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Abstract
Currently, we live in an era characterized by the completion and first runs of the LHC
accelerator at CERN, which is hoped to provide the first experimental hints of what
lies beyond the Standard Model of particle physics. In addition, the last decade has
witnessed a new dawn of cosmology, where it has truly emerged as a precision science.
Largely due to the WMAP measurements of the cosmic microwave background, we
now believe to have quantitative control of much of the history of our universe.

These two experimental windows offer us not only an unprecedented view of the
smallest and largest structures of the universe, but also a glimpse at the very first
moments in its history. At the same time, they require the theorists to focus on the
fundamental challenges awaiting at the boundary of high energy particle physics and
cosmology. What were the contents and properties of matter in the early universe?
How is one to describe its interactions? What kind of implications do the various
models of physics beyond the Standard Model have on the subsequent evolution of the
universe?

In this thesis, we explore the connection between, in particular, supersymmetric
theories and the evolution of the early universe. We begin by providing the reader
with a general introduction to modern day particle cosmology from two angles: first,
by reviewing our current knowledge of the history of the early universe, and then, by
introducing the basics of supersymmetry and its derivatives. Subsequently, with the
help of the developed tools, we direct the attention to the specific questions addressed
in the three original articles that form the main scientific contents of the thesis. Each
of these papers concerns a distinct cosmological problem, ranging from the generation
of the matter-antimatter asymmetry to inflation, and finally to the origin or very early
stage of the universe. Nevertheless, they share a common factor in their use of the
machinery of supersymmetric theories to address open questions in the corresponding
cosmological models.
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Chapter 1

Introduction

Many of the most intriguing open problems in modern high energy physics are involved
in a subtle interplay between the very smallest and the very largest scales in our
universe: at one end of the spectrum there is the world of subatomic particles and,
at the other end, the cosmic length scales that describe the structure of the universe
itself. The connection between these two seemingly disjoint worlds traces back some
13.7 billion years to the very early stages of our universe [4], where, essentially, they
become one and the same. To fully understand the one at its most fundamental level,
it seems an equal understanding of the other is required.

The world of particles is of course known to be represented very well by the Stan-
dard Model (SM) of particle physics [5] up to the highest energies tested in collider
experiments so far. It is also known on very general grounds that the Standard Model
cannot be the most fundamental theory of nature, but only a low energy effective de-
scription thereof. The two most popular, and perhaps theoretically best motivated
suggestions for physics reaching beyond the SM are string theory and supersymme-
try. The former is based on the idea that the fundamental description of nature on
its very smallest length scales would be given not in terms of point particles but of
one-dimensional strings and their higher-dimensional generalizations, branes.

For consistency, string theory requires an additional local symmetry to be realized in
nature, namely supersymmetry [6]. Supersymmetry relates fundamental fermions and
bosons to their so-called superpartners, respectively of bosonic and fermionic nature. In
addition to being motivated by theoretical considerations, supersymmetry has several
vital consequences for low-energy particle physics phenomenology, most importantly
the solution it provides to the long-standing hierarchy problem. Regardless of whether
it is eventually superseded by string theory at high energies, low-energy supersymmetry
has emerged as the strongest candidate for physics beyond the Standard Model. Today
research in this field is more topical than perhaps ever before, due to the recent startup
of the Large Hadron Collider (LHC) at CERN, which is hoped to provide the first
experimental hints of supersymmetry [7].

In contrast to experimental particle physics, where the last decade has been mainly
a time of preparation and anticipation of results to come, cosmological observations
have seen nothing short of an explosion of new data within the same time period. The
unprecedented accuracy, as well as the variety, of the cosmological data made available
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have given rise to a standard model of cosmology: the ΛCDM, or concordance model
[8]. The result of this concordance, however, is somewhat surprising: matter as we
known it in the Standard Model makes up but five percent of the total energy density
of the universe. The remaining 95% is attributed to two exotic forms of energy density:
dark matter and dark energy. Whereas the nature of dark energy remains as much a
mystery as ever, several possible candidates for dark matter have been identified in
particle theories, most notably perhaps the lightest stable superpartner of low-energy
supersymmetry [9].

In addition, our explorations of the cosmos have raised a number of more subtle
questions that remain to be answered. Observations of standard baryonic matter in
the universe, for example, show an asymmetry in the amounts of matter and anti-
matter, which finds no explanation within the Standard Model. Moreover, the very
special initial conditions that our observable universe can be traced back to can most
naturally be achieved by a period of accelerated expansion in the very early universe.
Observations seem consistent with this period of inflation being driven by a scalar field,
but the possible identity of such a field is yet unknown.

Whichever exotic forms of matter turn out to be the winners, it is clear that the
fields of cosmology and high energy particle physics are inherently intertwined in the
quest for the true extensions to the Standard Model. Where cosmologists look to the
world of particles for new types of matter that might explain their observations, these
very same observations in return offer the particle physics community a peek at energy
scales that one could currently only dream of probing in terrestrial facilities.

The work at hand is a PhD thesis based on three original articles [1, 2, 3] written
by the author and various collaborators. Each article addresses a distinct cosmological
problem, using different theoretical tools; however, they all have a common denomina-
tor in the desire to understand the interplay between the early stages of the universe
and modern day particle physics. More precisely, they are all based on the assumption
that physics beyond the Standard Model exhibits supersymmetry, and explore possible
consequences of this assumption at various stages in the early universe.

Ref. [1] addresses the generation of the matter-antimatter asymmetry through the
mechanism of leptogenesis. A possible solution to a long-standing naturalness problem
in supersymmetric leptogenesis is presented, which unlike other proposed solutions does
not require a significant alteration of the scenario. Ref. [2] considers a particular model
of inflation, in which the expansion is driven by a flat direction of the Minimal Super-
symmetric Standard Model (MSSM). The model requires an extremely flat potential,
which a priori can only be guaranteed by a high degree of fine-tuning. In Ref. [2] a class
of supergravity models which identically satisfy the flatness requirement is identified,
in order to alleviate the severity of the fine-tuning. Finally, Ref. [3] addresses a string
theory based model for the very early universe, which provides an example of how the
initial singularity plaguing the standard cosmological model can be avoided through
string theory. It is argued that the string gas cosmology model, whose origin is usually
not explained, can be the result of the decay of an initial configuration of unstable
branes, which furthermore allows one to control the properties of the model through
various physical properties of the brane setup.

To bring the above topics into a broader context, the articles included in the thesis
are preceded by an introductory part, which is organized as follows. In Chapter 2,
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we review the most important concepts of modern day cosmology, discussing also the
observational data that our current understanding of the evolution of the universe is
based on. Chapter 3, on the other hand, provides an introduction to supersymmetric
theories, placing particular emphasis on the concepts and topics relevant in the early
universe. Chapters 4–6 are then devoted to deeper analyses of the subjects treated in
each of the research papers [1, 2, 3], proceeding in this order. Finally, in Chapter 7,
we conclude by providing a brief summary of the thesis.

Notation

The natural units, with c ≡ 1, ! ≡ 1 and kB ≡ 1, are used throughout the thesis.
The Planck mass is defined as MP = (8πG)−1/2, where G is Newton’s constant. The
signature of the metric is chosen to be (−,+,+,+). Greek letters µ, ν, . . . run over
all the spacetime coordinates and Latin letters i, j, . . . over the spatial coordinates.
Summation over repeated indices is understood. The covariant derivative is denoted
by ∇µ and is defined using the standard Christoffel connection. The notation used
for the Kähler metric and the associated indices in supergravity is explained in the
relevant context. For the Fourier transformation we use the normalization

f(x) =
1

(2π)3

∫
d3k f(k)eik·x.

Any other introduced notation is explained in the text. The notation used in the
introductory part of the thesis differs partially from that used in the enclosed research
papers.
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Chapter 2

The early universe

In this introductory chapter we present the standard picture of cosmology that emerges
when the assumption of a homogenous and isotropic, expanding universe is combined
with our understanding of particle physics at various energy scales. The result is a
brief review of standard cosmology, aimed at setting the stage for the treatment of the
three included research papers, in Chapters 4-6, respectively.

We begin with a presentation of the Friedmann-Robertson-Walker universe and the
hot big bang model, with emphasis on the baryon asymmetry, in order to prepare for
the treatment of leptogenesis in Chapter 4. Subsequently, in Section 2.3, we discuss the
limitations of this model, and introduce the inflationary paradigm. We review the gen-
eral properties of scalar field inflation, and how it can be constrained by observations,
paving the way for the discussion on the MSSM inflation model in Chapter 5. Hav-
ing presented the main features of scalar field inflation, in the final section we briefly
address some of its shortcomings and discuss the potential of seeing beyond inflation,
heading towards the introduction of the string gas cosmology scenario in Chapter 6.
More detailed presentations on the subjects treated here can be found, for example, in
Refs. [10, 11, 12].

2.1 The Friedmann-Robertson-Walker universe

Einstein’s theory of general relativity allows us to study the universe as a deterministic
dynamical system, whose evolution is determined by its previous conditions. With this
powerful tool at hand, the modern cosmological picture has emerged from but a few
groundbreaking discoveries. First, in 1929 Hubble made the observation that distant
objects in every direction on the sky appear to be receding from us, the faster the
further away they are [13]. The obvious conclusion to be drawn was that the universe
is expanding. If this were indeed the case, our universe should have been both denser
and hotter in the past.

Another cornerstone of modern cosmology is the observation, first performed by
Penzias and Wilson in 1965 [14], of the redshifted relic radiation from the time when the
universe was only a few hundred thousand years old: the cosmic microwave background
(CMB). The CMB radiation exhibits a perfect blackbody spectrum with a temperature
of 2.726 K, with anisotropies only of the order of 10−5 [15]. While these anisotropies
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make up the seeds for the structure observed in the universe today, mappings of the
large scale structure, such as the Sloan Digital Sky Survey [16] and the 2dF survey
[17], confirm the observed isotropy on scales larger than about 100 Mpc. Together
with the Copernican principle, which states that the Earth is not in a central, or
specially favored position in the universe, observations thus lead us to conclude that
we live in an expanding universe that is to a first approximation homogenous as well
as isotropic.

The Robertson-Walker metric

A time evolving, spatially homogeneous and isotropic spacetime is described most
generally by the Robertson-Walker (RW) metric

ds2 = −dt2 + a2(t)

(
dr2

1− κr2
+ r2dθ2 + r2 sin2 θdφ2

)
, (2.1)

where r, θ and φ are the polar comoving coordinates, defining the cosmic rest frame,
and t is the time measured by a comoving observer. The scale factor a(t) determines the
physical size of spatial coordinate distances as a function of time, while κ parameterizes
the curvature of spatial surfaces.

The RW metric Eq. (2.1) describes a spatially homogenous and isotropic spacetime
without any restrictions on the functional form of the scale factor. The dynamical
behaviour of the scale factor depends on the matter and energy contents of the universe
through the Einstein equation

Rµν −
1

2
Rgµν =

1

M2
P

Tµν . (2.2)

The left hand side of the equation is a function of the metric – in this case the scale
factor – only, while the energy-momentum tensor Tµν derives from the matter action.
To be consistent with the assumed homogeneity and isotropy, the energy momentum
tensor should satisfy the same symmetries as the RW metric. This constrains the
matter and energy contents of the universe to be of perfect fluid form, with the energy-
momentum tensor

Tµν = (ρ+ p)uµuν + pgµν , (2.3)

where ρ and p are the energy density and pressure, and uµ = (1, 0, 0, 0) is the four-
velocity of the isotropic fluid in comoving coordinates.

The Friedmann equations

Given the energy-momentum tensor, the Einstein equation Eq. (2.2) determines the
evolution of the scale factor in terms of the energy density and the pressure of the
cosmic fluid. The 00-component yields the Friedmann equation

(
ȧ

a

)2

=
ρ

3M2
P

− κ

a2
, (2.4)
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where the dot indicates derivatives with respect to the cosmic time. The spatial com-
ponents all give rise to the same equation, which can be put in the form of the second
Friedmann equation

ä

a
= −ρ+ 3p

6M2
P

. (2.5)

The left hand side of the Friedmann equations is often written in terms of the Hubble
parameter

H =
ȧ

a
, (2.6)

whose current value is measured to be H0 $ 70 kms−1Mpc−1 [4]. Using the Friedmann
equation Eq. (2.4), we can define the critical density

ρc ≡ 3M2
PH

2, (2.7)

such that the curvature term κ in the equation vanishes. The critical density, on the
other hand, is used to define the dimensionless density parameter Ω= ρ

ρc
, in terms of

which the Friedmann equation can be rewritten as

Ω− 1 =
κ

(aH)2
. (2.8)

The best fit values for current observations give Ω = 1±0.03, implying that the universe
is very nearly flat and κ $ 0.

The cosmic fluid

A convenient tool for studying the evolution of the cosmic fluid is provided by the
continuity equation

ρ̇

ρ
+ 3

ȧ

a
(1 + w) = 0, (2.9)

which can be derived either from the two Friedmann equations or from the conservation
of energy-momentum. We have defined the equation of state parameter w, such that
p = wρ. In particular if w is constant, Eq. (2.9) can be integrated to yield the energy
density as a function of the scale factor

ρ ∝ a−3(1+w). (2.10)

Plugging this into the Friedmann equation Eq. (2.4), we can solve for the evolution of
the scale factor in a universe dominated by a fluid with the equation of state parameter
w &= −1

a ∝ t2/3(1+w). (2.11)

The cosmic fluid is assumed to be composed of three separately evolving fluids: matter,
radiation and a vacuum energy like component. Matter accounts for any non-relativistic
species of particles, with essentially vanishing pressure. Thus wm $ 0, and the energy
density behaves as ρm ∝ a−3. According to the best fit model to recent observations,
the matter component accounts for about 28% of the total energy density, with 5%
made up of baryonic matter and the remaining 23% presumably dark matter [4]. For
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radiation, which refers to any highly relativistic particle species or actual electromag-
netic radiation, wr = 1/3 and the energy density evolves as ρr ∝ a−4. The energy
density in the radiation component thus decreases with a factor of 1/a compared to
matter, and only accounts for a very small fraction of the total energy density in the
universe today. A constant energy density, however, which by definition has wΛ = −1,
will inevitably become dominant in the late universe. Recent observations of distant
supernovae [18] indeed seem to imply that a dark energy component, with w $ −1, is
present and currently accounts for about 72% of the total energy density.

2.2 The hot big bang

The time evolution of the different energy components suggests that the early universe
should be dominated by relativistic forms of matter. Starting with this presumption,
the hot big bang model describes the subsequent evolution, as the cosmic fluid gradually
cools down with the expansion of the universe. Since particle interactions would be
frequent in the hot and dense early universe, the cosmic fluid is expected to have been
largely in thermal equilibrium, in accordance with the near perfect blackbody spectrum
of the CMB. Nevertheless, the events that have left the clearest imprints in the cosmic
background have taken place due to the decoupling of some component of the fluid
from the thermal bath.

Our understanding of the evolution of the early universe relies on our knowledge
of physics at high energies, based on experiments and theoretical considerations. Any
attempts to describe the state of the universe at early times, such as the Planck time,
are therefore at most speculative. At lower energies, however, we can make fairly robust
predictions. Below we briefly overview the thermal history of the universe, and point
out the most relevant events that have taken place. A more detailed review can be
found, for example, in Ref. [19].

2.2.1 Thermal history

Assuming that the hot big bang stage begins at some higher energy scale, the electro-
weak phase transition is expected to take place at an energy of about 100 GeV. It is fol-
lowed by the quark-hadron phase transition at around 100 MeV, after which the newly
formed nucleons and anti-nucleons annihilate each other. Some nucleons nevertheless
remain, indicating an asymmetry in the abundances of matter and antimatter. At
this point the thermal bath consists mainly of photons, neutrinos, electrons, positrons,
neutrons and protons. When the temperature reaches about 1 MeV, the neutrinos
decouple from the other relativistic species, and shortly after, once the temperature
drops below the electron rest mass, electrons and positrons annihilate one another,
leaving only a small excess of electrons. Around the same temperatures nuclear reac-
tions become efficient, and free protons and neutrons combine into helium and other
light elements in the process of big bang nucleosynthesis (BBN) [20, 21].
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Nucleosynthesis

As the neutrinos decouple from the thermal bath, the weak interactions that keep the
neutron-to-proton ratio in equilibrium become inefficient, with the consequence that
the neutrons freeze out and start decaying into protons. Before all neutrons have de-
cayed, the remaining ones bind with protons into deuterium nuclei, which subsequently
form heavier nuclei through secondary reactions. These processes, however, only be-
come efficient once the deuterium abundance reaches its equilibrium value. Although
the binding energy of deuterium is 2.2 MeV, the large photon-to-baryon number de-
lays the event until a temperature of about 0.06 MeV. After this, heavier nuclei are
rapidly produced, but most isotopes cannot reach their equilibrium abundance before
the Coulomb barrier shuts the reactions off at a temperature of 30 keV.

Most neutrons end up in 4He isotopes, which have the highest binding energy per
nucleon, and only small amounts of the other light isotopes 2H, 3H, 3He, 7Li and 7Be are
produced. The amount of 4He produced crucially depends on the number of available
neutrons. This in turn depends on two quantities: the number of relativistic particle
species, which affects the temperature of neutron freeze-out, and the total number
of baryons, characterized by the baryon-to-photon ratio η. In the Standard Model
of particle physics, the former is well constrained, and the abundances of the light
elements predicted by nucleosynthesis essentially depend on η alone. As illustrated in
Fig. 2.1, observations of light element abundances are in agreement with the predictions
from nucleosynthesis (at 95% CL) given that [20]

ηBBN =
nB − nB̄

nγ

∣∣∣
0
= (5.6 ± 0.9) × 10−10, (2.12)

where nB, nB̄ and nγ are the number densities of, respectively, baryons, anti-baryons
and photons, and the subscript 0 refers to the value today. The fact that there is a range
of η which is consistent with all measured abundances is one of the most convincing
pieces of evidence in support of the hot big bang cosmological model.

Recombination

After nucleosynthesis the cosmic fluid consists mainly of photons, electrons, protons and
ionized helium nuclei. Due to the abundance of free charges, the universe is opaque to
electromagnetic radiation. When the universe is 380 000 years old and the temperature
has come down to 0.3 eV, electrons and nuclei combine to form neutral atoms in the
process of recombination. As recombination proceeds, the number of free electrons
falls, and matter and radiation decouple. Consequently, the photons can stream freely
through the universe, and constitute the CMB sky we observe today. Matter on the
other hand is free from the damping interactions with radiation and begins to form the
large scale structure from the initial perturbations observed in the CMB.

The CMB temperature anisotropy, as measured by the WMAP satellite, offers an
independent test of the value of the baryon-to-photon ratio inferred from nucleosyn-
thesis. A thorough introduction to the physics of the CMB and the estimation of
cosmological parameters therefrom can be found in Ref. [22]; for a shorter review see
Ref. [23]. The latest analysis of the WMAP data [4] estimates the baryon-to-photon
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Figure 2.1: The observed abundances of 4He, D, 3He and 7Li compared to the standard BBN
predictions [20]. The boxes indicate the observed light element abundances (smaller boxes
correspond to 2σ statistical errors, larger boxes to ±2σ statistical and systematic errors). The
narrow vertical band indicates the CMB measure of the baryon-to-photon ratio, while the wider
band indicates the BBN concordance range (both at 95% CL).

ratio (at 68% CL, assuming ΛCDM cosmology with a scale-invariant power spectrum)

ηCMB = (6.225 ± 0.170) × 10−10. (2.13)

The constraints on η derived from nucleosynthesis and from the CMB, respectively, are
illustrated in Fig. 2.1. The consistency between the constraints from these two probes,
which stem from events that took place some 380 000 years apart, is yet another
triumph of the standard cosmological model.

2.2.2 The baryon asymmetry

From a particle physics perspective, the observed baryon-to-photon ratio, which quan-
tifies the asymmetry in matter and antimatter, is something of a puzzle. Since there is
no evidence of primary forms of antimatter in the universe, at least up to the scale of
galaxy clusters, the asymmetry is unlikely to be a local effect, but rather a fundamental
property of the universe. In addition, there is good reason to believe that it does not
simply reflect an initial condition; since a primordial phase of inflation (see the following
section) would quickly dilute away any initial asymmetry, the baryon asymmetry must
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be dynamically generated at some point before the onset of nucleosynthesis. However,
as discussed below, the Standard Model alone is not able to explain its origin.

Baryogenesis

The criteria for a dynamical process of baryogenesis to be possible were considered
by Sakharov in 1967 [24], shortly after the first quantitative predictions from nucle-
osynthesis had been compared to astrophysical observations. Sakharov identified three
necessary conditions for baryogenesis to take place:

1. Baryon number violation

2. C and CP violation

3. Departure from thermal equilibrium1

All of these conditions could, in principle, be fulfilled within the Standard Model, dur-
ing the electro-weak phase transition. If the transition was of first order, it would
provide the required departure from equilibrium [26]. Furthermore, the weak inter-
actions maximally violate C, whereas the complex phase in the quark mixing matrix
violates CP through the Kobayashi-Maskawa mechanism [27]. Finally, baryon number
B, as well as lepton number L, are violated at the quantum level due to the chiral
anomaly of the weak interactions [28].

The anomaly gives rise to degenerate vacua differing by their B and L contents,
which are separated by potential barriers of the height of the electro-weak scale. Non-
perturbative field configurations between adjacent vacua violate B and L by units of
three each, but keep B − L conserved. At zero temperature, these transitions are in-
stanton solutions, which have an exponentially suppressed rate and hence no observable
effect. At finite temperatures, however, the transitions can take place through thermal
fluctuations over the barrier, commonly referred to as sphaleron processes [29]. Above
the critical temperature of the electro-weak phase transition these sphaleron transitions
become unsuppressed, leading to rapid B + L violation [30].

This scenario of electro-weak baryogenesis nevertheless fails on two of these three
accounts. Computations of the thermal Higgs potential show that the electro-weak
phase transition is of first order only for a Higgs mass mH ! 70 GeV [31], which is in
apparent conflict with the experimental bound mH " 115 GeV [32]. In addition, the
CP -violating phase in the Standard Model is simply too small to generate an asymmetry
of the observed magnitude [33]. Hence, physics beyond the Standard Model is called
for. In Chapter 4 we present some models of baryogenesis, and discuss in more detail
the model of thermal leptogenesis.

1While the first two conditions are necessary to generate a baryon-antibaryon asymmetry in general,
the third condition is a consequence of CPT invariance. For completeness, let us mention that also
models of baryogenesis with CPT violation in the early universe have been considered [25], although
we shall not discuss this possibility further.



12 The early universe

2.3 A period of inflation

Despite its remarkable agreement with observations, the hot big bang model with a
radiation dominated primordial universe is not a very successful theory if extrapolated
arbitrarily far back in time. It provides no dynamical explanation for the primordial
fluctuations observed in the CMB, which make up the seeds for the large scale structure
seen in the universe today. Nor can it explain, except by fine-tuning, the observed
flatness and homogeneity, which as such imply that parts of the universe which have
never been in causal contact have exactly the same conditions.

Both the flatness and homogeneity can be explained successfully by assuming that
the early universe underwent a period of inflation, i.e. accelerated expansion, defined
by ä > 0 [34]. From the equivalent definition

d

dt

(
1

aH

)
< 0 (2.14)

one straightforwardly sees how inflation solves the aforementioned problems. Firstly,
Eq. (2.8) readily tells us that inflation drives the universe towards flatness. Further-
more, Eq. (2.14) implies that the comoving horizon, roughly corresponding to the dis-
tance over which one can have causal interaction on cosmological timescales, decreases
with time. Consequently, the observable universe actually becomes smaller during in-
flation, and the observable universe today could have been well within the horizon and
causally connected at the onset of inflation, provided that the amount of expansion
was sufficient.

2.3.1 Scalar field inflation

By the second Friedmann equation Eq. (2.5), the inflationary condition ä > 0 implies
that the pressure and density of the energy component driving inflation must satisfy

p < −1

3
ρ. (2.15)

This excludes both ordinary matter and radiation, but suggests that a vacuum energy
like component could be a plausible candidate. However, it is hard to fathom how a
non-dynamical vacuum energy could dominate the universe, and then suddenly give
way to the standard hot big bang evolution. Although several other dynamical sources
of inflation can be imagined, the simplest and most common assumption is that this
early era of expansion is caused by the large potential energy of a scalar field, the
inflaton. In the work at hand we follow this assumption and consider inflation driven
by a single scalar field. For the remainder of this introductory chapter we focus on
exploring various aspects of this paradigm. Similar treatments of the topic, but with
more detail can be found in Refs. [11, 12].

For a scalar field φ, with a canonically normalized kinetic term and the potential
V (φ) the energy-momentum tensor takes the form

Tµν = ∇µφ∇νφ− gµν

(
1

2
gρσ∇ρφ∇σφ+ V (φ)

)
. (2.16)
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In the RW metric the energy-momentum tensor Eq. (2.16) matches that of a perfect
fluid with energy density and pressure

ρ =
1

2
φ̇2 +

(∇φ)2

2a2
+ V (φ), (2.17)

p =
1

2
φ̇2 − (∇φ)2

6a2
− V (φ). (2.18)

Since the universe is assumed to be homogeneous, the inflaton, whose energy density
dominates the universe, must to the first approximation be homogeneous as well. In
reality the field will, nevertheless, have small quantum fluctuations, which can source
the primordial density fluctuations, but we shall postpone the discussion of these until
a later section. For a homogeneous field, the spatial gradient terms in the energy
density Eq. (2.17) and pressure Eq. (2.18) are negligible, and the condition Eq. (2.15)
for inflation is satisfied for φ̇2 < V (φ). Furthermore, the inflaton equation of motion
can then be written in the form

φ̈+ 3Hφ̇+ V ′(φ) = 0. (2.19)

Slow roll inflation

The required condition φ̇2 < V (φ) is difficult to maintain for a sufficient period of
time, unless the potential energy is properly dominant over the kinetic energy and the
evolution of φ is slow. The standard way of analyzing the dynamics of inflation, is to
make these assumptions in the form of the slow-roll approximation

φ̇2 ( V (φ), (2.20)

φ̈ ( 3Hφ̇. (2.21)

The Friedmann equation Eq. (2.4) and the equation of motion Eq. (2.19), which govern
the dynamics, then simplify to the following set of equations

H2 $ V (φ)

3M2
P

, (2.22)

3Hφ̇ $ −V ′(φ). (2.23)

A priori, it is not obvious that this approximation is able to represent generic infla-
tionary solutions, given that they reduce the order of the full equations. The solutions
to the full equations, however, all approach the same asymptotic attractor solution re-
gardless of the initial conditions, as long as φ̇ is monotonic. The slow-roll solution turns
out to be a good approximation to this attractor, which validates its use in analyzing
the inflationary dynamics [35].

In the context of slow-roll inflation, it is useful to introduce the two dimensionless
slow-roll parameters

ε ≡
M2

P

2

(
V ′

V

)2

, (2.24)

η ≡ M2
P
V ′′

V
. (2.25)
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Whenever the slow-roll approximation is valid, these parameters satisfy the slow-roll
conditions

ε( 1, |η| ( 1. (2.26)

These conditions are necessary but not sufficient, since they only constrain the form
of the potential while φ̇ can break the slow-roll approximation. The end of inflation is
usually taken to occur when one of the slow-roll conditions are violated, i.e. when either
ε $ 1, or |η| $ 1. Whereas this is neither a necessary nor a sufficient condition, the
amount of inflation taking place when the slow-roll conditions are violated is usually
small. The violation of the slow-roll conditions occurs when the inflaton field φ reaches
a steeper region of the potential. In typical inflationary models, the inflaton then
descends towards the absolute minimum of the potential and begins to oscillate about
it.

2.3.2 Recovering the hot big bang

During inflation the universe expands enormously. Consequently, the number densities
of any initially present particles are diluted and the energy density of radiation is
redshifted, leaving the universe cold and practically empty. The energy density of
the universe is, nevertheless, stored in the scalar field potential, in the form of the
oscillating inflaton field. To connect the inflationary period to the hot big bang era,
this energy density must be transferred into relativistic particles.

Reheating

For the inflaton energy to be transferred into relativistic particles, the inflaton must
be coupled to some matter fields. In this case, the coherent inflaton oscillations at
the end of inflation are damped by quantum mechanical particle creation, as vacuum
energy is converted into energy of particles in the process of reheating [36]. The decay
of the inflaton in reheating can be described phenomenologically by adding an effective
friction term to its equation of motion

φ̈+ 3Hφ̇+ Γφφ̇+ V ′(φ) = 0, (2.27)

whereΓ φ denotes the total decay rate of the inflaton. Let us assume that the inflaton
couples to bosons χ and fermions ψ through the interaction terms LI = −1

2g
2φ2χ2 and

LI = −hψ̄ψφ, respectively. The inflaton decay rates are then expressed as

Γ(φ→ χχ) =
g4〈φ2〉
8πm

, Γ(φ→ ψψ) =
h2m

8π
, (2.28)

assuming that the fermion and boson masses are negligible in comparison to the inflaton
mass m, and the total decay rate is then the sum of the above.

While the inflaton field is oscillating, the energy density of the universe evolves as if
it was matter dominated. As an approximation, we can assume that whenΓ φ = H, the
inflaton suddenly decays into relativistic particles. Requiring that the critical energy
density ρ = 3M2

PH
2 thus corresponds to the energy density of the relativistic thermal
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bath ρ ∝ g∗T 4
RH, we obtain an upper limit on the reheating temperature of the universe

TRH =
1.7

g1/4∗

√
MPΓφ, (2.29)

where g∗ is the number of relativistic degrees of freedom, which in the Standard Model
takes the value 106.75. The actual value of the reheating temperature naturally de-
pends on the model of inflation. From direct observations we know that the tempera-
ture must be at least somewhat higher than the temperature for nucleosynthesis, but
low enough to avoid the production of monopoles, which sets the temperature in the
range 10−2 GeV ≤ TRH ≤ 1016 GeV. For specific models, also several other considera-
tions impose constraints on the reheating temperature, some of which we will discuss
elsewhere in this thesis, leading to a much more stringent overall constraint on the
temperature.

Parametric resonance

When the inflaton is coupled to bosons with the interaction term LI = −1
2g

2φ2χ2, there
is a possibility that the oscillating inflaton field decays non-perturbatively through
parametric resonance [37, 38]. This non-perturbative decay of the inflaton, termed
preheating, is extremely rapid compared to the perturbative decay of reheating. The
decay is induced by the time-dependent mass

m2
χ(t) = m̄2

χ + g2φ2(t), (2.30)

which the coupling to the inflaton generates for the χ field, where m̄2
χ is the bare

mass of the field. Quanta of the field χ will be created due to this time-varying
background, taking their energy from the inflaton condensate, gradually damping the
inflaton oscillations.

The particle production occurs as a result of the violation of adiabaticity and hence
takes place only when

|ṁχ(t)| " m2
χ(t). (2.31)

Since the change in mχ is maximal when the inflaton condensate passes through the
origin, while its absolute value is minimal, adiabaticity is maximally violated and
particle production efficient in a region around φ = 0. Neglecting the bare mass
m̄χ, the condition for violation of adiabaticity Eq. (2.31) implies

g|φ̇| " g2|φ|2. (2.32)

For a harmonic oscillator of mass m, the velocity of the field in the minimum of the
effective potential can be written as |φ̇| = mφ0, where φ0 is the initial amplitude of the
field. Particle production thus occurs within the region

|φ| ! |φ∗| ≡

√
mφ0
g

, (2.33)
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where we have defined φ∗ as the value of the inflaton condensate when particle produc-
tion begins. In general this interval is very short, and the particle production occurs
nearly instantaneously, within the time

∆t ∼ |φ∗|
|φ̇|

∼ (gmφ0)
−1/2 . (2.34)

The uncertainty principle then implies that the particles will typically be created with
momenta

k ∼ ∆t−1 ∼ (gmφ0)
1/2 . (2.35)

The particles are estimated to be produced with an occupation number [38]

nk $ exp

(

−π
k2 + m̄2

χ

g|φ̇|

)

, (2.36)

which is valid also for a vanishing bare mass m̄χ. An integration over the momentum
yields the number density of particles produced during one oscillation

nχ $ 1

2π2

∫
dk k2nk ∼ (gφ̇)3/2

8π3
exp

(
−
πm̄2

χ

g|φ̇|

)
. (2.37)

In the case that m̄2
χ ! g|φ̇|, there is no exponential suppression, and χ particles are

created with a large number density. Depending on the mass and couplings of the
given inflationary model, the mass of these particles can be quite large, even a few
orders of magnitude above the inflaton mass. In general the produced particles are far
away from thermal equilibrium, and hence decay further immediately after preheating.
Eventually, the decay products thermalize and the hot big bang era takes off.

Instant preheating

Let us suppose now that the boson χ couples to another field, which we here take to
be a fermionic field ψ, through the interaction

LI = −hψ̄ψχ. (2.38)

As the inflaton starts its oscillations, at the bottom of the first oscillation the effective
mass of χ reaches its minimum and field quanta are copiously produced. As the in-
flaton climbs up its potential again, the mass of the produced χ particles grows and,
finally, when the mass is large enough the field decays into ψ particles. This process
damps the inflaton oscillations very efficiently, and preheating may take place nearly
instantaneously, during just a single inflaton oscillation [39]. Furthermore, this instant
preheating process allows for production of particles with masses even two orders of
magnitude greater than those produced by the usual preheating mechanism.

While here we have discussed the non-perturbative production of particles through
parametric resonance of the oscillating inflaton field, similar processes can of course
take place for any oscillating scalar field with interactions. In Section 3.3 we shall return
to the discussion of this production mechanism, but in the context of supersymmetric
flat directions.
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2.3.3 The primordial perturbations

So far, we have considered only the homogeneous part of the inflaton. During inflation,
however, any scalar field including the inflaton will experience quantum fluctuations
[40, 41]. Since the inflaton dominates the energy density of the universe during infla-
tion, its fluctuations generate perturbations also in the energy density and the back-
ground metric. After inflation, when the universe becomes matter dominated, these
metric perturbations induce matter perturbations, which may eventually be seen as the
temperature fluctuations in the CMB and as the large scale structure of the universe.

Whereas the inflationary paradigm was originally proposed on other grounds, the
remarkable fact that it is able to provide such a simple and elegant explanation for the
origin of the primordial perturbations is nowadays considered its main virtue. Here we
very briefly survey the generation of primordial metric perturbations during inflation,
in order to understand what constraints the CMB observations can place on inflationary
models. For more detailed analyses, see for example Refs. [12, 42]. Since statistical
information is extracted from the observations in terms of correlation functions of the
temperature fluctuations, our primary goal shall be to identify the correlation functions
of the primordial perturbations.

The generation of perturbations during inflation

Perturbations of the metric can in general be decomposed into scalar, vector and tensor
degrees of freedom, which evolve independently from each other at the linear level
[43, 44]. During inflation, only scalar and tensor perturbations are produced. We
focus on the scalar perturbations, which couple to density and pressure perturbations,
and are thus the most relevant ones for the growth of structure. First order scalar
perturbations around the flat FRW solution can be represented by the metric

ds2 = −(1 + 2φ)dt2 + 2a∂iBdtdxi + a2(t)
(
(1 − 2ψ)δij + 2∂i∂jE

)
dxidxj. (2.39)

The generation of perturbations during inflation is convenient to treat in the spatially
flat gauge, in which the spatial part of the metric reads simply gij = a2δij . The
equation of motion for the Fourier modes δφk(t) of the inflaton perturbation δφ(x),
derived from Eq. (2.19), is then solved in the slow-roll approximation by [45]

δφk(t) =
iH√
2k3

(
1− ik

aH

)
e

ik
aH (2.40)

and its complex conjugate δφ∗k(t), where it has been assumed that m ( H and H is
treated as a constant. Upon quantization these solutions become the mode functions
of the inflaton perturbation operator δφ̂k(t) = δφk(t)âk+δφ∗k(t)â

†
−k, and the two-point

function can be written as [46]

〈δφ̂k(t)δφ̂k′(t)〉 = (2π)3δ(k− k′)|δφk(t)|2. (2.41)

For wavelengths well within the horizon, k / aH, the perturbations are oscillatory,
corresponding to standard vacuum fluctuations. After horizon crossing, however, the
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perturbations eventually freeze as the solution, Eq. (2.40), approaches a constant value
for k ( aH. Consequently also the two-point function freezes to a constant value

〈δφ̂kδφ̂k′〉 = (2π)3δ(k− k′)
H2

2k3
, (2.42)

and the perturbations essentially become classical quantities.

The curvature perturbation

Throughout the previous calculation, we have treated the Hubble parameter as a con-
stant. Consequently, all results, including the constancy of the super-horizon fluctu-
ations holds only for a given value of H. During inflation, H changes slowly enough
that it can with reason be approximated to a constant during the evolution of a given
scale through the horizon. For following the evolution of the perturbations after hori-
zon exit, however, and for relating them to the CMB observations, it is convenient to
interpret them in terms of metric perturbations.

To this end, a useful quantity is the metric perturbation ψ of Eq. (2.39), also
referred to as the curvature perturbation, which determines the perturbation in the
spatial curvature scalar (3)R induced by the metric perturbations,

(3)R =
4

a2
∇2ψ. (2.43)

The primordial perturbations generated during inflation are commonly expressed in
terms of the curvature perturbation evaluated in the uniform energy density gauge [47]

ζ = ψ|δρ=0 = ψ +
H

ρ̇0
δρ, (2.44)

where the right hand side corresponds to the quantity in any given gauge. The virtue
of this definition is that, for adiabatic perturbations, such as are created during slow-
roll inflation, it remains constant on super-horizon scales. Another commonly used
quantity is the curvature perturbation evaluated in the comoving gauge

R = ψ|δφ=0 = ψ +
H

φ̇
δφ, (2.45)

which is given here for a scalar field dominated universe.
On large scales, these two quantities approximately coincide, and may be used

interchangeably. From R, which is directly related to the inflaton perturbation, it is
easy to find the translation between the two. In the spatially flat gauge R = H

φ̇
δφ, and

we obtain the two-point function for the curvature perturbations

〈RkRk′〉 = H2

φ̇2
〈δφ̂kδφ̂k′〉 = (2π)3δ(k − k′)

H2

φ̇2
H2

2k3
. (2.46)

Cosmological density fields provide an example of the ergodic property, which implies
that averages over a large volume tend to the same answer as averages over a statistical
ensemble. Thanks to this property of statistical random fields, these ensemble aver-
ages predicted by slow-roll inflation can rightfully be compared to the spatial averages
observed in the CMB.
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2.4 Inflationary potentials: observables and constraints

In the previous section, we have discussed how inflation driven by a scalar field success-
fully explains aspects of the observed universe, which cannot be accounted for within
the hot big bang model. In our treatment, however, we have considered only a general
scalar field, without any mention of the form of the potential. Let us now take a step
further, and discuss how inflationary potentials can be constrained with observational
data, in order to single out potentials that can indeed lead to a successful period of
inflation in light of these constraints.

We shall continue to make the assumption that inflation takes place within the
slow-roll regime, which already in itself poses some constraints on the potential. In
particular when it comes to identifying inflationary models within some well-motivated
particle physics theory, potentials that satisfy the slow-roll conditions for a sufficient
period of time are non-trivial to come by. Here we will, nevertheless, consider the
inflationary potential from a purely phenomenological perspective and postpone the
discussion of embedding inflation into particle theory to Chapter 5.

2.4.1 The amount of expansion

To explain the observed flatness and homogeneity, the inflationary expansion must have
lasted sufficiently long for an initial region of space inside the causal horizon to grow
at least to the size of the observable universe today. The amount of expansion during
inflation is conveniently expressed through the number of e-folds

N(t) = ln
a(tend)

a(t)
, (2.47)

which measures the factor by which the scale factor grows between some time t during
inflation and the end of inflation at tend [11]. For slow roll inflation, this can be written
as

N(t) =

∫ tend

t
Hdt $ − 1

M2
P

∫ φend

φ

V

V ′dφ, (2.48)

where φend is the value of the inflaton at the end of inflation, defined by the violation of
the slow-roll conditions Eq. (2.26). In typical models of inflation, the scales correspond-
ing to the current size of the universe have grown larger than the horizon about 50-70
e-folds before the end of inflation [48], which is thus the minimum required number.
In most single-field models, however, the total number of e-folds is much greater.

Although the total number of e-folds during inflation is a highly model dependent
quantity, it is not an observable, and hence cannot be used to distinguish between
otherwise viable potentials. The cosmological data, including the CMB observations,
only probes the first 10 or so of the last 60 e-folds before the end of inflation [8]. The
best, if not only, means of testing inflationary potentials is thus to compare theoretical
predictions of the properties of the primordial perturbations with the perturbations
observed in the CMB.
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2.4.2 Predictions from the primordial spectrum

In the previous section, we derived an expression for the two-point correlation function
Eq. (2.46) of the primordial curvature perturbation produced in slow-roll inflation.
From the correlation function we define the power spectrum PR(k) of the curvature
perturbation as follows

〈RkRk′〉 = (2π)3δ(k − k′)
2π2

k3
PR(k). (2.49)

The shape of the primordial power spectrum is a very powerful and convenient tool for
constraining inflaton potentials. By Eq. (2.46), single field slow-roll inflation generates
primordial perturbations with the power spectrum [11]

PR(k) $
(
H

2π

)2(H

φ̇

)2

$ 1

24π2M4
P

V

ε
, (2.50)

where H, V and ε are to be determined at the horizon exit of the scale k. Since the
amplitude of the primordial perturbations is controlled by the quantity V/ε, measure-
ments of this amplitude provide information about the energy scale which dominates
the universe during inflation.

Another important observable is the spectral index ns, which measures the depen-
dence of the power spectrum on the wave number k. The scale dependence of the
curvature power spectrum is given by the scalar spectral index, which is defined as

ns(k)− 1 ≡ d lnPR(k)

d ln k
$ 2η − 6ε, (2.51)

where the latter expression is valid to first order in the slow-roll parameters. Also
the scale dependence, i.e. running, of the scalar spectral index dns(k)/d ln k is an
observationally relevant quantity, which is of second order in the slow-roll parameters
[49].

Similarly to the spectrum of curvature perturbations, one can calculate the spec-
trum of gravitational waves Ph(k) from the two-point correlation function of the tensor
perturbations [44]. For slow-roll inflation the spectrum takes the form

Ph(k) $
8

MP

(
H

2π

)2

$ 2

3π2
V

M4
P

. (2.52)

An analogous expression to Eq. (2.51) can be written for the tensor part of the pri-
mordial spectrum. By custom, however, the tensor spectral index is defined as

nt(k) ≡
d lnPh(k)

d ln k
$ −2ε. (2.53)

Constraints from observations

The overall amplitude of the primordial curvature perturbations can be determined
from the CMB observations. The best-fit value from the latest measurements reads [4]

PR(k0) = 2.41× 10−9, (2.54)
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evaluated at the scale k0 = 0.002Mpc−1. Requiring that the spectrum, Eq. (2.50),
predicted by slow-roll inflation fits this value imposes an important constraint on the
inflationary energy scale

(
V

ε

)1/4

$ 0.027MP $ 6.6× 1016 GeV, (2.55)

with V and ε assumed to be evaluated at the horizon crossing of the scale k0. Since the
slow-roll conditions require ε < 1, the constraint implies that the inflationary energy
scale must be at least a couple of orders of magnitude below the Planck scale, although
it can be much smaller for smaller ε. Observations of the tensor part of the spectrum,
which in slow-roll inflation is proportional to the potential only, could help determine
the value of the inflationary potential and the slow-roll parameter ε separately.

Unfortunately, current data is not able to directly detect any tensor perturbations,
but some bounds on their magnitude can be inferred. Observational constraints on the
tensor spectrum are usually expressed in terms of the relation between the tensor and
the scalar power spectrum [50]

r ≡ Pt(k)

PR(k)
$ 16ε $ −8nt, (2.56)

which is proportional to the tensor spectral index in the slow-roll approximation. In
fact, this relation is often termed the consistency equation for slow-roll inflation, since
a measurement of the two amplitudes involved could disprove the framework, if they
were found not to satisfy the proportionality relation. The tensor spectral index,
nevertheless, remains completely unconstrained by observations and is usually not even
considered a free parameter in cosmological data analysis, but its value is enforced by
the consistency condition Eq. (2.56).

Observations of both the tensor-to-scalar ratio and the scalar spectral index pro-
vide further constraints on specific inflationary models. Due to degeneracies in the
parameter space, these cannot be determined independently of one another. Assuming
that the running of the scalar spectral index is negligible, the tensor-to-scalar ratio is
constrained to r < 0.20 [8]. In this case the best-fit value for the scalar spectral index
reads

ns = 0.968 ± 0.015, (2.57)

indicating a preference for a slightly tilted spectrum, consistent with slow-roll inflation.
If significant running of the spectral index is allowed for, however, the bounds are
considerably relaxed. At present, the data shows no preference for a running spectral
index, but the possibility cannot be ruled out.

Another important observable is the statistical nature of the primordial perturba-
tions [51]. Since inflation requires such flat potentials, the fluctuations in the inflaton
field are very weakly coupled to one another. This implies that the primordial density
fluctuations obey gaussian statistics. To date no non-gaussian correlations have been
seen in the CMB, but the existence of small non-gaussianities cannot be excluded [8].
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2.4.3 Models of inflation

Single-field inflationary models can be classified into two general categories: large-field
and small-field models, according to the change in the vacuum expectation value (vev)
of the inflaton during inflation. Also a third category, hybrid inflation, is closely related
to the single-field models, even though it requires the presence of two scalar fields. Here
we very briefly outline the main features of each category; more details can be found
in Refs. [11, 48].

Large-field models

In large-field models the inflaton field is initially displaced far from its minimum, usu-
ally even at values larger than the Planck scale, from where it rolls towards its minimum
at the origin. The typical example is chaotic inflation [41], referring to models with
monomial potentials V (φ) ∝ φp. These models are characterized by chaotic initial
conditions, which presumably correspond to some sort of quantum gravity or string
state. Within this chaotic quantum gravity state, it can generically be assumed, with-
out detailed knowledge of its nature, that a large enough region eventually becomes
dominated by some scalar field and starts to inflate. This explanation for the initial
conditions is a big advantage of the chaotic model. The required large field values of
the inflaton, on the other hand, are a potential source of problems, although it can be
argued that they pose no real problem if the self-coupling of the inflation is small so
that the value of the potential stays well below M4

P .
In the most recent CMB observations, the precision is high enough that some of

the chaotic inflation models can be excluded by the data [8]. This is the case in
particular for the p = 4 case, which previously was considered a viable inflationary
model on theoretical grounds. The simplest case with a quadratic potential, however,
still remains in agreement with data.

Small-field models

Sub-Planckian field values can be achieved in models with polynomial potentials. In
such models, the inflationary energy scale is typically smaller than for large field models,
and consequently tighter constraints on the flatness of the potential are usually implied,
with the risk of requiring fine-tuning. For example, in small-field inflation the initial
value of the inflaton is often required to be specified very precisely. Due to the low
inflationary scale, these models can usually not be constrained by observations. On the
other hand, small-field models are in general easier to connect to some known physics,
since non-renormalizable extensions of the Standard Model can be trusted at least to
some extent. The inflationary scenario discussed in Chapter 5 provides an example of
a model within this category.

Hybrid models

In hybrid models of inflation [52], the expansion occurs through the interplay of two
scalar fields. The dynamics during inflation is that of a single field in slow-roll, whereas
the end of inflation is induced by the second field settling in its true minimum. For this
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reason, hybrid models can usually be constructed with sub-Planckian vevs and have
a close connection to particle physics [53]. Nevertheless, the parameter space of the
simplest hybrid models is strongly constrained by CMB observations, unless significant
running of the spectral index is allowed for [8].

2.5 Beyond inflation

From a phenomenological perspective, the fact that a model as simple as single-field
slow-roll inflation is able to solve several fundamental cosmological problems renders
the inflationary scenario a very attractive possibility. The additional feature that even
the most elementary models, such as chaotic inflation with a quadratic potential, can
account for the primordial spectrum of temperature fluctuations, seemingly in perfect
agreement with cosmological observations, only further adds to its appeal. However
simple and compelling, scalar field inflation is, nevertheless, not entirely satisfactory
from a theoretical point of view. Some of its problems can merely be accounted issues
of naturalness and fine-tuning, but others are of a more conceptual nature. Here we
review a few of the most pressing of these issues in short and discuss their implications
for our understanding of the very early universe.

Shortcomings of inflation

As already alluded to above, the success of many inflationary models relies on having
specific initial conditions for the inflaton field. Given that the main motivation for
inflation is to provide a physical explanation for the otherwise highly fine-tuned initial
conditions required for the success of the hot big bang, one might question whether
there is really a call for inflation after all. Although one can reasonably argue that the
fine-tuning of initial conditions required for inflation is less severe than that for the hot
big bang, a resolution to this issue would certainly place the motivation for inflation
on more solid ground.

Another important problem is the question of trans-Planckian effects in the pri-
mordial perturbations, see e.g. [54]. In scalar field inflation, the generation of primor-
dial perturbations relies on microscopic quantum fluctuations during inflation being
magnified by the enormous expansion of space into cosmic scale perturbations. The
initial state of these quantum fluctuations is typically assumed to be given by the
Bunch-Davies vacuum of de Sitter space. The choice of vacuum, however, can only
be affirmed by assuming that a given fluctuation mode can be followed to arbitrar-
ily small scales, since in general the notion of a vacuum in an expanding spacetime
is not unique. Nonetheless, the calculation of the perturbations is performed in the
semi-classical theory, where scalar fields are treated quantum mechanically, while the
background geometry is treated classically in Einstein’s theory of General Relativity.
It is obvious that such a framework cannot in general be expected to be valid at length
scales smaller than the Planck scale. Hence, the most attractive feature of the infla-
tionary paradigm, the prediction of the origin of the primordial perturbations, is based
on calculations whose validity cannot be guaranteed.

While this might give reason to question the validity of inflationary predictions
altogether, it also opens up the possibility of probing physics beyond the Planck scale
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through inflation. Several approaches towards estimating the possible magnitude and
nature of such trans-Planckian corrections have been suggested. Although the question
is not entirely settled, the magnitude of the effect is believed to be fairly small, but
might, in fact, be observable in the near future [55].

Looking beyond inflation

Apart from the problems discussed above, there are a number of issues that were
originally considered problems of the hot big bang model, which inflation completely
fails to address, leaving them fully unresolved. One such issue, which we will discuss
further in Chapter 6, is the problem of the initial singularity, which cannot be avoided
in a cosmology based on Einstein’s field equations if the matter source obeys the weak
energy condition. The singularity theorem has also been generalized to apply to any
manifold on which the local Hubble parameter measured by an observer on a null or
time-like geodesic is bounded from below by a positive constant in the past [56]. This
implies that even in scalar field-driven inflationary cosmology, a past singularity at
some point in space is inevitable. A consistent model of the primordial universe, on
the other hand, would either need to be non-singular or have a controlled singularity
that does not lie outside its domain of validity.

One might note that the problems discussed above can all be associated with our
ignorance about the physics which governs the energy scales around the Planck scale,
which inflation comes very close to probing. Some of these problems could thus be
naturally resolved by whatever theory of quantum gravity that resolves the ultraviolet
problems of the Standard Model. This quantum gravity theory may well lead to a
period of cosmological inflation, making the primordial perturbations a testing ground
for fundamental physics. However, the possibility of alternative scenarios for the early
universe should perhaps not be forgotten. Single-field slow-roll inflation is after all
only one possible way of making inflation theoretically possible, but inflation does not
necessarily require a scalar field at all. Moreover, the flatness and horizon problems and
even the generation of primordial perturbations may eventually be explained without
any period of inflation whatsoever.



Chapter 3

Supersymmetry and friends

In the previous chapter we have highlighted several cosmological problems that cannot
be satisfactorily addressed with the physics of the Standard Model. In the enclosed
research papers, to be discussed in Chapters 4-6, we consider a number of these issues,
assuming that physics beyond the Standard Model exhibits supersymmetry. To facili-
tate the coming presentations, we here briefly review the basics of the supersymmetric
framework. As the main focus of this thesis is on the cosmological questions, we re-
frain from arguing the case for supersymmetry and by no means attempt to provide a
complete introduction to this vast topic. We simply present, in a rather concise form,
the tools and concepts that are required for following the treatment in the subsequent
chapters.

Since the early universe corresponds to high energy scales, supersymmetry in this
context implies supergravity, and possibly also string theory, see e.g. [57]. The former
two are reviewed in Sections 3.1 and 3.2, respectively, with emphasis on the scalar
sector of the theories. More detailed accounts of the subjects covered can be found
in several excellent reviews on low-energy supersymmetry [58, 59]. Section 3.3 is then
devoted to supersymmetric flat directions, which play a particularly important role in
the early universe [60]. Although we will on several occasions further on in this thesis
touch upon the subject of string theory, we choose not to discuss it here, since even a
very compact introduction to the relevant topics would take up a disproportionate part
of this work. Instead, we refer the reader to some basic texts on string theory [61].

3.1 Supersymmetry

Supersymmetry can be realized either as a global or a local symmetry. We will first
consider the case of global supersymmetry, and make the generalization to local super-
symmetry below. In order to make the connection to low-energy physics, we focus on
N = 1 supersymmetry in four dimensions. The supersymmetry algebra then has two
irreducible representations containing fields of spin less than or equal to one: chiral
and vector supermultiplets.

The chiral superfieldΦ( θ, θ̄, x) carries the field contents of the chiral supermultiplet:
a Weyl spinor ψα(x) and a complex scalar φ(x). In addition, it contains an
auxiliary complex scalar field F (x), which encodes off-shell degrees of freedom.
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The vector superfield V (θ, θ̄, x) contains a massless gauge field Aµ(x) and its super-
partner, a Weyl spinor λα(x), along with a real auxiliary scalar field D(x).

To write down the action for a set of chiral superfieldsΦ n, transforming in some
representation of a gauge group G, a vector superfield V a is introduced for each gauge
generator [62]. In the representation defined by the scalar fields (excluding the possible
Fayet-Iliopoulos term) the most general renormalizable Lagrangian is then

L =
∑

n

∫
d4θΦ†

ne
V Φn +

1

4g2

∫
d2θW 2

α + h.c.+

∫
d2θW (Φn) + h.c. (3.1)

Here V = T aVa, where T a are the hermitian generators of the gauge group G and
Wα is the superspace analogue of the gauge invariant field strength Fµν . The super-
potential W (Φ) is a holomorphic function of the chiral superfields, which determines
the interactions between fields in the chiral multiplet. In a renormalizable theory the
superpotential can be at most cubic in the fields, corresponding to a quartic potential.

The scalar potential

Of particular relevance for the topics treated in this thesis, is the potential for the
scalar components of the chiral multiplet, which can be identified from the Lagrangian
Eq. (3.1) as

V (φn,φ
∗
n) =

∑

n

|Fn|2 +
1

2

∑

a

DaD
a. (3.2)

The F - and D-terms are obtained from the equations of motion of the auxiliary fields
in the chiral and vector multiplets, respectively

F ∗
n =

∂W

∂φn
, Da =

∑

m,n

(gaφ∗mT a
mnφn) . (3.3)

In supersymmetry, unlike in the Standard Model, the scalar potential is evidently
strongly constrained by gauge symmetries and supersymmetry. An important conse-
quence of this is the existence of a number of directions in the space spanned by the
scalar fields, known as flat directions, along which the potential is exactly zero. We
will return to these in more detail in Section 3.3.

3.1.1 The Minimal Supersymmetric Standard Model

In the minimal supersymmetric extension of the Standard Model (MSSM), the gauge
symmetry is still SU(3)×SU(2)×U(1), but every particle has a supersymmetric partner
(sparticle) with the same quantum numbers. For each fermion, a chiral superfield with
a spin zero sfermion is introduced. Likewise, every gauge field is partnered with a
spin 1/2 gaugino into a vector superfield. In addition, two chiral Higgs doublets of
opposite hypercharge, each containing a Higgs boson and a spin 1/2 higgsino, need to
be introduced to couple to up- and down-type quarks respectively.

The superpotential of the chiral superfields in the MSSM can be written in the form

W = huūQHu − hdd̄QHd − heēLHd + µHuHd, (3.4)
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where all gauge and flavor indices are suppressed. The quark and lepton superfields are
denoted by Q, L, ū, d̄ and ē, with barred fields representing SU(2) singlets, while Hu

and Hd are the Higgs doublets. Finally hu, hd, he are the Yukawa coupling matrices
in flavor space, and the µ-term is a supersymmetric mass term for the Higgs fields.
Although the term is a supersymmetry preserving quantity, it is forced to be of similar
magnitude, µ ∼ 100 GeV, as quantities that break supersymmetry, in order for the
electro-weak symmetry breaking to be phenomenologically viable [63]. The scalar com-
ponents of the Higgs bosons have the vacuum expectation values 〈Hu〉 ≡ vu = v sin β
and 〈Hd〉 ≡ vd = v cos β, where v = 174 GeV is the electroweak breaking scale. Their
ratio is thus given by

tan β ≡ vu
vd

. (3.5)

The superpotential Eq. (3.4) is the minimal one required for a phenomenologically vi-
able model. In addition, there is a set of dimension four terms permitted by the gauge
symmetries. These terms, however, violate baryon and lepton number and hence pro-
duce proton decay, unless couplings are highly fine-tuned. A simple solution to the
problem with proton stability, is to impose a discrete Z2 symmetry, known as R-parity
[64]. Under this symmetry, all ordinary particles are even, while their superpartners
are odd. Under exact R-parity, no mixing between particles and sparticles is allowed,
which eliminates all of the dangerous operators. Apart from solving the immediate
problem, R-parity has several phenomenological consequences. Most importantly, it
predicts that the lightest supersymmetric particle (LSP) is stable and weakly interact-
ing, making it an excellent dark matter candidate [65].

3.1.2 Supersymmetry breaking

The supersymmetry algebra implies that particles in the same supermultiplet have
equal masses, but so far no supersymmetric partners of any Standard Model particles
have been observed. Consequently, if supersymmetry is indeed a symmetry of nature,
it must be broken at low energies.

Global supersymmetry can be broken either spontaneously or explicitly. From a
theoretical point of view, it is expected to be an exact symmetry that is spontaneously
broken by a non-invariant vacuum state, Qā|0〉 &= 0, where Qā is the supersymmetry
generator. The expectation value of the total energy

〈H〉 = 1

4

(
‖Q†

1|0〉‖
2 + ‖Q1|0〉‖2 + ‖Q†

2|0〉‖
2 + ‖Q2|0〉‖2

)
≥ 0 (3.6)

works as an order parameter for spontaneous symmetry breaking. The vacuum energy
is zero only when supersymmetry is unbroken. Consequently, supersymmetry is spon-
taneously broken if at least one of the F - and D-terms in the scalar potential Eq. (3.2)
has a non-vanishing vev

〈Fn〉 &= 0 or 〈Da〉 &= 0. (3.7)

Spontaneous symmetry breaking in general implies the existence of a massless Nambu-
Goldstone particle with the same quantum numbers as the symmetry generator. In
supersymmetry this is the goldstino: the fermionic component of the supermultiplet in
which the auxiliary field whose vev breaks supersymmetry resides.
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In the absence of a well defined ultraviolet completion of the MSSM, numerous
phenomenological models for spontaneous symmetry breaking have been proposed. The
standard procedure amounts to extending the theory with some set of fields, the hidden
sector, which are responsible for the symmetry breaking [66]. The models are classified
as gravity-mediated if the interaction between the standard fields and the hidden sector
is of gravitational strength. In this case the scale of the symmetry breaking particles
is intermediate between the Planck and the weak scale. Alternatively, in the gauge-
mediated models, the breaking takes place at some much lower energy with gauge
interactions serving as the messenger fields [67]. In the following section, we shall
discuss the gravity mediated scenario in more detail, in the context of supergravity.

Soft breaking

At low energies, however, most of the supersymmetry breaking models simply give rise
to an effective Lagrangian that is supersymmetric, apart from explicit supersymmetry
breaking terms. From the low energy perspective, it is hence practical to ignore the
details of supersymmetry breaking and simply parameterize its effect by introducing
explicit supersymmetry breaking interactions.

Let us write the effective Lagrangian as L = LSUSY+Lsoft, where Lsoft is the super-
symmetry violating part. For such a theory to maintain its solution to the hierarchy
problem, the explicit supersymmetry breaking terms must be soft, i.e. have couplings
with positive mass dimension. The most general renormalizable soft supersymmetry
breaking Lagrangian for the MSSM can be written as [68]

Lsoft = −1

2

(
Maλ

aλa +
1

3
Aijkφiφjφk + bijφiφj

)
+ h.c.− (m2)ijφ∗iφj , (3.8)

where Ma and m2 stand for gaugino and scalar masses respectively, and Aijk and bij

are trilinear and bilinear scalar couplings. With Lsoft of the form above, quantum
corrections to the Higgs mass from the supersymmetry breaking terms will be propor-
tional to msoft, the largest scale associated with Lsoft. To naturally produce the right
value for the Higgs vev, msoft ! 1 TeV is required.

3.2 Supergravity

So far we have considered only global supersymmetry, with the additional assumption of
renormalizability. If supersymmetry is not merely an accidental symmetry, however, it
must be a local one. When the supersymmetry is made local, invariance under general
coordinate transformations is necessarily imposed, and hence the theory automatically
includes gravity. The theory of supergravity, like other theories of gravity, is in general
thought to be non-renormalizable.1 The field content of supergravity thus includes an
additional representation: the gravity supermultiplet, with a massless graviton hµν and
its superpartner the spin 3/2 gravitinoΨ µ. The chiral and vector supermultiplets are

1However, some recent studies suggest that supergravity with eight sets of supersymmetry genera-
tors could be finite in the ultraviolet limit [69].
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defined as in supersymmetry, but their interactions are generalized as the requirement
of renormalizability is relaxed.

The full supergravity Lagrangian, which can be found e.g. in Ref. [70], will not be
necessary for our purposes. Here we focus on the effective Lagrangian for the chiral
and vector superfields, which reduces to the one of global supersymmetry in the limit
MP → ∞. Including terms of up to two derivatives, the Lagrangian

L =

∫
d4θ

∑

n

K(Φ∗
n,Φn) +

∫
d2θ

(
∑

ab

fab(Φn)W
a
αW

αb +W (Φn) + h.c.

)
, (3.9)

which contains within it the most general non-renormalizable supersymmetric theory,
is fully specified by three functions as follows. The Kähler potential K(Φ∗

n,Φn) is a real,
gauge invariant function of both the chiral fields and their conjugates; it determines the
kinetic terms of the scalar fields. The gauge kinetic function fab(Φn) is a dimensionless
holomorphic function of the fields, symmetric in indices a and b, and gives the couplings
between fields in the gauge multiplet. The superpotential W (Φn) is defined as above
but can now include any holomorphic and gauge invariant combination of the fields
such that its dimension is [mass]3.

The scalar potential

Again, we are particularly interested in the Lagrangian of the scalar components of the
chiral superfields. Since the Kähler potential is an arbitrary real function of the fields,
the scalar kinetic term is in general non-canonical. Using the convention where lower
indices m and m̄ refer to derivation with respect to φm and φ∗m, the kinetic term reads

Lkin = −1

2

∑

m,n

Kn̄m∂µφ
∗
n̄∂

µφm. (3.10)

The scalar potential, which is a generalization of the potential in global supersymmetry,
takes the form

V (φ∗n,φn) = eG
(
Kmn̄GmGn̄ − 3

)
+

1

2

(
Ref−1

ab

)
DaDb. (3.11)

Here Kmn̄ is the inverse of the Kähler metric Kn̄m and is used to raise lower indices.
The potential has been written in terms of the function G = K+ln(|W |2), which yields
the supergravity generalization of the F -term

Fm = eG/2Kmn̄Gn̄. (3.12)

The contribution from the gauge sector is again encoded in the D-term, which here
takes the form

Da = −g
∑

m,n

GmT a
mnφn. (3.13)
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3.2.1 Supersymmetry breaking in supergravity

Similarly to global supersymmetry, supergravity is spontaneously broken when at least
one of the F - or D-terms obtains a non-zero vev

〈Fm〉 &= 0 or 〈Da〉 &= 0. (3.14)

Unlike in supersymmetry, however, this does not necessarily imply that the scalar
potential Eq. (3.11) and the energy have positive vevs. This allows for the vacuum
energy to be arbitrarily small, which is an attractive feature in light of the very small
value for the vacuum energy density measured by cosmological observations.

Supergravity provides a natural framework for gravity mediated models of super-
symmetry breaking. In these models, local supersymmetry is assumed to be spon-
taneously broken in a hidden sector and mediated to the visible sector through non-
renormalizable Planck-suppressed couplings between the two sectors, see Ref. [59]. At
tree-level, the soft supersymmetry breaking parameters can be derived straight from
the Lagrangian Eq. (3.9). The details of the resulting soft terms thus depend on the
particular supergravity model, i.e. on the form of the functions K, fab and W . Given
a more fundamental theory, such as string theory, which yields supergravity as a low
energy limit, these functions can in principle be derived by integrating out massive
modes. In the absence of such a theory, however, one simply needs to treat them on
phenomenological grounds.

F -term supergravity breaking

Here we consider supersymmetry breaking taking place in some hidden sector with
gauge singlet fields, so that supersymmetry is broken by non-vanishing F -terms in the
hidden sector. The scalar potential is then made up only by the first term in Eq. (3.11).
The assumption of a hidden sector implies that the superpotential takes the form

W = Ŵ (ha) + I(ha,Φi), (3.15)

where ha denotes the hidden sector fields andΦ i the visible sector MSSM fields. We
use the hat to denote quantities such as Ŵ (ha), which are independent ofΦ i, but are
functions of the hidden sector fields. Given the assumptions above, the scalar potential
Eq. (3.11) can be written as

V = |Ŵ |2f +
(
Ŵ I∗g + h.c.

)
+ |I|2k, (3.16)

where

f = eK
(
Kmn̄

(
KmKn̄ +

ŴmŴ ∗
n̄

|Ŵ |2
+

KmŴ ∗
n̄

Ŵ ∗
+

Km̄Ŵn

Ŵ

)
− 3

)
, (3.17)

g = eK
(
Kmn̄

(
KmKn̄ +

ImŴ ∗
n̄

IŴ ∗
+

KmŴ ∗
n̄

Ŵ ∗
+

Km̄In
I

)
− 3

)
, (3.18)

k = eK
(
Kmn̄

(
KmKn̄ +

ImI∗n̄
|I|2 +

KmI∗n̄
I∗

+
Km̄In

I

)
− 3

)
. (3.19)
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To find the explicit expression for the potential, the form of the Kähler potential as
well as the superpotential must be specified, so that the functions f , g and k can be
expanded in powers ofΦ i. In general there are three different kinds of contribution
to the potential for the visible sector fields. The first term in Eq. (3.16), which arises
from the Kähler potential and the hidden sector superpotential, gives rise to the soft
mass terms. The second term in Eq. (3.16), which mixes the hidden sector and the
visible sector superpotentials, contributes to the trilinear soft terms. The last term
yields the visible sector potential as in global supersymmetry but also contains higher
order contributions, which are absent in the global case.

To get a rough idea of the structure of the low energy theory in F -term supergravity
breaking, let us suppose that W (Φi) = 0, and that the Kähler potential takes the
minimal form K = δij . The potential for the visible sector scalars then reads

V (φ∗i ,φi) = eK̂ |Ŵ |2
∑

|φi|2, (3.20)

and the scalars all have a common soft mass

m =
〈
eK̂/2 |Ŵ |

M2
P

〉
= m3/2, (3.21)

the scale of which is set by the mass of the gravitino m3/2. In supergravity breaking, the
gravitino becomes massive by eating the degrees of freedom of the Nambu-Goldstone
boson of broken supersymmetry, the goldstino, through the super-Higgs mechanism.

3.2.2 The gravitino problem

Although the gravitino is a very weakly interacting particle, it plays an important role
in the early universe. During reheating, when the energy density stored in the infla-
ton is converted into radiation, large amounts of gravitinos can be produced through
scattering in the thermal bath. If gravitinos are overproduced during this period, they
can cause serious problems in the later cosmological evolution [71, 72].

If the gravitino is heavy and unstable, as in gravity-mediated scenarios, it poses
a threat to the success of nucleosynthesis. Since gravitinos couple to Standard Model
particles with gravitational strength, they are long-lived and can decay after the onset
of BBN. Energetic particles produced in their decays may subsequently dissociate light
elements produced in nucleosynthesis, while other elements could be overproduced,
thus spoiling the agreement with observations. Since the gravitino production rate is
proportional to the temperature, avoiding the gravitino problem leads to constraints
on the reheating temperature. In the minimal supergravity framework, depending on
the values of the supersymmetric parameters, the reheating temperature must satisfy
[73, 72]

TRH ! 105 − 106 GeV, (3.22)

unless the gravitino mass is larger than about 10 TeV, in which case the upper bound
is relaxed to 109 − 1010 GeV.

In gauge-mediated models, on the other hand, the gravitino is generically light
and stable, and constitutes the dark matter candidate. In this case the gravitino
abundance must not exceed the dark matter abundance, since this would over-close
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the universe. Furthermore, the weakness of the gravitino coupling may cause the next-
to-lightest supersymmetric particle (NLSP) to be long-lived, causing similar problems
with nucleosynthesis as above. These considerations again lead to a strict upper bound
on the reheat temperature which, depending on the nature of the NLSP, is constrained
to [74]

TRH ! 107 − 109 GeV. (3.23)

In some cases the constraints are so stringent that gravitino masses larger than 10 GeV
can be entirely excluded [72]. The strict bound on the reheating temperature implied
by the gravitino problem creates a challenge for many scenarios of the early universe.
In Chapter 4 we discuss the difficulties that the bound imposes on the model of thermal
leptogenesis.

3.3 Supersymmetric flat directions

Let us return for a moment to the case of renormalizable globally supersymmetric theo-
ries. These theories generically possess a large vacuum degeneracy, which is manifested
in the existence of a number of directions in the space of scalar fields along which the po-
tential identically vanishes [75]. As mentioned above, these flat directions, collectively
called the moduli space, are a consequence of supersymmetry and gauge symmetries,
which together constrain the terms allowed in the Lagrangian far more than gauge
symmetries alone. As we shall see some examples of in the following two chapters,
flat directions have important consequences for cosmology, where the behavior of the
theory at large field strengths is relevant, see [60] for an extensive review.

3.3.1 Identifying the flat directions

In principle, a flat direction is identified by the requirement that the scalar potential
Eq. (3.2) vanishes along it, amounting to the F - and D-flatness conditions

F ∗
n =

∂W

∂φn
= 0, Da =

∑

n

(gaφ∗mT a
mnφn) = 0. (3.24)

A more convenient means of identification, however, is provided by the correspon-
dence between flat directions and gauge-invariant, holomorphic polynomials of chiral
superfields [76]. Any D-flat direction can be parameterized by such a gauge-invariant
polynomial, Xm = Φ1Φ2 . . .Φm, which obeys a finite set of redundancy relations. The
condition of F -flatness then imposes additional constraints on the operator Xm, deter-
mined by the form of the superpotential.

Let us study as an example a flat direction of the MSSM. The full set of monomials
invariant under the MSSM gauge group, which parameterize the moduli space of the
MSSM, has been identified and classified in Ref. [77]. An example of a D- and F -
flat direction is provided by the operator X3 = LiLj ēk. The D-flatness condition is
satisfied along directions whose scalar components take the form

Li =

(
φ
0

)
, Lj =

(
0
φ

)
, ek = φ, (3.25)



3.3 Supersymmetric flat directions 33

given that i &= j. The complex field φ parameterizes the vevs of the fields along the
flat direction. It relates to the scalar component of the invariant operator as X3 = cφ3,
where c is a constant.

The MSSM superpotential Eq. (3.4) gives rise to one F -term that contains fields in
the flat direction LLē, which yields the F -flatness constraint

FαHd
= hije L

α
i ēj = 0. (3.26)

The D-flatness condition Eq. (3.25) allows for nine family combinations of LLē, out of
which five are linearly independent, leaving in total three flat directions of this type
after imposing the constraint from F -flatness.

3.3.2 Lifting the flatness

The non-renormalization theorem of global supersymmetry [78] guarantees that the
vacuum degeneracy along a flat direction will not be broken by perturbative quantum
corrections. The flatness of the potential can, nevertheless, be lifted by higher order
non-renormalizable operators in the superpotential as well as by explicit supersymme-
try breaking effects.

Non-renormalizable superpotential terms formally arise from some more fundamen-
tal theory, such as string theory, when massive degrees of freedom are integrated out.
In the absence of a specified fundamental theory, one generally includes any terms
allowed by the symmetries of the low-energy model. Flat directions are then classified
by the mass dimension of the lowest order allowed non-renormalizable term which lifts
their potential. A flat direction of dimension n can be lifted by superpotential terms
of the form [79, 80]

W ⊃ λ

nMn−3
φn, (3.27)

W ⊃ λ

Mn−3
ψφn−1, (3.28)

where λ is an effective coupling constant. As above, φ is the flat direction vev, which is
related to the corresponding invariant operator as Xm = cφm, and ψ is a visible sector
scalar field that is not included in the flat direction. The scale M denotes the cutoff
where new physics is expected to become important.

The non-renormalizable superpotential terms above both give rise to a contribution
to the scalar potential of the form

V (φ) ⊃ |λ|2

M2n−6
|φ|2n−2. (3.29)

In addition to the superpotential, supersymmetry breaking will lift the degeneracy of
the scalar field potential. In general, the contribution is given by soft supersymmetry
breaking terms, which in the simplest case take the form [79, 80]

V (φ) ⊃ m2|φ|2 + λA

nMn−3
φn, (3.30)
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where n is larger than or equal to the number of fields in the flat direction. The explicit
form of the contribution once again depends on the particular supersymmetry breaking
mechanism and the details of the model.

Let us, for example, consider a flat direction lifted by a superpotential term of the
form of Eq. (3.27). As above, we assume hidden sector F -term supergravity breaking.
The leading terms that are induced in the potential can then be expressed as [79, 80]

V (φ) =
1

2
m2|φ|2 + cos(nθ + θA)

|Aλ|
nMn−3

|φ|n +
|λ|2

M2n−6
|φ|2n−2, (3.31)

where θ and θA are the complex phases of the flat direction and Aλ, respectively. The
parameters m, λ, A and θA are in principle functions of the hidden sector fields. Their
explicit expressions can be derived from Eqs. (3.16)–(3.19) when the Kähler potential
and the hidden sector superpotential are given. In Chapter 5 we will discuss a particular
model of this kind in more detail.

3.3.3 Flat directions in the early universe

In the early universe supersymmetry is broken by the presence of a non-zero energy
density, which can give a much larger contribution to the flat direction potential than
the ones listed above. During inflation, for example, the energy density by definition
takes on a large positive value. Also after inflation, when the universe is dominated
by the oscillations of the inflaton, the vacuum energy is non-zero, hence breaking
supersymmetry. Furthermore, supersymmetry is broken even during the radiation
dominated era, by the distinct thermal occupation numbers of fermions and bosons.
Such finite energy supersymmetry breaking is then transmitted to the flat direction by
non-renormalizable interactions.

Including all possible contributions, the generic potential along a supersymmetric
flat direction φ is given by [79, 80]

V (φ) =
(
m2 − cH2

)
|φ|2 +

(
λ
A+ aH

nMn−3
φn + h.c.

)
+ |λ|2 |φ|

2n−2

M2n−6
, (3.32)

where c, a and λ are dimensionless model-dependent couplings, and m and A are the
soft breaking terms. The contribution from the finite energy supersymmetry breaking
is encoded in the Hubble parameter dependent terms, which generically dominate the
scalar potential as long as H > m. The location of the minimum of the potential
depends on the sign of the parameter c. For negative c, the minimum resides at the
origin, while for positive c and H / m, the minimum is at finite values of φ. In this
case, the flat direction condensate acquires a non-zero vev

|φ0| =
(
βHMn−3

λ

) 1
n−2

, (3.33)

where β is a numerical constant which depends on a, c, and n. Depending on the order
n at which the flat direction is lifted, the value of the non-zero vev |φ0| can be as large
as the Planck scale. During inflation the Hubble parameter is nearly constant, and
the flat direction condensate consequently sits at its minimum at φ0. After the end of
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inflation, however, when the inflaton oscillates around the bottom of its potential, the
Hubble rate and hence also the flat direction vev decrease with time. When H ∼ m/3,
the effective mass term changes sign, and the condensate rolls down towards its new
minimum at φ = 0.

Non-adiabatic particle production

If, at this point, the flat direction condensate passes close enough to the origin, pro-
duction of particles coupled to the flat direction can take place through parametric
resonance, analogously to preheating. Such non-adiabatic particle production from os-
cillating flat directions can have important repercussions in the early universe, see for
example Ref. [81].

In general, however, the terms proportional to A and to aH in the potential
Eq. (3.32) are complex with a non-vanishing relative phase θa−θA. In this case the con-
densate will spiral around the origin at φ = 0 with a non-zero θ̇ and particle production
can take place only if several flat directions are excited simultaneously [82, 81]. If the
phase-dependent terms are absent, on the other hand, particle production may occur
from only one excited flat direction. This is the case for example if the flat direction is
lifted by a non-renormalizable superpotential term of the form Eq. (3.28), so that Fψ is
non-zero along the flat direction, but W = 0 along it. Furthermore, the superpotential
may vanish along the flat direction, possibly due to a discrete R-symmetry. In such a
case, when W identically vanishes, the potential during inflation is no longer given by
Eq. (3.32), but takes the form [79, 80]

V (φ) = H2M2
p f(

|φ|2

M2
p
) +H2M2

p g(
φn

Mn
p
). (3.34)

In this case the typical value of the flat direction during inflation, rather than being
given by Eq. (3.33), is of the order of the Planck scale.

It is also worth noting that the coefficients A and a of Eq. (3.32) depend on the
specific form of the Kähler potential couplings and there are cases in which they are
suppressed by inverse powers of Mp. For instance, if the inflaton is a composite field, it
will appear in the Kähler potential only through bilinear combinations and a ∼ H/Mp.
Moreover, in the case of D-term inflation [83] (see Section 5.1) a vanishes identically
and no phase-dependent terms are generated when W = 0 along the flat direction.
We have placed particular emphasis on identifying situations in which non-adiabatic
particle production from flat directions is feasible here, since we will explore one possible
consequence of this effect in the following chapter.
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Chapter 4

Thermal leptogenesis and
supersymmetry

In Chapter 2 we have presented the observational evidence for a baryon asymmetry, and
argued that it must have been generated through some dynamical process during the
early radiation dominated era. Since Standard Model physics alone is not sufficient to
fulfill the criteria necessary for a dynamical generation of the asymmetry, the process
of baryogenesis must take place within some theory beyond the SM. In the current
chapter we consider the possibility that the baryon asymmetry is generated through
leptogenesis, which can be realized when the Standard Model is extended with a set of
heavy right-handed neutrinos, as is suggested by the see-saw mechanism for neutrino
masses [84].

We begin by presenting a few of the most commonly proposed baryogenesis models
below. In Section 4.2 we then review the see-saw mechanism and explain how it can
fulfill the Sakharov criteria for baryogenesis. This is followed by a crude quantitative
presentation of the thermal leptogenesis scenario in Section 4.3. Subsequently, we
review the consequences for the model if supersymmetry is realized in the early universe,
and discuss, in particular, the inherent conflict with the gravitino bound. In Section 4.5,
we finally outline the possible solution to this problem which was presented in the
enclosed research paper [1], making use of the non-adiabatic production of particles
from flat directions discussed above. For more thorough reviews of thermal leptogensis,
we refer the reader to Refs. [85, 86].

4.1 Models of baryogenesis

The Standard Model fails to produce the observed baryon asymmetry during the
electro-weak phase transition for two distinct reasons. Firstly, the CP violation is
too small to induce an asymmetry of the observed magnitude. Secondly, the exper-
imental lower bound on the Higgs mass implies that the phase transition cannot be
of first order, as required. The new physics responsible for baryogenesis must conse-
quently provide additional sources of CP violation, and either modify the Higgs sector
to enhance the phase transition, or provide a completely different process for departure
from equilibrium. In addition, if the asymmetry is produced before the electro-weak
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phase transition by a process other than sphalerons, this processes must violate B−L
in order to avoid sphalerons subsequently erasing the asymmetry.

The simplest option in the search for a viable baryogenesis model is then perhaps
to look for modifications to the Standard Model with new ingredients in the Higgs
sector, which could alter the strength of the phase transition. One such example is the
two Higgs doublet model [87], where the Higgs potential has more parameters and is
CP -violating, unlike the Higgs potential of the Standard Model. The most well-known
example, however, is probably the MSSM electroweak baryogenesis [45, 88], where the
presence of a light stop would modify the Higgs potential in the required way. Light
Higgsinos and gauginos, on the other hand, would provide the required enhancement
of the CP -violation. Whereas the scenario has a drawback in the small window of the
supersymmetric parameters for which baryogenesis is viable, it has the virtue of soon
being subject to experimental tests at the LHC.

Giving up on electro-weak baryogenesis [89], there is no shortage of models proposed
in the literature. The first scenarios were formulated in terms of grand unified theories
(GUT), where baryon number is violated by the interactions of heavy gauge bosons and
leptoquarks, while the departure from equilibrium could be provided in the decay of
these heavy fields, see Ref. [10]. The GUT baryogenesis scenario, however, generally has
difficulties with proton decay and unwanted relics, enforcing a lower bound on the mass
of the decaying boson, which is usually much higher than the reheating temperature in
generic models inflation. Other early proposals include the Affleck-Dine baryogenesis
[90], where the asymmetry arises in the potential of a classical scalar field, for example
a supersymmetric flat direction, which later decays into particles.

Thermal leptogenesis [91] is another scenario where the out-of-equilibrium decay of
heavy particles is the source of the baryon asymmetry. However, in this case the asym-
metry is produced in the lepton sector. Electro-weak sphaleron transitions can then
convert the lepton asymmetry into a baryon asymmetry [92], allowing for baryogenesis
through leptogenesis. The minimal successful leptogenesis scenario requires only the
addition of heavy right-handed neutrinos, as suggested by the see-saw mechanism for
neutrino masses [84]. The Yukawa couplings of the heavy neutrinos provide the neces-
sary new source of CP violation. Our focus in this chapter will be on the simplest and,
perhaps, theoretically best motivated realization of leptogenesis: thermal leptogenesis
with hierarchical singlet neutrinos.

4.2 Neutrino mass and leptogenesis

Before getting into the details of the thermal leptogenesis scenario, we here briefly
present the observational evidence for finite neutrino masses, and explain how the see-
saw mechanism with heavy right-handed neutrinos can account for them. Furthermore,
we show that the same ingredients required to generate the light neutrino masses are
sufficient to satisfy the Sakharov conditions necessary for baryogenesis.

Evidence for neutrino masses

Although, in the Standard Model neutrinos are massless, there is by now ample evi-
dence from neutrino oscillation experiments that at least two neutrinos have non-zero



4.2 Neutrino mass and leptogenesis 39

masses. Measurements of solar and atmospheric neutrino fluxes, confirmed also by
reactor and accelerator experiments, determine two mass-squared differences [32]

∆m2
sol = (7.59 ± 0.20) × 10−5 eV2, (4.1)

∆m2
atm = (2.43 ± 0.13) × 10−3 eV2. (4.2)

While the oscillation experiments measure only the mass differences, an obvious im-
plication is that the mass of the heaviest neutrino must be at least matm ≡

√
m2

atm ∼
0.05 eV. The absolute mass scale can furthermore be probed through β- and 2β-decays
as well as cosmology. The consensus of all these measurements, assuming three neutrino
flavours, is for masses in the sub-eV range

mi < 1 eV, (4.3)

where i = (1, 2, 3). For a more detailed discussion of the observational constraints on
the neutrino mass, the reader is referred to e.g. Ref. [93].

The see-saw mechanism

The Standard Model neutrinos can acquire Dirac mass terms if a set of right handed
neutrinos is added to the theory, but the smallness of the masses is difficult to explain
without fine-tuning the Yukawa couplings. In high-energy see-saw models [84], on the
other hand, sufficiently small Majorana neutrino masses are naturally induced, when
heavy particles are integrated out.

In the simplest realization of the see-saw mechanism, the so-called Type I see-saw,1

the Standard Model is extended by two or three singlet fermions, or right-handed
(RH) neutrinos, Ni with large Majorana masses Mi. Expressed in the basis in which
the Yukawa couplings for the charged leptons as well as the Majorana mass matrix are
diagonal, the extended Lagrangian reads schematically

L = LSM +

(
iN̄i∂/Ni −

1

2
MiN

2
i + hiαN̄i1αH + h.c.

)
. (4.4)

Here 1α indicates the lepton doublet with flavour α = (e, µ,τ ) respectively, and H
is the Higgs field. The effective light neutrino mass matrix mν is related to the RH
neutrino mass matrix M through the see-saw formula,

mν = −mD
1

M
mT

D, (4.5)

where mD = hv is the Dirac neutrino mass matrix generated after spontaneous sym-
metry breaking by the Yukawa coupling matrix h and the Higgs vev v = 174 GeV.

With a Dirac mass at the electroweak scale, light neutrino masses mi ! 1 eV are
generated, as long as the RH neutrino masses are large, typically close to the grand
unified scale. The see-saw mechanism thus elegantly solves the problem of generating
small neutrino masses in a natural way. The attractiveness of the model is further
enhanced by the fact that heavy RH neutrinos have a natural connection with grand
unification; e.g. the grand unified group SO(10) [96] predicts the existence of such
fermionic singlets.

1Also type II (with SU(2)-triplet scalars) [94] and type III (with SU(2)-triplet fermions) [95] see-saw
models exist.
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The Sakharov conditions

Generating small neutrino masses is not the only virtue of the see-saw mechanism: it
also contains all the necessary ingredients for baryogenesis through thermal leptogene-
sis, as first proposed by Fukugita and Yanagida [91]. Let us now see how the Sakharov
conditions are satisfied in thermal leptogenesis.

1. The RH neutrinos violate lepton number through their decay into leptons and
antileptons N → 1H, 1̄H̄. In addition, sphaleron transitions, which break B and
L but conserve B − L, can transfer lepton number into baryon number. Within
the temperature range [97]

TEW ! T ! 1012 GeV, (4.6)

when sphalerons are in thermal equilibrium and unsuppressed, lepton number
produced in neutrino decays can thus be transferred into baryon number.

2. The Yukawa matrix hiα in the high-energy Lagrangian Eq. (4.4) is in general
complex and thus contains CP -violating phases. Out of nine complex parameters,
three can be absorbed into the lepton wave function, leaving six physical CP -
violating phases. Consequently, the neutrinos decay with different rates into
leptons and antileptons, producing a net CP asymmetry

εi = −
∑
α Γ(Ni → 1αH)−

∑
α Γ(Ni → 1̄αH̄)∑

α Γ(Ni → 1αH) +
∑
α Γ(Ni → 1̄αH̄)

. (4.7)

3. The out-of-equilibrium condition is provided by the expansion of the universe:
interaction rates slower than the Hubble rate are incapable of keeping particle
distributions in equilibrium. It is convenient to define the decay parameters

Ki ≡
ΓD(Ni → 1H, 1̄H̄)

H(T = Mi)
, (4.8)

so that the heavy neutrino Ni is out of thermal equilibrium for Ki < 1. If this
is the case during the decay of the heavy neutrinos, all the Sakharov conditions
are indeed fulfilled.

Consequently, if the light neutrino masses are indeed generated through the see-saw
mechanism, all the necessary ingredients for baryogenesis are also provided.

4.3 Thermal leptogenesis

Assuming that the light neutrino masses are indeed generated through heavy RH neu-
trinos, a population of these neutrinos will be produced by scattering processes during
or after reheating, as long as the reheating temperature is above the mass of the neu-
trinos. As the temperature drops below the neutrino mass, their equilibrium number
density becomes exponentially suppressed, and the neutrinos begin to decay. Since
the RH neutrino decay is CP -violating, an asymmetry in the number of leptons and
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anti-leptons is produced. In general, however, the neutrinos do not decay fast enough
to maintain their equilibrium density. If this is indeed the case, some of the produced
asymmetry remains, and is partly transferred into a baryon asymmetry by sphaleron
transitions.

In this section, we estimate the amount of baryon asymmetry that can be generated
through this mechanism of thermal leptogenesis and compare it to the observations.
We consider the minimal scenario, where the mass spectrum for the heavy neutrinos is
hierarchical M1 ( M2,M3, and the lightest neutrino N1 is assumed to give the main
contribution to the asymmetry. This approximation is well justified since neutrino
mixing data seems to favor a picture where the asymmetry generated by the two
heavier neutrinos is depleted before decay and can be safely ignored, even for a mild
hierarchical RH neutrino masses. To further simplify the treatment, we also ignore the
effects of lepton flavor. For a more detailed account of the estimate performed here, see
Refs. [98, 99]. Exhaustive reviews on the implications of going beyond the simplifying
assumptions made here can be found in Refs. [85, 86]

4.3.1 The produced baryon asymmetry

Given an initial N1 abundance, there are three main factors that affect the final amount
of baryon asymmetry that is produced, each corresponding roughly to one of the
Sakharov conditions. These are the CP asymmetry, the efficiency of various inter-
actions, as well as the effect of the sphaleron processes. Below we briefly estimate the
magnitude of the effect of each of these factors on the final asymmetry.

The CP asymmetry

The CP asymmetry ε parametrizes the amount of lepton asymmetry that is generated in
the RH neutrino decay. In particular, for every 1/ε neutrinos that decay, the asymmetry
in lepton number is increased by one. The CP asymmetry Eq. (4.7) arises from the
interference between the tree-level amplitude and the one-loop self-energy and vertex
correction diagrams contributing to the neutrino decay. In a basis where the RH
neutrino mass matrix is diagonal, a perturbative calculation for hierarchical neutrinos
yields [100, 101]

ε1 $
3

16π

∑

i=2,3

Im
[
(h† h)2i1

]

(h† h)11

M1

Mi
. (4.9)

Since we are ignorant of the neutrino Yukawa couplings, it is useful to write the
CP asymmetry in the form

ε1 $
3

16π

M1(m3 −m1)

v2
sin δL, (4.10)

where sin δL is known as the leptogenesis phase. The remaining part of the expression
reaches its maximum value when the neutrinos are fully hierarchical, implying m1 = 0
and m3 = matm, giving the maximal CP asymmetry [102]

εmax
1 =

3

16π

M1matm

v2
, (4.11)
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where v = 174 GeV is the electroweak breaking scale.
At this point, let us note that the CP asymmetry in the processes that produce the

neutrino population is very closely related to the CP asymmetry of the neutrino decays
presented here. In particular, in the case of hierarchical neutrinos, the CP asymmetry
in the scattering interactions by which the N1 population is produced is equal in mag-
nitude but opposite in sign to the CP asymmetry in N1 decay. A priori, this may seem
to imply that the two asymmetries cancel, making the final lepton asymmetry van-
ish; however, a non-zero final lepton asymmetry survives if the initial anti-asymmetry
produced with the neutrino population is depleted by scattering, decays, and inverse
decays. This depletion is called washout, and is crucial for the success of thermal
leptogenesis.

The efficiency factor

The final lepton number depends on what amount of the initial anti-asymmetry gen-
erated in N1 production is washed out, as well as on the final amount of N1 neutrinos
that remains present at the time of decay. The evolution of the number densities
of the heavy neutrinos and the lepton number both depend on the relation between
the neutrino decay rate and the Hubble expansion rate. Since these are inherently
non-equilibrium processes, they are studied in terms of the Boltzmann equations.

To keep the treatment at a sufficient level of accuracy, there are four classes of
processes that need to be taken into account: decays and inverse decays with∆ L = ±1,
∆L = 1 scattering processes, and ∆L = 2 scattering processes mediated by the heavier
neutrinos. The relevant Boltzmann equations, describing the dynamics of these non-
equilibrium processes, can be written in the form [103, 104]

dNN1

dz
= −(D + S) (NN1 −N eq

N1
), (4.12)

dNB−L

dz
= ε1 (D + S) (NN1 −N eq

N1
)−W1 NB−L, (4.13)

where NX denotes the abundance of X per RH neutrino in ultra-relativistic thermal
equilibrium. Furthermore, we have introduced the notation D ≡ ΓD/(Hz), similarly
also for S and W , where z = M1/T and H is the Hubble parameter. The D term
accounts for the effect of decays and inverse decays on the neutrino abundance, while
S represents the effect of∆ L = 1 scatterings. Finally, W accounts for the washout
due to inverse decays,∆ L = 1 scatterings and the non-resonant ∆L = 2 scattering
processes. Note that the second equation governing the asymmetry is written in terms
of B − L, which is unaffected by sphaleron processes.

Assuming that the asymmetry is dominantly generated by the lightest RH neutrino,
which is typically the case for a hierarchical heavy neutrino spectrum [105], the solution
for the final B − L asymmetry reads [106]

Nout
B−L = ε1 κ = −ε1

∫ ∞

zin
dz′ (D + S) (NN1 −N eq

N1
) e−

∫∞
z′ dz′′ W (z′′), (4.14)

where we have defined the efficiency factor κ. For given neutrino masses, the relevance
of the various terms in the Boltzmann equations and hence the size of κ depends
crucially on the value of the decay parameter K1 defined in Eq. (4.8).
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In the weak washout regime, K1 ( 1, the produced asymmetry is not considerably
reduced by washout effects. However, since in this case any initially existing asymmetry
is not entirely washed either, the scenario is very sensitive to initial conditions as well as
thermal corrections [107]. In the strong washout regime, K1 " 3, on the other hand, a
thermal neutrino abundance is produced regardless of the initial conditions, rendering
the scenario far more predictive. In particular for 5 ! K1 ! 100, the efficiency factor
can be approximated as [108]

κ $ 1

2K1.2
1

∼ 0.1− 0.01. (4.15)

In the weak washout regime, this result can be decreased by up to two orders of
magnitude [98, 99].

Which regime is most relevant depends on the values of the neutrino masses through
the decay parameter. It is useful to rewrite in terms of two dimensionful parameters of
the order of the light neutrino masses, so that K1 = m̃1/m∗, where m̃1 is the effective
neutrino mass [103]

m̃1 ≡
(m†

DmD)ii
Mi

= 8π
v2

M2
1

ΓD, (4.16)

and m* is the equilibrium neutrino mass

m* ≡ 8π
v2

M2
1

H(T = M1) $ 10−3 eV. (4.17)

It can be shown [109] that for most types of neutrino spectra m̃1 " msol, where msol is
given by Eq. (4.1). In this case leptogenesis occurs in the strong washout regime, and
the efficiency factor is well approximated by Eq. (4.15).

The sphaleron contribution

Finally, only a part of the final lepton asymmetry is converted into a baryon asymmetry
by the sphalerons, expressed through the sphaleron constant Csph. The constant can
be calculated by an analysis of the chemical potentials of all particle species in the
high temperature phase where sphalerons are active. The asymmetry in lepton flavor
α contributes through sphaleron processes to B/Nf − Lα, Nf being the number of
flavors, which is conserved in the Standard Model. The baryon number can be related
to the conserved B − L through the sphaleron constant [92]

Csph =
8Nf + 13NH

22Nf + 13NH
, (4.18)

where NH the number of Higgs doublets, yielding Csph = 28/79 for the Standard
Model.2

For simplicity we have considered in our estimate mainly the effects of processes
occurring on a time scale comparable to the expansion rate of the universe, which are

2Here we have assumed that the sphalerons go out of equilibrium before the electroweak phase
transition. If, instead, the sphalerons remain in equilibrium until after the phase transition, we would
have Csph = 12/37 [110].



44 Thermal leptogenesis and supersymmetry

accounted for by the Boltzmann equations. Thus we have neglected the so-called spec-
tator processes [111], which are not directly related to the generation of the asymmetry,
but are fast and could affect it indirectly by changing the densities of the particles in-
volved. These processes impose certain relations among the chemical potentials of
various particle species, as in the case of the sphaleron mentioned above. Indeed, sup-
posing that the sphalerons are in equilibrium during the leptogenesis process, they are
responsible for transmitting the L asymmetry produced in the neutrino decays into a
B−L asymmetry in a non-trivial way, whereas here we have simply assumed that the
asymmetry is directly produced in B − L instead of L. Other such processes are the
gauge interactions, Yukawa interactions involving the heavier fermions, as well as the
QCD sphalerons. However, the effect of spectator processes are not expected to induce
corrections larger than at most 30% [112].

4.3.2 Bounds from observations

The baryon asymmetry predicted by leptogenesis should be compared to the observed
baryon-to-photon ratio η, which is measured at recombination. Putting the results of
the previous section together, the value at recombination of the baryon-to-photon ratio
produced in thermal leptogenesis can be expressed as

η = Csph
Nout

B−L

N rec
γ

= Csph
ε1 κ

N rec
γ

. (4.19)

Assuming a standard thermal history, the number of photons per RH neutrino in ultra-
relativistic thermal equilibrium at recombination reads

N rec
γ =

4

3

gSM∗ + 7
4

grec∗
$ 37. (4.20)

For a given efficiency factor, the maximal CP asymmetry Eq. (4.11), corresponds to
a maximal baryon asymmetry ηmax. Demanding that this maximal asymmetry is large
enough to explain the observed asymmetry, ηCMB = (6.225 ± 0.170) × 10−10, imposes
a lower bound on the RH neutrino mass

M1 "
16π

3

N rec
γ

Csph

v2

κ

ηCMB

matm
$ 5× 108 GeV κ−1. (4.21)

The lowest possible M1 is obtained for κ = 1, corresponding to the limit of thermal
initial abundance of heavy neutrinosN1 and zero washout. For κ evaluated atK1 $ 3.5,
on the limit to the strong washout regime, the lower bound becomes [113]

M1 " 4× 109 GeV. (4.22)

The lower bound onM1 also translates into a lower bound on the initial temperature
of leptogenesis. Since we are assuming thermal production of the N1 neutrinos, the
minimal initial temperature that allows for successful leptogenesis can be identified
with a lower bound on the reheating temperature TRH after inflation. In the weak
washout regime, the bound on the neutrino mass roughly coincides with the minimal
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reheating temperature, whereas in the strong washout regime the minimal temperature
can be up to one order of magnitude smaller [99, 107, 86]. In either case, there is a
lower bound on the reheating temperature of the order

TRH " 108 − 109 GeV. (4.23)

4.4 Leptogenesis and supersymmetry

Unlike many of the baryogenesis models proposed in the literature, which in one way
or another rely on supersymmetry to produce a sufficient baryon asymmetry, thermal
leptogenesis is a perfectly viable scenario in the absence of supersymmetry. In fact,
it even appears to be more viable when supersymmetry is not present. This is not
because supersymmetry would drastically change the predictions of leptogenesis, but
due to the strict upper bound on the reheating temperature in supersymmetric theories.
Nevertheless, it is useful to explore the option of supersymmetric leptogenesis. Not only
because supersymmetry is a very plausible extension to the Standard Model, but also
to alleviate the hierarchy problem that arises through the introduction of the see-saw
mass scale. Let us take a brief look at how supersymmetry affects the scenario.

4.4.1 Modifications to the standard scenario

The minimal supersymmetric leptogenesis model consists of the MSSM with three
added heavy neutrinos, which are complemented by their superpartners, the sneutrinos
Ñi. The leptonic part of the MSSM superpotential Eq. (3.4) is then extended to read

W =
1

2
MiNiNi + hiαNiLαHu − heēLHd, (4.24)

whereNi is now a singlet neutrino superfield, containing the RH neutrino and sneutrino.
Although the addition of the sneutrinos brings new structure in the supersymmetric
version of leptogenesis, quantitatively the scenario turns out to be very similar to the
standard case.

For the CP asymmetry, the addition of the superpartners brings new contributing
diagrams. Firstly, there is the addition from the decay of the heavy neutrinos into
sleptons, practically doubling the number of loop diagrams, which in the hierarchical
limit amounts to an increase of the CP asymmetry approximately by a factor of two.
Furthermore, there are additional sources coming from the decay of sneutrinos into lep-
tons and sleptons. In general also the soft supersymmetry breaking terms give relevant
contributions, but for thermal leptogenesis they amount only to small corrections and
can be neglected. In this case, the heavy neutrinos and sneutrinos have equal masses
and decay rates, leading to equal CP -asymmetries. In the hierarchical limit, the total
CP asymmetry including both the neutrino and sneutrino contribution can thus be
written as [101]

ε1 $ − 3

4π

∑

i=2,3

Im
[
(h† h)2i1

]

(h† h)11

M1

Mi
. (4.25)

Comparing this result to Eq. (4.9), we see that the new decay channels in the MSSM
yield an enhancement of the CP asymmetry by a factor of four.
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However, there are also changes in the other factors affecting the final asymmetry
[85]. Due to the additional slepton final states, the decay rate of N1 is twice faster
than in the standard scenario. In the strong washout regime, the associated inverse
decay reactions enhance the washout by a factor of two. In the weak washout regime,
on the other hand, the neutrino production becomes more efficient, increasing the
asymmetry by the same factor. Furthermore, since the expansion rate of the universe
is proportional to

√
g∗, it is roughly faster by a factor of

√
2 in the supersymmetric

version. This reduces the time during which the strong washout processes can erase the
asymmetry, enhancing the final asymmetry by this same factor. In the weak washout
regime, on the other hand, it reduces the time for neutrino production, yielding a final
suppression of

√
2.

Finally, since in the MSSM there are two Higgses, the coefficient Csph is altered
from its value in the SM to 8/23, but remains of similar size. Altogether, the modi-
fications presented here amount only to an overall change in the final asymmetry by
approximately a factor of two. This implies that the constraints on M1 and TRH,
Eqs. (4.21) and (4.23) respectively, derived in the previous section remain essentially
unchanged [107].

4.4.2 On the gravitino bound

In the supersymmetric scenario, the lower bound Eq. (4.23) on the reheating temper-
ature is in conflict with the upper bound Eq. (3.22), which is necessary to avoid the
overproduction of gravitinos during reheating. Practically, the severe upper bound
makes the thermal generation of heavy neutrinos impossible, rendering the supersym-
metric scenario with a hierarchical RH neutrino spectrum unviable. This is a serious
drawback for the thermal leptogenesis scenario, even if several modifications leading
out of this dilemma have been proposed in the literature.

To avoid this conflict, one can firstly modify the assumptions on the nature of the
gravitino. If the gravitino is stable, the bound from nucleosynthesis depends on the
nature of the next-to-lightest supersymmetric particle, see Eq. (3.23), and the bound
can be relaxed even up to 109 GeV [74]. If, in addition, one assumes that there is a
small violation of R-parity, the NLSP can decay before the onset of nucleosynthesis,
thus evading the bound on the reheating temperature entirely. The stringent limit on
the reheating temperature can be also be avoided by relaxing the assumptions on the
gravitino mass. This is the case, for example, for gravitinos lighter than 1 keV, which
may occur in gauge mediated supersymmetry breaking, as well as for gravitinos heavier
than about 50 TeV, which can arise through anomaly mediation [114].

Alternatively, some properties of the neutrino spectrum can be modified. Soft
leptogenesis [115] is a supersymmetric scenario, where the violation of lepton number
as well as the required CP violation are sourced by the soft supersymmetry breaking
terms A and b, see Eq. (3.8), respectively associated with the Yukawa coupling and
mass of the lightest RH neutrino. The lower bound on the reheating temperature
in this scenario, which requires only one heavy neutrino, can be as low as 106 GeV
[107]. In resonant leptogenesis [100, 116], on the other hand, the RH neutrinos are
nearly degenerate in mass and the self-energy contributions to the CP asymmetries
are enhanced; consequently, the correct baryon asymmetry can be produced even at
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temperatures as low as a TeV. Another interesting variation is the scenario where
the right-handed sneutrino develops a large amplitude, dominating the total energy
density [117]. In this case the sneutrino decay reheats the universe, producing a lepton
asymmetry, and values of the reheating temperature even as low as 106 GeV avoid the
gravitino problem.

Finally, one can give up the assumption of thermal production of RH neutrinos.
The lightest RH neutrino can be produced non-thermally for example during preheating
[118], or from the decay of the inflaton [119], relaxing the lower bound on the reheating
temperature by up to two orders of magnitude compared to Eq. (4.23).

4.5 Leptogenesis with flat directions

The solutions to the tension between the minimal supersymmetric leptogenesis scenario
and the gravitino bound presented above, all rely on modifying the theory by changing
the properties or interactions of some of the fields involved. In the enclosed research
paper [1] we present another possible solution to the problem, which does not require
the modification of any component. To the contrary, this solution is already incorpo-
rated in the model, due to the presence of flat directions in the supersymmetric scalar
potential. In the previous chapter, we mentioned how, after inflation when the flat
direction oscillates around the new minimum of its potential, particle production can
occur. Following Ref. [1], we here investigate the possibility of producing the heavy
neutrino population through this mechanism, and estimate under which conditions
such a scenario can lead to successful baryogenesis.

4.5.1 Choosing the setup

In order for particle production to take place, the oscillating flat direction condensate
must pass very close to the origin. In general this is not the case, but the flat direction
spirals around the origin, possibly leading to a large baryon asymmetry through the
Affleck-Dine mechanism [90, 80]; however, we will not consider that possibility further
here. Instead, following the discussion at the very end of the previous chapter, we
are lead to consider flat directions along which the induced A-terms of Eq. (3.32) are
suppressed. Examples of such directions are the n = 4 direction ue as well as the n = 9
direction Que [77], both of which are lifted by non-renormalizable superpotential terms
of the form of Eq. (3.28).

The most efficient non-adiabatic production of heavy states occurs through the
process analogous to instant preheating [39], which is thus the mechanism we focus
on here. When the flat direction passes by the origin, non-adiabatic production of
particles coupled to the flat direction occurs. As discussed in Section 2.3, when the
condensate then continues its oscillation, the produced particles become massive and
may efficiently decay into other massive states.

Our aim is to estimate the amount of right-handed N1 neutrinos that can be pro-
duced in the final state, from the non-perturbative decay of a flat direction φ into some
intermediate state: φ → X → N1. We choose to focus on the scalar Higgs Hu, which
couples to N1 via the superpotential term h1αN1LαHu, although other states will be
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produced as well. In order to guarantee a sufficient Hu production, we will furthermore
focus on flat directions involving the third generation quark u3.

4.5.2 N1 production through instant preheating

With our choice of flat directions, the up-Higgs is coupled to the condensate through
the Lagrangian term h2t |φ|

2 |Hu|2. Consequently, the Higgs has an effective mass

m2
Hu

= m̃2
Hu

+ h2t |φ|
2 , (4.26)

where m̃2
Hu

is the corresponding soft-breaking mass parameter. When the flat direction
condensate first passes through the origin, particle production takes place in the region
where adiabaticity is violated [39]. Following Eq. (2.33), production of up-Higgses with
the mass Eq. (4.26), is thus efficient within the region

|φ| ! |φ∗| =
(
m|φ0|
ht

)1/2

, (4.27)

where m is the soft mass of the flat direction, and |φ0| its initial amplitude. The
number density of up-Higgses that is produced in this interval can be estimated to

nHu $ (htm|φ0|)3/2

8π3
, (4.28)

where we have assumed that the bare mass of the up-Higgs m̃2
Hu

is negligible compared
to the average momentum of the produced particles

Once the flat direction condensate has passed through the origin on its first oscil-
lation, the produced up-Higgses become heavier and heavier, as the condensate con-
tinues its oscillation up the other side of its potential. When the effective up-Higgs
mass Eq. (4.26) becomes larger than the mass M1 of the lightest RH neutrino, the
up-Higgses can promptly decay into N1 neutrinos through the superpotential coupling
hiαNiLαHu. In particular, if at least one of the Yukawa couplings hiα is not very small
and the field Q3 is not included in the flat direction, most of the up-Higgs’s decay
channels are blocked by the large effective masses induced by the flat direction at large
φ, and Hu will decay dominantly into N1 neutrinos and leptons.

Let us estimate the maximal N1 mass Mmax
1 $ htφmax that can be generated

through this production process. To this end we need to determine the maximum
value φmax that the condensate can reach during its first oscillation, after its passage
through the origin. The equation of motion for φ takes the form

φ̈+m2φ = −ht
|φ|
φ
nHu , (4.29)

where the term on the right-hand side corresponds to the φ-dependent energy density
generated by the produced Hu particles when φ crosses the origin. It acts as a friction
term damping the φ oscillations. Solving the equation of motion Eq. (4.29), we obtain
an estimate for the maximal mass

Mmax
1 $ 4π3

√
mφ0

h3/2t

= 4× 1012 GeV

(
φ0
MP

)1/2 ( m

100 GeV

)1/2
, (4.30)
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where the numerical estimate assumes a top-Yukawa coupling ht $ 0.6 at high energy
scales. As expected, the production mechanism of instant preheating can indeed lead
to very heavy RH neutrinos.

4.5.3 The baryon asymmetry

After reaching its maximum value at the first oscillation, the flat direction vev starts
decreasing again, with the consequence that also the mass of the up-Higgs Eq. (4.26)
decreases. Eventually the up-Higgs mass becomes small enough that the RH neutrinos
produced at the top of the flat direction oscillation may efficiently decay back into
up-Higgses and leptons. As in the standard thermal leptogenesis scenario, the heavy
neutrino decay produces a lepton asymmetry, dictated by the CP asymmetry ε, which
can later be partly transformed into a baryon asymmetry by sphaleron processes.

Here we evaluate the maximum amount of baryon asymmetry that can be produced
in this way. To correspond with the notation of the original article [1], we use the
alternative expression for the baryon asymmetry YB = (8.75 ± 0.23) × 10−11, which is
related to η as follows

YB =
nB

s
=

nγ
2π2g∗T 3/45

η $ η

7.04
. (4.31)

This definition, which is normalized with respect to the entropy density s, is useful in
that it remains constant as long as the number of degrees of freedom in the plasma are
unchanged.

As a first approximation, we assume that all the up-Higgses decay into N1 neutrinos
at the top of the first oscillation. We then estimate that the decay of the RH neutrinos
into up-Higgses and leptons produces a lepton asymmetry

nL $ εnN1 $ ε
(htm|φ0|)3/2

8π3
. (4.32)

As soon as the RH neutrinos decay, their energy density ρN1 = M1nN1 gets converted
into a “thermal” bath with an effective temperature T 4 ∼ (30ρN1)/(g∗π

2), where g∗
is the corresponding number of relativistic degrees of freedom. We estimate that T is
smaller than M1 for

M1 > 109 GeV

(
|φ0|
Mp

)1/2 ( m

100GeV

)1/2
, (4.33)

implying that no washout factor should appear in the estimate of the final lepton asym-
metry Eq. (4.32): since the mass of the RH neutrinos generated during the preheating
stage is expected to be much larger than this lower bound,∆ L = 1 inverse decays
are not taking place. Similarly, it can be argued that the∆ L = 2 processes are out
of equilibrium. Furthermore, since only processes with leptons in the final state can
generate an asymmetry, there is no cancellation between the asymmetry produced in
the N1 decays and the possible asymmetry produced in the N1 production through
inverse decays. Finally, flavor effects are not expected to be important in determining
the final baryon asymmetry, since the∆ L = 1 inverse decays are out of equilibrium.
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During the non-perturbative decay of the flat direction, the inflaton field continues
to oscillate around the minimum of its potential, until eventually reheating takes over
and the inflaton decays into relativistic degrees of freedom. To be able to compare
the baryon density to the relativistic entropy density, we need to determine the baryon
asymmetry at the time of reheating, which after sphaleron conversion reads

YB = Csph
nL

s

H2
RH

Hosc
$ 8

23
ε
nN1

s

H2
RH

H2
osc

. (4.34)

Here the sphaleron constant is given by Eq. (4.18) with NH = 2, and the last factor
accounts for the dilution of the asymmetry due to the expansion of the universe between
the time of neutrino production until the beginning of reheating. At the time of the
first flat direction oscillation, when the lepton asymmetry is produced, the Hubble
constant reads Hosc $ m/3, see Eq. (3.32), whereas the value at reheating HRH can be
inferred from Eq. (2.29). Expressing the neutrino number density as in Eq. (4.32), we
finally reach an estimate for the baryon asymmetry

YB $ 9 ε h3/2t TRH |φ0|3/2

92π3m1/2M2
P

= 10−6 ε

(
TRH

107 GeV

)(
|φ0|
MP

)3/2 (100 GeV

m

)1/2

. (4.35)

In the supersymmetric case, the maximal CP asymmetry for normal hierarchical
light neutrinos is given by Eqs. (4.25) and (4.11), where matm $ 0.05 eV. From
Eq. (4.35) we therefore estimate that a sufficient baryon asymmetry is generated if the
mass M1 of the lightest RH neutrino satisfies the bound

M1 " 2× 1011 GeV

(
107 GeV

TRH

)(
MP

|φ0|

)3/2 ( m

100 GeV

)1/2
. (4.36)

This lower bound on the neutrino mass together with the estimated maximal mass in
Eq. (4.30), implies that successful baryogenesis can occur only for

φ0 " 0.2MP

(
107 GeV

TRH

)1/2

. (4.37)

In other words, the flat direction condensate has to start its oscillation from field
values close to the Planck scale. Although this limit on φ0 is independent of ht, the
presence of the top Yukawa coupling is crucial to guarantee that the flat direction
decays abundantly into up-Higgses Hu.

4.5.4 Discussion and conclusions

To conclude, we have shown that the observed baryon asymmetry can be explained
within the supersymmetric leptogenesis scenario for low reheating temperatures and
a RH hierarchical mass spectrum, thus avoiding the gravitino bound. Although the
proposed solution may be considered as a non-thermal production of RH neutrinos, the
main result is that it does not involve any extra assumption, such as a large coupling
between the RH neutrinos and the inflaton field.

However, we found that the solution requires two conditions to be met: the initial
value of the flat direction must be close to the Planck scale, and the phase-dependent
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terms in the flat direction potential must either vanish, or be sufficiently small for
particle production to be efficient. The mechanism might, nevertheless, work also in
models with smaller values of M1, since the baryon asymmetry could be generated by
the decays of the heavier RH neutrinos. The up-Higgs could decay into the RH neutrino
N2 (or N3) instead of into the lightest RH neutrino N1, if the condensate reaches the
value φ = M2/ht before the up-Higgs decays into N1 neutrinos. This condition can be
satisfied if the Yukawa couplings hiα are hierarchical and |h1α| ( 1. If this is the case,
one should replace M1 with M2 (or M3) in Eqs. (4.33) and (4.36).

Moreover, in hybrid inflation, the flat direction might couple differently to the slow-
rolling inflaton and to the field responsible for the end of inflation. In this case, the
curvature of the flat direction potential might change its sign promptly at the end
of the slow-roll period. The flat direction would then oscillate in its potential with
a frequency of the order of the inflationary Hubble scale [120], with the consequence
that a much larger number of up-Higgs quanta could be produced, relaxing the bound
on φ0.



Chapter 5

Inflation with supersymmetric
flat directions

In Chapter 2 we have presented the virtues of the inflationary paradigm, and explained
how it can be realized in terms of a scalar field. Furthermore, we discussed observa-
tional constraints on the form of the inflaton potential. From a theoretical point of
view, however, a satisfactory model of inflation cannot be limited to specifying the
inflationary potential, but should address the relation of the inflaton to the Standard
Model, or at least to other physics expected to lie there beyond. In this chapter we
will address this question further.

Our main focus will be on a particular inflationary model, in which the inflaton
is a flat direction of the MSSM [121]. However, we begin the chapter by a general
overview of the problems related to identifying an inflaton in high-energy physics. In
Section 5.2 we then present the MSSM inflation model, and review its construction
and inflationary predictions. We also discuss some of its major drawbacks, mainly the
large fine-tuning required to ensure the flatness of the inflationary potential. In the final
section, we present a supergravity embedding of the MSSM inflationary model, which
was proposed in the included research paper [2], in order to alleviate the fine-tuning
problem.

5.1 Embedding inflation into particle physics

The most apparent problem in connecting scalar field inflation to known physics is
perhaps just that — it requires a scalar field, yet to date none has ever been observed.
Moreover, the Standard Model Higgs has not proved its worth as a suitable inflaton
candidate, despite courageous attempts [122]. Inflationary model builders are thus
directed to consider higher energies, beyond the Standard Model in their quest for a
scalar field inflaton. In this regard supersymmetry with the large number of scalar
fields it brings about appears a particularly fruitful framework.

Another potential difficulty is the very flat inflaton potential that is necessary for
slow-roll inflation to produce a sufficient number of e-folds. Even from a phenomeno-
logical perspective, where the main challenge is in constructing internally consistent
slow-roll potentials, fine-tuning of parameters is sometimes required. When inflation is
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considered in a particle physics framework, however, one furthermore has to ensure that
the potential remains flat also under radiative corrections. Supersymmetry provides a
useful framework also in this respect, since one of the main motivations for supersym-
metry beyond the Standard Model is the cancellation of quadratic divergencies that it
provides for scalar masses. In addition, the multitude of flat directions present in the
supersymmetric scalar field space provide ample inflaton candidates with nearly flat
potentials, when lifted by non-renormalizable terms or quantum effects. In light of all
this, it seems there should be no obstacles to identifying inflationary models within su-
persymmetry. Indeed, viable inflationary theories, mainly of the polynomial or hybrid
type, can be constructed with fairly simple choices of super- and Kähler potentials [53].
There is, nevertheless, a caveat to all of this: at the fundamental level supersymmetry
is expected to be local, and hence supergravity effects must be taken into account.

Inflation in supersymmetric theories

We have seen in Chapter 3 that the supersymmetric scalar potential can be written as
the sum of two contributions, the F -term and the D-term. In most supersymmetric
inflation models, the potential is dominated by the F -term. These models, however,
are plagued by what is called the η-problem. As discussed in Section 3.3, supergravity
generically induces a mass for scalar fields during inflation of the order of H, see
Eq. (3.32). For the inflaton itself, this mass renders η ∼ 1, in conflict with the slow-roll
requirement. In order to avoid the problem, one can invoke non-generic forms of the
super- and Kähler potentials, which guarantee that the mass becomes suppressed, or
simply suppose that the term is accidentally suppressed. Alternatively, one can rely
on quantum corrections to drive the mass to a small value. A different strategy is to
suppose that the D-term dominates [83], but also these models suffer from difficulties.
While the supergravity correction to the inflaton mass is absent in D-term inflation,
the inflaton field value is required to be at least of the order of MP , making the
model susceptible to large contributions from non-renormalizable terms. More details
on the subjects mentioned here, and an extensive list of references can be found in
Refs. [48, 53].

At the end of the day, we seem to be faced with the limitations of the supersym-
metric framework. While it may provide the scalar field inflaton with a raison d’être, it
fails to yield a complete field theory picture. Most of the supersymmetric models of in-
flation proposed to date require high enough energies that the connection to low-energy
supersymmetry, motivated by the Standard Model remains at most elusive. Neverthe-
less, without providing any guidance, the models require us to make educated guesses
about their specific properties in the regime where non-renormalizable quantum effects
become important. For a more rigid top-down approach to inflationary model building,
one may thus want to turn to string theory.

In string theory, there is no lack of potential inflaton candidates, as the various pa-
rameters describing the background geometries and particular compactifications, the
moduli, are all scalar fields. With the added amount of freedom that comes from fluxes,
torsion and possible non-perturbative effects, one might expect viable inflationary po-
tentials in string theory to be abundant. However, identifying an inflaton within the
moduli sector has proved surprisingly difficult. Due to some groundbreaking work, such
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as the KKLT scenario [123], where the joint contribution of non-perturbative effects
and an explicit supersymmetry breaking term induced by anti-D3 branes allows for
de-Sitter vacua with all but one degree of freedom stabilized, some viable examples
of modular inflation have recently been constructed [124]. Moreover, a more general
understanding of the conditions necessary for realizing slow-roll inflation in the moduli
sector of string models has been achieved [125]. Nevertheless, any inflationary model
in string theory as of yet comes with the price of high intricacy, and the lack of a
well-formulated Standard Model sector of particle physics.

In this respect, the inflationary model recently proposed by Allahverdi et al., where
inflation is driven by a flat direction of the MSSM [121], provides a welcome contrast.
Both the inflationary period and the generation of the Standard Model fields during
reheating are explained in a self-consistent manner by the physics of the flat direction.
Furthermore, the inflaton couplings to Standard Model particles are known and, at
least in principle, measurable in laboratory experiments such as the LHC or a future
Linear Collider; even the inflaton mass is directly related to the slepton or squark
masses and can thus be probed in the laboratory [126].

5.2 MSSM inflation

Here we review the construction as well as inflationary parameters of the MSSM in-
flation model, following closely the original references [121, 127]. While the setting of
this model into the MSSM provides its many virtues, it also gives rise to some major
drawbacks. The exceptionally low scale of inflation requires the inflaton potential to
be extremely flat, with the usual consequence of fine-tuning problems. We also briefly
discuss this issue here, before attempting to address it in Section 5.3.

5.2.1 The potential

Assuming that only one flat directions is excited, and that any other fields are relaxed
at the origin, phenomenologically viable slow roll inflation can arise along the flat
directions LLē and ūd̄d̄. Both directions are of dimension six, and are lifted by a
superpotential term of the form W = λφ6/6M3. Assuming hidden sector F-term
supersymmetry breaking, the leading order potential along these directions is then
given by Eq. (3.31) and reads

V (φ) =
1

2
m2|φ|2 + cos(6θ + θA)

|Aλ|
6M3

|φ|6 + |λ|2

M6
|φ|10. (5.1)

While both the first and the last term in the potential are positive definite, the A-term
will give a negative contribution whenever cos(nθ+ θA) < 0. Choosing the phase such
that the A-term is minimized along the angular direction: cos(nθ + θA) = −1, one
obtains, for the radial direction, the inflationary potential of Ref. [121]

V (|φ|) = 1

2
m2|φ|2 − |Aλ|

6M3
|φ|6 + |λ|2

M6
|φ|10. (5.2)
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As such, this potential is generically not flat enough to yield a successful period of
inflation. It is noticed, however, that the potential has a secondary minimum at

|φ0| =
(

mM3
P√

10|λ|

)1/4

, (5.3)

provided that A2 ≥ 40m2. Furthermore, this minimum becomes a saddle point if the
soft parameters satisfy the condition [121, 127]

A2 = 40m2. (5.4)

In this case V ′(φ0) = V ′′(φ0) = 0 and the potential in the vicinity of the saddle point
is flat enough to support inflation. Provided that the flat direction is initially close
to the saddle point φ0, with φ̇ $ 0, and that the energy density of the flat direction
dominates the universe, a sufficient period of slow roll inflation ensues.

5.2.2 Inflationary parameters and predicitions

The energy scale of MSSM inflation effectively depends on the soft mass of the flat
direction and on the coupling λ, through the value of the inflaton at the saddle point.
For the phenomenologically motivated value of the soft mass m $ 1 TeV, and taking
|λ| $ 1, the inflaton field value at the saddle point becomes

|φ0| $ 3× 1014 GeV, (5.5)

which is considerably lower than typical field values in single-field inflation. The corre-
sponding energy scale, which can be approximated by the potential Eq. (5.2) evaluated
at the saddle point, reads

Vinf $ V (|φ0|) =
4

15
m2|φ0|2 ∼ 1034 (GeV)4. (5.6)

This corresponds to the inflationary Hubble scale [121, 127]

Hinf $
(

Vinf

3M2
P

)1/2

$ 0.1 GeV. (5.7)

Although the Hubble scale is very low compared to typical slow roll models, the infla-
tionary predictions turn out to be very similar. Moreover, thanks to the correspond-
ingly low value of the inflaton vev, the problem of Planckian field values, which causes
a challenge for many conventional models, is entirely avoided here.

Slow-roll parameters and number of e-folds

The number of e-folds during the inflationary period, as well as the expressions for
the slow-roll parameters, can be determined from the expansion of the inflationary
potential Eq. (5.2) around the saddle point

V (|φ|) $ V (|φ0|) +
1

6
V ′′′(|φ0|)(|φ|− |φ0|)3 = V (|φ0|) +

16

3

m2

|φ0|
(|φ| − |φ0|)3. (5.8)
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The slow roll parameters, Eqs. (2.24) and (2.25), thus take the form

ε $ 1800
M2

P

|φ0|2

(
|φ|− |φ0|

|φ0|

)4

, (5.9)

η $ 120
M2

P

|φ0|2

(
|φ|− |φ0|

|φ0|

)
. (5.10)

The slow-roll condition Eq. (2.26) becomes violated when |η| $ 1, at the field value

|φ| $ |φ0|−
|φ0|3

120M2
P

≡ |φend|, (5.11)

which defines the end of inflation.
The number of e-folds of inflation Eq. (2.48) calculated from some field value |φ|

during inflation then reads

N(|φ|) =
∫ |φend|

|φ|

H

|φ̇|
d|φ| $ |φ0|3

60M2
P (|φ0|− |φ|)

. (5.12)

When |φ| is very close to the saddle point |φ0|, quantum fluctuations are stronger
than the classical motion, and the field is in the regime of eternal inflation [128]. The
classical force begins to dominate when H2 $ |φ̇|, which corresponds to the field value

|φ| $ |φ0|−
(

m

MP

)1/2 |φ0|2
MP

. (5.13)

Taking this as the initial inflaton field value, we obtain an estimate for the total amount
of e-folds during inflation

Ntot $
|φ0|

60(mMP )1/2
∼ 103. (5.14)

The numerical estimate, which corresponds to the same values for the soft parameters
as above, is sufficient to explain the observations of flatness, homogeneity and absence
of topological relics. Due to the low scale of inflation, the number e-folds N∗ since the
largest currently visible scales exited the horizon will be much lower than the typical
60 or so [129]. If the inflaton decays immediately after the end of inflation, we obtain
[121, 127]

N∗ ∼ 50, (5.15)

or slightly under, depending on the energy scale of inflation.

Amplitude and spectral index

For the observed amplitude of perturbations to be produced with such a low scale of
inflation, the potential must be extremely flat, which is indeed the case here. With the
given potential, the amplitude of the curvature perturbations Eq. (2.50), evaluated at
the horizon crossing of the cosmic scales reads

P1/2
R $ 1

2π

H2
inf

|φ̇∗|
$ 4

√
5

π
N2

∗
mMP

|φ0|2
∼ 10−5, (5.16)
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and the numerical estimate is again performed for m ∼ 1 TeV and |φ0| ∼ 3×1014 GeV.
With a slight tuning of the parametersm and λ, the exact observational value can easily
be obtained. That this is indeed possible for phenomenologically viable values of the
soft parameters is a non-trivial result. In fact this is what singles out the n = 6
flat directions from higher order ones as the only feasible inflaton candidates [127].
For lower order flat directions (n ≤ 5), on the other hand, no A-term arises in the
potential, which obviously makes them unsuitable. Furthermore, the spectral index of
the curvature perturbation reads

ns = 1 + 2η − 6ε $ 1− 4

N∗
∼ 0.92, (5.17)

with a running of -0.002. Due to the low inflationary scale, no observable tensor
perturbations are produced. In the absence of tensor modes, the scalar spectral index
deviates with about 3σ from the observed value ns = 0.96 [4]. The tilt can, nevertheless,
be enhanced to fit the observational value by tuning the effective coupling λ to be
smaller than 1 . Moreover, slight deviations from the saddle point condition Eq. (5.4),
to the extent that the success of the model allows for, can modify the spectral index
up to ns $ 1 [130, 127].

5.2.3 The problem of fine-tuning

The MSSM inflationary model is unique in providing phenomenologically viable infla-
tion within the MSSM, without the inclusion of any extra gauge singlets. It is important
to point out, however, that the success of the model depends crucially on the saddle
point condition Eq. (5.4) being fulfilled. Because of the low scale of inflation, the
condition must be satisfied to an accuracy of about 10−18, in order to produce the ob-
served amplitude for the curvature perturbations [130, 127, 2, 131]. In other words, the
MSSM inflationary scenario seems to require an unsatisfactory fine-tuning of the soft
supersymmetry breaking parameters in the inflaton potential to the accuracy of 10−9.
Since the soft parameters are determined by the supersymmetry breaking mechanism,
however, it is reasonable to ask whether the saddle point condition could simply be a
consequence of the realisation of a particular supersymmetry breaking scheme. This
issue has been investigated in the enclosed research paper [2], and will be discussed in
more detail in the following section.

Another problem within this inflationary model, equally due to the exceptionally
low inflationary scale, is the required fine-tuning of the inflaton initial conditions. The
slow roll conditions are satisfied only in the immediate vicinity of the saddle point,
and the initial value of the inflaton must thus be set very close to the saddle point in
order to obtain a sufficiently long period of inflation. Also in this question, a rigorous
solution must involve physics at higher energies, which govern the stage before the onset
of the inflationary period. For example, the initial conditions might be connected to
the details of the supersymmetry breaking mechanism. The problem has also been
addressed within the string theory landscape [132], where the MSSM inflation could
occur as a last stage of a chain of inflationary periods driven by energy densities of
several false vacua, but the issue remains unresolved.
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5.3 A supergravity origin for MSSM inflation

Since in the MSSM the soft supersymmetry breaking parameters are put in by hand,
there can in that context be no explanation for the saddle point condition Eq. (5.4),
other than simple fine-tuning. It is nevertheless clear that the relation reflects physics
that is beyond the MSSM, in particular the mechanism of supersymmetry breaking.
In gravity mediated supersymmetry breaking, where the soft parameters are usually
expected to be of similar order of magnitude, such a relation might arise naturally. In
the enclosed research paper [2], we study what constraints the saddle point condition
places on the supergravity model, and identify a class of hidden sector supergravity
models, in which the saddle point condition is indeed identically satisfied.

5.3.1 Identifying the model

We work in the hidden sector picture and consider F -term supersymmetry breaking,
since D-flat directions remain so also in supergravity. For the dimension six flat di-
rections that we are considering as the inflaton, the superpotential to lowest order
reads

W = Ŵ + I = Ŵ (ha) +
λ̂(ha)

6
|φ|6, (5.18)

where ha refers to the hidden sector fields and the hat denotes quantities that are
functions of the hidden sector fields only, cf. Eqs (3.15) and (3.27) in Chapter 3. The
superpotential may also contain any higher order terms allowed by symmetries, but
these will not affect the analysis and are therefore suppressed. In order to proceed we
assume a generic perturbative form for the Kähler potential

K = K̂(ha, h
∗
a) + Ẑ2(ha, h

∗
a)
|φ|2

M2
P

+ Ẑ4(ha, h
∗
a)|

|φ|4

M4
P

+ . . . (5.19)

In Eqs. (3.16) - (3.19), the scalar potential in hidden sector supergravity is expressed in
terms of the superpotential W and the Kähler potential K. For the form of the func-
tions given here, the lowest order terms correspond to the inflaton potential Eq. (5.1)
with the soft parameters

m2 = 2M2
P e

Ĝ
(
Ẑ2(Ĝ

aĜa − 2) + ĜaĜā(Ẑ
a
2 Ẑ

b̄
2Ẑ

−1
2 − Ẑab̄

2 )
)
, (5.20)

|A| = 2MP e
Ĝ/2Ẑ1/2

2

∣∣∣Ĝa(K̂a + λ̂aλ̂
−1 − 6ẐāẐ

−1
2 ) + 3

∣∣∣ , (5.21)

|λ| = eK̂/2|λ̂|Ẑ−1/2
2 , (5.22)

θA = arg
(
Ĝa(K̂a + λ̂aλ̂

−1 − 6ẐāẐ
−1
2 ) + 3

)
+ arg(Ŵ∗) + arg(λ̂). (5.23)

Recall that lower indices indicate derivatives, in particular indices a, b refer to derivates
with respect to the hidden sector fields. The lower case indices are raised with the
inverse of the hidden sector Kähler metric K̂ab̄.
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The saddle point condition

The saddle point condition A2 = 40m2 can now be written as a partial differential
equation for the hidden sector dependent functions in the potential

∣∣∣Ĝa
(
K̂a + λ̂aλ̂

−1 − 6ẐāẐ
−1
2

)
+ 3

∣∣∣
2

= 20
(
ĜaĜa − 2 + ĜaĜb̄ ×

(
Ẑa
2 Ẑ

b̄
2Ẑ

−2
2 − Ẑab̄

2 Ẑ−1
2

))
. (5.24)

Since the the functions K̂, Ẑ2 in the Kähler potential are non-analytic by definition,
whereas the superpotential and the functions Ŵ and λ̂ are analytic, the differential
equation only has trivial solutions for arbitrary values of the hidden sector fields. How-
ever, by neglecting the hidden sector dependence of the superpotential, in other worlds
by treating the quantities Ŵ and λ̂ as constants, non-trivial solutions can be found.
Inspired by the no-scale supergravity model, we make an Ansatz for an unspecified
number of hidden sector fields

K =
∑

a

βa log(ha + h∗a) + κ
∏

a

(ha + h∗a)
αaφ2 +O(φ4) (5.25)

where αa,βa and κ are constants. The Ansatz solves Eq. (5.24) provided that the
parameters α =

∑
a αa and β =

∑
a βa satisfy

α(36α + 16− 12β) + (β + 7)2 = 0 , (5.26)

while κ can take on arbitrary values. For Kähler potentials of this form, the saddle
point condition in MSSM inflation thus holds irrespectively of the values of the hidden
sector fields.

5.3.2 Higher order corrections

At this point, it is important to recall that the success of the MSSM inflationary model
requires the potential to be extremely flat in the vicinity of the saddle point. In solving
the saddle point condition, however, we have considered only the leading order part of
the supergravity scalar potential. Thus, one may wonder whether corrections arising
from the expansion of the potential Eq. (3.16) to higher orders will destroy this flatness.
In Ref. [2], it is shown that supergravity corrections to the potential may be orders
of magnitude larger than the allowed deviation from the exact saddle point condition.
Therefore, it is not enough to determine the Kähler potential up to second order, but
also higher order terms must be taken into account.

In order to guarantee the flatness of the inflaton potential, constraints must be put
also on the next to leading as well as the next to next to leading order supergravity
corrections. Analogously to the leading order results, we find a form of the Kähler
potential for which all these conditions are satisfied identically, i.e. irrespective of the
values of hidden sector fields. This class of Kähler potentials can be written in the
form

K =
∑

a

βalog(ha + h∗a) + κ
∏

a

(ha + h∗a)
αaφ2 + µ

(
κ
∏

a

(ha + h∗a)
αa
)2
φ4 +

ν
(
κ
∏

a

(ha + h∗a)
αa
)3
φ6 +O(φ8) , (5.27)
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where we have introduced the new parameters µ and ν. The introduction of these
additional terms amounts to further constraints on the parameters αa and βa, while µ
and ν remain adjustable. Some examples of these constraints are given in Table (5.1)
below.

Table 5.1: Constraints on the parameters of the Kähler potential Eq. (5.27) imposed by the
flatness of the MSSM inflaton potential.

β =
∑

a βa α =
∑

a αa γ =
∑

a α
2
m/βa δ =

∑
a α

3
a/β

2
a

− 3 −4
9

1
9

91
324

− 7 0 0 δ

− 7 −25
9 −10

9 −1654
1863 + 162

23 ν

− 11 −1
9

1
21 − 8465

75411 + 162
19 ν

− 11 −4 −29
21 −2491

2940 + 36
5 ν

5.3.3 Discussion and conclusions

To summarize, we have found a class of supergravity hidden sector Kähler potentials for
which the saddle point condition Eq. (5.4) is identically satisfied to the required degree.
This strongly suggest that the extremely flat MSSM inflaton potential could indeed
arise naturally as a consequence of the structure of the underlying supergravity model.
However, it is worth noting that our analysis is far from complete, since the dependence
of the hidden sector on the superpotential has been entirely neglected [133]. Thus we are
not allowing for a proper dynamical treatment of the stabilization of the hidden sector
fields into their vacuum expectation values. Nevertheless, since the model requires
that the flat direction is the only dynamical variable during inflation, it is implicitly
assumed that the hidden sector fields are stabilized before the beginning of inflation,
either by the neglected superpotential terms or through some other mechanism. A
detailed analysis of these effects requires precise knowledge of the nature and dynamics
of the hidden sector fields, which can only be provided by some fundamental theory at
large scales.

In this context, it is interesting to note that Kähler potentials of the form found
here appear fairly commonly in various compactifications of string theory. For example,
Abelian orbifold compactifications of heterotic string theory [134], as well as intersect-
ing D-brane models [135] yield Kähler potentials of this form, although Eq. (5.26)
represents a non-trivial constraint for the parameters. In the string context −β gener-
ically measures the number of hidden sector fields, in which case one would expect an
integer value for β. In Table (5.1) we list some solutions to Eq. (5.26), which admit
nonzero soft supersymmetry breaking terms as well as integer values for β.

Furthermore, the flatness of the inflation should be guaranteed also in the pres-
ence of radiative corrections in supergravity. An analysis of one-loop corrections to
the leading order potential shows that the location of the saddle point is shifted by
the running of the soft parameters [127]; however, the running of the supergravity cor-
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rections to the leading order potential, discussed in the previous section, should also
be taken into account. The supergravity embedding that we have proposed here does
not as such address this problem, since the requirement of the flatness of the potential
is simply translated into the constraints on the Kähler potential; however, we point
out that there is a continuous trajectory in the Kähler potential parameters for which
the saddle point condition is identically satisfied, which could have some underlying
interpretation, for example as a consequence of some symmetry [2, 131].



Chapter 6

Beyond inflation with string
theory

In this final substantial chapter of the thesis, we leave the standard model of cosmology,
which has provided the frame for the discussion so far, to one side and venture into a
slightly more speculative domain. In Section 2.5 we discussed some of the conceptual
shortcomings of the inflationary hot big bang cosmology, and suggested that they might
have a resolution in the context of an ultraviolet complete theory at the Planck scale.
Here we focus on a particular string theoretical scenario of the very early universe:
string gas cosmology, which suggests a resolution to the initial singularity plaguing the
standard cosmological scenario.

Following the general introduction, here below, to the string gas cosmology scenario
and the very early universe in string theory, we present the quantitative side of the
scenario in Section 6.2. Subsequently, we shift gears and review some basic results
concerning the decay of unstable D-branes in string theory. This is to prepare for the
discussion in Section 6.4, of the resolution to the initial condition problem of string gas
cosmology, which is proposed in the enclosed research paper [3].

6.1 String theory and the initial singularity

String theory is expected to describe physics on scales up to the Planck scale or beyond,
possibly resolving some of the shortcomings of the standard cosmological model. In a
truly fundamental theory, it would be possible to track the cosmological perturbations
for all times, implying that the trans-Planckian physics and its signatures would be
known. Furthermore, such a theory should be able to resolve the initial singularity,
which cannot be addressed within the big bang model. Several proposals using the
ingredients of string theory to address some of these issues have been made, most
notably perhaps the pre-Big Bang cosmology [136] and various bouncing cosmologies
[137], often involving the dynamics of branes [138]. Another proposed scenario is string
gas cosmology [139, 140], which originates in an early attempt of Brandenberger and
Vafa to naturally explain the dimensionality of spacetime.
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String gas cosmology

String gas cosmology focuses, in particular, on the effect of the winding degrees of
freedom in string theory as well as the implications of the T-duality symmetry. The
basic postulate of the model is that the universe is a compact space, usually taken
to be a torus, which is filled with a thermal gas of closed strings [140]. Furthermore,
it is usually assumed that the universe begins string sized and close to the Hagedorn
temperature, which is believed to be the maximal temperature for a perturbative string
ensemble.

Already a simple qualitative consideration of the string gas scenario has quite fun-
damental implications on the picture of the early universe. The degrees of freedom in
the string gas consist of the three types of closed string modes: momentum modes,
describing the center of mass motion of strings; winding modes, expressing the number
of times a string is wound around a given torus one-cycle; and finally oscillatory modes.
For comparison, the only degrees of freedom which point particles have are momentum
modes. The energy of the momentum modes is quantized in units of the inverse torus
radii, while the energy of winding modes is directly proportional to the radii. The
oscillatory modes have radius-independent energies.

The presence of the string winding modes leads to a symmetry of the string mass
spectrum under the inversion of the torus radii, along with the interchange of the
corresponding momentum and winding quantum numbers, which is a special case of
the more general T-duality symmetry. This symmetry implies the existence of an
effective minimal length scale, which in turn suggests a resolution of both the spatial
and temperature singularities of the early universe. While the string gas scenario
provides a resolution to the singularity problem in this way, the origin of the scenario
itself is not explained, and the string gas is implicitly assumed to have an infinite
history. The fact that this assumption is indeed consistent, is perhaps a part of the
models main asset, but within a fundamental theory there should be a more rigorous
explanation for the initial conditions.

Initial conditions

Let us break the question of initial conditions into two parts: the origin of spacetime
itself, and the origin of the matter or energy within the spacetime. The first question
amounts to how to resolve the initial spacelike singularity of big bang cosmology. To
this end, let us mention a model describing the disappearance of space by closed string
tachyon condensation, which has been proposed some time ago [141]. The time-reversal
of this process could be interpreted as the emergence of space from nothing, and has
indeed recently been connected to string gas cosmology [142].

However this still leaves open the second question of how the string gas came to
exist. In another recently proposed scenario, energy in a spacetime can originate from
a decaying brane, for which an initial condition can be prepared at the origin of time
[143]. Basically, the spacetime comes into existence with a large amount of stored
energy which gets released immediately after. In a similar manner, we address the
second part of the question of initial conditions within string gas cosmology in the
third enclosed research paper [3], by studying specifically if a thermal gas of closed
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strings could arise as a consequence of the decay of a setup of unstable D-branes,
through open string tachyon condensation.

6.2 String gas cosmology

String gas cosmology is usually formulated within the framework of dilaton gravity,
which is the simplest modification of Einstein’s gravity that respects the T-duality
symmetry. Although it cannot account for all of the degrees of freedom in the Hage-
dorn phase, replacing the full string theory by this low-energy effective theory is cos-
mologically motivated by the assumption of slowly varying fields, i.e. the adiabatic
approximation, which allows one to stay at tree level in α′ and at weak string coupling
gs ( 1. Here we briefly recapitulate the main features of the model; several more
extensive reviews, following a similar treatment, can be found in the literature [144].

6.2.1 The cosmological evolution

Working in the critical string dimension and assuming there are no fluxes present, the
D-dimensional dilaton gravity action in the string frame takes the form

Sstring =
1

2κ2D

∫
dDx

√
−Ge−2φ

(
R+ 4(∇φ)2

)
. (6.1)

Here κD is the D-dimensional reduced gravitational constant, G is the determinant of
the background spacetime metric, R the usual Ricci scalar, and φ the dilaton. Assuming
furthermore, as in FRW cosmology, a homogeneous spacetime, the background fields
G and φ are at most functions of time, and the background metric can be written in
the familiar RW form ds2 = −dt2 +

∑
i a

2
i (t)dx

2
i . Rewritten in terms of the number

of e-folds Ni = log ai(t) and the shifted dilaton ϕ = 2φ −
∑

iNi, the action Eq. (6.1)
takes a form that is manifestly invariant under the T-duality transformation

Ni → −Ni, (6.2)

ϕ → ϕ. (6.3)

When the dilaton gravity action Eq. (6.1) is coupled to the matter action of a gas
of free strings

Sm =

∫
dt
√

−G00 F (Ni,β
√

−G00), (6.4)

where F denotes the string gas free energy, and is varied with respect to the fields, one
obtains the evolution equations of string gas cosmology [145]

ϕ̇2 −
D−1∑

i=1

Ṅ2
i = eϕE, (6.5)

N̈i − ϕ̇Ṅi =
1

2
eϕPi, (6.6)

ϕ̈−
D−1∑

i=1

Ṅ2
i =

1

2
eϕE. (6.7)
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Here E = F +TS is the total energy of the string gas and Pi = −∂F/∂Ni the pressure
in the i-th direction multiplied by the total volume.

The cosmology that emerges from these equations is determined by the behavior of
the string gas energy and pressure as functions of the scale factor. Due to the different
form of the scale factor dependence of the energy levels of the winding and momentum
modes, the winding modes give a negative contribution to the total pressure, while the
momentum modes give a positive one. Hence Eq. (6.6) implies that winding modes
tend to prevent expansion, whereas the momentum modes induce it. In the assumed
initial state, where the universe is string scale sized and filled with a dense string gas
with a temperature close to the Hagedorn temperature, the energy is nearly constant,
E ∼ THS, and the numbers of winding and momentum modes are equal, so that the
total pressure vanishes. As a consequence the scale factor remains constant on average,
making this initial phase a semi-stable period.

In the absence of winding modes, space is free to expand, in which case the tem-
perature drops, so that the massive string modes eventually go out of equilibrium and
the universe enters a standard radiation dominated era. During this period, the radii
evolve as ai ∼ t2/D as is usual during radiation domination while the original dilaton
φ = (ϕ+

∑
iNi)/2 approaches a constant.

6.2.2 A three-dimensional universe

String gas cosmology has been advocated as a mechanism that dynamically generates
a universe with precisely three large spatial dimensions [139, 145]. This argument
is based on the observation that the winding modes give a negative contribution to
the string gas pressure, and thus oppose expansion. In order for a spatial dimension
to be able to grow large, the winding modes wrapped around this dimension must
therefore be annihilated by intersecting with winding modes of opposite orientation.
Since string worldsheets are two-dimensional, the argument goes, a pair of strings have
non-zero probability of intersecting only in four or less spacetime dimensions, so that
at most three spatial dimensions can grow large. The conclusion of this qualitative
consideration has been confirmed in various studies [146, 147], but when cosmological
dynamics, in particular the effect of the dilaton, are taken into consideration, the simple
argument no longer holds.

In a numerical study of the Boltzmann equations governing the string annihilation
in the framework of dilaton gravity [148], it was found that the coupling to the dilaton,
which is rolling towards weak coupling, in general causes the strings to freeze out too
fast for the anisotropic annihilation to take place. In particular, for initial conditions
that admit a large number of winding modes, i.e. for small initial values of the dilaton,
the strings tend to freeze out so that all dimensions remain small. For a small initial
number of winding modes, on the other hand, all strings typically annihilate and the
whole compact space grows large. Only for a very narrow range of intermediate initial
conditions is it likely that three dimensions grow large.



66 Beyond inflation with string theory

6.3 String production from unstable D-branes

While string gas cosmology may provide a finite history for three large dimensions,
the string gas itself is implicitly assumed to have an infinite history. In the enclosed
research paper [3] we study whether such a gas of strings could arise as a consequence
of the decay of unstable D-branes, in order to address this conceptual shortcoming
of string gas cosmology. Before going in on the details of the proposed scenario, let
us begin by reviewing some facts relating to the decay of D-branes. For an extensive
review, the reader is referred to Ref. [149].

6.3.1 D-brane decay

The D-branes of bosonic string theory are unstable. As a sign of this, the spectrum
of open strings on a brane contains a tachyonic mode. Furthermore, supersymmetric
Type II string theories contain unstable non-BPS D-branes, but also pairs of stable
BPS D-branes of opposite charge become unstable at subcritical separation. Here we
nevertheless restrict ourselves to bosonic string theory for simplicity.

In bosonic string theory, unstable branes will decay into closed strings. We an-
alyze the decay at tree level, where interactions between emitted closed strings can
be neglected. Since the mass of a D-brane is proportional to the inverse of the string
coupling gs, in the limit of weak coupling D-branes admit a simple description in closed
string theory as extra objects inserted in the theory. Therefore an unstable D-brane
acts as a classical time-dependent source for closed string fields. The final state for a
p-dimensional D-brane, or Dp-brane, is a coherent state of closed strings [150],

|ψ〉 ∼: exp

{
−i

∑

s

∫
dp+1x Js(x) · φs(x)

}
: |0〉, (6.8)

where Js(x) is the source terms for the closed string fields φs(x), and the sum is over
all possible fields. In the case of full brane decay, the source Js reads, after a Fourier
transformation,

J̃s = πTp
sin(Es ln(λ))

sinh(πEs)
. (6.9)

Here Tp is the tension of the p-dimensional brane, which is inversely proportional to
the closed string coupling constant, so that at weak coupling the brane stores a large
energy density. The parameter λ controls the brane lifetime

τ ∼ − ln[sin(πλ)], (6.10)

and can take values in the range 0 ≤ λ ≤ 1/2.

6.3.2 The decay products

To begin with, we consider decaying branes in a non-compact space, so that there are
no winding modes. In this case, the string energy is given by

Es = Es(N, k⊥) =
√

4l−2
s (N − 1) + 7k2⊥, (6.11)
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where ls is the string length. The total energy and number density of emitted closed
strings from the decay of a p-dimensional D-brane then read [150]

Ē

Vp
= π11(2π)2(6−p)

∞∑

N=0

d(N)

∫
d25−pk⊥
(2π)25−p

|J̃s|2

2
(6.12)

N̄

Vp
= π11(2π)2(6−p)

∞∑

N=0

d(N)

∫
d25−pk⊥
(2π)25−p

|J̃s|2

2Es(N, k⊥)
. (6.13)

The sum in the equations is over all final closed string states of symmetric oscillator
excitations between left- and right-moving sectors, where d(N) denotes the density of
states at level N .

Due to the exponential growth of the density of left-right symmetric closed string
states

d(N) ∼ N−27/4e4π
√
N , (6.14)

the main contribution to the total number and energy of strings produced in the decay
comes from the highest energies. Evaluating the large energy behavior of Eqs. (6.12)
and (6.13), one finds that the total amount of energy per unit p-volume carried by all the
closed string modes emitted during the decay [151] is infinite for p ≤ 2. Since the intial
D-brane has a finite energy, the total energy carried by the closed strings cannot really
be infinite, but the divergence is due to the breakdown of perturbation theory. The
finite result for p ≥ 3, on the other hand, implies that the single closed string channel
alone does not carry away all of the initial energy of the brane. Since multi-string
emission channels are suppressed by powers of the string coupling, the result means
that higher dimensional branes do not decay completely – the final state contains a
lower dimensional brane. This implies that the decay must be inhomogeneous, although
the process is not fully understood at the moment [152].

Let us study as an example the p = 0 case. By Eq. (6.12) the total energy produced
is infinite, but we expect that, once the backreaction of the closed string emission
process is taken into account, there will be a natural cut-off on the sum over N ,
rendering the answer finite. In particular, since the original brane energy is of the
order of g−1

s , the cut-off should be of the same order. Let us reinterpret the results
adopting the cut-off M , such that

∑

N≤M2/4

N−1/2 ∼ M. (6.15)

Since we are looking at a D0-brane, there is no other decay channel, and all the energy
is converted into closed string radiation. The total energy carried by the strings is then
of the order of M . For M ( g−1

s this energy is small compared to the energy of the
brane, but if we cut the sum off at M ∼ g−1

s , all the brane energy will be emitted into
closed strings.

6.4 An origin for the string gas

Above we have described the decay of unstable branes into an ensemble of closed
strings. The analysis suggests that decaying D-branes may indeed produce a state that
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is similar to the initial state of string gas cosmology. In the research paper [3] we
propose a particular D-brane setup as a possible initial state, and study its evolution
during and after the brane decay.

6.4.1 A proposal for the initial state

For simplicity, we continue to work in bosonic string theory, and hence in 26 dimen-
sions. In order to make contact with the setup of string gas cosmology, we take all
the spatial directions to be compactified on the torus T 25, with equal string scale radii
in all directions. The most natural initial state on this torus would be a space-filling
unstable D25-brane, or a stack of them. However, we have seen above that branes with
p ≥ 3 presumably decay into lower dimensional branes, and the process is currently
poorly understood. For a pure string gas without any branes, we are thus directed to
consider lower dimensional branes which decay completely. Hence we choose an initial
configuration consisting of D1-branes wrapped in each direction Xi. For homogene-
ity we assume an equal number of D1-branes in every direction, all having the same
lifetime.

A Dp-brane with all its tangential and perpendicular directions compactified on a
torus is related to a D0-brane via T-duality. Thus we expect similar results to hold
for this system as those obtained in the previous section. In particular, since under a
T-duality transformation momentum along a circle gets mapped to the winding charge
along the dual circle, we expect that all the energy of a Dp-brane wrapped on a torus
will be converted into closed string radiation, with most of the energy is stored in the
highly wound closed string modes of mass around g−1

s [153].

6.4.2 Thermalization of the string gas

To arrive at the initial state of string gas cosmology, the decay should produce a string
ensemble with a thermal distribution. The number distribution of the strings produced
through the brane decay can be expressed as follows

n̄(N, k⊥) =
|J̃s|2

2Es(N, k⊥)
. (6.16)

Generically this does not correspond to a thermal distribution of strings, although the
deviation becomes small for highly energetic strings near the Hagedorn temperature.
This is due to the fact that |J̃s|2 ∼ e−2πEs for large energies, implying that the number
distribution n̄ approaches a thermal distribution at the Hagedorn temperature TH =
1/2π.

In the analysis of the brane decay, however, one assumes zero coupling for the
closed strings. This is of course an idealization, as the emitted strings will interact
and backreact on the decay. Under suitable circumstances, these interactions will
thermalize the string distribution. We estimate the thermalization time scale tth of the
string ensemble to

tth $
√
Es

g4s
l−1
s ∼ g−9/2

s l−1
s , (6.17)
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where we have used the fact that most of the energy is stored in slowly moving heavy
strings of mass Es ∼ g−1

s .
Let us make a comparison between this result and the lifetime of the initial unstable

brane Eq. (6.10), controlled by the parameter λ. For a generic choice of λ, the lifetime
is very short: of the order of the string scale, and the brane decay is a very rapid
process. Since the thermalization timescale Eq. (6.17) in this case is much longer
than the timescale of the brane decay, it is justified to treat the brane decay and the
subsequent thermalization of the strings separately. Thus we have good reason to
believe that the decay of unstable branes may indeed give rise to a thermal string gas.
Furthermore, the spacetime stress tensor for the outgoing closed strings [154] has been
computed and is known to quickly settle to zero total pressure [149], which is indeed
one of the assumptions on the initial phase of string gas cosmology. Consequently, it
is also natural to assume that the volume of the torus remains essentially unchanged
during the brane decay.

6.4.3 Time evolution of the dilaton

So far we have argued that our proposed setup of decaying branes produces a universe
that looks qualitatively like the initial state of string gas cosmology. In addition,
we need to make sure that the process is internally consistent and that it creates a
final state that fulfills the adiabatic and weak coupling assumptions of dilaton gravity.
During the decay, the brane sources the low-energy effective fields; in particular the
dilaton time evolves. Hence, one might worry that the dilaton ends up being too
large, contradicting the initial assumption of weak string coupling and insignificant
back-reaction.

In the brane decay process, the evolution of the dilaton is governed by an equation
of motion given by the details of the brane setup. During the period of thermalization
following the decay, the exact evolution of the dilaton is unknown. However, one can
argue that the explicit form of the distribution of the background strings has only a
small effect on the propagation of the dilaton. What counts are the ensemble averaged
quantities such as the mean comoving energy of the gas, which does not change during
thermalization. Hence, we are led to assume that the dilaton should reach values that
are consistent with the dilaton gravity era already at end of the brane decay process.

Neglecting any back-reaction from emitted strings, the evolution of the dilaton
during the full brane decay is governed by the equation of motion [150]

−∂2t φ = a
[ 1

1 + λ̂et
+

1

1 + λ̂e−t
− 1

]
. (6.18)

Here λ̂ = sinπλ and a is a positive constant, which is related to the initial tension of
the unstable brane. From now on we set a = 1. Solving Eq. (6.18) we find the time
dependence of the dilaton

φ(t) = Li2(−λ̂−1et)− Li2(−λ̂et) +C1t+ C2 , (6.19)

where Li2(z) is the dilogarithm, and C1 and C2 are constants of integration. In our
notation, the branes begin to decay at t = 0 and have lifetimes of τ = − log λ̂, which are
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input parameters. The constants C1 and C2 can be determined by assigning φ(t) and
φ̇(t) initial or final values, corresponding to initial values for the string gas cosmology
era.

Consistency with the dilaton gravity approximation calls for final values of the time
derivative in the range −1 ! ϕ̇(τ) < 0. Note that the dilaton solution above is for the
string frame dilaton φ, whereas these values are for the shifted dilaton ϕ. Assuming
that the torus radii stay fixed during the brane decay, however, these are simply related
as ϕ̇(τ) = 2φ̇(τ). Furthermore, the value of the dilaton itself is required to be negative,
both during the brane decay process and the string gas cosmology scenario, in order
to preserve weak coupling.
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Figure 6.1: φ(t) for varying φ(0). From top to bottom we have φ(0) $ ln 1, ln 10−4, ln 10−8

and ln 10−12, with τ = 5ts and ϕ̇(τ) = −1.
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Figure 6.2: φ(t) for varying ϕ̇(τ). From top to bottom we have ϕ̇(τ) = 0, −0.25, −0.5, −0.75
and −1, with initial value φ(0) = −20, corresponding to φ(0) = −20 $ ln 10−8 and τ = 5ts.

The Figures (6.1) and (6.2) show the dilaton evolution during brane decay for
different initial values and different final values of its derivative, respectively. The
figures address the consistency of the weak string coupling. Fig. (6.1) illustrates how,
starting from large negative values of the dilaton, the typical decay time is too short
for the dilaton to grow significantly. Fig. (6.2) shows that different choices for time
derivatives of the dilaton in the end of the decay also cause no significant change in
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the dilaton evolution. Fig. (6.3), on the other hand, illustrates the dependence of the
dilaton evolution on the lifetime of the decaying brane.
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Figure 6.3: φ(t) for varying τ . From bottom to top we have τ = 1, 5, 7 and 9, with initial
value φ(0) = −20 and ϕ̇(τ) = −1.

6.4.4 Three large dimensions

In the previous section, we studied the evolution of the dilaton during brane decay,
and found that it can indeed lead to values that are consistent with the dilaton gravity
picture. Let us now take one step further and investigate under what circumstances it
might lead to the values favored for three dimensions to grow large. As argued above,
it is reasonable to assume that the dilaton gravity era and the study of the Boltzmann
equations sets in just after the branes have decayed. In the analysis of Ref. [148], the
direction of time is chosen so that ϕ̇ < 0, as is done here. Furthermore, the initial
value of the derivative is chosen to be ˙ϕ(τ) = −1, which is just the borderline value
allowed by the dilaton gravity approximation. In this case, there is a gap of initial
values∆ ϕ(τ) $ 0.5, around the value ϕ(τ) ∼ −2.5, for which three dimensions are
likely to become unwrapped [148].
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Figure 6.4: φ(t) plotted for different combinations of φ(0) and τ . From top to bottom, we
have φ(0) = −0.5,−6,−15,−27 and τ = 1, 5, 7, 9, with ϕ̇(τ) = −1.

In Fig. 4, we have plotted a number of combinations of φ(t) and τ , all of which lead
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the dilaton to values within the favored range. The figure illustrates that it is possible
to reach the favored range of initial values for a variety of decay configurations. In
particular, one can start from very weak coupling and still reach the preferred range
for a decay time τ $ 10ts that is short in comparison to the time of thermalization. This
once again verifies that the decay may be discussed separately from the other dynamics.
Thus we may conclude that the somewhat arbitrary fine-tuning of the dilaton initial
value that is required in the study of Ref. [148] here has a physical interpretation in
terms of the lifetimes of the unstable branes.

6.4.5 Discussion and conclusions

In this paper we discussed the issue of the origin of the thermal string gas, whose
existence is usually assumed in string gas cosmology. We studied low-dimensional
unstable D-branes wrapped on a torus in bosonic string theory, and found that the
string gas could indeed naturally be produced by the decay process of the branes. One
virtue of the scenario is that there is freedom in choosing the details of the initial
condition, and this is reflected in the subsequent development. For example, a space
filling brane appears to produce string-brane gas [147], while a configuration of lower
dimensional branes can produce pure string gas.

Besides adding to the control of various properties of the string gas through the
physical properties of the branes, the introduction of the brane setup provides a res-
olution to the problem of initial conditions for the string gas. In contrast to simply
assuming an infinite history for the string gas, the setup allows for the possibility of
initial conditions at some finite point in time. These initial conditions fall into three
categories: a scenario, where the unstable brane is first created as a condensate of
incoming closed strings; a scenario, where the unstable brane pops out from imagi-
nary time; and a scenario, where the brane initial state is prepared by a complex time
contour at the initial spacelike singularity. As a consequence of having different pos-
sibilities for controllable initial conditions for the string gas, in turn, there is a better
chance of understanding any possible imprints or signatures of observable interest that
the gas might leave behind.

While such features certainly seem promising, let us recall that we have in our
treatment made a number of simplifying assumptions. For example we initially as-
sume a weak string coupling so that any back-reaction can be neglected, although we
then find that during the decay the dilaton grows, implying that interactions with the
emitted closed strings should be taken into account. Furthermore we focus only on
low-dimensional branes that are wrapped on a torus with all its radii equal, assuming
an equal number of branes at every direction of the torus, each decaying equally fast.
Finally, we argue that the thermalization timescale of the produced strings is much
longer than the decay time, and hence treating the brane decay and string dynamics
separately is justified. In a more rigorous treatment, any of the assumptions mentioned
here can be challenged, but we leave this and other modifications of the scenario for
future work. Especially the details of the thermalization leave room for more detailed
analysis, with possibly interesting effects.



Chapter 7

Summary

The main purpose of the thesis at hand has been to study various problems at the
interface between high energy particle physics, in particular supersymmetry, and cos-
mology. The interplay between these two historically quite distinct fields has proven a
fruitful enterprise from either point of view. While particle theory points cosmological
models into the right direction, the early universe provides a unique laboratory for
studying particle physics at very high energies. However, there is a more subtle level of
interplay as well, where problems of naturalness, or seemingly arbitrary assumptions
can be seen in a more favorable light, by looking at the problem from another angle or
placing it into a different context. The topics treated in this thesis can, in one way or
another, all be placed into this category.

The thermal leptogenesis scenario is very well motivated from a low-energy point
of view, through the see-saw mechanism for neutrino masses; however, the conflict
between the scenario and the gravitino bound in the presence of supersymmetry, has
always been a severe issue from a theoretical perspective. Although several modifi-
cations rendering the scenario compatible with the bound have been proposed, they
have all involved adding some new structure to the MSSM with heavy neutrinos, so
that the simplest and theoretically most favored model has remained incompatible.
Nevertheless, we have shown that just by taking into consideration the flat directions,
which might in any case be present in the scenario, a sufficient lepton asymmetry
can indeed be produced even when the reheating temperature is low enough to avoid
overproduction of gravitinos.

Furthermore, by embedding the MSSM inflation model into specifically chosen mod-
els of hidden sector supergravity, we have been able to provide an origin for the can-
cellation of parameters that causes the extremely flat potential required for sufficient
inflation at such low energy scales. From a theoretical point of view, this considerably
lessens the gravity of the strong fine-tuning that the model is plagued with, although
many questions regarding the high energy continuation of these supergravity models
still remain unaddressed. Similarly, in the case of string gas cosmology, taking into
account the presence of unstable branes in string theory, we are able to provide the
scenario with well-defined initial conditions at some finite point in time, as opposed
to assuming it has an infinite history. Furthermore, the details of this initial condi-
tion are reflected in the subsequent development as distinct properties of the resulting
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cosmology, which can thus be controlled more accurately.
Naturally, also the solutions that we have proposed are set within a particular

formalism, which imposes some limits on the applicability of their conclusions. While
this is important to keep in mind, it should not be allowed to undermine the progress
that can be made through such progressive steps. At some point down the line, any
of the scenarios presented here might be set into a broader context that might affirm
or contradict the assumptions and conclusions made here. In the end, whether any of
the topics treated in this work actually provide descriptions true to nature remains to
be determined by future observations.
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