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1 Introduction

Ozone is one of the key constituents of the atmosphere. Despite its relatively

small abundance, it effectively absorbs a great part of the UV radiation. There-

fore, ozone plays an important role in the energy budget and dynamics of the

atmosphere, and at the same time protects the life on Earth [e.g. Brasseur and

Solomon, 2005]. The last 20 years have been times of intense ozone research due to

the effects of man-made CFC gases on the ozone amount, and especially because of

the discovery of the spring-time ozone hole over Antarctica [Farman et al., 1985].

Today, the ozone hole can be explained by heterogeneous reactions taking place

on surfaces of polar stratospheric cloud (PSC) particles, which convert chlorine

from inactive to active, ozone-destroying forms [Solomon, 1999, and references

therein]. An important part in the ozone hole formation is played by the polar

vortex which confines the air inside, thus preventing mixing and resulting in very

cold temperatures and PSC formation. In the Arctic the polar vortex is typically

not as cold and stable as in the Antarctic, and the observed ozone loss there has

been less dramatic [Brasseur and Solomon, 2005, pp. 482–491]. However, since the

1990s several exceptionally cold winter periods have occurred, during which the

Arctic ozone loss tends to strengthen. Although the reasons for the stratospheric

cooling are not well known, it has been related to, e.g., greenhouse gas emissions

or dynamical changes caused by tropospheric wave pattern oscillations.

Atmospheric ozone is also affected by natural causes, e.g. due to volcanic

eruptions or changes in the solar forcing. For example, the solar ultraviolet flux

varies with the 11 year solar cycle much more strongly than the total solar irradi-

ance. Also, ultraviolet radiation received by the atmosphere changes by about 7%

with the variation of the distance between the Sun and the Earth. These kind of

variations may modulate the middle atmospheric ozone [e.g. Callis et al., 1991].

Therefore, when estimating the changes caused by anthropological sources, it is

essential to contrast them with variations and changes due to natural processes.

Among the most striking natural phenomena affecting ozone are solar proton

events (SPE), during which energetic solar protons precipitate into the middle

atmosphere in the polar regions. Ionisation caused by the protons results in pro-

duction of odd nitrogen and odd hydrogen species, which then destroy ozone in

catalytic chemical reactions. SPEs are not the cause of the ozone hole and are

not expected to significantly affect the lower stratospheric ozone, i.e the ozone

layer. Nevertheless, the substantial perturbations caused by the largest SPEs

are extremely useful in testing our understanding of the upper stratospheric and

mesospheric photochemistry of ozone and related species [Jackman and McPeters,

2004]
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Figure 1.1. A coronal mass ejection on October 28, 2003 as seen by the LASCO in-
strument on board the European Space Agency’s SOHO satellite. The Sun is
located behind the circular protection cover in the middle of the picture and
the CME is seen as a white cloud leaving the Sun.

1.1 Solar proton events and the middle atmosphere

1.1.1 From coronal mass ejection to ozone depletion

Solar proton events (SPE), also known as polar cap absorption (PCA) events

in the history of radio physics, begin as emission of electrons and ions from the

surface of the Sun. The ions are mostly protons (≈ 90%) but heavier particles are

also emitted, the relative abundances being similar to those in the solar corona.

For the most energetic coronal mass ejections (CME), particle energies can be up

to MeV or even GeV level, thus far exceeding the normal solar wind values, e.g.

∼1 keV for protons. The acceleration of emitted particles is driven by processes

related to the solar flare accompanying the CME, and/or by solar wind shock

fronts [e.g. Cane et al., 2003]. Fig. 1.1 shows an observation of a CME being

ejected from the Sun.

Even particles having GeV energies are guided by the interplanetary magnetic

field (IMF) over the Sun-Earth distance [e.g. Hargreaves, 1992, pp. 353–355].

Therefore, the emitted particles will follow the spiral field lines of IMF, and the

location of the CME on the solar surface will determine whether or not the released

particles will hit the Earth’s magnetosphere. Also, the guidance of IMF results in

some additional time delay between the CME and the arrival of particles at the

Earth. Typically, a delay of several hours is observed. Particles having different

energies have different Larmor radii, and the particles with lower energies are more

sensitive to the form of IMF. As a result, the bulk velocity of the particle “cloud”

is much less than that of individual particles, which can be used to explain the

duration of near-Earth effects, typically of the order of days, and the isotropic
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Figure 1.2. High-energy proton flux measurements by GOES satellite in the late Octo-
ber, 2003. Note the increase of flux by several orders of magnitude. The series
of SPEs begins on October 26 and the flux values return to the quiet-time
level in mid November.

angular distribution of the particles near the Earth. Fig. 1.2 shows measured

proton fluxes in the geostationary orbit after a large CME.

In order to reach the atmosphere of Earth, the particles have to penetrate

the magnetosphere, which requires relatively high energies. The magnetospheric

trajectories of high-energy particles can be calculated using the Størmer theory

[Størmer, 1930]. Because the Larmor radii of these particles are relatively large

(∼1000 km), a uniform magnetic field cannot be assumed during one gyration and

the particle trajectories can be very complex, even when assuming a simple dipole

field. Particles travelling along the magnetic field lines are least affected, and thus

the polar regions, where the field lines penetrate the atmosphere and the Earth’s

surface, are easier to access. According to the Størmer theory, every geomagnetic

latitude has a cutoff limit which the rigidity of an incoming particle (defined as

momentum per charge) must exceed in order it to reach that particular location.

Penetration to lower latitudes requires higher rigidities, and a certain latitude is

affected by particles having rigidity equal to, or higher than the corresponding

cutoff. The cutoff rigidity varies spatially and also with time, being dependent

on the IMF on as well as on the Earth’s internal magnetic field, on timescales

from minutes to years. The magnetic storms, for example, tend to compress the

magnetosphere and lower the cutoff rigidity for a given latitude. Fig. 1.3 shows

calculated cutoff energies for medium level of geomagnetic disturbance. As a con-

sequence of geomagnetic cutoff, the particles are able to affect atmosphere above

a certain magnetic latitude, covering the polar cap regions in both hemispheres.
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Figure 1.3. Estimated proton cutoff energies for the Northern Hemisphere (courtesy of
C. J. Rodger, University of Otago). Medium level of geomagnetic disturbance.
Energy contours are in MeV.

Typically latitudes above about 60◦ are affected more or less uniformly, although

the effects have sometimes been observed near the geomagnetic poles first, and

later throughout the polar cap.

As particles propagate down into the atmosphere they lose their energy in

collisions with atmospheric gases. In such a collision, with the proton energies

considered, the atmospheric molecule is ionised, and an ion-electron pair is cre-

ated. In addition to the primary protons, the secondary electrons produced in

ionisation may have enough energy to further ionise and dissociate atmospheric

gases. Approximately 36 eV of energy is required in the production of one ion pair

[e.g. Rees, 1989, pp. 35–45], thus a proton with 10 MeV initial energy is able to

ionise about 280,000 molecules along its path before all the energy is lost. The at-

mospheric penetration depth is dependent on the particle energy, the 1–500 MeV

solar protons depositing their energy in the mesosphere and stratosphere [e.g.

Hargreaves, 1992, pp. 217–218]. The most energetic protons, with E > 1 GeV,

are able to reach the ground level, although at these energies the galactic cosmic

rays generally predominate.

The ionisation caused by solar particle precipitation can far exceed the normal

geomagnetically quiet-time sources in the middle atmosphere, see Fig. 1.4. As a

result the ion concentrations are significantly elevated at altitudes below about
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(SZA = 83.5◦). Sodankylä Ion and Neutral Chemistry model results.

100 km and the ion composition may also change. The ion concentrations are

closely tied to the ionisation level, and after a reduction in proton forcing the fast

recombination with free electrons results in a quick return to quiet-time levels.

SPEs also lead to changes in atmospheric composition, including the increase of

odd nitrogen (NOx = N + NO + NO2) and odd hydrogen (HOx = H + OH

+ HO2), and the subsequent loss of ozone. NOx is produced in dissociation of

molecular nitrogen by the primary and secondary solar particles and, to a lesser

extent, in ion chemical reactions following the ion pair production. Production of

HOx is solely due to ion chemistry, involving a rather complex scheme of water

cluster ion reactions. The depletion of ozone is due to the increase of NOx and

HOx, which accelerates the catalytic ozone loss cycles involving these species. The

magnitude and duration of depletion depends on the particle flux, altitude, season

(solar illumination level and atmospheric dynamics), and the chemical state of

the atmosphere. The short-term ozone depletion due to HOx increase lasts some

hours and can be greater than 90% in the middle mesosphere, while the long-term

decrease, several tens of percent, is typically seen in the upper stratosphere and

is due to NOx increase. Because of the long chemical lifetime of NOx, the effects

on ozone can last for months and the produced NOx can be transported from the

location of the precipitation, so that lower altitudes and latitudes may also be

affected. The effect on global, total ozone is considered to be moderate, of the

order of few percent at the maximum [Jackman et al., 1996]. Fig. 1.5 presents

upper stratospheric measurements of ozone, made after a large SPE.
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Figure 1.5. Northern hemispheric distribution of ozone at 46 km altitude after the
October-November 2003 SPE (courtesy of A. Seppälä, Finnish Meteorological
Institute). The map is constructed using GOMOS measurements. Note the
low amounts of ozone in the polar region.

SPEs provide a direct connection between the Sun and the Earth’s middle

atmosphere. They are relatively sporadic but tend to be more probable during

times of maximum solar activity. Tens of SPEs may occur during a solar cycle,

but only in few cases the protons have energies sufficient to penetrate down to the

stratopause region. However, those cases are extreme examples of solar forcing

on the middle atmosphere and can significantly affect the lower ionosphere and

middle atmosphere. The magnitude of an SPE can be determined using the peak

flux unit (pfu) for > 10 MeV protons, measured in the geostationary orbit and

given in cm−2 sr−1 s−1. In the last 35 years, exceptionally large events with

pfu > 10, 000 have occurred in 1972, 1989, 1991, 1994, 2000, 2001, and 2003. A

more or less complete list of SPEs, including pfu values, can be found from, e.g.,

http://umbra.nascom.nasa.gov/SEP/seps.html (accessed in December, 2005).

1.1.2 Brief review of research to date

The existence of solar proton events was realised in the 1950s after a large so-

lar flare in February, 1956, was followed by radio communication blackouts that

lasted for several days. Early work, which was based on the HF and VHF radio

techniques already identified this polar region phenomenon as a result of enhance-

ment in ionospheric D-region ionisation due to precipitating high-energy protons

of solar origin [Bailey, 1964, and references therein], which was soon confirmed by
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in-situ experiments [Reid and Collins, 1959; Anderson and Enemark, 1960]. Since

then, the lower ionospheric characteristics during SPEs, e.g. day/night differences

and twilight asymmetries in electron density, have been studied using especially

riometer measurements of cosmic radio noise absorption [Reid, 1961; Gillmor,

1963; Chivers and Hargreaves, 1965]. Later studies of SPEs, making use of the

incoherent scatter radar technique [Reagan and Watt, 1976; Hargreaves et al.,

1987; Collis and Rietveld, 1990; Turunen, 1993] or subionospheric propagation of

VLF signals [e.g. Westerlund et al., 1969; Clilverd et al., 2005a], have provided

important insight to the composition and processes of D-region ionosphere.

Neutral atmospheric changes due to solar proton events were predicted by

Hertzberg [1960] and Dalgarno [1971], who put forward the possibility of odd ni-

trogen production by particle precipitation. The importance of this to the ozone

balance was later pointed out by Crutzen et al. [1975]. After the first measure-

ments of middle atmospheric ozone were made during an SPE using rocket and

satellite instruments [Weeks et al., 1972; Heath et al., 1977], it was evident that

odd nitrogen increase alone could not explain the ozone depletion observed in the

mesosphere, and Swider and Keneshea [1973] suggested odd hydrogen production

due to ion chemical reactions as a possible reason. The theory of odd nitrogen and

odd hydrogen production during proton precipitation was then refined in studies

by Porter et al. [1976], Heaps [1978], Rusch et al. [1981], and Solomon et al. [1981].

After the July 1982 SPE it was shown by Solomon et al. [1983] and Jackman and

McPeters [1985] that theoretical predictions were qualitatively in a good agree-

ment with satellite measurements of ozone [Thomas et al., 1983; McPeters and

Jackman, 1985], although around the stratopause region the observed depletions

were significantly larger than the predicted ones. McPeters and Jackman [1985]

and Jackman et al. [1990] studied the SPEs between 1979 and 1983 using ozone

observations and model predictions, and found ozone depletion to take place only

after the largest events.

The focus was then turned on the long-term effects of the SPEs. Middle and

upper stratospheric enhancement of NOx lasting from several months to years

was predicted in the polar latitudes due to the October 1989 SPE, while the

subsequent fate of the produced NOx and effect on ozone was found to be strongly

dependent on the illumination conditions and transport processes, such as the

structure of polar vortex [Reid et al., 1991; Jackman et al., 1995]. While SPEs can

significantly enhance the odd nitrogen production locally, the annual high-latitude

odd nitrogen production due to SPEs has been estimated to be moderate for

most years when compared to other middle atmospheric sources, showing orders-

of-magnitude variation from year to year, and exceeding the other production

sources only during the years when major SPEs occurred [Jackman et al., 1980;

Vitt and Jackman, 1996]. The effects of the two exceptionally large events (in

1972 and 1989) were compared by Jackman et al. [2000], who showed that the
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chemical state of the stratosphere has a significant impact on the modelled long-

term effects. The SPE effect on total ozone column has been found to be fairly

small, e.g. a few percent after the major SPE of October 1989 [Jackman et al.,

1996], although measurements of proton fluxes at the highest energies that could

directly affect the altitudes of ozone layer are lacking. Sinnhuber et al. [2003]

have shown that if the structure and strength of the geomagnetic field change

significantly, e.g. during a polarity transition (which tends to occur at irregular

intervals of about 200,000 years), the total ozone could be reduced by tens of

percent due to SPEs which would drastically alter the temperature and dynamics

of the middle atmosphere.

Studies of the HOx and NOx enhancement during SPEs were for a long time

based on modelling and indirect observations, i.e. ozone measurements. Es-

pecially for HOx, there have been no measurements until very recently. Using

measurements from the SBUV/Nimbus 7 instrument, an increase in the column

density of nitric oxide had been observed in the mesosphere and thermosphere af-

ter the July 1982 SPE by McPeters [1986], who noted the hemispheric differences

in duration of the enhancement due to different illumination conditions. However,

the first in-situ rocket measurements of NO were made during the great SPE in

October, 1989 [Zadorozhny et al., 1992; Zadorozhny et al., 1994], the observations

showed order-of-magnitude increase in the stratopause region in a good agree-

ment with theoretical predictions. First simultaneous satellite measurements of

NO, NO2 and ozone were made during the July 2000 SPE by the HALOE/UARS

instrument, and a good agreement with model predictions was found although

the ozone depletion around the stratopause was underestimated in the modelling

Jackman et al. [2001]. Randall et al. [2001], using the HALOE/UARS instru-

ment, observed elevated concentrations of NO2 in the middle stratosphere several

months after the event, probably due to NOx descent from mesospheric altitudes

inside the polar vortex.

1.1.3 Open questions

Although SPEs have been studied for about 50 years, there are still open questions

concerning their effects in the atmosphere. Basic theory of HOx and NOx increase,

and the subsequent ozone loss, has been quite successfully tested with ozone and

NOx measurements. However, these observations have been limited in both time

and space, such that only observations of sunlit atmosphere have been available.

This has restricted the testing of the theories in the winter pole region, and the

polar night effects have been based almost entirely on model predictions. Another

great need is for measurements of odd hydrogen species during SPE conditions,

since to date no such observations have been available. The process of HOx pro-

duction is complex, involving ion chemistry, and there are a number uncertainties
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in the currently used models. Therefore, HOx observations could significantly

help to test and understand not only atmospheric response but also ionospheric

response, and this kind of measurements might be the key in interpreting the

differences found between observations and model predictions in the stratopause

region [see, e.g., Jackman et al., 2001].

As mentioned above, the satellite instruments used in the previous studies

were dependent upon the solar light, such that they could provide direct infor-

mation on the daytime changes only. However, when a large SPE occurred in

October-November, 2003, there were a number of new instruments in orbit, some

of which were capable of night-time observations of multitude of atmospheric

species [Papers I and II as well as Degenstein et al., 2005; Rohen et al., 2005; Clar-

mann et al., 2005; Lopéz-Puertas et al., 2005a,b; Orsolini et al., 2005]. Data from

these instruments will undoubtedly expand our knowledge on the atmospheric ef-

fects of SPEs, both short-term and long-term, in more detail that was possible

before. Although the lack of night-time measurements has now been overcome in

SPE research, the absence of HOx measurements still remains. Observations from

the MLS instrument on board the EOS-Aura satellite, made during the January

2005 SPE, may prove useful in studies of HOx production in the near future.

1.2 Scope of this work

One of the pre-launch scientific goals for the GOMOS instrument, on board the

European Space Agency’s Envisat satellite (see Section 3.2.1 for details on GO-

MOS), was SPEs and their effects on the winter pole middle atmosphere, in low

illumination conditions [Verronen et al., 1999]. In October, 2003, one of the largest

SPEs in 50 years occurred, and GOMOS was able to measure both enhancement

of odd nitrogen and depletion of ozone in the Northern Hemisphere polar re-

gion. GOMOS lived up to the high expectations and provided unique data of

stratospheric and mesospheric changes during the SPE. These data are really the

backbone of this Ph.D. thesis.

Another important part of this work has been the conversion of the So-

dankylä Ion Chemistry model (SIC) into a combined ion and neutral photochem-

istry model, details of which will be given in Chapter 4. The pure ion chemistry

model was taken by the author of this thesis in the late 1990s as a basis for the

development work, with the idea of detailed modelling the production of HOx

and NOx, and the subsequent depletion of ozone in the middle atmosphere during

SPEs, using the latest information on ion and neutral chemical processes. Since

then, the new SIC model has been successfully used in several such studies.

In addition, the new input of this work to the SPE research comes from

the utilisation of both ionospheric and atmospheric measurements. Traditionally,
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the ionospheric and atmospheric science communities have been rather separated,

showing different interests in studies of SPEs. This kind of separation is, of course,

artificial because the ionosphere and the neutral atmosphere are not individual en-

tities but are closely connected to each other. For this work, using a combined ion

and neutral chemistry model, it is natural to take advantage of both ionospheric

and neutral atmospheric observations, because it allows for a better insight of the

chain of processes starting from proton-induced ionisation and leading to ozone

depletion.

This thesis consists of an introductory part and five original publications,

which are referred to as Papers I–V. In the remaining introduction, Chapter 2

outlines some characteristics of the lower ionosphere, discusses formation and loss

of odd nitrogen, odd hydrogen, and ozone in the middle atmosphere, and gives

a description of the changes caused by the solar proton events. Observations of

perturbations caused by SPEs are outlined in Chapter 3, with a special focus on

the measurements used in this thesis work. Chapter 4 gives a detailed description

of the Sodankylä Ion and Neutral Chemistry model, SIC, discussing its features

and applicability. Chapter 5 summarises the results of the original papers and

concluding remarks then are given in Chapter 6.

In addition to the more detailed summary given in Chapter 5, the contents of

papers I–V are briefly outlined below, noting also the contribution of the author

of this thesis to each of them.

I Increase of NOx, its descent inside the polar vortex, and subsequent long-

term depletion of ozone are studied after the SPE of October/November

2003. GOMOS observations of NO2 and ozone are used. P. T. Verronen

contributed significantly to the analysis and interpretation of the data and

wrote approximately half of the text.

II Ozone depletion during the SPE of October/November 2003 is studied with

a special interest on its diurnal variation in the mesosphere. SIC model

results are used together with VLF signal propagation measurements and

observations of NO2 and ozone from the GOMOS instrument. P. T. Verronen

executed the SIC model runs, analysed them and the GOMOS data, and

wrote the text, except for the VLF parts.

III Night-time ozone measurements from the GOMOS instrument are validated

by comparing them with those from the MIPAS instrument. P. T. Verronen

made most of the data analysis, and wrote the text with the MIPAS parts

being significantly contributed to by the co-authors.

IV Sunset transition of negative charge from electrons to negative ions is studied

during the SPE of October 1989. A variety of ionospheric observations as

well as rocket measurements of neutral nitric oxide are used together with
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the SIC model. P. T. Verronen executed the SIC model runs, analysed the

measurement data together with the co-authors, and wrote the text of the

paper.

V Geomagnetic cutoff variation during the SPE of November 2001 are studied

using SIC model results and cosmic radio noise absorption measurements.

A method based on satellite observations, magnetic field modelling, and

measured planetary magnetic index provides proton cutoff energies that are

used to modify the SIC input flux of protons. P. T. Verronen executed the

SIC model runs and contributed to the analysis of the model output.
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2 Photochemical effects of proton

precipitation in the middle atmosphere

2.1 Increase in ionisation

Energy input into the atmosphere by short-wave solar radiation and precipitating

energetic particles results in ionisation of atmospheric neutral constituents, cre-

ating the ionosphere, a region of the atmosphere which is partly ionised (0.1% or

less) and of net neutral charge. Ionosphere is traditionally divided into altitude

regions with different ionisation sources and electron density levels. Table 2.1

gives the main characteristics of these layers.

The D region is located at altitudes below 95 km. Permanent ionisation is

provided by solar radiation, especially Lyman-α affecting nitric oxide (NO) and,

to a lesser extent, EUV (102.7–111.8 nm) acting on O2(
1Δg) [Hargreaves, 1992,

pp. 229–231]. At altitudes below 60 km the main quiet time ionisation source is

galactic cosmic rays (GCR). Lyman-α flux varies with both the 11-year solar cycle

and the 27-day rotational period, but the variation is by a factor of two and is thus

relatively moderate compared to much larger variations at shorter EUV and X-ray

wavelengths [Brasseur and Solomon, 2005, pp. 164–169]. The diurnal variation is

naturally substantial and the night-time fluxes, due to scattering by the geocorona,

are about 100 to 1000 times lower than the direct Lyman-α flux. Also GCR varies

with the 11-year solar cycle, showing up to an order of magnitude larger fluxes

during solar minima. Its variation, and the fluxes in general, are larger at higher

latitudes.

The permanent, quiet-time ionisation rates at D-region altitudes vary from

104 to 107 m−3 s−1 [e.g. Brasseur and Solomon, 2005, pp. 552–553]. These ion

production rates are relatively low compared to levels at the higher altitudes so

that sporadic and strong ionisation sources affecting the D region, such as hard

X-rays (λ < 1 nm) during high solar activity and especially during solar flares or

relativistic electron precipitation (REP) from radiation belts, are able to enhance

the ion pair production levels in the D region high above the typical conditions.

X-rays affect the whole sunlit atmosphere while REPs occur in the sub-auroral

latitudes (60− 70◦) and are more probable during the declining phase of the solar

cycle. Auroral electron precipitation normally ionises the E region at auroral

latitudes, although sometimes the D region is also affected if the electrons have a

higher energy.

As noted in Section 1.1, large solar proton events, another sporadic source of

ionisation, affect the polar cap areas above ∼ 60◦ magnetic latitude and may cause

maximum ionisation around the stratopause region or below depending upon the

proton spectrum. They can thus influence both the mesosphere and upper strato-
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Region Altitude Ionisation source Electron density Primary ions
F >130 km EUV (9–91 nm) 1011 − 1012 m−3 O+/N+

2

E 95–130 km X-rays/Lyman-β 109 − 1011 m−3 O+
2 /NO+

D 60–95 km Lyman-α/GCR 108 − 109 m−3 NO+

Table 2.1 Daytime characteristics of ionospheric regions [Brasseur and Solomon, 2005,
pp. 533–536].

sphere. Peak ionisation rate can exceed 1010 m−3 s−1 and elevate the ionisation

rate by several orders of magnitude above the normal background levels.

2.2 Effects on ion composition

D-region ion chemistry is quite complex compared to that of the upper ionospheric

regions. This is due to the fact that minor constituents, being much more abun-

dant than in the E region, significantly participate in the photochemistry of ions

together with the main constituents. In addition to simple molecular ions, such as

O+
2 and NO+ which are first produced, a multitude of other ions with significant

concentrations exists, including water cluster ions as well as negative ions. In fact,

rocket measurements have shown that below about 80 km the main positive ions

are H+ hydrates [Brasseur and Solomon, 2005, pp. 559–564]. The order of hydra-

tion i.e. the number of water molecules attached to an ion, which is typically from

2 to 4 but can be as high as 20, is dependent on the geophysical conditions. Lower

temperatures and higher concentrations of H2O favour higher orders of hydration.

Negative ions hold a substantial portion of the negative charge in the D-region

ionosphere. The existence of negative ions was theoretically predicted based on

observed diurnal variations of electron density, and later confirmed by rocket mea-

surements [Johnson et al., 1958]. Negative ion chemistry is initiated by electron

attachment to molecular oxygen

O2 + e + M → O−
2 + M (2.1)

after which subsequent reactions lead to formation of more stable ions, e.g. NO−
3 ,

CO−
3 , and HCO−

3 , of which NO−
3 is especially stable because of its high electron

affinity [e.g. Shimazaki, 1984]. Cluster ions can also be formed in reactions with,

e.g., water molecules. However, there are few measurements of negative ion com-

position available, and several issues related to their vertical distribution are still

to be solved [Brasseur and Solomon, 2005, pp. 571–577]. Negative ions are present

at altitudes below 80 km, where the atmospheric density is high enough so that

the 3-body reaction of Eq. (2.1) is efficient. The balance with electrons is then

determined by electron detachment reactions such as

O−
2 + O → O3 + e. (2.2)
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Figure 2.1. Schematic view on the charge transfer pathways between electrons and
ions. X+, X−, e− indicate positive ions, negative ions, and electrons, respec-
tively.

Most of the balancing reactions depend upon the solar light such that at night

the electrons nearly disappear from altitudes below 80 km and negative charge is

held largely by the ions.

The production of positive and negative charge by ionisation is balanced by

recombination reactions, which result in neutralisation. Fig. 2.1 shows a schematic

view on the charge transfer pathways between electrons and ions. In equilibrium,

the production Q is equal to the loss

Q = αe [X+] [e−] + αi [X+] [X−] (2.3)

where [X+] and [X−] are the sums of concentration of positive and negative ions,

respectively, [e−] is the electron concentration, and αe and αi are the ion-electron

and ion-ion recombination coefficients, respectively. The relative magnitudes of

the right-hand-side terms of Eq. (2.3) are altitude-dependent, the ion-ion recom-

bination being dominant where negative ions are more abundant than electrons,

i.e. below about 70 km during daytime and below 80 km at night . Fig. 2.2

shows concentration profiles of electrons, and positive and negative ions for day

and night conditions.

As shown in Fig. 1.4 (in Section 1.1), SPEs can significantly increase the

ionisation rate in the D region ionosphere above the quiet-time levels. By looking

at Fig. 2.1 one could think that while SPEs increase the production of electrons

and ions and subsequently elevate their concentrations, the relative amount of

different ionic species is not affected. However, although SPE-related changes in

temperature and atmospheric transport could also have an effect, there are two

main reasons why SPEs can significantly affect also the ion composition.
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Figure 2.2. Altitude profiles of electrons, and positive and negative ions for day and
night conditions. SIC model results. Solar EUV/Lyman-α, GCR, and scat-
tered Lyman-α are considered as ionisation sources. Latitude 70◦N, equinox.
Note the disappearance of electrons below 80 km at night.

Under normal Lyman-α ionisation the main ion in the D-region is NO+.

During SPEs, and particle precipitation in general, the main ion is O+
2 because

the particles ionise mostly the main neutral components N2 and O2, and the

created N+
2 is very quickly converted to O+

2 through the fast reaction

N+
2 + O2 → O+

2 + N2. (2.4)

As a result, the production of H+ clusters is favoured over that of NO+ clusters.

There are also implications to the atmospheric effects of SPEs because the pro-

duction of O+
2 (instead of NO+) results in more effective odd hydrogen production

through hydrate ion reactions (see Section 2.3.2).

Another way for the SPEs to change the D-region ion composition is through

minor neutral constituents. As will be presented in Section 2.3, SPEs produce

large amounts of odd nitrogen and odd hydrogen constituents, which due to im-

portance of minor neutral constituents to the D-region ion chemistry, will affect the

ion composition. An especially important species in determining the ion composi-

tion is nitric oxide, NO. Increase in NO due to SPEs results in more production of

NO+ through Lyman-α ionisation. For negative ions, NO determines the balance

between the CO−
3 and NO−

3 ions, higher amounts of NO favouring NO−
3 and its

hydrates, which affects, for example, the characteristics of the transition between

electrons and ions during twilight [Reid, 1987, Paper IV].
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2.3 Changes in minor neutral constituents

In the middle atmosphere, the major constituents are N2 and O2. The relative

concentrations of these compounds are more or less constant, and they hold ≈78%

and ≈21% shares of the total, respectively. The remaining 1% consists of minor

gases, mostly argon. Despite their small abundances, minor constituents such as

ozone and carbon dioxide play important roles in atmospheric chemistry as well

as in heating and cooling processes.

Middle atmospheric gases can be classified as primary or secondary con-

stituents [Shimazaki, 1984, pp. 17–19]. Primaries have their sources near the

surface or in the soil of the Earth, and are transported into the middle atmo-

sphere by atmospheric motions. Examples of important primaries are N2, O2,

H2O, CO2, N2O, and CH4. Secondaries are produced in-situ in the middle atmo-

sphere either by photodissociation of primaries, or by photochemical reactions of

secondary molecules with primaries or other secondaries. Important secondaries

include, e.g., O, O3, NO, OH, and Cl, and HNO3. In addition to the constituents

of terrestrial origin, there are constituents that have an extra-terrestrial source.

For example, sodium and magnesium are released from meteors in the mesopause

region through ablation [Plane et al., 1999].

The concentrations of minor constituents may be affected by SPEs both in

the mesosphere and stratosphere. In the following sections of this chapter, the

decrease of ozone due to SPEs through enhancement of important minor catalysts

OH and NO is described. Changes caused by SPEs have been observed in other

minor constituents too [e.g. Lopéz-Puertas et al., 2005b; Orsolini et al., 2005], but

detailed discussion of those effects is beyond the scope of the present work.

2.3.1 Odd nitrogen enhancement

Main source of odd nitrogen (N + NO + NO2) in the stratosphere is N2O which

is produced at ground level by both natural and anthropogenic sources [Brasseur

and Solomon, 2005, pp. 328–333], and is then transported into the stratosphere

where it reacts with excited atomic oxygen to produce NO

N2O + O(1D) → 2NO. (2.5)

This process requires solar radiation and is strongest at the equator, where the

maximum production of O(1D) by photodissociation of ozone and molecular oxy-

gen occurs. Significant production of odd nitrogen occurs also at thermospheric

heights, maximising around 110 km, where photoionisation by EUV and soft X-ray

radiation and subsequent photoelectron impact dissociate N2, producing atomic

nitrogen which then reacts to form NO

N2 + hν → N+
2 + e∗ (2.6)
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e∗ + N2 → 2N + e∗ (2.7)

N + O2 → NO + O. (2.8)

In the auroral regions, particle precipitation contributes to the production,

and is an important source of odd nitrogen. The process is similar to that by

EUV/X-ray radiation. The primary particle, a high-energy proton or electron,

first ionises N2, the initial odd nitrogen product being atomic nitrogen mainly

through secondary electron impact on N2 [Porter et al., 1976]. Some production

of odd nitrogen results also in dissociative ionisation of N2 by the primary particle

and in ion chemical reactions following the ionisation [e.g. Rusch et al., 1981]. The

altitude of odd nitrogen production is dependent on the particle energy. High-

energy galactic cosmic rays produce odd nitrogen in the lower stratosphere more

or less constantly and their annual contribution is comparable to that by reaction

(2.5), especially during solar minima [Vitt and Jackman, 1996]. Auroral electron

precipitation contributes significantly at altitudes around 110 km and, although

having significant time variation in magnitude, this process is constantly present

and produces high amounts of odd nitrogen, exceeding the production by EUV,

so that at lower thermospheric altitudes the maximum NO is located at auroral

latitudes [e.g. Barth, 1992].

The main production altitudes of odd nitrogen being in the lower thermo-

sphere and in the stratosphere results in a two-peak altitude profile for odd nitro-

gen, with a low-production region in between the peaks and a minimum located

in the middle mesosphere. In this region, sporadic particle events, such as SPEs

or relativistic electron precipitation, can significantly contribute to the odd ni-

trogen production. Estimated production rate of odd nitrogen varies between

1.2 − 1.6 × Q, where Q is the total ionisation rate due to proton precipitation

[Rusch et al., 1981]. Typical peak ionisation rates during large SPEs are of the

order 109–1010 m−3 s−1 in the stratopause region, thus the odd nitrogen amounts

produced in relatively short period of time by an SPE are comparable to the

normal quiet-time concentrations (1012–1015 m−3). Therefore, large SPEs are ex-

pected to enhance the odd nitrogen concentration significantly above background

levels and order-of-magnitude increases have, indeed, been observed after large

SPEs [Zadorozhny et al., 1994; Jackman et al., 2001]. Fig. 2.3 shows modelled

NOx changes caused by the SPE of October 1989.

The odd nitrogen loss in the middle atmosphere is driven by NO photodisso-

ciation, followed by reaction with the produced ground state atomic nitrogen

NO + hν → N(4S) + O (2.9)

N(4S) + NO → N2 + O, (2.10)

The loss rate is dependent on the level of solar illumination. In sunlit condi-

tions the photochemical lifetime of odd nitrogen is about one day in the upper
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Figure 2.3. High-latitude, daytime profile of NOx before and after the onset of the
October 1989 SPE. SIC model results. The increase in NOx is a result of two
days of hard proton precipitation.

mesosphere and lower thermosphere, and from days to months in the stratosphere

[Brasseur and Solomon, 2005, pp. 342–344]. In low-illumination conditions the

lifetime is of the order of months throughout the middle atmosphere. Therefore,

transport is important for the altitude and latitude distribution of odd nitrogen.

This is especially true for the polar latitudes during winter time, and significant

amounts of odd nitrogen can be transported from the upper mesosphere and lower

thermosphere down to stratospheric altitudes [Siskind et al., 1997; Callis and Lam-

beth, 1998]. Also, the meridional transport from high-production equator to high

latitudes can be important in the stratosphere. Although odd nitrogen has a rel-

atively long photochemical lifetime, there is a strong diurnal variation between

NO and NO2. During daytime a photochemical equilibrium exists, but at night

NO concentration is reduced by several orders of magnitude as, in the absence of

solar light, it is rapidly converted to NO2 at altitudes below about 60 km.

2.3.2 Odd hydrogen enhancement

Stratospheric and lower mesospheric odd hydrogen (H + OH + HO2) is produced

from water vapour in a reaction with excited atomic oxygen

H2O + O(1D) → 2OH, (2.11)

while in the upper mesosphere and thermosphere the main source is photodisso-

ciation of H2O

H2O + hν → OH + H, (2.12)
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especially by Lyman-α radiation. Both of these reactions depend upon solar radi-

ation, because O(1D) required in reaction (2.11) is produced by photodissociation.

Odd hydrogen loss is due to reactions involving two odd hydrogen species, such

as

OH + HO2 → H2O + O2, (2.13)

and its photochemical lifetime is of the order of hours at altitudes below 80 km.

Therefore, its density does not directly depend upon transport processes in the

lower mesosphere and stratosphere [Brasseur and Solomon, 2005, pp. 321–325].

The short chemical lifetime results in a strong diurnal variation with several orders

of magnitude lower concentrations at nighttime due to reduction in production by

reactions (2.11) and (2.12).

Particle precipitation produces odd hydrogen, but this process is consider-

ably more complex than the production of odd nitrogen, which is mostly due to

direct impact of primary particles and secondary electrons on N2. Odd hydrogen

production involves two special features of the ionospheric D region, water clus-

ter ions and negative ions, which must be combined for a full description of the

process. It is dependent not only on the ionisation rate but also on the changes

in minor neutral constituents during the particle forcing [Solomon et al., 1981].

The basic process is as follows. Ionisation results in a set of initial ions, includ-

ing O+
2 , leading to formation of its hydrate O+

2 (H2O) via O+
4 . There are then a

number of reaction pathways, with increasing degree of hydration and eventual

recombination with an electron, as a result of which one water molecule can be

converted into two odd hydrogen species, OH and H. These pathways are effective

only at altitudes below 80 km, where water cluster ions can be formed, and can be

interrupted by recombination of the intermediate ions, so that the production of

odd hydrogen will vary with altitude. Also, at the lower altitudes where negative

ions are more abundant than free electrons, the positive ions favour negative ions

in recombination, resulting in production of HNO3. Although a large part of the

produced HNO3 is photodissociated to produce OH, thus adding to odd hydrogen

production, this pathway is not operative during nighttime and at daytime there

is a delay in the odd hydrogen production due to photolysis lifetime of HNO3

being of the order of hours. Similar pathways starting from the NO+ ion exist.

However, these are considered to be of lesser importance because the primary ion

produced by particle precipitation is O+
2 .

Theoretically, during an SPE the maximum production efficiency of odd hy-

drogen is two molecules per each ion pair. Typical peak ionisation rates during

large SPEs are more or less equal to the daytime production rate of odd hydrogen

from water vapour. However, on average the ionisation rate is an order of mag-

nitude lower. As a result, odd hydrogen concentration is significantly enhanced

during night as well as during sunrise and sunset, when the background produc-

tion from water vapour is relatively low, and during daytime only if very high
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Figure 2.4. Diurnal variation in HOx concentration at 72 km altitude in quiet con-
ditions (blue dashed line) and during the October-November 2003 SPE (red
solid line). SIC model results. Latitude 70◦N.

ionisation rates occur. During an SPE, the efficiency of odd hydrogen production

varies somewhat, reflecting the SPE-induced changes in the minor neutral con-

stituents [Solomon et al., 1981]. Fig. 2.4 shows modelled SPE effects on the HOx

diurnal cycle during the SPE of October/November 2003.

To date, direct measurements of odd hydrogen changes during an SPE have

not been available. Indirect measurements, i.e. of ozone, exist but the valida-

tion of odd hydrogen production theory would greatly benefit of measurements of

OH and/or HO2. Model estimates have predicted order-of-magnitude changes in

odd hydrogen concentration during intense SPE forcing. Such changes should be

relatively easy to confirm by measurements.

2.3.3 Ozone depletion

Middle atmospheric odd oxygen (Ox = O + O3) chemistry is driven by solar

radiation through photodissociation of molecular oxygen, which produces atomic

oxygen

O2 + hν → O + O. (2.14)

The pure oxygen chemistry has three significant reactions directly involving ozone:

O + O2 + M → O3 + M (2.15)

O3 + hν → O2 + O (2.16)

O + O3 → 2O2 (2.17)
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Of these, (2.15) is the source of ozone in the atmosphere, and maintains the balance

between ozone and atomic oxygen together with (2.16), while (2.17) results in loss

of odd oxygen. Another loss reaction of odd oxygen,

O + O + M → O2 + M, (2.18)

is generally much slower than (2.17) but increases in importance above the meso-

pause. These reactions constitute the basic scheme of pure oxygen chemistry

proposed in the 1930s [Chapman, 1930].

After the first measurements of middle atmospheric ozone were obtained, it

was evident that concentrations predicted by pure oxygen chemistry were consid-

erably higher than those observed. It had been noted by Bates and Nicolet [1950]

that catalytic reaction cycles such as

XO + O → X + O2 (2.19)

X + O3 → XO + O2 (2.20)

are very important in the atmosphere, and for ozone and odd oxygen in general

they constitute the main loss processes. The catalyst X can be either Br, Cl,

NO, or OH radical, and the relative importance of these constituents to ozone

varies with atmospheric altitude. Generally, in the mesosphere the most impor-

tant catalyst is OH, in the upper and middle stratosphere it is NO and Cl, respec-

tively, while Br and OH are important in the lower stratosphere [e.g. Brasseur and

Solomon, 2005, pp. 444–445]. In reality the situation is much more complex in

the stratosphere, where more than ten catalytic cycles involving different catalyst

have been identified and the altitude domains of the cycles overlap [e.g. Lary,

1997]. Most of the ozone is within the so-called ozone layer, which is located in

the stratosphere between altitudes of 15 and 35 km. The ozone layer is a result of

ozone production being dependent on the photodissociation coefficient of O2 and

atmospheric density, the former increasing with height and the latter decreasing,

such that the product of these has a maximum in the lower stratosphere. Another

distinctive feature of the ozone concentration profile is the secondary maximum

located in the mesopause region around 90 km, caused by the decrease of water

vapour above 80 km due to Lyman-α dissociation diminishing the OH catalytic

cycle and thus decreasing ozone loss [Allen et al., 1984]. The secondary maximum

can be further enhanced by the transport of atomic oxygen from the thermosphere.

Fig. 2.5 shows an annual average ozone distribution from satellite measurements.

Ozone has a strong diurnal variation in the upper stratosphere and meso-

sphere [see Allen et al., 1984, for detailed discussion], where its concentration is

more or less comparable to that of atomic oxygen. The ozone values are higher

at night because the absence of photodissociation, i.e. reaction (2.16), results in

conversion of atomic oxygen to ozone through reaction (2.15). The sunrise/sunset

transitions of both O3 and O are sharp, and around the 80 km ozone minimum
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Figure 2.5. Annual average, night-time ozone distribution from measurements of the
GOMOS instrument during 2003 (courtesy of E. Kyrölä, Finnish Meteoro-
logical Institute). Note the two distinctive maxima in mixing ratio (shown in
ppmv units) at about 30 and 95 km, as well as the minimum at about 80 km.

the concentrations show significant temporal variation during daytime [e.g. Shi-

mazaki, 1984, pp. 162–168].

In the lower stratosphere, the photochemical lifetime of ozone is relatively

long. Therefore, in addition to photochemical production and loss, atmospheric

transport can play an important role in determining its distribution. A mani-

festation of this is seen in observations of total ozone column that have shown

the highest column densities at high latitudes, although the ozone production is

strongest at the equator [Brasseur and Solomon, 2005, pp. 281–288].

As already discussed in Sections 2.3.1 and 2.3.2, significant production of

odd nitrogen (N + NO + NO2 = NOx) and odd hydrogen (H + OH + HO2 =

HOx) species occurs in the middle atmosphere during large SPEs. This can lead to

depletion of ozone through enhancement of the catalytic reactions cycles involving

NOx and HOx. As mentioned above, the HOx cycles are most effective in the

mesosphere, while NOx cycles have their largest influence on ozone in the middle

and upper stratosphere. Therefore, the ozone changes due the enhancement of

NOx and HOx are generally seen at different altitudes, although there is overlap

in the stratopause region. Most of the ozone-destroying catalytic NOx and HOx

cycles involve atomic oxygen, which at altitudes below ∼80 km is available only
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Figure 2.6. Ozone depletion due to the October-November 2003 SPE, as observed
by the GOMOS instrument. The profiles are zonal averages for latitudes
70◦N–75◦N. The before-SPE and after-SPE profiles include night-time mea-
surements from October 18–24 and November 3–6, respectively.

in sunlit conditions. As a result, ozone depletion requires solar radiation and is

moderate at night-time. Largest depletions are seen during sunrise and sunset,

when atomic oxygen is available and the background production of HOx from

water vapour is relatively low [e.g. Paper II].

The effect of HOx increase on ozone is of relative short duration. The HOx

photochemical lifetime being short and ozone production in sunlit conditions being

relatively fast result in a quick recovery of both species after a reduction in the

flux of precipitating solar protons. On the other hand, NOx can have a long

photochemical lifetime, especially in conditions of low level of illumination, and

the ozone decrease due to enhanced NOx can last for months. In such time scales,

the atmospheric transport of NOx plays an important role in determining the ozone

changes in the stratosphere. The ozone changes caused by an SPE typically occur

above the ozone layer, thus the total column ozone is not significantly reduced.

Instead, there is indication that if the SPE-produced NOx is transported to lower

stratosphere, it may interfere with the Cl and Br catalytic cycles below ∼22 km

resulting in a slight increase of ozone in the lower stratosphere [Jackman et al.,

2000]. Nevertheless, ozone reduction by tens of percent has been observed during

and after large SPEs in both the mesosphere and upper stratosphere [e.g. Paper I].

Fig. 2.6 shows ozone profiles measured in the northern polar region before and after

a large SPE.

Depletion of ozone results in temperature decrease in the middle atmosphere

through reduction in the absorption of UV radiation. On the other hand, Joule
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heating (in electron/ion/neutral collisions due to different velocities) during pro-

ton precipitation could increase the temperature in the mesosphere temporarily.

These opposite effects have been estimated to change the temperature by about

−3 K and +10 K, respectively, and could play a role in SPE-related wind changes

[Jackman and McPeters, 2004, and references therein]. Rocket measurements dur-

ing the October 1989 SPE have indicated a temperature decrease by −14 K in the

stratopause region, which exceeds the theoretical estimations [Zadorozhny et al.,

1994].

2.3.4 About the role of middle atmospheric dynamics

Due to continuous input of heat and momentum, the middle atmosphere does

not reach an equilibrium state but is always in motion. The latitudinal temper-

ature gradients drive zonal winds, which are strongly influenced by the seasonal

variation in solar heating [Brasseur and Solomon, 2005, pp. 55–57]. The strong

zonal advection effectively mixes the atmospheric species, so that in the longitu-

dinal direction the variations of atmospheric quantities are relatively small when

contrasted to variations with respect to altitude and latitude. In the meridional

direction, the mean Brewer-Dobson circulation is characterised by upwelling in

the summer hemisphere, meridional transport from summer to winter hemisphere

in the mesosphere, and downwelling in the winter hemisphere. The primary cause

of the mean meridional circulation is believed to be gravity waves, which originate

from the ground level and dissipate in the stratosphere and mesosphere [Smith,

2004]. The momentum deposition by breaking waves together with the Coriolis

effect forces the summer to winter flow, which then by continuity results in an

ascending flow in the summer hemisphere and descending flow in the winter hemi-

sphere. Wave breaking leads also to vertical mixing of heat and constituents by

turbulent diffusion. In the stratosphere the mean circulation is driven more from

equator to pole by breaking planetary waves, and it is strongest in the winter

hemisphere.

In the winter polar stratosphere, strong westerly zonal winds, also know as

polar night jets, form the so-called polar vortex [Brasseur and Solomon, 2005,

pp. 108–109]. Located at latitude ≈ 60◦ and above 16 km in altitude, it acts as

an dynamical barrier and tends to isolate the polar cap region. The vortex can

be disturbed by planetary-scale waves through deceleration of the zonal flow. As

planetary waves are in general less intense in the Antarctic, the polar vortex is

more stable there than in the Arctic. Strong waves may reverse the direction of

polar jets and cause the breakdown of polar vortex, which leads to a strong down-

ward motion and sudden stratospheric warming through adiabatic compression.

The long-term effects of SPEs on odd nitrogen and ozone are influenced by

atmospheric dynamics of the polar regions, which is strongly dependent on the sea-
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son [e.g Jackman et al., 1995]. In the summer pole the mean circulation transports

constituents towards higher altitudes, which tends to prevent the large amounts

of NOx, produced at higher altitudes, from entering the upper stratosphere where

catalytic ozone destruction by NOx is most efficient. In the winter pole the situa-

tion is the opposite. It has been suggested for some time that significant amounts

of NOx, produced by energetic particle precipitation, may be transported into

the stratosphere from the mesosphere and thermosphere inside the polar vortex

[Solomon et al., 1982]. Observations of NO2 and ozone from the GOMOS instru-

ments showed that descent of NOx and corresponding depletion of ozone occurred

after the October/November 2003 SPE, until the breakup of the polar vortex in

late December [Paper I]. Although there are also observations of such NOx de-

scent after electron precipitation events, the scarcity of the data has not allowed

for strong conclusions on the importance of particle precipitation to stratospheric

ozone in general [Callis, 2001].
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3 Observations of SPE effects

In general, middle atmosphere and the D-region ionosphere are observed by either

in-situ (local) or remote sensing methods. Stratospheric altitudes can be reached

with balloons while mesospheric and D-region in-situ observations require rocket-

borne instruments. A variety of both ionospheric and atmospheric quantities

can be retrieved from in-situ measurements, including gas concentrations, winds,

temperature etc. Of special importance have been rocket observations of D-region

ion composition, which has not been measured directly by remote sensing. The

disadvantage of in-situ observations is that they are momentary in the nature,

thus providing data with rather limited spatial and temporal coverage.

Remote sensing (RS) is dominantly ground-based or satellite activity, al-

though RS instruments have also been flown with balloons, aircrafts, and rockets.

RS instruments measure electromagnetic radiation or sonic waves that have tra-

versed the medium of interest, i.e. the atmosphere. The target quantity is not

measured directly but has to be inverted from the modifications of observed sig-

nal caused by the medium, which may require detailed modelling of the signal

propagation and a priori information about the medium. The signal itself can be

natural, such as solar radiation, or it can be generated. RS data is generally good

in temporal continuity, and the satellite measurements tend to have good global

coverage.

This chapter briefly outlines measurements of both ionospheric and neutral

atmospheric quantities that can be used to detect SPE-induced perturbations in

the middle atmosphere. Special attention is given to instruments and measure-

ments used in papers I–V. Section 3.2.1 is devoted to the GOMOS instrument,

which has provided most important new data for this thesis work.

3.1 Monitors of ionospheric disturbances

Ionospheric disturbances during solar proton events have been observed almost

solely by radio techniques, especially by riometers and incoherent scatter radars

(see section 1.1.2). Depending upon the frequency, changes in the D-region elec-

tron density induce changes in the ionospheric reflectivity or absorption of the

observed signal. As such, these measurements are used to monitor the basic iono-

spheric parameters, i.e. ionisation rate and electron density. Details on the ion

composition can be obtained only by using appropriate ion chemistry models.
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3.1.1 VLF radio signal receivers

Very Low Frequency (3–30 kHz), VLF, (long-wave) radio signals are used in com-

munication systems, e.g. between ground stations and submarines. The signals

used in communication systems are generated by high power transmitters but

VLF signals can also be generated by natural processes such as lightning. Over

distances greater than a few hundred kilometres, subionospheric VLF signal prop-

agation can be treated theoretically in terms of a waveguide formed by the Earth’s

surface and the bottom of the Earth’s ionosphere located between 50 and 100 km

[Barr et al., 2000]. Therefore, changes in the lower ionosphere produce changes in

the received amplitude and phase of the VLF signals.

The signals coming from distant transmitters, which are rather well dis-

tributed in geographic location, can be monitored by VLF receivers set up in

different locations around the Earth. The amplitude and phase of the transmitted

signal observed at the receiver location can also be modelled by considering the

variation of geophysical parameters along the signal path [Clilverd et al., 2005b].

An important variable input in the calculations is the electron density profile

which defines the upper boundary conditions for the waveguide. Comparisons of

observed and modelled signal can be used to study lower ionospheric changes,

which are know to be severe during SPEs. VLF measurements are used in Pa-

per II.

3.1.2 Riometers

Riometers measure ionospheric absorption of cosmic radio noise, typically at fre-

quencies of 20–60 MHz. Cosmic radio noise is of galactic origin and is considered

to be constant over long periods of time, so that any changes in the signal ob-

served on the ground are due to changes in ionospheric absorption. The absorp-

tion depends upon electron-neutral collision frequency, which, in turn, depends

upon electron density and temperature. Typically, most of the absorption occurs

in D-region altitudes, i.e. below 95 km. Riometers are relatively cheap, easy

to operate, and can continuously measure the integrated ionisation levels of the

overhead ionosphere. Interpretation of measurements includes determination of a

quiet-day curve, which is then subtracted from measurements, so that the final

absorption data by riometers are relative in nature. A riometer setup consists of

a single wide-beam antenna, or an array of antennas which can be used to con-

struct narrow beams. The latter setup is called an imaging riometer because it

can provide a 2-D picture of the absorption, typically over 100×100 km area at

90 km altitude. For a description of riometer technique and measurements, see,

e.g., Ranta et al. [1983] or Detrick and Rosenberg [1990].

Cosmic radio noise absorption can also be estimated from electron densities
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by calculating the electron collision frequencies of the main neutral atmospheric

species using electron temperature [Banks and Kockarts, 1973, Part A, p. 194].

The Appleton-Hartree magnetoionic theory [e.g. Sen and Wyller, 1960] can then

be used to compute differential absorption dL/dh. Height integration of the dif-

ferential absorption then provides a quantity equivalent to the one observed by

riometers. The absorption is significantly increased by SPE-induced ionisation in

the D-region, the daytime riometer observations typically showing ∼10 dB values

during a large event. Riometer measurements are used in Papers IV and V.

3.1.3 Incoherent scatter radars

Incoherent scatter (IS) radars provide altitude profiles of ionospheric quantities,

such as electron density and temperature. The technique includes transmitting

a coded power pulse, which is then scattered in the ionosphere by electrons, so

that the returned power can be measured. The advantage of IS radars is that

they are able to provide data from above as well as below the peak electron

density with good spatial resolution [Hargreaves, 1992, pp. 81–88]. On the other

hand, the scattered signal is very weak, so that a powerful transmitter and a

sensitive receiver are required. Several experiment modes have been developed

for the radars operated at VHF and UHF frequencies [e.g. Collis and Rietveld,

1990, and references therein], with specific purposes and altitude coverage. The

radars are not operated continuously, but can provide a rather comprehensive set

of ionospheric data with a ∼10 s temporal resolution.

The quiet-time electron densities in the lower D region, below ∼70 km, are

of the order of 108 m−3 or less [e.g., Hargreaves, 1992, pp. 231]. For this kind of

small values the EISCAT signal-to-noise ratio is very low, making measurements

impractical [Turunen, 1993]. However, during SPEs the D-region ionisation levels

can be drastically elevated, allowing observations reaching stratopause altitudes.

Incoherent scatter radar measurements are used in Paper IV.

3.2 Measurements of perturbations of minor neutral

species

SPE-induced changes in minor neutral constituents have been occasionally ob-

served by rocket measurements [Weeks et al., 1972; Zadorozhny et al., 1994], while

the bulk of measurements has come from satellites (see section 1.1.2). However,

night-time measurements have been lacking until quite recently. Important new

data has been obtained from the GOMOS/Envisat instrument. The GOMOS ob-

servations of ozone and NO2 are used in Papers I and II, while Paper III presents

a validation of these rather unique night-time ozone data.
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Figure 3.1. An artistic view on GOMOS making a stellar occultation above Finland
(courtesy of VTT).

3.2.1 GOMOS instrument on board Envisat satellite

GOMOS (Global Ozone Monitoring by Occultation of Stars) is a UV-VIS spec-

trometer on board the European Space Agency’s (ESA) Envisat satellite [Bertaux

et al., 1991, 2004; Kyrölä et al., 2004]. GOMOS was designed for observations

of middle atmospheric ozone and other species related to the ozone chemistry.

Altitude profiles of gases can be inverted from GOMOS measurements that use

the stellar occultation technique. In this technique, the instrument is pointed at

a star and the stellar spectrum is measured, first when the line-of-sight (LOS) is

above the atmosphere (tangent altitude ≈150 km). As the satellite advances in its

orbit, the star seems to set behind the atmosphere and, while the instrument con-

tinuously measures the spectrum, LOS descends in altitude until it is eventually

interrupted by the solid Earth if not the clouds. One such star tracking from the

top of atmosphere down to the ground during which the stellar signal is obscured

by the atmosphere is called an occultation. Fig. 3.1 displays an artistic view on

GOMOS making a stellar occultation.

The advantages of stellar occultation technique are that 1) both daytime and

night-time observations can be made because the measurements are not dependent

on solar light, 2) the global coverage of observations is good because stars are

distributed all around the sky, 3) the altitude resolution, which is dependent on

the measurement geometry, is always better than 1.7 km, and 4) the measurements

are self-calibrating because the reference spectrum of the star is recorded for each

occultation. A disadvantage is that the accuracy of measurements depends on the

stellar temperature and magnitude, and is thus different for each of the stars used.

Also, some of the daytime measurements have a low signal-to-noise ratio due to

scattered solar radiation entering the instrument.

The basic output from GOMOS is the transmission of light through the at-

mosphere for each tangent altitude, defined as Iocc/Iref , where Iocc and Iref are the

intensities measured through and above the atmosphere, respectively. Knowing
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Figure 3.2. Level 1 transmissions at UV-VIS wavelengths measured by GOMOS during
one occultation (courtesy of E. Kyrölä, Finnish Meteorological Institute).
First, when the line-of-sight (LOS) is above the atmosphere, transmission is
1. But as LOS descends in altitude, the atmospheric gases absorb more and
more of the initial radiation, so that for lower altitudes the transmission has
decreased significantly. Different gases absorb at different wavelengths. For
example, the absorption at the smaller wavelengths (< 350 nm) is mostly due
to ozone in the mesosphere.

the wavelength-dependent absorption cross sections of the different atmospheric

gases, their altitude profiles can be calculated from the transmission data using

the Beer-Lambert absorption law and advanced inversion methods [Kyrölä et al.,

1993]. Fig. 3.2 shows transmissions measured by GOMOS during one occultation.

The spectral range of GOMOS, 250–675 nm and two infrared channels, al-

lows for inversion of several gas concentration profiles, including ozone and NO2.

Fig. 3.3 presents the altitude ranges of some of the unknown atmospheric quanti-

ties retrieved from GOMOS measurements. Note especially the extended altitude

range of ozone measurements, from 5 to 100 km. Global measurements of atmo-

spheric quantities have been made by the GOMOS instrument since the launch of

the Envisat satellite in March, 2002. GOMOS successfully performs several hun-

dred occultations per day with good global coverage, including the polar areas.
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Figure 3.3. The altitude ranges of some of the unknown atmospheric quantities re-
trieved from GOMOS measurements. Most of the information obtained is for
stratospheric heights but for ozone the altitude range is quite extensive, from
5 to 100 km in optimal conditions.
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4 SIC: a 1-D ion and neutral chemistry model

Modelling is an important part of atmospheric research. Many times, measure-

ments provide an indirect or partial view on the atmospheric properties and pro-

cesses with a limited geographical and/or altitude coverage. Interpretation of

such observations can be greatly improved by using suitable atmospheric models,

leading to a better understanding of atmospheric processes. On the other hand,

model results may provide important extra information, which can be used to

guide the planning of future observations and laboratory work. Unlike measure-

ments, modelling can provide a quite comprehensive representation of the atmo-

sphere. However, no model is perfect. Not all processes of the atmosphere are well

understood, some likely not even known of, and simplifying assumptions have to

be made because the processes are many, their interactions are complex, and com-

puting time is limited. Therefore, validation of model results using measurements

is vital. Results based purely on modelling should be taken with appropriate extra

caution.

In this chapter, a one-dimensional photochemical model of the lower iono-

sphere and middle atmosphere, the Sodankylä Ion Chemistry model, is presented.

The following sections will outline the model inputs and outputs, describe the

photochemical schemes included and how the model is used to study ionospheric

and atmospheric effects of SPEs, and discuss its uncertainties, limitations, and

applicability as well as future prospects.

4.1 Historical background

The Sodankylä Ion Chemistry model, also known as SIC, was developed in the late

1980s in the Sodankylä Geophysical Observatory by E. Turunen, H. Matveinen,

and H. Ranta, after some original work by M. Dymek in the 1970s. A detailed

chemical scheme, in a conceptually simple model, was built to be a tool for in-

terpretation of D-region ionospheric observations. Originally, the model was de-

signed for geophysically quiet conditions and it solved the concentrations of 35

ionic species, 24 positive and 11 negative, in sunlit conditions. The altitude range

was from 70 to 100 km. The solar radiation (5–135 nm) and galactic cosmic radi-

ation (GCR) were considered as ionisation sources acting on five primary neutral

components. Photoequilibrium was assumed for all ions and thus transport ef-

fects were neglected. Neutral background atmosphere was taken to be constant

and not affected by the ion chemistry. The model was first applied by Burns et al.

[1991] in interpretation of incoherent scatter radar observations. A more detailed

description of the original SIC is given by Turunen et al. [1996]. In due course,

the model was extended to include electron and proton precipitation as ionisation
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Figure 4.1. Schematic structure of the Sodankylä Ion Chemistry model. The circles,
tilted squares, and squares indicate external input, external models used, and
modules of the SIC model, respectively.

sources, the lower limit of altitude range was lowered from 70 to 50 km, and 20

new ionic species were included.

In the late 1990s a new phase in SIC development began. The model was con-

verted into a 1-D coupled ion and neutral chemistry tool, with intentions to study

effects of solar proton events on the neutral minor constituents, together with

satellite measurements. The approach taken was to combine the quite detailed

ion chemistry scheme with a basic set of neutral reactions of the upper stratosphere

and mesosphere. Currently, the model solves the time-dependent concentrations

of 79 constituents (36 positive ions, 28 negative ions, and 15 neutral species) at

altitudes from 20 to 150 km, with 1 km resolution. The modelled species are listed

in the Appendix. Fig. 4.1 presents a schematic view on the structure of the SIC

model, some details of which are given in the following sections of this chapter.
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4.2 Basic external input

4.2.1 Photoionisation and dissociation rates

The solar flux above the atmosphere I∞(λ) is estimated by the SOLAR2000 model

[Tobiska et al., 2000], which provides various daily 1 AU adjusted (or observed)

solar irradiance products and historical data. SIC utilises a partial solar spectrum

in 1 nm wavelength bins (λ = 1–423 nm), 39 individual EUV lines and wavelength

groups in the EUV91/EUV97 format between 1.86–105.0 nm, and the Lyman-α

line. This spectral range of solar radiation is responsible for the main photoionisa-

tion and photodissociation processes in the upper stratosphere, mesosphere, and

lower thermosphere [Brasseur and Solomon, 2005]. The scattered component of

the solar Lyman-α flux, which is an important source of ionisation in the meso-

sphere at night, is included using the empirical approximation given by Thomas

and Bowman [1986].

At each altitude zo, solar flux values I are determined for each wavelength λ

using the well-known Beer-Lambert law

I(λ, zo, χ) = I∞(λ) e−τ(λ,zo,χ), (4.1)

where τ is the optical depth of the atmosphere depending upon the solar zenith

angle χ and the above atmospheric composition. For the overhead sun (χ = 0)

τ(λ, zo) =
∑

j

σj(λ)

∫ ∞

zo

nj(z) dz, (4.2)

where σj and nj are the absorption cross section and concentration of atmospheric

constituent j. Especially for a large χ, it is necessary to take into account the

spherical geometry of the atmosphere, which makes Eq. (4.2) somewhat more

complex. Without going into details here, we refer to Rees [1989, p. 12–13], who

gives a procedure for optical depth calculation that we have adopted [description

is also given by Turunen et al., 1996]. Photoionisation and photodissociation rates

can then be calculated for each constituent at each altitude from

Qj(zo, χ) =

∫
λ

I(λ, zo, χ) ηj(λ) σj(λ) nj(zo) dλ, (4.3)

where ηj is the efficiency for ionisation/dissociation. A list of the SIC photoionisa-

tion and photodissociation processes and their products is given in the Appendix.

Rates for most of these can be calculated according to Eq. (4.3). However, pre-

dissociation of NO, i.e. excitation by a photon followed by de-excitation and

simultaneous dissociation, occurs at wavelengths less than about 191 nm, thus

overlapping with the highly structured O2 Schumann-Runge bands, so that accu-

rate calculation of NO photodissociation requires a different approach [Brasseur
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and Solomon, 2005, pp. 233–236]. We use a method that calculates NO photodis-

sociation rate taking into account the slant columns of O2 and NO, absorption by

ozone in the Hartley band (242-310 nm), and the predissociation probability of

NO from excited electronic state [Minschwaner and Siskind, 1993].

The sources of absorption cross sections and photoionisation/dissociation ef-

ficiencies are listed in the Appendix. In the O2 Schumann-Runge bands (175–

205 nm) the absorption lines show considerable structure and cross section varies

by about 5 orders of magnitude, so that a more detailed consideration is required.

Therefore, O2 cross sections for the Schumann-Runge bands are calculated using

a parameterisation, which depends on the line-of-sight column density of O2 and

local temperature [Murtagh, 1988; Koppers and Murtagh, 1996].

The primary ionisation by a photon creates an ion and a photoelectron. For

the ionisation to occur, the incident photon must provide an amount of energy

that is equal or exceeds the threshold ionisation energy of the neutral molecule

(or atom) Ei. When more energy is provided than is needed for ionisation, the

left-over energy Es is

Es = hν − Ei. (4.4)

The excess energy Es can lead to excitation of the ion. However, in practice a

large part of Es is converted to kinetic energy of the ionisation products, especially

to that of the light electron [Rees, 1989]. For photon wavelengths less than about

35 nm, Es is sufficiently high so that the created photoelectrons are capable of

further ionisation, and can considerably increase the N2 ionisation rate. To take

the effect of photoelectrons into account, we utilise a simple parameterisation

where the ionisation rate of N2 due to photoelectrons Qpe is proportional to that

due to photons Q according to

Qpe(zo) = C(zo) Q(zo), (4.5)

where C is an altitude-dependent constant set by detailed photoelectron model

calculations [Fuller-Rowell, 1993, and references therein]. Fig. 4.2 shows some

calculated ionisation rates due to photons and photoelectrons.

4.2.2 Neutral background atmosphere and temperature

By default, the background neutral atmosphere is generated using the semi-

empirical MSISE-90 model [Hedin, 1991] and tables given by Shimazaki [1984].

However, any other source, including observational data, could readily be used.

MSISE-90 provides climatological average altitude profiles (0–300 km) of N2, O2,

Ar, He, and temperature with 1 km resolution for any given set of date, time, ge-

ographic location, planetary magnetic index Ap, and solar F10.7 flux. Shimazaki

[1984] provides mid-latitude concentrations of N2O, H2, HNO2, HCl, Cl, ClO,
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Figure 4.2. Daytime ionisation rates due to solar photons, photoelectrons, and GCR
(solar maximum). SIC model results. Equinox, latitude 70◦N, SZA = 69.6◦.
Note the photoelectron contribution to the N2 ionisation rate.

CH3, CH4, CH2O, and CO for noon and midnight conditions at altitudes 10, 15,

20, 25, 30, 45, 60, 80, and 100 km, which we then convert into altitude profiles of

1 km resolution by interpolation. For most of the Shimazaki-based background

constituents there is no significant diurnal variation in the middle atmosphere.

For those that do have diurnal variation, e.g. Cl and ClO, scaling with respect

to solar flux level is applied. This allows for a crude approximation of twilight

transition of these constituents from day to night concentrations and vice versa.

The scaling factor is obtained by dividing the total flux between 99 and 422.5 nm

by that pre-calculated for the same altitude and solar zenith angle of 45◦. The

total concentration is the sum of all individual constituents, and those of H2O and

CO2 are calculated using fixed volume mixing ratio profiles, the default values are

5 ppmv (below 80 km) and 335 ppmv, respectively. This background atmosphere

is then combined with the modelled neutral concentrations, providing a complete

set of gases required by the model. For solar zenith angles greater than 90◦, the

optical depth calculation requires gas concentrations below the lower altitude limit

of the model. These are currently taken from Brasseur and Solomon [1986] when

not provided by the MSISE-90 model or Shimazaki [1984].

4.3 Chemistry and transport

Concentrations of atmospheric gases are controlled by geochemical and biological

processes at ground level, energy input by solar radiation and energetic parti-
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cle precipitation, and chemical reactions and atmospheric transport. These con-

centrations may vary substantially with respect to altitude, geographic location,

season, and time of day. Providing that the relevant processes are known, time-

dependent concentration of an atmospheric species j can be solved from the con-

tinuity equation

∂nj

∂t
= Pj − Ljnj −∇ · (nj v̄j) (4.6)

where nj = concentration, t = time, Pj = local production rate, Ljnj = local

loss rate, and v̄j = velocity. Here, divergence of flux ∇ · (nj v̄j) represents the

atmospheric transport. Pj and Ljnj are sums of production and loss rates due to

local processes, i.e., photochemical reactions. For a two-body reaction

A + B → C + D (4.7)

the reaction rate R is obtained from

R = k[A][B], (4.8)

where k is the reaction rate coefficient for this particular reaction, while [A] and

[B] are the concentrations of constituents A and B, respectively. Reaction rate

coefficients, which are in many cases temperature-dependent, are generally ob-

tained from laboratory measurements because interactions between reacting gases

are multidimensional and thus quite complex to model [Brasseur and Solomon,

2005, pp. 28–30].

4.3.1 Scheme of chemical reactions

The neutral chemistry scheme consists of reactions important to odd oxygen (O

+ O3), odd nitrogen (N + NO + NO2), and odd hydrogen (H + OH + HO2)

species in the upper stratosphere, mesosphere, and lower thermosphere. In addi-

tion, reactions of some other species that are important to ionospheric processes

are included, such as those of metastable O2(
1Δg). The scheme of positive ion

reactions, presented in Fig. 4.3, is basically the same as the one given by Turunen

et al. [1996], although a few reactions have been added and some rate coefficients

have been updated. The negative ion scheme has been updated, see Fig. 4.4, with

several, mostly hydrate ions added to the scheme of Turunen et al. [1996]. The

rate coefficients have been updated where appropriate. Lists of included reactions

and their rate coefficients are given in the Appendix.

Considering local production and loss for unknown gas constituents, which

are dependent on each other, the continuity relation (4.6) becomes a non-linear
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Figure 4.3. Block diagram for the positive ion scheme of the SIC model (courtesy of
E. Turunen, Sodankylä Geophysical Observatory). The various ions in the
blocks are either the reactants or the final products of the reactions sketched
by the connecting arrows. The arrows are labelled with the neutral con-
stituents taking part in the reactions. M denotes any atmospheric molecule.

set of equations and can be written in a vector form as

∂N̄

∂t
= BN̄ + Q̄ =

⎛
⎜⎜⎜⎜⎜⎝

−Λ1 +Π12 . . . +Π1n

+Π21 −Λ2

...
. . .

+Πn1 −Λn

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

n1

n2

n3

...

nn

⎞
⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎝

q1

q2

q3

...

qn

⎞
⎟⎟⎟⎟⎟⎠

. (4.9)

Eq. (4.9) gives a vector containing the rate of change (m−3 s−1) of the unknown

species at a certain time to. The diagonal elements of matrix B, Λj =
∑

Lj,

are the sum of chemical loss processes of species j, and non-diagonal elements

Πji = Pji/ni account for the production processes from constituent i. Vector N̄

holds concentrations of the unknown species, and Q̄ is the sum of production/loss

rates due to ionisation and dissociation processes. Electron density, one of the
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Figure 4.4. Same as Fig. 4.3 but for negative ions (courtesy of E. Turunen, Sodankylä
Geophysical Observatory).

unknown quantities, is calculated from the ion concentrations by assuming overall

charge neutrality

ne =
∑

j

[X+
j ] −

∑
j

[X−
j ]. (4.10)

Here
∑

j[X
+
j ] and

∑
j[X

−
j ] are the sums of positive ion and negative ion concen-

trations, respectively. Time-dependent concentrations of the chemical species are

solved using the semi-implicit Euler method for stiff sets of equations [Press et al.,

1992, pp. 727–731]. The concentrations N̄to+Δt after a time step Δt are calculated
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from the current concentrations N̄to according to

N̄to+Δt = N̄to + Δt F̄ (N̄to)
[
1 − Δt

∂F̄

∂N̄

⏐⏐⏐
�Nto

]−1

(4.11)

The vector F̄ (N̄to) = ∂N̄/∂t is calculated from Eq. (4.9). The information on

how the constituents depend upon each other is given by a matrix containing the

partial derivatives of F̄ with respect to the individual concentrations, which we

denote by ∂F̄ /∂N̄ .

4.3.2 Molecular and eddy diffusion

The model being one-dimensional, the transport is represented by diffusion in the

vertical direction only. The rate of change of a constituent j due to diffusion is

∂nj

∂t
= − ∂

∂z
Fj, (4.12)

where Fj is the vertical flux (m−2 s−1). We consider molecular and eddy diffu-

sion, the former tends to separate the atmospheric species according to their mass

while the latter leads towards complete mixing of the species. Therefore, these

two processes compete with each other, having the same order of magnitude at

altitudes around about 100 km. At lower altitudes eddy diffusion results in homo-

geneous distribution of gases, and at higher altitudes molecular diffusion leads to

separation, the lighter gases tending towards higher altitudes. These two altitude

regions are called the homosphere and heterosphere, respectively, and the limit

of these regions, above which molecular diffusion cannot be neglected, is called

the homopause. The molecular diffusion flux of species j at altitude z can by

expressed by

FD
j = −nj Dj

[ 1

nj

∂nj

∂z
+

1

Hj

+
1 + αT

j

T

∂T

∂z

]
, (4.13)

where Dj is molecular diffusion coefficient, Hj = kT/mjg is the scale height of

species j, αT
j is the thermal diffusion factor, and T is temperature. For a derivation

of Eq. (4.13), see Banks and Kockarts [1973, Part B, Chapt. 15]. Similarly, eddy

diffusion flux is expressed by

FK
j = −nj Kzz

[ 1

nj

∂nj

∂z
+

1

H
+

1

T

∂T

∂z

]
, (4.14)

where Kzz is the eddy diffusion coefficient, and H = kT/mg is now the scale

height of the atmosphere. Using the perfect gas law and assuming hydrostatic

equilibrium, Eq. (4.14) can be expressed in the classical form

FK
j = −n Kzz

∂Nj

∂z
, (4.15)
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Gas species αT
j A s

H −0.38 4.90 × 1017 0.708
O − 9.69 × 1016 0.774

Table 4.1 Thermal diffusion factor and parameters used to calculate molecular diffusion
coefficient by Eq. (4.16). For the species not listed, thermal diffusion factor
is set to zero and molecular diffusion coefficient is calculated by Eq. (4.17).

where Nj is the volume mixing ratio of species j. The total flux is then FD
j +FK

j ,

and the relative importance of the two processes depends upon their diffusion

coefficients.

For molecular diffusion, the parameters in Eq. (4.13), Dj and αT
j , can be

estimated from gas kinetic theory or they can be set by measurements. The

thermal diffusion factor, αT
j , is associated with the temperature gradient and

is negligible for many gases. We consider αT
j for atomic hydrogen, adopting a

constant value from Banks and Kockarts [1973, Part B, Chapt. 15]. The molecular

diffusion coefficient can be calculated from

Dj = A
T s

n
, (4.16)

where n is total number density, and A and s are species-dependent parameters

set by measurements. We use Eq. (4.16) for atomic hydrogen and atomic oxygen.

For other species, measured A and s are not available and Dj is calculated, based

on general kinetic theory and rigid sphere approximation, from

Dj = 1.52 × 1018
( 1

Mj

+
1

M

) 1
2 T

1
2

n
, (4.17)

where Mj is molecular mass of species j in atomic mass units and M is the mean

atmospheric molecular mass. Table 4.1 summarises the values of αT
j , A, and s

used.

Evaluation of eddy diffusion coefficient Kzz is not as straightforward, as this

parameter is more speculative in the nature. Depending primarily on the en-

ergy dissipation by atmospheric waves, which leads to turbulent diffusion, it can

perhaps be accepted as an empirical parameter which describes the effects of trans-

port in approximative way. Thus, Kzz represents, to a certain extent, the degree

of turbulence in the atmosphere. Although parameterisations of Kzz, depending

upon wave properties, exist, it is often derived from measurements of long-lived

atmospheric constituents. For the model, we use an altitude profile of Kzz as

input, assuming the same profile for all the unknown neutral species. By default,

a mid-latitude, equinox profile similar to the one presented by Chabrillat et al.

[2002] is assumed, but any other profile can readily be used instead. Fig. 4.5 shows

examples of altitude profiles of diffusion coefficients.
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Figure 4.5. Example of molecular (for nitric oxide) and eddy diffusion coefficients,
calculated by Eq. (4.17) and parameterisation given by Shimazaki [1971],
respectively.

Eq. (4.12) is solved for after-transport gas concentrations by forming a tridi-

agonal system of linear equations with the dimension equal to the number of

altitude grid points [e.g. Shimazaki, 1984; Chabrillat, 2001] and then using the

LU (lower/upper) decomposition method [e.g. Press et al., 1992, pp. 34–47], tak-

ing into account boundary conditions at the upper and lower altitude limit. The

boundary conditions are set individually for each constituent either as a fixed

volume mixing ratio (VMR) or flux, based, e.g., on MSISE-90 model results or

measurements.

4.4 Forcing due to solar proton precipitation

4.4.1 Proton flux

High-energy proton flux measurements have been available since 1960s from satel-

lite instruments orbiting in the near-Earth space. By default, we calculate the ion-

isation rate due to proton precipitation using proton flux data from the geostation-

ary GOES satellites. These data are available from, e.g., the NOAA National Geo-

physical Data Center World Wide Web server at www.ndgc.noaa.gov/stp/stp.html.

GOES satellites give integrated proton fluxes above seven threshold energies: 1,

5, 10, 30, 50, 60, and 100 MeV.

An integrated proton flux J can be described by the exponential rigidity
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relation [Freier and Webber, 1963],

J = J0 e−P/P0 , (4.18)

which we use to convert the GOES measurements to differential proton fluxes over

the energy range of 600 keV – 2000 MeV. In Eq. (4.18), P is proton rigidity, i.e.

the momentum p per unit charge q, which can be related to proton energy E by

P =
p

q
=

1

qc

√
E(E + 2mpc2). (4.19)

Here mp is the rest mass of proton and c is the speed of light. P0 and J0 are

the characteristic rigidity and corresponding flux, respectively, calculated for each

consecutive pair of GOES energies Ei and Ei+1 by solving from Eq. (4.18)

P0 =
Pi − Pi+1

ln Ji+1 − ln Ji

(4.20)

J0 =
Pi ln Ji+1 − Pi+1 ln Ji

Pi+1 − Pi

. (4.21)

After obtaining P0 and J0 for each successive pair of GOES energy limits, Eq. (4.18)

is used to calculate integral flux values J for a desired energy grid within the range.

Finally, the dense-grid integral flux values are converted to differential flux values

Fd according to

Fd =
Jk − Jk+1

Ek+1 − Ek

(4.22)

with corresponding mean energy being

Ed =
Ek+1 + Ek

2
. (4.23)

Fig. 4.6 shows an example of GOES proton flux measurements and the converted

differential spectrum.

For magnetic latitudes higher than about 60◦, geomagnetic cutoff can be

considered negligible, practically all energetic SPE protons are able to enter the

atmosphere, and the GOES flux measurements at the geostationary orbit can be

used as such [e.g. Hargreaves, 1992, p. 355–359]. For lower latitudes, it becomes

necessary to consider the time-varying geomagnetic cutoff energy, which we calcu-

late using a method given in Paper V. The method is based on the cutoff rigidity

modelling by Smart and Shea [2003], and is dependent on the planetary magnetic

index Kp. The output is a cutoff energy for protons at a given geographical loca-

tion Ecut, which is then used to modify the differential flux of protons simply by

setting the flux equal to zero for all energies lower than Ecut.
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Figure 4.6. GOES proton flux measurements, and the corresponding integrated and
differential spectrum after conversions. The measurements were made during
the largest SPE of 1989, on October 23, and are mean values for 12–15 UT.

4.4.2 Ionisation and dissociation rates

Although at lower energies protons are able to undergo charge-exchange reactions

with the neutral molecules, for the energy range relevant for middle atmosphere

penetration they can be neglected, and the energy loss of precipitating protons is

dominantly due to ionisation processes [Rees, 1982]. Several methods exist that

can be used to calculate the energy input of protons and the resulting ionisation

rate in the atmosphere. Decker et al. [1996] have presented a comparison of three

different modelling approaches: Monte Carlo, linear transport, and continuously

slowing-down approximation. They found a very good agreement between the

three methods except for the cases where protons had penetrated so deep that

their fluxes were significantly modified, which happens well below the bulk ion-

isation region. Recently, Schröter et al. [2005] have compared Monte Carlo and

continuous energy loss models and found the calculated ionisation rates to be

essentially the same for 1–500 MeV protons. Our ionisation rate calculation is

done with a computationally fast procedure, and it is based on proton energy-

range measurements in standard air [Bethe and Ashkin, 1953]. The energy-range

relation for protons can be written

R(E) = aEb (4.24)

where R is the range, E is the proton energy, and a and b are parameters set by

measurements. Using the following algorithm, originally presented by Reid [1961],
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we calculate energy deposition rates on each altitude: The stopping power of a

proton with initial energy E and pitch angle θ at altitude zo is

dE

dx
=

(
dR(E, zo, θ)

dE

)−1

(4.25)

where

R(E, zo, θ) = R(E) − 1

n(0)

∫
zo

∞ n(z)

cos θ
dz (4.26)

is the remaining range at altitude zo. The total concentrations n(0) and n(z) are

taken at ground level and at altitude z, respectively. The last term in Eq. (4.26) is

the standard air range, i.e. energy, lost by a proton in penetrating the atmosphere

down to altitude zo. By dividing Eq. (4.25) by mean ionisation energy Δε, taken

to be 36 eV (see e.g. Rees [1989], pp. 35–45), and multiplying by the proton flux

F (E) and then integrating over energies and angles, we get the total ionisation

rate for each altitude from

Q =
1

Δε

∫ ∫ ∫ (
dE

dx

)
F (E) sin θ dθdφdE (4.27)

The angular distribution of protons is assumed to be isotropic over the upper

atmosphere, which is valid in the near-Earth space [Hargreaves, 1992, pp. 353–

355]. The integration is executed with the Gaussian quadrature method [Press

et al., 1992, pp. 140–155]. Fig. 4.7 shows, as an example, the calculated ionisation

rates during the October 1989 SPE.

The total ionisation rate is divided between N2, O2, and O according to their

relative concentrations and cross sections [Rees, 1982], so that

QN2 = Q
[N2]

[N2] + [O2] + 0.8 [O]
(4.28)

QO2 = Q
[O2]

[N2] + [O2] + 0.8 [O]
(4.29)

QO = Q
0.8 [O]

[N2] + [O2] + 0.8 [O]
. (4.30)

The ionisation rates of N2 and O2, are then divided between the ionisation and

dissociative ionisation processes using the branching ratios given by Jones [1974]

to obtain the production/loss rates for the individual species, see Table 4.2.

As a result of direct proton impact, we consider production of four different

ionic species (N+
2 , N+, O+

2 , and O+) as well as atomic oxygen and atomic nitrogen.

Dissociation of N2 by secondary electrons is an important source of atomic nitrogen

which we take into account using a simple parameterisation

Dsec = C Q(zo), (4.31)
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Figure 4.7. Total ionisation rate due to proton precipitation during the first days of
the October 1989 SPE. Calculated by Eq. (4.27) using proton flux data from
GOES-7 satellite.

where C is an altitude-independent constant. By default, the value of 0.8 is

adopted for C according to the lower limit given by Rusch et al. [1981], based on

relative magnitudes of dissociation and ionisation cross sections. For atomic nitro-

gen production, it is important to consider the branching between the ground state

N(4S) and the excited state N(2D) because production of the former leads to odd

nitrogen loss through fast reaction (2.10). Table 4.2 gives also the N(2D)/N(4S)

branching ratios used as well as their sources.

4.5 Execution of the model

When the model is run, transport and chemistry are advanced in intervals during

which the background atmosphere and external forcing are kept fixed. Typically 5

or 15-min intervals are used. For every interval, 1) new values for solar zenith an-

gle, background atmosphere, and ionisation/dissociation rates due to solar radia-

tion and particle precipitation are calculated, 2) all modelled neutral constituents,

except the photochemically short-lived O(1D) and N(2D) and O2(
1Δg), are trans-

ported, and 3) the chemistry is advanced. See Fig. 4.1 in the beginning of this

chapter for a schematic structure of the model.

The individual photochemical lifetimes of modelled ions and neutrals vary

by several orders of magnitude, making the set of ordinary differential equations

in Eq. (4.9) stiff [e.g. Jacobson, 1999]. For an explicit solution, i.e. Nto+Δt =
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Reaction Rate (m−3 s−1) N(2D)/N(4S) branching
N2 + p → N+

2 + e∗ + p′ 0.76 QN2 –
N2 + p → N+ + N + e∗ + p′ 0.24 QN2 0.5/0.5 [Porter et al., 1976]
O2 + p → O+

2 + e∗ + p′ 0.67 QO2 –
O2 + p → O+ + O + e∗ + p′ 0.33 QO2 –
N2 + e∗ → 2N + e∗ 0.80 Q 0.6/0.4 [Zipf et al., 1980]

Table 4.2 Ionisation and dissociation of N2 and O2 due to proton and secondary electron
impact. p and p′ mark the proton before and after the ionisation, respectively.
e∗ is a secondary electron. The rates are given as fractions of ionisation rates.

Nto + F̄ (N̄to) Δt, the time step Δt is limited by the lifetime of shortest-lived

constituent, which may be of the order of 10−4 s or less, thus making the time

integration over just hours very time-consuming and impractical. If longer time

steps are used, the solution scheme may be destabilised. By adopting a semi-

implicit scheme, like the one in Eq. (4.11), much longer time steps can be used.

In addition, we use an exponentially increasing time step within each calculation

interval. In the beginning the time step is quite small, less than one second,

whereas the final step may be hundreds of seconds. The initially small time steps

allow the fast species to settle in after sometimes very large changes in external

forcing, after which it is possible to advance with longer time steps and keep the

computing time reasonable.

Before the model is used for a scientific study, it needs to be initialised. This

is done after selecting the location and day of year by repeatedly modelling the

diurnal cycle for that specific day until the results converge. Then the model

has reached a stable state, such that the modelled concentrations during the last

diurnal cycle are not significantly changed from the previous one. The number of

diurnal cycles required for a convergence depends on the assumed initial concen-

trations, a good guess reducing the number significantly. Typically, we use results

of some previous modelling work as a starting set of concentrations, so that after

10–20 diurnal cycles the convergence is usually better than 2%.

4.6 About applicability, uncertainties, and future

The SIC model, being one-dimensional, represents the ionosphere and atmosphere

at a single location. Because the atmospheric transport can only be taken into

account in the vertical direction, it is evident that horizontal transport by winds

restricts the model applicability significantly. SIC is best suited for short-term

studies of photochemical changes caused by sudden disturbances, like SPEs, of

which it can provide a rather detailed picture. In comparison with measurements,

it may be more useful to look at relative changes rather than absolute concentra-
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tions of species.

The SIC model representation of the atmosphere is obviously sensitive to the

selected background atmosphere and other input (i.e. initialisation), as well as

the selection of atmospheric processes included. The initial state of the model, in

the beginning of a model run, will affect the final results, so that the initialisation

should be made carefully, preferably using observations although these are many

times not available. On the other hand, even if the model is initialised perfectly,

the results are dependent on the capabilities of the model, i.e. what processes

are included and to what extent they are taken into account. In the case of SIC

model, horizontal transport is neglected. This means that the model is not able

to determine the dynamical fate of long-lived species. Therefore, the model runs

should be restricted in time, so that the effect of dynamics can be considered to

be minor or at least not dominant. In practice this means that model runs lasting

months are not meaningful. For example, SIC is a suitable tool for determining the

production of NOx during SPEs (duration from hours to days), but it cannot be

used to study the subsequent long-term transport of the produced odd nitrogen.

Process selection also determines the relevant altitude range for the model.

The operational range of the SIC model is from 20 to 150 km. However, the neutral

chemistry currently included is sufficient for altitudes of the upper stratosphere

and above. Also, the model does not include some positive nonproton hydrates or

negative sulfur ions which are present in the stratosphere [Brasseur and Solomon,

2005, pp. 564–570 and 577–581]. In addition, it should be noted that the model

takes the electron temperature equal to the neutral temperature, which is generally

not true in the thermosphere.

Sources of uncertainty in the SIC model are various, starting from the daily

average solar flux values, the neutral background atmosphere, and temperature.

Further, ionisation and dissociation cross sections, diffusion parameters, and re-

action rate coefficients have their own errors. In a complex atmospheric model

like SIC, consisting of numerous processes of which many are dependent on each

other, it is quite impossible to analytically evaluate the accuracy of the results.

The sensitivity to one parameter or a set of input parameters can be studied, giv-

ing important information on the robustness of the model results, but the ultimate

test to any model is comparison with observations. The better the agreement be-

tween the model and measurements, the better the model. However, one must

remember that observations have also uncertainties and they can even be biased.

Because there are many more or less “free” input parameters in the SIC model, it

might be possible to reproduce any measurement with some combination of these

parameters, without a guarantee that this combination really represented the true

state of the atmosphere. It is, therefore, better to be somewhat conservative and

cautious, and keep in mind the limitations of the model, when trying to match

the measurements.
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The SIC model has been applied to SPE studies, both ionospheric and ozono-

spheric, quite successfully. Similar studies have been also been done with electron

precipitation events. The core of the model, the combined ion and neutral chem-

istry scheme, may readily be used to study any phenomena that involves atmo-

spheric ionisation and dissociation and subsequent changes in ionic and neutral

constituents. Thus the SIC future lies very much in the capability to model in

detail specific ionospheric processes. For example, a parallel model is being de-

veloped at Sodankylä Geophysical Observatory, in order to study atmospheric

effects of middle atmospheric lightning, i.e. sprites, elves, and blue jets, in the

mesosphere. With the recent rise of whole atmosphere models, in which the al-

titude range is from ground level up to upper thermospheric heights, a need for

an ion chemistry module for 3-D atmospheric models has emerged. Such a mod-

ule, which should be simplified and computationally very fast, could be developed

based on the SIC ion chemical scheme.
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5 Results: Summaries of the original

publications

This chapter summarises the work done in Papers I–V.

I This paper discusses the long-term changes observed in NO2 and ozone con-

centrations after the October-November 2003 SPE. The GOMOS instrument

measured, for the first time, effects of an SPE in the winter polar regions.

It was shown that the SPE produced significant amounts of NOx at altitudes

above 36 km in the polar cap region, with simultaneous ozone depletion of

several tens of per cent. Descent of NOx inside the polar vortex observed

from the mesosphere to stratosphere resulted in the maximum ozone deple-

tion by 60% in the upper stratosphere in the end of November, about one

month after the SPE occurred. The observed partial column densities for

the 36-50 km altitude range showed clear deviation from the climatological

values after the event, returning towards normal levels in the end of the year.

The changes in O3 and NO2 columns were strongly negatively correlated, as

was expected from the known ozone chemistry. The SPE effects were shown

to remain inside the polar vortex, until its breakup in the late December.

II This paper discusses diurnal variation of ozone depletion during the October-

November 2003 SPE. A novel combination of ground-based radio propaga-

tion measurements and unique satellite measurements of ozone and NO2

were used together with the SIC model, offering a more complete approach

to SPE-induced processes than the previous work on the subject.

The variations in modelled and observed VLF signals showed very good

agreement, giving confidence on the modelled ionospheric response of some

substance. The model results showed order-of-magnitude changes in NOx

and HOx concentrations at stratospheric and mesospheric altitudes, with

clearly different recoveries after reduction in proton forcing. HOx recovered

during one quiet day, while the NOx concentrations stayed at an elevated

level showing no apparent recovery. The modelling indicated significant

diurnal variation in mesospheric ozone depletion, with implications to the

use of satellite measurements in determining the magnitude of the deple-

tion. Largest depletions were modelled during sunrise and sunset times,

when atomic oxygen is available for catalytic reaction cycles and background

production of HOx is relatively low. While in the mesosphere the ozone

recovery was found to be fast during daytime, longer-term depletion was

seen in the stratopause region due to NOx increase and relatively smaller

photodissociation-driven ozone production. At 35–70 km, the modelled NO2

increase was confirmed by the GOMOS measurements indicating a correct
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modelling of NOx production by the SPE. The modelled day-to-day varia-

tions in ozone depletion agreed with GOMOS measurements, especially in

the mesosphere. At stratopause region, the observed ozone depletion showed

more variation than the model results, perhaps indicating a shortcoming in

the modelled, SPE-induced ion-chemical production of HOx.

III The GOMOS instrument provides unique night-time data of mesospheric

ozone. Earlier observations have been made with ground-based and space

shuttle instruments, but satellite data from the night side has been limited.

Validation of GOMOS data has concentrated on stratospheric altitudes, and

this paper is the first to consider also the mesospheric observations.

GOMOS night-time ozone profiles were compared with those from the MI-

PAS instrument. Due to lack of MIPAS observations in the mesosphere,

the validation at this point was restricted to two dates. After compensating

for the different vertical resolutions of the two instruments, both individual

ozone profiles as well as statistical average profiles were compared. Agree-

ment within 10–15% was found in the stratosphere and lower mesosphere.

Although the relative difference was high around the 80 km ozone minimum,

the absolute values agreed within 0.5–1 ppmv. In the mesopause region,

around the secondary ozone maximum, the agreement was within 30%. It

was concluded that GOMOS and MIPAS are generally in a good agreement

throughout the middle atmosphere, giving confidence on data from both

instruments.

IV This paper discusses the behaviour of D-region ionosphere during twilight,

a long-standing problem. By combining a set of measurements from several

instruments and a 1-D ion and neutral chemistry model, this study makes a

new contribution to the D-region research.

We study the negative charge transition during the sunset of October 23,

1989, under SPE conditions. In the modelling, the changes in solar radiation

and minor neutral species with respect to the solar zenith angle are taken

into account, as well as the changes in neutral composition caused by the

SPE since its onset on October 18. The sunset transition depends upon solar

radiation at both ultraviolet (UV) and visible (VIS) wavelengths, relative

sizes varying with altitude. For the case studied, it was shown that the VIS

response is due to photodetachment reactions. On the other hand, the UV

response comes mostly from the changes in atomic oxygen and excited molec-

ular oxygen, rather than from photodetachment reactions. Further, negative

ion composition and the sunset transition characteristics were shown to be

sensitive to neutral atmospheric changes caused by the SPE, especially to

the amount of nitric oxide. Therefore, correct modelling of minor neutral

species is important, if not crucial for twilight studies in the D-region.
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These model results were validated using ionospheric measurements from the

Kilpisjärvi riometer and EISCAT incoherent scatter radar, and rocket-borne

measurements of nitric oxide. The modelled sunset transition characteristics

were confirmed by the observations, although differences in absolute electron

densities existed. Since the model uncertainties were not able to fully explain

the differences, and it was suggested that in addition to protons another ion-

isation source, most likely electron precipitation, was present. By including

a simple estimation of electron spectrum in the model, the modelled and

observed electron densities showed an excellent agreement.

V This paper discusses dynamic geomagnetic rigidity cutoff variations during

the SPE of November 2001. A detailed comparison between theoretical

cutoff rigidities and ground-based measurements during an SPE gave new

information on the validity of particle-tracing and magnetic field models

under different levels of magnetic disturbance, aiding a better definition of

geomagnetic latitude coverage of the SPE effects.

Theoretical cutoff energies for protons during the SPE were determined using

a Kp-dependent method based on satellite observations and particle-tracing

modelling. The theoretical results were used to predict cosmic radio noise

absorption observed by an imaging riometer at Halley Bay, Antarctica. It

was shown that the theoretical absorption is in a good agreement with the

cutoff-affected observations for low and mid levels of geomagnetic distur-

bance. During more disturbed condition, however, the predicted absorption

is too high due to over-estimation of stretching of the geomagnetic field.

It was concluded that the geomagnetic limit for the penetration of protons

is rather more poleward than has been indicated previously. Theoretical

predictions for highly disturbed conditions could be improved by using a

different magnetic field model.
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6 Concluding remarks

In this thesis, we have studied ionospheric and atmospheric effects of solar pro-

ton events, using a one-dimensional combined ion and neutral photochemistry

model together with both ionospheric and atmospheric observations. Although

SPEs have been studied since the 1950s, this work is quite unique in its approach.

Instead of using simple approximations to model ion chemistry effects on minor

neutral constituents, an extensive set of ionic reactions are combined with a ba-

sic set of neutral chemistry. Such a model is a most suitable tool for studying

processes of ionosphere-atmosphere interaction during SPEs, or other similar dis-

turbances, and allows for utilisation of large variation of measurements covering

the chain of processes from ionisation to ozone depletion. These data, unique

night-time ozone data from the GOMOS instrument as well as the wide selection

of ionospheric data, have been used to validate the model results to an extent not

seen before. Although the agreement with model results and the observations is

generally good, there are areas needing further investigation. One such puzzling

matter is the difference between the observed and modelled ozone depletion in the

stratopause region. Nevertheless, exciting new results have been obtained, with

a special thanks going to the GOMOS instrument which has shown the capabili-

ties of stellar occultation technique in observing the middle atmosphere from the

tropopause up to the mesopause region.

GOMOS measurements of ozone and NO2 have shown how the October-

November 2003 SPE lead to long-term changes in the northern hemispheric upper

stratosphere. A large role in this was played by the exceptionally stable polar vor-

tex which confined the affected air until a stratospheric warming in late December

displaced the vortex from the pole. High levels of stratospheric odd nitrogen ob-

served in the following spring have been associated to this large SPE by Natarajan

et al. [2004], while the study by Randall et al. [2005] indicates another source in

the beginning of 2004. GOMOS measurements could perhaps answer the questions

whether the spring enhancement was due to the SPE or, e.g., energetic electron

precipitation later, but the data for early 2004 has not been available yet. Re-

cently, [Clilverd et al., 2005c] have shown, based on ionospheric measurements,

that the observed NOx is likely of thermospheric origin.

The diurnal variation of ozone depletion was also observed by GOMOS dur-

ing the October-November 2003 SPE, although the measurements for the selected

latitude band were made at two local times only. Diurnal variations could per-

haps be better observed by an ground-based instrument if it provided continuous

observations, covering all local times with a fine time resolution. The bottom

panel of Fig. 7 in Paper II, showing the ozone depletion time series at 50 km,

displays some interesting features. The model is showing mainly the effect of odd

nitrogen increase, i.e. more or less constant depletion after October 29, while the
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measurements seem to show a combination of effects, i.e. a variable effect due to

odd hydrogen increase superimposed on a fixed depletion level due to odd nitrogen

increase. This could indicate a deficiency in the odd hydrogen modelling theory,

and should be investigated. Measurements of odd hydrogen species would be a

great aid when addressing this question.
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Clarmann, T. v., Glatthor, N., Höpfner, M., Kellmann, S., Ruhnke, R., Stiller, G. P.,
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Appendix: Tables of photochemical reactions

The following tables list the photochemical reactions currently included in the Sodankylä Ion

and Neutral Chemistry model. Notation: M is any atmospheric molecule, T is temperature, and

P is pressure. X− and X+ is any negative and positive ion, respectively. Units: reaction rate

coefficients are given in either s−1, cm3 s−1, or cm6 s−1, as appropriate for the reaction shown.

Table A.1 Modelled ions and minor neutrals.

O, O(1D), O2(1Δg), O3
N, N(2D), NO, NO2, NO3, HNO3, N2O5
H, OH, HO2, H2O2

O+, O+
2 , O+

4 , O+
2 (H2O), O+

2 N2, O+
2 CO2, O+

2 (H2O)N2, O+
2 (H2O)CO2, O+

2 (H2O)2
N+, N+

2 , NO+, NO+(N2), NO+(CO2), NO+(H2O), NO+(H2O)2, NO+(H2O)3, NO+(H2O)(N2),

NO+(H2O)(CO2), NO+(H2O)2(N2), NO+(H2O)2(CO2)

H+(H2O), H+(H2O)2, H+(H2O)3, H+(H2O)4, H+(H2O)5, H+(H2O)6, H+(H2O)7, H+(H2O)8
H3O+(OH), H3O+(OH)H2O, H3O+(OH)CO2, H+(H2O)2(CO2), H+(H2O)2N2, H+(H2O)CO2, H+(H2O)N2

O−, O−
2 , O−

3 , O−
4 , O−(H2O), O−

2 (H2O), O−
2 (H2O)2, O−

3 (H2O)

OH−, OH−(H2O),

CO−
3 , CO−

4 , CO−
3 (H2O), CO−

3 (H2O)2, HCO−
3

NO−
2 , NO−

3 , NO−
3 (*), NO−

3 (H2O), NO−
2 (H20), NO−

3 (H20)2, NO−
3 (HNO3), NO−

3 (HNO3)2, NO−
3 (HCl)

Cl−, ClO−, Cl−(H2O), Cl−(CO2), Cl−(HCl)

Table A.2 Photoionisation reactions.

N2 + hν → N+
2 + e [Torr et al., 1979; Siskind et al., 1995]

– ” – → N+ + N/N(2D) + e – ” –

O2 + hν → O+
2 + e [Torr et al., 1979; Siskind et al., 1995]

– ” – → O+ + O + e – ” –

NO + hν → NO+ + e [Ohshio et al., 1966]

O2(1Δg) + hν → O−
2 + e [Torr et al., 1979]

O + hν → O+ + O + e [Torr et al., 1979]

Table A.3 Photodissociation reactions.

O2 + hν → O + O Shimazaki [1984]; WMO [1985]; Murtagh [1988]; Koppers and Murtagh [1996]

– ” – → O + O(1D) – ” –

O3 + hν → O2 + O Shimazaki [1984]; WMO [1985]; DeMore et al. [1992]; Brasseur and Solomon [2005]

– ” – → O2(1Δg) + O(1D) – ” –

N2 + hν → N + N(2D) Rees [1989]

NO + hν → N + O [Minschwaner and Siskind, 1993]

NO2 + hν → NO + O Shimazaki [1984]; DeMore et al. [1992]

NO3 + hν → NO2 + O Sander et al. [2003]

– ” – → NO + O2 – ” –

HNO3 + hν → NO2 + OH DeMore et al. [1992]

N2O5 + hν → NO2 + NO3 DeMore et al. [1992]

– ” – → O + NO + NO3 – ” –

H2O + hν → OH + H Shimazaki [1984]; DeMore et al. [1992]

– ” – → O(1D) + H2 – ” –

H2O2 + hν → OH + OH Sander et al. [2003]
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Table A.4 Positive ion reactions. The sources of reaction rate coefficients are given in
Turunen et al. [1996], except † which is taken from Matsuoka et al. [1981].

O+ + O2 → O+
2 + O 1.5 × 10−11 × (300/T )

O+ + N2 → NO+ + N 1.2 × 10−12 × (300/T )

O+ + N(2D) → N+ + O 1.3 × 10−10

O+ + NO → NO+ + O 8 × 10−13

O+
2 + NO → NO+ + O2 4.4 × 10−10

O+
2 + N2 → NO+ + NO 2 × 10−18 †

O+
2 + O2 + M → O+

4 + M 4.0 × 10−30 × (300/T )2.93

O+
2 + H2O + M → O+

2 (H2O) + M 2.8 × 10−28

O+
2 + N2 + M → O+

2 N2 + M 1.0 × 10−30 × (300/T )3.2

O+
2 + N → NO+ + O 1.2 × 10−10

O+
2 + N(2D) → N+ + O2 2.5 × 10−10

O+
2 (H2O) + H2O → H3O+(OH) + O2 9.0 × 10−10

O+
2 (H2O) + H2O → H+(H2O) + OH + O2 2.4 × 10−10

O+
2 (H2O) + N2 + M → O+

2 (H2O)N2 + M 1 × 10−27

O+
2 (N2) + O2 → O+

4 + N2 5 × 10−10

O+
2 (N2) + M → O+

2 + N2 + M 1.7 × 10−7 × (300/T )3.2 × e−2676/T

O+
2 (N2) + CO2 → O+

2 (CO2) + N2 10−9

O+
2 CO2 + H2O → O+

2 (H2O) + CO2 1.1 × 10−9

O+
2 (H2O)N2 + CO2 → O+

2 (H2O)CO2 + N2 1.5 × 10−10

O+
2 (H2O)N2 + M → O+

2 (H2O) + N2 + M 7.7 × 10−13

O+
2 (H2O)CO2 + H2O → O+

2 (H2O)2 + CO2 5 × 10−10

O+
2 (H2O)CO2 + H2O → H3O+(OH)CO2 + O2 5 × 10−10

O+
2 (H2O)2 + H2O → H3O+(OH)H2O + O2 1.3 × 10−9

O+
4 + O2(1Δg) → O+

2 + 2O2 1.5 × 10−10

O+
4 + H2O → O+

2 (H2O) + O2 1.7 × 10−9

O+
4 + O → O+

2 + O3 3 × 10−10

O+
4 + M → O+

2 + O2 + M 2.8 × 10−5 × (300/T )3.93 × e−5400/T

N+ + O2 → NO+ + O 2.6 × 10−10

N+ + O2 → O+
2 + N 1.1 × 10−10

N+ + O2 → O+ + NO 3.0 × 10−11

N+ + O → O+ + N 5.0 × 10−13

N+ + O2 → O+
2 + N(2D) 2.0 × 10−10

N+
2 + O → NO+ + N(2D) 1.4 × 10−10 × (300/T )0.44

N+
2 + O → O+ + N2 9.8 × 10−12 × (300/T )0.23

N+
2 + O2 → O+

2 + N2 5 × 10−11 × (300/T )0.8

N+
2 + NO → NO+ + N2 3.3 × 10−10

NO+ + N2 + M → NO+(N2) + M 3.0 × 10−31 × (300/T )4.3

NO+ + CO2 + M → NO+(CO2) + M 1.4 × 10−29 × (300/T )4

NO+ + H2O + M → NO+(H2O) + M 1.8 × 10−28 × (308/T )4.7

NO+(N2) + CO2 → NO+(CO2) + N2 10−9

NO+(N2) + H2O → NO+(H2O) + N2 10−9

NO+(N2) + M → NO+ + N2 + M 1.5 × 10−8 × (300/T )4.3 × e−2093/T

NO+(CO2) + H2O → NO+(H2O) + CO2 10−9

NO+(CO2) + M → NO+ + CO2 + M 3.1 × 104 × T−4 × e−4590/T

NO+(H2O) + HO2 → H+(H2O) + NO3 0.5 × 10−9

NO+(H2O) + OH → H+(H2O) + NO2 10−10

NO+(H2O) + H → H+(H2O) + NO 7 × 10−12

NO+(H2O) + H2O + M → NO+(H2O)2 + M 1 × 10−27 × (308/T )4.7

NO+(H2O) + N2 + M → NO+(H2O)(N2) + M 2 × 10−31 × (300/T )4.4

NO+(H2O) + CO2 + M → NO+(H2O)(CO2) + M 7 × 10−30 × (300/T )5

NO+(H2O)2 + H2O + M → NO+(H2O)3 + M 1.0 × 10−27 × (308/T )4.7

NO+(H2O)2 + N2 + M → NO+(H2O)2(N2) + M 2 × 10−31 × (300/T )4.4

NO+(H2O)2 + CO2 + M → NO+(H2O)2(CO2) + M 7 × 10−30 × (300/T )3

NO+(H2O)3 + H2O → H+(H2O)3 + HNO2 7 × 10−11

NO+(H2O)(N2) + H2O → NO+(H2O)2 + N2 10−9

NO+(H2O)(N2) + CO2 → NO+(H2O)(CO2) + N2 10−9

NO+(H2O)(N2) + M → NO+(H2O) + N2 + M 1.5 × 106 × T−5.4 × e−2150/T

NO+(H2O)(CO2) + H2O → NO+(H2O)2 + CO2 10−9

NO+(H2O)(CO2) + M → NO+(H2O) + CO2 + M 3.8 × 10−6 × (300/T )5 × e−4025/T

NO+(H2O)2(N2) + H2O → NO+(H2O)3 + N2 1.0 × 10−9

NO+(H2O)2(N2) + CO2 → NO+(H2O)2(CO2) + N2 10−9

NO+(H2O)2(N2) + M → NO+(H2O)2 + N2 + M 1.5 × 106 × T−5.4 × e−1800/T

NO+(H2O)2(CO2) + H2O → NO+(H2O)3 + CO2 10−9

NO+(H2O)2(CO2) + M → NO+(H2O)2 + CO2 + M 3.8 × 10−6 × (300/T )5 × e−3335/T

H+(H2O) + H2O + M → H+(H2O)2 + M 4.6 × 10−27 × (300/T )4

H+(H2O) + CO2 + M → H+(H2O)CO2 + M 8.5 × 10−28 × (300/T )4.0

H+(H2O) + N2 + M → H+(H2O)N2 + M 3.5 × 10−31 × (300/T )4.0

H+(H2O)2 + M → H+(H2O) + H2O + M 2.5 × 10−2 × (300/T )5 × e−15900/T

H+(H2O)2 + H2O + M → H+(H2O)3 + M 8.6 × 10−27 × (300/T )7.5

H+(H2O)2 + CO2 + M → H+(H2O)2(CO2) + M 8.5 × 10−28 × (300/T )4.0

H+(H2O)2 + N2 + M → H+(H2O)2N2 + M 3.5 × 10−31 × (300/T )4.0

H+(H2O)3 + M → H+(H2O)2 + H2O + M 1.2 × 10−2 × (300/T )8.5 × e−9800/T

H+(H2O)3 + H2O + M → H+(H2O)4 + M 3.6 × 10−27 × (300/T )8.1
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H+(H2O)4 + M → H+(H2O)3 + H2O + M 1.5 × 10−1 × (300/T )9.1 × e−9000/T

H+(H2O)4 + H2O + M → H+(H2O)5 + M 4.6 × 10−28 × (300/T )14

H+(H2O)5 + M → H+(H2O)4 + H2O + M 1.7 × 10−3 × (300/T )15 × e−6400/T

H+(H2O)5 + H2O + M → H+(H2O)6 + M 5.8 × 10−29 × (300/T )15.3

H+(H2O)6 + M → H+(H2O)5 + H2O + M 4.0 × 10−3 × (300/T )16.3 × e−5800/T

H+(H2O)6 + H2O + M → H+(H2O)7 + M 9 × 10−28 × (300/T )15.3

H+(H2O)7 + M → H+(H2O)6 + H2O + M 1.3 × 10−2 × (300/T )16.3 × e−5400/T

H+(H2O)7 + H2O + M → H+(H2O)8 + M 9 × 10−28 × (300/T )4

H+(H2O)8 + M → H+(H2O)7 + H2O + M 2.3 × 1010 × T−5 × e−5000/T

H+(H2O)2(CO2) + H2O → H+(H2O)3 + CO2 1.0 × 10−9

H+(H2O)2(CO2) + M → H+(H2O)2 + CO2 + M 1.0 × 10−3 × (300/T )5.0 × e−6200/T

H+(H2O)2N2 + CO2 → H+(H2O)2(CO2) + N2 1 × 10−9

H+(H2O)2N2 + M → H+(H2O)2 + N2 + M 1.2 × 10−8 × (300/T )5.4 × e−2700/T

H+(H2O)2N2 + H2O → H+(H2O)3 + N2 1.2 × 10−8 × (300/T )5.4 × e−2700/T

H+(H2O)CO2 + H2O → H+(H2O)2 + CO2 1 × 10−9

H+(H2O)CO2 + M → H+(H2O) + CO2 + M 5.5 × 10−3 × (300/T )5.0 × e−7700/T

H+(H2O)N2 + CO2 → H+(H2O)CO2 + N2 1 × 10−9

H+(H2O)N2 + M → H+(H2O) + N2 + M 1.0 × 10−8 × (300/T )5.4 × e−2800/T

H3O+(OH) + H2O → H+(H2O)2 + OH 2.0 × 10−9

H3O+(OH) + O2 + M → O+
2 (H2O)2 + M 3 × 10−30 × (293/T )4

H3O+(OH)H2O + H2O → H+(H2O)3 + OH 1.9 × 10−9

H3O+(OH)CO2 + H2O → H+(H2O)2(CO2) + OH 5 × 10−10

H3O+(OH)CO2 + H2O → H+(H2O)2 + OH + CO2 5 × 10−10

Table A.5 Recombination of positive ions with electrons. The sources of reaction rate
coefficients are given in Turunen et al. [1996].

O+ + e → O 4.0 × 10−12 × (300/T )0.7

O+
2 + e → 2O 1.6 × 10−7 × (300/T )0.625

O+
4 + e → 2O2 4.2 × 10−6 × (300/T )0.5

N+ + e → N 1.0 × 10−12

N+
2 + e → N + N(2D) 1.8 × 10−7 × (300/T )0.39

NO+ + e → N/N(2D) + O 4.2 × 10−7 × (300/T )0.85

NO+(N2) + e → NO + N2 1.4 × 10−6 × (300/T )0.4

NO+(CO2) + e → NO + CO2 1.5 × 10−6

NO+(H2O) + e → NO + H2O 1.5 × 10−6

NO+(H2O)2 + e → NO + 2H2O 2.0 × 10−6

NO+(H2O)3 + e → NO + 3H2O 2.0 × 10−6

NO+(H2O)(N2) + e → NO + H2O + N2 3.0 × 10−6

NO+(H2O)(CO2) + e → NO + H2O + CO2 3.0 × 10−6

NO+(H2O)2(N2) + e → NO + 2H2O + N2 3.0 × 10−6

NO+(H2O)2(CO2) + e → NO + 2H2O + CO2 3.0 × 10−6

O+
2 (H2O) + e → O2 + H2O 2.0 × 10−6

H3O+(OH) + e → OH + H + H2O 1.5 × 10−6

H+(H2O) + e → H + H2O 6.3 × 10−7 × (300/T )0.5

H+(H2O)2 + e → H + 2H2O 2.5 × 10−6 × (300/T )0.1

H+(H2O)3 + e → H + 3H2O 3.0 × 10−6 × (300/T )0.1

H+(H2O)4 + e → H + 4H2O 3.6 × 10−6

H+(H2O)5 + e → H + 5H2O 5.0 × 10−6

H+(H2O)6 + e → H + 6H2O 5.0 × 10−6

H+(H2O)7 + e → H + 7H2O 4 × 10−6

H+(H2O)8 + e → H + 8H2O 1.0 × 10−5

H+(H2O)2(CO2) + e → H + 2H2O + CO2 3 × 10−6

H+(H2O)2N2 + e → H + 2H2O + N2 1.5 × 10−6

H+(H2O)CO2 + e → H + H2O + CO2 1.5 × 10−6

Table A.6 Positive ion photodissociation. The source of reaction rate coefficient is given
in Turunen et al. [1996].

O+
2 (H2O) + hν → O+

2 + H2O 0.42
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Table A.7 Electron attachment on neutrals. The sources of reaction rate coefficients
are given in Turunen et al. [1996].

O2 + N2 + e → O−
2 + N2 10−31 × (300/T ) × e−600/T

O3 + e → O− + O2 9.1 × 10−12 × (300/T )−1.46

2O2 + e → O−
2 + O2 4 × 10−30 × e−193/T

Table A.8 Negative ion reactions. The sources of reaction rate coefficients are given in
Kazil [2002].

O− + O3 → O−
3 + O 8.0 × 10−10

O− + 2O2 → O−
3 + O2 1.4 × 10−30

O− + H2O → OH− + OH 6.0 × 10−13

O− + NO2 → NO−
2 + O 1.0 × 10−9

O− + CO2 + M → CO−
3 + M 2.0 × 10−28

O− + H2 → OH− + H 3.2 × 10−11

O− + HCl → Cl− + OH 2.7 × 10−9

O− + Cl → Cl− + O2 1.0 × 10−10

O− + ClO → Cl− + O2 1.0 × 10−10

O− + CH4 → OH− + CH3 1.0 × 10−10

O− + HNO3 → NO−
3 + OH 3.6 × 10−9

O− + H2O + M → O−(H2O) + M 1.3 × 10−28

O−(H2O) + O2 → O−
3 + H2O 6.2 × 10−11

O−
2 + O → O− + O2 1.5 × 10−10

O−
2 + O3 → O−

3 + O2 7.8 × 10−10

O−
2 + CO2 + O2 → CO−

4 + O2 4.7 × 10−29

O−
2 + NO2 → NO−

2 + O2 7 × 10−10

O−
2 + O2 + M → O−

4 + M 3.4 × 10−31

O−
2 + H2O + M → O−

2 (H2O) + M 2.2 × 10−28

O−
2 + HCl → Cl− + HO2 2.0 × 10−9

O−
2 + Cl → Cl− + O2 1.0 × 10−10

O−
2 + ClO → ClO− + O2 1.0 × 10−10

O−
2 + HNO3 → NO−

3 + HO2 2.9 × 10−9

O−
2 (H2O) + CO2 → CO−

4 + H2O 5.8 × 10−10

O−
2 (H2O) + NO → NO−

3 + H2O 2.0 × 10−10

O−
2 (H2O) + O3 → O−

3 + O2 + H2O 8.0 × 10−10

O−
2 (H2O) + H2O + M → O−

2 (H2O)2 + M 5.4 × 10−28

O−
2 (H2O) + NO2 → NO−

2 + H2O + O2 9.0 × 10−10

O−
2 (H2O) + M → O−

2 + H2O + M 1.33 × 10−4 × (300/T ) × e−9261/T

O−
2 (H2O)2 + M → O−

2 (H2O) + H2O + M 4.0 × 10−10 × (300/T ) × e−8660/T

O−
2 (H2O)2 + NO2 → NO−

2 (H20) + H2O + O2 9.0 × 10−10

O−
2 (H2O)2 + O3 → O−

3 (H2O) + H2O + O2 7.8 × 10−10

O−
3 + O → O−

2 + O2 2.5 × 10−10

O−
3 + H → OH− + O2 8.4 × 10−10

O−
3 + CO2 → CO−

3 + O2 5.5 × 10−10

O−
3 + NO → NO−

3 + O 1.05 × 10−12 × (300/T )2.15

O−
3 + NO2 → NO−

3 + O2 2.50 × 10−11 × (300/T )0.79

O−
3 + H2O + M → O−

3 (H2O) + M 2.7 × 10−28

O−
3 + NO2 → NO−

2 + O 7.5 × 10−11 × (300/T )0.79

O−
3 + NO → NO−

2 + O2 1.05 × 10−12 × (300/T )2.15

O−
3 (H2O) + CO2 → CO−

3 + H2O + O2 1.75 × 10−10

O−
3 (H2O) + CO2 → CO−

3 (H2O) + O2 1.75 × 10−10

O−
4 + O → O−

3 + O2 4 × 10−10

O−
4 + CO2 → CO−

4 + O2 4.3 × 10−10

O−
4 + NO → NO−

3 (*) + O2 2.5 × 10−10

O−
4 + H2O → O−

2 (H2O) + O2 1 × 10−10

OH− + O3 → O−
3 + OH 9 × 10−10

OH− + NO2 → NO−
2 + OH 1.1 × 10−9

OH− + CO2 + M → HCO−
3 + M 7.6 × 10−28

OH− + HCl → Cl− + H2O 1.0 × 10−9

OH− + H2O + M → OH−(H2O) + M 2.5 × 10−28

OH− + Cl → Cl− + OH 1.0 × 10−10

OH− + ClO → ClO− + OH 1.0 × 10−10
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CO−
3 + O → O−

2 + CO2 1.1 × 10−10

CO−
3 + O2 → O−

3 + CO2 6.0 × 10−15

CO−
3 + H → OH− + CO2 1.7 × 10−10

CO−
3 + NO → NO−

2 + CO2 1.0 × 10−10

CO−
3 + NO2 → NO−

3 + CO2 2 × 10−10

CO−
3 + HCl → Cl− + OH + CO2 3.0 × 10−11

CO−
3 + H2O + M → CO−

3 (H2O) + M 1.0 × 10−28

CO−
3 + Cl → Cl− + CO2 + O 1.0 × 10−10

CO−
3 + Cl → ClO− + CO2 1.0 × 10−10

CO−
3 + ClO → Cl− + CO2 + O2 1.0 × 10−11

CO−
3 + HNO3 → NO−

3 + CO2 + OH 3.51 × 10−10

CO−
3 (H2O) + NO → NO−

2 + H2O + CO2 3.5 × 10−12

CO−
3 (H2O) + NO2 → NO−

3 + H2O + CO2 4.0 × 10−11

CO−
3 (H2O) + H2O + M → CO−

3 (H2O)2 + M 1.0 × 10−28

CO−
3 (H2O) + NO2 → NO−

3 (H2O) + CO2 4.0 × 10−11

CO−
3 (H2O) + NO → NO−

2 (H20) + CO2 3.5 × 10−12

CO−
3 (H2O) + M → CO−

3 + H2O + M 7.2 × 10−4 × (300/T ) × e−7050/T

CO−
3 (H2O)2 + M → CO−

3 (H2O) + H2O + M 6.5 × 10−3 × (300/T ) × e−6800/T

CO−
4 + O3 → O−

3 + O2 + CO2 1.3 × 10−10

CO−
4 + H → CO−

3 + OH 2.2 × 10−10

CO−
4 + O → CO−

3 + O2 1.4 × 10−10

CO−
4 + NO → NO−

3 (*) + CO2 4.8 × 10−11

CO−
4 + H2O → O−

2 (H2O) + CO2 2.5 × 10−10

CO−
4 + HCl → Cl− + HO2 + CO2 1.2 × 10−9

CO−
4 + Cl → Cl− + CO2 + O2 1.0 × 10−10

CO−
4 + ClO → ClO− + CO2 + O2 1.0 × 10−10

NO−
2 + H → OH− + NO 3 × 10−10

NO−
2 + NO2 → NO−

3 + NO 2 × 10−13

NO−
2 + O3 → NO−

3 + O2 1.2 × 10−10

NO−
2 + HCl → Cl− + HNO2 1.4 × 10−9

NO−
2 + Cl → Cl− + NO2 1.0 × 10−10

NO−
2 + ClO → Cl− + NO3 1.0 × 10−10

NO−
2 + HNO3 → NO−

3 + HNO2 1.6 × 10−9

NO−
2 + H2O + M → NO−

2 (H20) + M 1.6 × 10−28

NO−
2 (H20) + M → NO−

2 + H2O + M 5.7 × 10−4 × (300/T ) × e−7600/T

NO−
3 + O → NO−

2 + O2 0.5 × 10−11

NO−
3 + O3 → NO−

2 + 2O2 1 × 10−13

NO−
3 + H2O + M → NO−

3 (H2O) + M 1.6 × 10−28

NO−
3 + HCl → Cl− + HNO3 1.0 × 10−12

NO−
3 + HCl + M → NO−

3 (HCl) + M 5.22 × 10−28 × (300/T )2.62

NO−
3 + HNO3 + M → NO−

3 (HNO3) + M 1.45 × 10−26

NO−
3 (H2O) + M → NO−

3 + H2O + M 1.0 × 10−3 × (300/T ) × e−7300/T

NO−
3 (H2O) + H2O + M → NO−

3 (H20)2 + M 1.6 × 10−28

NO−
3 (H2O) + N2O5 → NO−

3 (HNO3) + HNO3 7.0 × 10−10

NO−
3 (H20)2 + M → NO−

3 (H2O) + H2O + M 1.5 × 10−2 × (300/T ) × e−7150/T

NO−
3 (H20)2 + N2O5 → NO−

3 (HNO3) + HNO3 + H2O 7.0 × 10−10

NO−
3 (H2O) + HNO3 → NO−

3 (HNO3) + H2O 1.6 × 10−9

NO−
3 (HNO3) + M → NO−

3 + HNO3 + M 6 × 10−3 × (300/T ) × e−13130/T

NO−
3 (HNO3) + HNO3 + M → NO−

3 (HNO3)2 + M 1.0 × 10−26

NO−
3 (HNO3)2 + M → NO−

3 (HNO3) + HNO3 + M 36.4 × (300/T ) × e−8046/T

NO−
3 (HCl) + HNO3 → NO−

3 (HNO3) + HCl 7.6 × 10−10

NO−
3 (*) + CO2 → CO−

3 + NO2 1.0 × 10−11

NO−
3 (*) + H → NO−

2 + OH 7.2 × 10−10

NO−
3 (*) + NO → NO−

2 + NO2 1.0 × 10−12

NO−
3 (*) + HCl → Cl− + HNO3 1.0 × 10−12

NO−
3 (*) + Cl → Cl− + NO + O2 1.0 × 10−10

NO−
3 (*) + ClO → Cl− + NO2 + O2 1.0 × 10−11

HCO−
3 + Cl → Cl− + OH + CO2 1.0 × 10−10

HCO−
3 + ClO → Cl− + HO2 + CO2 1.0 × 10−9

Cl− + NO2 → NO−
2 + Cl 6 × 10−12

Cl− + H2O + M → Cl−(H2O) + M 2.0 × 10−29

Cl− + HNO3 → NO−
3 + HCl 2.8 × 10−9

Cl− + CO2 + M → Cl−(CO2) + M 6.0 × 10−29 × (300/T )2

Cl− + HCl + M → Cl−(HCl) + M 1.0 × 10−27

Cl−(H2O) + M → Cl− + H2O + M 2.0 × 10−8 × e−6600/T

Cl−(H2O) + HCl → Cl−(HCl) + H2O 1.30 × 10−9

Cl−(CO2) + M → Cl− + CO2 + M 2.6 × 10−5 × (300/T )3 × e−4000/T

Cl−(HCl) + M → Cl− + HCl + M 3.33 × 10−3 × (300/T ) × e−11926/T

ClO− + NO → Cl− + NO2 2.9 × 10−11

ClO− + NO → NO−
2 + Cl 2.9 × 10−12

ClO− + O → Cl− + O2 2.0 × 10−10
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Table A.9 Negative ion photodissociation. The sources of reaction rate coefficients are
given in Turunen et al. [1996] unless stated otherwise.

O−
3 + hν → O− + O2 0.47

O−
4 + hν → O−

2 + O2 0.24

CO−
3 + hν → O− + CO2 0.15

CO−
4 + hν → O−

2 + CO2 6.2 × 10−3

CO−
3 (H2O) + hν → CO−

3 + H2O 1.0 Peterson [1976]

Table A.10 Photodetachment of electrons from negative ions. The sources of reaction
rate coefficients are given in Turunen et al. [1996].

O− + hν → O + e 1.4

O−
2 + hν → O2 + e 3.8 × 10−1

O−
3 + hν → O3 + e 4.7 × 10−2

OH− + hν → OH + e 1.1

CO−
3 + hν → CO3 + e 2.2 × 10−2

NO−
2 + hν → NO2 + e 8.0 × 10−4

NO−
3 + hν → NO3 + e 5.2 × 10−2

Table A.11 Electron detachment from negative ions. The sources of reaction rate coef-
ficients are given in Turunen et al. [1996].

O− + O → O2 + e 1.9 × 10−10

O− + NO → NO2 + e 3.1 × 10−10 × (300/T )0.83

O− + O2(1Δg) → O3 + e 3 × 10−10

O− + M → O + M + e 0.5 × 10−12

O− + H2 → H2O + e 5.8 × 10−10

O−
2 + O → O3 + e 1.5 × 10−10

O−
2 + O2(1Δg) → 2O2 + e 2 × 10−10

O−
2 + N2 → N2 + O2 + e 1.9 × 10−12 × (300/T )−1.5 × e−4990/T

O−
2 + H → HO2 + e 1.4 × 10−9

O−
3 + O → 2O2 + e 10−10

O−
3 + O3 → 3O2 + e 10−10

OH− + O → HO2 + e 2 × 10−10

OH− + H → H2O + e 1.4 × 10−9

Cl− + H → HCl + e 9.6 × 10−10

Table A.12 Ion-ion recombination.

X− + X+ → products 6.0 × 10−8 × (300/T )0.5 Arijs et al. [1987]

X− + X+ + M → products 1.25 × 10−25 × (300/T )4 Arijs et al. [1987]
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Table A.13 Neutral species reactions. The reaction rate coefficients have been taken
from Sander et al. [2003] unless stated otherwise.

H + O2 + M → HO2 + M 5.7 × 10−32 × (300/T )1.6

O(1D) + H2O → OH + OH 2.2 × 10−10

H + O3 → OH + O2 1.4 × 10−10 × e−470/T

O(1D) + CH4 → OH + CH3 1.5 × 10−10

O(1D) + CH4 → H2O + CH2O 1.5 × 10−10

O + H2 → OH + H 8.5 × 10−20 × T2.7 × e−3160/T

O(1D) + H2 → OH + H 1.1 × 10−10

O + OH → O2 + H 2.2 × 10−11 × e120/T

OH + O3 → HO2 + O2 1.7 × 10−12 × e−940/T

HO2 + O3 → OH + O2 + O2 1.0 × 10−14 × e−490/T

O + HO2 → OH + O2 3.0 × 10−11 × e200/T

OH + OH → O + H2O 4.2 × 10−12 × e−240/T

OH + HO2 → H2O + O2 4.8 × 10−11 × e250/T

OH + H2 → H2O + H 5.5 × 10−12 × e−2000/T

H + HO2 → OH + OH 0.9 × 8.1 × 10−11

H + HO2 → H2 + O2 0.08 × 8.1 × 10−11

H + HO2 → H2O + O 0.02 × 8.1 × 10−11

NO + HO2 → NO2 + OH 3.5 × 10−12 × e250/T

HO2 + HO2 → H2O2 + O2 2.3 × 10−13 × e600/T

OH + H2O2 → H2O + HO2 2.9 × 10−12 × e−160/T

OH + CO → H + CO2 1.5 × 10−13 × (1 + 0.6 × P )

H2O2 + O → OH + HO2 1.4 × 10−12 × e−2000/T

OH + OH + M → H2O2 + M 6.9 × 10−31 × (300/T )1.0

O + NO2 → NO + O2 5.6 × 10−12 × e180/T

NO + O3 → NO2 + O2 3.0 × 10−12 × e−1500/T

N + NO2 → N2O + O 5.8 × 10−12 × e220/T

N + NO → N2 + O 2.1 × 10−11 × e100/T

N + O2 → NO + O 1.5 × 10−11 × e−3600/T

N(2D) + O2 → NO + O 2.95 × 10−12 Fell et al. [1990]

N(2D) + O2 → NO + O(1D) 2.95 × 10−12 Fell et al. [1990]

N(2D) + O → N + O 6.9 × 10−13 Fell et al. [1990]

N(2D) + NO → N2 + O 7.0 × 10−11 Rees [1989]

NO2 + O3 → NO3 + O2 1.2 × 10−13 × e−2450/T

NO2 + NO3 + M → N2O5 + M 2.0 × 10−30 × (300/T )4.4

NO + OH + M → HNO2 + M 7.0 × 10−31 × (300/T )2.6

OH + NO2 + M → HNO3 + M 2.0 × 10−30 × (300/T )3.2

OH + HNO2 → NO2 + H2O 1.8 × 10−11 × e−390/T

OH + HNO3 → NO3 + H2O 7.2 × 10−15 × e785/T

O(1D) + N2O → N2 + O2 4.9 × 10−11

O(1D) + N2O → NO + NO 6.7 × 10−11

O + NO3 → NO2 + O2 1.0 × 10−11

OH + NO3 → NO2 + HO2 2.2 × 10−11

NO + O + M → NO2 + M 9.0 × 10−31 × (300/T )1.5

NO + NO3 → NO2 + NO2 1.5 × 10−11 × e170/T

NO2 + O + M → NO3 + M 2.5 × 10−31 × (300/T )1.8

NO3 + NO3 → NO2 + NO2 + O2 8.5 × 10−13 × e−2450/T

H + NO2 → OH + NO 4.0 × 10−10 × e−340/T

Cl + O3 → ClO + O2 2.3 × 10−11 × e−200/T

ClO + O → Cl + O2 3.0 × 10−11 × e70/T

ClO + NO → NO2 + Cl 6.4 × 10−12 × e290/T

O + O + M → O2 + M 4.7 × 10−33 × (300/T )2 Brasseur and Solomon [1986]

O + O2 + N2 → O3 + N2 6.0 × 10−34 × (300/T )2.4

O + O2 + O2 → O3 + O2 6.0 × 10−34 × (300/T )2.4

O + O + O2 → O3 + O 6.0 × 10−34 × (300/T )2.4

O + O3 → O2 + O2 8.0 × 10−12 × e−2060/T

O(1D) + N2 → O + N2 1.8 × 10−11 × e110/T

O(1D) + O2 → O + O2 3.2 × 10−11 × e70/T

O(1D) + O3 → O2 + O2 1.2 × 10−10

O(1D) + O3 → O + O + O2 1.2 × 10−10

O(1D) + N2 + M → N2O + M 3.5 × 10−37 × (300/T )0.6

O2(1Δg) + O2 → O2 + O2 3.6 × 10−18 × e−220/T
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