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Abstract

This dissertation includes results on applied and theoretical aspects of
Quantum Information theory.

The central topic in this thesis is the quantum information processing
capabilities of linear optical elements. Photons are the number one candi-
dates for the implementation of quantum communication protocols, since
they are readily transported and have low decoherence rates. However, the
lack of strong interactions between photons hinders the implementation of
non-local quantum operations. Here I discuss the possibility of exploiting
the indistinguishability of the photons and the implied interference and par-
ticle statistics effects to perform non-local operations on photonic qubits
using only linear optical elements. Special attention is drawn to the Bell-
measurement, for which a general no-go theorem is proven. The optimal
efficiency of an incomplete Bell-measurement is found to be one half. Also
the general form of the two-qubit POVMs that can be implemented with
only linear elements and particle detectors is given.

A very simple linear optical scheme is proposed to remove a given num-
ber of photons from a field mode and its application to a quantum key
distribution eavesdropping attack is analyzed.

As side topics, the universal cloning transformation is analyzed in terms
of the effective POVMs on the input realized by measuring the output sub-
systems; and photoassociation of an atomic degenerate gas is proposed as
the means to create a superposition of a macroscopic number of atoms and
molecules.

ii



Contents

Acknowledgments i

Abstract iii

List of publications iv

1 Introduction to the Dissertation 1

2 Quantum Information: Theory 3
2.1 Quantum Information and the Qubits . . . . . . . . . . . . 3
2.2 Quantum Operations and Measurements . . . . . . . . . . . 11
2.3 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.1 State Discrimination and Optimal State Estimation 20
2.3.2 Cloning . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.3.3 Teleportation . . . . . . . . . . . . . . . . . . . . . . 35
2.3.4 Quantum Dense Coding . . . . . . . . . . . . . . . . 40
2.3.5 Quantum Key Distribution . . . . . . . . . . . . . . 41

3 Quantum Information: Implementations 45
3.1 Candidate Physical Implementations . . . . . . . . . . . . . 45
3.2 Linear Optical Implementations . . . . . . . . . . . . . . . . 45

3.2.1 Experiments . . . . . . . . . . . . . . . . . . . . . . 52
3.2.2 Prospects: Possibilities and Limitations . . . . . . . 60

3.3 Non-Linear Implementations . . . . . . . . . . . . . . . . . 71

4 Epilogue 75

References 77

iii



List of Publications

This thesis consists of an introductory part, followed by seven research
publications. The introductory part includes some previously unpublished
material.

I Quantum cloning and distributed measurements
D. Bruss, J. Calsamiglia, and N. Lütkenhaus
Physical Review A 63, 042308 (2001).

II Bell measurements for teleportation
N. Lütkenhaus, J. Calsamiglia, and K.-A. Suominen
Physical Review A 59, 3295-3300 (1999).

III Maximum efficiency of a linear-optical Bell-state analyzer
J. Calsamiglia and N. Lütkenhaus
Applied Physics B-Lasers and Optics 72, 67-71 (2001).

IV Generalized quantum measurements by linear elements
J. Calsamiglia
to appear in Physical Review A (February 2002); quant-ph/0108108.

V Removal of a single photon by adaptive absorption
J. Calsamiglia, N. Lütkenhaus, S. M. Barnett and K-A. Suominen
Physical Review A 64, 043814 (2001); quant-ph/0106086.

VI Conditional beam splitting attack on quantum key distribution
J. Calsamiglia, N. Lütkenhaus and S. M. Barnett
to appear in Physical Review A (December 2001); quant-ph/0107148.

VII Superposition of macroscopic numbers of atoms and molecules
J. Calsamiglia, M. Mackie and K-A. Suominen
Physical Review Letters 87, 160403 (2001).

iv



1 Introduction to the Dissertation

Quantum Information Theory is a new research field that brings together
disciplines of physics and computer science with the aim of understanding
how the laws of quantum mechanics can be used to dramatically improve
the acquisition, transmission, and processing of information. Quantum
Information Theory provides a completely new and enlightening way of
describing the foundations of quantum phenomena. However, what gave a
lasting boost to the field was the early discovery of tasks that are facilitated
by quantum mechanics: Quantum cryptography guarantees fundamentally
secure communication, Shor’s quantum factoring algorithm gives an expo-
nential speed-up with respect to any classical algorithm, and teleportation
transmits an unknown quantum state without actually sending any parti-
cle through the channel. Many applications are following, bringing about
technological and scientific revolutions even in other fields, and warranting
further research in Quantum Information Theory.

A topic of interest in this dissertation is the spreading of information
and appearance of quantum correlations when an initial quantum state is
coupled to an auxiliary system. Some results have been applied to the
universal quantum cloning transformation. By drawing a correspondence
between measurements at the output subsystems (i.e. clones and ancil-
lae) and the effective measurements on the unknown input state we have
elucidated how all information contained in the input state is distributed
over the entangled state of the output, thus bringing out properties of the
universal cloner which might make it a useful concept in quantum informa-
tion processing. The cloning transformation serves also as a perfect ground
to show how the ideas of sharp measurements, accessible information, and
ideal channels are interconnected.

My primary interest has been to study the possibilities of encoding and
processing quantum information with linear optics. The immediate and
practical motivation of this study is its relevance in quantum communica-
tion tasks, where photons are by now the only serious candidates for qubit
carriers. Photons are readily transported through free space or optical
fibers. Their very weak interaction strengths subside decoherence effects,
but at the same time render rather difficult the implementation of quantum
gates. On the other hand, photonic realizations of qubits allow for other
ways of processing and extracting the represented quantum information.
The qubits are now indistinguishable particles. This brings into play in-
terference and particle statistics effects in our qubit carriers. In order to
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exhibit this effects, it suffices to use linear optical elements such as beam
splitters and phase shifters that are about the simplest optical devices.
Hitherto research in this topic has led my collaborators and me to two
main results concerning ability to perform Bell-measurements and other
generalized quantum measurements using linear optical elements. For this,
we formalized the use of interference by the definition of a simple class of
operations which include linear optical elements, auxiliary photonic states
and conditional operations. Conditional operations are realized through
the monitoring of some modes with photodetectors. This introduces a very
particular type of non-linearity which is easy to realize, but together with
the linear mapping of modes provides a way to perform highly non-trivial
operations on the initial qubits.

The idea of conditional measurements has been further investigated in a
slightly different context, that of quantum feedback control. The result of a
weak measurement is used to modify the future dynamics of the system un-
der observation. This typically leads to highly non-Markovian systems with
very rich dynamics. An application of this type of evolution has brought
us to a novel eavesdropping attack on quantum key distribution (QKD):
Conditional beam splitting attack. Signals used in all current implemen-
tations of QKD are weak coherent pulses instead of single photons. This
modification of the signals together with the large losses in long distance
transmissions open a security gap. The basic idea behind the conditional
beam splitting attack is to extract one single photon from the transmitted
signal. This should provide the eavesdropper with the secret key whenever
she succeeds in extracting a photon from the multiphoton part of the signal.
The implementation of this attack consists in applying a series of very weak
beam splitters with a photodetector in the weakly-coupled output arm. As
soon as one detector fires, the coupling is switched off, i.e. no further beam
splitters are applied. This very simple feedback mechanism offers a QKD
attack which is much more efficient than the conventional beam spitting
attack and, unlike the photon number splitting attack, is feasible with the
current technology.

We have also explored the possibility of studying quantum phenom-
ena using non-linear interactions. For this purpose, instead of photons, we
have studied degenerate atom-molecule systems where much stronger non-
linearities are available. In particular we have proposed the means of creat-
ing a very particular “Schrödinger cat”. We show that by suitably shining
two-color photoassociation lasers on a non-ideal atomic Bose-Einstein con-
densate one can obtain a superposition of a molecular degenerate gas and
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an atomic degenerate gas. Beyond the usual macroscopic superposition
of two states of a given object, photoassociation actually leads to a more
counterintuitive situation since, like (say) protons and quarks, molecules
and atoms are different objects. Analogously, second-harmonic generation
could lead to a macroscopic superposition of a bunch of red photons and
bunch of blue photons.

This work is organized in two main parts. In the first part I give a rather
dense presentation of quantum information theory. This includes the basic
formalism and most relevant applications of this work. The second part
concerns the physical implementations of quantum information processing.
Special attention is drawn to the linear-optical implementations which form
the bulk of the research presented here. The second part also contemplates
the possibility of exploiting the non-linearities present in atomic systems
to create a superposition of a macroscopic number of atoms and molecules.
Since the papers included in this thesis are mostly self-contained, and many
important concepts are already presented in the first part, the second part
is restricted to presenting only the specifics of the implementations.

2 Quantum Information: Theory

2.1 Quantum Information and the Qubits

If one looks at the works of information theorists it is quite difficult to find
any reference to the physical system used as information-carrier. Instead,
one finds bits as building blocks of their theory. This abstraction is founded
on the idea that signals can be converted from one physical form to another
without any loss of information. For example, the message “I’ll be home for
Xmas” can be sent by tapping a finger, which produces a series of electric
impulses that travel through a copper cable and are subsequently converted
into marks in a piece of paper or sound waves that can be translated back
into the original message. Notice that during these series of conversions the
same information does not only change its physical support, but also its
encoding. In the late 40’s Shannon presented the Noiseless Channel Coding
theorem [122] that quantified the minimal resources needed to hold all the
information contained in a signal. With this, he gave the first mathematical
definition of information. The basic units of information are what we know
as bits and are binary variables valued either 0 or 1. According to Shannon’s
first coding theorem any signal encoded by a set of “letters” X = {x1 . . . xn}
occurring with probabilities �p ≡ {p1 . . . pn}, can be faithfully encoded in a
binary string consisting of H(�p) bits. H(�p) is the Shannon Information of
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the signal X and is given by

H(�p) = −
n∑

i=1

pi log2(pi). (1)

Information and physics never met again till Landauer reminded us that
information is physical [87, 88] by realizing that the erasure of information
is always accompanied by generation of heat; thus bridging information
theory with thermodynamics. Landauer’s principle served to solve the con-
flict between Maxwell’s demon and the second law of thermodynamics [6]
and to show how physics constrains information processing [12]. However,
the first steps towards merging physics and information, that eventually
gave rise to the field of Quantum Information, were taken from quantum
mechanics. A relatively small group of researchers started, already in the
60’s, to investigate the transmission of classical information through quan-
tum channels (for a good account see [82, 64, 66]). The basic tools used
currently to describe quantum channels and quantum measurements, which
we will review in the forthcoming sections, were developed back then. The
first important result that marked a clear difference between classical and
quantum information was the no-cloning theorem [46, 143] that states that,
unlike classical data, the quantum information held in an unknown quan-
tum state (see below and in Section 2.3.2) cannot be copied. Among other
things, this implies that one cannot access all the information describing
a quantum state by measuring it. This looks more like a drawback, but it
was soon realized that this fact opened the doors for something impossi-
ble to realize by classical means [123]: quantum cryptography guaranteed
fundamentally secure communication [140, 7]. The subsequent discovery of
quantum computation [5, 51, 45], quantum algorithms [124, 62], quantum
teleportation [8], quantum dense coding [13] and quantum error correc-
tion [125, 130] made it clear that quantum mechanics offered new ways of
encoding, processing and decoding information, and the field of quantum
information was founded.

According to the first postulate of quantum mechanics (see e.g. [41])
every isolated physical system is associated to a Hilbert space H in such
a way that the system is completely described by a normalized ray called
state vector. The state vector provides us with the most complete descrip-
tion of the system. It gives us all the information that can be obtained
by any conceivable measurement on the system. In practice this situation
only happens after a preparation procedure. The actual meaning or “re-
ality status” attributed to the state vector is not well settled among the

4



physicist community (see for example [107, 63], [85] and references therein).
Leaving these ontological matters aside, there is consensus on the actual
praxis of quantum mechanics and we can go on turning the crank of this
mind-puzzling machinery with the comfort that this centennial theory pro-
duces results with unprecedented experimental agreement. I do not declare
myself an instrumentalist, but it falls out of the scope of this thesis to
elaborate more on this idea and I could not give any original insights other
than expressing my hopes that by turning the crank and keeping a “sci-
entific attitude” one can acquire a deeper understanding of the intricate
relations between the quantum world, the classical world and ourselves. In
my opinion a scientist has not only to be able to describe the behavior of
physical objects, but also to inquire about the origin of this behavior. It
is the urge to explain1 things which keeps science moving. This inquiring
aspect of a scientist is what I miss in any instrumentalist attitude towards
quantum mechanics. That is why I do not immediately disqualify interpre-
tations of quantum mechanics which try to explain, though so far I did not
find any that has presented itself “clear and distinctly before my mind” as
a satisfactory explanation.

The most simple non-trivial quantum system is a two level system and
has a two-dimensional state space. Two orthonormal vectors |0〉 and |1〉,
representing for example the horizontal and vertical polarizations of a pho-
ton, an electron or nucleus spin up and spin down along a particular axis
or the ground and excited states of an atom, can be chosen to form the
computational basis. In this basis, a generic state of the system can be
written as

|ϕ〉 = α|0〉 + β|1〉, (2)

where α and β are complex numbers satisfying the normalization condition
|α|2 + |β|2 = 1. This elemental 2-level quantum system was dubbed qubit
(quantum bit) by Ben Schumacher when presenting the quantum analog of
the noiseless channel coding theorem [75, 120]. By inspecting Eq. (2) one
realizes that in order to give a complete description of the state of the qubit
one needs to specify the value of two real numbers (the global phase does
not have any physical relevance). This means that a single qubit holds an
infinite amount of classical information, i.e. an infinite number of bits. On
the other hand, a measurement will only give two possible complementary

1Unluckily, I lack of strict definition of an “explanation” in absolute terms. It looks
like in quantum mechanics we have reached the bottom.
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answers revealing at most one bit of that information2. It is clear that
we need different elementary units for classical and quantum information.
The qubit presents itself as a good candidate for the basic unit of quan-
tum information and the quantum noiseless channel theorem makes this
definition sound. Briefly, the quantum version of Shannon’s first coding
theorem says that any quantum signal characterized by the “quantum let-
ters” {|ϕ1〉, . . . , |ϕn〉} occurring with probabilities �p ≡ {p1, . . . , pn} can be
reliably encoded in an amount of qubits per source “letter” equal to the
von Neumann entropy,

S(ρ) = −Tr(ρ log2 ρ) where ρ =
n∑

i=1

pi|ϕi〉〈ϕi|, (3)

and the states |ϕi〉 might live in a higher dimensional Hilbert space (d ≥ 2)
and do not need to be mutually orthogonal. Here, we have also introduced a
new mathematical construction ρ called density operator or density matrix.
The density operator formalism allows to describe states on which we do
not have complete knowledge. This situation arises for example when we
allow for some classical uncertainty in the preparation procedure or when a
well determined system interacts with a second system such as the environ-
ment. The density operator is a positive3 and unit trace (Trρ = 1) operator.
Density operators form a convex set since if ρ0 and ρ1 are density opera-
tors, then the state corresponding to the statistical mixture pρ0 +(1− p)ρ1

(0 ≤ p ≤ 1) is a density operator as well. A given density matrix can
always be written as convex sum like in Eq. (3). This allows for an en-
semble interpretation of the density matrix ρ as a description of a system
that is in one of the states {|ϕi〉} with respective probabilities {pi}. How-
ever, a given density matrix can have many different decompositions and
therefore many ensemble interpretations (or realizations). A density ma-
trix ρ =

∑n
i=1 pi|ϕi〉〈ϕi| =

∑m
i=1 qi|φi〉〈φi| can be realized by drawing the

states {|ϕi〉}n
i=1 according to a probability distribution {p}n

i=1 but also by
drawing a state from a different set {|φi〉}m

i=1 with probabilities {q}m
i=1. The

equivalence of two realizations can be checked using the theorem [70],

n∑

i=1

|ϕ̃i〉〈ϕ̃i| =
m≤n∑

i=1

|φ̃i〉〈φ̃i| ⇐⇒ |ϕ̃i〉 =
n∑

j=1

Uij |φ̃j〉 where U is unitary, (4)

2A strict version of this argument is given by Holevo’s bound. See Eq. (41) in Sec-
tion 2.3.1.

3A is positive A ≥ 0 ⇔ 〈ϕ|A|ϕ〉 ≥ 0 ∀|ϕ〉. It is also conventional to use the term posi-
tive semi-definite to designate such an operator, and positive definite when the previous
inequalities become strict inequalities (>).
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the tilde denotes that the states are not normalized, and |φ̃j〉 ≡ 0 for j > m.
Pure states, e.g. |ϕ〉〈ϕ|, are the extreme points of the convex set of density
matrices and allow only one possible ensemble interpretation since they
have a unique decomposition with a single term (p1 = 1). Pure states cor-
respond to the maximal state of knowledge described earlier by the state
vector |ϕ〉. On the contrary, mixed states are density operators with higher
rank and correspond to states with less than maximal knowledge. There is a
simple purity criterion: ρ is pure iff Trρ2 = 1. But, how do we quantify the
mixedness or disorder of a given density matrix? Classically the most natu-
ral measure is the Shannon information (or Shannon entropy depending on
the context) given by Eq. (1). It quantifies the average information gained
when sampling a given probability distribution. The more disordered the
source is, the more information we gain when sampling its outcome. In the
quantum case things get bit more tricky because a given density matrix
has an infinite number of realizations associated to different probability
distributions. In order to make the measure “interpretation-independent”
and get rid of any disorder introduced by a bad choice decomposition, one
defines the measure as the minimum Shannon information taken over all
possible ensemble interpretations of ρ

S(ρ) ≡ min
{pi}

H(�p), (5)

where �p = {pi} defines the probability distributions associated to the pos-
sible realizations of ρ. It is easy to show that the minimum of H(�p) is
achieved by the probability distribution defined by the eigenvalues {λi} of
ρ. This implies that the measure of disorder or mixedness for a quantum
state ρ is its von Neumann entropy introduced in Eq. (3).

Before passing to composite systems let me briefly introduce a very
convenient parametrization of the single system density matrices. A density
matrix on a d-dimensional Hilbert space (also called a qudit) is a Hermitian
operator and can therefore be written in the form

ρ =
1
d
(1 + �λ · �τ), (6)

where �τ = {τi} are the d2−1 generators of SU(d) that obey Tr(τiτj) = 2δij

and the coherence vector �λ is a real-valued vector with components λi =
Tr(τiρ). The positivity of the density matrix implies that |�λ|2 ≤ d(d−1)

d
but only for d = 2 this is also a sufficient condition for positivity. For
qubits the coherence vector is called Bloch vector and its usually denoted by
�s = {sx, sy, sz} and the SU(2) generators are the ubiquitous Pauli operators
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σx = |0〉〈1| + |1〉〈0|, σy = −i|0〉〈1| + i|1〉〈0| and σz = |0〉〈0| − |1〉〈1|. In this
representation the whole set of qubit density matrices is represented by a
unit-ball: the vectors reaching the surface of the ball are the pure states
(Tr(ρ2) = 1 ⇒ |�s| = 1) and all their convex combinations represent the
mixed states (|�s| < 1). The maximally mixed state corresponds to the
center of the ball (|�s| = 0).

The total Hilbert space associated to a system composed of N sub-
systems, such as the qubits in a quantum computer register, is the tensor
product of the Hilbert spaces of the individual subsystems H = H1 ⊗H2 ⊗
. . .⊗HN . An important concept that appears in this context is that of the
partial trace. Imagine that a composite system is described by a state ρAB

on HAB = HA⊗HB. This density matrix reflects all the knowledge that
we have on the system in the sense that it gives us the maximal predictive
power on the outcomes of any measurement done on the composite system.
What happens if we restrict ourselves to measurements on, say, subsystem
A? The density matrix ρA of this subsystem should similarly provide us
with the outcome statistics of any conceivable measurement4 performed on
it. It should be no surprise that this density matrix ρA can be obtained
from our knowledge on the total system, i.e. from ρAB. It is easy to show
that the partial trace over the remaining part of system, TrB(ρAB), does
precisely this job and is defined as follows

ρA = TrB(ρAB) ≡
dB∑

i=1

〈ei|ρAB|ei〉, (7)

where {|ei〉}dB
i=1 is an orthonormal basis of HB. The state left after doing

the partial trace is called reduced density matrix, and one says that the
system B has been traced out. Notice that the partial trace is a linear
operation and therefore an ensemble interpretation of the total system is
consistent with the ensemble of reduced density matrices of the subsystem.

A composite system is said to be in a product state if the description of
the isolated subsystems is equivalent to the description of the total system.
Explicitly,

ρAB = ρA ⊗ ρB where ρA = TrB(ρAB) and ρB = TrA(ρAB). (8)

Product states exhibit no correlations whatsoever between the subsystems.
However, quantum mechanics allows for different sorts of correlations. A

4See next section for a precise definition of quantum measurement.
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state acting on HAB is called separable5 if it can be written in the form,

ρ =
m∑

i=1

piρi ⊗ ρ̃i, (9)

where ρi and ρ̃i are states on HA and HB and the pi’s define a probability
distribution. This state has only classical correlations (except for pi =
δi1), thus it can be prepared by LOCC (Local Operations and Classical
Communication). If a state cannot be written in the above form, Eq. (9),
then it is called entangled and it exhibits genuine quantum correlations.
Historically, entanglement was first recognized by Einstein, Podolsky and
Rosen (EPR) in their famous paper [50] where they skeptically unveiled
the non-local nature of quantum mechanics, and by Schrödinger [119, 139]
who realized that entanglement —or verschränkung as he called it—gave
rise to situations where the “best possible knowledge of a whole does not
include the best possible knowledge of its parts. . . ” [119, 139]. Indeed, the
paradigmatic entangled state, the singlet6

|ψ−〉AB =
1√
2
(|01〉 − |10〉) (10)

is a pure sate, and therefore describes a state of maximal knowledge, but
each of its subsystems is described by the maximally mixed state ρA = ρB =
1
21, which describes a completely unknown state. We will refer to pure
states with this property as maximally entangled or EPR states. Later,
Bell [4] brought out the conflict between local realistic theories and quan-
tum mechanics. As we will see, entanglement is a crucial ingredient in many
quantum information protocols. Such is the relevance of entanglement that
a great part of the current research efforts in the field of quantum infor-
mation theory are devoted to the characterization and quantification of
entanglement. In particular, this entails: A) Finding criteria to determine
whether a state is separable or entangled. In the later case, determine also
if the entanglement is distillable or not, i.e. if it can be transformed into
singlet states, which are the “fuel” for many quantum information proto-
cols. B) Find measures of entanglement. Entanglement is a new sort of
quantum information that cannot be embodied in a single qubit. The basic
unit of entanglement is the singlet |ψ−〉 introduced in Eq. (10). For an in-
creasing number of subsystems (also called parties) new sorts of quantum

5For infinite dimensional Hilbert spaces this definition has to be slightly modified
[136].

6Throughout this work I will use the notation |φϕ〉 ≡ |φ〉|ϕ〉 ≡ |φ〉⊗|ϕ〉.
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correlations appear that cannot be reduced to bipartite entanglement. New
basic units of quantum information are therefore expected to appear.

In this work entanglement will mostly appear in bipartite systems.
For such systems it is very useful to exploit (see papers III and IV) the
isomorphism between the Hilbert space HA⊗HB and the Hilbert space
spanned by the complex dA × dB matrices. A general vector in HA⊗HB,
|Ψ〉 =

∑dA,dB
i,j=1 Cij |i〉|j〉, corresponds to a matrix C with matrix elements

Cij , and the inner product is accordingly defined as 〈C|C ′〉 = Tr(C†C ′).

Throughout this work I will make use of this isomorphism and
use the notation |C〉 for any matrix C to denote the bipartite
pure state |C〉 =

∑dA,dB
i,j=1 Cij |i〉|j〉.

Some useful relations between both representations are

A ⊗ B|C〉 = |ACBT 〉, (11)
TrA(|A〉〈B|) = AB† and TrB(|A〉〈B|) = AT B∗. (12)

The matrix representation allows one to import many tools and theorems
from matrix analysis theory [67, 14] for the analysis of bipartite quantum
systems. For instance, the SVD (Singular Value Decomposition) provides
a canonical form of writing a general bipartite pure state from where all
the non-local properties can be easily read:

Every pure state |Ψ〉 in HA⊗HB has a Schmidt decomposition
[111], i.e. there exists basis {|ei〉}dA

i=1 and {|ẽi〉}dB
i=1 in HA and

HB respectively such that,

|C〉 =
n∑

i=1

√
λi|ei〉|ẽi〉 (13)

where n = min{dA, dB} and the Schmidt coefficients λ1 ≥ . . . ≥
λn ≥ 0 are non-negative real numbers and satisfy

∑
i λi = 1.

Proof: The SVD of a general complex matrix is C = UΛV †,
where Λ is a diagonal matrix whose elements are the non–
negative square roots of the eigenvalues of C†C (called sin-
gular values) entered in decreasing order, and U and V are
unitary matrices which ith columns are the eigenvectors corre-
sponding to the ith eigenvalue of CC† and C†C respectively.
Making use of the SVD and applying Eq. (11) we arrive to
|C〉 = |UΛV †〉 = U⊗V ∗|Λ〉 that leads to the desired result after
identifying the new basis |ei〉 = U |i〉 and |ẽi〉 = V ∗|i〉.
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From this proof and Eq. (12) one realizes that the Schmidt decom-
position of a state |C〉AB is determined by the reduced density matrices
ρA = CC† and ρB = CT C∗ of the subsystems. The Schmidt coefficients
λi’s are their eigenvalues and {|ei〉}dA

i=1 and {|ẽi〉}dB
i=1 are the basis that diag-

onalize them respectively. In the case of degenerate eigenvalues, as in (10),
there is ambiguity on the local basis used to find the Schmidt decomposi-
tion. In any case, what is important is that all the non-local properties of
a state come into view thanks to the Schmidt decomposition. The Schmidt
decomposition formalizes the relation between the entanglement of a pure
bipartite state and the mixedness of its reduced density matrices. Ac-
cording to the previous definition, a state is entangled iff the number of
non-vanishing Schmidt coefficients, the Schmidt rank, is bigger than one.
This is equivalent to saying that the subsystems are in a mixed state. For a
maximally entangled state, the subsystems are found to be in a maximally
mixed state. In fact, the degree of mixedness of this density matrix, given
by the von Neumann entropy, is a valid measure of entanglement and hence
also called entropy of entanglement of the bipartite state.

A purification of a mixed state ρA is said to be the bipartite pure state
|Ψ〉AB such that by tracing out the auxiliary system B we obtain the mixed
state ρA. The Schmidt rank gives the minimal dimension of the purifica-
tion’s subsystems.

An extension of the notion of Schmidt rank of bipartite pure states
to density matrices is the Schmidt number [132]. A density matrix ρ has
Schmidt number k if i) for any realization of ρ =

∑
i pi|ϕi〉〈ϕi| at least

one of the states |ϕi〉 has Schmidt rank k and ii) there exists a realization
with all vectors {|ϕi〉} with Schmidt rank at most k. As the Schmidt rank,
the Schmidt number has the property that it cannot increase under LOCC
and serves to induce a gross classification of density matrices. However,
for mixed states, it is clear that the mixedness of the subsystems does not
serve as an indicator of the quantum correlations and separability criteria
are then usually based on how the states transform under certain maps (see
next section).

2.2 Quantum Operations and Measurements

In the previous section I introduced the density operator as the most general
way to describe a quantum state. In this section we will study how quantum
systems evolve. Of course, this whole description only makes sense when we
have the means to get to know those states, and in quantum mechanics this
is known to be a non-trivial task. Thus, the density matrix and evolution
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formalism has to go hand in hand with a formalization of the measurement
process.

Postulates two to six of quantum mechanics (see e.g. [41]) give us
quite a primitive toolbox to describe the dynamics of quantum states. For
completeness I summarize it as follows.

1. Measurement (Postulates 2-5). Every measurable physical quantity
is associated to a Hermitian operator A. The result of measuring the
observable A on |ϕ〉 can only produce one of the eigenvalues ai of A
with probability,

p(i|ϕ) = |Πi|ϕ〉|2 where A =
d∑

i=1

aiΠi, (14)

and Πi is the projector associated to the outcome ai, and satisfy
ΠiΠj = δijΠi and

∑d
i=1 Πi = 1. After the measurement is performed

the state of the system collapses to the state

|ϕi〉 =
Πi|ϕ〉
|Πi|ϕ〉|

. (15)

2. Unitary evolution (Postulate 6). The evolution of a closed system is
given by Schrödinger’s equation ih̄ d

dt |ϕ(t)〉 = H(t)|ϕ(t)〉. The evolu-
tion is therefore always unitary,

|ϕ(t)〉 = U |ϕ(0)〉. (16)

The measurement expressed in the first postulates (14) is usually known as
von Neumann or projective measurement. As indicated by the limitation
on the number of measurement outcomes to the dimension d of the Hilbert
space, the notion of projective measurement is too restrictive. In general
a quantum measurement is any physical process on a state that generates
a probability distribution for some outcomes7. Equation (14) captures the
essence of a quantum measurement: it gives a mapping between an ini-
tial state and a positive number that is the probability of obtaining the
measurement outcome represented by the projector Πi. In a similar way, a
generalized measurement is defined by a set of positive operators {Ei}n

i=1

7See [24] for an introduction to mathematical and conceptual aspects of quantum
measurement
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that satisfy the completeness relation
∑n

i=1 Ei = 1. These conditions are
enough to guarantee that the mapping

p(i|ρ) = Tr(ρEi) (17)

defines a probability distribution, i.e. 0 ≤ pi ≤ 1 and
∑n

i=1 pi = 1, for
all possible input states ρ. A generalized measurement is therefore charac-
terized by the set of¡ operators {Ei}n

i=1 called POVM (Positive Operator-
Valued Measure). For every measurement outcome there is a POVM-
element Ei that gives the probability of this outcome for every input state.
POVM’s are as fundamental as von Neumann measurements: their appear-
ance in quantum mechanics is postulated. However, Neumark’s theorem
[101, 111] lets one reduce the former from the latter.

Any POVM {Ei}n
i=1 on a Hilbert space H can be realized by per-

forming a von Neumann measurement on an extended Hilbert
space H⊕H′.

In the context of quantum information, however, one usually deals with
systems of qubits, hence the direct sum extension of the Hilbert space does
not appear naturally. To provide an extended Hilbert space one usually
has to add, as shown in Figure 1, an auxiliary system —rather politically
incorrectly referred to as ancilla8. A unitary evolution of the system and
ancilla followed by a projection measurement {Πi}n

i=1 on the ancilla leads
to the following outcome probabilities,

p(i|ρ) = Tr[U(ρ ⊗ σ)U †(1 ⊗ Πi)] = Tr[(ρ ⊗ 1)(1 ⊗ σ)U †(1 ⊗ Πi)U ]

= Trs

[
ρ Tranc[(1 ⊗ σ)U †(1 ⊗ Πi)U ]

]
. (18)

where in the first equality we have used the cyclic property of the trace
and last equality can be reached by writing the total trace in a separable
basis, i.e. as the partial traces of the system and ancilla. Comparing (18)
with the definition in (17), we find that every outcome Πi of the projective
measurement on the ancilla is associated to a POVM element Ei over the
system state ρ,

Ei ≡ Tranc

(
(1 ⊗ σ)U †(1 ⊗ Πi)U

)
. (19)

It is straightforward to check the positivity and completeness relation of
this POVM. With this we have shown that the unitary coupling of the

8In latin, a female slave.
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system to the ancilla followed by a projection measurement {Πi}n
i=1 on the

ancilla leads to a POVM {Ei}n
i=1 on the input state ρ. The reverse can also

be shown to be true: for every POVM we can always find an ancilla state
σ and a unitary operator U that realizes it in the prescribed way [82, 105].

�

ρ

0〉〈0

ε(ρ)=Σεi(ρ)

“i”

i

⊗
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Figure 1: Any generalized measurement or quantum operation (see below)
can be realized by unitarily coupling the system to an auxiliary system and
performing projection measurements on the the auxiliary system.

Equations (15, 16) in the postulates of quantum mechanics give us a
mapping between the states before and after the measurement and the free
evolution. We can now try to generalize the idea of state transformations to
arrive to the notion of quantum operation. We want to find the most general
form of the map E that takes an input state ρ to an output state ρ′ = E(ρ),
where input and output Hilbert spaces do not have to be necessarily the
same. This map has to send density matrices to density matrices. This
implies that,

0) E(ρ) preserves positivity: ρ ≥ 0 ⇒ E(ρ) ≥ 0

1*) E(ρ) is trace preserving: Trρ = 1 ⇒ Tr(E(ρ)) = 1

In order to cope with non-deterministic dynamics, we can relax condition
1*) to 1) Tr(E(ρ)) ≤ 1, and adopt the convention that Tr(E(ρ)) is the
probability of the particular process E occurring for an initial state ρ, so
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that the properly normalized output state is ρ′ = E(ρ)
Tr(E(ρ)) . For deterministic

dynamics condition 1*) still applies.
Consistent with the ensemble interpretation of a density matrix we also

demand that if a system is either in state ρ0 with probability p or in state
ρ1 with probability (1− p), then the output state should be either in E(ρ0)
or E(ρ1) with the same probabilities. This means that a quantum operation
has to be linear on the set of density matrices,

2) E(
∑

i piρi) =
∑

i piE(ρi).

The last condition we will impose on quantum operations is that any
extension to a larger Hilbert space has to be a positive map.

3) E(ρ) is completely positive: ρAB ≥ 0 ⇒ (IA ⊗ EB)ρAB ≥ 0 ,

where IA is the identity map on subsystem A. This requirement is based
on the very natural idea that if for some reason the system under study
is part of a larger system, then the total state of the system should still
be a density matrix after the operation. This looks like a physically sound
and innocuous extension of condition 0), but it turns out to be one of key
concepts in quantum information. Positive maps that are not completely
positive transform separable states into positive density matrices. It is
only for entangled states that these maps may render unphysical outcomes,
i.e. not density operators. A composite system in a separable state will
remain physical no matter what local transformations we do on each of
its parts. Each part is independent of the other —even their time arrows
are uncorrelated. However, if we apply time-reversal9 or inversion to only
one subsystem of, say, a singlet state, then the total system becomes un-
physical. Hence, time–reversal and inversion, as all the positive but not
completely positive maps, can be used to identify entangled states. The
partial transposition defined as

ρ =
∑

i,j,µ,ν

ρjν,iµ|jν〉〈iµ| on HA⊗HB
TA−→ ρTA =

∑

i,j,µ,ν

ρiν,jµ|jν〉〈iµ|, (20)

is another positive, but not completely positive, map. The positivity of
the partial transposition (PPT ) [109, 68] provides a necessary condition
for the separability of any composite system (in a pure or mixed state!)
that can be easily checked. The Horodecki family proved in [68] that a
state is separable if and only if for any positive map ∆, 1 ⊗ ∆ρ ≥ 0 holds.

9For definition see for example [111] page 258.
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Unluckily, we do not have a full characterization of the set of positive maps.
However, for 2×2 and 2×3 bipartite systems we know that all the positive
maps can be written in terms of completely positive maps and the partial
transposition, so that effectively the PPT (also called the Peres-Horodecki
criterion) becomes a necessary and sufficient condition for a state to be
separable.

After pointing out the relevance of completely positive maps in quantum
information, we will finally see that the extension of condition 0) to 3) has
important implications in our program of finding the most general quan-
tum operation. The Kraus representation theorem [82] states that a map
E(ρ) fulfills conditions 1), 2) and 3) if and only if it has an operator–sum
representation (or Kraus representation) given by,

E(ρ) =
m∑

i=1

AiρA†
i where

m∑

i=1

A†
iAi ≤ 1. (21)

The equality holds only for deterministic operations, and Ai are the so-
called Kraus operators. The proof of this theorem (see [121] for an en-
lightening version) strongly relies on 3) superseding 0): there is no similar
characterization theorem for positive maps. The operator–sum representa-
tion is a very important tool in quantum information to study the viability
or optimality of different quantum information processing tasks without
detour on the actual physical operations. However, it is reassuring to know
that, once we find the best fitted quantum operation for our purpose, it
is always possible to implement it by coupling our system to an auxiliary
system as in Figure 1. Let us suppose that our system and ancilla are ini-
tially10 in a state ρ⊗|0〉〈0| on Hs ⊗Haux and that we couple them through
a unitary interaction defined by U resulting in the state Uρ⊗|0〉〈0|U †. The
transformation of our initial system can be obtained by tracing out, i.e.
doing the partial trace over, the auxiliary system:

E(ρ) = Traux(Uρ⊗|0〉〈0|U †) =
daux∑

i=i

〈ei|Uρ⊗|0〉〈0|U †|ei〉 (22)

=
daux∑

i=1

AiρA†
i where Ai ≡ 〈ei|U |0〉. (23)

This coincides with the axiomatic characterization of a deterministic quan-
tum operation in Eq. (21) since

∑n
i=1 A†

iAi =
∑n

i=1〈0|U †|ei〉〈ei|U |0〉 = 1. It
10For simplicity we assume that the ancilla has been prepared in a pure state. Linearity

makes the extension to mixed ancilla states straightforward.
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can be proven that for any quantum operation one can find an auxiliary sys-
tem and a unitary operation that realize that quantum operation[82, 105].
Referring to Eq. (23), notice that we can interpret each term in the sum as
the unnormalized state of the system after performing a projective measure-
ment on the ancilla and obtaining the outcome associated to the projector
Πi = |ei〉〈ei|,

Ei(ρ) = AiρA†
i . (24)

Each Kraus operator Ai is associated to a measurement outcome and maps
the initial state to the state of the system after the measurement. Moreover,
by definition the norm of the resulting state is the probability of the process
Ei to occur,

p(i|ρ) = Tr(Ei(ρ)) = Tr(A†
i ,Aiρ) = Tr(Eiρ) (25)

where the operator Ei = A†
iAi has all the ingredients to be considered as a

POVM element. Thus, to no surprise, we see that quantum operations also
formalize the most general measurement process. In many situations the
state after the measurement will be irrelevant to the problem and it will
pay off in simplicity to use POVM formalism described above.

Had we taken in Eq. (23) the partial trace using another base for the
ancilla Hilbert space {|fi〉 = V †|ei〉}, the quantum operation would obvi-
ously remain untouched, but the operator-sum representation will be given
by the Kraus operators,

Ãi = 〈fi|U |0〉 =
m∑

j=1

VijAj where V is unitary. (26)

Each new Kraus operator Ãi corresponds to the measurement outcome
|fi〉〈fi|. It turns out that all the equivalent operator-sum representations,
i.e. those that lead to the same quantum operation, satisfy the above rela-
tion between its Kraus operators. The similarity of the previous equation
to Eq. (4) describing the relation between different realizations of a density
matrix is not casual: the state after the coupling unitary transformation
corresponds to a purification of E(ρ) and each different measurement on
the ancilla leads to a different ensemble interpretation. A simple parameter
count shows that maximum number of Kraus operators needed to charac-
terize a quantum operation acting on a ds-dimensional system is at most
m ≤ d2

s.
Despite the Kraus representation gives an explicit characterization of

the physical operations that one can do on a quantum system, there are
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still a lot of open questions surrounding quantum operations. For example,
it would be very convenient to derive simple criteria to determine whether
or not particular state transformations are possible, or to have a charac-
terization of constraint quantum operations such as local operations, local
operations with classical communication or operations implementable by
linear elements (see 3.2.2). There has been some progress in this direction
using information-theoretical criteria. The theory of majorization [102] has
also been proven to be of great use in characterizing pure state transforma-
tions.

Quantum operations are in general irreversible —unitary evolution is
the only exception. Decoherence, or the coupling to uncontrolled degrees
of freedom, fixes the arrow of time. This means that quantum operations
do not define a group but a semigroup: the consecutive application of quan-
tum operations is a quantum operation. The continuos evolution of open
systems (systems which are coupled to an environment) has been conven-
tionally described by a master equation for the density operator, where
one includes all sorts of non-unitary effects such as damping, decoherence,
and noisy driving fields. Starting from complete positivity and linearity ax-
ioms Lindblad [92] gave the general form for a Markovian semigroup master
equation,

ρ̇ = −i[H, ρ] +
∑

i=1

2LiρL†
i − L†

iLiρ − ρL†
iLi, (27)

where Li are called Lindblad operators. Usually, the presence of the non-
reversible terms was postulated on phenomenological grounds. Solving the
master equation required the use of numerical methods that basically “un-
raveled” the master equation for the density matrix into stochastic trajec-
tories of state vectors [34]. The appearance of these stochastic equations
called for a physical interpretation of their origin. As in the case of the “dis-
crete” quantum operations, it turns out that a given master equation can
have many different interpretations, each of them with a physical meaning.
Recognizing this became of crucial importance when experimental physics
(specially in the field of quantum optics) allowed one to monitor the state
of the environment and therefore condition the state of the system to the
measurement outcomes. For example, homodyne and heterodyne measure-
ments of the light leaking to the environment from a quantum optical sys-
tem have been seen [142, 141] to induce dynamics on the system —or, to
be more legitimate, on our description of the system—associated with two
different continuous state-diffusion stochastic equations [34, 58], while a
direct photon-counting measurements induces a quantum-jump stochastic
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equation. Based on these accurate descriptions of the conditional dynam-
ics several feedback mechanisms have been modelled and found to result in
non-trivial, and sometimes useful, manipulations of the optical system.

Despite the claimed generality of the quantum operations and Lindblad
master equation (27) it is important to bear in mind their working condi-
tions. A typical situation which leads to dynamics that cannot be described
by quantum operations is when the system is initially entangled with the
environment. This is somehow natural, since one can use the environment
to gain information on the input and use this information to perform any
kind of operation on it. For example, if by measuring the environment
we can know whether the input state is in the upper or lower hemisphere
of the Bloch-sphere we can invert the Bloch-vector of any input state by
applying simple rotations. However, it is well known that the inversion is
an anti-unitary operation which is a positive but not a completely positive
operation (see Section 2.3.2). Of course, in the scenario where one can
obtain a complete knowledge on the input state from the environment, one
can use this information to create the most bizarre map, including non-
linear maps. In some intrinsically non-linear systems11 it is possible to find
dynamics which are not completely positive but do not lead to negative
probabilities [42].

The master equation (27) is only valid when the condition of no ini-
tial correlations with the environment is fulfilled at every time-step. If the
system interacts with the environment at a given time (letting some infor-
mation out), then it cannot interact with that “part” of the environment
again12 (the lost information cannot enter the system at future times). This
is the content of the Markovian approximation. Royer [115] showed that for
some cases it is still possible to treat consistently and obtain useful results
while properly accounting for initial correlations. See also paper IV [30] for
a simple treatable example of non-Markovian dynamics.

2.3 Applications

In the first section I gave a quick introduction on what are the quantum
information carriers (quantum states) and how we can manipulate them
(quantum operations). In this section, I will review some basic protocols
in quantum information that illustrate how these ideas can give rise to

11Typically systems in which a full microscopic account is replaced by a mean field
theory, where the dynamics is described by a non-linear evolution of a single quantum
object, the mean field.

12This implies that the environment has to have “infinite” degrees of freedom.
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striking applications that motivate the research presented in this work.
These applications are interesting by themselves and, equally important,
they provide a phenomenology that helps to develop new intuitions on
quantum information.

2.3.1 State Discrimination and Optimal State Estimation

Imagine the scenario in which Alice secretly prepares a quantum system in
one of the states {ρi}n

i=1 according to the a priori probability distribution
{pi}n

i=1. Now it is the task of an observer, Bob, to make the “best” mea-
surement in order to establish the identity of the state. In general Bob will
not be able to unambiguously identify each of the possible states, thus the
notion of “best” measurement will strongly depend on what exactly Bob
has to say about the state. Here we will consider three cases: quantum
hypothesis testing where Bob is forced to make a guess on the input state
after each measurement outcome, unambiguous state discrimination where
Bob has the right to admit that he has no clue about the identity of the
state for some given measurement outcomes, and the maximization of the
information gained in the detection process.

Quantum hypothesis testing is one of the central problems in quantum
detection theory advanced in the 1960s by Helstrom [64], and was part
of the initial motivation to develop the theory of quantum operations and
generalized measurements. In this problem, Bob has to guess the state
prepared by Alice, based on the result of his experiment and with the
minimal probability of error13. Bob’s strategy can be easily formalized by a
POVM {Ej} with n elements, where the outcome Ej is taken to correspond
to the guessed state ρj . The probability of error of this strategy is,

Pe = 1 − Ps = 1 −
n∑

j=1

pjp(j|ρj) = 1 −
n∑

j=1

pjTr(Ejρj). (28)

If the initial set of states is linearly independent it is always possible for
Bob to find a von Neumann measurement which is optimal [76, 64]. For a
set of two linearly independent states, which can be conveniently written
as

|ϕ±〉 = cos θ|+〉 ± sin θ|−〉, (29)
13Quantum Bayes [64] strategies are a very well studied extension of this idea in which

different errors can have different costs. Bob’s goal is to minimize the cost function
c =

∑
ij

piCijp(Ej |ρi) for a given cost matrix C.
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occurring with a priori probabilities p+ and p− = 1 − p+, Helstrom [64]
found the optimum value of the probability of error,

P opt
e =

1
2
(1 −

√
1 − 4p+p−|〈ϕ+|ϕ−〉|2). (30)

Figure 2 shows the optimal von Neumann measurement corresponding to
the case p+ = p− = 1

2 for which the probability of error reduces to

P opt
e =

1
2
(1 − sin 2θ). (31)
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Figure 2: Optimal measurements for quantum hypothesis testing and un-
ambiguous state discrimination for two non-orthogonal states in the real
plane. The vectors in black represent the input states while the gray ones
represent the projection directions of the optimal POVMs.

For a linearly dependent set of states, von Neumann measurements are
not optimal and one has to minimize over all possible POVMs of n elements,
which is a difficult task to do analytically. There is, however, an important
class of ensembles for which one can find a general analytic solution, namely
the sets of equiprobable and symmetric states. A set of states {|ϕj〉}n

j=1 is
said to be symmetric if there exists a unitary transformation U such that,

|ϕj〉 = U j−1|ϕ1〉 and |ϕ1〉 = U |ϕn〉. (32)
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The optimal strategy for this particular type of sets consists in doing a
square root measurement defined by the POVM elements,

Ej = Φ− 1
2 |ϕj〉〈ϕj |Φ− 1

2 (33)

where Φ =
∑n

j=1 |ϕj〉〈ϕj |. The probability of error of this optimal measure-
ment is,

P opt
e = 1 − 1

n

n∑

j=1

|〈ϕj |Φ− 1
2 |ϕj〉|2. (34)

The two-state set from Figure 2 is the simplest example of symmetric states.
A non-trivial example is the symmetric set of three real states, the trine,
which is relevant in some quantum cryptography protocols.

Unambiguous state discrimination puts the very strong demand on Bob
of not permitting him any errors. All of Bob’s uncertainty has to be shifted
to a single measurement event associated to the POVM element E?. When-
ever the measurement gives this outcome, Bob says ‘don’t know’, and in all
the other cases he has to make the right guess with certainty. The figure of
merit that Bob needs to minimize is the total probability of an inconclu-
sive answer P? = Tr(ρE?), where ρ describes the ensemble {pi, |ϕi〉}. The
error-free condition puts very tight restrictions on the POVM elements:
p(j|ϕi) = Tr(ρiEj) ∝ δij implies that the POVM corresponding to the
guess |ϕj〉 has to be proportional to the projector on the space orthogonal
to all the other states {|ϕi〉}i�=j . It immediately follows that linearly depen-
dent states cannot be unambiguously discriminated. In [38] Chefles proved
that linear independence is also a sufficient condition for unambiguous state
discrimination. The strategy for two linearly independent states, defined
as in Eq. (29), follows from the error-free condition,

E± =
γ±

|〈ϕ⊥
±|ϕ∓〉|2

|ϕ⊥
±〉〈ϕ⊥

±| and E? = 1 − E+ − E−, (35)

where |ϕ⊥
±〉 = sin θ|+〉∓cos θ|−〉 are orthogonal to |ϕ±〉 and the coefficients

in front of the projectors are defined so that γ± is the probability of suc-
cessful discrimination conditional to the initial state being in |ϕ±〉. The
optimum strategy can be easily obtained by minimizing the probability of
the inconclusive result P? = 1 − p+γ+ − p−γ− subject to the positivity
condition E? ≥ 0 [73]. This was first solved [72, 108, 47] for equiprobable
states (p+ = p−) resulting in an optimum inconclusive result probability,

P? = |〈ϕ+|ϕ−〉| = cos 2θ. (36)
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A measurement corresponding to the optimal POVM is shown in Figure 2.
Notice, that after the inconclusive result both input states are mapped to
the state |+〉, rendering useless any further attempts to discriminate the
states. In fact, it can be shown that an inconclusive answer in optimal
unambiguous state discrimination always maps the set of input states to
a linearly dependent set [38]. While this implies the impossibility of any
further error-free discrimination, it is still possible in many cases to get
information about the input state at the price of producing some errors.

As for quantum hypothesis testing, analytical solutions for more than
two states have only been found for the case of equiprobable and symmetric
states [39]. A set of linearly independent states satisfying Eq. (32) can
always be written as,

|ϕj〉 =
n∑

k=1

ck exp
(

i2πjk

n

)
|k〉 (37)

where |k〉 are the eigenstates of the symmetry transformation U in Eq. (32).
The minimum value for the inconclusive result probability is given by,

P opt
? = n min

k
|ck|2. (38)

A different approach was taken by Peres and Terno [110] who solved the
problem of optimal unambiguous state discrimination for three arbitrary
pure states with arbitrary a priori probabilities, and gave the recipe to
solve, at least numerically, the generalization to more than three states.

Quantum hypothesis testing and unambiguous state discrimination ap-
ply to the scenario in which Bob tries to guess the state forwarded by Alice
after each measurement, and his aim is to maximize the number of correct
guesses. Another approach, typically adopted by information theorists, is
to maximize the information gained during the measurement. We already
saw that if the probabilities of a set of states {|ϕi〉} are {pi}, the correspond-
ing classical information is quantified by the Shannon entropy H(�p) from
Eq. (1). Getting a measurement outcome modifies the a priori probability
distribution �p → �p′. The amount of information gained from the measure-
ment is the amount by which the entropy is reduced ∆I ′ = H(�p) − H(�p′).
Since different measurement outcomes will provide more information than
others, Bob’s goal will be to find the POVM {Ej}m

k=1 that maximizes the
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average information gain14,

∆I =
m∑

k=1

Pk

(
n∑

i=1

pi log2 pi −
n∑

i=1

p(i|k) log2 p(i|k)

)
(39)

where Pk =
∑n

i=1 piTr(Ek|ϕi〉〈ϕi|) is the a priori probability of getting the
outcome Ek, and p(i|k) is the probability of having the state |ϕi〉 given the
measurement outcome Ek. This conditional probability can be obtained
from Bayes’ rule,

p(i|k) =
pip(k|i)

Pk
=

piTr(Ek|ϕi〉〈ϕi|)∑n
j=1 pjTr(Ek|ϕj〉〈ϕj |)

. (40)

Note that the number of POVM elements, m, is not fixed by the number of
possible states n. This, together with the fact that the average information
gain is not linear, makes the problem even more difficult to treat analytically
than for the previous strategies. However there are some general results
worth mentioning,

• Holevo bound [65] on the accessible information:

∆I = H(X : Y ) ≤ S(
∑

i

piρi) −
∑

i

piS(ρi) (41)

where S(ρ) is the von Neumann entropy defined in Eq. (5) and equal-
ity holds when the states prepared by Alice ρi commute. An imme-
diate implication is that one can transmit at most one bit per qubit.

• Davies’ theorems [43]: 1) The information gain can always be maxi-
mized by a POVM with m POVM elements of rank one, d ≤ m ≤ d2,
Ei = |vk〉〈vk| where 〈vk|vk〉 ≤ 1 and d is the dimension of the input
Hilbert space. POVMs of this kind represent the so-called sharp mea-
surements15.
2) If the states in the input set are equiprobable, and the set is co-
variant with respect to a group G with an irreducible representation
πg(ρ) on the input space, then there exists a normalized state |ϕ〉 such
that the optimal POVM is covariant and given by Eg = d

nπ†
g(|ϕ〉〈ϕ|).

This result has been extended to groups that do not act irreducibly
on the whole input space [118].

14The average information gain is also known as the mutual information H(X : Y )
between the input signals X = {pi, |ϕi〉} and the detection signals Y = {Pk, Ek}, and its
maximum over all possible POVM is called accessible information.

15Some authors use differently this term to denote measurements where each measure-
ment outcome can be triggered with unit probability by choosing the appropiate input
state.
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• Two states: this case has the peculiarity that the POVM which max-
imizes the average information gain coincides with the von Neumann
measurement which achieves the minimum error probability in quan-
tum hypothesis testing, and the average information gain obtained
is,

∆Iopt =
1
2

((1 − sin 2θ) log2(1 − sin 2θ) + (1 + sin 2θ) log2(1 + sin 2θ)) .

The average information gained in optimal unambiguous state dis-
crimination is equal to the gain corresponding to the successful dis-
crimination events (the inconclusive results do not provide any infor-
mation) ∆IUSD = 1−P? = 1−cos 2θ, which is lower than the optimal
except for θ = π

4 . For orthogonal input states, unambiguous state
discrimination, optimal information gain, and minimum error proba-
bility are achieved by projection measurement onto these states, and
the Holevo bound is reached.

To finish, let us consider the scenario in which Alice instead of prepar-
ing a state from set of states known to Bob, she gives him a completely
arbitrary pure state. So, effectively Bob has to discriminate a state from
an infinite set of states with a flat a priori probability distribution. In this
scenario there is no place for unambiguous state discrimination, asthe set
of states is obviously linearly dependent. On the other hand, in any real-
istic situation the number of measurement outcomes is finite, so that one
can not associate a measurement outcome to every possible input state as
required in quantum hypothesis testing. There are a couple of more nat-
ural strategies to adopt here. One is to maximize the average information
gain. The other one is to perform quantum state estimation, which I in-
troduce here. The high-symmetry of the problem makes it possible to find
analytic solutions, and even to investigate the more interesting case where
Alice provides Bob with N copies of the same state. Bob’s ensemble is
{pi, ρi⊗ N. . . ⊗ρi} and for increasing N he will get closer to a full knowledge
of the state ρi chosen by Alice.

Quantum state estimation was put forward by Massar and Popescu
[96] formulated as a game16. Alice gives the unknown state |ϕ〉 to Bob
who performs a POVM {Ei}k

j=1 on it. For each measurement outcome he
will propose a state |φj〉 as his guess. Alice will then compare Bob’s guess
with the original state, using a previously agreed distinguishability measure
d(|φj〉, |ϕ〉). According to this measure Bob will get more points the more

16See also [66].

25



indistinguishable his guess to the original state is. Bob’s goal is to find the
strategy that gives him on average the highest score, which is given by,

F̄ =
k∑

j=1

∫
D|ϕ〉p(j|ϕ)d(|φj〉, |ϕ〉). (42)

In this context, the most commonly used distinguishability measure is the
quantum fidelity, which definition and main properties I give below17.

Quantum Fidelity [74]: Based on the classical statistical overlap mea-
sure between two probability distributions �p = {pi} and �q = {qi}
Fc(�p, �q) =

(∑
i
√

piqi
)2 the quantum fidelity is defined as,

F (ρ, σ) =

(
min
{Ei}

∑

i

√
Tr(ρEi)Tr(σEi)

)2

(43)

where the minimum is taken over all possible POVMs. That is, the
quantum fidelity is the classical fidelity of the probability distributions
generated by the optimum POVM. An alternative, but equivalent,
definition of the quantum fidelity is provided by Uhlmann’s theorem:

F (ρ, σ) = max
φσ

|〈ϕρ|φσ〉|2, (44)

where |ϕρ〉 and |φσ〉 are purifications of ρ and σ respectively. A closed
expression for F (ρ, σ) can be found to be,

F (ρ, σ) =
(
Tr

(
(
√

ρσ
√

ρ)
1
2

))2
, (45)

which is bound by 0 ≤ F (ρ, σ) ≤ 1, and the lower and upper bound
are reached iff the states are orthogonal (ρσ = 0) and identical (ρ = σ)
respectively. Some other useful properties of the quantum fidelity
are: i) Invariance under unitary transformations F (UρU †, UσU †) =
F (ρ, σ). ii) Symmetry F (ρ, σ) = F (σ, ρ). iii) Concavity F (ρ, pσ1 +
(1 − p)σ2) ≥ pF (ρ, σ1) + (1 − p)F (ρ, σ2). iv) If one of the states is
pure F (ρ, |ϕ〉〈ϕ|) = 〈ϕ|ρ|ϕ〉 and if both are pure F (|ϕ〉〈ϕ|, |φ〉〈φ|) =
|〈ϕ|φ〉|2. v) Multiplicativity, F (ρ ⊗ ρ′, σ ⊗ σ′) = F (ρ, σ)F (ρ′, σ′).
vi) Monotinicity [3] F (E(ρ), E(σ)) ≥ F (ρ, σ) for any trace preserving
quantum operation E . Considering the partial trace as a quantum
operation we recover Uhlmann’s theorem.

17For an in depth study of this and other quantum distinguishability measures see [53].
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By taking the quantum fidelity as a measure of distinguishability, i.e as the
score function d(|φj〉, |ϕ〉) in Eq. (42), it is straightforward to realize [96]
that for a single qubit in an unknown state the optimal average fidelity
is F̄1 = 2

3 and can be achieved by letting the unknown state go through
a Stern-Gerlach apparatus, i.e. performing a von Neumann measurement,
and taking the outcome as the guessed state. Massar and Popescu [96]
studied what was the change in the fidelity when Alice handed Bob N
copies of the unknown state. They found that the upper-bound on the
average fidelity that Bob can achieve is given by,

F̄ opt
N =

N + 1
N + 2

. (46)

However, they could only give an explicit form of the POVM for N = 2,
while for N > 2 they proposed one with an infinite number of outcomes,
thus breaking with the realizable measurements for state estimation. Later,
Derka et al. [44] gave an algorithm to find the optimal POVM (with fi-
nite number of elements) for N copies of an unknown state of arbitrary
dimension. The Barcelona group [89, 135] found the minimal optimal mea-
surement18 and the corresponding optimal fidelity for N copies of a state
drawn from the set of mixed states {f(|�s|), ρ(�s)}, where �s is the Bloch vector
(6) parametrizing each state and f(|�s|) is an isotropic a priori probability
distribution (states with the same degree of mixedness are equiprobable).
Bob’s optimal strategy is affected by the a priori probability distribution
only in assigning a guess to each measurement outcome: the optimal POVM
itself is independent of f(|�s|). As an example, and for further reference in
this work, I give here the optimal minimal measurement for two copies of
an unknown qubit. The POVM consists of four rank one projectors of the
form

Ei =
3
4
|�ni〉〈�ni| ⊗ |�ni〉〈�ni| with i = 1, . . . , 4 (47)

where |�ni〉〈�ni| are pure states with Bloch vectors �ni that point at the four
vertices of a tetrahedron. This POVM is a resolution of the identity on
the symmetric space of two qubits, which is the space spanned by inputs of
the form |ϕs〉|ϕs〉. If Alice hands out to Bob states of the form ρ(�s) ⊗ ρ(�s)
following an isotropic probability distribution f(|�s|), then the input states
span the entire two qubit state space (symmetric and antisymmetric parts)
and an extra POVM element E5 = |ψ−〉〈ψ−| has to be added to complete
the resolution of the identity

∑
i Ei = 1.

18POVM that optimizes the score with the minimal number of POVM elements.
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By inverting the order of the sum and integration in Eq. (42) we find
that the score can be written as

F̄ =
∫

D|ϕ〉Fϕ where Fϕ = 〈ϕ|ρe|ϕ〉, and (48)

ρe =
k∑

j=1

p(j|ϕ)|φj〉〈φj | (49)

is the expected state estimation guess corresponding to the input |ϕ〉. In
state estimation the fidelity of the outcome must not depend on the input
chosen by Alice. This implies that the estimated state ρe is of the form

ρe =
1
2
(1 − ηe)1 + ηe|ϕ〉〈ϕ| =

1
2
(1 + ηe�sϕ · �σ) (50)

where 0 ≤ ηe ≤ 1 and is called shrinking factor for obvious reasons, or
Black Cow factor for not so obvious reasons19. The corresponding fidelity
is

F̄ = Fϕ =
1
2
(1 + ηe) (51)

which for the optimal strategy results in a shrinking factor given by

ηopt
e =

N

N + 2
. (52)

Notice that the shrinking factor approaches one with increasing N , i.e.
the average guessed state (defined by ηe�s) gets asymptotically close to the
unknown input (defined by �s).

2.3.2 Cloning

Non-orthogonal states cannot be cloned. This phrase summarizes one of the
fundamental theorems in quantum information. The no-cloning theorem
[46, 143] states that it is not possible to make an exact copy of an unknown
state |ϕ〉, i.e. there is no quantum operation E such that |ϕ〉|Φ〉 E→ |ϕ〉|ϕ〉
for a generic “blank” state |Φ〉. This is a direct implication of the lin-
earity of quantum operations since the transformation of the basis states
|0〉|Φ〉 E→ |0〉|0〉 and |1〉|Φ〉 E→ |1〉|1〉 fixes the transformation of a superposi-
tion 1√

2
(|0〉+ |1〉)|Φ〉 E→ 1√

2
(|0〉|0〉+ |1〉|1〉), which is obviously different than

19This factor plays an important role in the connection between quantum state estima-
tion and universal cloning (see following section) [23]. This was established by A. Ekert,
C. Macchiavello and D. Bruss following discussions at the Black Cow bar.
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the desired output 1
2(|0〉+ |1〉)(|0〉+ |1〉). Notice that the cloning transfor-

mation can work on some states, as the two states {|0〉,|1〉} above, though
the states have to be orthogonal to preserve the norm of the output state.

The no-broadcasting theorem extended the result to mixed input states.
The class of operations to consider in this case is much wider: ρA ⊗
|Φ〉〈Φ|B E→ σAB with the condition that the reduced density matrices are
σA = σB = ρA. Barnum et al. [2] proved that such broadcasting opera-
tion is only possible if the set of input density matrices commute. They
showed that the broadcasting operation acting on non-commuting density
matrices would imply an increase of quantum fidelity under the partial
trace operation, which is in contradiction with the monotinicity property
of the quantum fidelity (vi) in 2.3.1). The connection between this result
and the fact that the Holevo bound on the accessible information can be
achieved only for commuting signal states has, to my knowledge, not been
established.

The no-go theorems for cloning and broadcasting were not the last words
on quantum cloners. In the following years researchers in the field started
to investigate the possibilities of producing “not perfect” cloners. It turns
out that by relaxing a little the conditions of the ideal cloning machine, it is
possible to copy unknown states. This can be done, basically, in two ways.
The first one is to allow the cloning machine to provide perfect copies of
the unknown state but with a given failure probability. By checking (i.e.
measuring) the state of the probabilistic cloner [49] after the process, one
knows whether the cloning succeeded or not. As for the unambiguous state
discrimination20, the linearity of quantum operations restricts the use of
probabilistic cloners to linearly independent sets of input states [48]. In
particular a universal cloning machine, which should work over all pure
states, can never be probabilistic in the sense defined above. However, if
we are prepared to reduce the quality of our copies, it is possible to build a
deterministic cloning machine that works on the whole set of input states. A
universal cloner [25] produces, with unit probability, two distorted copies,
the quality of which is independent of the input state. There are different
criteria to judge how large is this difference or distance between the dis-
torted copies and the perfect ones, but usually all of them lead to the same
optimal cloning machine [137]. Imposing universality to the cloner means
that the fidelity (quality measure) of the clones should be the same for any

20This is not a coincidence: unambiguous state discrimination and probabilistic exact
cloning are equivalent in many ways and both can be understood as particular cases of
quantum state separation [40].
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input state |ϕ〉, which in turn means that each clone ought to be of the form
(50): the Bloch vector of the clones has to be a shrunk version of the input
Bloch vector. The optimal universal cloning machine [22] minimizes the
decrease in the length of the Bloch vector and achieves a shrinking factor
of ηopt

c = 2
3 which corresponds to the optimum fidelity of F̄c = 5

6 . This
type of quantum operation which uniformly “shrinks” the Bloch sphere is
known as depolarizing channel21 and has an operator sum representation
defined by the Kraus operators,

A1 =
√

1 − p1, A2 =
√

p

3
σx, A3 =

√
p

3
σz, A4 =

√
p

3
σy. (53)

This channel represents the situation in which the system is left untouched
with probability 1 − p, while with probability p either a bit-flip error (σx)
a phase-flip error (σz), or a simultaneous phase-flip and bit flip error (σy)
occurs. The chosen representation is minimal; its Kraus operators are lin-
early independent and by Eq. (26) we know that any other representation
will have at least the same number of Kraus operators. If we want a unitary
implementation of this quantum operation we need a four dimensional aux-
iliary system, for this is the minimum number of Kraus operators. When
applied to our cloner we find that universality requires an ancilla qubit: the
“blank” qubit can account for two “auxiliary dimensions” and the ancilla
qubit has to account for the other two. Moreover, the ancilla qubit will
be entangled with the clones for most input states and its final state will
depend on the input state—the ancilla contains information on the input
state. Thus, in order to comply with the conditions of the universal cloning
machine we are forced to let some information leak out of our system. In
paper I [21] we show that is possible to do a sharp effective POVM 22 on
the input system by doing a joint measurement on both clones and disre-
garding the ancilla. As we shall next see, such sharp measurements provide
the optimal information gain on the unknown input: we would do equally
well by measuring the input state directly, before the cloning transforma-
tion. This also means that although there is information in the ancilla, it
is redundant with the information we can get from the clones.

21The term quantum channel refers to the quantum operations which appear in the
context of quantum communication. It does not have further nuances other than the
fact that in quantum communication the input and output Hilbert spaces are usually the
same.

22An effective measurement [21] is the one which is realized indirectly on the system
after it has undergone a known evolution which can involve an interaction with other
systems.
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Information gain in isotropic distributions: Davies’ theorem al-
ready told us that an optimal POVM can always be chosen to
be sharp. For isotropic distribution of input states the converse
is also true: any sharp measurement is optimal. This can be
easily seen by an explicit calculation. A POVM with elements
Ei = ai(1 + �ti · �σ) will generate the probability distribution
p(i|�s) = Tr(Eiρ�s) = ai(1 + �s · �ti). Integrating this distribu-
tion over all the possible input states we obtain the a priori
probability for outcome i, Pi =

∫
d3sf(s)p(i|�s) = ai. Using

the definition of the average information gain in Eq. (39) and
Bayes’ rule to calculate the a posteriori probability distribution
we arrive at

∆I = −
∫

d3sf(s) log2 f(s)

+
m∑

i=1

∫
d3sf(s)p(i|�b) log2(f(s)

p(i|�s)
ai

)

=
m∑

i=1

∫
d3sf(s)ai(1 + �s · �ti) log2(1 + �s · �ti)

= 2π
m∑

i=1

ai

∫
dss2dθi sin θif(s)(1 + tis cos θi)

× log2(1 + tis cos θi)

=
π

2

m∑

i=1

ai

∫
dss2f(s)

[
(1 + tis)2 log2(1 + tis)

−(1 − tis)2 log2(1 − tis) − 2tis log2 e ] . (54)

Although we already see from here that the sharpness of the
POVM determines the information gain, we make a couple of
assumptions to simplify the result. First we assume that the
set of possible input states has a constant degree of mixing,
i.e. the a priori distribution function is f(s) = 1

4πs2 δ(s − sin).
Second, we assume that all POVM elements are equally sharp,
i.e. their Bloch vectors are equal in length ti = to. The average
information gain is now given by

∆I =
1
4
t−1
o

[
(1 + tosin)2 log2(1 + tosin)

−(1 − tosin)2 log2(1 − tosin) − 2tosin log2 e ] , (55)

31



from which we see that it only depends on the sharpness of the
POVM, not on the number of measurement outcomes and their
a priori probabilities. In paper I [21] we give the maximum
sharpness of the effective POVMs on the input, when measur-
ing the different subsystems in the output of the cloner. Ac-
cordingly we find that the maximum average information gain
when measuring the ancilla, one clone, or two clones are ∆Ia =
0.027 bits, ∆Ic = 0.112 bits, ∆Icc = 1 − 1

2 log2 e = 0.279 bits,
respectively. The last value coincides with the optimum value
achievable through a direct von Neumann measurement on the
input state. Note that these values are way below the Holevo
bound (∆Ic = 1 bit) which is reached when the input set con-
sists of only two orthogonal states.

Based on the concatenation of several cloning machines Bruss et al.
[23] studied the upper-bounds imposed by optimal state estimation on the
optimal universal cloner and vice versa. They derived a formula that relates
the shrinking factor of an N → M universal cloner23 and the shrinking
factors associated to the optimal state estimation (52) with N and M copies
of the unknown state

ηNM =
ηopt

e (N)
ηopt

e (M)
=

N

M

M + 2
N + 2

. (56)

The actual transformation which gives this optimum shrinking factor for
the M copies was found by Gisin and Massar [57].

The output of these cloning machines has very special properties that
are studied in detail in paper I [21] and reflect many important aspects
of quantum information. Of particular interest is the relation between the
sharp measurements done in a part of the output, say, on the two clones,
and the state of the remaining subsystem (the ancilla) conditional to a
given measurement outcome. There is a very intuitive tradeoff between
the information gained in the measurement and the ability to recover the
original unknown input state in the subsystem which was not measured. A
sharp measurement on a subsystem corresponds to a sharp effective POVM
on the input (maximum information gain) if and only if the remaining
subsystem is left in a state that is independent of the input. On the other
hand, a sharp measurement on a subsystem corresponds to a completely

23Generalization of the 1 → 2 cloner that operates on N copies of an unknown state
and creates M identical imperfect copies of it.
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unsharp effective POVM, i.e. Ei ∝ 1 (no information gain) if and only if
the original input state can be recovered in the remaining subsystem by a
fixed unitary operation24. These ideas will appear again in the forthcoming
sections.

Let me now report25 some interesting conservation laws that arise from
the observation that all universal cloning machines in the literature can be
brought by a fix rotation of the ancilla qubit to fulfill this symmetry

UUC(V ⊗ 1 ⊗ 1)|ϕ〉s|0〉b|0〉a = (V ⊗V ⊗ V )UUC |ϕ〉s|0〉b|0〉a, (57)

where s, b and a are the input, blank and ancilla qubits respectively, UUC is
the cloning transformation and the relation holds for any unitary operator
V = exp(it�p�σ). In particular it must hold for each term in the power
expansion in t,

UUC(V (n) ⊗ 1 ⊗ 1)|ϕ〉s|0〉b|0〉a = W (n)UUC |ϕ〉s|0〉b|0〉a (58)

where V (n) symbolizes the nth derivative of V in respect to t evaluated at
t = 0, and W = V ⊗V ⊗V . By taking the norm of both terms in Eq. (58)
we arrive to the following equality between input and output expectation
values,

〈V (n)〉in = Trs(ρinV (n)) = Tr(ρoutW
(n)) = 〈W (n)〉out. (59)

The derivatives of V and W evaluated at t = 0 are

V (n) = in(�p�σ)n =

{
in for n even

in�p�σ for n odd
, (60)

W (n) = inMn (61)
with M = �p�σ ⊗ 1 ⊗ 1 + 1 ⊗ �p�σ ⊗ 1 + 1 ⊗ 1 ⊗ �p�σ. (62)

The powers of operator M are given by,

M2 = 31 + 2(�p�σ ⊗ �p�σ ⊗ �p�σ)M (63)
24These relations hold in general as far as the auxiliary system, in our case the blank

and ancilla qubits, is in a known pure state before the global unitary evolution. The
parenthesized comments concerning the information gain are of course also dependent on
the particular set of possible inputs. The property that all sharp measurements lead to
a maximum information gain is exclusive of isotropic distributions.

25These results came about from a collaboration with N. Lütkenhaus, D. Bruss and
K.-A. Suominen, but are previously unpublished.
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M3 = 7M + 6(�p�σ ⊗ �p�σ ⊗ �p�σ) (64)
. . .

M2n = a1 + (a − 1)(�p�σ ⊗ �p�σ ⊗ �p�σ)M (65)
M2n+1 = (3a − 2)M + (3a − 3)(�p�σ ⊗ �p�σ ⊗ �p�σ) (66)
M2n+2 = (9a − 6)1 + (9a − 7)(�p�σ ⊗ �p�σ ⊗ �p�σ)M . (67)

For the first order term in t, Eq. (59) results in

〈�p�σ〉in = 〈�p�σ⊗1⊗1+1⊗�p�σ⊗1+1⊗1⊗�p�σ〉out = 〈�p�σ〉c1+〈�p�σ〉c2+〈�p�σ〉a. (68)

I have relabeled the systems at the output to make the interpretation more
direct ({s, b, a} → {c1, c2, a}). Since this has to hold for all �s, we find that
the input Bloch vector has to be equal to the sum of the Bloch vectors of
the two clones and ancilla,

�sin = �sc1 + �sc2 + �sa. (69)

The Bloch vector of the two clones is a shrunk version of the input Bloch
vector, �sc1 = �sc2 = 2

3�sin. According to the previous conservation law the
ancilla’s Bloch vector has to be a shrunk inverted version of the input Bloch
vector, �sa = −1

3�sin.
A universal NOT (U-NOT) [26], or spin flip, is an operation which takes

an unknown state to its orthogonal state (�s → −�s). It is straightforward
to check that this is an anti-unitary operation which means that it is not
completely positive26 and it cannot be a quantum operation. It turns out
[59] that the optimal U-NOT, which takes an unknown input state as close
as possible (according to the fidelity) to its inverted version, produces a
state with Bloch vector �sinv = −1

3sin. This is precisely the ancilla state at
the output of a cloner. From (52) we see that this can be also achieved by
doing state estimation and preparing an inverted guess. Moreover, we can
prepare as many inverted copies as we please. This fits with our previous
conclusion that the ancilla can not be used to increase the information gain:
by doing state estimation of the input “through” the clones, we can in fact
produce many “ancillae” for free.

For even order terms in Eq. (59) we obtain

〈�p�σ ⊗ �p�σ ⊗ 1〉out + 〈1 ⊗ �p�σ ⊗ �p�σ〉out + 〈�p�σ ⊗ 1 ⊗ �p�σ〉out = −1. (70)
26It is equivalent, up to a σy rotation, to the transposition operation that led to the

Peres-Horodecki separability criteria in 2.2.
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For the odd order (but n > 1) terms we obtain,

〈�p�σ〉in = −〈�p�σ ⊗ �p�σ ⊗ �p�σ〉out. (71)

Since the proposed universal N → M cloners exhibit an analogous sym-
metry (58), similar conservation laws (a bigger number of them) can also
be derived for those machines. These conservation laws can be very useful
in studying the properties of the universal cloners, such as the entangle-
ment, classical correlations, or the information content of the subsystems.
However, there is a fact that makes them less powerful: they follow from an
“empirical” observation. The postulated symmetry (58) does not follow di-
rectly form the defining properties of the universal cloner. The universality
(F =constant) only implies,

Tra

(
UUC(V ρinV † ⊗|00〉〈00|)U †

UC

)
= V ⊗ V ρoutV

† ⊗ V †, (72)

which is much softer than the postulated symmetry and from which the
conservation laws do not follow. Showing in full generality the conditions
for which the strong symmetry might follow from the soft one would restore
the value of the derived conservation laws.

“No such thing as no-cloning: cloning can be found in nature in stim-
ulated emission processes”. With this statement Stig Stenholm shook the
participants of the Workshop on the Physics of Quantum Information held
in Helsinki (1998). But it turned out to be an insinuative rather than
provocative statement, since it inspired Simon et al. [127] who showed that
many stimulated emission processes can be understood as a combination
of various 1 → M universal cloning machines described above. So, nature
has been producing the “best” clones allowed by quantum mechanics.

2.3.3 Teleportation

Suppose that Alice has an unknown quantum state on her hands that she
wants to send to Bob. Imagine that they do not have a quantum channel
available or that the unknown state is so precious that they do not want
to run the risk of ruining it during the transmission. On the other hand,
imagine that they have a classical channel, such as a telephone, available.
A classically minded Alice will choose to measure the state, call Bob and
tell him to prepare it. But, by now, we already know that this is not
possible in quantum mechanics: a quantum measurement cannot extract
all the information contained in the description of a quantum state. If
these are really all the resources available to Alice and Bob, even a deep
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understanding of quantum mechanics would not help them to do better than
that. However, Bennett et al. [8] realized that if Alice and Bob happen
to share a maximally entangled state, then they can manage to fulfill their
task following this protocol:

1) Alice performs what is known as a joint Bell-measurement on the
unknown state and her share of the EPR state. This measurement is
a projection measurement on the four Bell-states

|φ±〉 =
1√
2
(|00〉 ± |11〉) (73)

|ψ±〉 =
1√
2
(|01〉 ± |10〉). (74)

2) Alice communicates Bob which of the four possible measurement out-
comes she got (2 bits of classical information).

3) Depending on the received message, Bob performs one of the oper-
ations {1, σz, σx,−iσy} on his qubit. The protocol ends here with
Bob’s qubit being in the unknown state that Alice had in her hands.

It is remarkable that only 2 bits of classical information suffice to recon-
struct the state, specially considering that, even if the state was known
by Alice, it would require an infinite amount of classical of information to
send exactly the same state to Bob. The performance of teleportation only
compares to sending the qubit directly to Bob through an ideal quantum
channel. This mysterious transfer of quantum information can be easily
understood by rewriting [8] the initial state as,

|Ψ〉123 =
1√
2
|ϕ〉1(|00〉 + |11〉)23 =

1
2
[|φ+〉12 ⊗ |ϕ〉3 + |φ−〉12 ⊗ σz|ϕ〉3

+|ψ+〉12 ⊗ σx|ϕ〉3 + |ψ−〉12 ⊗ (−iσy)|ϕ〉3]. (75)

From here is easily verified that conditional on Alice’s Bell-measurement
outcome, Bob’s respective states are, up to a trivial rotation, equal to the
unknown state originally owned by Alice. The quantum information in the
unknown state is ‘disembodied’ in two parts: a classical part (measurement
outcome) and a quantum part (conditional state after measurement). No-
tice that none of these parts contains by itself any information whatsoever
on the input state. It is straightforward to check that all Bell-measurement
outcomes occur with probability 1

4 independently of the input state, and
that without the knowledge of this outcome Bob’s state is a completely
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mixed state —the quantum channel going from the input to Bob’s state is
a depolarizing channel (53) with p = 3/4. Only by rejoining the classical
(in Alice hands) and the quantum (in Bob’s hands) parts the quantum state
|ϕ〉 can be recovered. Teleportation might seem to challenge the no-cloning
theorem and the no faster-than-light signaling principle from special rela-
tivity, but the disembodiment and reconstruction of the quantum state is
fully consistent with these immovable laws27: the unknown state is com-
pletely “erased” from Alice’s systems by the Bell-measurement, and Bob
has to wait for the classical message to be able to reconstruct the state.

It is crucial that Alice does not gain any information through the joint
measurement. As discussed in the previous subsection, in order to be able
to recover the input state after a measurement, the POVM element cor-
responding to the measurement outcome has to produce a flat probability
distribution over all input states, i.e. p(i|ϕ) = Tr(Ei|ϕ〉〈ϕ|) = c ∀|ϕ〉. Ac-
cordingly, any POVM formed by POVM elements satisfying this condition
will be equally good for teleportation. The isomorphism between the d× d
complex matrices and pure states in HA ⊗HB introduced before Eq. (11)
provides us with a simple characterization of these POVMs.

A maximally entangled state is a bipartite pure state which subsys-
tems are maximally mixed. According to Eq. (12) this implies that every
pure state can be described by a unitary matrix U , 1√

d
|U〉. Making use of

Eq. (11), this also means that starting from an arbitrary entangled state
we can prepare any maximally entangled state by a local unitary operation
V ⊗ 1|U〉 = |V U〉.

Bearing this in mind, let me describe a generalized teleportation pro-
tocol. Alice’s unknown state is described by a density operator ρ acting
on H1, and Alice and Bob share a maximally entangled 1√

d
|1〉23. Alice

performs a joint measurement defined by the POVM elements

Ei = |vi〉〈vi| with |vi〉 = αi|Ui〉12 = αiUi ⊗ 1|1〉12 and (76)
n∑

i=1

Ei =
n∑

i=1

Ui ⊗ 1|1〉12〈1|U †
i ⊗ 1 = 1. (77)

Shur’s lemma28 provides a very convenient way to generate sets of POVM
elements satisfying (77) [20] from the unitary irreducible representation

27These two laws are also consistent with each other. As pointed out by Gisin [56] the
no-signaling condition fixes an upper-bound on the cloning fidelity.

28For a unitary irreducible representation {Ug} of the group G = {g},
∫

UgAU†
g =

Tr(A)1, holds for all operators A.
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of groups. The unnormalized state of Bob’s particle conditional to the
measurement outcome Ei will be given by

ρ̃i = Tr12(ρ ⊗ |1〉23〈1|Ei ⊗ 13)

= |αi|2Tr12(ρ ⊗ |1〉23〈1|Ui ⊗ 123(|1〉12〈1| ⊗ 13)U
†
i ⊗ 123

= |αi|2UiρU †
i , (78)

and its probability of occurrence is indeed independent of the input p(i|ρ) =
Tr(ρ̃i) = |αi|2. The unitary operation Ui that Bob needs to implement to
finish successfully the teleportation protocol is determined solely by the
measurement outcome (the required bits of communication may be larger
than d2).

From the linearity of the whole protocol we notice that teleportation also
works when the input state is part of a composite system. If this state turns
out to be entangled, this entanglement is also teleported to Bob’s site. This
is known as entanglement swapping [144, 145, 17] and it allows to entangle
particles that have never interacted. Once the entanglement between Alice
and Bob is established they will effectively have an ideal quantum channel
(of single use) and Alice can use a classical wide range broadcasting chan-
nel to send the quantum state to Bob without even knowing his precise
whereabouts. Moreover, if Alice and Bob never had the chance to meet
and prepare their entangled pair, they can use a noisy quantum channel
and entanglement purification protocols [9] to obtain a maximally entan-
gled state. Only when Alice and Bob have managed to prepare —at the
cost of several “disposable” noisy entangled pairs—a maximally entangled
state they will use it to teleport the precious unknown state.

A generalization of the teleportation protocol where Alice and Bob share
a non-maximally entangled states (pure or mixed) has been used to char-
acterize entangled states according to the optimum average teleportation
fidelity [55, 69] or maximum probability of successful teleportation [100]
that can be reached with the shared state.

Entanglement swapping demonstrates, by entangling two qubits that
never interacted, the capability of quantum teleportation to “simulate”,
i.e. to reproduce the effects of, an entangling interaction on a bipartite
separable state. In terms of quantum gates29 the creation of a maximally

29The term quantum gate denotes any unitary operation used for quantum information
processing. However, as logic-gates in classical computation, the term quantum gate
usually refers to an elementary quantum operation on a few qubits which is standard
in some broad sense, either because it is a useful building block in designing quantum
algorithms or because it is part of a universal set of gates [1] from which any quantum
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entangled state can be reduced to the action of a controlled-NOT gate,
CNOT= |0〉〈0| ⊗ 1 + |1〉〈1| ⊗ σx and a Hadamard gate, H = 1√

2

( 1 1
1−1

)
, as

shown in Figure 3. Gottesman and Chuang [60] showed that teleportation

�

|00〉 (|0〉+|1〉)|0〉 |00〉+|11〉=|φ+〉
|01〉 (|0〉+|1〉)|1〉 |01〉+|10〉=|ψ+〉
|10〉 (|0〉−|1〉)|0〉 |00〉−|11〉=|φ−〉
|11〉 (|0〉−|1〉)|1〉 |01〉−|10〉=|ψ−〉

Figure 3: A Hadamard gate and a CNOT can be used to create the Bell-
state basis from the separable canonical basis.

can in fact simulate the action of a CNOT over any two-qubit state. In
this very enlightening work they show how to exploit the fact that the
action of a CNOT gate following the action of any of the Pauli operators
is equivalent to the action of CNOT preceding the action of some Pauli
operators, or more succinctly CNOT∈ C2 where the Clifford group C2 is
defined by C2 = {U |UC1U

† ⊆ C1} and C1 = {σx, σy, σz}. The action of
the Bell-measurement in teleportation is to operate on Bob’s qubit with
one of the Pauli operators chosen at random. Now imagine Alice and Bob
share two maximally entangled states, Alice uses each of them to teleport
two unknown states to Bob. After applying the “correcting” Pauli operators
Bob applies a CNOT on them. Now, according to the above statement, the
action of the CNOT after the Pauli operators is equivalent to the CNOT
preceding another set of “correcting” Pauli operators. The teleportation
of two states followed by the action of a CNOT is completely equivalent
to the teleportation of the two states using the shared state |ξ〉11′22′ =
CNOT22′ |φ+〉12|φ+〉1′2′ (instead of |φ+〉12|φ+〉1′2′) and a modified set of
Pauli operators to recover the state. This is what Gottesman and Chuang

operation can be realized.
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refer to as teleporting a state ‘through’ a CNOT. A trivial modification of
the above protocol performs a CNOT on distant qubits, one qubit owned
by Alice and the other by Bob. The same idea can be applied to other
gates belonging to the Clifford group C2 and elaborations of this idea allow
to perform the gates contained in Ck = {U |UC1U

† ⊆ Ck−1}.
The most revolutionary point of this work is not so much the ability

to perform non-local gates using entanglement30 but the ability to perform
non–trivial gates over unknown states by doing Bell–measurements and
acting with Pauli operators on a prescribed state. As we will see, this will
be of paramount importance in physical implementations of quantum infor-
mation processing where controlled interactions are not readily available.

Note also that teleportation brings out the fungible character of in-
formation (quantum or classical)31. Once the entanglement is established
between the distant Alice and Bob, using e.g. photons, teleportation allows
to “send” the quantum state of systems, such as atoms in a cavity, which
would be extremely difficult to send otherwise. This makes teleportation an
important tool for distributed quantum processing in quantum networks.

2.3.4 Quantum Dense Coding

Quantum dense coding [13] can be presented as a variation of the telepor-
tation protocol where the role of classical and quantum information are
interchanged. Both are based on the idea of modifying the shared entan-
gled state by local operations. In teleportation the quantum correlations
are exploited to send quantum information, while in quantum dense coding
they are used to double the classical capacity of a channel. The protocol
goes as follows.

1) Alice performs one of the operations {1, σz, σx, σy} to her share of the
maximally entangled state |φ+〉 = 1√

2
|1〉 thereby preparing one of the

Bell-states

{ 1√
2
|1〉 = |φ+〉, 1√

2
|σz〉 = |φ−〉, 1√

2
|σx〉 = |ψ+〉, 1√

2
|σy〉 = −i|ψ−〉}.

2) Alice sends her qubit to Bob through a noiseless quantum channel.
30For instance, the CNOT between distant parties could be realized using the same

resources by simply teleporting Bob’s unknown qubit to Alice, and let Alice perform the
CNOT and return the transformed qubit to Bob via teleportation.

31Without forgetting that information is still physical, of course.
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3) Upon receiving Alice’s qubit, Bob performs a joint Bell-measurement
on this and his qubit. The outcome of the measurement will unam-
biguously tell Bob which of the four operations Alice applied. The
protocol ends here and Alice has managed to transmit 2 bits of clas-
sical information by sending only one qubit.

The Holevo bound on the accessible information (1 bit per qubit) is of
course on safe ground, for a qubit needs to be sent in order to establish the
quantum correlations. The information is encoded in the four dimensional
Hilbert space spanned by the two qubits (∆I = S(1

414) = log2 4 = 2 bits)
but the four Bell-states can be prepared locally. Note that the transmitted
qubit is in a maximally mixed state no matter which encoding operation
Alice applied. This means that the 2 bits of classical information are all
embedded in the quantum correlations and can be acquired only by having
access to both involved qubits.

We have seen how teleportation allows to establish a quantum channel
from an EPR pair and classical communication. Quantum dense-coding
allows us to establish a high capacity secret classical channel from an EPR
and a quantum channel. These two pillar protocols in quantum informa-
tion processing are clear examples of why entanglement is considered a
“resource” in quantum information processing. The ability to perform Bell-
measurements is crucial in both. The relation between these protocols in
quantum information has been made explicit in [138].

2.3.5 Quantum Key Distribution

Cryptography32 is the science of hiding information in a string of bits that
are meaningless to any untrustworthy party. To achieve this goal, Alice
(the sender) uses an encoding key and an algorithm to encrypt her mes-
sage producing the cryptogram. Bob (the receiver) must have a matching
decoding key to decrypt the cryptogram. The cryptosystem is secure if it
is “impossible” to a third party (the eavesdropper, Eve) to decrypt the
cryptogram without the decoding key. There are basically two types of
cryptosystems depending on whether the key is secret or public.

A very simple and effective private key cryptosystem is the Vernam
cipher or also called one-time pad. Alice and Bob share a secret random
binary string which is as long as the message. To encode her message,
Alice simply adds each bit of her message to the corresponding bit of the

32For an entertaining exposition of the history of cryptography and cryptanalysis see
[128].
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key. The resulting cryptogram is sent to Bob, who decrypts the message by
subtracting the key. Shannon [123] proved that this cryptosystem allows
completely secure communication provided that the random key is as long
as the message and is only used once. The zero-information content of
the cryptogram is reflected by the following rather ludicrous observation.
If Eve wants to crack the message by trying out all possible keys one by
one, she will do nothing more than generate all possible messages of that
length. The original message will of course be among them, but Eve has no
means to recognize it33. The one-time pad is the only cryptosystem that
provides provably secure communication, but it has an important drawback
which renders it useless for most practical proposes: it requires the secure
distribution of the key string, which has to be as long as the message and
can not be re-used.

The first public key cryptosystems did not come until the late 70’ but
now they play a crucial role in most secure communications. In these sys-
tems users do not need to share any secret key beforehand. Public key
cryptosystems are based on one-way functions for which it is easy to com-
pute f(x) for a given variable x, but difficult to obtain x from f(x). More-
over, such one-way functions have a so-called trapdoor which allows one to
ease the computation if some additional information is available. Factoring
of large numbers is a typical example. It only takes few computational
steps to calculate the product of two prime numbers ab = c, but the fastest
known factoring algorithm requires a number of computational steps that
grows exponentially with the number of bits in c, to find a and b. However,
if one of the prime numbers a is known, the second prime number b can be
easily computed.

If Alice wants to send a message to Bob, he first has to create a random
private key. He uses it to compute a public key, which he announces pub-
licly. Alice then uses the public key to encrypt her message. She sends the
cryptogram to Bob, who decrypts it with his private key. The whole process
of encryption and decryption can be described by a one-way function with
a trapdoor “opened” by Bob’s private key. Public-key cryptosystems are
extremely effective and completely supersede private-key cryptosystems in
situations where the exchange of a secret key is not viable. However, the
security of these public-key systems is by no means proven and it strongly

33This brings to my mind the curious Borges tale [15] in which a library is reported to
contain every possible book with 412 pages. In this library one could for example find
the Spanish translation of the Kalevala in which the most thrilling episode is replaced
by the first page of this thesis. However, it would be impossible to identify the faithful
translation unless one knows it by heart.
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relies on a shaky assumption. The definition of one-way functions is a
bit vague, there is no guarantee that a fast algorithm to compute the x
from f(x) does not exist. The discovery of quantum computation, which
promises an exponential speed up in respect to classical algorithms, has
therefore been taken as a serious threat to public-key cryptosystems. But
nearly at the same time quantum mechanics offered an alternative solution:
quantum key distribution.

The idea of using non-orthogonal quantum states to protect information
from being read by an unauthorized person was first introduced by Wies-
ner [140] in his “quantum money” that would frustrate any counterfeiter.
In 1984 Bennett and Brassard [7] took Wiesner’s innovative but extremely
unpractical idea, and turned it into a feasible cryptosystem (BB84) that
revolutionized cryptography and gave an important boost to the field of
quantum information. The BB84 protocol basically borrows the one-time
pad from classical cryptography and provides the means to securely dis-
tribute the key, thus granting absolute secure communication. This is how
it works:

i) Alice sends randomly one of the fours states,

|0〉, |1〉, |0̃〉 =
1√
2
(|0〉 + |1〉), |1̃〉 =

1√
2
(|0〉 − |1〉), (79)

with equal probability. Here the states |0〉 (|1〉) and |0̃〉 (|1̃〉) repre-
sent the bit value ‘0’ (‘1’). These states can correspond for example
to linearly polarized photons in the angles 0◦, 90◦, 45◦, and 135◦, re-
spectively.

ii) Bob receives the state from Alice and he randomly chooses to measure
it either in the {|0〉, |1〉} basis (σz basis) or in the {|0̃〉, |1̃〉} basis (σx

basis). Only in the cases where Bob picked the “right” basis, i.e.
the one used by Alice, Bob will learn the bit value sent by Alice.
Whenever Bob measures in a “wrong” basis, that does not correspond
to the state send by Alice, he can get both bit values with equal
probability.

iii) After exchanging enough photons, Alice announces publicly the basis
(σx or σz, but not the bit value) that she used to send the states, and
Bob announces publicly his measurement basis.

iv) They throw away the cases in which they used different basis, and
thus have established the secret key, known as the sifted key.
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v) If, in an attempt to extract information, the eavesdropper perturbs
the transmission, Alice’s and Bob’s key will be different. In order
to assess the secrecy of their communication, Alice and Bob have to
sacrifice some randomly chosen bits of the sifted key and check if they
are identical. If they detect some irregularity, they throw away the
whole key and start over again.

In practice, however, the protocol has to be refined a little to cope with
the unavoidable errors during the preparation, transmission, and detection
of photonic states. Since it is impossible to have a completely perfect
implementation, and every error has to be attributed to an eavesdropping
attack, some error correction and privacy amplification [10] protocols are
needed to distill a completely secure key from a partially insecure one. The
complete security in the presence of noise under all possible eavesdropping
attacks has only been proven recently [98, 126]. A nice feature of quantum
cryptography is that once the key is established, there is nothing that Eve
can do to reveal the secret —even if she proceeds with the prospects of
future technology or an ingenious mind that can help her unveil the secret in
the future. The security of quantum cryptography resides solely in quantum
mechanics (and on the right implementation of the protocol!). Several
quantum key distribution protocols followed the BB84, and although they
may be quite different from the practical point of view, they are all based on
the same principle that non-orthogonal states cannot be measured without
disturbing them.

In this sense, quantum key distribution falls closer to steganography34

than to cryptography35. Methods in cryptography rely on the ingenious
scrambling of the information before sending it and which only the receiver
can unscramble upon receipt. On the other hand, methods in steganogra-
phy provide secure communication by physically hiding it. For example,
covering the written text with a thin layer of wax or letting the ink penetrate
through the porous shell of a boiled egg, safely covers the information that
the receiver can retrieve by removing the wax or pealing the egg. Of course
any unauthorized attempts to peal the egg will become apparent when Bob
receives it. In a “similar” fashion quantum key distribution hides classical
information in quantum systems. The properties of quantum measurement,
however, provide an absolutely secure “shell”.

34From Greek steganos, meaning covered.
35From Greek krypto, meaning hidden.
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3 Quantum Information: Implementations

3.1 Candidate Physical Implementations

Since the beginning of quantum information theory there has been a grow-
ing number of proposals for physical implementations of quantum infor-
mation processing devices [52]: trapped ions, cavity QED, optical lattices,
linear and non-linear optics, NMR, quantum dots, Josephson junctions,
etc.. Although every implementation has its pros and cons that suit dif-
ferent scenarios, there are some general desirable properties. These are
expressed as the abilities to [103]:

a) Identify qubits. A proper and robust representation of the qubits
is necessary. Each qubit must be identified with a two-dimensional
Hilbert space and the dynamics of the system should not take it out
of this Hilbert space.

b) Perform a universal family of unitary operations (e.g. single qubit
rotations Uα = exp(iασx) and CNOT).

c) Prepare an initial state, ideally in a pure state.

d) Reliable method to perform measurements on the qubits.

In the context of quantum computation scalability is usually added to this
list.

3.2 Linear Optical Implementations

There is no consensus as to the physical support that will be used to build
quantum computers. However, there seems to be no dispute about using
optical photons for quantum communication. The advantages are clear:
maximum transmission speed in optical fibers or free space, weak coupling
to the environment and negligible thermal noise. Quantum communication
protocols use coherent state inputs (from a laser), linear elements, para-
metric down-converters and photodetectors. However, the down-converters
are only used in the state preparation. In any case, the non-linearities in-
volved here are of the modest kind. Let us now proceed to present the main
properties of these basic ingredients.

A coherent state [90] of light is typically associated with the field
that is produced by a laser36. Coherent states are defined through the re-
lation â|α〉 = α|α〉, where â is the bosonic annihilation operator of the field

36See, however, text under continuos variable teleportation below.
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mode, obeying the commutation relation [â, â†] = 1, and α is a complex
number. Its phase and amplitude correspond to the phase and amplitude
of the expected value of the electric field. Moreover, the quantum fluctua-
tions around these values are as small as quantum mechanics allows, thus
a coherent state is usually regarded as a classical state of light. States
which cannot be interpreted as an ensemble of coherent states are called
non-classical. A typical nonclassical state is the single photon state, which
is the ideal qubit for quantum communication. In terms of the photon
number states n̂|n〉 = a†a|n〉 = n|n〉 (also called Fock states), the coherent
states can be written as

|α〉 = e−
1
2
|α|2

∞∑

n=0

αn

√
n!
|n〉. (80)

It is clear that a coherent state has Poissonian photon statistics,

pn = Tr(n̂|α〉〈α|) =
1
n!
|α|2ne−|α|2 , (81)

with an average photon number equal to the intensity of the field 〈α|n|α〉 =
|α|2. The coherent states of a given field mode always have a non-zero
overlap,

|〈α|α′〉|2 = e−|α−α′|2 . (82)

However, the coherent states span the whole Hilbert space and form an
overcomplete basis,

1
π

∫ ∞

−∞
d2α|α〉〈α| = 1. (83)

Linear optical elements are the most common devices in an optical
table: mirrors, half-wave plates, beam splitters and such. A great deal
of the experimental advances in the study of the quantum properties of
light owes its existence to these simple devices. A linear optical element is
defined by the linear transformation between its input and output modes,

ĉ†j =
n∑

k=1

Ujkâ
†
k (84)

where the U is unitary in order to fulfill the commutation relations of the
output modes. The number of particles in the output is also automatically
preserved.

A trivial linear element that only involves one mode is the phase shifter
defined by,

ĉ = eiφâ = e−iH0 âeiH0 , (85)
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where H0 = φn̂ is the generating Hamiltonian. A simple layer of a dielectric
crystal can be used to provide interference between modes. In terms of
its reflection r and transmission t coefficients the mixing of modes in this
beam-splitter is given by

ĉ1 = tâ1 + râ2, (86)
ĉ2 = râ1 + tâ2, (87)

where unitarity implies |t|2 + |r|2 = 1 and r∗t + rt∗ = 0. Without loss of
generality one can assume that t is real while r is imaginary. By setting
t = cos θ and r = i sin θ the Hamiltonian which generates this kind of
evolution is given by

H1 = −θ(â†1â2 + â†2â1). (88)

By allowing extra phase shifters in the output ports, one can generate the
SU(2) algebra (we dropped the global phase). The corresponding beam-
splitter transformation can, thus, be written using the three angular mo-
mentum operators defined through the Schwinger relations [33],

J1 =
1
2
(â†1â2 + â†2â1), J2 =

1
2i

(â†1â2 − â†2â1), J3 =
1
2
(â†1â1 − â†2â2). (89)

This provides an intuitive interpretation, in terms of three rotation angles,
of the action of the four-port on the input fields, in particular when they
are described as quasi-probability distributions [90].

This beam-splitter transformation models a large variety of four-port
devices: polarizing beam-splitters, which use an anisotropic media to split
the two polarization modes of the incident field into two momentum modes,
fiber-couplers which mix light fields through optical tunneling, polarization
rotators like some liquid crystals which rotate by a given angle the plane of
polarization of linearly polarized light, or wave retarders where two linearly
polarized components of the incident field have different refractive indices
producing a phase retardation between both modes. Reck et al. [114]
showed that any multi-port transformation of the form (84) can be reduced
to the action of a series of elementary beam-splitters.

Photon detectors are the place where we locate the Heisenberg cut
[104] of our quantum description, that is, the point where a measurement
occurs and the transition from a quantum to a classical description occurs.
Photodetectors used in quantum communication are photomultiplier tubes
[117]. When a photon reaches the cathode of the tube it releases an electron
(photoelectric effect) which accelerates towards the anode maintained at a

47



higher potential. On the way to the anode the photoemitted electrons
might suffer collisions with metal or semiconductor surfaces producing an
amplification of the electric current. A similar effect is used in the avalanche
photodiodes [117] which are also widely used in quantum communication.
The quantum efficiency η is the probability that a single photon contributes
to the detected electric current. An inefficient detector (η < 1) can be
modeled by placing a beam-splitter of transmittance |t|2 = η in front of a
unit-efficiency detector (η = 1). In order to detect a single incident photon,
high voltages have to be applied, which also increases the risk of producing
dark-counts, i.e. detection events that are not triggered by an input photon.
Dark-counts can be substantially reduced if detectors can operate at time-
gated intervals, or if correlations between several detectors are measured.
The photon number resolution determines whether the detector is able to
distinguish signals with similar photon numbers. An ideal photodetector
is the one which realizes the POVM {|n〉〈n|}∞n=0 on the measured field.
Typically in quantum communication, photodetectors have single-photon
sensitivity but no photon number resolution (see however [131]), thus it is
described by the POVM element corresponding to a “click”

∑∞
n=1 |n〉〈n| and

that corresponding to a “no-click” |0〉〈0|. By using a detector cascade [129],
i.e. by splitting the signal and sending it to several detectors, it is possible
to get nearly ideal photodetection using detectors without photon-number
resolution (see however [80]).

Parametric down converters provide the most basic, and therefore
most accessible non-linear interaction between photons. This interaction
arises due to the second order non-linear susceptibility of a crystal. In
parametric down-conversion a pump photon has a small probability of spon-
taneously decaying into two photons of lower frequency, for historical rea-
sons called signal and idler photons. Energy and momentum conservation
impose the phase matching conditions ωp = ωs + ωi and �kp = �ks + �ki.
Where the momentum inside the crystal is determined by the refractive in-
dex n, k = ω

c n(ω). The phase matching conditions will be rarely satisfied.
However, there are birefringent crystals where the refractive index of the
photon depends on its polarization and propagation direction in respect to
the crystal’s optical axis. This introduces an extra degree of freedom which
allows one to meet the phase-matching conditions. The maximum differ-
ence in refractive occurs between the ordinary and extraordinary normal
modes which have mutually orthogonal linear polarizations. In type-I down-
converters the signal and idler photons emerge with the same polarization,
which is orthogonal to that of the pump. In type-II down-conversions, the
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phase matching conditions occur when the signal and idler photons have
mutually orthogonal polarizations, and the pump polarization is parallel to
one of them. The phase matching conditions fix a characteristic emission
spectra represented in Figure 4, where each emission cone corresponds to
the signal and idler photons for a particular frequency. The real emission
spectra is quite wide and gives rise to a whole family of paired signal-idler
cones. In practice one only selects few modes from this complex spectra
by using spatial and frequency filters. Of particular interest (see examples
below) are the modes marked in Figure 4 for the type-II down-conversion at
the intersection points of the degenerate idler (horizontally polarized) and
signal (vertically polarized) cones. The photon pairs emitted in these direc-
tions are entangled in polarization, resulting in high-valued singlet states
for two polarization qubits.
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Figure 4: Left: Schematic representation of parametric down-conversion
in type-II phase matching conditions. For simplicity we have plotted only
the extraordinary and ordinary polarized cones for the degenerate case.
The two emitted photons have opposite transversal momentum. Right: the
projection of the cones for different frequencies (courtesy of Michael Reck
[113]). I have marked with two white circles the directions from which the
polarization entangled photons emerge. In type-I down-conversion the two
cones are parallel and have the same polarization.
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The full-quantum description of these phase-matched processes is pro-
vided by the following Hamiltonian in the interaction picture and rotating
wave approximation,

Habc = κ(â†b̂†ĉ + ĉ†ab), (90)

where a, b and c are signal, idler, and pump modes respectively and the
coupling constant κ depends on the second order susceptibility tensor. In
parametric down-conversion the pump field is a coherent state |α〉 from a
laser. Since this is also a strong field it is possible to do the parametric
approximation (κ → 0 and |α| → ∞ with κα =constant) which leaves an
effective Hamiltonian

Hab = κα(â†b̂† + ab) (91)

after tracing out the pump field—see Eq. (7). This means that the interac-
tion Habc does not entangle the pump field with the other modes; otherwise
the reduced evolution would not be unitary. This is a typical situation in
quantum optics and many implementations of quantum information pro-
cessing: an external field is used to drive a quantum system. To determine
whether the field allows a classical description one has to make sure that
the complete Hamiltonian, the initial fields and the interaction time are
such that the driving field remains unaffected by the interaction. In other
words, the driving field should not carry any information as to whether the
transition (atomic, down-conversion, etc.) occurred. Coherent states are
in this sense special since they remain untouched by the destruction opera-
tor. The precise mathematical justification requires a detailed analysis for
each case, but in most cases the approximation holds for large amplitude
coherent states.

The Hamiltonian Hab generates the SU(1, 1) algebra and is the two-
mode squeezing generator, or the single-mode squeezing in the degenerate
case (a = b). The four modes emerging at the “cone intersection” in type-II
down-conversion (see Figure 4) are similarly described by the Hamiltonian,

Hab = κα(â†xb̂y
†
+ â†y b̂

†
x + âxb̂y + ây b̂x), (92)

where a,b denote the momentum and the subindices x and y denote horizon-
tal and vertical polarizations, respectively. Even with strong pump fields,
the non-linear effects are very small, and the interaction time is limited
by the absorption and divergence of the light-beams in the crystal. Ac-
cordingly, the state of the outgoing modes, when the signal and idler are
initially in the vacuum state |0〉, is given by

e−iHabτ |0〉 = |0〉 − iξ(â†xb̂y
†
+ â†y b̂

†
x)|0〉 + O(ξ2)
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= |0〉 − iξ(|H〉a|V 〉b + |V 〉a|H〉b) + O(ξ2), (93)

where ξ = τκα gives the probability amplitude of having the spontaneous
emission of a polarization entangled pair. The birefringence that makes
accessible the phase-matching conditions is also responsible for a time delay
between the ordinary and extraordinary photons when travelling through
the crystal. If this delay is longer than the coherence time the two terms in
Eq. (93) become distinguishable and the entanglement vanishes. This can
however be corrected by using compensators at the output beams.

The mode transformation induced by any combination of down-converters
is linear, but mixes operator and destruction operators37

ĉj =
n∑

k=1

Ajkâk + Bjkâ
†
k, (94)

where now the commutation relations for the output modes impose the
conditions ABT = (ABT )T and AA† = BB† + 1. It is interesting to notice
[19] that it is possible to reduce the general transformation of this form to
the action of single-mode squeezers and linear elements. This can be seen in
the recent proposal by Kwiat et al. [84] to create polarization entanglement
from two adjacent crystals operated with type-I phase matching but with
their optical axis aligned in perpendicular planes. If the crystals are thin
enough so that the down-conversion processes in both crystals are coherent,
all pairs of a given color will be polarization entangled.

Parametric down-converters can also provide single photon sources. The
type-I Hamiltonian Eq. (91) on the vacuum state produces at small times
the state |0〉 − iξ|1〉a|1〉b + O(ξ2). If we place a photodetector in mode a
and this registers a “click”, then the conditional state of mode b will be a
single photon state38 which is ready to be used as a qubit. Recently, Kim et
al. [77] have reported experiments that hint at an alternative deterministic
single-photon source. Of course this would be very desirable and would
boost quantum communications, which is now restricted by the very rare
—only one in ten billion photons are down-converted—and spontaneous
emissions or by the very weak coherent states that decrease the efficiency
of quantum key distribution protocols.

37It is not uncommon in the literature to refer to such devices as active linear devices
as opposed to passive linear devices, which correspond to what I call linear elements.

38Strictly speaking, only a one-photon detection in mode a results in a single photon
state. A “click” with no photon number resolution will lead to a state ρ ∝ |1〉〈1|+O(ξ2).
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3.2.1 Experiments

In this section I will overview some representative experiments in quantum
information that have already been realized in the labs.

Teleportation As we saw in 2.3.3, the creation and measurement of Bell-
states is of paramount importance in teleportation. We have also seen
that parametric down-conversion provides a reasonable source of entangled
photons. The main problem that faces the implementation of teleportation
in the labs is the Bell-measurement.

Innsbruck experiment: Figure 5 shows a schematic representation of the
experiment [18]. A pulsed UV pump laser passes through a type-II non-
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Figure 5: Experimental realization of teleportation in Zeilinger’s group.

linear crystal and creates a pair of entangled photons (2,3) which form the
EPR state shared by Alice and Bob. The same pump field is reflected back
to the crystal producing a second pair of entangled photons (1,4). This
second down-conversion provides Alice with a source of single photons to
be teleported: a “click” in detector p assures the presence of photon 1. A
polarizer is used to prepare the “unknown” state of photon 1. Alterna-
tively, one could measure the polarization of photon 4 and thereby fix the
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teleportee’s polarization. Photons 1 and 2 are directed to a beam-splitter
where the incomplete Bell-measurement occurs.

Bell measurement probes the collective or relative properties of the two
qubits, it is essential that the carrier particles “forget” any information
about their origin. The way to solve this is to give them a “common
origin”: photons are indistinguishable and after meeting and separating in
a beam-splitter they lose their identity. Of course one has to make sure that
the photons really meet in the beam-splitter. This entails a perfect mode-
matching of the incoming photons. For all Bell-states but the singlet |ψ−〉
the two photons emerge always through the same output port: the singlet is
antisymmetric and therefore the two photons must emerge through different
ports.

|φ+〉 =
1√
2

(
â†xb̂x

†
+ â†y b̂

†
y

)
|0〉 BS−→ i

2
√

2

(
ĉ†x

2 + ĉ†y
2 + d̂†x

2 + d̂†y
2
)
|0〉

|φ−〉 =
1√
2

(
â†xb̂x

† − â†y b̂
†
y

)
|0〉 BS−→ i

2
√

2

(
ĉ†x

2 − ĉ†y
2 + d̂†x

2 − d̂†y
2
)
|0〉

|ψ+〉 =
1√
2

(
â†xb̂y

†
+ â†y b̂

†
x

)
|0〉 BS−→ i√

2

(
ĉ†xĉ†y + d̂†xd̂†y

)
|0〉

|ψ−〉 =
1√
2

(
â†xb̂y

† − â†y b̂
†
x

)
|0〉 BS−→ 1√

2

(
ĉ†xd̂†y − d̂†xĉ†y

)
|0〉. (95)

In order to demonstrate that teleportation took place, the Innsbruck group
measured the polarization of Bob’s particle (3) using a polarizing beam-
splitter and two photodetectors (f1,f2), and showed how the four-fold co-
incidences of detectors (c,d,p,f2) “vanished” when Bob measured his par-
ticle in the right basis. They also showed the increase in the four-fold
coincidence when Bob measured in the wrong basis, i.e. with a different
orientation of the polarizing beam-splitter. These changes in the counting
rates where measured with respect to the rates obtained when teleportation
was artificially disabled by decreasing the time overlap (and therefore the
interference) between photons 1 and 2. This time-delay was enforced by
displacing the mirror M .

This novel experiment cannot avoid getting some criticism:

1) Incomplete Bell-measurement. Only the singlet can be discriminated
and the teleportation protocol only succeeds with probability 1

4 . If the
unknown state is difficult to prepare or is very precious for whatever
reason (see [79]), this may be a serious drawback.

2) A posteriori teleportation. The protocol requires Bob to detect his
photon, and not only for “checking” purposes. From Eq. (93) we see
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that the state produced by the pump pulse has, besides the entangled
pair, a huge vacuum component and some higher order terms with
two or more pairs of photons. The second order term has the same
probability as the creation of the two pairs (1,4) and (2,3). Thus it
is crucial to distinguish these two processes. If Bob is not allowed to
detect his particle (directly or with a QND) then the photodetector p
needs to have photon-number resolution to disregard the double-pairs.
In any case, for most practical proposes the teleported state ends up
being measured at some stage; thus this criticism is inconsequential.

Rome experiment: This scheme is quite peculiar in that the qubit repre-
sentation is atypical. Popescu [112] found an interesting way to use “real”
entanglement39 and still be able to do a complete Bell-measurement, thus
achieving the teleportation of a qubit between physically separated parties.
Figure 6 depicts the experimental realization [16] of Popescu’s scheme.
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Figure 6: Experimental realization of teleportation in De Martini’s group.

A non-linear crystal cut for type-II down-conversion is pumped with a
UV cw laser producing a polarization entangled state. Each of the beams is

39As we will see below, a single photon can be used to represent n-qubits, and linear
optics suffices for doing any unitary operation on them. In particular one can realize the
quantum circuit for teleportation, but this would not be more than an emulation since
in this representation there is no place for the key concept of entanglement.
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sent through a calcite crystal (C in Figure 6) where the horizontal and ver-
tical polarizations take different routes. The horizontally polarized beams
are sent to Alice while the vertically polarized beams are sent to Bob. By
doing so, Alice and Bob share a pair of photons which are entangled in
momentum (or spatial paths a,b). There are no more particles involved.
Instead of teleporting the state of a third particle, they teleport the po-
larization degree of freedom of Alice’s photon. Two identical polarization
rotators R(θA) are used to prepare the state to be teleported. The complete
Bell-measurement corresponds to a direct realization of the gates in Fig-
ure 340. The λ/2 plate flips the polarization (x ↔ y) whenever the photon
takes the the upper path (a1), and of course does not affect the photon in
the lower path (b1). This is precisely the CNOT with the momentum de-
gree of freedom being the control qubit. To implement the Hadamard gate
on this qubit we only need a 50/50 beam-splitter (which is polarization
independent). Finally, polarizing beam-splitters and photodetectors per-
form a von Neumann measurement in the canonical basis. At Bob’s site,
the qubit in the momentum degrees of freedom is transferred to the polar-
ization degrees of freedom and a polarization analyzer P (θB) checks that
the teleportation succeeded. In the experiments the measured coincidences
counts between Alice’s and Bob’s detectors where obtained for different
preparation θA and detection angles θB and were shown to be fully consis-
tent with the teleportation protocol. Notice that this verification procedure
did not require to implement the “correcting” rotations at Bob’s site for
each of Alice’s Bell-measurement outcomes.

The obvious drawback of this scheme is that the teleported state has
to be prepared beforehand. This disallows41 many interesting applications
of quantum teleportation such entanglement swapping [144, 145, 17] or the
implementation of non-local gates [60].

Caltech-Aarhus: For completeness I include here a third teleportation
protocol. Figure 7 shows a schematic representation of the teleportation of
continuous variables experiment [54]. Here, instead of teleporting a qubit
encoded in a single photon, Alice and Bob teleport a quantum state of
light with undetermined number of photons. In particular, in the experi-
ment they teleported a coherent state of amplitude αin = xin + ipin. The
maximally entangled state needed to teleport these continuous variables

40Since both the CNOT and the Hadamard gates are their own inverses, the “disen-
tangling” circuit corresponds to the “entangling” one read from left to right.

41At least, until technology provides the means to coherently transfer the state of a
third particle to the polarization degree of freedom of Alice’s photon.
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Figure 7: Experimental realization of teleportation in Kimble’s group.

corresponds to a two-mode squeezed state (ideally with infinite squeez-
ing). As discussed previously, two single mode squeezers combined in a
beam-splitter can be used to create an effective two-mode squeezer (modes
1 and 2) needed for continuous variable teleportation. The single-mode
squeezed states where created by a non-linear crystal in an optical para-
metric oscillator (OPO). The optical cavity in the OPO enhances some
downconversion modes while inhibiting non-resonant modes, thus creating
an intense narrow-band squeezed field. The Bell-measurement (with an in-
finite number of possible outcomes) consists in acquiring only the relative
quadrature-phase variables, x = 1√

2
(xin − x1) and p = 1√

2
(pin + p1), be-

tween one mode of the EPR and the “unknown” coherent state. This can
be easily done by two sets (one for each quadrature) of balanced homodyne
detectors [90]. The two resulting photocurrents are then used by Bob to
produce the necessary displacement operators on his share of the EPR to
recover the initial coherent state.

The finite squeezing of the “EPR” will of course limit the fidelity of
the teleported field, but current technology achieves very large squeezing
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parameters. Hence, this is arguably the most complete teleportation ex-
periment: it achieves the complete Bell-measurement, an unknown state
(even entangled) can be teleported, and measuring the state at the output
does not have to be necessarily a part of the procedure. Overall it is quite
astonishing how simple the protocol turns out to be when going to infinite
dimensional systems.

Notwithstanding, lately there has been a bit of controversy concerning
the above experiment. The criticism comes about from the observation that
the field emanating from a laser is strictly speaking not a coherent state of
light: energy conservation requires it to be Fock diagonal, thus it can only
be understood as a coherent state with a completely unknown phase. As
Mølmer [99] puts it, assigning a particular phase to the output of a laser is a
“convenient fiction” without any observable effects in experiments. Indeed,
in most measurements (as homodyning or heterodyning) the absolute phase
is irrelevant. However, it turns out to be a relevant matter in quantum
information with continuous variables [116], for the entanglement shared by
Alice and Bob “vanishes” if one does the phase averaging, and entanglement
is not precisely something which easily falls under “convenient fiction”. Van
Enk and Fuchs [134] have cleared up this controversy by arguing that the
outcome of a laser (with no phase drift) should actually be modeled as a
bunch of systems (packets) each of them in the same coherent state ||α|eiφ〉
with an unknown phase φ,

ρ =
1
2π

∫

φ
dφ|α〉〈α| ⊗ |α〉〈α| ⊗ . . . ⊗ |α〉〈α| (96)

With this, a measurement in the first subsystem fixes the phase of the rest,
producing the very convenient coherent state of random, but determined,
phase.

Quantum dense coding Figure 8 shows a schematic representation of
the quantum dense coding experiment realized in Innsbruck[97].

Alice and Bob receive their share of a down-converted polarization en-
tangled pair. Alice transforms locally the joint entangled state into one
of the four Bell-states, by using a λ/2 oriented at 0◦ or 45◦, followed by
a λ/4 oriented at 0◦ or 90◦. Having done that, she forwards the photon
to Bob, who performs an incomplete Bell-measurement on both particles.
As opposed to their teleportation experiment, the Innsbruck group could
make a projection on two of the Bell-states in the quantum dense coding
experiment. The main reason is that the quantum dense coding protocol
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Figure 8: Experimental realization of quantum dense coding in Zeilinger’s
group.

only requires two-photon coincidences while the teleportation requires at
least three-photon coincidences. This greatly reduces the complexity of the
measurements and allows one to use more photo-detectors to measure the
polarization at the output of the beam-splitter. Notice in (95) that by do-
ing so, Bob can discriminate the two Bell-states |ψ±〉 . In the experiment
a minimal cascading of photodetectors (d1

H , d2
H) was also used to identify

two-photons since the detectors in “Geiger mode” cannot distinguish them
from single-photons signals.

The experiment proceeds as in teleportation recording the coincidence-
rates at Bob’s detectors while sweeping the time-delay between both pho-
tons. As soon as the time-delay approaches zero the overlap of the pho-
tons wave-functions becomes large enough for interference effects to show
up. Accordingly, the coincidence-rates at different detectors drastically in-
creases or decreases depending on Alice’s preparation. Since only three
possible states could be discriminated by Bob, Alice could only communi-
cate one trit (log2 3 bits) per qubit instead of the 2 bits.

Quantum key distribution Since the BB84 quantum key distribution
protocol appeared, a plethora of variations and possible experimental schemes
to implement them followed. Here, I will introduce an experiment that was
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important at its time, since it achieved the transmission of a secret key
over the record distance of 30 km. However, the main reason I chose this
experiment is that it is representative of the state of the art quantum key
distribution, while keeping close to the original BB84 protocol avoiding
technical sophistications.

Figure 9: Experimental realization of Townsend quantum key distribution
experiment (courtesy of Paul D. Townsend).

Unlike the teleportation or quantum dense coding experiments, no en-
tanglement or Bell-measurements is needed here. The technological chal-
lenge consists in producing a setup which is suitable for efficient and secure
quantum key distribution over long distances. Figure 9 shows a scheme of
the quantum key distribution experiment in British Telecom [95]. A pulsed
semiconductor laser is strongly attenuated to give an average photon num-
ber of µ ∼ 0.1. By doing so they generate a state for which the largest
non-vacuum contribution comes from the single-photon state. The linearly
polarized (⊥) pulse is split in a 50/50 fiber-coupler. A photon going through
the upper fiber suffers a time delay and its polarization is flipped to ‖, while
a photon taking the lower fiber is sent through a phase modulator. The two
pulses are then superposed in a second fiber coupler. The sent qubits are

59



represented by two orthogonal modes: the delayed ‖-polarized mode and
the not-delayed ⊥-polarized mode. In principle it would be enough to use
either time or polarization mode separation, however, the simultaneous use
of both gives more stability to the system. Alice uses the phase modulator
to randomly encode each pulse (or qubit) with four possible phase shifts
φA, namely, −45◦,+135◦ (σx basis) and +45◦,−135◦ (σy basis) —these are
analogous to the states |0〉, |1〉 and |0̃〉, |1̃〉 in Eq. (79). The encoded qubit
is sent through the transmission fiber. At the other end of the fiber, Bob
uses a similar setup to measure the qubit in a randomly chosen basis. The
polarizing beam-splitter separates both modes and the time and polariza-
tion divisions are removed, allowing the two components to interfere at the
50/50 fiber coupler. The interference is controlled by the phase modulator
in such a way that the photon takes the upper (lower) arm if the bit value
is 1 (0). This amounts for a phase shift φB = −45◦ to measure in σx basis
and φB = 45◦ to measure in σy basis. The bit values 0 and 1 are distin-
guished temporally at the photodetector by means of a delay loop in the
upper fiber.

After sending a few thousand bits, Bob publicly communicates to Alice
at which time slots he detected a photon and the basis he used for the
measurement. Alice then tells Bob the time slots in which they used the
same basis, hence establishing the sifted key. Alice and Bob compare some
random bits of the sifted key to establish the error rate. In this experiment
the BT group measured bit-error rates (without any eavesdropper) for dif-
ferent fiber lengths and average photon numbers, the extreme cases being
a bit-error rate of 1.5% for a l = 10 km fiber and µ = 0.1 and a bit-error
rate of 4% for l = 30 km and µ = 0.2. These error rates are below the
required threshold to obtain a secure key after error-correction and privacy
amplification [10]. The main source of bit-errors are the dark-counts at Bob
detectors, and increases when the Bob’s photoncount/dark-count ratio de-
creases. Thus the bit-error rate is increased by a reduction of the average
photon number µ or by an increase in the transmission losses. The latter
are due to losses in the components (mainly the phase modulators) and in
the transmission fiber, and to the low quantum efficiency of the detector
(η ∼ 0.1).

3.2.2 Prospects: Possibilities and Limitations

The previous experiments illustrate how in spite of the lack of photon–
photon interactions it is still possible to perform non-trivial operations on
photonic qubits.

60



Linear optical elements suffice to perform any unitary operation on a
single photonic mode (84). This already allows one to do a rather sui
generis form of quantum information processing. Indeed, a photon enter-
ing an n × n multi-port is effectively an n-dimensional quantum system
on which one can perform any unitary operation and measurement. This
would allow one to do any quantum computation [37] using only beam-
splitters and phase shifters. Of course, there is a catch: the number of
modes needed to represent N qubits grows exponentially with the number
of qubits, and so does the number of elements. So, the “physical space”
grows linearly with the dimension of the Hilbert space, d. Moreover, any
quantum information process based on entanglement or on the non-local
nature of quantum mechanics is impracticable since this representation does
not consist of distinct entangleable registers. These quantum networks are
therefore relegated to be used as mere demonstration or pedagogical tools
[83]. Note that in Rome’s teleportation experiment this kind of represen-
tation is used for Alice’s system, i.e. a single photon represents two qubits
(half of the Bell-state + teleportee), making the complete Bell-measurement
possible, but losing some important features of the original teleportation
protocol.

In order to be loyal to the quantum information paradigm and contem-
plate all its implications, we stick to the one photon per qubit representa-
tion42. Typically the qubit is encoded in the polarization degrees of freedom
of the photon. Since photons are indistinguishable particles, a second de-
gree of freedom, like the momentum, has to “tag” them and make them
distinct entangleable systems. For example, the two-qubit state |ϕ〉 ⊗ |φ〉
will be represented by a two photon symmetrized wave function

|ϕ〉1 ⊗ |φ〉2 ≡ |ϕ〉|k1〉 ⊗ |φ〉|k2〉 + |φ〉|k2〉 ⊗ |ϕ〉|k1〉, (97)

where ⊗ separates the Hilbert spaces of both photons, which in turn are
tensor products of the Hilbert spaces corresponding to the polarization
and momentum degrees of freedom. Note that the wave function of two
indistinguishable particles is entangled. Thus the ever-longed resource in
quantum information is in fact everywhere in nature. However, “not all
that glitters is useful entanglement”, since any “local” operator acting on
one photon cannot discriminate between the two photons, rendering futile

42I disregard quantum information in continuous variables which is not covered in this
work. As demonstrated in the Caltech-Aarhus teleportation [54], linear elements have
very high quantum information processing capabilities in these systems. See also [61].
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any attempts to see the correlations43 (see [111] for full discussion). This
can be clearly seen if one tries to use the wave function (97) for teleportation
or dense coding. In order to avoid confusion around “useful” entanglement
and entanglement inherent to the particle statistics it is convenient to work
in the second quantization. The two-photon wave function (97) in the
second quantization reads,

|ϕ〉1 ⊗ |φ〉2 ≡ â†ϕk1
â†φk2

|0〉. (98)

where â†ϕk1
can be written in terms of the horizontal and vertical polariza-

tion modes â†ϕk1
= αâ†Hk1

+ βâ†V k1
, and analogously for â†φk2

. The second
quantization automatically takes care of the symmetrization, yielding the
qubit representation straightforward. A single qubit is represented by a
single excitation in the modes {â1, â2}. Any additional qubit will occupy in
a similar fashion two different modes {â3, â4}. I refer to qudits encoded in
indistinguishable particles using this representation as i-qudits (see paper
IV [28]).

In papers II to IV [94, 31, 28] my collaborators and I study the possible
measurements that one can realize on these photonic i-qubits using linear
optical elements and photodetectors. For this purpose we introduce the
most general linear-optics setup shown in Figure 10A. The input photons
together with a predetermined auxiliary photonic state are sent through
an array of linear elements or multiport, characterized by a unitary map
U1 (84). An ideal detector D1 is placed in one of the output ports, d̂.
Corresponding to each measurement outcome k a second transformation
Uk

2 is realized on the remaining modes. This cascaded process is repeated
until all the modes are measured.

In paper II [94] we present a no-go theorem that states that with such
general setup it is impossible to perform a perfect Bell-measurement (see
Figure 10). That is, we show that there will always be a detection event
(a “click” combination in the output detectors) which could have been
triggered by more than one Bell-state, thus impeding their unambiguous
discrimination. For this purpose it is enough concentrate on the possible
measurement outcomes of detector D1. By enforcing the perfect state dis-
crimination conditions for each outcome we arrive to a contradiction, thus
proving the no-go theorem. The proof can be sketched as follows.

43Only by coupling the photonic modes, e.g., in a beam-splitter, inherent entanglement
becomes apparent.
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Figure 10: A) General measurement scheme with linear optical elements.
B) Illustration of an ideal Bell-state analyzer. Two photons, each spanning
two field modes, enter the analyzer through the input ports. A perfect
projection onto the Bell-states means that each of the Bell-states should
“light” one and only one of the four “bulbs” at the outputs.

1) We prove that there is always an event for which the fact whether it
is conclusive or inconclusive does not depend on the auxiliary state.
That is, we prove that if a Bell-analyzer without auxiliary photons
has a non-zero probability of error, then a Bell-analyzer that uses
auxiliary photons is doomed to fail also with a finite probability. This
statement has been recently generalized by Carollo and Palma [35] for
the perfect discrimination of any set of i-qudit states.

2) Once the problem is reduced to the case without auxiliary photons,
we can study the possible detections at mode d, viz. 2 photon, 1
photon and 0 photon detection.

3) Two-photon detection—Imposing that the probability of this event
is non-zero for at most one Bell-state we find that the first column
vector of U1 —which gives the linear relation between mode d and
the input modes—has to be of a very precise form.
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4) One-photon detection—Imposing the orthogonality of the conditional
one-photon states of the single-photon detection event, we find that
there is no unitary matrix compatible with the requirements.

5) Zero-photon detection—Obviously we can discard the remaining case:
the zero photon detection represents a bad choice of mode d since it
would be disconnected from the input Bell-modes.

In paper II we omitted the proof of one important result in step 1), and
I shall therefore include it here:

Proof of Eq.(8) in paper II—We start by defining the polynomia
Q̃aux,l following the definitions in Eqs. (5) and (6) in paper II.

|Ψ(total)
i 〉 = P̃aux

(
d†, e†k

)
P̃Ψi

(
d†, e†k

)
|0〉 (99)

We expand the two polynomials in powers of d† as

P̃aux

(
d†, e†k

)
=

Naux∑

l=0

(d†)lQ̃aux,l

(
e†k

)
(100)

P̃Ψi

(
d†, e†k

)
=

NBell∑

l=0

(d†)lQ̃Ψi,l

(
e†k

)
. (101)

Q̃aux,Naux and Q̃Ψi,NBell
correspond respectively to Q̃aux and Q̃Psii in

Eqs. (5) and (6) in the paper.

We need to prove,

[Q̃aux,Naux , Q̃Ψi,NBell
] = 0. (102)

Initially the Bell modes and auxiliary modes commute and therefore
the polynomia Paux, P †

Ψi
commute as well.

0 = [Paux, P †
Ψi

] =
∑

l,k

[
(d†)lQ̃aux,l, d

kQ̃†
Ψi,k

]
(103)

=
∑

l,k

(d†)ldk[Q̃aux,l, Q̃
†
Ψi,k

] + [(d†)l, dk]Q̃†
Ψi,k

Q̃aux,l (104)

=
∑

l,k

(d†)ldkfl,k(ei, e
†
i ) (105)

where we have made use of,

[(d†)l, dk] = −
min(l,k)∑

s=1

(−1)ss!

(
l
s

) (
k
s

)
(d†)(k−s)d(l−s). (106)
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From here we see that each term in the normally ordered expression
needs to be equal to zero,

fl,k(ei, e
†
i ) = 0 , ∀ l, k. (107)

In particular, for the maximum values of l and k we get the commu-
tation relation we were looking for,

0 = fNaux,NBell
(ei, e

†
i ) = [Q̃aux,Naux , Q̃Ψi,NBell

]. (108)

�

The general framework presented in this paper has set the ground for
the research on the power of linear-elements for quantum information pro-
cessing. Following the same line of action —steps 1 -5 above—it is straight-
forward to prove similar no-go theorems for two-qubit basis sets that have
more than two non-separable states (not necessarily maximally entangled).
This puts experimental limitations on the realization of a quantum cryp-
tography protocol proposed by Cabello [27].

Carollo et al. [36] also followed these guidelines to prove a no-go theorem
for a very particular two-qutrit (-qudit44 with d = 3) basis,

|ψ0〉 = |2〉A ⊗ |2〉B, (109)

|ψ±1〉 =
1√
2
|1〉A ⊗ (|1〉 ± |2〉)B, |ψ±2〉 =

1√
2
|3〉A ⊗ (|2〉 ± |3〉)B,

|ψ±3〉 =
1√
2
(|2〉 ± |3〉)A ⊗ |1〉B, |ψ±4〉 =

1√
2
(|1〉 ± |2〉)A ⊗ |3〉B.

Bennett et al. [11] provided this set as an example of what they called
non-locality without entanglement : these nine basis states, despite being
orthogonal and separable, cannot be discriminated locally and with clas-
sical communication (LOCC). With their no-go theorem, Carollo and co-
workers proved that these peculiar basis states can not be discriminated
under another class of operations, namely those provided by linear-optical
elements.

The no-go theorem for the Bell-analyzer automatically puts forward a
no-go theorem for a GHZ-analyzer45, since one can always build a Bell-
analyzer using a GHZ-analyzer. To see this it is enough to consider the

44A qudit is the d-dimensional counterpart of the qubit.
45GHZ are three-qubit entangled basis states first given by Greenberger, Horne and

Zeilinger to prove quantum non-locality without using inequalities [111].
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two qubits and prepare a third qubit in state |+〉 = 1√
2
(|0〉 + |1〉). Each of

the eight possible outcomes of a GHZ-measurement performed on the three
qubits will correspond to one and only one possible input Bell-state of the
two qubits.

This “family” of no-go theorems leads to an important statement: al-
though linear-optical elements can be used in a wide range of applications,
they can never reach the full quantum information processing capabilities
of the interaction-mediated gates.

Note that the no-go theorems give only qualitative results. They only
set forth the impossibility to perform certain projection measurements,
leaving room for analyzers which work to some extent, discriminating suc-
cessfully in some occasions, and giving an inconclusive answer in others.

The purpose of paper III [31] is to find the quantitative upper-bound
on the efficiency of a Bell-state analyzer. In order to tackle the problem
we studied a simplified setup in which the auxiliary modes are initially in
the vacuum state and no conditional dynamics are allowed. This is still a
very relevant problem since a) it should help elucidate the role played by
the “bare” linear-elements and b) it fixes the performance of the current
applications where the use of extra photons and the implementation of
conditional dynamics are still considered to be technological challenges46.
This simplified setup is shown in Fig. 2 of paper III [31]. In that paper
we show that such a Bell-state analyzer will inevitably give an inconclusive
answer in half of the cases. That is precisely the limit achieved in some
experiments described above [97].

In paper IV [28] I propose a new approach: instead of feeding the input
basis states in the analyzer and studying under which circumstances they
give distinguishable outcomes, that is, different “click” combinations, here
I turn the problem around and ask what the different possible outcomes tell
us about the input state. Of course, this approach leads to the definition
of the set of POVMs that one can realize with linear optical elements.

The central result is derived in Eqs. (9-10) in the paper [28] and it
gives the POVM induced on a pair of i-qudits (bosons and fermions) when
those are sent through a fixed array of linear elements and are absorbed
by particle detectors at the output ports. Specifically, the POVM elements
F ij = |P ij〉〈P ij |, each of them associated to a detection event in detectors
ci and cj , are given by the action of a linear map K on the set of normalized

46Mode-matching conditions—or photon wave-function overlap —hinder the interfer-
ence of single photons coming from down-conversion sources. See [106] for recent progress
in multi-photon interference.
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states47 {|ψij〉 ∝ (|ij〉 ± |ji〉)},

|P ij〉 = K|ψij〉 for i ≥ j = 1, . . . , n with K =
√

2A∗ ⊗ B∗, (110)

and the d × n matrices A and B satisfy the relations,

AA† = 1d , BB† = 1d , AB† = 0 (111)
1n − A†A − B†B ≥ 0. (112)

These relations come about from the definition U = (A, B, C)T (see Eq.
(8) in paper IV), U being the unitary transformation of the field modes
associated to the linear-elements array.

The form of the map K automatically guarantees the completeness re-
lation

∑
i≤j F ij = 1. Hence, to find out whether or not a given POVM

{F ij = |P̃ ij〉〈P̃ ij |} can be realized by linear–elements and particle detec-
tors, one has to see if a map K exists which takes the states {|ψij〉} to
the vectors of the desired form, i.e., K|ψij〉 = αij |P̃ ij〉 for some complex
number αij .

The problem of determining whether the transformation of a set of
states to another is possible is of general interest in quantum information
theory. Especially in the study of entanglement it would be extremely useful
to find the conditions for which the state transformation can be achieved by
the class of local operations and classical communication LOCC. There are
already some results characterizing the deterministic transformation of a
single bipartite pure state to another pure state, and the non-deterministic
transformation from a pure state to a set of possible pure states [102].
However, little is known about deterministic transformation from a set of
states to another set of states. It is my belief that the algebraic theory of
linear preservers [91] can be of great use in this context. In the meantime we
can already get some interesting results (see paper IV) from the particular
form of our map K:

• K is separable and can therefore not increase the Schmidt rank of
the original states {|ψij〉}. In particular this means that a) two-
photon detections (i = j) always lead to a separable POVM. Two
photon detection always lead to an error when discriminating en-
tangled states. b) it is not possible to have POVM elements that
project on maximally entangled states of two qudits (with d > 2):
|P̃ ij〉 ∝ ∑d

l=1 |ei〉|ẽi〉.
47Paper IV studies i-qudits —this includes both bosonic and fermionic qudits. Here

the sign + (upper) corresponds to bosons while −(lower) corresponds to fermions.
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• For qubits (d = 2) it is possible to have some maximally entangled
POVM elements, but their total weight in the resolution of the iden-
tity can be at most one half—see Eq. (20) in paper IV for derivation.
This fixes a tight upper-bound for a generalized Bell-measurement
and for its possible applications.

Notice also that even with conditional dynamics (see Figure 10) the
relation between input and output modes is always linear and the POVM
element of a particular event can be easily found. A detection in modes
ĉ =

∑2d
j αj âj and d̂ =

∑2d
j βj âj can be easily seen to correspond to the

POVM element F cd = |P cd〉〈P cd|. Following the formalism from paper IV,
and using the isomorphism between complex matrices and bi-partite states
(11,12), one arrives at the following result (analog to Eq. (13) in paper IV).

〈0|ĉd̂|C〉 =
n∑

i,j,k,l

〈0|αiβjNklâiâj â
†
kâ

†
l |0〉 = 2

n∑

k,l

αkNklβl

= a1
T Cb2 ± b1

T CTa2 = Tr(C(b2
Ta1 ± b1

Ta2)) = 〈P cd|C〉

with |P cd〉 = |a1〉|b2〉 ± |a2〉|b1〉, (113)

where the column vectors a1 and b1 are defined through

α = (α1, . . . , α2d)T = (a1,b1)T and β = (β1, . . . , β2d)T = (a2,b2)T ,

and we have used the convention |v〉 =
∑d

i=1 vi|i〉.
To conclude with the measurement on i-qudits, let me comment on a

recent result which has been a real breakthrough in the study of quantum
information processing with linear-optics. We have already stressed that
the no-go theorems do not exclude the possibility of correctly discriminating
a state of a given set with a finite probability (0 < Psucc < 1). Knill,
Laflamme and Milburn [79] nearly exhausted this possibility by proving
that with the general setup from Figure 10A one can do any quantum
operation with a probability of success arbitrarily close to one. Moreover,
they give a constructive proof of it.

In Section 2.3.3 we saw how one can implement an arbitrary operation
using Bell-measurements by teleporting the state “through” the operation
[60]. That is, the problem of performing certain gates is reduced to the
problem of preparing a given entangled state. Knill et al. take this idea
and give a procedure to prepare an auxiliary entangled state such that when
teleporting the two unknown qubits through this state the output qubits
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have effectively suffered a controlled–Z gate48. Since two Bell-measurement
are required, the controlled-Z gate is correctly implemented with probability
ps = 1

4 . However, in the same work they present a way to enhance the
probability of success of the “embedded” teleportation protocol to ps =
1 − 1

n+1 by using an n-photon highly entangled auxiliary state. To round
things out they show that, with not too much of an overhead, the qubits can
be encoded to make all the operations fault-tolerant49; thus proving that
linear-optics quantum computation (LOQC) is in principle possible. Having
said this, it is important to realize that the mere preparation of the auxiliary
state required is far beyond the current technological possibilities—which
is at the moment is struggling to achieve three or four-photon entangled
states [106, 86].

Knill’s et al. results have been very important for breaking with the
skepticism promoted by the growing-number of no-go theorems. Indeed, it
is (in principle) possible to use linear elements and particle detectors to real-
ize any quantum operation with a probability asymptotically close to unity.
One might think that these results set the end to the research of quantum
information processing with linear elements. But, on the contrary it only
stimulates it further: now that is clearer than ever that linear-elements are
powerful devices, there is a bigger urge to understand how these simple de-
vices handle quantum information. Bear in mind that Knill’s et al. LOCQ
is by no means optimized. There are many interesting applications (see
paper IV for references), especially in quantum communication, where a
simple beam-splitter can do most of the job and the use of LOQC would
be an overkill.

In paper V [30] we examine the possibility of using linear optical ele-
ments and photodetectors to manipulate general quantum states of light,
not necessarily photonic qubits. The characterization of the quantum states
of light has been for decades an intense field of research both theoretically
and experimentally [90]. Non-linearities are in general more accessible for
this purpose, since one is not restricted to low photon numbers as in quan-
tum information implementations. Nevertheless, linear elements are still
the most preferred devices because they are extremely simple and their be-
havior is nearly ideal. Hence, it is also very relevant in this case to study the

48The conditional sign-flip gate is defined as C-Z= |0〉〈0|⊗ 1 + |1〉〈1|⊗σz, and together
with single qubit rotations it forms a universal set of gates.

49Fault-tolerant operations tolerate, up to a given threshold, errors in their components.
By tolerate I mean that the error does not propagate throughout the rest of the operation
and can be detected and subsequently corrected. This is usually achieved by encoding
the qubits in higher dimensional Hilbert-spaces.
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power of linear-elements to manipulate quantum states of light. In paper
V we take full advantage of the non-linearity provided by photodetectors
and propose a very simple scheme to remove a single photon from a field
mode in an arbitrary state. Linear elements are used to weakly couple the
field mode to the detector mode and, as soon as one photon is detected,
a feedback mechanism turns the coupling off, thus preventing any further
losses. The so-called adaptive absorption also can be viewed as a very un-
sharp photon-number measurement, since larger photon numbers will loose
one photon earlier. It is interesting to notice that if the feedback mecha-
nism is deactivated so that an indefinite number of single-photon detections
follows, the process describes a continuous photon-number measurement.
In the limit of large times the continuous measurement and the direct pro-
jection measurement onto number-states will obviously result in the same
total number of detected photons. However, the continuous measurement
provides a much more accurate description of a real photodetector, which is
crucial in understanding some experiment results. For example, the obser-
vation of interference effects from two independent sources with no defined
phase, that justified the “convenient fiction” of assigning a phase to a laser
field [99], can only be understood by the backaction of a succession of un-
sharp measurements that leads to a total von Neumann measurement.

The possibility of removing near-deterministically a single photon from
an arbitrary state turns out to be a very relevant matter in evaluating
the security of the current quantum key distribution implementations [29].
The proofs of security in [98, 126] assumed possible errors in the encod-
ing, transmission and decoding of the sent qubits. However, they did
not contemplate that the physical realization of the signals is not a real
single-qubit. In current implementations, the lack of effective deterministic
single photon sources is overcome by using very weak coherent pulses. Co-
herent pulses (81) contain multi-photon states with a probability pn>1 =
1− exp(−µ)(1− µ). This opens a security loophole in the key distribution
protocols. The possibility of extracting a photon from this multi-photon
part of the signal provides Eve with a copy of the sent qubit which she can
measure without disturbing Bob’s measurement outcomes. If Eve assures
that the intensity of the signals arriving to Bob does not decrease, then
her attack will be imperceptible to Alice and Bob. To compensate for the
losses she causes, Eve only has to provide a transmission fiber with lower
losses than the one used by Alice and Bob.

The ideal way for Eve to take advantage of this loophole is to make a
QND (quantum non-demolition) measurement on the number of photons in
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the signal without disturbing its polarization, and split one photon from the
signal whenever more than one photon are available. This is known as the
photon-number splitting attack (PNS ). QND measurements rely on the Kerr
effect, governed by the third order non-linear susceptibility, rendering futile
its use for low photon numbers. Moreover, even when the photon number is
known, it is a non-trivial task to split exactly one photon without modifying
the polarization50. Since the security of present quantum cryptography only
depends on the present technology available to Eve, the PNS attack cannot
be taken as a serious threat.

A technologically available alternative is the beam-splitting attack (BS),
where Eve uses a beam-splitter to split all signals (single-photons included).
This strategy is also ineffective since Eve actually splits many more signals
than actually needed.

In paper VI [29] we propose adaptive absorption, or the conditional
beam-splitter attack, as the means to split exactly one photon from the
signal and thereby providing a simple, technologically available51, and yet
efficient attack on present quantum key distribution protocols.

In any case the single-photon part of the signal remains “untouchable”
and can be used to guarantee the security of the protocol within some
parameter regimes [93, 71]. Our result forces current experiments to take
these operating regimes seriously if they want to guarantee security under
any realistic attack.

3.3 Non-Linear Implementations

Although there has been some proposals [133] and even some preliminary
experiments [78] to do quantum information processing using non-linear
optics, those require either the Kerr effect, sum frequency generation (up-
conversion) or the interaction with an atom, all of which are extremely
ineffective and entail many technical problems at the single-photon level.
However, when strong fields are available non-linear processes give rise to
a wide range applications: four-wave mixing, phase conjugation, quan-
tum non-demolition measurements, below shot-noise homodyne photocur-
rents, squeezing-mediated suppression of the spontaneous decay of a dipole

50This can be achieved for example through the Jaynes-Cummings Hamiltonian [93].
51Let me point out here that in paper IV we do not take into account the time delay

produced on the signal by this eavesdropping attack. We disregard this problem by
assuming that Eve can allways compensate the delay by finding a shorter route from
Alice to Bob, or avoid the loop-delay by splitting the signal from several points along the
transmission fiber.
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quadrature, etc..
In paper VII [32] we propose an even more striking application of non-

linearities. For this we contemplate a different system where non-linearities
are much stronger than in optical fields, namely, degenerate atom-molecule
systems, and show how two create a very special macroscopic superposition.
The motivation behind this is obvious to any inquisitive mind.

Quantum mechanics is one of the most prominent theories in physics,
a status achieved by its ability to predict the often “weird” behavior of the
microscopic realm with astonishing accuracy. So far, the only “problem”52

that faces quantum mechanics is that of determining its domain of validity,
a problem that arises when applying quantum rules to macroscopic objects.
Already Schrödinger highlighted the absurdity of applying quantum theory
to macroscopic objects, by coupling the fate of a cat to the decay of a ra-
dioactive atom, thereby forcing the animal into a superposition of alive and
dead. For some reason the classical world occupies a minute fraction of the
Hilbert space assigned by quantum mechanics. A simple approach to the
matter is macrorealism that asserts that macroscopic superpositions do not
occur, full stop. Macrorealism is a conformist and not very constructive
attitude since it does not specify what is really happening. Some more
venturous theories have modeled the transition from quantum to classical
by adding extra terms into the Schrödinger equation that become impor-
tant only for macroscopic objects —the mass has been used to grade the
“macroscopicness”. It has been also speculated that there are non-quantum
effects at sub-Planck scales that could have consequences in the macroscopic
scale. Other theories, the most prominent of them is decoherence, try to
explain einselection —or the natural selection of determined macroscopic
states —within quantum mechanics. Creating macroscopic superpositions
or “cat-states” can help us not only to persuade macrorealism that it is not
a matter of principle that no quantum macroscopic objects exists, but also
help to understand quantum mechanics decoherence mechanisms and the
origin of einselection better.

In paper VII we pursue the creation of a superposition of two certainly
distinct macroscopic objects: a “soup” of atoms and a “soup” of molecules.
What I call soup here refers to a Bose-Einstein condensate of bosonic par-
ticles. The idea is to use photoassociation to coherently create molecules
from an atomic condensate. Photoassociation occurs when an atom pair

52It would be too hard on quantum theory to call this a problem considering that it
already describes phenomena from the Planck scale to the molecular scale (25 orders of
magnitude!).
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interacts with a photon driving a transition from the two-atom contin-
uum to a bound state of the molecule. The first problem that appears is
that photoassociated molecules are in short-lived excited electronic states
that mainly decay to non-condensate modes, “killing” any cat or kitten
that could exist. In this work we have therefore considered two-color free-
bound-bound photoassociation, where the excited molecules are transferred
by a second laser to a bound stable molecular state. Moreover, by using
a large detuning we have adiabatically eliminated the excited molecular
state, thereby hindering the deadly effects of the decay.

To study this system we have used a “toy model” which involves only
three modes —one for each of the species: atoms, excited molecules and
stable molecules—, and therefore disregards any dynamics in the spatial
degrees of freedom. The validity of this model and the full-blown theory
behind it was presented by Kos̆trun et al. in [81]. Besides the non-linearity
introduced by the destruction/creation of atoms in pairs, we have also taken
into account the non-linearities arising from atom-atom, molecule-molecule,
and atom-molecule collisions. As opposed to the case of parametric down-
conversion or squeezing, here the treatment needs to be fully quantum53,
because mean-field theories presuppose separable global states, while the
longed-for cat-state is highly entangled. In the full-quantum treatment the
evolution cannot be described by convenient algebra generators and we have
to rely on numerical methods. The Hamiltonian in question (Eq. (6) in
paper VII) conserves the “mass” N = na + 2nb, here na and nb are the
number operators for atoms and stable molecules respectively. Since we
start from an atomic condensate with a fixed number of atoms N , we can
describe the whole dynamics using the basis states |n〉 ≡ |n〉b|N − 2n〉a. In
this basis, the Hamiltonian is tri-diagonal and the dynamics can be easily
simulated using the Crank-Nicholson numerical method.

We have shown that all these non-linear processes can be harnessed
by the two laser fields (Figure 2 and caption in paper VII) to create a
superposition of states with a very large number of molecules (molecular
“soup”) and states with a large number of atoms (atomic “soup”). Ideally,
the state would be described by |ΨBIGCAT〉 = 1√

2
(|0〉b|N〉a + |N2 〉b|0〉a).

Figure 2 in paper VII also shows that the dynamics of the system is such
that the presence of the superposition in the intermidiate times can be
detected by imprinting a phase in the molecular condensate.

53Only for the matter fields: the laser fields are treated semiclassically in the parametric
approximation.
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This is a very peculiar type of superposition since it seems to involve
two objects in lieu of two states of the same object. Instead of a cat that
was both alive and dead, this situation could metaphorically be termed
an animal that is both cat and dog. Hence, with a system that is both a
“soup” of molecules and a “soup” of atoms, quantum mechanics has not
only crept closer to the macroscopic world but has apparently also gotten
“weirder”. Here, of course, we are exploiting the fact that naming two
physical objects instead of attributing to each of them a different state of
the same system is sometimes arbitrary or a matter of convenience. Strictly
speaking, two states of a system can be considered different objects when
there is no interaction that couples them. In this sense one could say that a
photon is in fact the same object than a positron-electron pair. Moreover in
quantum mechanics one can always stop the transition from one state to the
other half-way, leaving the system in a superposition of both states. The
fact that in the classical world we are not confronted with superpositions
of different “objects” is arguably due to the superselection rules induced by
decoherence which forbid their superposition. Thus in this sense, the more
object-like our two states in the cat are, the more difficult it is to keep the
cat alive.
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4 Epilogue

Exactly a hundred and one years ago Max Plank discovered the quan-
tum. Four decades of intense work of the most prominent physicists of
the time led to the theory of quantum mechanics. Quantum mechanics
enjoys an impeccable internal consistency and unprecedented agreement
with experiments, and it only meets difficulties when interpreting its pre-
dictions. The basis of the theory of quantum mechanics has not changed
since then. However, in the late 80’s quantum information theory emerged,
unraveling a source full of features that where hidden in this very basic for-
malism. The same old rules discovered decades ago are now embedded in a
new information-theoretical framework in which they are being squeezed,
turned and dissected. It is fascinating to see the amount of understanding
and applications that are flourishing from this research field.

In this work I have presented my contribution in fundamental and ap-
plied aspects of quantum information theory. The main theme that outlines
my work has been how to access the quantum information in a quantum
system with some given resources; thus the POVM formalism has taken a
central role.

Paper I studies to what extent one can process the quantum information
of the input qubit of a quantum universal cloner if one has access only to
some subsystem of output. This served to first, elucidate how quantum
information is distributed in a cloning transformation and bring forward
its potential uses in quantum information protocols, and second, to derive
some general rules relating sharp measurements, information gain and state
recovery on systems that have suffered an entangling evolution with some
fixed auxiliary state.

Papers II-IV study how to process photonic qubits when one is restricted
to use linear-optical elements and photodetectors. Papers II and III focus
on the very relevant problem of performing Bell-measurements with these
resources. In particular paper II gives a no-go theorem that asserts the
impossibility of doing a complete Bell-measurement with a very general
set-up which includes linear elements, photodetectors, auxiliary photons
and feedback mechanisms. Paper III gives an upper-bound on maximum
efficiency of an incomplete Bell-measurement in a restricted set-up consist-
ing only of linear-elements and photodetectors. In paper IV I take a more
general approach and find the first characterization of the set of POVMs
that is possible to do on two qubits using linear-elements and photodetec-
tors. This work also generalizes to d×d bipartite systems where qudits are
represented in indistinguishable particles —both bosons and fermions. It is
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very peculiar how quantum information is distributed when indistinguish-
able particles encoding two qubits are brought together in a linear device,
and how photodetectors access to this information. This is not only of
practical significance, making possible the use of optical photons in quan-
tum information processing, but it also raises fundamental questions. In
the same way that the natural locality constraints have boosted the study
of the LOCC (Local Operations and Classical Communication), I feel that
the class of realizable operations on i-qudits by linear elements can spark a
similar interest.

Even if linear-elements most probably cannot account for all the storage,
transmission, and processing requirements in every quantum information
protocol, I believe that they can prove extremely useful in combination
with more sophisticated tools, viz. cavities, non-linear crystals, ensemble
of atoms or solid state devices, which would only be reserved for specialized
tasks.

Paper V proposes adaptive absorption as a method to extract a single
photon (or any given number of photons) from an arbitrary field mode by
using only linear-elements and a very simple feed-back mechanism. Analo-
gously adaptive amplification (mediated by an active liner element) could
be used to add single excitations to a field mode. A combination of both
methods can lead to interesting processes such as “non-absorbing” photon
counting. Based on the idea of adaptive absorption, Paper VI puts for-
ward a realistic eavesdropping attack on realistic quantum key distribution
implementations.

In paper VII we leave the ideal world of linear optics and delve into
the complex world of atoms and molecules to give a theoretical proposal
for the creation a novel type of quantum superposition of two recognizably
distinct objects. The mere idea of creating this type of “thing” can motivate
more simple schemes and can push further the range of validity of quantum
mechanics. These degenerate atom-molcule systems are also suited very
well for studying entanglement in many-body systems.
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