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Victoria, Australia Finland

Opponent:

Prof. Franz Pfeiffer
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Abstract

Differentiation of various types of soft tissues is of high importance in med-
ical imaging, because changes in soft tissue structure are often associated
with pathologies, such as cancer. However, the densities of different soft
tissues may be very similar, making it difficult to distinguish them in ab-
sorption images. This is especially true when the consideration of patient
dose limits the available signal-to-noise ratio. Refraction is more sensitive
than absorption to changes in the density, and small angle x-ray scattering
on the other hand contains information about the macromolecular structure
of the tissues. Both of these can be used as potential sources of contrast
when soft tissues are imaged, but little is known about the visibility of the
signals in realistic imaging situations. In this work the visibility of small-
angle scattering and refraction in the context of medical imaging has been
studied using computational methods.

The work focuses on the study of analyzer based imaging, where the in-
formation about the sample is recorded in the rocking curve of the analyzer
crystal. Computational phantoms based on simple geometrical shapes with
differing material properties are used. The objects have realistic dimen-
sions and attenuation properties that could be encountered in real imaging
situations. The scattering properties mimic various features of measured
small-angle scattering curves. Ray-tracing methods are used to calculate
the refraction and attenuation of the beam, and a scattering halo is ac-
cumulated, including the effect of multiple scattering. The changes in the
shape of the rocking curve are analyzed with different methods, including
diffraction enhanced imaging (DEI), extended DEI (E-DEI) and multiple
image radiography (MIR). A wide angle DEI, called W-DEI, is introduced
and its performance is compared with that of the established methods.

The results indicate that the differences in scattered intensities from
healthy and malignant breast tissues are distinguishable to some extent with
reasonable dose. Especially the fraction of total scattering has large enough
differences that it can serve as a useful source of contrast. The peaks related
to the macromolecular structure come to angles that are rather large, and
have intensities that are only a small fraction of the total scattered intensity.
It is found that such peaks seem to have only limited usefulness in medical
imaging. It is also found that W-DEI performs rather well when most of
the intensity remains in the direct beam, indicating that dark field imaging
methods may produce the best results when scattering is weak. Altogether,
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it is found that the analysis of scattered intensity is a viable option even in
medical imaging where the patient dose is the limiting factor.

Classification (INSPEC): A4215D, A6110D, A8770E, C7320

Keywords: Analyzer based imaging, x-rays, signal-to-noise ratio, scatter-
ing, refraction, geometrical optics, ray-tracing
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Chapter 1

Introduction

1.1 Problem Setting and Scope

In addition to attenuation, x-rays undergo refraction and scattering when
passing through a medium. Imaging methods based on these two phenomena
show promise especially in medical imaging, where significant improvements
of contrast to dose ratio have been demonstrated for in vitro samples [1–4].
The interpretation of refraction and scattering images, however, is more
complicated when compared to the rather straightforward interpretation of
attenuation images. Refraction and scattering are not as easily observed
as attenuation, and this places rather stringent requirements on the instru-
mentation. In this work we study via numerical calculations the visibility
of scattering and refraction in imaging.

Especially mammography may benefit from contrast improvement due to
refraction, because the density variations within the soft connective tissue
are rather small [5]. Furthermore, normal mammograms cannot in many
cases distinguish between benign and malignant lesions, leading to high rate
of unnecessary biopsies. The scattering signal from breast tissue samples
has been shown to be sensitive to changes in breast tissue due to breast
cancer [6]. If this signal could be utilized in imaging, the images would
allow a higher rate of detection and a lower number of unnecessary biopsies.
This work is a continuation of the studies on breast tissue samples [5, 6],
with the aim of understanding how well the scattering signal from breast
tissue samples is visible in the images.

1.2 X-Rays in Medical Imaging

Medical imaging based on tissue dependent differences in x-ray attenuation
has been utilized almost ever since Wilhelm Röntgen discovered the x-rays
in 1895 [7]. Medical imaging has contributed greatly to the success of mod-
ern medicine by allowing internal parts of the human body to be observed.
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2 CHAPTER 1. INTRODUCTION

This has facilitated better treatment of fractures and earlier detection of
many pathological conditions, and thus contributed greatly to the increas-
ing overall quality of life. Essentially the same, century old x-ray imaging
methods are still in routine use in hospitals around the world.

An important improvement to the x-ray imaging method is the computed
axial tomography (CAT or CT) [8]. Instead of taking a single projection
image of the patient, several projections from different angles are taken and
a three-dimensional image (or a two-dimensional slice) can be reconstructed
using methods based on the inverse radon transform [9]. CT is used to
study in detail anatomical structures, and for example to accurately localize
tumours. The use of CT increases the patient dose compared to a single
projection image, and this means that in many cases a single projection
image is still preferable [10].

X-ray absorption is not always sensitive enough to facilitate the differen-
tiation of tissue types whose absorption and density are close to each other.
In some cases contrast agents can be introduced to the tissue of interest to
differentiate it from the surroundings. Injection of iodine or gadolinium to
the blood circulation in angiography is used routinely in clinical practice [11].
Studies of using iodine to enhance the sensitivity of mammography have also
been carried out [12]. Yet another application under research is the use of
inhaled xenon as a contrast agent in functional studies of the lung [13,14].

Besides x-rays, several other physical phenomena are routinely utilized in
medical imaging. For example, magnetic resonance imaging (MRI) is based
on nuclear magnetic resonance and offers contrast based on the local chemi-
cal environment of hydrogen atoms. Positron emission tomography (PET) is
based on injection of positron emitting contrast agent. The positrons anni-
hilate locally with electrons, and the contrast agent distribution can be three
dimensionally quantified by detecting the annihilation photons. Ultrasound
measurements based on speed of sound and reflection from interfaces can
measure mechanical properties of tissues. The existence of different meth-
ods verifies that none of the methods is suitable for all situations, and the
development of new methods continues on all fronts.

1.3 X-Ray Scattering and Refraction

The most common interactions between x-rays and material are absorption
and scattering (either elastic or inelastic). Absorption gives rise to fluores-
cence that spreads out equally in all directions and whose energy distribution
depends on the chemical composition of the sample. Inelastic scattering has
a nonuniform distribution whose intensity does not appreciably depend on
the sample structure. Elastic scattering produces several types of interfer-
ence phenomena, depending on the atomic and molecular structure of the
sample, one of them being refraction. Monochromatic and collimated in-
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coming radiation is thus spread out in angular and energy ranges due to the
interactions, as illustrated in figure 1.1.

Incoming beam

Attenuated beam

Elastic scattering

Inelastic scattering

Fluorescence

Absorption

Sample

Figure 1.1: A schematic presentation of x-ray interactions.

Scattering and fluorescence are a nuisance in attenuation based imaging,
since they do not contribute to the attenuation signal, but instead produce
a background on the detector, which acts to reduce the visibility of details
in the images. However, it is seen in dedicated scattering and fluorescence
experiments that these signals contain a wealth of information about the
sample. These are utilized to obtain further information of the sample, that
is not available in plain attenuation images.

Several imaging methods have been developed for capturing the informa-
tion contained in scattering and refraction. We concentrate in this work on
the method that uses two perfect crystals for highly accurate analysis of the
angular distribution of the radiation coming from the sample. This method,
analyzer based imaging (ABI), is sensitive to angular changes smaller than
one microradian, and is able to provide good contrast due to refraction and
scattering. We simulate computationally the intensity distribution com-
ing from the sample, including the effects of refraction and scattering, and
study how these effects are visible when the intensity is recorded with the
two crystal setup used in ABI.
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1.4 Purpose of the Study

The motivation and background for this work comes from earlier x-ray scat-
tering measurements [6] and analyzer based x-ray imaging experiments [5]
on breast tissue samples containing breast cancer. This study is a continua-
tion of the previous studies with the purpose of finding out more about how
scattering signal could be used as a potential source of contrast in imaging.

Specifically, the purpose is to quantify how the features of the scattering
patterns coming from the sample are visible in the rocking curves measured
in analyzer based imaging. To this end we quantify the features of scattering
patterns from tissue samples with breast cancer to see what are the typical
angular ranges where the scattered signal appears, how strong the scattering
can be expected to be, and how large changes in the scattering patterns can
be expected (e.g. due to progression of cancer). This allows us to estimate
what are the interesting angular ranges to use in analyzer based imaging, and
how high a dose of incoming radiation is required in order to get sufficient
counting statistics for the recorded signal.

To establish the relationship between the object visibility and the dose,
we developed a simulation program based on the ray tracing method, which
in addition takes into account the effects of scattering. The program cal-
culates images simulating the analyzer based imaging setup, so that the
rocking curves for different objects can be obtained. In addition the dose in
the sample is calculated, giving the possibility of evaluating the visibility of
objects at a given dose.



Chapter 2

X-Ray Physics and

Instrumentation

2.1 Properties of X-Rays

2.1.1 Definitions and Basic Properties

X-rays are part of the electromagnetic spectrum covering the energy range
from several hundred eV to a few hundred keVa. The wave characteris-
tics of x-rays explain most of the observed phenomena (i.e. elastic scat-
tering, diffraction, refraction and absorption) [15]. Explanation of inelastic
scattering, however, requires that x-rays be treated as particles, i.e. pho-
tons [16]. A photon has energy E = hf and momentum p = E/c, where
h = 6.626 · 10−34 J · s is the Planck constant and c = 299792458m/s is the
speed of light in vacuum.

The wavelength λ of x-rays as a function of energy E can be expressed
in practical units as

λ[nm] =
1.24 nm

E[keV]
. (2.1)

The frequency f = ω/(2π) can be correspondingly expressed as

f [Hz] = E[keV] · 2.4 · 1017 Hz. (2.2)

X-ray frequencies are extremely high and the magnitude of the electric field
cannot be measured fast enough to reconstruct the complete signal. Equa-
tion (2.1) indicates also that interferometric techniques require a precision
of the order of atomic distances.

Intensity quantifies the amount of energy arriving at a unit area in unit
time. It is defined as power / area and in SI-units has the dimensions of

aThere is no exact definition for the energies of x-rays, but usually a distinction is made
between x-rays coming from electronic processes and gamma-rays coming from nuclear
processes.
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6 CHAPTER 2. X-RAY PHYSICS AND INSTRUMENTATION

W/m2. If a source with power P emits radiation uniformly into a solid angle
of α, the intensity at distance R from the source is

I =
P

αR2
. (2.3)

The intensity can also be interpreted in terms of the number of photons. Let
n(E)dE be the number of photons in the energy range [E,E + dE[ passing
through a unit area in unit time. The intensity is then

I =

∫ ∞

E=0
E n(E)dE. (2.4)

Especially for an almost monochromatic beam of energy E0 and N photons
per unit time, the intensity is

I = E0N. (2.5)

In this case the number of photons can be given in practical units as a
function of the intensity and beam energy,

N [phot./s/m2] =
I[W/m2]

E0[keV]
· 6.24 · 1015. (2.6)

The number of photons is important, because it sets the limit for how well
small intensities can be detected from the point of view of counting statistics.

Intensity is only a partial representation of the electromagnetic wave,
the phase φ(r) being equally important. The amplitude of the wave is

A(r) =
√

I(r) exp[−iφ(r)]. (2.7)

The phase relationships between different waves lead to interference, and
the detection of changes in φ(r) allows phase contrast imaging.

2.1.2 Coherence

Coherence is the property of electromagnetic radiation that describes its
ability to form interference patterns. No radiation field is completely coher-
ent or completely incoherent, but the fields exhibit a varying level of partial
coherence. Coherence is set by the properties of the source and the optical
elements. For example, the light from a laser has a high level of coherence,
whereas that from a light bulb is highly incoherent. By using careful col-
limation and monochromatization, the coherence level of light from a light
bulb can be increased, but only at the expense of losing intensity. X-ray
scattering, diffraction and refraction are based on interference, and there-
fore the coherence properties of the incoming x-rays have an effect on what
the observed intensity looks like.
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There are several types of coherence. In practice coherence is usually
taken to mean first order coherence which describes how well the oscillations
at certain location at two different times are correlated (temporal coherence)
or how the oscillations at two different locations at a given moment are cor-
related (lateral coherence). Second order coherence describes how different
wave packets relate to each other. Phenomena related to the second or-
der coherence cannot in practice be observed with x-rays [17]. Therefore
we limit our discussion to first order coherence, which has some practical
applications in the x-ray regime as well.

Temporal (or longitudinal) coherence deals with how large path differ-
ences for the wave packet still produce observable interference. Every wave
packet has a finite energy spread, and this means to that they have also a
finite length. If the wave packet from the source takes two different routes
to the detector (see figure 2.1), interference effects can only be observed if
the path difference of these routes is smaller than the longitudinal coherence
length ll = λ2

0/∆λ [18, pp. 325–359]. For longer path differences interfer-
ence occurs only between different wave packets, but these average to zero
because time delays between wave packets are random.

Source

Atom 1

Atom 2

Detector

ll

Figure 2.1: A wave packet goes to the detector via two different routes. There is
no interference if the path length difference exceeds the longitudinal coherence
length ll.

Transverse (or lateral) coherence depends on the source size. For a point
source, the amplitudes at any two locations are correlated, and the coherence
is perfect. For an incoherent source of non-zero size, each point in the source
emits radiation independently of the others, and the level of coherence of
the radiation field drops as the angular size of the source increases [19]. The
transverse coherence length is lt = λL0/d [20], where L0 is the distance from
the source, and d the width of the source.

In practice for 50 keV x-ray radiation, monochromatized with Si 333
reflection, ∆λ/λ ≈ 10−5 and λ = 0.0248 nm. Therefore ll ≈ 2µm. For a
typical synchrotron radiation source L0 ≈ 100m and d ≈ 100µm (cf. table
2.2), and therefore lt ≈ 25µm.
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2.2 Interaction of X-Rays with Matter

There are many types of interaction mechanisms, such as absorption and
scattering, by which x-rays interact with matter. The interactions are
stochastic in nature and their probabilities are described by interaction cross
sections, denoted with σ (cm2/g). Cross sections for free carbon atoms for
the most common interaction processes are shown in figure 2.2. In the energy
range below 100 keV the most important interaction mechanisms are elastic
and inelastic scattering and photoelectric absorption. The cross sections for
different processes can be summed to get the total cross section

σtotal = σelastic + σinelastic + σphotoelectric. (2.8)

10
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Figure 2.2: Photon cross sections for free carbon atoms as a function of energy
[21].

The interpretation of cross sections is that the probability of interactions
within a thin layer (thickness ∆x) of material with density ρ is

dP = ρσ∆x. (2.9)
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From the basic properties of probability theory we find that, for a sample
with thickness L, the probability of not having any interactions is

P{no interactions} = lim
∆x→0

(1 − ρσ∆x)L/∆x = exp[−ρσL]. (2.10)

This result is useful when simulating the interactions via a Monte-Carlo
method.

Cross sections are usually measured and tabulated for free atoms [22],
and to an extent cross sections are independent of the atomic arrangement.
The elastic scattering cross section, however depends heavily on the par-
ticular structure in question. Other cross sections depend slightly on the
neighbourhood, and can be used as probes of the surrounding of an atom,
such as in x-ray absorption fine structure studies [23]. Assuming indepen-
dence of the atomic structure, cross sections for a mixture or a compound
can be calculated by adding the individual cross sections (σi) weighted by
the weight fractions (wi) of the constituents,

σ =
∑

i

σiwi. (2.11)

Cross sections change as the energy of the photons increases. When the
energy crosses an absorption edge, i.e. the energy corresponding to a binding
energy of some atomic electron, the electron in question can be ionized, and
the changes in the cross sections can be quite dramatic. These changes can
be utilized e.g. in anomalous scattering experiments [24, 25] or in k-edge
subtraction imaging [26]. In imaging, rather high x-ray energies are used
(∼ 50 keV) to minimize the absorbed dose, and the energy is usually much
above any of the absorption edges of the elements found in the biological
samples. Therefore phenomena related to absorption edges can only be
utilized with the help of contrast enhancing agents.

2.2.1 Attenuation and Absorption

Attenuation of x-rays is measured by aiming a narrow beam at a material,
and recording the transmitted intensity in a way that the scattered pho-
tons are completely rejected [27]. There are two factors that contribute
to attenuation. Part of the x-ray energy is absorbed in the material and
part of the energy is scattered away from the narrow beam that goes to
the detector [28]. Figure 2.2 shows the relative importance of photoelectric
absorption and inelastic scattering. The elastic scattering contribution to
the attenuation can vary greatly depending on the atomic structure (e.g.
complete attenuation by reflection from a perfect crystal).

Attenuation is described by mass attenuation coefficient µ/ρ, (cm2/g).
This relates the incoming intensity I0 and outgoing intensity I by

I(t) = I0 exp

[
−
(

µ

ρ

)
ρt

]
, (2.12)
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where ρ is the density of the sample, and t is its thickness. For materials
with heterogeneous composition the attenuation coefficient and density may
vary throughout the sample. In this case the transmitted intensity is

I(t) = I0 exp

[
−
∫ t

x=0
µ(x)dx

]
, (2.13)

where µ(x) is the linear attenuation coefficient at location x.

The quantity µ = (µ/ρ)ρ is known as the linear attenuation coefficient. A
useful quantity in comparing the attenuation properties of different materials
is the half layer thickness t1/2 for which I(t1/2)/I0 = 1/2, i.e. t1/2 = ln(2)/µ.
Table 2.1 shows half layer thicknesses for some materials of interest in med-
ical imaging at different energies. Higher energies are transmitted better,
and are thus more amenable to imaging applications, but the relative dif-
ferences between the materials diminish as the energy is increased, so that
there is always a compromise to be made about the energy used.

Energy / (keV) 10.00 30.00 50.00 70.00 90.00

Air 112.35 1625.85 2765.51 3272.65 3601.93
Blood 0.12 1.70 2.87 3.39 3.72
Bone 0.01 0.27 0.85 1.38 1.78
Brain 0.12 1.75 2.93 3.45 3.78
Breast tissue 0.16 2.00 3.11 3.58 3.90
Muscle 0.12 1.75 2.92 3.43 3.77
Soft tissue 0.12 1.73 2.89 3.40 3.73
Water 0.13 1.85 3.05 3.58 3.92

Table 2.1: Half thicknesses of attenuation (in cm) for various materials of
interest [29]

The mass energy absorption coefficient (µ/ρ)en describes how much of
the beam energy is absorbed in the sample

Eabs = E0(1 − exp

[
−
(

µ

ρ

)

en

ρt

]
). (2.14)

Here Eabs is the total absorbed energy and E0 is total amount of energy
contained within the incoming beam. Similarly to attenuation, the lin-
ear absorption coefficient is defined as µen = (µ/ρ)enρ. Both photoelectric
absorption and inelastic scattering contribute to the absorption, however
attenuation is always a bit larger than energy absorption, as can be seen
in figure 2.3. For energies above 10 keV the attenuation can be consider-
ably higher than absorption due to the increased contribution of inelastic
scattering.
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Figure 2.3: Mass energy absorption and mass attenuation coefficients for soft
tissue [29].
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2.2.2 Elastic Scattering

X-rays scatter mainly from electrons in the material. The differential scat-
tering cross section for a free electron is [30, pp. 9-11]

dσ

dΩ
=

(
µ

4π

e2

me

)2

· (k⊥ + k‖ cos 2θ) = r2
e(k⊥ + k‖ cos 2θ) (2.15)

which expresses the probability of scattering into a unit solid angle. Here
re = 2.818×10−15 m is the classical electron radius, µ the magnetic constant,
me the electron mass, e the electron charge, and 2θ the scattering angle. The
polarization state is generally described by the Stokes parameters [18, pp.
630–632], but in scattering from free electrons the phase relation between
the two polarization components has no effect, and therefore k‖ and k⊥
(fractions of the incoming radiation with polarization in and perpendicular
to the plane of scattering, respectively) suffice in describing the effect of
polarization.

A note on the units convention is in order. The interpretation of dσ/dΩ
is

dσ

dΩ
=

photons / unit time / unit solid angle

incoming photons / unit time / unit area
,

so that the differential scattering cross section gives the probability of scat-
tering into a given angle. The scattered intensities are therefore also usually
expressed in power / unit solid angle, rather than power / unit area, which
is the conventional unit of intensity. This is a natural convention for scat-
tering problems because it eliminates the dependence of intensities on the
distance between the sample and the detector.

Electrons in atoms form a charge distribution ρ(r) that is of finite size,
and the waves scattered from different parts of the atom interfere. Interfer-
ence means that the amplitudes scattered from different points of the atom
are summed taking the phase differences into account. The phase differ-
ences arise from the fact that the waves have to travel different distances
when they scatter from different locations within the atom. A common
way to deal with phase differences is to use wave vectors s1 and s2 for the
incoming and scattered waves, respectively. Then the scattering vector is
s = s2 − s1, and its lengthb is s = |s| = 2 sin(θ)/λ, as shown in figure 2.4.
The phase difference between two waves originating from points r1 and r2

is then ∆φ = 2πs · (r1 − r2) [30]. The amplitude scattered from the atom,
atomic scattering factor, in units of electron scattering is then [30, p. 15]

f0(s) =

∫
ρ(r) exp[−i2πs · r]dr. (2.16)

bThe definition of the length as well as the notation for the scattering vector varies in
the literature. Notations q and k are commonly used in the literature, and a common
alternative to the length is k = 4π sin(θ)/λ
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The scattering factor is therefore a Fourier transform of the electron den-
sity of the atom. The same method can be used, with certain restrictions,
for calculating the scattered amplitude from larger structures as well (cf.
chapter 4).

s2

s1

s

2θ

1
λ

Figure 2.4: Relation between the incident (s1) and outgoing (s2) wave-vectors
and the scattering vector (s) and the scattering angle 2θ.

A classical view can explain the general properties of elastic scattering
quite well. In this picture the electrons are bound to the atomic nucleus,
and therefore are not completely free to respond to the driving force of the
electric field [15, ch. 4], and (2.16) is not completely accurate. Instead,
the electrons can be thought of as harmonic oscillators, with the natural
frequencies corresponding to the binding energies. When these oscillators
are driven by the electric field of the incoming radiation, there is an addi-
tional phase shift and modulus change in the scattering as compared to the
case of free electrons. The amplitude scattered from an atom is therefore a
complex quantity f = (f0 + f ′) + if ′′. Here f0 is obtained from (2.16), f ′

corresponds to an additional change in modulus, and f ′′ to the phase shift
of π/2 [31]. Because the scattering from a plane of atoms is already π/2
behind the incident wave, the additional phase shift π/2 via f ′′ corresponds
to absorption [15, p. 138].

Tabulations of the components of the scattering factor, based on ex-
periments and quantum mechanical calculations, are found in the litera-
ture [31, 32]. Figure 2.5 shows the components of scattering factor for oxy-
gen. It is seen that far above the absorption edges f ′ and f ′′ approach zero,
so that the electrons behave almost as if they were free.

2.2.3 Inelastic Scattering

Inelastic scattering refers to the case where the energy of the photon changes
in the scattering process. When a photon is scattered from a free stationary
electron, its energy change can be deduced from the conservation of mo-
mentum. The change in photon energy is simpler to express as a change
in wavelength, and in scattering to angle 2θc the wavelength of the photon

cNormally θ is used as the scattering angle in inelastic experiments, but we use 2θ to
have the same notation as in the case of elastic scattering.
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Figure 2.5: The components of the scattering factor for independent oxygen
atoms [21]. The K-absorption edge is at 0.54 keV.
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changes from λ to λ′ according to [33, pp. 204–208]

λ′ = λ + λc[1 − cos(2θ)]. (2.17)

Here λc = h/(mec) is the Compton wavelength.
Inelastic scattering from atoms may take place when the photon energy

change corresponding to (2.17) is enough to either excite or ionize an atom.
Tabulations of the total atomic cross section for inelastic scattering can be
found in the literature [21, 22]. Atomic electrons are non-stationary, which
broadens the photon energy spectrum seen at a given angle, and the shape
of this spectrum can be used to study the electron momentum distribution
in the sample [34].

The angular distribution of Compton scattering from a free electron
varies with the energy as given in the formulation by Klein and Nishina [35],

dσ(2θ)

dΩ
=

r2
e

2

[
1

1 + k(1 − cos 2θ)

]2

×
[
1 + cos2 2θ +

k2(1 − cos 2θ)2

1 + k(1 − cos 2θ)

]
,

(2.18)
where k = E/(mec

2). The atomic arrangement does not change the intensity
distribution of Compton scattering, although it can have an observable effect
on the spectrum [34].

2.2.4 Refraction and Reflection

As the x-rays are scattered their phase is altered, and thus when the scat-
tered wave is summed with the incoming wave, there is a change in the
phase velocity that depends on the scattering properties of the material.
This leads to the index of refraction being different from zero, and it is
generally expressed as [15, pp. 137-138,167]

n = 1 − δ − iβ, (2.19)

where δ is the part corresponding to the change in the phase velocity, and
β corresponds to absorption. For a material with Ni scatterers of type i in
a unit volume,

δ =
re2π(c~)2

meE2

∑
Ni(Zi + f ′

i), (2.20)

β =
re2π(c~)2

meE2

∑
Nif

′′
i , (2.21)

where Zi is the charge of scatterer i. The phase term δ is of the order of
10−7 for biological tissues at 50 keV.

The real part of the refractive index is generally slightly less than 1.
This means that the phase velocity is greater than the speed of light, and
refraction for a beam coming from vacuum to a material is away from the
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surface normal. If absorption is weak (i.e. β ≈ 0) the refractive index
is n = 1 − δ, and for an interface between two materials the Snell’s law
applies [18, pp. 39–40]

n1 sin θ1 = n2 sin θ2, (2.22)

where θ1 and θ2 are the the angles between the surface normal and the
incident and transmitted beams, respectively. Because the changes in δ
are very small, the refraction angles are also small, typically of the order
of 1 µrad. The real part of n being less than 1, there is a possibility for
total external reflection when θ1 is close to 90 degrees. This is used in the
construction of x-ray mirrors (cf. section 2.3.2).

2.3 X-Ray Instrumentation

2.3.1 Sources of X-Rays

Several physical phenomena can be used for the production of x-rays. Those
most commonly used are the relaxation of excitations in atomic electrons
and acceleration of charged particles. The technical solution for generating
a large flux of x-rays is usually either an x-ray tube or a synchrotron. From
the imaging point of view it is important that the source is able to generate a
sufficient flux of photons on the sample in a suitable energy range, so that the
imaging time is not too long, and that the photon energy can be optimized
to get good image quality with low dose. The related characteristics of x-
rays are the total flux, the opening angle of the radiation cone, and the
spectrum of the radiation. These parameters are summarized in a quantity
called spectral brightness, which is expressed in units

photons / s /mrad2 / (0.1% ∆E /E).

The size of the radiation region (the effective source size) affects the
image quality by causing blur in the images. Because the angular size of
the source determines the lateral coherence, the effective source size affects
coherence as well. If the source size is important, then quantity called
spectral brilliance is useful, and it is expressed in units

photons / s /mm2 source area /mrad2 / (0.1% ∆E /E).

Brightness is brilliance integrated over the source area.

Synchrotrons

Synchrotrons produce x-ray beams with superior properties as compared to
other sources. They are used in most of the imaging experiments that utilize
refraction, scattering, or coherence.



2.3. X-RAY INSTRUMENTATION 17

The term synchrotron refers to a specific type of circular particle acceler-
ator, where charged particles moving at relativistic speeds are kept on stable
orbits with the help of bending magnets and radio frequency cavities [36].
Synchrotron radiation is produced when the electrons undergo radial ac-
celeration in the bending magnets, and in specially constructed insertion
devices, wigglers and undulators, that consist of periodic magnetic struc-
tures. The radiation spectrum is continuous, spanning from the infrared to
the hard x-rays.

Synchrotrons have a high flux and the opening angle of the radiation cone
is small, typically less than 1 mrad in the vertical direction and a bit larger
in the horizontal direction depending on the source type (for undulators < 1
mrad, for wigglers ∼ 10 mrad, and for bending magnets ∼ 100 mrad) [36].
Due to the small effective source size the beam has good lateral coherence.
The high flux makes use of tunable monochromatic beams practical, and
allows techniques that use multiple beams of well defined energies. The
small opening angle is useful when well collimated beams or large intensities
are required, but makes imaging of large samples more difficult, as a large
distance between the source and the sample is needed in order to cover the
whole sample.

The spectral brightness for a bending magnet on the axis of the radiation
cone is [36]

I(λ) = 1.325 × 1010

(
λc

λ

)2

K2
2/3

(
λc

2λ

)
E2ic, (2.23)

where λ is the wavelength, λc[nm] = 1.86/(B[T]E[GeV]2) is the character-
istic wavelength of the source [37], E is the electron energy, B is the peak
magnetic field, ic is the ring current and K2/3 is a modified Bessel function
of the second kind [38]. The spectral brightness for a wiggler with N poles
closely resembles that of a bending magnet, and it is obtained by multiplying
(2.23) by N . Table 2.2 summarizes the characteristics of some of the beam-
lines that have successfully been used in analyzer based and propagation
based imaging.

X-Ray Tubes

X-ray tubes are the most widely used x-ray sources. X-rays are produced by
colliding electrons with a metal target (anode), where sudden deceleration of
the electrons and the ionization and subsequent relaxation of target atoms
give rise to continuous background (bremsstrahlung) and characteristic lines,
respectively. Electron energies used typically vary between 10–200 keV. The
radiation field is not well collimated so that only a small fraction of the radia-
tion can be used in experiments. The maximum available intensity is limited
by the heating of the anode material. Rotating anodes are used routinely in
medical imaging to improve the available intensity by distributing the heat
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Table 2.2: Typical operating parameters of three synchrotron beamlines that
are used in imaging.
Beamline ID 17 SYRMEP BL20B2

(ESRF) [39] (Elettra) [40, 41] (SPring-8) [42]
Source type Wiggler BM BM
E [GeV] 6 2 8
Peak B [T] 0.616 1.46 0.68
λc [nm] 0.084 0.318 0.043
ic [mA] 200 330 100
Number of poles 21 1 1
Source size (FWHM
H×V) [µm2]

59 × 8.3 135 × 80 114 × 14

Beam divergence
(FWHM H×V) [mrad2]

3.3 × 0.1 7 × 0.25 1.5 × 0.06

Sample distance [m] 150 20 200
Beam size at sample
(H×V) [mm2]

150 × 1 120 × 4 300 × 20

∆E/E at sample 10−5 10−4 3 · 10−5

Typical photon energy E
[keV]

50 20 50

Photon flux at sample
[phot./s/mm2]

3 · 108 2 · 108 6 · 107

load over a larger area [43]. Further improvements could be achieved with
the use of liquid anodes [44]. Although the brightness is much less than
in synchrotrons, x-ray tubes are well suited for imaging applications where
strict monochromaticity is not needed.

Compact Sources

Compact sources are sources of small size (as compared to synchrotrons),
small enough to be used e.g. for imaging applications in hospitals, yet with
potentially much higher intensities than conventional x-ray tubes. Currently
promising progress is made using a table top synchrotron with a small target
in the electron beam to generate the photons [45,46], and sources based on
inverse Compton scattering [47,48]. Especially the inverse Compton scatter-
ing promises high flux of photons (1010 photons/s) in 8 ps quasimonochro-
matic pulses (1% ∆E/E) with tunability between 8 and 100 keV, with the
possibility to take x-ray images with a single 8 ps long pulse [48]. These
types of developments promise that in the near future many imaging tech-
niques developed at synchrotron beamlines can be transferred to hospital
use.
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2.3.2 X-Ray Optics

X-ray optical elements are used to modify the beam shape, the focus and
the spectrum so that these properties match the needs of the experiment
in question. Optical elements are used also on the analysis side to collect
and differentiate the signal coming from specific interactions with the sam-
ple. Refractive optics for x-rays exist [49], but their use is limited due to
the refractive index being close to 1. Diffraction from perfect crystals and
total external reflection (mirrors) are more commonly used. The angular
acceptance of these types of elements is small, e.g. few microradians for
perfect crystals, so that careful instrumentation and elimination of vibra-
tions is essential. In imaging, optics are useful in selecting the desired energy
bandwidth and also in separating refracted and scattered beams from the
direct beam.

Crystal monochromators

Crystal monochromators are based on x-ray reflection from a perfect crystal,
either in the reflection (Bragg) or transmission (Laue) geometries. The main
use for crystals is to select a narrow band from the spectrum [50]. Crystals
can also be used in focusing the beam (bent crystals) or changing the size
of the beam (asymmetrically cut crystals) [50]. The effect of a crystal is
characterized by its reflection curve that describes the part of the spectrum
reflected for a well collimated broadband beam. Equivalently, the reflection
curve describes how the deviation from the exact Bragg angle affects the
reflectivity for a monochromatic beam.

Let the Miller indeces of the reflection be hkl and the plane spacing
dhkl [51, ch. 2]. For a thick perfect crystal in the reflection geometry, the
reflectivity of intensity for an incoming plane wave is [52, p. 173]

R(η) =

∣∣∣∣
χhkl

χh̄k̄l̄

∣∣∣∣
∣∣∣η ±

√
η2 − 1

∣∣∣
2
. (2.24)

Here χhkl = −reλ
2Fhkl/(πV ) is the Fourier component of the crystal polariz-

ability for reflection hkl, re is the classical electron radius, Fhkl the structure
factor and V the unit cell volume [52, pp. 37–38]. The deviation parameter
η determines the width of the reflectivity curve [52, p. 136],

η =
∆θ sin(2θB) + χ0(1 − γ)/2√

|γ||C|√χhklχh̄k̄l̄

. (2.25)

The asymmetry factor γ = −1 for a symmetric reflection and the polariza-
tion factor C = 1 for the σ-polarized radiation (electric field in the plane of
the crystal) and C = cos 2θB for the π-polarizated radiation (electric vector
in the plane of diffraction). Angular deviation ∆θ expresses the difference
of crystal orientation from the exact Bragg angle θB. Plots illustrating the
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behaviour of the reflectivity, calculated from (2.24) and (2.25) are shown in
figure 2.6.
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Figure 2.6: Calculated reflectivity for Si 333 at 50 keV (a). The deviation (due
to refraction) from the geometrical Bragg angle is marked with ∆θ0. Reflectivity
(centered at 0) for Si 333 at 50 keV (thin solid line), Si 111 at 50 keV (dashed
line) and Si 333 at 10 keV (thick solid line) (b).

The bandpass of a crystal for a symmetric reflection is [50, pp. 272–273]

∆E

E
=

4redhkl

πV
|C||Fhkl| exp(−M), (2.26)

where exp(−M) is the temperature factor. As long as Fhkl is independent
of energy so is the bandpass. For the special cases of silicon 111 and 333
reflections the bandpasses are 14.1× 10−5 and 0.88× 10−5, respectively. By
bending the crystal the bandpass can be further increased [53].

Monochromator crystals pass also higher harmonics of the intended ra-
diation frequency. This can have a detrimental effect on image quality [54].
As seen in figure 2.6 the angular FWHM of the reflecting range is smaller for
higher energies. Therefore using two identical crystals at slightly different
orientations allows the elimination of higher harmonics while passing most
of the intended frequency through [50, pp. 303–307].

Mirrors

The real part of the refractive index for x-rays (2.19) is below 1, and thus x-
rays exhibit total external reflection at the interface of vacuum and matter.
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For x-rays the critical angle for this reflection is

θc[mrad] = kλ[nm]
√

ρ[g/cm3], (2.27)

where k is a constant and is 16 for low-Z materials [55]. Typically θc is of the
order of 0.5 mrad for x-rays of 50 keV. The rays incoming below the critical
angle are well reflected, while those above this angle are highly attenuated.
Although mirrors made of heavy materials have wider critical angles than
those of light materials, the increased absorption of heavier elements reduces
the reflectivity below the critical angle from the maximum possible value,
so that a compromise has to be made.

Bent mirrors can be used to focus or widen the beam. Because decreasing
the wavelength reduces θc as well, mirrors can be used to cut radiation above
certain threshold energy. They can be used in combination with crystal
monochromators to obtain almost perfect harmonics rejection [50, pp. 303–
307].

2.3.3 Detection of X-Rays

X-ray detectors can be based on several different principles, but typically
they are based on collecting and counting the electrons created by ionization
of atoms in the detector. Photon counting detectors give an output pulse
for each x-ray quantum that they detect. Integrating detectors accumulate
the signal over a longer period of time, and add the signals from individual
photons before passing the signal onward. Photon counting detectors usually
have a low noise level and may offer the possibility for resolving the energy
of the photons as well. The dead time between detection of two photons
can, however, be too long for imaging purposes. Integrating detectors do
not have a limit on the incoming photon flux, but they suffer from additional
background noise that is not present in photon counting detectors.

Detector Characterization

The detector properties that primarily affect the image quality are the noise
and the spatial blur introduced by the detector. The detector efficiency in
detecting the incoming photons affects the dose that is required for getting
images with certain level of photon statistics. The dynamic range of the
detector defines how large signal variations can in principle be observed,
although in this respect imaging is not particularly demanding.

Perhaps the most important figure of merit characterising detectors is
the detective quantum efficiency (DQE) [56] expressed as

DQE(f) =
SNRout

2(f)

SNRin
2(f)

, (2.28)
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where SNRin and SNRout are the signal-to-noise ratios of the input and
output signals of the detector and f is the spatial frequency. For a per-
fect detector DQE = 1 for all frequencies f . For a realistic detector DQE
approaches zero above some corner frequency and is less than one at other
frequencies.

The spatial blur is characterized by the point spread function (PSF).
PSF is defined as the detector response to an impulse. Each detector has a
different PSF, and accurate measurements require the PSF to be character-
ized through measurements. The PSF reduces the spatial resolution of the
detector, and in high dynamic range studies the possible low intensity tails
of the PSF may also be important in changing the shape of e.g. recorded
scattering curves [57].

The detector that has been used for the experimental imaging results
used in this work is the FReLoN detector at ESRF [58,59]. FReLoN consists
of a fluorescent screen that is coupled to a CCD with an optical taper. The
dimensions of the active area are 94 by 94 mm2, and the effective pixel size
is 46×46µm2 [60, chapter 4]. At 51.5 keV energy DQE ≈ 0.4 at low spatial
frequencies, and the FWHM of the PSF is around 200 µm, i.e. about 4
pixels [60].



Chapter 3

X-Ray Imaging Methods

3.1 X-Ray Imaging Principles

Imaging with hard x-rays is done in the transmission mode, where the sam-
ple is placed between the x-ray source and the detector, and the x-rays
pass through the sample. In figure 3.1 this type of setup is shown schemati-
cally. The transmitted radiation arriving at the detector may be attenuated,
refracted and scattered, depending on the properties of the sample. It de-
pends on the details of the imaging setup how the effects of the different
contributions can be separated.

Source Sample Detector

Beam

L1 L2

d

P
D

LP
α

Figure 3.1: A schematic drawing of an x-ray radiography setup. α is the opening
angle of the incoming beam, d is the size of the source, D is the size of the
sample, and L1 and L2 are the distances from the source to the sample and
from the sample to the detector, respectively. P is a point on the detector and
LP is the line from the source to the point P .

We are interested in imaging methods that are able to detect the effects
of refraction and to separate the scattering from the direct beam. In general
refraction and scattering depend on the phase differences occuring within
the sample so that such methods are often referred to as phase contrast

23
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imaging methods. We focus especially on elastic scattering coming in the
small-angle region, because this carries information about structures whose
size ranges from few nanometres to micrometres, such as typically found in
biological tissues.

Phase contrast can be studied with many different methods. We focus
our attention on the analyzer based imaging (ABI) method which was orig-
inally developed for imaging x-ray refractions within the sample [61]. ABI
uses a monochromator and an analyzer crystal to obtain the angular dis-
tribution of the radiation coming from the sample. Different authors have
used varying terminology, such as diffraction enhanced imaging (DEI) and
multiple image radiography (MIR), cf. e.g. [62–69]. In addition to obtaining
the refraction angle, ABI can also be used for scatter rejection and analy-
sis of the scattering shape. ABI offers angular resolution of 0.1µrad, and
complete scatter rejection above the angular range of a few µrad.

3.2 Image Quality

Image quality is primarily described by two criteria: what is the size of the
smallest visible feature (resolution) and how small differences in the features
are observable (contrast). Furthermore in CT the images can be either
quantitative or qualitative, depending on whether the reconstructed values
have a direct correspondence to values in the sample or not. Ultimately it
is the application that dictates how good an image quality is required. In
medical imaging the visual assessment by an experienced radiologist is what
sets the standard on what is good image quality. Here we treat the factors
that affect image quality, and the mathematical ways of quantifying it.

Noise

Noise in the images is related to the counting statistics and the properties
of the experimental system. When counting N events (photons) on the
average, there is natural variation in the values actually recorded due to
the statistical nature of the process. This phenomenon is described well by
the Poisson distribution that has the standard deviation

√
N [70]. For large

N the distribution shape approaches a Gaussian. Counting more photons
by increasing the incoming flux or the imaging time reduces the effect of
photon noise, leading to a compromise between noise level and the dose on
the sample.

Fluctuation in the intensity of the incoming beam may be caused e.g. by
oscillations in the storage ring, or by vibrations of the monochromator optics.
This type of noise is multiplicative, and its effect cannot be diminished by
increasing the incoming flux, although if the fluctuations are rapid compared
to the exposure time, they can be averaged out by increasing the exposure
time.
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Background noise due to the detector is another important factor. There
are three distinct types of background signal: i) constant background in-
dependent of the exposure time or the incoming flux (read-out noise), ii)
background signal proportional to the exposure time (dark current), and
iii) background proportional to the incoming intensity (e.g. stray scattering
inside the detector). The constant background is the limiting factor when
rather low counts are recorded during a short exposure, as often is done in
imaging. When the incoming intensity is low the limiting factor may be the
dark current due to the required long exposure time. For images containing
large dynamic range the background proportional to the intensity may mask
out features in areas of low intensity.

Blur

Blur causes sharp edges to appear as gradual changes in the image. The
amount of blur (i.e. the width of the gradation) is determined by the sys-
tem’s PSF. Due to the general properties of PSF, the system’s PSF is a
convolution of the PSFs of the individual components. The effect of the
PSF of the detector was mentioned in section 2.3.3. Another component of
PSF is the source size, which was denoted in figure 3.1 by d. Effectively each
point on the source surface (source element) is an independent point-source
and forms an image on the detector. The images are laterally displaced
relative to each other, depending on the distance of the source element from
the source center. The width of the blur caused by this is w = dL2/L1. If
the detector and source PSFs are Gaussians with standard deviations σdet

and σsrc, respectively, the whole system response has a Gaussian PSF with

a standard deviation of σPSF =
√

σ2
det + σ2

src.

In medical imaging patient movement is another source of blur. Heart-
beat, ventilation and peristaltic motion are among the main contributors
to these motion artefacts. If σPSF ∼ 100µm, even a small patient motion
during the imaging will cause visible artefacts. In CT this can lead to sub-
stantial reconstruction errors. The best way to reduce the effect of patient
motion is to reduce the imaging time. Some of the motion artefacts can in
principle be reduced by either pre- or post-gating to the motion (e.g. the
heartbeat) or by post-processing the images by inverting the effects caused
by the motion [71–75].

Contrast and Signal-to-Noise Ratio

We define the contrast for a detail in an image as (compare e.g. with [43, p.
570])

C =
|N̄bg − N̄obj|

max{N̄bg, N̄obj}
, (3.1)
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where N̄bg and N̄obj are the average counts recorded in the area of the
background and the object, respectively. With this definition C is a quantity
between 0 and 1, and values close to 1 mean that the object is well visible. By
definition C is independent of the incoming intensity (and hence independent
of dose). It is also independent of the imaging resolution, as long as the
object size remains much larger than the resolution. It is therefore a true
measure of the visibility of the object in radiographs. However, by not being
dependent on the dose, contrast is not suitable for estimating the visibility
of objects in real imaging situations where the allowed dose is an important
factor.

Signal-to-noise ratio (SNR) is another way of measuring the visibility of
an object,

SNR =
Power in Signal

Power in Noise
, (3.2)

which relates the signal strength to the random variation in the signal. This
is a suitable measure for comparing images resulting from different methods
in realistic situations, because it takes into account the sources of noise (such
as counting statistics) that ultimately limit the object visibility in imaging.
In the rest of the work we shall use SNR as the basis for estimating object
visibility under different imaging situations. For an object consisting of M
pixels the SNR is [76]

SNR =

√
M |N̄obj − N̄bg|√

σ2
obj + σ2

bg

, (3.3)

where σbg and σobj are the root-mean-square deviations in the photon counts
in the background and in the object, respectively. According to Rose [76],
a value of about 5 in (3.3) corresponds to the threshold of object visibility.
In later chapters we report SNR values for the case M = 1, which can then
be scaled by

√
M to obtain SNR for different sized objects.

For some imaging methods, such as refraction contrast in analyzer based
imaging, contrast is seen primarily at the edges of objects. In these cases
the edge visibility and edge SNR are useful figures of merit, and they can
be defined as [3]

Vedge =
Nmax − Nmin

Nmin + Nmax
, (3.4)

SNRedge =
Nmax − Nmin√
∆N2

bg + ∆N2
bg

. (3.5)

Here Nmin and Nmax are the minimum and maximum recorded counts in
the (averaged) profile perpendicular to the edge direction.
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Resolution

Resolution is determined by the amount of blur, usually quantified by the
maximum number of line pairs / mm (lpmm) that can be resolved. In prac-
tice the ability to resolve an object depends also on the contrast and SNR.
In imaging small objects the resolution is important, and enchancement of
SNR near edges from refraction contrast may improve the resolution dra-
matically.

It is ultimately the visual assessment of image quality that decides whether
or not some detail is well visible, i.e. if the combination of SNR and reso-
lution are good enough. From (3.3) we see that SNR is proportional to the
square root of object size, and this is true as long as the object is signifi-
cantly larger than the resolution limit. Figure 3.2 shows examples of details
of different size at various levels of SNR.

(a) (b) (c)

Figure 3.2: Object visibility illustrated for the case when SNR for a single pixel
is 1 (a), 10 (b) and 100 (c). Four objects are present in each image, with sizes
(from left to right)

√
M = 41, 21, 11 and 6.

3.3 Imaging Based on Attenuation

In the first approximation the sample’s contribution to the intensity recorded
at a point P on the detector depends only on the attenuation along the line
of sight from the source to point P (see figure 3.1). X-ray imaging with
attenuation is based on this assumption, and in many cases it is sufficienty
good to produce quantitative images of the density of the sample. Mathe-
matically this can be expressed as

IP = I0 exp

[
−
∫

LP

(
µ

ρ

)

r

ρ(r)dr

]
, (3.6)

where I0 is the intensity that would be recorded at the detector when there is
no sample, (µ/ρ)r and ρ(r) are the mass absorption coefficient and density
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at point r, respectively, and integration is carried out along the line LP

from the source to point P . The integrand in the exponent is the linear
attenuation coefficient µ(r) = (µ/ρ)rρ(r), and the line-integral is

∫

LP

µ(r)dr = − log

(
IP

I0

)
. (3.7)

Variation of the attenuation for different positions of the sample gives im-
portant clues about the internal structure of the sample.

While (3.7) gives the line integral of the sample, the linear attenuation
coefficient µ(r) cannot be solved from a single radiograph alone, except for
homogeneous samples. In CT imaging the sample is rotated around the
z-axis and several radiographs (projections in CT terminology) are taken
at different angles of rotation φ, and this allows the reconstruction of µ(r).
Figure 3.3 shows the principle of CT schematically. The collection of projec-
tions for a given z-coordinate z0 is called a sinogram. Under the assumption
that the attenuation is the only effect, the sinogram can be expressed math-
ematically as a Radon transform of µ(x, y, z0) [9],

S(φ, x′, z0) =

∫ ∞

−∞
µ(x′ cos φ − y′ sinφ, x′ sin φ + y′ sinφ, z0)dy′. (3.8)

This is similar to (3.7), for any given φ, but now the integration route LP

has been explicitly written out.
There are several methods for inverting the Radon transform (3.8) so as

to obtain µ [9]. We use the filtered back-projection method for calculating
the tomographic images presented in this work [9, 77]

µ̂(x, y, z0) =
∫ π
0

∫∞
−∞ H(ν)

(∫∞
−∞ S(φ, x′, z0) exp[−2πix′ν]dx′

)

× exp[2πiν(x cos φ + y sin φ)]dνdφ.
(3.9)

In practice we have used the reconstruction given by the software package
MATLAB (macro iradon.m, Mathworks, Natick, Massachusetts) with linear
interpolation and filter H(ν) selected to be of the Shepp-Logan form [78, ch.
10]. The transform pair (3.8) and (3.9) is valid for any property of the sample
whose recorded value can be expressed as a line integral, so that in principle
other quantities besides the attenuation coefficient can also be reconstructed.

The accuracy of (3.9) requires that the sinogram is sampled sufficiently
densely in the angle φ and coordinate x′. In practical imaging situations
the sampling intervals are always finite, which limits the accuracy of the
reconstructed images. Methods that work better than (3.9) in the case
of sparse projections (i.e. ∆φ large) exist, making it possible to reduce
the number of projections in some cases [79–84]. Reducing the number of
projections reduces the dose, which in some medical imaging applications
may be the limiting factor.
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Figure 3.3: The principle of CT. On the left is shown the object (Shepp-Logan
head phantom) and projection at φ = 60◦. On the right is shown the complete
sinogram. Mathematiclly Radon and inverse Radon transforms connect the
object and the sinogram.

3.4 Analyzer Based Imaging

Figure 3.4 shows the principle of ABI. From the incoming beam that is
highly parallel and polychromatic a narrow energy band is selected by the
monochromator. The beam is then partially reflected by the analyzer crys-
tal (typically identical to the monochromator), depending on how well the
angle of incidence matches with the angle of incidence on the monochro-
mator. This type of setup, known as Bonse-Hart camera, is often used
in small-angle scattering studies [85]. The angular width of the reflection
curve of a crystal is only a few microradians (cf. section 2.3.2) so that the
monochromator and analyzer have to be oriented very nearly parallel for
the x-rays to pass through. The deviation of analyzer orientation from the
monochromator, rocking angle, is θR = cos−1(−n1 ·n2). When the analyzer
orientation is scanned, a rocking curve (RC) is recorded, denoted by R(θR).
Mathematically RC is the convolution of the individual rocking curves of
the monochromator and the analyzer, Rm(θ) and Ra(θ),

R(θR) = Rm(θ) ⊛ Ra(θ). (3.10)

An example of a rocking curve for a setup using Si 333 analyzer and monochro-
mator at 51.5 keV x-ray energy is shown in the inset of figure 3.4.



30 CHAPTER 3. X-RAY IMAGING METHODS

−5 0 5
0

0.2

0.4

0.6

0.8

1

θ
R

 [µrad]

N
or

m
al

iz
ed

 in
te

ns
ity

Monochromator

Analyzer

Sample

Detector

∆θz
θ

θB

θR

n1

−n1

n2

Incoming beam

k1 k0

x

y

z

Figure 3.4: A schematic figure of the setup used in ABI imaging, showing
the notation for the angles. The coordinate system convention is also shown.
The inset shows an experimental rocking curve (crosses) along with a fit (line)
recorded at ID17 at ESRF for a single detector pixel without a sample using the
x-ray energy 51.5 keV.
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The RC recorded without a sample is called the intrinsic RC, and denoted
Rint(θR). A sample modifies the intensity, direction and angular distribution
of the beam coming to the analyzer, thus changing the shape of the RC.
Examples of a possible effect of a sample on the RC are shown in figure 3.5.
The intensity coming from the sample consists of the direct and the scattered
beam. We denote the angular distribution of scattering by F (θx, θz), which
is normalized to unit area. The direct and the scattered beam are refracted
by the angle (∆θx,∆θz), and the absorption causes attenuation by a factor
exp[−µT ]. The intensity is divided so that fraction ξ remains in the direct
beam and fraction (1−ξ) is scattered. The intensity coming from the sample
is then

I(θx, θz) = I0e
−µT [

Direct beam︷ ︸︸ ︷
ξδ(θx − ∆θx, θz − ∆θz)+

Scattered beam︷ ︸︸ ︷
(1 − ξ)F (θx − ∆θx, θz − ∆θz)].

(3.11)
Analysis of I(θx, θz) can reveal absorption (e−µT ), refraction angle (∆θx,∆θz),
fraction of scattering (1−ξ), and angular distribution of the scattered inten-
sity (F (θx, θz)). Attenuation with scatter rejection (apparent absorption) is
e−µT ξ = e−µattnT .
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Figure 3.5: Examples of rocking curves for different cases: intrinsic curve (solid
line); refraction and attenuation (e−µT = 0.8), (thin dashed line); refraction,
attenuation (e−µT = 0.8) and scattering (thick dashed line).
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The analyzer lets part of the intensity through, depending on θR and the
angular distribution of intensity. Because the analyzer does not differentiate
between angles in the lateral direction (θx), the intensity is integrated over
the incoming beam width. Normalized by the incoming intensity, the RC in
the presence of a sample is

R(θR) =
1

I0

∫
Rint(θR − θz)

[∫
I(θx, θz)dθx

]
dθz. (3.12)

Integration in the lateral direction causes some information about the orig-
inal intensity distribution to be lost. Especially ∆θx cannot be recovered,
and for the F (θx, θz) we see only the laterally integrated profile. The other
parameters ξ, ∆θz and e−µT , can however be recovered.

The actual measurement of the analyzer rocking curve can be done only
for a finite set of angles, each with only a limited number of incoming pho-
tons, leading to sparse and noisy data, terminated at some maximum θmax.
These features further complicate the finding of the true shape of the in-
coming intensity distribution. There are several methods for analyzing the
RC shape in ABI, and we will now introduce some of these methods.

3.4.1 Rocking Curve Analysis Methods

The aim is to be able to quantify the shape of the RC using measurements
at as few rocking angles as possible. The shape of the intrinsic RC is known
accurately from measurements without a sample, and this information is
used by all the methods. Table 3.1 gives a summary of the different RC
analysis methods.

RC Series Expansion

By considering the Taylor expansion of the RC several different approaches
can be devised that give information on the change of peak position (re-
fraction), peak broadening (scattering) and the total area under the RC

(attenuation). The derivatives of the intrinsic RC, R
(N)
int (θR), are known,

and used in the Taylor expansion. Figure 3.6 shows a typical selection of
points that are used by series expansion methods.

By considering only the linear term, R(θ0 + ∆θ) ≈ R(θ0) + R′(θ0)∆θ,
the original DEI algorithm is able to resolve the refraction angle (θrefr) and
the attenuation (e−µattnT ) with good scatter rejection from two intensity
measurements taken at angles θL and θH [61]. This method works only when
the refraction angles are small enough so that the incoming angle remains
in the region where the RC is approximately linear, i.e. in the region of
steep slope in the RC, and that the slope of the RC does not change due to
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Table 3.1: Summary of different RC analysis methods. The N analyzer angles
used in some of the methods are usually evenly and symmerically distributed
around the central peak of the RC. The other angle positions are illustrated in
figure 3.6.

Analyzer
angles

Parameters
resolved

Note

DEI θL, θH ∆θz, e−µattnT Assumes no
scattering

E-DEI θL, θH, θTOP ∆θz, e−µattnT ,
σRC

W-DEI θL, θH, θTOP,
−θW, +θW

∆θz, e−µattnT ,
σRC, γW

Additional wide
angle parameter γW

MIR N ∆θz, e−µattnT ,
σRC

Gaussian fit N ∆θz, e−µattnT ,
σscat, ξ

Resolves scattering
fraction 1 − ξ

pseudo-
Voigtian fit

N ∆θz, e−µattnT ,
σscat, ξ

Resolves scattering
fraction 1 − ξ
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Figure 3.6: Typical points used in algorithms based on a series expansion of the
RC.
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scattering from the sample (i.e. R′(θL) = R′
int(θL)). Noise properties of the

DEI algorithm have been analyzed in [86].
If there is scattering, or there are refracting objects smaller than the

pixel size, the shape of the RC will change from the intrinsic one. Then
additional points can be used to quantify the change in the shape and peak
position. By considering points θTOE and θTOP (cf. figure 3.6) it is possible
to obtain the broadening and attenuation in the case of no net refraction, i.e.
θrefr = 0 [87]. With three points (e.g. θL,θH and θTOP in figure 3.6, chosen
so that R′′

int(θL) ≈ 0, R′′
int(θH) ≈ 0 and R′

int(θTOP) ≈ 0) it is possible to
obtain attenuation, broadening and refraction [69, 88]. This latter method
is called extended DEI (E-DEI).

W-DEI

Many features of scattering patterns appear often at angles much larger than
the width of the central peak, and E-DEI is not able to see these changes.
We introduce a wide-angle DEI (W-DEI) to analyze specifically scattering
coming at wider angles. It is based on E-DEI and uses a total of 5 analyzer
angles, giving in addition the intensity change at distance θW away from
the central peak. The value of θW is selected so that it is well beyond the
central width of the RC and larger than any refraction angles, so that we
get a true dark field image and see only the contribution of scattering. If a
priori knowledge on the position of some scattering peak exists, θW can be
selected to further match the position of the peak.

The regular E-DEI using 3 points is used to calculate the refraction
angle (∆θz), central peak broadening (σscat), and attenuation (e−µattnT ).
To calculate RC value at distance θW from the peak position, we use the
average of values measured at −θW and +θW,

R(θW + ∆θz) =
R(−θW) + R(+θW)

2
. (3.13)

In this we have assumed that the RC is symmetric. When ∆θz 6= 0, the
measured value is not exact, but an average of the values ∆θz above and
below the actual position θW , corresponding to linear interpolation from
these two values.

If there is no scattering, the only change to the RC value at distance
θW from the peak comes from attenuation. The fraction of scattering (com-
pared to the central peak height) at distance θW from the peak can then be
estimated by subtracting from the measured value an expected value based
on the assumption that only attenuation was present. We define the widea

angle scattering parameter as

γW =
R(θW + ∆θz) − e−µattnT Rint(θW)

e−µattnT Rint(0)
≈ R(θW + ∆θz)

e−µattnT Rint(0)
. (3.14)

aHere ’wide’ refers to wide in the context of RC, i.e. above a few microradians.
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Here the last equality is valid if the angle θW is large so that the intrinsic
intensity at that angle is negligible.

The value of γW depends on the total fraction of scattering (1−ξ) and on
the scattering function F (θx, θz), so that it is sensitive to changes in both.
On the other hand, via γW it is not possible to determine which of these
scattering related parameters has changed. Therefore γW can be seen as a
means of obtaining contrast in situations where changes in the scattering are
expected, but does not give quantitative information about the scattering
properties.

RC Central Moments

Another approach is to base the analysis of the RC shape on the central
moments of the RC [66, 67, 89]. Measurements at multiple rocking angles
around the zero position are needed, so that this method is also called mul-
tiple image radiography (MIR), which is the term we adopt to describe the
method based on the central moments. The nth central moment of the RC
is

Mn =
∑

i

R(θi)θ
n
i νi, (3.15)

where νi is a weighting factor that takes into account that the angles θi

might not be evenly spread. From the central moments, several parameters
relating to the shape of the RC can be extracted [89]

e−µattnT = M0/M0,int (3.16)

∆θz = M1/M0 (3.17)

σRC =
√

M2/M0 − θ2
0. (3.18)

The width parameter σRC measures the width of the RC, including both the
scattered component and the direct beam. Therefore the value depends on
not only the scattering width, but also on the scattering fraction.

RC Parametrized Function Fits

By following (3.11) the RC can be presented as a sum of the intrinsic RC
(which can be measured accurately) and a function F (θ) describing the
scattered intensity after lateral integration. This allows quantification of
the fraction of scattering (1 − ξ) and the width of scattering as separate
effects. The intensity in (3.11) is convolved with the intrinsic RC to get the
intensity profile seen at the detector

R(θR) = e−µT ξRint(θR − ∆θz)+
e−µT (1 − ξ)

∫∞
−∞ F (θ) × Rint(θ − (θR − ∆θz))dθ.

(3.19)
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Here ∆θz is the refraction angle in the vertical direction and θR is the rocking
angle.

In the simplest case F (θ) is assumed to be Gaussian with the standard
deviation σscat, so that

F (θ) =
1√

2πσscat

exp

[
− θ2

2σ2
scat

]
. (3.20)

By comparing (3.19) to the actual measured curve, the optimal values for
the four parameters (e−µT , ξ, σscat and ∆θz) are resolved by numerical opti-
mization. It is noteworthy that in this case the resolved σscat is proportional
to the width of F (θ) with the effect of scattering fraction separated to pa-
rameter ξ.

A more versatile approach is to use the sum of a Gaussian and a Lorentzian
function, the so called pseudo-Voigtian (pV), for the scattering [90],

F (θ) = ηG(θ) + (1 − η)L(θ), (3.21)

where G(θ) is a Gaussian function and L(θ) is a Lorentzian. The shape of
the pV is controlled by the mixing parameter η and the FWHM that sets
the widths of both G and L. This type of function has the advantage that
in addition to central broadening, depicted by the Gaussian, the intensity
coming into higher angles can be taken into account via the Lorentzian that
has long tails. Now there are five parameters (e−µT , ξ, σscat,∆θz and η)
to resolve when (3.19) is optimized numerically. The parameter η contains
information about the contribution of the tails of the RC. However, it is
reported in [90] that η is rather sensitive to noise in the images.

3.4.2 Noise and Properties of W-DEI

In addition to sources of noise discussed in section 3.2 the uncertainty and
oscillations in the analyzer crystal position add to the noise level in the ABI
images. The effect of different types of noise on the SNR as a function of
the rocking angle is illustrated in figure 3.7. The SNR is at maximum at the
peak of the rocking curve, and decreases in the flanks as the photon counts
decrease. A constant background has also a large effect in the flanks where
the photon counts are low. Oscillations of the analyzer crystal cause larger
effect near the center of the RC, where the reflectivity changes rapidly. In
this section we analyze the properties of W-DEI and how the method behaves
in the presence of noise.

Figure 3.8 shows how the scattering parameter γW behaves for different
combinations of σscat and the scattering fraction 1 − ξ. The RC is modeled
using the Gaussian approximation of scattering as in (3.20). Parameter γW

clearly depends on both the scattering fraction and F (θ), so that it does not
give quantitative information on either. However, γW may still give good
contrast for changes in either the scattering width or the scattering fraction.
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Figure 3.7: Signal-to-noise ratio at different parts of the rocking curve for a
single detector pixel. The number of incoming photons per analyzer position
is N0 = 1000, and the average number of recorded photons at angle θR is
R(θR)N0. The solid line corresponds to the SNR limited by photon noise.
The dash-dotted curve corresponds to the case with an additional background
(independent of θR) of 100 photons per rocking angle on the average. The
dashed line corresponds to the case where crystal vibrations cause the rocking
angle to have an uncertainty (Gaussian distribution, σ = 0.1 µrad).
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Figure 3.8: Value of log10 γW as a function of σscat and ξ.

The value of γW may depend on the refraction angle because the points
−θW and +θW sample the RC at different locations depending on how large
∆θz is. The linear interpolation in (3.13) is only an approximation, and this
is a source of error when ∆θz is not zero. The effect of refraction angle on
the determined value of γW is shown in figure 3.9 for different values of ξ
for the case of Gaussian scattering with the standard deviation of 2µrad.
The effect of ∆θz is rather small, indicating that γW may serve as a good
indicator of scattering even in the presence of refraction.

The parameter γW in W-DEI is measured at the flanks of the RC where
the intensities are low, so that the noise in the background has potentially
the most severe effect from the point of view of W-DEI (cf. figure 3.7). How-
ever, the effect of counting statistics is more fundamental than the crystal
vibrations or the background noise in that it cannot be eliminated even with
perfect instrumentation. We analyze the situation where the background
level and crystal vibrations have been essentially eliminated through careful
instrumentation. Figure 3.10 shows how repeatably γW can be determined
for a varying number of incoming photons. It can be seen that the varia-
tion of γW diminishes quite rapidly as the number of photons increases, and
a good level of accuracy is reached with a reasonable number of incoming
photons.
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Figure 3.9: Value of γW as a function of ∆θz for different values of ξ. The
scattering is Gaussian with the standard deviation σscat = 2µrad. The error
bars correspond to uncertainty of γW if the uncertainty of ∆θz has the standard
deviation of 0.3µrad.
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Figure 3.10: Behaviour of γW as a function of the number of incoming photons
Nphotons. For each of the 5 analyzer angles Nphotons/5 incoming photons were
used. Some of the values have been slightly displaced horizontally for clarity.
The scattering is Gaussian with the standard deviation σscat = 2µrad.
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3.4.3 CT Reconstruction of ABI Images

As already discussed in section 3.3, CT reconstruction is possible for quan-
tities that are line integrals of some property of the sample. Reconstructing
the scattering profile for each voxel is possible if the single scattering approx-
imation is valid, because in this case the scattering pattern is a line integral
of the sample. Therefore scattering into each angle can be reconstructed
independently. However, the contribution of multiple scattering is not com-
patible with the line integral property, because in this case the scattering
into a given angle may still be scattered into some other angle, and the total
scattering pattern is not simply a sum of the different scattering patterns
arising along the path of the beam.

Figure 3.11 shows an example of reconstructed scattering signal for a
computational phantom consisting of cylindrical background and six de-
tails. Scattering produces a wide central peak and a sharp side peak at
some distance from the center. The scattering fraction, central peak width,
and the side peak position differ between the details and the background.
We observe that it is possible to reconstruct the scattering with reasonable
accuracy. However, there is some variation in the reconstructed intensity
even in the areas where the intensity should be constant, as seen in figure
3.11(c). This artefact is due to multiple scattering, and disappears when
the scattering fraction is sufficiently small.
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Figure 3.11: Example of reconstructed scattering into the angle θR = 10µrad
(a). Scattering profiles from a detail and the background (b) from the positions
marked with circles in (a). Intensity in the horizontal profile, dashed horizontal
line in (a), at θR = 10µrad (c). Total scattering fraction was 16.5% at the
thickest position of the background.

Instead of reconstructing the full scattering profile, it is possible to first
extract some parameters of the profile, and then reconstruct the spatial
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variation of these parameters. It has been shown analytically that the pa-
rameters obtained in the MIR method are to good accuracy line integrals
of specific sample properties under the assumption of small angle scattering
and Gaussian scattering function [67]. Therefore CT images based on these
quantities can be reconstructed using standard CT algorithms, resulting
in attenuation coefficient, refractive index gradient, and USAXS parame-
ter maps. The reconstruction of such parameters is computationally more
efficient than doing the reconstruction for each scattering angle separately.

Figure 3.12 shows examples of reconstructed parameters for the compu-
tational phantom. All of the parameters presented are able to differentiate
the details from the background. Especially ξ and γW produce clear results.
There are considerable reconstruction artefacts present in the σscat calcu-
lated with E-DEI. E-DEI considers the slope of the measured rocking curve,
and when the RC is a combination of the direct and the scattered beams,
the slope does not change linearly with the addition of scattering (for ξ close
to 1 the slope is essentially unchanged from the intrinsic one, and for ξ close
to zero the slope is determined by the scattering). The σscat calculated with
MIR suffers from artefacts to a lesser extent, the main contribution coming
from the fact that the scattering pattern has Lorenzian tails.

Although in many cases it could be useful to reconstruct the whole scat-
tering signal, it may not be possible to do it in practice due to limited photon
statistics arising from dose considerations. To obtain good statistics in scat-
tering, the optimal sample should have a large scattering fraction. However,
this is just the case that gives the largest artefacts in the reconstruction of
the scattering signal. Therefore, extraction of parameters before the recon-
struction may be the best approach in practice. Another possibility that
has been suggested is to model the scattering pattern as a linear combina-
tion of a few well known basis scattering patterns, and then to reconstruct
the spatial distribution of the weighting factors for the different scattering
patterns [91].
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Figure 3.12: Reconstructed parameter maps for the computational phantom.
Mixing parameter ξ (a), σscat from E-DEI (b), σscat from MIR (c), and γW (d).
The limits for the gray scale values have been manually adjusted in order to
show a good dynamic range.



Chapter 4

Elastic Small-Angle X-Ray

Scattering

As seen in section 2.2.2 the atomic scattering factor is the Fourier transform
of the electron density of the atom. In the single scattering approximation
the same formalism can be expanded to larger structures so that the scat-
tered amplitude from an arbitrary structure is a Fourier transform of the
electron density. The electron density could then be reconstructed if the
scattered amplitude and the phase could somehow be measured. In fact,
only the intensity can be measured, and the electron density cannot be re-
constructed by direct inverse Fourier transform. Instead, a commonly used
approach for solving the structure of the scattering object is to calculate the
scattered intensity for an approximation of the structure, and to iteratively
refine the structure so that the calculated scattering profile resembles the
measured one as closely as possible. For large objects two additional factors
have to be taken into account: the finite coherence length of the beam and
multiple scattering. Both of these factors tend to wash out the features of
the scattering pattern, further complicating the analysis.

In this section we deal with the calculation of scattering patterns to see
what types of intensity distributions can be expected at the detector and
how these relate to the structure of the sample. We concentrate on small-
angle x-ray scattering (SAXS), and also deal with the related phenomenon of
multiple refraction. Experimental SAXS patterns from breast tissue samples
are presented. The purpose is to get a realistic idea of what scattering from
breast tissue looks like, so that this can be used in chapter 5 when the
visibility of changes in scattering in ABI is evaluated.

4.1 Scattering Calculations

The scattered amplitudes from different parts of the sample interfere to
form the scattering pattern. The observed quantity however is the intensity,

44
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and the structure of the sample cannot in general be solved directly with
the inverse Fourier transform. Using a model for the sample with a set of
variable parameters allows calculated intensities to be compared with the
measured intensity for the purpose of optimizing model parameters. This
approach is commonly used especially for SAXS measurements. In addition
to solving structures via scattering calculations, the calculations give insights
into how different properties of the sample affect the scattering patterns.

4.1.1 Calculation of Phase Differences

Calculation of phase differences for waves scattered from different locations
within the sample is at the heart of the scattering calculations. What ap-
proximations can be used depends somewhat on how large is the distance
between the scattering object and the detector (and also the distance be-
tween the source and the sample [92]). Two different cases can be distin-
guished: near field scattering (Fresnel) and far field scattering (Fraunhofer).
Figure 4.1 shows waves coming from points P1 and P2 to point D on the
detector. Using the notation of figure 4.1, the path length difference for the
two waves is

∆l = l2 − l1 =
√

l20 + (∆y + d)2 −
√

l20 + ∆y2 (4.1)

Expanding the square roots in Taylor series, we find that

∆l =
∆y

l0
d − d2

2l0
+ O

(
d

(
d

l0

)3
)

+ O
(

∆y

(
∆y

l0

)3
)

. (4.2)

The first term on the right hand side is the difference in path length in
the Fraunhofer case, ∆l = d sin 2θ. The second term is a correction that
becomes important when the angular size, αs = d/l0, of the scattering object
as seen from the detector approaches or exceeds the scattering angle 2θ.
The remaining terms are negligible as long as d ≪ l0 and ∆y ≪ l0, which
almost always is the case in practice. Therefore we can conclude that the
Fraunhofer approximation is valid whenever 2θ ≫ d/l0. The phase difference
is calculated from the path difference as

∆φ = 2π
∆l

λ
. (4.3)

In the x-ray regime the size of the coherently scattering volume is typ-
ically only some micrometres (cf. 2.1.2), and therefore the angular size of
the coherently scattering volume as seen from the detector is typically only
a few microradians. Therefore the Fraunhofer approximation is valid al-
most universally in x-ray experiments. However, when the scattering angle
is only a few microradians we may need to calculate the phase difference
more accurately using (4.1) [51, pp. 142–145]. The Fresnel approach is also
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Figure 4.1: Geometry used in the phase difference calculation.

needed if the source is close to the object, but we assume this not to be the
case [92, p. 188].

In the Fraunhofer case the phase difference for waves scattered from two
locations in the sample, separated by vector r, is [30]

∆φ = 2πs · r, (4.4)

where s is the scattering vector (c.f. section 2.2.2). The scattering vector
s can also be defined with angles 2θ and φ as shown in figure 4.2 using the
identities

sx = s cos θ cos φ
sy = s sin θ
sz = s cos θ sin φ.

(4.5)

Putting the components of s (4.5) into (4.4) gives

∆φ = 2πs(x cos θ cos φ + y sin θ + z cos θ sin φ), (4.6)

where r = (x, y, z). For small angles θ ≪ 1 we can use approximations
cos θ ≈ 1, sin θ ≈ θ, so that the phase becomes

∆φ ≈ 2πs(x cos φ + yθ + z sinφ). (4.7)

We see that when θ is small, the y-component of the coordinate contributes
only a little to the phase, and can be ignored in most cases of small-angle
scattering.
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Figure 4.2: A schematic figure showing the angles used to define the direction
of scattering. The choice of the coordinate system is also shown.

4.1.2 Summation of Amplitudes

When the phase φ(r, s) and the electron density ρ(r) for each point in the
sample are known, the singly scattered amplitude for perfectly coherent
incoming beam can be calculated as

A(s) = re

∫

V
A0(r)ρ(r) exp[−iφ(r, s)]d3r. (4.8)

Here A0(r) is the amplitude of the incoming beam, which from now on
will be assumed to be unity except when stated otherwise. The quantity
ρ(r)d3r is the amount of charge in a differential volume element around
r. The scattering amplitude (4.8) can then be understood as a sum of the
individual amplitudes from these differential scattering volumes. In the case
of Fraunhofer scattering, the phase is 2πs · r, and the calculated amplitude
is the Fourier transform of the electron density.

Integration of equation (4.8) analytically is only possible for some special
types of the electron density ρ(r), usually simple geometrical shapes, and
even then only when the Fraunhofer approximation is valid [93]. In other
cases, (4.8) has to be integrated numerically. One approach is to sample
the electron density at a discrete set of points rj, e.g. on a cubic lattice
or randomly selected points, and sum the scattered amplitudes from each
point,

A(s) = re

∑

j

ρ(rj) exp[−iφ(rj, s)]∆V, (4.9)

where ∆V = V/N is the volume of the scattering element, V is the volume
of the sample, and N is the number of discrete scattering elements. When
∆V is small enough, the result approaches that of (4.8).

For small scattering angles φ(rj, s) changes slowly as a function of rj

and therefore rather large ∆V can be used. Especially, for |s| → 0 only
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the average electron density contributes to the signal. For larger scattering
angles φ(rj, s) oscillates faster, and a smaller ∆V needs to be used. For
large scattering angles, however, the oscillations from large distances are so
rapid that they are washed out by the detector PSF or lack of coherence
(cf. 4.1.3), and a smaller V can be used. This allows the possibility that the
scattering patterns can be calculated by keeping a constant N and varying
∆V and V as a function of s.

In the Fraunhofer case in the SAXS regime, the y-component of the
coordinate contributes only a little to the phase as was already mentioned. It
is then possible to ignore the variation of phase with y, and use projection of
the electron density. Using (4.7) the scattered amplitude (4.8) then becomes

A(s, φ) = re

∫ ∞

−∞

∫ ∞

−∞
ρy(x, z) exp[−i2πs(x cos φ + z sinφ)]dxdz, (4.10)

where

ρy(x, z) =

∫ ∞

−∞
ρ(x, y, z)dy. (4.11)

The projection method is useful because it allows integration in the y-
direction to be independent of s, therefore speeding the calculation when
done numerically, e.g. using (4.9).

In some cases we can divide the scattering object to sub-objects that
are large enough to have some structure in their scattering patterns in the
angular regime of interest. For an object composed of N sub-objects having
amplitudes Aj(s) and positions rj the scattered amplitude is

A(s) =

N∑

j=1

Aj(s) exp[−iφ(rj, s)]. (4.12)

As a special case of (4.12) when Aj(s) = Ai(s),∀i, j we can divide the am-
plitude to be a product of the amplitude from a single object and the inter-
ference term resulting from the packing

A(s) = A1(s)

interference︷ ︸︸ ︷
N∑

j=0

exp[−iφ(rj, s)] . (4.13)

This can be used to test different packings when the structure of the objects
is well known, but their packing is unclear.

4.1.3 Termination, Coherence and Speckle

When the scattering amplitudes (and from there the intensities) are calcu-
lated using e.g. (4.12), there will be rapid oscillations in the results corre-
sponding to the largest interparticle distances in the sample. In real exper-
iments these rapid oscillations are not usually seen even though the sample
size may be quite large.
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Because all detectors have a PSF of finite width, they will average the
intensity over a small spatial region, causing averaging in the s-space. Rapid
oscillations of intensity disappear in this averaging process. Therefore it is
impossible to observe oscillations from objects placed far enough from each
other. The observed intensity from such objects is just the sum of the indi-
vidual intensities. Figure 4.3 shows the interference from two objects placed
at different distances from each other and how the interferences disappear
when averaged in the s-space. We see that at small R the oscillations are not
much affected, but at larger R they are greatly diminished. It is important
to note that the averaged quantity here is the intensity, not the amplitude.

R [nm]

s 
[n

m
−

1 ]

0 500 1000
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 500 1000
0

0.5

1

1.5

2

2.5

3

3.5

4

R [nm]

In
te

rf
er

en
ce

 te
rm

Figure 4.3: Interference from two objects at different distance R from each other
(left). On the right an example of the oscillations when averaged in s-space
between 0.030 nm−1and 0.035 nm−1(shown as the horizontal lines in the left
panel). This averaging correspond to the detector having a square PSF with the
width of 0.6 mm at 1 m distance from the sample, when using 10 keV radiation.

The coherence of the beam, i.e. the apparent source size and the energy
bandwidth, affect also how well the interferences between different scatterers
are visible. Both of these factors cause averaging in the s-space (much like
the PSF), and therefore wash out rapid oscillations, i.e. interferences from
objects at large distances. The coherence of the beam and the properties of
the detector can be combined to give a generalized coherence volume that
describes the largest volume that still gives a good interference pattern [17].
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The relative size of the coherence volume compared to the illuminated
sample volume has a role in how the scattered intensity is to be calculated.
Figure 4.4 shows the different possibilities of coherence and illuminated vol-
ume compared to the sample size. Each of these possibilities leads to differ-
ent results in the scattering. For most of the scattering in ABI the case of
small coherence volume is of interest. We however start from dealing with
the completely coherent case to see how the loss of coherence can be taken
into account in the calculation of the scattering patterns.
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Figure 4.4: Different possibilities for the size of the irradiated volume (thick
lines), sample (hatched area) and coherence volume (dashed rectangles).

The case where the sample size is small compared to both the beam size
and the coherence length is the easiest one to deal with computationally.
It is essentially described by (4.8) by setting A0(r) = 1, and shown in
figure 4.4 (a). In this case scattering from all points within the sample
is completely coherent, and speckle patterns can be observed. From such a
speckle pattern it is possible to do complete reconstruction of the electron
density of the scattering object, and to effectively solve the phase problem
of x-ray scattering [20,94–96]. Figure 4.5 shows the speckle pattern from a
single object composed of spheres. The speckle pattern is seen superimposed
on the concentric rings produced by the spheres.

The next case to be considered is that of fully coherent beam of finite
extent (figure 4.4 (b)). This means that the incoming amplitude A0(r) goes
to zero or diminishes significantly within the sample. In equation (4.8) the
incoming amplitude multiplies the electron density ρ(r). In the Fraunhofer
case the scattered amplitude is just the Fourier transform of A0(r)ρ(r), and
according to the convolution theorem [97, ch. 15.5], the result is given by
the convolution of the individual Fourier transforms. Therefore the scattered
amplitude becomes

A(s) = Ã0(s) ⊛ Ãinf(s), (4.14)
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Figure 4.5: Scattering from a single object with coherent beam (top), and
from multiple rotationally averaged objects where the different objects scatter
independently (bottom). The right panel shows the scattering object that was
used (an X composed of spheres with 50 nm diameter) and the horizontal
intensity profiles going through the middle of the scattering patterns.
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where Ã0(s) is the Fourier transform of the incoming amplitude, and Ãinf(s)
is the scattered amplitude in the case when A0(s) = 1.

For a Gaussian beam with the standard deviation σ the Fourier transform
is also a Gaussian with the standard deviation 1/σ. For an aperture limited
beam the beam profile is a box-function with the width Lb, and the Fourier
transform is a sinc-function with the period length 2/Lb. Convolution with
these functions smooths out the features of the scattering pattern.

In the cases shown in figure 4.4 (c) and (d), the size of the coherence
volume is significantly smaller than the irradiated sample volume. This
type of partial coherence is usual in x-ray experiments, and calculation of
intensities requires a different approach than in the totally coherent case.
Scattering coming from location at r0 interferes coherently only up to a
certain limiting distance Rlimit. Coherence can be described by a coherence
function γ(r) [19, 98, 99], which for a source with small angular size is a
Gaussian with γ(0) = 1 [19]. Scattering centered on atom at r0 interferes
with scattering only from atoms at locations r that are sufficiently close to
r0 so that γ(r − r0) > 0. The scattered intensity from an object can then
be calculated as [19]

I(s) =

∫

V1

∫

V2

γ(|r1 − r2|)A(r1, s)A
∗(r2, s)dV1dV2. (4.15)

Equation (4.15) involves a double integral over the sample volume, so that
calculation of intensity is essentially computationally more demanding when
partial coherence is involved than in the completely coherent case.

4.1.4 Rotationally Averaged Systems

When the scattering objects are all identical, consisting of N spherically
symmetric scattering units with the scattering factors fi, in random orien-
tations and scattering independently, the intensity is calculated by averaging
the intensities coming from different orientations. In the method developed
by Debye [100] the intensity is calculated based on the interatomic distances
dij and the atomic scattering factors fi as

I(s) =
N∑

i=1

N∑

j=1

fi(s)f
∗
j (s)

sin sdij

sdij
. (4.16)

Being rotationally averaged, the intensity depends only on the magnitude
s = |s| of the scattering vector and not on the direction. The scattering
units do not need to be atoms, but the object can be divided to any spherical
subunits, which makes possible to model the scattering object at the desired
level of accuracy.

If N is large the computation of scattering profile using (4.16) becomes
very time consuming, consisting of about N2 calculations of sin(sd) for each
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value of s. By discretizing the distances dij and using a distance histogram
H(di) the computational demand can be reduced considerably [101, 102].
In this case we however have to assume that the scattering factors fi are
identical for all the scattering units. This histogram method requires still
N2 operations for calculating the distances, but now this only has to be
done once instead of separately for each value of s. The intensity can then
be calculated as

I(s) = f(s)2
Nbins∑

i=1

H(di)
sin sdi

sdi
. (4.17)

In equation (4.17) some generality has been lost compared to (4.16)
because all the scatterers have to be identical. One method to overcome
this difficulty is to separate the pairwise histogram into separate histograms
between each different scatterer type [102]. This leads to calculation of
partial structure factors, whose weighted sum is the total scattering. This
works well when the number of different scatterers is small, which is often
the case when modeling biological molecules at the atomic level.

In the small-angle regime the scattering factors fi(s) can be thought to
be largely independent of s. In this case instead of just storing the number
of pairs in the distance range [di, di + ∆d[ we can store the sum of fifj for
all pairs whose distace is in this range. For this purpose we introduce the
pairwise structure factor histogram

g(di) =
∑

m,n

fmfnσmn(di), (4.18)

where

σmn(di) =

{
1, if dmn ∈ [di, di + ∆d[
0, otherwise.

(4.19)

From g(di) the intensity can be calculated as

I(s) =

Nbins∑

i=1

g(di)
sin sdi

sdi
. (4.20)

Equation (4.20) has advantage over (4.17) in that the scatterers do not
have to be identical, but still having the same advantage over (4.16) that
N2 distances have to be calculated only once and not for each value of s.
Compared to the partial structure factor method this is more practical in
cases when the number of different scatterer types is large. This can be the
case when the electron density is modeled as a smooth continuous function
that is then discretized, rather than using discrete atoms as the scattering
units.

In some cases the scattering objects are oriented along a common axis,
but randomly rotated about this axis. If the scattering pattern of each
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individual object is axially symmetric, and the locations of the scattering
objects are ri, scattering in the plane perpendicular to the symmetry axis
(scattering plane) can be calculated as [103]

Ieq(s) =
N∑

i=1

N∑

j=1

fi(s)fj(s)J0(sdij). (4.21)

Here dij is the distance of the scatterers in the scattering plane and J0 is the
zeroth order Bessel function of the first kind [97, ch. 11]. Scattering in the
plane perpendicular to the symmetry axis is called equatorial scattering.

The distance histogram methods work here as well, and the intensity can
be calculated as

Ieq(s) = f(s)2
Nbins∑

i=1

H(di)J0(sdi) (4.22)

for identical scatterers, and as

Ieq(s) =

Nbins∑

i=1

g(di)J0(sdi) (4.23)

for scatterers with varying scattering power but independent of s.

As has been seen, intensity from rotationally averaged systems can be
calculated based on pairwise distance histograms. Therefore this histogram
is the maximal information that can be obtained from scattering patterns
of such systems. This highlights the property of x-ray scattering that the
results are usually averages over a large volume of the sample, rather than
just an individual molecule.

4.1.5 Multiple Scattering Calculations

The single scattering approach used in equation (4.8) is a good approx-
imation when the sample scatters only weakly. However, in some cases,
especially for thick samples used in imaging, it may be necessary to consider
also radiation that has scattered multiple times in the sample. One way
to look at multiple scattering is that a scattering center at r in the sample
experiences not only the incoming amplitude, but also the amplitude scat-
tered from other parts of the sample [104]. This changes the amplitude and
the phase of the wave scattered from r. In turn, the wave emitted from
r interacts with all the neighbouring atoms, changing their scattering. In
ordered crystals the solution to this problem has been obtained through the
dynamical theory of diffraction [15].

In general, multiple scattering problems are difficult to solve accurately.
However, when scattering is concentrated in the forward direction, we can
use simplifying approximations that make multiple scattering calculations
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practical. We can then assume that the scattered beam sees the same part
of the sample as the direct beam sees. If the scattering angles are less than
1 mrad, and the sample size is 0.1 m, this is a good approximation to an
accuracy of 0.1 mm. In this case the sample will affect the scattered beam
coming from a point within the sample in exactly the same manner as it
will affect the direct beam coming from that same point. This allows the
sample to be divided into thin layers, perpendicular to the beam direction,
each of which has an impulse response defining the effect of scattering from
that layer.

Figure 4.6 shows the sample divided into multiple layers. Multiple scat-
tering can then be calculated by having each layer scatter the radiation
coming from the previous layer. This includes the attenuated direct beam,
as well as the combined scattering by the previous layers. Let In−1(s) be
the intensity coming from the previous layer to layer n and Fn(s) be the
impulse response of layer n. With these definitions it is straightforward to
write the outgoing intensity from layer n as

In(s) =

∫

s
′

In−1(s
′)Fn(s − s′)ds′ = In−1(s) ⊛ F (s)d. (4.24)

In the small-angle region we can present the beam direction by two angles
θx and θz, so that the impulse response of layer n becomes Fn(θx, θz). When
the intensity distribution coming to the sample is I0(θx, θz), and there are N
layers, the intensity emerging from the sample is calculated using consecutive
convolutions as

I(θx, θz) = I0(θx, θz) ⊛ F1(θx, θz) ⊛ F2(θx, θz) ⊛ . . . ⊛ FN (θx, θz). (4.25)

In practice the evaluation of (4.25) can be done in the Fourier-space
using the Fourier-convolution theorem [97, ch. 15.5], so that the convolution
is replaced by multiplication. Let there be M different types of layers in the
sample, type i having a total of Ni layers. Let F̂i = F{Fi} be the Fourier
transform of the impulse response of layer type i, and Î0 = F{I0} be the
Fourier transform of the incoming intensity distribution. Then the outgoing
intensity can be written as

I(θx, θz) = F
−1{Î0 F̂1F̂1 · . . . · F̂1︸ ︷︷ ︸

N1 times

F̂2F̂2 · . . . · F̂2︸ ︷︷ ︸
N2 times

· . . . · F̂M F̂M · . . . · F̂M︸ ︷︷ ︸
NM times

}.

(4.26)
In practice F̂i for different layer types can be calculated in advance, so that
M exponentiations and multiplications are enough to calculate the Fourier
representation of the outgoing intensity in (4.26).

Layer thickness ∆L in this approach is selected so that only little scat-
tering within a layer occurs, especially so that the probablity for a photon
to scatter twice within a single layer is negligible. However, too small a
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L = N · ∆L

∆L

Single layer

100 layers

Figure 4.6: Multilayer approach for multiple scattering calculation. The scatter-
ing patterns on the right show an example on the effect of multiple scattering
(the direct beam portion has been subtracted from these).

layer thickness should also be avoided, because it can increase the effect of
numerical inaccuracies in the calculation. The parameter ξ is defined for a
single layer to indicate the fraction of the intensity in the direct beam after
the beam has passed the layer (cf. section 3.4). Therefore after passing a
layer the fraction 1 − ξ of the outgoing intensity is scattered. After passing
length L in a material composed of layers with thickness ∆L the fraction
of the intensity in the scattered beam is 1 − ξL/∆L. These results will be
used in chapter 5 to take the effect of multiple scattering into account in the
imaging simulations.

4.2 Contribution of Refraction

Usually a beam of finite extent experiences different refraction at different
points of the sample. If the spatial frequency of this variation is low, the
variation in refraction can be picked up e.g. in ABI as a spatial variation
of intensity. However, for high spatial frequencies the variation cannot be
distinguished, and the signal from refraction looks much like the signal from
scattering.

The difference that can be observed between scattering and refraction is
that in scattering only part of the beam gets scattered, and there is always
a component of the direct beam (except for diffraction from highly ordered
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materials), while in pure refraction all of the beam is refracted, and there
is no direct beam component. The borderline between pure refraction and
scattering is not clear, and both of these phenomena do occur simultaneously
[105]. Refraction is the dominating phenomenon for particles that are large
compared to the wavelength [18, pp. 116–117].

Because refraction affects the whole beam, not just a fraction like the
scattering, it offers potentially a good source of contrast. Even for very
small density differences the angular beam broadening may be observable.
Furthermore, biological samples have structures that are in the proper size
range to produce refraction, but that are so small that they cannot be seen
in images as individual objects, diameter of the order of a few microns. We
study here the contribution of refraction in a material containing spherical
refracting particles.

4.2.1 Intensity Distribution from Spheres

Let spheres with radius R and refractive index n2 = 1 − δ2 be embedded in
a homogeneous matrix with refractive index n1 = 1 − δ1. For a ray going
through a single sphere the refraction angle depends on which part of the
sphere the ray hits, and on the difference of the refractive indexes. A ray
going at a perpendicular distance h from the center of the sphere (see figure
4.7) refracts with the angle

∆θ = 2

[
arcsin

(
n1

n2

h

R

)
− arcsin

(
h

R

)]
. (4.27)

This is valid when hn1/(Rn2) < 1, and for larger values of h there is a total
external reflection into angle ∆θ = π − 2θ1. For x-rays n1/n2 is close to 1
so that the total external reflection contributes only marginally.

The ray hits on the average N particles as it passes through the sample.
If the particles are randomly packed, the ray hits each particle at a random
location, and this leads to the ray experiencing a statistically similar refrac-
tion at each particle. For spheres the azimuthal angle φ has a symmetric
distribution, and a Monte Carlo method can be used to calculate histograms
of the ∆θ distribution. Figure 4.8 shows histograms of ∆θ for different N
and n1/n2 − 1, calculated using 106 rays. The distributions are approxi-
mately described by the Rayleigh distribution [106], and also resemble the
log-normal distribution [107]. The Rayleigh distribution would be an exact
description of ∆θ if the refraction angles in the x and z directions were
normally distributed. The difference from the Rayleigh distribution seen in
figure 4.8 is the result from the fact that the angular deviations in the two
directions are not exactly Gaussian but have longer tails on the side of larger
angles.

From the distributions of ∆θ several key observations can be made: 1)
there is no beam going to the direction of the initial incoming beam, and 2)



58 CHAPTER 4. ELASTIC SMALL-ANGLE X-RAY SCATTERING

θ1

θ1

θ1 θ2

θ2

R
h

∆θ

n1 = 1 − δ1 n2 = 1 − δ2

Figure 4.7: Geometry of refraction from a sphere: ∆θ = 2(θ2 − θ1) and
n1 sin θ1 = n2 sin θ2 from Snell’s law.
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Figure 4.8: Distribution of ∆θ for different numbers of spheres (N =
1, 2, 5, 10, 50, and 100 for the distributions from the narrowest to widest, re-
spectively). In (a) n1/n2 − 1 = 10−7 and in (b) n1/n2 − 1 = 10−8, notice the
different scales on the horizontal axis. The thick dashed curve shows in (a) a
fit by a Rayleigh distribution and in (b) by a log-normal distribution.
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the standard deviation and the peak position of the distribution are approx-
imately linear with n1/n2 − 1 and

√
N , and 3) the broadening is significant

even for small differences in the refractive index, such as |n1 − n2| = 10−8,
indicating that refraction broadening may serve as a good source of contrast.

4.3 Scattering Results from Breast Tissue Sam-

ples

We have studied breast tissue samples using SAXS and USAXS. Samples
of connective, adipose, and necrotic tissue, about 1 mm thick with 1 cm2

cross section were used. The scattering curves have been measured from s =
0nm−1 up to s = 0.3 nm−1, the upper limit corresponding to 2θ ≈ 30mrad
at x-ray energy of 12.4 keV. There are clear differences in the scattering
patterns coming from healthy and malignant regions [6]. Calculated scat-
tering patterns based on a cylindrical model of collagen fibrils have been
used to establish that the changes seen in the scattering patterns due to
malignancy can be largely attributed to structural changes in the collagen
fibrils [108]. Scattering results from various authors support the idea that
different breast tissue types can at least to some extent be differentiated
based on their scattering pattern [109–113].

Figure 4.9 shows the experimental scattering curves for healthy, ma-
lignant and adipose regions of one of the breast samples. The curves are
displayed on the same intensity scale so that comparison of the absolute
intensities is possible. The USAXS patterns have been measured with the
Bonse-Hart camera, and the SAXS patterns with the pinhole camera at
beamline ID02 at ESRF [114]. Scattering is weak compared to the direct
beam so that near s = 0nm−1 scattering can not be resolved with good sta-
tistical accuracy, and thus the actual data end at around s = 2 · 10−4 nm−1.

The main components that contribute to the scattering patterns appear
to be collagen fibrils in the connective tissue and lipid molecules in the
adipose tissue [6]. Collagen fibrils are typically 50 to 100 nm in diameter,
and they have an axial period with a length of about 65 nm [115]. The
former results in oscillations in the scattering patterns (Bessel peaks in figure
4.9), and the latter in rather sharp peaks (collagen peaks). The interfibrillar
packing of collagen fibrils resembles a hexagonal, but loses ordering at longer
distances. The average packing distance is around 100 nm [115], and the
first order peak is seen in figure 4.9 while the higher order ones are washed
away due to lack of long distance ordering.

4.3.1 Scattering Fraction

The fraction of intensity that is scattered is important in determining how
large doses are required to get sufficient counting statistics in the scattering
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Figure 4.9: Cylindrically averaged scattering curves from various parts of a
breast tissue sample from measurements made at beamline ID02 at ESRF [6].
The arrows show the peaks rising from different features of the sample. The
collagen peaks are due to periodic variation of the electron density along the
axis of the collagen fibrils, the Bessel maxima are from the cylindrical cross
section of the fibrils (indicating a rather narrow distribution), and the packing
peak is from the approximately hexagonal lateral packing of the fibrils.
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signal. The scattering profiles are normalized so that I(2θ) is the scattering
probability (1/steradian) for scattering into angle 2θ. The narrow ring of
scattering at angle 2θ covers the solid angle

Ω0 = dθ2π sin(2θ), (4.28)

where dθ is the width of the ring of scattering. By multiplying I(2θ) with
Ω0 we get the probability of scattering to the ring in the angular range
[2θ, 2θ + dθ[.

Let Γ(2θ0) be the total probability of scattering into angles above 2θ0,
i.e.

Γ(2θ0) = 2π

∫ π/2

θ0

I(2θ) sin(2θ)dθ. (4.29)

Because scattering has been measured only in a finite range, the accu-
rate calculation of Γ(0) is not possible, but lower bounds can be estimated
based on the data. For the healthy collagen Γ(0) & 0.36% and for the
necrotic tissue Γ(0) & 0.76%. These values are obtained for the range
1.78 · 10−4 nm−1 < s < 9.75 · 10−2 nm−1, and at least in this range the
necrotic tissue scatters about twice as much as the healthy collagen. The
scattering fraction increases with sample thickness as explained in 4.1.5.
Therefore when imaging real breasts there may be a considerable amount of
scattering, from several to dozens of percent of the outgoing intensity.

A fraction of scattering goes to the peaks in the scattering pattern, es-
pecially the collagen peaks, the Bessel peaks and the peak from the adipose
tissue. These peaks have been shown to differentiate healthy and malignant
breast tissue [4, 116]. In the examples in figure 4.9 the area under the 3rd
collagen peak for the healthy tissue corresponds to about 0.0005% of the
intensity, and the area under the adipose peak to about 0.005% of the inten-
sity. These are rather low fractions when compared to the total scattering
fraction (∼ 0.4%), and we see in chapter 5 that scatter rejection gives much
better SNR than methods based on the evaluation of the scattering peaks.

4.4 Central Peak Widening

Widening of the central peak is seen in ABI measurements for some sam-
ples, such as paper and PMMA spheres [90]. For the breast tissue samples,
however, there is no appreciable widening of the central peak as seen in
figure 4.10. This is a consequence of the fact that the scattering fraction is
very small as seen previously, and therefore near the central peak the direct
beam dominates.

Central peak widening from PMMA spheres and paper (figure 4.11) can
be seen as an evidence of strong scattering in the angular range of the
intrinsic RC. Using analysis with pseudo-Voigtian functions [90], the RC for
the PMMA sample is seen to be of nearly complete scattering, and for the
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Figure 4.10: The central peak as seen for healthy and necrotic tissue.
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paper sample the RC is broadened by about 40% scattering with the rest of
the intensity remaining in the direct beam. For the 100% scattering from
PMMA spheres the broadening may be more correctly seen as the results of
multiple refractions within the sample, instead of scattering.

Two important conclusions can be drawn from these results on the cen-
tral peak width. First, the width of the central peak does not reflect only
the scattering width, but also the scattering fraction. This implies that
the scattering width cannot always be obtained directly from the RC width
(e.g. by calculating the standard deviation), and a method that separates
the scattered and direct beam is preferable in this respect. A second aspect
is that for some scattering samples the fraction scattered into neighbour-
hood of the central peak is very small, even though there is considerable
scattering at larger angles. This leads to the possibility that for these types
of samples the signal quite far from the central peak may give the best
contrast, reminiscent of dark field imaging in optical microscopy.
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Figure 4.11: Widening of RC due to PMMA (a) and paper (b) samples. About
1 mm thick layer of 100 nm diameter PMMA spheres were used in (a), and 11
layers of paper (about 1.1 mm total thickness) were used in (b).



Chapter 5

Simulation of Analyzer

Based Imaging

5.1 Overview

ABI imaging has been simulated previously from many points of view. Ge-
ometrical optics simulations on a rod have been used to show that the re-
fraction angle SNR from DEI is better than the conventional absorption
SNR [117]. Simulations based on wave-optics have been used to see the
combined effect of analyzer and propagation [60,118–120], and it was found
that propagation effects do affect the ABI images, and that under certain
circumstances the effects can be combined to enhance the visibility of ob-
jects. Simulations of refraction have been used to study the weak-object
and geometrical optics approximations in the reconstruction of the refrac-
tive index in the case of partially coherent radiation [121], showing that
strong artefacts appear near object edges if the validity conditions of the
two approximations are violated.

Scattering has been used in imaging simulations, especially in the role
of background scattering that reduces the SNR [122–125]. The possibility
of using the scattering profiles of biological tissues in photon transport MC
programs has also been demonstrated [126,127]. In ABI imaging scattering
has been simulated by convolving the RC with an approximated sample
impulse response, usually a Gaussian [66,89,128]. The broadening of the RC
has also been studied using geometric optics and sub-pixel sized refracting
spheres [67], and the results confirmed that the parameters in MIR are line-
integrals of the sample.

Our aim is to quantify how different forms of scattering are visible for
phantoms that resemble objects in real medical imaging situations. For this
purpose a ray tracing program has been developed that takes into account
absorption, refraction, and the accumulated halo of SAXS as the beam trav-
els through the sample. We simulate a typical ABI setup (figure 5.1) with

65
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identical monochromator and analyzer crystals in the nondispersive setting.
The vertical opening angle of the beam is made larger in the simulation
than what it is on synchrotrons so that vertical scanning of the sample is
not needed.

x

y

y

z

Source
DetectorSample

Monochromator Analyzer
Top

Side

Figure 5.1: Schematic presentation of the simulated imaging system.

5.2 Ray Tracing ABI Images

In ray tracing methods the incoming beam is divided into small sub-beams,
and an infinitesimally thin ray is projected through each sub-beam [129, ch.
12]. The ray is traced through the sample and the interactions with the
sample are calculated. The behaviour of the ray is taken to represent the
behaviour of the whole sub-beam. By its nature the ray tracing method
is based on the validity of the geometrical optics approximation so that
intensities from different sub-beams are added incoherently.

5.2.1 Ray Interactions With the Sample

Figure 5.2 shows an example of a ray propagating through a sample. The
sample is composed of geometric objects, each with uniform material prop-
erties. The ray is traced through the sample, and at each object boundary
the refraction angle is calculated. At the boundary the incoming beam di-
rection is ŝ1, the surface normal is n̂ and the refractive indexes of the two
materials are n1 and n2. The outgoing beam direction ŝ2 is in the plane
spanned by n̂ and ŝ1 and is

ŝ2 = (cos δθ ∓ b cos θ)ŝ1 ± bn̂, (5.1)
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where b =
√

(1 − cos2 δθ)/(1 − cos2 θ), and the upper signs are used when
n2 < n1 and the lower signs otherwise. Here δθ = (n1 − n2) tan θ (Snell’s
law), and cos θ = n̂ · ŝ1. In this we have assumed that δθ ≪ 1 (which in
practice is always the case for x-rays), so that the first order suffices.

n̂

ŝ1

ŝ2

δθ

θ

Ray

Sample objects

n1 n2

Figure 5.2: An example of a path that a ray takes when propagating through a
sample.

The ray travels through N different objects, traversing length Li in ob-
ject i (possibly in discontinuous segments). Each object modifies the inten-
sity distribution based on the object’s material properties and Li by atten-
uating the beam and redistributing the intensity via scattering into a halo
around the central beam. The effect of object i on the intensity distribu-
tion I ′(θx, θz) is e−µiLiGi(θx, θz) ⊛ I ′(θx, θz). When the incoming intensity
distribution is I0(θx, θz) the intensity distribution after passing the whole
sample is given by

I(θx, θz) =

Attenuation︷ ︸︸ ︷
e−µ1L1 · e−µ2L2 · . . . · e−µN LN ×

[

Redistribution of intensity via scattering︷ ︸︸ ︷
G1(θx, θz) ⊛ G2(θx, θz) ⊛ . . . GN (θx, θz) ⊛ I0(θx, θy)].

(5.2)
Each object’s scattering function Gi(θx, θz) is calculated via the multiple
scattering formalism developed in section 4.1.5.

In the practical implementation the impulse responses and the scattering
halos are stored in two dimensional arrays of N × N elements. Typically
N = 128 which allows rather rapid calculation and still enables the scat-
tering patterns to be modeled with good precision. This approach is quite
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general, working on all types of SAXS patterns, and allows the broadening
of the scattering pattern to be taken into account, including the effects from
multiple scattering.

5.2.2 Computational Phantoms

Phantoms are used in imaging as objects with known properties so that the
imaging methods can be evaluated in a quantitative manner [3,75,122–124,
130–134]. We base our calculations on phantoms composed of geometrical
objecs (ellipsoids and cylinders) with specific material properties.

Material Properties

Each object in the phantom is uniform, but different objects may have dif-
ferent material properties. The material properties consist of the elemen-
tal composition (in weight fraction per element), the density (in gm/cm3),
and a description of the scattering. For the material composition we use
throughout the following values (Z : weight %) 1:10.2%, 6:14.3% , 7:3.4%,
8:70.2%, 11:0.2%, 15:0.3%, 16:0.3%, 17:0.2%, 19:0.3%. This corresponds to
the soft tissue model found in the literature [29]. The density and scattering
properties are then varied to create contrast.

The single scattering pattern for the materials is defined for a layer
thickness of 0.1 mm. The scattering function F (θx, θz) is discretized in the
simulation so that we have F (θi, θj) defined for a finite set of angles θi

and θj. The single scattering is assumed to be axially symmetric, and it
is described by a Gaussian central peak and a Gaussian ring around the
central peak. This allows the modeling of central broadening as well as
additional details at higher angles. The shape of the single scattering profile
is defined by four parameters (ν, σ1, σ2, and s0), see figure 5.3 for definitions.
In principle any axially symmetric scattering pattern can be generated as a
sum of distributions shown in figure 5.3.

5.2.3 Dividing the Beam into Sub-beams

Only a finite number of sub-beams can be used to calculate the images, and
some attention has to be paid to how this division is done. The simplest
strategy is to divide the bounding rectangle of the phantom into a uniform
grid. In many cases this uniform sampling strategy leads however to either
unnecessarily long computation times, or too large sub-beams for proper
sampling of all sample details. Therefore a better strategy is to use adaptive
sampling so that areas with details get smaller sub-beams than areas that
are rather uniform. This type of non-uniform subdivision is commonly used
in ray-tracing algorithms [129, ch. 14].

Figure 5.4 shows an example of a beam divided with two possible meth-
ods with equal resolution at places of interest. The algorithm that we use
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σ1

σ2

s0

s

Figure 5.3: An example of a scattering profile (with the 2 dimensional version
in the inset) with the parameters defining the profile shape. The central peak is
defined by width σ1, and the ring by width σ2 and position s0. The parameter
ν is defined to be the fraction of scattering going to the central peak, so that
the intensity ratio of the central peak to the ring is ν/(1 − ν).
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divides the beam into four equally sized sub-beams, and recursively contin-
ues the division of each sub-beam until it is either smaller than required by
the objects it intersects, or it does not intersect any of the sample objects.

Cylinder Sphere

Figure 5.4: Example of uniform sampling (on the left) and adaptive sampling.
The beam is sampled at the centers of the squares. The enlargement shows
how a sub-beam could be sampled stochastically.

We use a simple approach for subdividing the beam that starts with
a uniform subdivision. Each sub-beam is then considered separately, and
subdivided further if it intersects an edge of an object. The subdivision is
continued until the sub-beams do not intersect any object edges, or a pre-
defined resolution limit is reached. This approach allows the resolution to
be higher at the edges, where most of the artefacts originate, while keeping
sufficiently low resolution at other areas to facilitate quick calculation.

After a suitable subdivision of the beam has been made, each sub-beam
is considered separately, and one ray is sent through the center of the sub-
beam rectangle to calculate attenuation and scattering. Refraction of the
beam is more sensitive to artefacts near the edges of the objects than at-
tenuation or scattering, so that sampling at a higher resolution is used for
the determination of the refraction angle. For each sub-beam Nstochastic rays
whose locations within the sub-beam’s rectangle are randomly selected are
used to sample the possible refracted direction of the sub-beam. The median
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of the resulting directions is taken, and this is used to calculate the refraction
angle for the sub-beam. This type of stochastic sampling is also common
in other ray-tracing methods, as complementary to the regular subdivision
method [129, ch. 14].

5.2.4 Ray Interaction with the Analyzer and Detector

After the ray has gone through the sample, it is propagated to the detector
via the analyzer crystal. At this point the ray propagates to direction ŝ1 and
the intensity has the distribution I(θx, θz) around the main direction. The
analyzer attenuates the incoming beam according to the intrinsic RC and
the angle at which the beam meets the analyzer. Here θx and θz describe the
angular deviation from ŝ1 in the coordinate system of the refracted beam
(x̂′, ŷ′, ẑ′), where ŷ′ is parallel to ŝ1 and x̂′ is in the xy-plane.

The analyzer sees the angular changes only in the yz-plane. For the
scattering component at angle (θx, θz) the angle with respect to the y-axis
in the yz-plane is θyz = tan−1(ŝ1 · ẑ)+ θz = ∆θz + θz, where the first term is
due to refraction and the second due to scattering. The reflection coefficient
for this component at rocking angle θR is Rint(θyz −θR), and the intensity of
the scattering component arriving at the detector is I(θx, θz)Rint(θyz − θR)

For each scattering component the beam position p1 at the detector is
calculated based on the beam position at the sample plane p0, distance L2+
L3, the direction of the beam (ŝ1 + the scattering angle), and the analyzer
angle (which affects the z-coordinate). See figure 5.5 for an illustration.
When p1 is known, a rectangle of size w′

sub × h′
sub is centered on the point,

corresponding to the size of the sub-beam that was used (magnified by the
factor (L1 +L2 +L3)/L1 from the sub-beam size at the object plane). Each
detector pixel is checked for its overlap with the rectangle, and intensity
is added according to the size of the overlapping area multiplied by the
intensity transmitted through the analyzer. The values recorded at the
pixels are therefore areas, which when multiplied by the intensity give the
flux at each pixel.

5.2.5 Dose Calculation

The dose on the sample is recorded by dividing the sample into small cu-
bic volume elements (voxels), and keeping account of the accumulated dose
in each voxel. For each voxel the material properties are taken from the
object that is located at the center point of the voxel. Each ray is propa-
gated through the sample, and the absorption in each voxel is calculated.
A realistic sample size is about (100mm)3, and in order not to have an
excessive number of voxels, a voxel size of (0.5mm)3 is used. The dose is
thus calculated quite roughly, and aliasing effects do occur in this approach.
Therefore the actual dose images presented are further smoothed with a fil-
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Figure 5.5: Schematic figure showing how the position of the beam at the
detector is determined. The overlap of the sub-beam with the detector pixel
array is shown also.

ter. An example of a calculated dose map for a phantom is shown in figure
5.6.

In the dose calculation we have not taken into account the effect of
scattering. Due to scattering, especially scattering at high angles near the
backscattering regime, the photons travel longer distances within the sample
so that absorption increases. When calculating the entrance surface dose we
have taken into account only the photons from the incoming beam. In reality
there are also photons scattering from within the sample. These photons
travel through the sample a longer distance than the photons going directly
through, and thus the scattered photons contribute so as to increase the dose
in the sample. Especially backscattering increases radically the distance
traveled in the sample. At the entrance surface this typically contributes a
factor of the order of about 1.1-1.6 to the dose [135]. Therefore the dose maps
calculated here are not quantitative, but give qualitatively correct results
to within a factor of about 1.5. We denote by Dskin the dose (ignoring
the scattering) calculated at the entrance surface of the phantom. More
precise calculations could be done via Monte Carlo simulations following
the trajectories of the photons and ionized electrons [136], but for us the
correct order of magnitude of the dose is enough, and the simpler simulation
suffices.
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Figure 5.6: Example of a dose map for a phantom consisting of cylinder of soft
tissue containing different sizes of cylinders made of bone. CT image was taken
with a full 360 degree rotation with projections at 1 degree increments. The pho-
ton energy was 51.5 keV, the flux at the sample was 2.9×108 photons/s/mm2,
and the irradiation time was 20 ms for each projection.
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5.2.6 Image Normalization and Processing

The fractional intensity I/I0 is used in the calculations (here I0 is the in-
coming intensity at the location of the sample). To convert to real photon
counts the calculated values are multiplied by the actual photon flux after
the monochromator [photons/m2/s], the DQE, and the exposure time [s].
The dose maps are normalized by multiplying with the exposure time, the
flux and the energy per photon.

The images are then further processed to imitate the characteristics of
the imaging setup that were not taken into account in the previous steps.
Convolving the results with the PSF of the imaging setup softens sharp
features in the image, but also decreases the effect of artefacts that may
remain from the discrete sampling with rays. Then the noise is taken into
account, which is essential for the evaluation of the SNR. We assume an
idealized imaging setup, so that the only source of noise is from the counting
statistics, which gives a lower limit for the noise in practice. The parameters
used in the simulation are shown in table 5.1.

L1 150 m
L2 0.1 m
L3 0.1 m
Pixel size 47µm
σPSF 50µm
DQE 1
Monochromator Si 333
Analyzer Si 333
Photon Energy 51.5 keV
I0 2.9 · 108 phot/s/mm2

Table 5.1: Parameters used in the imaging simulations. These correspond
roughly (except L2, L3 and DQE) to the ones used at ID17 at ESRF (cf.
table 2.2).

5.2.7 Analysis of the Simulation Method

Key Approximations in the Simulation

After passing the monochromator the beam is assumed to be completely
monochromatic from the point of view of absorption, refraction, scattering
and dose calculations. For Si 333 reflection ∆E/E ≈ 10−5 at 50 keV, which
results in ∆µ/µ . 10−5 and ∆δ/δ . 2 · 10−5 for light elements, and ∆s/s ≈
10−5. As the refraction angle is proportional to δ, and the scattering angle
(in the small angle regime) to s, the assumption of monochromatic beam is
a good approximation.
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Propagation effects are not taken into account in the geometrical optics
simulation. For sufficiently spatially coherent beams with propagation dis-
tances of over 1 meter, the effects from propagation are clearly visible in
ABI images, especially near the edges of objects [120, 121, 137]. Therefore
the simulations corresponds to the case where either the spatial coherence of
the incoming beam is very small, or the analyzer and the detector are placed
immediately after the sample so that the propagation length is small, which
does not yet show good propagation contrast [3]. The visibility of prop-
agation effects requires better spatial coherence than what is required by
ABI [3], so that it is possible to do ABI imaging without the propagation
effects by keeping the coherence at a suitable level.

Artefacts

Due to the digital nature of calculation some artefacts remain that are not
seen in real measurements. Especially, before taking into account the de-
tector PSF, edges are seen to be accentuated by the scattering signal. This
is due to the abrupt change in scattering and absorption properties at the
edge. This effect is most prominently visible in the absorption image taken
without the analyzer, and even there it is so small that it is washed out by
smoothing with the detector PSF.

The termination of the scattering function F (θi, θj) at some maximum
angle is a potential source for artefacts. We have mostly used 128 × 128
values of s elements with ∆s = 2 · 10−5 nm−1. Therefore any scattering
going beyond s = 1.3 · 10−3 nm−1 is lost. This causes additional scatter
rejection that can be seen even in the images calculated without the analyzer.
This is not a problem for narrow Gaussian scattering patterns, but if a
Lorentzian with long tails is used the effect may become visible. The level
of this artefactual scatter rejection can be diretly estimated from the images
calculated without the analyzer, and if artefacts are too large the calculation
can be repeated using larger angles for the termination or larger ∆s.

The size of ∆s affects also how scattering is seen in the detector. If
∆s corresponds to an angle that is larger than the FWHM of the intrinsic
RC, then oscillations in the recorded RC are seen. Therefore we keep ∆s
small enough so that the oscillations do not become too large, in practice
∆s = 2 · 10−5 nm−1 or ∆s = 4 · 10−5 nm−1.

5.2.8 Scattering and Refraction Example

We use two phantom geometries (shown in figure 5.7), each consisting of
a background and six embedded details. The cylinder details are used to
study the effect of pure scattering contrast, and the sphere details are used
to study scattering, refraction and absorption. The size of the largest detail
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(1 cm) is of the same order of magnitude as the typical size of breast cancer
lesion at detection [138].

10 mm

0.5 mm

TopTop

Front Front

Phantom 1 Phantom 2

Figure 5.7: The geometry of the two phantoms used. In phantom 1 the details
are cylinders, and in phantom 2 they are spheres.

At first we illustrate the general properties of various contrast mecha-
nisms, and therefore choose material properties that give rather good con-
trast. For the background and the cylinder objects we use the density
ρ = 1.00 g/cm3 , and for the spheres ρ = 1.01 g/cm3 . The background pro-
duces no scattering (i.e. ξ = 1). The details have purely central scattering
with σ1 = 10−3 nm−1. For the cylinder details the scattering fraction varies
from 1% to 11% (due to changes in ξ), and for the spheres the scattering
fraction (at the centerline of the sphere) varies from 1.2% to 11% due to
changes in the sphere size.

We study the following parameters: absorption, attenuation with scatter
rejection (E-DEI), ∆θz (E-DEI), σMIR, and γW (W-DEI). These are shown
in figure 5.8 for the cylinder details with a noise level corresponding to
Dskin = 1mGy. As can be seen σMIR, γW and the scatter rejection image all
show the signal from scattering, but ∆θz and absorption do not. The latter
confirms that the level of artefactual scatter rejection due to the termination
of F (θi, θj) is insignificant in this case. There is also difference in σMIR

between different cylinders showing the effect of widening due to increased
fraction of scattering (and also to a small degree due to increased multiple
scattering). In this case of no scattering from background the attenuation
image gives the best SNR. This is due to the fact that it contains signal from
the scatter rejection, and therefore is sensitive to changes in the scattering
fraction. The other scatter related parameters depend partially on the shape
of the scattering and partially on the scattering fraction, and are not as
sensitive to changes in the scattering fraction as the attenuation image.

For the sphere details the effect of density change appears in absorption,
attenuation and ∆θz, as seen in figure 5.9. The scattering related parameters
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Figure 5.8: Images of the cylinder details for Dskin = 1mGy for the case when
there is no scattering from the background. The numbers on the horizontal
axes indicate the SNR for the details in question.
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show also contrast, but due to the smaller size of the spheres as compared to
the cylinders, the signal is somewhat weaker than in the case of the cylinder
details. The refraction contrast demonstrates that the SNR does not depend
appreciably on the size of the sphere, because the signal comes only from the
edges. The SNR for all the parameters is to a good accuracy proportional
to

√
Dskin, which shows that in the presence noise from counting statistics

only, each method benefits equally from improved counting statistics due to
increased dose.
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Figure 5.9: Images of the sphere details for Dskin = 1mGy for the case when
there is no scattering from the background. The numbers on the horizontal
axes indicate the SNR for the details in question.
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5.3 Visibility of Scattering

5.3.1 Overview

In the examples in 5.2.8 the scattering objects were embedded in a non-
scattering background, which produced good contrast, especially through
scatter rejection. In some cases this may be realistic, such as for bones
embedded in soft tissue as has been observed with the grating interferometry
technique [139]. In some other cases the differences are not so clear, and
then the goal is to be able to tell apart different types of scattering from each
other. There are two sources of contrast: i) the variation in the scattering
fraction, and ii) the variation in the scattering shape. We consider these
separately.

We consider two types of scattering patterns: i) purely central scattering
where the changes appear in the central peak of the RC, and ii) scattering
into an axially symmetric peak at some distance from the center. The first of
these situations is more amenable to ABI imaging, as the effect of scattering
is directly visible in the shape of the central peak, and is thus quantified by
measurements at a few analyzer positions around the peak centre. However,
from breast tissue there is only little scattering into the forward direction,
and scattering into the peak at a wider angle corresponds more closely to
what might be seen when imaging the breast.

Before going to the detailed simulations we illustrate how different scat-
tering patterns are transmitted by the analyzer. As was seen in section
3.4, the analyzer crystal is sensitive to changes only in θz of the incoming
radiation, and changes in θx do not affect the transmission. Figure 5.10
illustrates this. Equation (3.12) shows that the intensity is convolved with
the intrinsic rocking curve, and integrated in the x-direction. For the axially
symmetric scattering patterns this means that scattering coming to angle
2θ contributes to intensity recorded at all rocking angles θR <= 2θ.

For some scattering shapes the effect of lateral integration is mathe-
matically simple. For example a Gaussian scattering profile, I(θx, θz) ∼
exp[−(θ2

x+θ2
z)/2σ], remains unchanged by lateral integration, and for I(θx, θz) ∼

1/(θ2
x + θ2

z)
n/2, with n > 1, which is commonly observed in SAXS, lateral

integration produces I(θR) ∼ 1/θn−1
R [140]. Figure 5.11 shows the effect of

lateral integration for two scattering patterns. Noteworthy is that for the
distribution from multiple refractions (cf. section 4.2), the integration brings
considerable intensity into the forward direction as well. This underlines the
fact that scattering and multiple refraction are very similar phenomena from
the point of view of ABI. For the peak at high angles there is also significant
intensity in the forward direction, but this appears as a rather featureless
background signal.

The angular passband ∆θFWHM of the analyzer is fixed by the properties
of the crystal, while the angular width of the scattering pattern, σscat, may
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Figure 5.10: Illustration of analyzer pass-band (horizontal lines). The intensity
passing the analyzer is integrated in the direction of sx.

vary based on the properties of the sample. The fraction of scattering pass-
ing at a given analyzer angle is proportional to σscat/∆θFWHM. Therefore
scattering patterns that are wide compared to the analyzer passband give
only very little intensity for any given analyzer angle, and recording them
completely may result in prohibitively high dose in ABI imaging. For exam-
ple, the first collagen peak in the breast tissue samples is at s = 0.015 nm−1,
which at 50 keV x-ray energy corresponds to 2θ = 0.36mrad. To record the
whole scattering pattern up to this angle would require the use of the order
of 1000 analyzer positions, which in most cases is not practical.

5.3.2 Scattering in the Central Peak

Let the scattering be central and Gaussian with σ1 = 1.59 ·10−4 nm−1 in the
background. In the details σ1 is 1–6% larger than in the background. The
scattering width corresponds to about 3.8 µrad at 51.5 keV x-ray energy,
being therefore about three times the width of the FWHM of the intrinsic
RC. This angular range corresponds to a particle size of several micrometers,
and thus the origin of this central broadening is more likely due to refraction
than pure scattering. The scattering fraction is 10% of the outgoing intensity
for both the details and the background.

Examples of the calculated RCs are shown in figure 5.12. There are
small but clear differences between the RC of the background and that of
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Figure 5.11: Axially symmetric scattering profiles (solid lines) and the corre-
sponding profiles after lateral integration (dashed lines). Shown are a profile
from multiple refraction (a), a strong peak at larger angles (b), and a peak on
top of a 1/(s + ǫ) background (c).
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the detail. Even though the changes in the single scattering patterns are
in the width of the central peak, there appears also differences at higher
angles due to multiple scattering, indicating that the tails can also serve as
a potential source of contrast.
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Figure 5.12: Recorded intrinsic RC (attenuated with the effect of absorption
and scattering) and the RC from the background (a). Difference between RCs
for the background and the detail, with the error bars showing the variation due
to photon statistics (variation divided by 10 for clarity) (b). The counts are
obtained for the case Dskin = 1mGy.

The differences in counts per pixel in figure 5.12 are quite small, and
therefore the parameter maps shown in figure 5.13 for Dskin = 10mGy show
still rather poor SNR. Here γW shows clearly the best SNR, and σMIR and
the attenuation image are rather close to each other. By looking at figure
5.12 (b) there are peaks in the difference curve quite close to the position
where γW is calculated (around 10 µrad), partly explaining why γW has the
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best SNR. For scattering with larger width the differences appear at higher
angles, and γW may not be as optimal as here, although if the approximate
scattering angles are known a priori, then γW can be based on the RC
recorded at angles corresponding to maximum scattering. On the other
hand, although the changes near the center are the largest, they are masked
by noise due to the intensive direct beam (90% of intensity in this case).
This implies that small differences in the scattering width of the central
peak are difficult to quantify when the scattering signal is overwhelmed by
the direct beam.
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Figure 5.13: Images of the cylinder details with 10% central Gaussian scattering,
and varying scattering width, 1–6% larger in the details (increasing from left
to right) than in the background. The SNR values displayed on the horizontal
axes are calculated for Dskin = 10mGy.

Figure 5.14 shows the parameters and SNR values obtained when the
sample is similar to what was used in figure 5.13, but now with 90% of
the outgoing intensity being scattered. This increase from 10% to 90%
should increase the SNR of scattering related parameters by about a fac-
tor of

√
9 = 3 based on the counting statistics of the scattered photons.

The increase in SNR is considerably larger than expected, and different for
the different quantities (about a factor of 11 for attenuation, 7 for σMIR,
and 4 for γW). One reason is the broadening of the central peak due to
multiple scattering, which increases the differences between the details and
the background (width of the scattering pattern in the background changes
from σ = 3.88µrad to σ = 5.05µrad, and in the most visible detail from
σ = 4.11µrad to σ = 8.21µrad, i.e. the difference in width changes from
6% to 60% due to multiple scattering). Parameter γW does not have the
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best SNR any more. This is due to the fact that γW utilizes only a small
fraction of the RC, and now that the direct beam does not dominate, the
other parameters are able to see the differences better.
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Figure 5.14: Images of the cylinder details with 90% central Gaussian scattering,
and varying scattering width, 1-6% larger in the details (increasing from left to
right) than in the background. The SNR values displayed on the horizontal axes
are calculated for Dskin = 10mGy.

5.3.3 Scattering Detail at Higher Angles

Scattering into a peak at some distance from the center is a more realistic
model for scattering from breast tissue than the broadening of the central
peak as was seen in section 4.3. In a randomly oriented system a peak in
the scattering profile corresponds to a ring in the 2-dimensional pattern.
As an example we use a scattering pattern with s0 = 0.002 nm−1, and σ1 =
5·10−5 nm−1. The details have a 1–6% shift in the peak position as compared
to the background. The value of s0 corresponds to a periodic structure
with 500 nm period length. This is somewhat larger than the sizes of the
structures in the breast tissue samples (collagen packing ∼ 100 nm), but is
a compromise due to the increase in the simulation time with s0.

Figure 5.15 shows the RCs for the background and the detail with 6%
larger s0. There is a clear difference in the RCs at the locations of the peaks,
but at the center there are virtually no differences. The analysis should be
based specifically on the quantification of the peak positions and shapes, and
the RC should be recorded around these peaks. Recording the RC at other
than the peak positions contributes mainly to the increase in dose, because
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at these locations the RC is rather featureless. As was seen in section 5.3.1,
the recording of the whole scattering pattern requires anyway a multitude
of analyzer positions to be used, so that it is more useful to focus on some
feature of the scattering pattern, which can be expected to change, rather
than trying to record the whole scattering pattern.
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Figure 5.15: RCs for the background and the detail with a 6% larger s0 (a),
and their difference (b). The counts have been calculated allowing Dskin =
1mGy for each rocking angle. The error bars show the variation due to photon
statistics.

The peaks are asymmetric because the lateral integration contributes to
the inside of the ring but not to the outside. To get the properties of the
peak we fit to the recorded data the function

g(θ) =

{
A exp[−(θ − θ0)

2/(2σ2
2)] + B1 θ < θ0,

A exp[−(θ − θ0)
2/(2σ2

2)] + B2 θ >= θ0.
(5.3)

Here θ0 is the peak position, and σ2 the peak width. The background values
B1 and B2 are determined directly from the data so that the number of
parameters to fit is 3 (σ2, θ0 and A). Because of the axial symmetry of the
scattering pattern, the two peaks at either side of the direct beam are mirror
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images of each other with respect to the central peak position, so that also
the refraction angle can be determined through the positions of these two
peaks.

Figure 5.16 shows how the details are visible. For the measurement of
the peak positions rocking angles θR from -60 to -36 µrad and 36 to 60 µrad,
with 1.5 µrad increments, were used. Dose Dskin = 1mGy was given at each
angle for a total of Dskin = 34mGy. Parameters σMIR and γW are also
displayed, calculated for the same dose using the angular range from -20 to
20 µrad. It can be seen that σMIR and γW do not produce good contrast,
but the peak position s0 gives a reasonable SNR.
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Figure 5.16: Images of the cylinder details with 10% scattering into a Gaussian
ring. The ring peak in the details is at 1-6% larger s0-values than in the
background. The SNR values displayed on the horizontal axes are calculated
for Dskin = 34mGy.

The extrapolation of SNR to other values of the scattering fraction and
s0 is shown in figure 5.17. The SNR is extrapolated based on its square
being proportional to the number of recorded photons, SNR ∼

√
Nobserved ∼√

(1 − ξ)s
− 1

4
0 . The factor

√
1 − ξ comes from the fact that the number of

photons recorded is linearly proportional to the scattering fraction. The

factor s
− 1

4
0 comes from the fact that the fraction of the ring of scattering

that is transmitted in an analyzer scan of constant length is proportional to√
s0. From the extrapolation we see that the SNR is reasonably good even

at values of s0 required for peaks from biological structures, such as the 3rd

peak from the axial periodicity of collagen structure at s0 ≈ 0.046 nm−1.
The SNR values were calculated for the case where the peak position in
the detail is ∆s0 = 1 · 10−4 nm−1 larger than in the background. At the
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position of the 3rd collagen peak the relative shift in peak position (∆s0/s0)
is about 0.26%. This is of the same order of magnitude as the difference
that has been measured between healthy and malignant regions in breast
tissue samples [4]. However, the fraction of scattering going to this peak in
reality is rather low, and therefore it may not be well visible in practice.
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Figure 5.17: Extrapolated SNR for a scattering ring where the s0 for the detail is
1·10−4 nm−1 larger than in the background. Skin dose is Dskin = 34mGy. The
cross marks the point that was used as a basis for the extrapolation, and the ring
marks another point that was calculated via the simulation. In the extrapolation

the functional form of the SNR was assumed to be SNR ∼
√
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dashed vertical line marks the position of the 3rd collagen peak.

The dose used in the calculation of the SNR curves in figure 5.17 was
Dskin = 34mGy, and is rather large compared to the typical glandular dose
of 2.6mGy [141] in mammography. However, some other medical examina-
tions, such as imaging of the spine, do involve doses that are comparable
to 34mGy [142]. Therefore in some cases the signal coming from structural
changes can give a good SNR for an acceptable dose, and for strongly scat-
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tering samples it may be worthwhile to use large analyzer angles, away from
the direct beam, to observe this scattering.

5.3.4 Scattered Fraction

When F (θx, θz) is essentially identical between the details and the back-
ground, or changes in a way that is not easily observable in the ABI mea-
surements, the differences in the scattering fraction can still reveal details in
the images due to scatter rejection. As seen in section 4.3 changes in breast
tissue due to breast cancer cause clear changes in the scattering fractions,
although there is some uncertainty in the absolute ratios due to the fact
that the scattering could not be observed down to zero scattering angle.

To simulate the scatter rejection we use the phantom with spheres, and
let the spheres and the background have identical densities (ρ = 1.00 g/cm3).
The scattering fraction for the background is 0.3% per mm (amounting to
about 3% for the 10 mm thickness, with only negligible multiple scattering),
and for the details 0.6% per mm. The scattering shape is Lorentzian with
FWHM = 10µrad. Figure 5.18 shows the images for Dskin = 10mGy.
The details are clearly visible, and the attenuation image gives the best
SNR. Even the smallest detail of 1 mm diameter can be distinguished from
the images, although only barely. The σMIR and γW parameters show also
rather good SNR, but this is because scattering was into rather small angles,
rather than further away from the peak. This result indicates that typical
differences in the scattering fraction for healthy and necrotic collagen are
sufficiently large so that they can be observed in ABI imaging. However,
it should be noted that changes in thickness and scatter fraction produce a
similar effect, and cannot be distinguished from each other.
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Figure 5.18: Image of the sphere details for varying scattering fraction (0.3%
per mm for the background 0.6% per mm for the details). The absorption for
the background and the details is identical. The diameters of the spheres are
1, 2, 4, 6, 8 and 10 mm. The dose for the calculation of the images is Dskin =
10mGy.



Chapter 6

Conclusions and Discussion

We studied both the effect of scattering and refraction for tissue samples
experimentally, and for phantoms experimentally and computationally. The
computational studies were done in order to show how well scattering is
visible in imaging situations, where the total dose to the sample is limited.

The measured scattering patterns from breast tissue samples show that
there is only very little scattering in the forward direction, so that in the
angular regime typically used in ABI (say ±10µrad) the scattering is barely
visible. This is natural, as the structures producing scattering in this an-
gular regime would be several micrometers in diameter, and the interaction
would better be interpreted as refraction rather than scattering. The lack of
central widening therefore indicates that the refracting structures in breast
tissue samples are mostly larger than the spatial resolution, and refraction
is seen as a spatial variation in the peak position of the RC rather than as
a broadening of the RC.

For samples that do produce refractive broadening it has been shown
that the angular regime of this broadening matches rather well the width
of the analyzer RC [90]. Furthermore, refraction affects the whole portion
of the beam, reducing the contribution of the direct, unaffected beam to
almost zero. By observing the widening of the RC, it is possible to get a
rather good contrast even when the changes in the refractive index are very
small. If the contribution of the direct beam is considerable, then tuning the
analyzer slightly away from the central peak can produce the best contrast
by avoiding the direct beam, which dominates in the central region. This
type of dark field imaging has been introduced in the form of W-DEI. For
the determination of the image quality the important question is how much
beyond the central peak should the images be taken. This depends largely
on the shape of the scattering pattern, and therefore a priori knowledge of
the scattering properties is essential in using W-DEI optimally.

There are several differences in the small-angle scattering patterns for
healthy, malignant, and necrotic areas of the breast tissue samples, indicat-

90
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ing structural changes in the macromolecular composition of the tissues [6].
Scattering fraction for benign and healthy tissues differed by a factor of two
in the angular regime that was studied. This indicates that there are consid-
erable changes in the structure, and the increase in intensity at larger angles
can be attributed to breaking down of collagen chains [108]. The changes in
scattering in the typical angular region used in ABI could not be quantified
due to the low intensity of scattering in this region. The lateral integration
of the scattering patterns in ABI transmits some of the intensity coming to
larger angles even when the analyzer angle is 0. However, the main effect
of this integration is to add a rather uniform background, and therefore the
changes in the shape of the scattering patterns cannot be quantified to any
degree based on ABI measurements in the very narrow region normally used.

The differences in the shape of the scattering patterns for the breast
tissue samples are mainly in the position of the peak due to the axial peri-
odicity of collagen, and in the visibility of the peak due to the cross section
of the collagen fibrils. These indicate either well structured and rather uni-
form fibrils (healthy), disorganized and diverse fibrils (malignant), or the
complete loss of fibrillar structure (necrotic). The changes in scattering are
visible in the angular regime that is of the order of 1000 times larger than
the angular acceptance of the analyzer crystal. To observe the complete
scattering pattern in ABI would necessitate the use of at least hundreds of
different analyzer positions. Because the angular position of the most in-
teresting changes are known, it is possible to optimize the imaging so that
the signal is recorded only at angular settings close to the most interesting
regions. When measured in this way, we showed that a small change in the
position of an isolated peak is visible in ABI for a reasonable dose of a few
dozen mGy, even for quite small amounts of scattering.

Even when the changes in scattering pattern appear at large angles,
the scattering fraction can be estimated based on ABI measurements near
the central peak, i.e. using scatter rejection. The scattering patterns from
different areas in the breast tissue samples contain significant changes in the
scattering fraction, and therefore this serves as a useful source of contrast.
The recording of the central peak can thus be considered an essential part of
ABI imaging, because in addition to refraction it contains information also
about the total amount of scattering.

The possibility for mapping the position of the collagen peak in ABI
imaging for a reasonable dose makes it also worthwhile to consider whether
the measurements could be done in CT mode to provide a three dimensional
mapping of the peak position. Although in the clinical use of mammography
the dose may then be prohibitively high considering the possible benefits,
such experiments could be done for in vitro samples. This could offer a
unique view on the morphology of the structural changes related to breast
cancer, which might bring new light into how the cancer spreads.



92 CHAPTER 6. CONCLUSIONS AND DISCUSSION

Currently the limiting factor in ABI imaging is the intensity of the source,
which makes in vivo imaging impractical. It seems however that from the
point of view of imaging dose, at least some applications involving the anal-
ysis of scattered radiation could be used in a clinical setting as well. Es-
pecially the differences in scattering fraction may provide enough contrast
with a reasonably low dose for structures whose densities are almost iden-
tical. As the compact x-ray sources improve, such methods might become
available even at hospitals.
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[100] P. Debye. Zerstreuung von röntgenstrahlen. Ann. Phys., 351:809–823,
1915.

[101] O. Glatter and O. Kratky, editors. Small Angle X-ray Scattering.
Academic Press, 1982.



102 REFERENCES

[102] Emmanuel Pantos, Harold F. van Garderen, Peter A.J. Hilbers,
Theo P.M. Beelen, and Rutger A. van Santen. Simulation of small-
angle scattering from large assemblies of multi-type scatterer particles.
Journal of Molecular Structure, 383:303–308, 1996.

[103] Gerald Oster and D. P. Riley. Scattering from cylindrically symmetric
systems. Acta Cryst., 5:272–276, 1952.

[104] Akira Ishimaru. Wave Propagation and Scattering in Random Media:
Multiple Scattering, Turbulence, Rough Surfaces and Remote Sensing,
volume 2. Academic Press, 1978.

[105] George H. Vineyard. Geometrical optics and the theory of multiple
small angle scattering. Physical Review, 85:633–636, 1952.

[106] Eric W. Weisstein. Rayleigh distribution. Mathworld – A Wolfram
Web Resource.

[107] Eckhard Limpert, Werner A. Stahel, and Markus Abbt. Log-normal
distributions across the sciences: Keys and clues. BioScience, 51:341–
352, 2001.

[108] Heikki Suhonen, Manuel Fernández, Ritva Serimaa, and Pekka Suortti.
Simulation of small-angle x-ray scattering from collagen fibrils and
comparison with experimental patterns. Physics in Medicine and Bi-
ology, 50:5401–5416, 2005.

[109] R. A. Lewis, K. D. Rogers, C. J. Hall, E. Towns-Andrews, S. Slawson,
A. Evans, S. E. Pinder, I. O. Ellis, C. R. M. Boggis, A. P. Hufton, and
D. R. Dance. Breast cancer diagnosis using scattered x-rays. Journal
of Synchrotron Radiation, 7:348–352, 2000.

[110] M E Poletti, O D Goncalves, and I Mazzaro. X-ray scattering from
human breast tissues and breast-equivalent materials. Physics in
Medicine and Biology, 47:47–63, 2002.

[111] G Falzon, S Pearson, R Murison, C Hall, K Siu, A Evans, K Rogers,
and R Lewis. Wavelet-based feature extraction applied to small-angle
x-ray scattering patterns from breast tissue: a tool for differentiating
between tissue types. Physics in Medicine and Biology, 51:2465–2477,
2006.

[112] Elaine A Ryan and Michael J Farquharson. Breast tissue classification
using x-ray scattering measurements and multivariate data analysis.
Physics in Medicine and Biology, 52:6679–6696, 2007.

[113] J A Griffiths, G J Royle, A M Hanby, J A Horrocks, S E Bohndiek,
and R D Speller. Correlation of energy dispersive diffraction signatures



REFERENCES 103

and microCT of small breast tissue samples with pathological analysis.
Physics in Medicine and Biology, 52:6151–6164, 2007.

[114] T Narayanan, O. Diat, and B. Bösecke. SAXS and USAXS on the
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