two different hyperfine
states of the same isotope, the filling fraction of component ↑ is greater than
unity, attractive interactions, which we have implicitly assumed, there are three
different competing phases in the system: The first one is the antisymmetric
superfluid phase, which means that only one of pairing fields ∆x0,∆y0,∆z0 is
non-zero and ∆00 = 0, the second one is the symmetric superfluid phase, where
∆x0 = ∆y0 = ∆z0 > 0, and the third one is the normal gas, where all the pairing
fields are zero [54]. These phase can be seen from figure 3.2. The pairing can take
place when the Fermi surfaces overlap. That is why ∆00 = 0, when the filling
fraction of component ↑ is greater than unity.

The appearance of three pairing channels at once is quite remarkable and we
will demonstrated below this is not what is expected in a system with several
different component.

These different phases could be experimentally observed using the noise corre-
lations [55, 42], or the pairing gaps could also be observed through radio-frequency
spectroscopy [56, 57, 58].
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If the interactions are repulsive, one can find anti-ferromagnetic ordering.
This topic was further explored in reference [54].



Chapter 4

Three-component Fermi gases

In this chapter we concentrate the physics, which has been discussed in papers I

and II.

In the previous section we discussed pairing in the first excited band of the
lattice. Here, we explore a three-component Fermi gas. Like in the interband
case we can have here several different pairing fields

A three-component Fermi gas consists three different types of fermions. The
components can be three different hyperfine states of the same alkali isotope,
different isotopes, different elements, or they can be even quarks [59]. It has been
suggested that in the core of a neutron star the baryonic matter is degenerate
and quarks form a superfluid liquid. This superfluidity of quarks is called color
superconductivity. There are tree types of quarks in the baryonic matter two
different spin states of up quark and one down quark. Some interest towards ultra-
cold three-component Fermi gases have been recently shown [60, 61, 62]. This is
due that this color superconductivity has close analogs with a three-component
alkali Fermi gas. These are our main motivations to study a three-component
Fermi gas.

4.1 BCS-theory of a three-component Fermi gas

Although we study free space physics here, the theory we present is also applicable
in optical lattices if the filling fractions are much smaller than unity and the
dispersions can be approximated as parabolic.

The easiest way to create a theory for an ultra-cold three-component Fermi
gas with attractive interactions is to generalize the standard BCS-theory. Let
us consider a three-component Fermi gas, the components of which are three
different types of alkali atoms. Furthermore, let us assume that the components
interact with each other and all the interactions are attractive. The Hamiltonian

32
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of the system is given by

Ĥ =
∑

σ=1,2,3

∫

dr Ψ̂†
σ(r)

(

−~
2∇2

2mσ
− µσ + Vσ(r)

)

Ψ̂σ(r)

+

∫ ∫

dr dr′ Ψ̂†
1(r)Ψ̂

†
2(r

′)U12(r, r
′)Ψ̂2(r

′)Ψ̂1(r)

+

∫ ∫

dr dr′ Ψ̂†
1(r)Ψ̂

†
3(r

′)U13(r, r
′)Ψ̂3(r

′)Ψ̂1(r)

+

∫ ∫

dr dr′ Ψ̂†
2(r)Ψ̂

†
3(r

′)U23(r, r
′)Ψ̂3(r

′)Ψ̂2(r),

(4.1)

where Ψ̂†, Ψ̂ are the fermionic field operators, µσ is the chemical potential of
component σ, Vσ(r) is the external potential felt by component σ, and Uαβ(r, r′) is
the interaction between components α and β (α, β = 1, 2, 3). In this Hamiltonian,
the three-particle scattering processes are ruled out, this limitation is reasonable
because the gas is considered very dilute. Thus the three particle scattering
processes are very rare. If the gas is not dilute enough three-body losses may be
a problem [62]. In a dilute gas, we can approximate the interactions as usual by

Uαβ(r, r′) =
2~

2π(mα + mβ)aαβ

mαmβ
δ(r − r′) = gαβδ(r − r′),

where aαβ is the s-wave scattering length between components α and β. For this
kind of contact interactions, the Hamiltonian reduced into

Ĥ =
∑

σ=1,2,3

∫

dr Ψ̂†
σ(r)

(

−~
2∇2

2mσ
− µσ − Vσ(r)

)

Ψ̂σ(r)

+ g12

∫

dr Ψ̂†
1(r)Ψ̂

†
2(r)Ψ̂2(r)Ψ̂1(r)

+ g13

∫

dr Ψ̂†
1(r)Ψ̂

†
3(r)Ψ̂3(r)Ψ̂1(r)

+ g23

∫

dr Ψ̂†
2(r)Ψ̂

†
3(r)Ψ̂3(r)Ψ̂2(r).

In the same way as shown in chapter 3, one can do the mean-field approximation,
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and derive the mean-field Hamiltonian which is given by

Ĥ =
∑

σ=1,2,3

∫

dr Ψ̂†
σ(r)

(

−~
2∇2

2mσ
− µσ − Vσ(r)

)

Ψ̂σ(r)

+

∫

dr∆12(r)Ψ̂
†
1(r)Ψ̂

†
2(r) + ∆∗

12(r)Ψ̂2(r)Ψ̂1(r)

+

∫

dr∆13(r)Ψ̂
†
1(r)Ψ̂

†
3(r) + ∆∗

13(r)Ψ̂3(r)Ψ̂1(r)

+

∫

dr∆23(r)Ψ̂
†
2(r)Ψ̂

†
3(r) + ∆∗

23(r)Ψ̂3(r)Ψ̂2(r)

−
∫

dr

( |∆12(r)|2
g12

+
|∆13(r)|2

g13
+

|∆23(r)|2
g23

)

,

(4.2)

where the pairing fields are defined by

∆αβ(r) = gαβ〈Ψβ(r)Ψα(r)〉.

In the absence of the external potentials, the gas is uniform. In this case,
it is reasonable to assume as the first approximation that the pairing fields are
constant i.e. ∆αβ(r) = ∆αβ ( the standard BCS ansatz). For the uniform gas
it is useful to do the Fourier transform, and the Hamiltonian in the momentum
space becomes

Ĥ =
∑

σ,k

ǫσ,kĉ†σ,kĉσ,k

+
∑

k

[

∆12ĉ
†
1,kĉ†2,−k + ∆∗

12ĉ2,−kĉ1,k + ∆13ĉ
†
1,kĉ†3,−k + ∆∗

13ĉ3,−kĉ1,k

+ ∆23ĉ
†
2,−k

ĉ†3,k + ∆∗
23ĉ3,kĉ2,−k

]

− V |∆12|2
g12

− V |∆13|2
g13

− V |∆23|2
g23

,

(4.3)

where ǫσ,k = ~
2|k|2/(2mσ) − µσ, and V is the quantization volume.

When one of the interactions is assumed much weaker than others, one can
ignore the corresponding pairing field. Let us assume that g13 = 0. In this case,
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the mean-field Hamiltonian can be expressed as

Ĥ =
∑

σ,k

ǫσ,kĉ†σ,kĉσ,k

+
∑

k

[

∆12ĉ
†
1,kĉ†2,−k + ∆∗

12ĉ2,−kĉ1,k − ∆23ĉ
†
3,kĉ†2,−k − ∆∗

23ĉ2,−kĉ3,k

]

− V |∆12|2
g12

− V |∆23|2
g23

=
∑

k

(

ĉ†1,k ĉ2,−k ĉ†3,k

)





ǫ1,k ∆12 0
∆∗

12 −ǫ2,−k −∆∗
23

0 −∆23 ǫ3,k









ĉ1,k

ĉ†2,−k

ĉ3,k





+
∑

k

ǫ2,k − V |∆12|2
g12

− V |∆23|2
g23

.

The matrix part can be diagonalized by using unitary transformation matrices
Uk. Thus the matrix part can be written as

(

ĉ†1,k ĉ2,−k ĉ†3,k

)

U †
kUk





ǫ1,k ∆12 0
∆∗

12 −ǫ2,−k −∆∗
23

0 −∆23 ǫ3,k



U †
kUk





ĉ1,k

ĉ†2,−k

ĉ3,k





=
(

γ̂†
1,k̂ γ̂2,k γ̂†

3,k

)





E1,k 0 0
0 −E2,k 0
0 0 E3,k









γ̂1,k

γ̂†
2,k

γ̂3,k



 ,

where the minus sign is only a convention. This diagonalization can be done
analytically, but the formulas are lengthy. However, the analytical formulas are
much simpler in the case where ǫ1,k = ǫ3,k i.e. m1 = m3 and µ1 = µ3. In this
special case the Bogoliubov dispersions are

E1,k = Ek +
ǫ1,k − ǫ2,−k

2
=

√

(

ǫ1,k + ǫ2,−k

2

)2

+ |∆12|2 + |∆23|2 +
ǫ1,k − ǫ2,−k

2
,

E2,k = Ek − ǫ1,k − ǫ2,−k

2
=

√

(

ǫ1,k + ǫ2,−k

2

)2

+ |∆12|2 + |∆23|2 −
ǫ1,k − ǫ2,−k

2
,

E3,k = ǫ3,k,

and the corresponding unitary matrices are given by

Uk =





uk −vk 0
vk uk 0
0 0 1,



 ,
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where

u2
k =

1

2

(

1 +
ǫ1,k + ǫ2,−k

2Ek

)

,

v2
k =

1

2

(

1 − ǫ1,k + ǫ2,−k

2Ek

)

.

The Hamiltonian can be diagonalized in every case numerically without any dif-
ficulties. For g13 = 0 the diagonalized mean-field Hamiltonian is given by

Ĥ =
∑

k

E1,kγ̂†
1,kγ̂1,k + E2,kγ̂†

2,kγ̂2,k + E3,kγ̂†
3,kγ̂3,k

+
∑

k

(ǫ2,k − E2,k) − V |∆12|2
g12

− V |∆23|2
g23

.
(4.4)

We can derive the gap and the number equations in the same way as in
chapter 3. The gap and the number equations are given by

∆12 =
g12

V

∑

k

u∗
11,ku12,kf(E1,k) + u∗

21,ku22,kf(−E2,k) + u∗
31,ku32,kf(E3,k),

∆23 =
g23

V

∑

k

u∗
13,ku12,kf(E1,k) + u∗

23,ku22,kf(−E2,k) + u∗
33,ku32,kf(E3,k),

n1 =
1

V

∑

k

|u11,k|2f(E1,k) + |u21,k|2f(−E2,k) + |u31,k|2f(E3,k),

n2 =
1

V

∑

k

|u12,k|2f(−E1,k) + |u22,k|2f(E2,k) + |u32,k|2f(−E3,k),

n3 =
1

V

∑

k

|u13,k|2f(E1,k) + |u23,k|2f(−E2,k) + |u33,k|2f(E3,k),

(4.5)

where f(E) is the Fermi-Dirac distribution and uij,k are the matrix elements of
the unitary matrix.

As it was shown for the two-components case in chapter 3, it is usually better
to use the free energy rather than the gap equations. If g13 = 0 and the external
potential is uniform the grand canonical potential is given by

Ω = −kBT
∑

k

[

log
(

1 + e−βE1,k

)

+ log
(

1 + e−βE2,k

)

+ log
(

1 + e−βE3,k

)

]

+
∑

k

[ǫ2,k − E2,k] − V |∆12|2
g12

− V |∆23|2
g23

.

(4.6)
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4.1.1 Renormalization

In the continuum limit, the sum in equation (4.6) can be replaced with integral
as follows

∑

k

→ V

(2π)3

∫

d3k =
V

2π2

∫ ∞

0
k2dk,

but the integral form of the grand potential is ultraviolet divergent. This diver-
gence is caused by the unphysical short distance behavior of the contact interac-
tion. However, it can be removed, in the usual way, by subtracting the divergent
contribution from the grand potential. The renormalized grand potential density
in the continuum limit is given by

Ω̃ =
Ω

V
=

1

2π2

∫ ∞

0
k2dk

[

− kBT

(

log
(

1 + e−βE1,k

)

+ log
(

1 + e−βE2,k

)

+ log
(

1 + e−βE3,k

)

)

+ ǫ2,k − E2,k − |∆12|2
ξ12,k

− |∆23|2
ξ23,k

]

− |∆12|2
g12

− |∆23|2
g23

,

(4.7)

where

ξαβ,k =
~

2(mα + mβ)k2

4mαmβ
.

The number equations in the continuum limit are given by

n1 =
1

2π2

∫ ∞

0
k2dk |u11,k|2f(E1,k) + |u21,k|2f(−E2,k) + |u31,k|2f(E3,k)

n2 =
1

2π2

∫ ∞

0
k2dk |u12,k|2f(−E1,k) + |u22,k|2f(E2,k) + |u32,k|2f(−E3,k)

n1 =
1

2π2

∫ ∞

0
k2dk |u13,k|2f(E1,k) + |u23,k|2f(−E2,k) + |u33,k|2f(E3,k).

(4.8)

There is no need to renormalize the number equations. Since they are not diver-
gent.

4.2 Pairing mechanism

For g13 = 0 two different pairing fields are left in the problem. There are four
different possibilities for the pairing fields (∆12,∆23), (∆12, 0), (0,∆23), and (0, 0).
The first one corresponds the case where the system has two different non-zero
pairing fields at the same time. The last one is the case where the gas is in the
normal phase. The two other cases indicate that there is only one type of pairing
present in the simultaneously.



38 Chapter 4: Three-component Fermi gases

Now a question arises, how the system chooses between these two pairing
fields or can they coexist? It turns out that for fixed parameters there can be
only one non-zero order parameter in the system. In the case where ǫ1,k = ǫ3,k,
there can be two different non-zero pairing gaps co-existing in the system, but
it turns out that in this case the right order parameter is of form

√

∆2
12 + ∆2

23.
In this case the system has a changing symmetry between components 1 and 3.
In other words, one can change a 1-particle to a 3-particle without any physical
difference, as shown in figure 4.1. But for ǫ1,k = ǫ3,k, there can be formally two
different non-zero pairing fields in the system only if g12 = g23. Otherwise only
one pairing field can be finite.

If ǫ1,k 6= ǫ3,k, there can be only one finite pairing gap co-existing. The question
how the system chooses which one of the pairing gaps is non-zero depends on
the interaction strengths, the chemical potentials (densities), the masses of the
components, and the temperature I.

In the weak coupling regime some general rules can be found to predict the
phase which is energetically favorable at zero temperature. Firstly, pairing will
occur only for matched Fermi surfaces. This means that the pairing happens
when the Fermi surfaces overlap. For the Fermi surfaces of components α and β
to overlap the chemical potentials have to fulfill the condition

µα ≈ mβ

mα
µβ.

This condition can be derived from the fact if the Fermi surfaces overlap, the
length of the Fermi vectors kf must be equal and in the weakly interacting limit,
the chemical potentials correspond the Fermi energies

Ef,σ =
~

2k2
f

2mσ
.

The Fermi energy is the energy of the highest energy state which is occupied
at zero temperature. How closely the surfaces must be matched depends on the
coupling strengths; stronger coupling implies greater tolerance for a Fermi surface
mismatch. Secondly, if several pairing channels have same coupling strengths the
pairing will occur in the channel involving the heavy fermion. This effect is due
to the density of states increasing with mass which translates into lower energy.
However, it should be kept in mind that this density of states effect can be masked
by increasing the coupling in the channel involving the light fermion.

The condition for chemical potentials is not absolute, i.e., there can be some
difference between the chemical potential before the pairing disappears. If the
masses are equal, the limit is roughly δµ =

√
2∆0 (∆0 is a pairing gap when

δµ = 0), in accordance with the Clogston limit.
If the remaining interactions are equal and all the masses are equal, the system

chooses the pairing channel in which the average chemical potential potential
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Figure 4.1: The free energy landscape as a function of ∆12 and ∆23 if all three
components having the same mass. The dash-dotted line in (a) and the filled
circles in (b)-(d) show the location of the global minimum. The coupling strengths
are g12 = g23 = −0.50 and the figures (a)-(c) were calculated at zero temperature
while the figure (d) was calculated at kBT/ǫF = 0.08 which is above the critical
temperature. The chemical potentials we such that in the figure (a) µ1 = µ2 =
µ3 = 1, in (b) µ1 = 1.01, µ2 = 1, µ3 = 0.99, in (c) µ1 = 0.99, µ2 = 1, µ3 = 1.01,
and finally in (d) µ1 = µ2 = µ3 = 1. The energy units are the Fermi energy of
component 2.
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Figure 4.2: The gap parameters as a function of temperature T and of the third
component chemical potential µ3. We used the mass ratio m1/m3 = 0.15 (m1 =
m2), µ1 = µ2 = 1, and the coupling strengths were g12 = g23 = −0.5. The figure
(c) shows ∆ =

√

∆2
12 + ∆2

23 and demonstrates clearly the sharp change in the
order parameter at zero temperature as well as the smoother transition from the
∆23 superfluid to ∆12 superfluid at a finite temperature. The energy units are
the Fermi energy of component 2.

is the largest. In other words, the system has two different average chemical
potentials (µ1 + µ2)/2 and (µ3 + µ2)/2 and the pairing channel with the higher
average chemical potential is chosen, unless the difference between the chemical
potentials are not too big (the Clogston limit), as shown in figure 4.1. The
average chemical potential corresponds to the density and it is the same for the
both paired components at zero temperature. Higher average chemical potential
indicates higher density and higher density implies larger pairing gap.

For the g13 = 0 there are two competing two-components systems. The
system chooses from these competing pairing fields the one which gives a larger
pairing gap if the system was a two-components system. This is demonstrated
in figure 4.2. Note that a quantum phase transition is also possible as is clear
in figure 4.2. The phase transition between the pairing channels in figure 4.2
is a quantum phase transition, since it happens at zero temperature. At zero
temperature, all the thermal fluctuations are frozen and the transition can be
only driven by the quantum fluctuations. Here, the quantum phase transition is
related to the Clogston limit.

If one uses the Helmholtz free energy instead of the grand potential, i.e. the
number of the particles are fixed, then the Fermi surface condition assumes the
form

nα = nβ,

where nα and nα are the densities of components α and β. Of course this condition
holds only for the BCS type of pairing, where the total momentum of the pairs is
zero. Other type of pairings like the FFLO or phase separation are in principle
possible when the densities are not equal, but these are not addressed here.
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4.3 Three-component Fermi gas in a harmonic trap

Experiments with three-component Fermi gases are done in traps [62]. That is
why it is important to study this system in a harmonic trap. In the mean-field
approximation, there are two different ways to handle this system theoretically:
the local density approximation (LDA) and the Bogoliubov-de Gennes equations.
If the Bogoliubov-de Gennes equations are, used (in the two-components case),
one performs first the Bogoliubov transformation for the field operators as

Ψ̂↑(r) =
∑

η

uη(r)γ̂+,η − v∗η(r)γ̂
†
−,η

Ψ̂↓(r) =
∑

η

uη(r)γ̂−,η + v∗η(r)γ̂
†
+,η,

where η indicates the different eigen modes. One can then solve functions uη(r)
and vη(r) from the following equation

(

H0,↑ ∆(r)
∆∗(r) −H0,↓

)(

uη(r)
vη(r)

)

= Eη,±

(

uη(r)
vη(r)

)

,

where Eη,± are the eigenenegies and ± indicates that two different eigenenergies
correspond to every η-mode, and

H0,σ =
−~

2∇2

2mσ
− µσ + Vσ(r),

where Vσ(r) is the external potential. When this eigenequation is solved itera-
tively with the gap and the number equations which are given by

∆(r) = −g
∑

η

uη(r)v
∗
η(r)[1 − f(Eη,+) − f(Eη,−)],

Nσ =

∫

nσ(r) dr =

∫

dr
∑

η

|uη(r)|2f(Eη,α) + |uη(r)|2(1 − f(Eη,−α)),

one can find the gap and the density profiles [63, 64, 65]. In the LDA, it is
assumed that the gas is locally uniform, thus one can minimize the uniform grand
canonical potential (4.7) and number equations in every spatial point separately.
The chemical potentials in the center of the is chosen such that one obtains the
desired atom number.

In principle, using the Bogoliubov-de Gennes equation in the three-component
case is straightforward. However, as shown above in the two-components case one
has to handle five coupled equations simultaneously. In the three-component case,
there are eight coupled equations which we have to solve simultaneously. This
is a challenging numerical problem. Because of this and the fact that the LDA
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works fairly well, we employ here the LDA. In the LDA, the external potentials
are included the effective chemical potentials as follows

µeff,σ(r) = µσ − Vσ(r).

At every point one calculates the grand canonical potential in the momentum
space (4.7) with the local chemical potentials µeff,σ(r) and finds at the minimum
the local pairing gaps ∆αβ(r). The local densities can be calculated by using the
number equations in the momentum space (4.8) with the local chemical potentials
and the local pairing gaps. The total number of particles in the trap is given by
integrating the local densities over the trap. The chemical potentials in the center
of the trap can be fixed by fixing the number of particles in the trap II.

In the two-components case the LDA gives a reasonable agreement with the
experiments [66, 67, 68, 69], and hence we assume that it works as well in a
three-component case. The LDA fails when the gap or the density profiles change
sharply, i.e., when one cannot assume that the gas is locally uniform. Of course,
LDA does not handle the surface tension effects [70, 71, 72].

In our case, we assume that the trap is spherical, in other words, the external
potential is given by

Vσ(r) =
1

2
mσω2

σr2.

It is, however, easy to relax this assumption. Here, we assume that the trapping
frequencies ωσ can be different for different components. For concreteness, we
assume that components 1 and 2 are two different hyperfine states of Lithium-6
(6Li) and component 3 is a hyperfine state of potassium-40 (40K). Of course,
qualitative results obtained apply also for every combination of alkali fermions
with attractive interactions.

The pairing mechanism in the trap is basically the same as in the uniform case,
the pairing can only happen when the local Fermi spheres overlap. This implies
that if the following condition is fulfilled µα(r) ≈ (mβ/mα)µβ(r), components α
and β can pair. However, a three-component Fermi gas in a harmonic trap is a
much richer system than the uniform case. Since one can vary many variables of
the system such as the trapping frequencies, the number of particles, temperature,
and the interactions between components. By varying these different variables
one can obtain different types of pairings in different locations in the trap. An
example of this is shown in figure 4.3. One can also observe from this figure
that the phase transitions are of the first order and because they happen at zero
temperature they can be considered as quantum phase transitions. As said in
the uniform case, if components α and β are paired, the local densities of these
components have to be the same. This is shown in figure 4.3 (b), which includes
doubly integrated density differences, where the pairing areas can be observed
as plateaus. This doubly integrated density can me measured in experiments by
taking a picture from the cloud of atoms [70, 71]. It is clear that by varying
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Figure 4.3: (a) Gaps as a function of position (RTF is the ideal gas Thomas-Fermi
radius of the second component). (b) Doubly integrated density differences. We
used the parameters N1 = 6 · 104, N2 = 5 · 104, and N3 = 2 · 104, kF a12 = −1.04,
(1 + 1/rm)kF a13 = −1.03, (1 + 1/rm)kF a23 = −1.15, where rm = mLi/mK and
ω3/ω1 = 0.4.
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different variables of the system one finds different types of phase diagrams. The
different phases form a shell structure. In this shell structure the different phases
are located in different places in the trap. An example of this shell structure is
shown in figure 4.3. Whereas a couple examples of phase diagrams are shown
in figure 4.4. These phase diagrams can be quite exotic for example we predict
the possibility of a normal gas core in the center of the trap surrounded by
a superfluid shell, see figure 4.4 (b). This kind of normal gas core has never
been seen in the two-components case. These exotic phase diagrams, might for
some parameters be artifacts which are caused by using the BCS ansatz or the
LDA. However, this is not likely. Bogoliubov-de Gennes calculations show that
there can be some kind of FFLO type of pairing in the case of polarized two-
components Fermi gas in a trap [73], whereas the LDA calculations show a phase
separation [68, 50, 74, 72, 69]. Experiments with a two-components imbalanced
Fermi gas show that there is an unpolarized superfluid (BCS) core in the center
of the trap surrounded by a normal gas [66, 67, 70].

4.4 Three-component Fermi gas in optical lattices

In this section, we discuss a three-component Fermi gas in optical lattices, and
how one can tune the lattices in such a way that the Hamiltonian approaches
SU(3)-symmetric form. Most of the results presented in this section are still
unpublished.

Experimentally, it may be beneficial to study a three-component Fermi gas
in an optical lattice. Since one can change the masses (the hopping strengths
correspond the effective masses) and interactions almost freely.

In lattices, a three-component Fermi gas is described by the Hubbard Hamil-
tonian which is given by

Ĥ = −
∑

σ

Jσ

∑

〈i,j〉

ĉ†σ,iĉσ,j +
∑

σ 6=σ′

∑

i

Uσ,σ′

2
n̂σ,in̂σ′,i, (4.9)

where n̂σ,i = ĉ†σ,iĉσ,i. Here, we have assumed that the hopping strengths are
direction independent. Furthermore, we take the lattice potentials to be

Vσ(r) = sσEr,1

∑

α

sin2(xα),

where the recoil energy

Er,1 =
~

2π2

2m1d2
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Figure 4.4: (a) Zero temperature phase diagram as a function of the dimensionless
frequency ratio ωr = mKωK/mLiωLi and r/RTF with (1 + 1/rm)kF a23 = −1 and
kF a12 = −1. (b) Phase diagram in the trap as functions −kF a12 and r/RTF

for ωr = 2.67 and (1 + 1/rm)kF a23 = −1 In both figure we used parameters
N1,2,3 = 5.5 · 104, and |a23| > |a13|. Sharp corners in the figures are due to
numerical uncertainties.
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and d is the lattice constant. Now Uσ,σ′ and Jσ:s are given by

Jσ =
m1

mσ
Er,1e

−
π2√sσ

4

[(

π2sσ

4
−

√
sσ

2

)

− sσ

2

(

1 + e
− 1√

sσ

)

]

,

Uσ,σ′ = Er,1
4π1/2s

3/4
σ s

3/4
σ′ (mσ + mσ′)m1aσ,σ′

mσmσ′((sσ)1/2 + (sσ′)1/2)3/2d
.

4.4.1 SU(3)-symmetric model in deep lattices

A three-component Fermi gas in optical lattices can have close analogs to quantum
chromodynamics (QCD). The QCD is almost SU(3)-symmetric theory. There is
a small difference between the masses of u-quark d-quark, but this difference is
so small that one can often consider the QCD as a SU(3)-symmetric theory.

In the free space, SU(3)-symmetry is unlikely. In a lattice however, we can
make the above Hamiltonian SU(3)-symmetric by changing the lattice depths
and the s-wave scattering lengths. In particular, by creating spin depended lat-
tices [75, 76], we can create SU(3)-symmetric interactions even if the scattering
lengths in the continuum differ.

If all the interaction parameters are equal and all the hoping strengths are
equal, the Hamiltonian has a global SU(3) symmetry [61]. This is similar to
QCD. Of course the uniform case can formally realize this SU(3) condition as
well, but this requires that all the scattering lengths and masses are equal [60].

When all the masses are the same, i.e, all the components are same isotope,
SU(3)-symmetry can be achieved only when all the lattice depths and scattering
lengths are equal. This is highly unlikely in practice. However, in a deep lattice
the SU(3) condition can be achieved for different masses as shown below. Let
us assume that components 1 and 2 are of the same isotope and have mass m1,
and furthermore we assume that component 3 is of a different isotope than two
others and has mass m3. These assumptions directly imply that s1 and s2 have
to be equal to get J1 and J2 to be equal, and a13 and a23 have to be equal to get
U12 and U13 to be equal. Furthermore to get U12 = U13 the lattice depths have
to obey a condition

s1 = s2 = s3

(

23/2(m3 + m1)a13

m3a12
− 1

)2

.

Now we have two equations for the lattice depths and the scattering lengths,
the first one is given above and the second one is given by J1 = J3. These
equations have to be satisfied simultaneously. This scenario is hard to achieve
in experiments since the condition a13 = a23 is somewhat unrealistic. If all the
masses are unequal, there are more possibilities to fix the lattice depths such that
the Hamiltonian becomes SU(3)-symmetric.
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Although the pure SU(3) condition is hard to achieve, it turns out that if
all the scattering lengths are negative (positive), one can find a combination
of the lattice depths such that all the interaction parameters are equal. If the
interactions are yhe dominant part of the Hamiltonian, the kinetic term can be
handled as a perturbation. Let us assume that all the components are of same
isotope and that the scattering lengths are given by a12 = a, a13 = a + δa1,
and a23 = a + δa2. We write the lattice depths as s1 = s, s2 = s + δs2 and
s3 = s + δs3. If we take all the interaction parameters to be equal, we get the
following condition for δs2 and δs3

δs2 =





(

(1 + δa1/a)2/3 − (1 + δa2/a)2/3 + 1

(1 + δa2/a)2/3 − (1 + δa1/a)2/3 + 1

)2

− 1



 s,

δs3 =





(

(1 + δa1/a)2/3 − (1 + δa2/a)2/3 + 1

(1 + δa1/a)2/3 + (1 + δa2/a)2/3 − 1

)2

− 1



 s.

If |δai/a| ≪ 1 then δsi are small. Thus in this case the Hamiltonian can be
written as Ĥ = Ĥ0 + Ĥ ′, where Ĥ0 is the pure SU(3) symmetric Hamiltonian
and

Ĥ ′ = −
∑

〈i,j〉

(δJ2ĉ
†
2,iĉ2,j + δJ3ĉ

†
3,iĉ3,j),

where δJσ = Jσ − J1. We can handle Ĥ ′ as a small perturbation about the
SU(3)-symmetric case. Such a theory amounts to a strong coupling expansion
where the interaction term is SU(3)-symmetric whereas the kinetic term breaks
the symmetry and vanishes in the limit of infinitely deep lattice. In QCD the
SU(3)-symmetry is broken by the kinetic term, thus this deep lattice model is
similar to QCD. From figure 4.5 we observe that, if the difference between the
scattering lengths is of the order of 10%, and the lattice depths are chosen so
that the interactions are same, then δJ2 and δJ3 are of the order of J at most.

The ground state of a three-component Fermi gas with attractive interactions
in a lattice depends on the interaction strengths. If |U |:s are small, the ground
state is the superfluid state and if |U |:s are great enough the ground state is a
so called trion-state, where the atoms form three-body bound states [61]. In the
SU(3)-symmetric case, the transition between the superfluid state and the trion-
state is analogous to the transition between color superconductivity and baryonic
matter.

Although optical lattices seem to be promising systems to study a three-
component Fermi gas, there might be some experimental problems. In an optical
lattice, the densities can be quite high, and hence the probability to get three
different particles at same lattice site can also be quite high. There are different
types of three particle bound states, for example the Efimov states [77, 78, 79],
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Figure 4.5: Figures (a) and (b) show how the lattice depths has to be chosen to
get the interaction strength to match, for different scattering lengths. Figures (c)
and (d) show how this effect the hopping terms. Here we have chosen s = 10.

and their binding energy can be so high that they can escape from the lattice.
For this reason three body-losses may be a problem in lattices. This issue should
be analyzed in greater detail in the future.



Chapter 5

Higher than the first order

correlations

In this chapter we discuss the higher than the first order correlations. The first
section is connected to paper IV and the second section is connected to paper V.

BCS like theory of pairing only involves the computation of first order correla-
tion functions (i.e. two operator products). However, important information can
be found in higher order correlations. In this chapter we will explore these for two
concrete examples. Firstly, we will compute density-density correlations in a lat-
tice. Secondly, we will outline how one can draw conclusions about superfluidity
for the BCS theory by computing the superfluid density.

5.1 Density noise correlations in optical lattices

Density-density correlations tell us how atomic densities at different positions
are correlated. Noise correlations are density-density correlations, from which
the mean densities are sutracted away. Noise correlations offer a tool to observe
different phases in optical lattices. The densities can be very similar for different
phases, while the noise correlations can show a huge difference. An example of
using noise correlations as an indicator of phase transition is the phase transition
between the superfluid Bose gas and the Mott insulator [55, 42]. Noise correla-
tions have also been used as an indicator of the fermionic anti-bunching for ideal
fermions in a lattice [41].

In this study, we assume a two-components Fermi gas with attractive in-
teractions in optical lattices. The gas can be polarized. The density-density
correlations are defined as

Dσσ′(r, r′, t) = 〈n̂σ(r, t)n̂σ(r′, t)〉,

where n̂σ(r, t) = Ψ̂†
σ(r, t)Ψ̂σ(r, t), and Ψ†

σ(r, t) and Ψ̂σ(r, t) are the field operators

49
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at time t. If the mean densities are substracted out, we obtain the definitions of
noise correlations [55] as

Gσσ′ (r, r′, t) = 〈n̂σ(r, t)n̂σ(r′, t)〉 − 〈n̂σ(r, t)〉〈n̂σ(r′, t)〉. (5.1)

In lattices, the field operators can be expanded, as in the previous section, as
series by using localized Wannier functions

Ψ̂σ(r, t) =
∑

i

wσ,i(r, t)ĉσ,i

Ψ̂†
σ(r, t) =

∑

i

w∗
σ,i(r, t)ĉ

†
σ,i,

where w is a Wannier function and ĉ is an annihilation operator.
In typical experiments, the trapped gas is released and let to expand. The

gas is assumed to be dilute, and hence the rare collisions can be ignored during
the expansion. Therefore, the expansion is adiabatic and ballistic, and after the
expansion the density-density correlations reflect correlations in the momentum
space at t = 0. After the expansion, the Wannier functions can be written as [55]

wi(r, t) = A(t)e−iQ(r)·Ri ,

where A(t) is a time dependent scaling factor and

Q(r) =
mr

~t
.

In other words, the Wannier functions become plane waves at long times, the
condition of which is obtained using the saddle point approximation to be t ≫
md2/~.

5.1.1 Ground state

In order to be able to calculate the density-density correlations we have to identify
the appropriate many-body state for the system.

On a mean-field level the ground state ansatz at zero temperature which
includes the possibility of the BCS-state, the BP/Sarma-state, and the one mode
FFLO-state can be expressed as [51]

|ΨGS〉 =
∏

k∈G3

ĉ†↓,−k+q

∏

k∈G2

ĉ†↑,k

∏

k∈G1

(uk,q + vk,qĉ†↑,kĉ†↓,−k+q)|0〉, (5.2)

where |0〉 is the vacuum state. In region G1, both quasiparticle dispersions
E+,k,q, E−,k,q are positive, in region G2 quasiparticle dispersions E−,k,q ≥ 0 and
E+,k,q < 0, and in region G3 E+,k,q ≥ 0 and E−,k,q < 0. Region G1 is populated
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by pairs with a quasi-momentum q. Region G2 is populated by atoms of the com-
ponent ↑ in the quasi-momentum states k ∈ G2 whereas region G3 is populated
by ↓-atoms in the quasi-momentum states −k + q. The Bogoliubov-dispersions
are determined as in chapter 3.

With the Bogoliubov transformation, the ground state ansatz becomes

|ΨGS〉 =
∏

k∈G1

γ̂†
+,k,q

∏

k∈G2

γ̂†
−,k,q|0〉, (5.3)

in region G1 E+,k,q < 0 and in region G2 E−,k,q < 0. This ground state ansatz
is a vacuum state for the quasiparticles, and implies expectation values.

〈ΨGS |γ̂†
α,k,qγβ,k′,q|ΨGS〉 = δαβδk,k′f(Eα,k,q),

〈ΨGS |γ̂†
α,k,qγ†

β,k′,q|ΨGS〉 = 〈ΨGS |γ̂α,k,qγβ,k′,q|ΨGS〉 = 0.

5.1.2 Noise correlations in optical lattices

The noise correlations in lattices are given by the functions

Gαβ(r, r′, t) =A(t)4
∑

i,j,m,n

eiQ(r)·Rij+iQ(r)·Rmn〈ĉ†α,iĉα,j ĉ
†
β,mĉβ,n〉

− 〈n̂α(r, t)〉〈n̂β(r′, t)〉,

where Rij = Ri −Rj . In above we have written the field operators at long times
as

Ψ̂α(r) = A(t)
∑

m

e−iQ(r)·Rm ĉα,m

Ψ̂†
β(r′) = A(t)

∑

n

eiQ(r′)·Rn ĉ†β,n,

and we have put these field operators in the definition of the noise correlation
functions. Since the ground state ansatz is given in the momentum space, it is
more convenient to take the Fourier transform of the operators. After this the
noise correlations are given by

Gαβ(r, r′, t) =

A(t)4

M2

∑

i,j,m,n,
k1,k2,k3,k4

(

eiQ(r)·Rij+iQ(r′)·Rmne−ik1·Ri+ik2·Rj−ik3·Rm+ik4·Rn〈ĉ†α,k1
ĉα,k2

ĉ†β,k3
ĉβ,k4

〉
)

− 〈n̂α(r, t)〉〈n̂β(r′, t)〉.
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Finally one can calculate the expectation values, and find after lengthy algebra,

G↑↓(r, r
′, t) = A(t)4

∑

k

[

δ

(

r− ~tk̃

m

)

δ

(

r′ +
~t(k̃′ − q)

m

)

[f(E↑,k,q)f(E↓,k,q) + (1 − f(E↑,k,q))(1 − f(E↓,k,q))]|uk,q|2|vk,q|2
]

,

G↓↑(r, r
′, t) = A(t)4

∑

k

[

δ

(

r +
~t(k̃− q)

m

)

δ

(

r′ − ~tk̃′

m

)

[f(E↑,k,q)f(E↓,k,q) + (1 − f(E↑,k,q))(1 − f(E↓,k,q))]|uk,q|2|vk,q|2
]

,

G↑↑(r, r
′, t) = A(t)4

∑

k

[

δ

(

r− ~tk̃

m

)

δ

(

r′ − ~tk̃′

m

)

[f(E↑,k,q)f(E↓,k,q) + (1 − f(E↑,k,q))(1 − f(E↓,k,q))]|uk,q|2|vk,q|2

− |uk,q|2f(E↑,k,q) − |vk,q|2(1 − f(E↓,k,q))

]

+ δ(r − r′)〈n̂↑(r, t)〉,

G↓↓(r, r
′, t) = A(t)4

∑

k

[

δ

(

r− ~t(k̃− q)

m

)

δ

(

r′ − ~t(k̃′ − q)

m

)

[f(E↑,k,q)f(E↓,k,q) + (1 − f(E↑,k,q))(1 − f(E↓,k,q))]|uk,q|2|vk,q|2

− |uk,q|2f(E↓,k,q) − |vk,q|2(1 − f(E↑,k,q))

]

+ δ(r − r′)〈n̂↓(r, t)〉,

(5.4)

where

k̃ = k +

3
∑

i=1

~2niπtx̂i

md
,

where ni are integers. Above we have implicitly assumed that the lattice is large
i.e. M >> 1. Note that functions of type

δ

(

r− ~tk̃

m

)

are not real delta-functions, but rather kind of peak functions. Because in the
FFLO state, momenta k and −k + q are correlated, the noise correlation signal
is pronounced only if

r + r′ =
~tq̃

m
+

3
∑

i=1

~2niπtx̂i

md
.

The BCS continuum result [55] is similar, but peaks appear when r + r′ = 0. In
the continuum limit of low densities and long wavelengths, this result reduces to
the known result.
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Figure 5.1: Figure (a) shows a cut of the BCS-state density in the z = 0 plane
for kBT/(2J) = 0.196 (just below Tc) while figure (b) shows a cut of the normal-
state density in the z = 0 for kBT/(2J) = 0.20 (just above Tc). Figures (c)
and (d) show the integrated BCS-state noise correlations between components
at temperatures kBT/(2J) = 0 and kBT/(2J) = 0.196, respectively. The other
parameters used were n↑ = n↓ = 0.20, U/(2J) = −1.86. In figures (a) and (d)
∆/(2J) = 0.09 and in figure (c), ∆/(2J) = 0.35.

Although densities do not change much when the phase transition between
the BCS phase and the normal phase takes place (as shown in figures 5.1 (a)
and (b)), the noise correlations change crucially. In the normal phase the noise
correlation between components are zero (ukvk = 0 in the normal phase), but in
the BCS phase it is not zero, as shown in figure 5.1 (d). In the experiments, one
takes typically a two-dimensional picture from the cloud of atoms [42, 41]. For
this reason, it is of importance to investigate also the column integrated noise
correlation signals, which are given by

G↑,↓(x, y) =

∫

dz G↑,↓ (x, y, z,−x + ~tqx/m,−y + ~tqy/m,−z + ~tqz/m) .

Figures 5.1 (c) and (d) show the integrated noise correlations.



54 Chapter 5: Higher than the first order correlations

−0.5 −0.25 0 0.25 0.5
−0.5

−0.25

0

0.25

0.5

y 
[h

t/(
m

d)
]

x [ht/(md)]

(a)

−0.5 −0.25 0 0.25 0.5
−0.5

−0.25

0

0.25

0.5

y 
[h

t/(
m

d)
]

x [ht/(md)]

(b)

Figure 5.2: FFLO-state noise correlation (G↑↓) at temperature T = 0. In (a), we
show a cut in the z = 0 plane while (b) shows the column integrated signal. The
parameters are qx = 0.25(π/d), qy = qz = 0, polarization P = (n↑ − n↓)/(n↑ +
n↓) = 0.168, ∆/(2J) = 0.16, and U/(2J) = −1.86. In figure (a), correlations
vanish in the dotted areas. We choose r + r′ − (~t/m)q = 0 and color-coding is
such that light colors imply high peaks and dark colors low.

The BCS state noise correlation of a single component shows similar anti-
bunching behavior as the ideal Fermi gas noise correlation [41]. If r = r′ +
∑3

i=1 2~niπtx̂i/(md) and and ni 6= 0 for at least one i, the noise correlation of
a single component shows the holes. However, the BCS-state noise correlation
of a single component shows also the bunching peak when r = r′. This result
differs from the ideal gas result where such a peak is absent. This antibunching is
due the Pauli exclusion principle, while the bunching peak is related to the BCS
transition.

The FFLO noise correlations differ crucially from the BCS noise correlations.
In the FFLO case the noise correlations are not symmetric contrary to the BCS
correlations, as shown figure 5.2. This is due to the fact that in the FFLO case
the Fermi surfaces are shifted by q. Although at non-zero temperatures Fermi
surfaces are rounded and sharp peaks are weakened due to thermal fluctuations,
the shift in the positions of the peaks persists IV.

One can also use the noise correlations to detect multimode FFLO states,
since multimode FFLO states leave clear signatures on the noise correlations.
For example, for the two-mode FFLO-state, i.e., the state where the gap is given
by ∆(Ri) = ∆0 cos(q ·Ri), the order parameter can be written in the momentum
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Figure 5.3: This figure demonstrates how the polarization contributes to the
maximum peak height. (a) shows the maximum peak height as a function of
the polarization while (b) shows the maximum peak height as a function of the
chemical potential difference (µ↑−µ↓)/(2∆) = δµ/(2∆). We used the parameters
kBT/(2J) = 0.45 and an average filling fraction (n↑ + n↓)/2 = 0.30. We have
canceled the time dependence of the maximum peak height by dividing the max-
imum peak height by the scaling factor A(t)4. The horizontal lines show value
1/8.

space as

∆(Ri) = ∆0 cos(q · Ri) = ∆0

(

eiq·Ri + e−iq·Ri

2

)

= −U〈ĉ↑,iĉ↓,i〉 =
−U

M

∑

k,k′

e−i(k+k′)·Ri〈ĉ↑,kĉ↓,k′〉

= eiq·Ri
−U

M

∑

k

〈ĉ↑,kĉ↓,−k−q〉 + e−iq·Ri
−U

M

∑

k

〈ĉ↑,kĉ↓,−k+q〉.

Therefore the only non-vanishing expectation values in the momentum space are
〈ĉ↑,kĉ↓,−k+q〉 and 〈ĉ↑,kĉ↓,−k−q〉. This implies that an ↑-atom in the momentum
state k is paired with ↓-atoms in the momentum states −k + q and −k − q.
Because in the single mode FFLO-state points r and −r + ~tq/m are correlated
after free expansion, in the two mode FFLO-state r is correlated with −r+~tq/m
and −r− ~tq/m after free expansion. For this reason with the two mode FFLO
state one can see pronounced correlation peaks, when r + r′ ± ~tq/m = 0.

The noise correlations offer a potential tool to detect the gapless BP/Sarma
state, i.e., a state where q = 0 and one of the quasiparticle dispersions Eσ,k is
negative for some values of the momentum k. This implies that in the gapless
state |δµ| = |µ↑ − µ↓| > 2∆ (when the hopping strengths are equal).

It may not be easy to detect the gapless states via noise correlations, since
the noise correlations of the gapless BP/Sarma state and non-gapless BP/Sarma
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state appear quite similar. On the other hand, by monitoring the peak heights
at z = 0 (and r′ = −r), one can identify the gapless states. The reason for this
is that in the gapless BP state the maximum peak height is always smaller than
A(t)4/8 whereas in the gapped state the maximum is always greater than this.
This can be obtained from the fact that the term |uk|2|vk|2 peaks on the Fermi
surface corresponding to the average chemical potential. On the other hand, near
this surface the peak heights are

|uk|2|vk|2[f(E↑,k)f(E↓,k) + (1 − f(E↑,k))(1 − f(E↓,k))]

≈ 1

4
[f(∆ + δµ/2)f(∆ − δµ/2) + (1 − f(∆ − δµ/2))(1 − f(∆ + δµ/2))],

where δµ = µ↑ − µ↓ and then the term in the square brackets is bigger than 1/2,
when ∆ ± δµ/2 > 0 and otherwise always lower than 1/2. This effect is shown
in 5.3.

5.2 Superfluid density

Pairing does not necessarily imply superfluidity. There can be pairing without
superfluidity [80], or the paired state can be unstable [81]. Superfluid density is a
coefficient of inertia under the phase shift of the system [82]. If a linear phase shift
is imposed on the system, the order parameter has a position depended phase,
and if the gas is normal the order parameter is zero. Thus the phase shift does
nothing to the normal gas. Superfluid density can be described the free-energy
in the uniform case as

Ωvs = Ω0 +
1

2
Msv

2
s = Ω0 +

1

2
V ρ̃sv

2
s ,

where Ωvs is the free-energy of moving gas, Ω0 is the free-energy, when superfluid
velocity vs = 0, ρ̃s is the superfluid density, V is the system size. This superfluid
velocity is related to the gradient of the phase of the pairing field [83]. When the
pairing field is written as ∆(r) = |∆(r)|eiθ(r), the superfluid velocity is defined as

vs(r) =
~

2

2m
∇θ(r),

For uniform BCS gas the superfluid density is given by [84]

ρ̃s = ρ̃ +
2~

2

V

∑

k

k2
x

∂f(Ek)

∂Ek

= ρ̃ +
2~

2

3V

∑

k

k2 ∂f(Ek)

∂Ek

,

where ρ̃ is the total mass density, Ek =
√

ǫ2
k + ∆2, and ǫk = ~

2|k|2/(2m) − µ.

This equation is known as Landau’s formula.
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5.2.1 Superfluid density in optical lattices

Here, we consider two-components Fermi gases, whose components are two differ-
ent hyperfine states of 6Li, in optical lattices. Let us start the mean-field Hamilto-
nian Ĥ0 (3.5) If one imposes a linear phase variation Θ·Ri = (Θx/(Mxd),Θy/(Myd),Θz/(M
Ri [82, 85], to the order parameter, the Hamiltonian is given by

ĤΘ = −
∑

σ=↑,↓



Jσ,x

∑

〈i,j〉x

+Jσ,y

∑

〈i,j〉y

+Jσ,z

∑

〈i,j〉z



 ĉ†σ,iĉσ,j

−
∑

i

(µ↑c
†
↑,iĉ↑,i + µ↓c

†
↓,iĉ↓,i)

+
∑

i

|∆|ei(q+2Θ)·Ri ĉ†↑,iĉ
†
↓,i + |∆|e−i(q+2Θ)·Ri ĉ↓,iĉ↑,i.

(5.5)

If one makes transformation ĉσ,i → ĉσ,ie
iΘ·Ri , the Hamiltonian becomes

ĤΘ = −
∑

i

(µ↑c
†
↑,iĉ↑,i + µ↓c

†
↓,iĉ↓,i)

+
∑

i

|∆|eiq·Ri ĉ†↑,iĉ
†
↓,i + |∆|e−iq·Ri ĉ↓,iĉ↑,i

−
∑

σ

[

∑

n

(

Jσ,x(eiΘx/Mx ĉ†σ,nĉσ,n+dx̂ + e−iΘx/Mx ĉ†σ,nĉσ,n−dx̂

+ Jσ,y(e
iΘy/My ĉ†σ,nĉσ,n+dŷ + e−iΘy/My ĉ†σ,nĉσ,n−dŷ)

+ Jσ,z(e
iΘz/Mz ĉ†σ,nĉσ,n+dẑ + e−iΘz/Mz ĉ†σ,nĉσ,n−dẑ)

)]

.

(5.6)

We further assume that Θα/Mα are small, which is important to avoid effects
other than the collective flow of the superfluid component. Under this assumption
we can approximate the exponent functions using a few first terms of the Taylor
expansion

ei Θα
Mα ≈ 1 + i

Θα

Mα
− Θ2

α

2M2
α

.
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Thus the Hamiltonian is given by

ĤΘ = Ĥ0 + H ′ ≈ Ĥ0 +
∑

σ

[

Θ2
x

2M2
x

∑

〈i,j〉x

Jσ,xĉ†σ,iĉσ,j+

Θ2
y

2M2
y

∑

〈i,j〉y

Jσ,y ĉ
†
σ,iĉσ,j +

Θ2
z

2M2
z

∑

〈i,j〉z

Jσ,z ĉ
†
σ,iĉσ,j

− i
Θx

Mx

∑

i

Jσ,x(ĉ†σ,iĉσ,i+dx̂ − ĉ†σ,iĉσ,i−dx̂)

− i
Θy

My

∑

i

Jσ,y(ĉ
†
σ,iĉσ,i+dŷ − ĉ†σ,iĉσ,i−dŷ)

− i
Θz

Mz

∑

i

Jσ,z(ĉ
†
σ,iĉσ,i+dẑ − ĉ†σ,iĉσ,i−dẑ)

]

.

(5.7)

Furthermore, we obtain in the momentum space

ĤΘ ≈ Ĥ0 +
∑

σ,α

[

Θ2
α

2M2
α

∑

k

2Jσ,α cos(kαd)ĉ†σ,kĉσ,k

+
Θα

Mα

∑

k

2Jσ,α sin(kαd)ĉ†σ,kĉσ,k

]

.

(5.8)

We can write the grand potential of the system with a perturbing phase
gradient as a series [86]

ΩΘ = Ω0 −
∞
∑

n=1

(−1)n

n~n

∫ β~

0
dτ1 · · ·

∫ β~

0
dτn 〈Tτ Ĥ ′(τ1) · · · Ĥ ′(τn)〉0, (5.9)

where τ is imaginary time, Ω0 is the grand canonical potential in the absence
of the perturbation. The brackets 〈. . . 〉0 = Tr[exp(−β(Ĥ0 − µ↑N̂↑ − µ↓N̂↓)) . . . ]
denote the thermodynamic average evaluated in the equilibrium state of the un-
perturbed system. Since all the twisting angles Θα are small, we can ignore higher
than Θ2

α order terms. With this approximation, the grand potential is expressed
as

ΩΘ ≈ Ω0 +
1

β~

∫ β~

0
dτ 〈Tτ T̂ (τ)〉0 −

1

β~2

∫ β~

0

∫ β~

0
dτ dτ ′〈Tτ Ĵ(τ)J(τ ′)〉0,

where

T̂ =
∑

σ,α

[

Θ2
α

2M2
α

∑

k

2Jσ,α cos(kαd)ĉ†σ,k ĉσ,k

]

Ĵ =
∑

σ,α

[

Θα

Mα

∑

k

2Jσ,α sin(kαd)ĉ†σ,kĉσ,k

]

.
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The first perturbation term is given by

1

β~

∫ β~

0
dτ 〈Tτ T̂ (τ)〉0 =

∑

σ,α

[

Θ2
α

2M2
α

∑

k

2Jσ,α cos(kαd)Nσ,k

]

, (5.10)

where Nσ,k is number of particles of the σ-component in the momentum state k.
By applying Wick’s theorem, the second perturbation assumes the form

− 1

2β~2

∫ β~

0

∫ β~

0
dτ dτ ′ 〈Tτ Ĵ(τ)Ĵ(τ ′)〉0

= − 1

2β~2

∫ β~

0

∫ β~

0
dτ dτ ′

[

∑

σ,σ′,α,α′

ΘαΘα′

MαMα′

∑

k,k′

4Jσ,αJσ′,α′ sin(kαd) sin(k′
α′d)

×
(

(1 − δσσ′)δk+q,−k′+qF (k, τ, τ ′)F †(k′, τ, τ ′) − δσσ′δkk′Gσ(k, τ, τ ′)Gσ′(k′, τ, τ ′)

)]

,

where the Green’s function are defined by

Gσ(k, τ, τ ′) = −〈Tτ ĉσ,k(τ)ĉ†σ,k(τ)〉0,
F (k, τ, τ ′) = −〈Tτ ĉ↑,k+q(τ)ĉ↓,−k+q(τ)〉0.

These Green’s functions can be calculated from the definition of the Green’s
functions in the momentum space [87]

(

i~ωn − ǫ↑,k+q ∆

∆ −~
∂
∂τ + ǫ↓,−k+q

)

G(k, ωn) = ~I,

where I is 2 × 2 unit matrix and the fermionic Matsubara frequencies are given
by

ωn =
π(2n + 1)

~β
,

where n is an integer. Finally, the one particle dispersions are

ǫσ,k =
∑

α

2Jσ,α(1 − cos(kαd) − µσ.

By multiplying the both sides of the Green’s function equation by factor G−1(k, ωn)
one finds

~G−1(k, ωn) =

(

i~ωn − ǫ↑,k+q ∆

∆ −~
∂
∂τ + ǫ↓,−k+q

)

.

Since this matrix is a 2 × 2-matrix, it can be inverted analytically. It turns out
that the Green’s function matrix in the momentum space is given by

G(k, ωn) =





− ~(i~ωn+ǫ↓,−k+q)
(E+,k,q−i~ωn)(E−,k,q+i~ωn)

~∆0

(E+,k,q−i~ωn)(E−,k,q+i~ωn)
~∆0

(E+,k,q−i~ωn)(E−,k,q+i~ωn) − ~(i~ωn−ǫ↑,k+q)
(E+,k,q−i~ωn)(E−,k,q+i~ωn)



 ,
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where the quasiparticle dispersions E+,k,q and E−,k,q are the same as we used in
chapter 3. The Green’s function matrix can be simplified by using factors uk,q

and vk,q, and is then rewritten in the form

G(k, ωn) = ~





|uk,q|
2

i~ωn−E+,k,q
+

|vk,q|
2

i~ωn+E−,k,q

uk,qv∗
k,q

i~ωn+E−,k,q
− uk,qv∗

k,q

i~ωn−E+,k,q
u∗
k,q

vk,q

i~ωn+E−,k,q
− u∗

k,q
vk,q

i~ωn−E+,k,q

|vk,q|
2

i~ωn−E+,k,q
+

|vk,q|
2

i~ωn+E−,k,q



 . (5.11)

The individual Green’s functions can be identified explicitly to be

G↑(k, ωn) =
|uk,q|2

i~ωn − E+,k,q
+

|vk,q|2
i~ωn + E−,k,q

,

G↓(k, ωn) =
|uk,q|2

i~ωn − E−,k,q
+

|vk,q|2
i~ωn + E+,k,q

,

F (k, ωn) =
uk,qv∗k,q

i~ωn + E−,k,q
−

uk,qv∗k,q

i~ωn − E+,k,q
.

Furthermore, we obtain

Gσ(k, τ, τ ′) =
1√
β~

∞
∑

n=−∞

e−iωn(τ−τ ′)Gσ(k, ωn)

F (k, τ, τ ′) =
1√
β~

∞
∑

n=−∞

e−iωn(τ−τ ′)F (k, ωn).

Substitution of these Green’s functions in the second order perturbation term,
it assumes the form

− 1

2β~2

∫ β~

0

∫ β~

0
dτ dτ ′ 〈Tτ Ĵ(τ)Ĵ(τ ′)〉0 =

∑

α

Θ2
α

M2
α

∑

k

[

2J2
↑,α sin2((kα + qα)d)

×
(

2|uk,q|2|vk,q|2
f(E+,k,q) + f(E−,k,q) − 1

E+,k,q + E−,k,q
−

β|uk,q|4f(E+,k,q)(1 − f(E+,k,q)) − β|vk,q|4f(E−,k,q)(1 − f(E−,k,q))

)

+

2J2
↓,α sin2((kα − qα)d)

(

2|uk,q|2|vk,q|2
f(E+,k,q) + f(E−,k,q) − 1

E+,k,q + E−,k,q
−

β|uk,q|4f(E−,k,q)(1 − f(E−,k,q))

− β|vk,q|4f(E+,k,q)(1 − f(E+,k,q))

)

+

4J↑,αJ↓,α sin((kα + qα)d) sin((kα − qα)d)

× |uk,q|2|vk,q|2
(

2(f(E+,k,q) − f(E−,k,q))

E+,k,q − E−,k,q

− 2f(E+,k,q) − 1

2E+,k,q
− 2f(E−,k,q) − 1

2E−,k,q

)]

,
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We can now write the twisted grand potential as

ΩΘ = Ω0 +
∑

αα′

δΩαα′
ΘαΘα′

MαMα′
,

and determine the components of the superfluid density tensor as

ρ̃αα′ =
δΩαα′

J̄x
=

2δΩαα′

J↑,x + J↓,x
.

These dimensionless elements are given by

ρ̃αα =
∑

k,σ

2J̃σ,α cos(kαd)Nσ,k

+
∑

k

[

J̃2
↑,α sin2((kα + qα/2)d)

×
(

2|uk,q|2|vk,q|2
f(E+,k,q) + f(E−,k,q) − 1

E+,k,q + E−,k,q

− β|uk,q|4f(E+,k,q)(1 − f(E+,k,q))

− β|vk,q|4f(E−,k,q)(1 − f(E−,k,q))

)

+ 2J̃2
↓,α sin2((kα − qα/2)d)

×
(

2|uk,q|2|vk,q|2
f(E+,k,q) + f(E−,k,q) − 1

E+,k,q + E−,k,q

− β|uk,q|4f(E−,k,q)(1 − f(E−,k,q))

− β|vk,q|4f(E+,k,q)(1 − f(E+,k,q))

)

+ 4J̃↑,αJ̃↓,α′ sin((kα + qα/2)d) sin((kα − qα/2)d)

× |uk,q|2|vk,q|2
(

2(f(E+,k,q) − f(E−,k,q))

E+,k,q − E−,k,q

− 2f(E+,k,q) − 1

2E+,k,q
− 2f(E−,k,q) − 1

2E−,k,q

)]

,

ρ̃αα′ = 0,

(5.12)

and furthermore we can determine dimensionless superfluid fraction as

ραα′ =
ρ̃αα′

N↑ + N↓
,

where Nσ is the total number of particles of the σ-component.
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Figure 5.4: Figure (a) shows the BCS superfluid fraction ρ = ρxx = ρyy = ρzz as
a function of the total filling fraction n↑ + n↓ = 2n↑ = 2n↓ at zero temperature.
In figure (b) we show ρ(n↑ +n↓) as a function of the total filling fraction. All the
hopping strengths are the same, i.e., J = J↑,α = J↓,α′ ,and −U/J = 6.0.

5.2.1.1 BCS and the Sarma phase superfluid density

As described in chapter 3, momentum vector q is zero in the standard BCS phase
and in the Sarma phase. Thus one obtains the BCS/Sarma superfluid density
from equation (5.12) by replacing qα by zero.

In the BCS continuum limit, where µ↑ = µ↓, J↑,α = J↓,β = J , and d → 0, but
Jd2 remains a constant, the superfluid fraction becomes

ραα = ρ = 1 +
2~

2

manV

∑

k

k2
x

∂f(Ek)

∂Ek

,

where ma = ~
2/(2Jd2) is the effective mass, n = n↑ + n↓ is the total number

density and V is the size of the system. This equation is precisely the Landau’s
formula as it should be. This continuum limit can be realized in the limit of
vanishing total filling fraction, as shown in figure 5.4 (a). Figure 5.4 (b) shows
the particle-hole symmetry of the BCS superfluid density. This symmetry arises
from the particle-hole symmetry of the mean-field Hubbard model.

The superfluid fraction can be different in different directions, when the hop-
ping strengths are different in different directions, as shown in figure 5.5 (a). Since
the hopping strengths are different in different directions, the effective masses are
different in different directions and since the superfluid fraction components are
different in different directions. In figure 5.5 (b), we show the BCS superfluid
fraction as a function of the dimensionless coupling strength −U/J at zero tem-
perature. As we can observe from the figure, the superfluid fraction decreases
with increasing −U/J contrary to the free space result, where the superfluid
fraction is a constant as a function of the coupling strength. This is due to the
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Figure 5.5: Figure (a) shows the BCS superfluid fraction as a function of
temperature in the case, where the hopping strengths are different in differ-
ent directions. Figure (b) shows the BCS superfluid fraction as a function of
a dimensionless coupling strength −U/J at zero temperature. In figure (a)
J↑,y = J↓,y = 0.8J↑,x = 0.8J↓,x and J↑,z = J↓,z = 0.5J↑,x = 0.5J↓,x. In figure
(b) Jσ,α = Jσ′,α′ = J and in the both figures −U/J↑,x = 6.0.

fact that as −U/J increases the movement of the atoms decreases in the lattice.
In other words the larger −U/J is the smaller Cooper pairs are, and the more
localized atoms are.

The Sarma phase superfluid fraction is very similar to the BCS phase super-
fluid fraction. In the both phases Sarma- and BCS phase the superfluid fraction
proportional to |∆|2, as shown in figure 5.6 (b).

5.2.1.2 One mode FFLO phase superfluid density

If the momentum vector q is finite, the phase is the one mode FFLO phase, and
the superfluid density of this phase was given in equation (5.12). The one mode
FFLO superfluid fraction can be in principle asymmetric, even in the case where
all the hopping strengths are equal. This is due to vector q. However, it turns
out that, in cubic lattices, the free energy is minimized for the vector q lieyng
alongside an principal axis, and since the one mode FFLO superfluid density
is symmetric. This is due to the fact if the lattice is cubic and all the hoping
strengths are equal, the system does not favour any of these axis.

The one mode FFLO superfluid density is not directly proportional to |∆|2,
unlike the BCS/Sarma superfluid density. As shown in figure 5.7. We can observe
the phase transition between the Sarma phase and the FFLO phase as a gusp in
the curve at P ≈ 0.15 in figure 5.7 (a).

For strong interactions and low temperatures, the one mode FFLO superfluid
density can be negative. This indicates that the phase is dynamically unsta-
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Figure 5.6: Figure (a) shows the Sarma phase superfluid fraction as a function
of the polarization at constant temperature. In figure (b) we show the Sarma
phase superfluid fraction divided by |∆|2. The parameters, which were used, are
kBT/J ≈ 0.46, U/J = −5.1, and the average filling fraction is nav = (n↑+n↓)/2 =
0.2, All the hopping strengths were equal. The sudden drop in figure (b) at
P ≈ 0.45 in indicates that the pairing field becomes zero.
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Figure 5.7: Figure (a) shows first the Sarma- and after that the FFLO phase
superfluid fraction as a function of the polarization at constant temperature. In
figure (b) we show the Sarma- and FFLO phase superfluid density divided by
|∆|2. The parameters are kBT/J ≈ 0.23, U/J ≈ −5.1, and the average filling
fraction is nav = (n↑ + n↓)/2 = 0.2. All the hopping strengths are equal. The
sudden drop in figure (b) at P ≈ 0.5 in indicates that the pairing field becomes
zero.
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Figure 5.8: Phase diagrams of a two-components Fermi gas with two different
average filling fractions and two different interaction strengths in a cubic lattice.
The average filling fraction and the interaction strengths are from top left to
bottom right: nav = 0.2, U/J ≈ −4.4; nav = 0.2, U/J ≈ −6.3; nav = 0.5,
U/J ≈ −4.4; nav = 0.5, U/J ≈ −6.3. All the hopping strengths are equal. The
color scheme is as follows: BCS/Sarma=blue, stable FFLO=yellow, unstable
FFLO=red, normal gas=white. In the to right figure the yellow area between the
red areas is due to the numerical uncertainties.

ble [81]. However,the one mode FFLO phase is stable if −U/J < 4.0. We can
observe the unstable regions of the phase diagram from figure 5.8. This insta-
bility is also connected to the filling fraction, when the average filling fraction
increases (up to 0.5 after that the regions decreases, which due to the particle
hole symmetry) the unstable regions increases, as shown figure 5.8. Note that
we do not take the phase separation into account. These dynamical instabilities
indicate that the one mode FFLO is not the ground state. The ground state may
be some kind of phase separation or the multimode FFLO states [88, 89]. The
superfluid density can be measured by measuring the frequency of the collective
modes [90].



Chapter 6

Conclusions

The superfluidity of Fermi gases arises from pairing of two different species of
fermions. Different types of paired states were described in this thesis. First, we
studied within the mean-field theory two-components Fermi gases in optical lat-
tices and showed that the Fulde-Ferrel-Larkin-Ovchinnikov state is energetically
favorable in a large region of the phase diagram in a cubic lattice. We generalized
the Hubbard Hamiltonian to the higher bands, and found that there can, under
our assumptions, be two different types of paired states between the bands.

Next we focused on a three-component Fermi gas, and showed that the BCS
theory can be generalized to this case. We demonstrated that a three-component
Fermi gas in a harmonic trap is a very rich system. We discussed also three-
component Fermi gases in optical lattices and showed that it is possible to tune
the lattices in such a way that the Hamiltonian approaches SU(3)-symmetric
form.

In the last part of this thesis it is discussed how these different paired states
can be experimentally observed and investigated. We showed that the noise corre-
lations are a useful tool to detect different phases in optical lattices. Furthermore,
we calculated the superfluid densities, and found that the FFLO superfluid den-
sity differs crucially from the BCS/Sarma superfluid density in lattices. We also
showed that there can be dynamical instabilities in the FFLO phase.

Multitude of new directions for future studies have been opened. The multi-
band Hubbard models can be used to study the crossover physics, which means
physics near the Feshbach resonance, in optical lattices. Also analogs between
the QCD and three-component Fermi gases offer lot of new possibilities. Further-
more, beyond mean-field corrections should be studied more extensively.
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