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Abstract

In recent years there has been growing interest in extending the traditional use of
polymers by attaching into them functional side groups. Side groups can inuence
the materials properties in a very subtle way by controlling the crystallinity of the
product or by inducing a totally di�erent kind of organization by their mesogenic
property. The side groups are either covalently grafted into polymer chain or held
in place by secondary physical interactions.

One area of research has been to prepare electrically conducting polymeric ma-
terials. Most studied in this �eld are peruorinated ionomers. This work describes
another type of conducting polymer obtained by grafting poly(vinylidene uoride)
(PVDF) �lms with sulfonated polystyrene (PSS).

The major part of the thesis is devoted to studies of mesoscopic phases formed
by polymers, when they interact with surfactant side groups. The concept is then
similar to side chain liquid crystal polymers (SCLCP's) except the interaction with
the side group is non-covalent. Cationic starch (CS) is an example of polyelectrolyte.
It's structure formed with anionic surfactants is investigated. Poly(4-vinyl pyridine)
(P4VP) is an electrically neutral, exible polymer. It is rendered mesoscopic by
interaction with surfactants ranging from ionic to hydrogen bonding. When part of
a polymer block, they exhibit two-level self-assembly akin to liquid crystalline block
copolymers.

The method of investigation that is concerned here is small angle x-ray scattering
(SAXS). It is particularly suitable in studying bulk properties and density-density
correlations within size range 10{1000 �A. Both conventional source and synchrotron
radiation are applied.
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Introduction

This thesis wraps up some of the experience by the author in the �eld of small angle
x-ray scattering (SAXS). It has evolved around application to polymeric materials
for the fact that it is in this �eld that this slightly dormant technique has regained
attention during the past 5-10 years. SAXS at some stage was considered waning
science incapable of competing with the much more detailed information obtained
in e.g. electron microscopy and electron di�raction and not as powerful anyway as
neutron scattering. Still x-rays struggle on and SAXS remains a standard tool of
structure characterization. This is in part due to it's availability; a simple laboratory
equipment such as used in this thesis is a low budget apparatus compared to its
competitors. At the same time, synchrotron radiation facilities have raised the
power of x-rays to a completely new level. By increasing demand, more and more
beamlines are dedicated to the SAXS technique.

A second factor favoring this technique is the increase in interest toward soft
condensed matter. This type of substance incorporates large groups of molecules held
together with interactions, as in polymers, colloids or surfactant micelles to give a
few examples. They are generally calledmesoscopic ('medium sized'), therefore quite
conveniently organize at length scales that are reached in SAXS measurements. By
their materials property, the soft matter occupies sort of middle region between uids
(liquids) and solids (crystals). Being assemblies of many molecules the groups form
thermodynamic ensembles, yet they are small enough for uctuation e�ects within
them to become important. This gives extra value for the statistical information
on a large number of these groups as is obtained in an x-ray scattering experiment.
Being sometimes very viscous uids these new materials are also quite diÆcult to
prepare for direct imaging with electron microscope.

This thesis is arranged as follows. It deals with concentrated system of parti-
cles and a brief account on scattering theory for such systems is given. Particular
weight is given to properties of surfactant micelles as they also form the structural
basis for the polymer morphologies which are studied in the research papers. Poly-
mer/amphiphile and block copolymer behavior is understood from earlier work done
on surfactant/water systems so it seems fair that a detailed presentation of surfac-
tants and micelles is given. Application to polymers is postponed until the �nal
chapters of this introduction.

Method

Word-for-word, SAXS de�nes only an angular region of scattering of x-rays, so why
consider it as a separate technique? Historically, the word has been attached to
the powerful scattering halo that was observable in the x-ray photographs at very
small angles.1 In due course experimentalists realized that the halo was caused by
scattering of tiny particles [1], and the average size of the particles could be derived
from the extent of the corona by the beam stop. This, albeit they could not agree
whether the e�ect was actually due to refraction or di�raction [2]. The sizes of small
dissolved molecules were determined already in the late 20's by considering them as
\dielectric spheres of uniform optical quality" in analogy of optical scattering [3].

Among these early studies, the particular scattering properties of surfactants

1Though known in less complimentary terms as it was considered something of a nuisance.
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were already acknowledged [4]. Krishnamurti [5] had observed powerful small angle
scattering from liquid mixtures and colloidal solutions such as Sodium Oleate, a
substance which is also studied in paper II of this thesis.

Thus SAXS is traditionally understood as particle scattering. However, as the
previous paragraph tells, ordered structures were studied early on. This thesis and
all the papers herein also study ordered structures. In this respect the technique
does not earn a separate name as it is basically powder di�raction performed at
small angles because of the large size of the crystalline unit cells. The distinction
is more in the experimental size. In SAXS, a relatively weak intensity is measured
close to the primary beam. Whence, it requires a di�erent sort of apparatus with a
very �nely collimated beam. On the other hand, the geometry of the experiment is
much simpli�ed from wide angle scattering (WAXS) and most corrections made in
WAXS reduce to unity because of small angles.

Basic SAXS properties

We consider here static elastic scattering of x-rays which are very short wavelength
electromagnetic waves. The word 'static' means that the matter is viewed as frozen2

during the time it takes for the packet of plane wave, photon, to enter and leave
the sample. 'Elastic' means that the di�racted wave (or re-emitted photon) has the
same wavelength (energy) as the incident wave. The incident and scattered waves,
denoted by wave vectors k1 and k2, then have the same magnitude 2�=�, where �
is the wavelength.

The scattering is due to electrons, each of which emits radiation with a �xed phase
di�erence to the incident radiation (barring dispersion e�ects). Then the relative
phase of the scattered wave depends only on the position of the electron through r
as k � r, where k = k2�k1 is the so called scattering vector. Note that this product
in general reects the reciprocal relation between the size and the scattering angle.
The magnitude of the scattering vector k is given by the scattering angle 2� as

k = 4� sin �=�: (1)

The type of information usually obtained in SAXS is exempli�ed by the two
most basic laws. In the late thirties, Andr�e Guinier considered the limiting form
of scattering intensity at very small angles for a system of independently scattering
particles [6]. The intensity always shows a decreasing slope whose steepness deter-
mines how far on average the particle extends from its center of gravity | it's radius
of gyration. The second traditional application roots from the large angle scattering
behavior. At this extreme the scattering is sensitive to the surface regions. It was
left to Porod [7] to formulate the law that the scattering from a two phase struc-
ture with sharp boundaries is proportional to the surface area and the inverse of
the fourth power of the scattering vector k�4. Lately, this observation has been
extended on systems with di�erent dimensionality leading to a similar scaling law
of the intensity curve [8].

2The term \time resolved scattering" may emerge in some articles but is not meant to deal with
time correlations related to dynamic properties of the scattering media, though made possible by
synchrotron radiation. These refer quite simply to the changes in the static structure factor with
time as sample circumstances (i.e. temperature) is changed.
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Experimental

The requirements for a small angle x-ray scattering setup can be listed very briey.
The objective is to obtain high ux and suÆciently small cross-section of the beam at
the detector position. The beam size de�nes the angular resolution of the device and
it is reduced using slit collimation or focusing devices such as curved monochromators
and mirrors. However, of equal im-
portance is to guard the detector from
the parasitic scattering which inevitably
arises from the collimation. This back-
ground chiey limits the smallest achiev-
able angle. The simplest con�guration
uses slit collimation. The angular res-
olution is controlled by choosing appro-
priate apertures. There is quite an unfa-
vorable trade-o� between resolution and
intensity, at worst six orders orders of
magnitude decrease in intensity for an or-
der of magnitude increase in resolution.
Focusing optics can signi�cantly increase
the obtained ux. However, one can ex-
pect increased background level from the
focusing optics as compared to slit colli-
mation.

α2θ
2θ+∆2θ

S

O

D

Figure 1: SAXS geometry. The rays are scat-
tered by a at specimen (S) placed normal to
the beam and measured at position (D) at the
plane of detection (dotted line). The scattering
angle 2� is approximately given by the distance
OD divided by sample to detector distance SO.
Rays with di�erent angle of incidence � (beam
divergence) will induce a relatively small error
�2�=2� � �(2� � �)

X M S BS PSDF

Figure 2: A SAXS workbench; Helsinki, circa 1999.
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A practical SAXS setup has considerable smearing e�ects due to the �nite beam
size. Thus strict energy purity may also be thought as a waste of ux. For a
conventional device, a �-�lter accompanied with a high energy cuto� mirror suÆces
for monochromatization.

Device at HU. The small angle scattering setup at HU is pictured in Fig. 2.
The device consists of a sealed Cu-anode x-ray tube (X); monochromatizer section
with Ni-�lter (F) at front end and a at glass mirror (M) at the rear; temperature
controlled sample stage (S); vacumized scattering path with slightly transparent
beam stop (BS) and a linear position sensitive detector (PSD).

The apparatus was originally designed to be used with weakly scattering sam-
ples such as dilute solution of molecules. Therefore the system used line focusing
geometry, where the beam is narrowed in one dimension only so that small angles
can be reached without great loss in intensity [9]. The line pro�le has drawbacks
in measuring intensities with sharp features. For example, well ordered structures
produce di�raction maxima, which become smeared and develop a tail toward zero
angle. These distortions can in principle be corrected [9, 10, 11] for which the higher
statistical accuracy is of use.

To oppose the slit height smearing, the apparatus is preferably used in point fo-
cusing mode. This is not to say this is an essential step in structure determination at
small angles; even Kratky cameras have been utilized without further corrections as
has been demonstrated recently [12]. There are further advantages in point focusing.
The beam size measures typically 0.1 x 1 mm at the sample so smaller samples and
sample cells for the temperature stage are needed. Secondly, the operation of the
PSD is much a�ected by high countrates. With the line focus, the counting capacity
of the PSD (MBraun OED-50M) is easily exceeded. In changing to point focus, the
intensity is lost by a factor of 50 leaving a primary ux of about 4�106 1/s.

The resolution anomaly induced by the high count rate is easily demonstrated
with a \double-slit" experiment (see Fig. 3). If two closely separated slits are placed
in front of the PSD and kept open in turn, two peaks emerge at the position of the
slits. However, when both the slits are open, the position signals move as if attracted
toward a common center of gravity. This
phenomenon is traced to space charging
e�ects at the detector electrodes. It is
particularly severe for small reections
occurring close to (< 1 mm) a major
peak and the minor reections can be de-
voured by the major ones.

At best, high intensity produces just
small o�set and broadening of the posi-
tion signal. Still, for high accuracy the
countrates should be kept at moderate
levels. A second restriction is the linear-
ity of the detector, the so called paral-
lax error. The active depth of the detec-
tor is about 5.3 mm which is substantial
fraction of the standard distance between
sample and detector (the camera length).
To improve resolution the distance has to
be increased to the point where resolu-

7500 cps

150 cps mm

0.50 1.00 1.50

Figure 3: Position signal obtained through
two slits 1 mm apart with one slit opened at a
time (dashed) and with both slits open. In the
lower curves the total countrate was 150 s�1 and
in the upper curves 7500 s�1
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tion is no longer detector limited. In HU the longest camera length in use is 1165
mm. At this distance long periods over 1000 �A can be reached.

Synchrotron radiation. Synchrotron radiation (SR) is emitted by extremely
fast electrons accelerating in a magnetic �eld. In order for the SR emission to
reach the x-ray energy range, given that practical magnetic �elds are limited to
few Teslas, the required electron energies correspond to acceleration over 109 volts
(GeV's). This requires large facilities which nowadays are solely dedicated to the
production of SR. Electrons traveling at relativistic speeds emit radiation which is
said to be naturally collimated. As such it is the perfect source for SAXS. The
highest brilliancies are produced with the insertion devices. These �nd use in high
resolution work such as very fast time resolved studies, anomalous scattering, ultra
small angle scattering, surface scattering or micro-focus di�raction. For normal
SAXS the intensity provided by the bending magnets is quite adequate. This is the
original parasitic product of the synchrotron arising from the necessity of keeping the
electrons at their circular paths. Sadly, the detectors are often not to par with the
ux obtained even at the bending magnets. All SR work in this thesis is performed
on beamlines utilizing bending magnets. Typical ux on sample is few hundred
times that of e.g. the conventional source described above.

Anomalous Small Angle X-ray Scattering The atomic scattering factor
does not depend just on the magnitude of the scattering vector k, but also on the
energy E of the photon. The atomic scattering factor is usually expressed as a sum
of three terms

f(k;E) = f0(k) + f 0(E) + if 00(E): (2)

These dispersion e�ects become signi�cant when E is close to the ionization energy of
the element (see Fig. 4). Far away from this edge, the scattering factor approaches
f0, which in SAXS is practically equal to the number of electrons Z within the
element.

The scattering factor bears relation
to the complex index of refraction n [13,
p.139]

n = 1� Æ � i�: (3)

The real part of f is proportional to the
real part of the refraction index by

Æ =
N�2re
2�

(Z + f 0); (4)

where re = 2:81793 fm is the classical ra-
dius of the electron and N is the number
density of the atoms. The deviation of n
from unity is small, for a rough numerical
estimate

Æ � 1:3 � 10�6 � �
h g

cm3

i
�2
h
�A
2
i
: (5)

The imaginary part f 00 is related to the
imaginary part of the refraction index,

−10

−8

−6

−4

4

3
2
1

f’

f’’

9200 9400 9600 9800

E/eV

Figure 4: Dispersion correction for the scat-
tering factor of zinc (Z = 30) around its K-
absorption edge 9659 eV. [15]
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i.e. the linear absorption coeÆcient � by

�(=
4��

�
) = 2N�ref

00: (6)

The terms f 0 and f 00 are further connected by the Kramers and Kronig relation
[14]

f 0(E) =
2

�

Z 1

0

"f 00(")
E2 � "2

d" (7)

Thus measuring the absorption spectrum gives directly the imaginary part of the
scattering factor and evaluation of the dispersion integral (7) yields f 0. The real part
can also be measured directly by virtue of the refractive properties of the matter.
Computer programs exist for calculation of the scattering factor. For example, the
data in accompanying Fig. 4 is produced by the program of Brennan [15]. The
calculation routines often assume a stepwise increase in f 00 at the absorption edge.
In practice the edge has a natural width which suppresses f 0 from approaching minus
in�nity. The chemical state of the element is also a very decisive factor. For some
elements, the absorption spectrum shows an intense peak a.k.a. white line which
completely obscures the absorption step.

The anomalous dispersion e�ect is used to derive element speci�c information on
atom-atom distributions. The information is in the form of so-called partial structure
factors Sij , in terms of which the intensity is

I(k;E) =
X
i;j

Nifi(k;E)f
�
j (k;E)Sij(k); (8)

where Ni is the number of atoms of element i. The partial structure factors are
related to pair distribution (correlation) functions. For homogeneous samples

Sij(k) = Æij + nj

Z 1

0

4�r2gij(r)
sin kr

kr
dr; (9)

where nj is the average density of element j and consequently njgij(r) gives the
density of this element at a distance r from an arbitrary atom of element i.

To obtain g11, for example, three or more energies are chosen below the absorp-
tion edge of element '1' so as to induce as large a change in f1 as possible. It is
unwise to go above the edge because of the disturbing uorescent radiation this pro-
duces. Often only one of the scattering factors can be varied signi�cantly because
of energy limitations. Therefore just three independent partial structure factors are
derived from the system of equations (8). In this case, element label '2' stands for
average atoms of all elements other than '1'.

In paper I, a more straightforward formula than Eq.(8) is assumed. The SAXS
intensity is not pictured as arising from individual atoms, but from uctuations in
a continuous3 variable electron density �e. Acknowledging dispersion e�ects the
variable is, precisely, scattering factor density, or e�ective electron density

�eff = �e + n1(f
0
1 + if 001 ): (10)

3continuous in the resolution of SAXS experiment which is of the order of 10 �A.
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If the elements are distributed homogeneously within a two phase structure, the
intensity is written simply as a product of �2eff and a structure factor S(k), which
describes the distribution of the phase regions.

Absolute Intensity Scale In some applications, e.g. paper I, absolute inten-
sities are used. It is de�ned here by the scattered intensity per unit solid angle per
unit volume per incident intensity. Detectors observe the ux of photons. At the
geometry given by Fig. 1, a detector whose cross section is S and eÆciency � at
distance r from the sample registers ux

� = �0e
��t � tI � �S � r2e=r

2 (11)

where I is the absolute intensity, �0 is the incident ux, e
��t is loosely referred to as

the absorption factor and t is the sample thickness. In order to get from � to I , the
incident ux should be found out, and | depending on the method of normalization
| other parameters appearing in Eq.(11).

It is most convenient if the incident ux can be obtained during the measurement.
In synchrotron, where the ux varies with time, this is absolutely mandatory. If
the incident ux is measured with the same detector as the scattering, by simply
recording the transmitted ux ��0e

��t, it is not necessary to know the absorption
factor and detector eÆciency. However, the intense beam has to be attenuated either
by �lters [16] or a mechanical absorber (moving slit) [17]. The synchrotron beam is
too brilliant for this. Most usually, the SR is monitored with ionization chambers
before and after the sample. The beam at HU is monitored through the copper
beam stop which attenuates the direct beam by a factor 7000.

One needs the least amount of information on the monitoring eÆciency and mea-
surement arrangement, if one uses reference scatterers. A primary standard is such
for which one can predict the intensity from exact knowledge of the structure. A
crystalline powder, for example silver behemate4 might be considered. However,
materials which give crystalline reections at small angles are also keen to have
texture. In SAXS it would be most natural to employ solutions of dense particles
such as silica, with known size and particle density. These have the drawback that
they will eventually aggregate, so new standards have to be prepared. A rare gas
of simple molecules would be a reliable scatterer but unfeasible since their intensity
is low. However, dense gases or simple liquids can also be employed [18]. Though
the scattering involves interference between the particles, the intensity can be re-
lied to depend on two thermodynamical properties of the standard, its isothermal
compressibility � and the number density of the molecules n

I(k) = F 2(k)nkT� (12)

where F (k) is the scattering amplitude of a single molecule. For example, the
absolute intensity normalizations made at HU are relative to the scattering intensity
of water [19]. According to the compressibility data, its scattering intensity at 25ÆC
is 0.208 1/�A3, i.e. equal to 0.208 free electrons per cubic �A.

Even liquids are impractical as standards to be measured frequently. Therefore
calibrated secondary standards are used. A good secondary standard gives intensity
curve which is strong and at and good thermal stability is also bene�cial. In HU,
polyethylene (LUPOLEN) is used as a secondary standard [20]. It's intensity is
again calibrated with respect to water. Glassy carbon is a second choice of standard
[21], with scattering properties quite similar to LUPOLEN.

4Also a popular standard for calibrating the scattering vector

12



Scattering of non-dilute systems

A single particle does not yet provide suÆcient scattering intensity. Even when
studying particle scattering, the scattering cell should contain a dense collection
of particles. The observed intensity then depends on the particle scattering factor
F (k) and the structure factor S(k) associated with the distribution of the centers of
particles within the media

I(k) = F 2(k)S(k): (13)

It is found throughout this thesis that both F (k) and S(k) change appreciably within
the experimental angular range. If one's interest is the particle scattering factor, one
seeks to dilute the system to approach the condition of uncorrelated particles, i.e.
S(k) approaching unity. In concentrated systems, the structure factor is no longer
unity but may be expressed as

S(k) =

Z 1

0

P (r)
sin kr

kr
dr: (14)

This follows Debye's formulation of scattering from molecules [22]. The concept of
molecule is changed into an ensemble of scattering centers and the double summa-
tion over the atoms within each molecule is replaced with a single summation over
di�erent distances between the scattering centers and the factor P (r) denotes the
number of such distances.

For a homogeneous density n of particles, the structure factor is alternatively
expressed as

S(k) = 1 + n

Z
g(r)eir�kd3r; (15)

where g(r) is the correlation function whose physical meaning is that ng(r) is the
average density of particles at position r from a center particle. In a small angle
scattering experiment, the information about the average density is lost in the beam
stop. Instead, only local density uctuations are observed. This is e�ectuated by
replacing g(r)! h(r) = g(r)� 1,

S(k) = 1 + n

Z
h(r)eir�kd3r (16)

Structure factors

If the scattering factor in Eq.(13) was known exactly, this would be of some interest,
since the remaining structure factor has a relation to the interparticle potential, as
we will see shortly.

The problem of �nding relationship between the pair potential V (r) and the
correlation function g(r) is ultimately linked to �nding the equation of state for
liquid systems. This is manifest through equations [23]

p = nkT � n2

6

Z 1

0

4�r3g(r)V 0(r)dr 'the pressure equation' (17)

kT

�
@n

@p

�
T

= 1 + n

Z 1

0

4�r2 (g(r) � 1) dr 'the compressibility equation'
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However, as we recall from statistical mechanics, the equation of state even for
simple liquids can be expressed only approximately e.g. by the virial expansion. The
two-body correlation function is coupled to all multiplet (many-body) distribution
functions ad in�nitum by a series of integral equations [24]. In the simplest case one
just ignores all many particle correlations. Then the correlation function is related
to the Boltzmann probability

g(r) ' e��V (r): (18)

This approximation is valid only for a very dilute system of particles. There exist
a number of approximation schemes to derive structure factors of liquids in the
semidilute region. They apply to volume fractions up to � � 0:5.

Integral methods. According to Kirkwood [25] the N particle interaction
potential is expressed as sum of terms involving the pair potential

VN = VN�1 + �V1;

V1 =
NX
k=2

V (r1k): (19)

In this formulation particle 1 is \switched on" by parameter �. This approximation
is known as superposition principle. It states that the average force acting on a third
particle by two particles is the sum of individual forces without the presence of the
other particle [25, 26], thus giving interparticle forces the same status as external
forces.

The superposition argument reduces the problem to solving (numerically) a single
integral equation [26]

ln g(r; �) = ���V (r) + �

r
�

Z 1

0

[K(r � r0; �)�K(r + r0; �)] r0 [g(r0)� 1] dr0: (20)

where g(r) � g(r; 1) and the kernel is

K(t; �) = �2�
Z �

0

d�0
Z 1

jtj
sV (s)g(s; �0)ds:

The corresponding kernel for the Born-Green-Yvon (BGY) theory is [27]

K(t; �) = ��

Z 1

jtj

�
s2 � t2

�
V 0(s)g(s; �)ds:

The solution has been further simpli�ed by Rodrigues [28] by writing the distribution
as

g(r; �) = e���V (r)+f(r;�)

The function f represents correction many-particle e�ects and it is therefore expected
to be small. Neglecting terms f2 and higher, the structure factor is [29].

S(k) =
1

1� n�(2�)3=2b(k)
; (21)
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where

b(k) =

r
2

�

Z 1

0

r2
�
e�V=kT � 1

� sin kr

kr
dr

and � = f(r) + 1 is the order of unity.
The Ornstein-Zernike equation. In 1914 L. S. Ornstein and F. Zernike

were attempting to solve the problem of critical opalescence and therefore studied
the properties of the correlation function near the critical point. By an ingenious
insight they wrote the correlation function in a closed integral form known as the
Ornstein-Zernicke (O-Z) equation [30]

g(r) = 1 + c(r) + n

Z
c(z) [g(z� r)� 1] dz (22)

or more simply as

h(r) = c(r) + n c�h(r) (23)

where � denotes for convolution operation. Thus the correlation between particles
is the result of direct correlation c(r) and indirect correlation transmitted through
the media by the same function. The wish of O&Z was that c(r) would have a clear
physical meaning and could be determined a priori. This was not the case and and
Eq.(23) may be taken merely as its de�nition.

The direct correlation function is, however, a convenient concept in further ap-
proximations. It is short ranged when the potential is short ranged and vanishes
where the potential is large. Once the direct correlation function is solved, the
structure factor follows from the Fourier transform of the O-Z equation (16)

S(k) =
1

1� nC(k)
: (24)

For solving c(r), another closure relation is needed to connect the direct and indirect
correlation functions. Following sections give three best known examples.

Ornstein and Zernike did �nd an asymptotic form for h(r). Developing h(r)
in series under the integral up to second order and noting that it is a symmetric
function

h(r) = c(r) + h(r) � n
Z

c(z)d3z+r2h(r) � n
6

Z
z2c(z)d3z: (25)

At suÆciently far out c(r) � 0, and the solution satis�es�r2 � �2
�
h(r) = 0 (26)

with the known solution [31]

h(r) =
1

4�n'2

e��r

r
(27)

where

�2 =
1� F

'2
; F = n

Z
c(z)d3z and '2 =

n

6F

Z
z2c(z)d3z:
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This gives the O-Z structure factor [30]

S(k) = 1 + nH(k) = 1 +
'�2

�2 + k2
: (28)

The direct correlation function turns out to have the same form

c(r) =
1

4�n'2

e�qr

r
; where q2 = �2 + '�2: (29)

Mean spherical approximation. Many systems of interest have a pair
potential which consists of hard-sphere interaction plus a tail. Such systems may
be handled by making a mean spherical approximation (MSA) [32]. For the hard
sphere case this is

h(r) = �1; r < D
c(r) = ��V (r); r > D:

(30)

This is a �rst example of a closure relation to solve the O-Z equation (23). The
potential at large distances is of the same exponential form (29) as c(r). This is
also known as the Yukawa form, found for e.g. spherical macroions in a dielectric
medium. The direct correlation function for r < D is also solvable [33]. The solution
is referred to as the Hayter-Penfold model who were the �rst to present solution [34]

S(k) =
1

1� nW (k)
: (31)

The calculation of parameters forW (k) is, however, rather lengthy, see [34, appendix
A]. At the \point ion limit" S(k) approaches the O-Z structure factor (28). The
solution is said to have shortcomings at dilute concentrations and has later been
improved by the so called rescaled MSA [35].

PY approximation. In 1958, Percus and Yevick proposed another closure
relation [36, 37]

c(r) =
h
1� e�V (r)

i
g(r) � g(r) � �(r): (32)

Incredibly, this closure relation solves the O-Z equation analytically for simple hard
spheres interaction, for which the O-Z equation takes form

�(r) = 1+

r<D

n

Z
�(z) d3z�

z<D
jr�zj>D

n

Z
�(z) �(jr� zj)d3z: (33)

This was solved independently by Wertheim and Thiele [38]. Another case where PY
closure leads to a solution is the hard-sphere potential supplemented with a short
range attractive part approximated by a square well. This is known as the sticky
hard sphere model (SHSM) of Baxter [39]. The solution takes simpler form when the
structure factor is written in a factorized form [40]. Otherwise, the two models are
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quite alike, so below they are presented side by side:

The hard sphere model The sticky hard sphere model
V (r) =1; r < D
V (r) = 0; r > D

V (r) =1; r < D
V (r) = kT ln 12� W�D

W ; D < r < W
V (r) = 0; r > W

S�1(k) = 1� nC(k) S�1(k) = Q(k)Q(�k)
C(k) =

R
c(r)eikrdr Q(k) = 1� 2�n

R
q(r)eikrdr

solution :
�c(x) = �+ �x+ ��

2 x
3

where x = r=D < 1

� = (1 + 2�)2 = (1� �)4

� = �6� �1 + 1
2�
�2
= (1� �)

4

W 2q(x) = �x2 + �x + (� � �+ �=12)
where x = r=W < 1
� = 1

2 (1 + 2� � �)=(1� �)2

� = 1
2 (�3� + �)=(1� �)2

parameters :

� = 1
6�D

3n � = 1
6�W

3n
� = ��(1� �)
� is the smaller root of the quadratic:

�� = 1
2

2+�
(1��)2 � �2

1���+
�
12�

2

Parameter � measures the 'stickiness' of the potential. Note the di�erence in the
volume fraction parameter �. However, the solution for SHSM is strictly derived
in the limit W ! D. Despite this unphysical aspect, the potential is successful to
mimic systems with a hard core and a short range attractive potential. The SHSM
has been applied for colloidal particles, microemulsion systems and nonionic micelles
[41]. It also suited to model Lennart-Jones type of potential previously handled with
numerical calculations [42] and predicts well the gas-liquid phase transition [43].

The structure factor for the SHSM is [44]

S�1(k) =

�
1 + 12�

�
2��(�) + �c(�)� �

12
j0(�)

��2

(34)

+

�
12�

�

�
� (1� 2j0(�) + 2c(�)) + � (1� j0(�)) � ��2

12
c(�)

��2

;

where � = kW and

�(x) = (sinx� x cosx)=x3

c(x) = (1� cosx)=x2

j0(x) = sinx=x

Structure factor for the bare HSM is given by e.g. Kinning and Thomas [45]

S�1(k) = 1 + 24�

�
(�+ 2� + 2��) �(�) + �

(2 + �2) cos�� 2

�4

+
3

2
��

�
(�4 + 6�2 � 12) cos�� 12� sin�+ 12

�6

��
; (35)
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where � = kD. Both HSM [46] and SHSM [47] have later been generalized to
polydisperse mixtures, which are more appropriate for real systems.

HNC approximation. The hyper netted chain (HNC) closure is

ln g(r) + �V (r) = h(r) � c(r): (36)

HNC is superior to PY for long range interactions such as in ionic uids e.g. elec-
trolytes [23]. However, it is nonlinear theory and has to be solved numerically.

The bene�ts of HNC and PY (or MSA) schemes may also be combined by intro-
ducing a closure which mixes these two [48].

Random phase approximation. One frequently appearing concept is the
random phase approximation (RPA), which makes use of the linear response theory.
If one considers weak perturbation potential ÆV (r), the variation in density may be
approximated as [49]

Æn(r) = ��nÆV (r)� �n2
Z

h(r� r0)ÆV (r0)dr0: (37)

Fourier transform of this is

Æn(k) = ��nÆV (k)S(k): (38)

Equation (38) is, in fact, the �rst order Taylor series expansion of Æn in powers of
ÆV [37]. Above form is similar to O-Z Eq.(23) in that the perturbation propagates
via the correlation function h(r). Thus RPA is e�ectuated by substituting for the
direct correlation function

c(r)! c0(r)� �ÆV (r);

which gives for the structure factor

S(k) =
S0(k)

1� nS0(k)�V (k)
; (39)

where S0 is the unperturbed structure factor. RPA is often applied to polymers, for
example for exible polymers in solution the approximation is

S�1(k) = S�1
0 (k) + nv; (40)

where S0 is the structure factor for an ideal chain and the perturbation is the ex-
cluded volume interaction which is represented here by the excluded volume v.

One dimensional substance and paracrystallinity

The exact solution for the PY closure in three dimensions is quite unique. The
same method does not work in two dimensions, and one needs to resort to numerical
calculations [50]. The one dimensional case |a linear chain of particles (rods) |
turns out to be tractable again.

As a special case, we assume that particles interact with the nearest neighbors
only.5 The equation of state between the pressure f and the density n was obtained

5It suÆces that the potential has a hard core and short range such that particles can never
interact with the next nearest neighbors in practice.
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by Takahashi during WWII [51]6

n�1 =

R1
0

r exp [��(V (r) + fr)]R1
0

exp [��(V (r) + fr)]
: (41)

Particularly for hard rods of length L, a.k.a the Tonks gas [54]

f� =
n

1� nL
; (42)

which is just the ideal gas e.o.s. with the volume replaced by the free space between
the rods. In Eq.(41), the pressure f acts as an external force to a bounded system
of particle density n. This result applies just as well to a system of two particles
and hence the quantity

e��(V (r)+fr) (43)

is interpreted as a probability distribution for distance between neighboring particles.
It is clear that the density n is a single valued function of pressure and no phase

transition is to be expected [51]. The existence of perfect periodicity in the lower
dimensions have been considered very early by Peirls and Landau [55]. It is argued
that thermal uctuations prohibit perfect order when the size of the system grows
without limit [56]. The one dimensional systems o�er means to test this prediction.
Potentials which extend beyond the nearest neighbor interaction are awkward to
handle computationally [53] except for the Kac-Baker model [57]. It appears that
phase transitions are possible only for potential of in�nite extent.

The paracrystalline lattice. The nearest neighbor interaction leads to a
distinct type of periodic system known as a paracrystalline lattice. The correlation
function and structure factor for the one dimensional HSM was, in fact, worked out
as early as 1927 by Zernike and Prins [58]. They did not need to solve the statistical
mechanical \problem" to argue that the gaps between the rods follow an exponential
distribution, as is evident from Eq.(43) upon insertion of the hard sphere potential.
They then proceeded to calculate the structure factor using property which was later
referred to as paracrystallinity by Hosemann [59].

What makes a paracrystal is that all distances between neighboring particles are
independent. Thus let p(r) be the probability distribution of nearest neighbor dis-
tances. Then the corresponding distribution of distances to the n-nearest neighbors
follows from the n-fold convolution

pn(r) =

Z
pn�1(s)p(r � s)ds: (44)

These distributions constitute for the total correlation function [58]

g1(r) =
1X

n=�1
pn(r): (45)

The subscript marks that this is a one dimensional correlation function. The suc-
cessive convolutions need not be worked out because by the convolution theorem

�n(k) = �n�1(k) � �(k) (46)

6Unaware of this, the same solution was later o�ered by Gursey [52] and van Hove [53].

19



where �n(k) and �(k) denote Fourier transforms of pn(r) and p(r). The structure
factor is thus [59]

S1(k) = 1 +

1X
n=1

(�n + (��)n) = Re
1 + �(k)

1� �(k)
: (47)

Few special cases may be singled out, let7 r = z + a

p(z) �(k) S1(k)
gaussian :

1p
2��2

e�
1

2

z2

�2
e�

1

2
�2k2+ika sinh 1

2
�2k2

cosh 1

2
�2k2�cos ka

exponential :
1
ce

�z=c; z > 0
eika

1�ick
c2k2

2+c2k2�2 cos ka+2ck sin ka

box :
1
2w ; jzj < w

sin kw
kw eika k2w2�sin2 kw

k2w2�2kw sin kw cos ka+sin2 kw

triangle :
1
2w (1� jzj

2w ); jzj < 2w
sin2 kw
k2w2 eika k4w4�sin4 kw

k4w4+sin4 kw�k2w2 sin2 kw cos ka

Analytical expressions soon get complicated for increasingly complex distributions.
As Fourier transforms are rapid, a numerical evaluation of �(k) is more feasible.

The paracrystalline lattice could be applied to e.g. lamellar systems. In Paper I it
was used to model distribution between ionic layers in a sulfonated ionomer. It could
also describe the arrangement of crystalline polymer separated by the amorphous
polymer layers. Additionally one might allow the lamella to vary in thickness. Then
there would be two distributions involved: One the lamella thickness and another
one for their separation. In one approach, the scattering factor for the lamella is
replaced by the average value hF (k)i, which ignores the obvious correlation between
lamella thickness and the separation. One could also adopt a di�erent perspective
and regard the system as a two phase structure with independent phase A and phase
B layers. If the phases have constant density which changes in a stepwise fashion
at the interface, one can assign scattering amplitudes f1 = iÆ=k and f2 = �iÆ=k
to unit areas of the AB and BA interfaces respectively. Here Æ = �B � �A is the
density contrast which is neglected for now. This case is now analogous to a system
of two types of particles (with opposite scattering factors in this case) arranged in
a paracrystalline lattice with di�erent distributions for the separation from 1 to 2
and from 2 to 1. Consequently, there are four partial correlation functions and four
partial structure factors involved, but the total structure factor can easily worked
out to be

S1(k) =
2

k2
�Re(1� �1)(1� �2)

1� �1�2
(48)

where �1 and �2 denote Fourier transformations of the two probability distributions.
Again only gaussian and exponential distributions result in simple formulas. For two
gaussians with �2 = �21 + �22

S1(k) =
2

k2
sinh 1

2�
2k2 � sinh 1

2�
2
1k

2 cos ka2 � sinh 1
2�

2
2k

2 cos ka1

cosh 1
2�

2k2 � cos kL
(49)

7a denotes for lattice periodicity and z is small variation thereof

20



where L = a1 + a2 is the lamellar period. For two exponential distributions, with
c2 = c21 + c22

S1(k) =
2

k2
k2c2 + k4c21c

2
2 � k2c21(cos ka2 � kc2 sin ka2)� k2c22(cos ka1 � kc1 sin ka1)

2 + 2(k2c1c2 � 1) cos kL+ k2c2 + c21c
2
2k

4 + 2(c1 + c2)k sin kL
(50)

One could also introduce correlations between adjacent nearest neighbor dis-
tances r. However, in this case one would have to calculate each pn(r) since the
convolution form (44) is no longer valid. Such a calculation is diÆcult for any other
distribution than gaussian [60]. For example, introduce correlation coeÆcient be-
tween adjacent neighbor-neighbor distances

t =
hrjrj�1i � hrji hrj�1i

�2
=
hzjzj�1i

�2
(51)

The correlation between n-nearest displacements z is then given by [60]

hzjzj�ni
�2

= tn (52)

Even though pn(r) can also be shown to be gaussian, this is of little use since
the structure factor still has to be calculated numerically from (45). However, the
authors of Ref. [60] considered a regular distorted lattice which is well worth looking
into. Thus they had gaussian distribution for each displacement from the lattice
position, z in our notation. What is said above about the correlation coeÆcients
still holds. If �L denotes the variance for the displacement distribution, then for the
nearest neighbor distance (r) and the n-nearest neighbors [60]

�2 = 2�2L(1� t)

�2n = 2�2L(1� tn): (53)

This still requires numerical calculation of the structure factor. The main result
is that with a suitable choice of �L and t it produces short range paracrystalline
distortions in a regular lattice which yet has long range order (LRO). Therefore
it avoids the unlimited uctuations which are inherent in the original paracrystal.
Also, with superimposed Bragg reection and di�use paracrystalline peak it is much
akin to systems which show quasi LRO encountered later in this introduction and
could o�er alternate model for these.

Surfactant micelles

Four papers in this thesis deal with substances called surfactants or amphiphiles
used in conjunction with polymers. The remarkable properties of the surfactants
have been studied for decades. As they are now becoming an important tool in
tailoring new polymeric materials, it is instructive to �rst review some of this work.
Most part of the underlying behavior may be well understood without considering
the polymer.

The word amphiphile literally means loving both. 'Both' refers to oil and water
which, as we well know, do not mix. The reason is their di�erence in polarity; water
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molecules form a tetrahedrically coordinated network of hydrogen bonds and cannot
incorporate the oil molecules unless large amounts of energy is brought to break
some of these bonds. There is a negative mixing energy meaning that a molecule
of oil8 gains energy by associating with its own kind. This preference leads to
macrophase separation. The dislike of the polar and nonpolar media is shown as
a high surface tension between the separated phases. They try to create as little
interface as possible to reduce the contact between the polar and nonpolar moieties.

An amphiphile is a special kind of molecule that has both hydrophobic and hy-
drophilic parts permanently attached by covalent bonds. The hydrophilic part is a
polar end group and hydrophobic part consists of linear or branched hydrocarbon
tail(s). Examples of amphiphiles9 are fatty acids and their salts (soaps), phenols, sul-
fonates, ammonium salts or salts of phosphoric acids (phospholipids). Amphiphiles
may also be classi�ed as anionic, cationic or zwitterionic according to their charge10.
Examples of amphiphiles occuring in this work are11 PDP (phenol with an aliphatic
tail), DBSA (benzene with sulfonic acid group and an alkyl tail), Zn(DBS)2 (a zinc
salt of previous), NaPal (Natrium Palmitate, sodium salt of an alkyl carboxyl acid),
SDS (Sodium salt of an alkyl sulhponic acid) and AOT (sodium salt of a sulfonic
acid which also forms two esters with branched monovalent alcohols).

The 'loving-both' disposition of an amphiphile makes it to seek to the oil-water
interface. There it acts to reduce the surface tension, which moderates the growth
of the phase regions to globally reduce the speci�c surface of the mixture. Because
of this activity they are called surfactants. Aided by the surfactant, oil is capable
of forming small droplets, vesicles, in the water. With suÆcient amount of both
present, these droplets may coalesce and both phases form interwoven channels, in
which case the system forms a microemulsion and the surfactant is thus an emulsi-
�er. Whenever the surfactants are referred to as lipids and this is mostly the case in
biology, the corresponding structures that these form are liposomes. These phenom-
ena are nothing modern. Humanity has used soaps and later detergents12 for ages
to make dirt (grease) soluble in water in tiny droplets. Thus the term solubilizer

8Oil is a common name for fats which are in the melt state at room temperature. Fat is an
ester of glycerol with fatty acids which is the common name for long chained carboxylic acids. It is
not important here that oils are esters, the key point is that they contain long hydrocarbon chains
that are strongly hydrophobic (literally \water-fearing"). Similarly, polar molecules or groups that
associate with water are said to be hydrophilic (\water-loving").

9The division of substances to hydrophobic and amphiphiles may appear confusing. For a
molecule to be amphiphilic, a certain balance between hydrophilicity and hydrophobicity has to
be realized. Thus aliphatic alcohols and amines are not amphiphiles though they have polar end
groups. Not all fatty acids, salts or phenols are amphiphiles either, the chain has to have suÆcient
length, typically 8-18 carbon units. We can mentally arrange the molecules on a hydrophobicity
axis with alkane chains at one end and water at the other. Amphiphiles would be found in between;
some of them are soluble in water whereas others will only swell but may become soluble in di�erent
circumstances.

10For more terminology, a soap is an alkali salt of fatty acids. Fats etc. which are soluble in
hydrocarbons and insoluble in water are commonly called lipids, which derives from the very word
'fat' from Greek. Phospholipids are important biological molecules. They are a formed of glycerol
esteri�ed with two fatty acids and one phosphoric acid. Usually the phosphoric acid (which is
tribasic) is further esteri�ed to a short alcohol. Acidic amphiphiles are anionic, those containing
the amine group are cationic. Zwitterions contain both acidic and basic groups. Zwitterions are
typically phospholipids esteri�ed to alcohol amines such as choline.

11Their chemical names: PDP = pentadecyl phenol; DBSA = dodecyl benzene sulfonic acid;
Zn(DBS)2 = zinc dodecyl benzene sulphate; NaPal = sodium hexadecanoate; SDS = sodium
dodecyl sulphate and AOT = Sodium 2-diethylhexylsulfosuccinate

12Detergents are cleaning agents made of anything else but natural fats. First synthetic detergents
were alkylbenzenesulfonates, i.e. Zn(DBS)2 is a detergent.
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is also synonymous for a surfactant, though oil and water do not strictly speaking
form a solution but are micro-phase separated. As an example of emulsion, a phos-
pholipid called lecithin, which is found in egg yolk, makes oil and vinegar mix to
form mayonnaise sauce.

Micellization

The above behavior is not in any way restricted to ternary systems involving water,
oil and surfactant. Even pure amphiphiles tend to separate their polar and nonpolar
parts. The relevant phenomena may be demonstrated in binary water/surfactant
systems. In binary systems the droplets are referred to as micelles and the mi-
croemulsion speci�cally is known as the sponge phase. Most often the micelles are
formed of the alkyl tails of the surfactants, but micelles of the polar component, e.g.
inverted micelles also occur.

Whip together oil and water, they soon form larger and larger droplets until a
complete macrophase separation has occurred. Similarly, if amphiphiles are mixed
with water, dimers, trimers and multiplets start forming as the chemical potential ex-
perienced by the surfactant monomers decrease with increasing aggregate size. There
exist a critical micellar concentration (CMC) above which all additional monomers
go into micelles and micelles of in�nite size appear spontaneously.

With binary amphiphile/water system, there is one distinction; every amphiphile
molecule is at the surface of the multiplet. Without any free oil molecules present,
the growth of the micelle is limited at least in one direction to the length of the alkyl
tail. There is still repulsion between water and hydrophobic tails, which shows as a
surface tension. This tension shrinks the surface and smoothens the corners as every
tail is trying to get as far from the water as they possibly can. As is commonly known,
the requirement of the least surface for a �xed volume leads to a sphere. This creates
a barrier against micellar growth: Large micelles are energetically favorable, but in
order to get there a micelle has to deform into a rod or a disc. In�nite cylinders or
layers would be preferable13, but for a �nite micelle the potential barrier created by
the rod ends or disc edges prevents micelle growth. On the other hand two micelles
can not easily coalesce because there is generally a strong repulsive interaction due
to hydration forces.

Thus micelles grow to a preferred size and shape which is governed by speci�c
forces at the surface. Note, however, that a 'full-grown' micelle is by no means
stable and rigid. Monomers are constantly hopping in and out with a time constant
of a fraction of a second. The micelle itself is uid with the monomers endlessly
changing places and ip-opping. It yields and deforms under external pressure
and undulates due to thermal agitation. Thus the micellar solution (not really a
solution but dispersion) is viscous, but uid all the same. They are occasionally
called micellar uids or complex uids.

Micellar form

As outlined, the hydrophobic interaction leads preferably to spherical form for small
micelles (local minimum) whereas the lamellar form is the global minimum provided

13For equal smallest dimension (diameter equal to thickness D) the respective speci�c surfaces for
lamellar, cylindrical and spherical forms are 2�=D, 4�=D and 6�=D for , where � is the surfactant
volume fraction.
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the lamellas are in�nite14. Happily, there are other factors to a�ect the form of
the micelles. For example, the hydrophilic groups may be placed in such a way
to a�ect the molecular arrangement at the interface and therefore facilitate certain
form for the micelle. The micellar form may be predicted by a number of di�erent
approaches.

Geometrical approach. Even simple notions about the dimensions of the
amphiphilic molecule can give astoundingly accurate predictions [61]. The relevant
parameters are the volume of the hydrophobic tail v, its length l and the surface area
per amphiphile molecule a0. The volume is more or less �xed whereas the length of
the alkyl tail is less well de�ned. The end-to-end distance of the tail is somewhat
less than its extended length. A long exible chain coils more and temperature may
a�ect its length signi�cantly. Even so, there exists a well de�ned upper limit lc > l
for the tail length [61].

The area of the amphiphile a0 is determined by the headgroup as it connects to
the polar medium [61]. Therefore it may be expected that this is another 'molecular'
constant. Indeed, there is evidence that e.g. all soaps with di�erent chain lengths fall
to the same (small) relation of area/concentration curve [62]. However, the surface
area may be controlled by changing the polar properties of the medium, e.g. by
addition of salt ions or changing the pH [61]. With parameters v, lc and a0 set, the
predicted order of phases is lamellar for v < a0lc < 2v, cylindrical for 2v < a0lc < 3v
and spherical for 3v < a0lc.

Membrane theories. Membrane theories evaluate the free energy associated
with the area and curvature of the interface. To improve on the previous theory,
for example, note that the hydrocarbon tails are in a uid state. They are in
constant motion colliding with one another, which creates chain pressure. This
tends to increase chain to chain separation and therefore induces outward curvature
of the surface. Also, the hydrophilic groups tend to have a repulsive force between
themselves, which works in opposite direction. The net e�ect is the preference
towards a �xed curvature of the surface.

In membrane theories the molecular nature is abandoned and the energy is just
written in terms of two invariants of the surface, the mean curvatureH and Gaussian
curvature K de�ned as

2H =
1

R1
+

1

R2

K =
1

R1R2
(54)

where R1 and R2 are the two principal radii of curvature. These can be either
positive or negative; a positive radius implies inward curvature. The free energy
associated to the surface is [63]

F =

Z
dS

�
� + 2�(H �H0)

2 +
1

2
��K

�
(55)

where � is the surface tension, � is the bending rigidity, �� is the saddle-splay mod-
ulus and H0 is the spontaneous curvature of the surface. In the absence of both

14There are other forms of layered structures e.g. the sponge phase or the bicontinuous phases
which are dealt with later on.
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saddle-splay modulus and preferred curvature, the remaining parameters are � and
�. General phase behavior may be outlined [64]. For large � the system creates as
little surface as possible forming small droplets or a sponge phase. For small (neg-
ative) � normal smectic or nematic liquid crystal phases appear. The saddle-splay
modulus �� a�ects the topology of the system. If �� is increased, at some point the
system will undergo transformation to a phase with vanishing mean curvature ev-
erywhere and negative gaussian curvature. Such are the various bicontinuous cubic
phases discussed later in the text.

For a ternary system, the form of the vesicles depending on the preferred curva-
ture may be outlined [65]. This assumes �xed morphologies neglecting uctuations.
Let �o and � denote volume fractions of oil and amphiphile. It is assumed that an
amphiphile layer of thickness l0 surrounds the regions of oil. If these regions are
spherical we have H = 1=R and K = 1=R2. For cylindrical regions H = 1=2R and
K = 0 and for lamellar both are zero. Therefore

�

�o
(� wH0l0) =

�
2l0=R cylinders
3l0=R spheres

; (56)

where R is the radius and w is a dimensionless parameter related to the volume
fraction. The free energy per unit area is then

f = 2�H2
0 �

8<
:

1 lamella

(w=4� 1)
2

cylinders

(w=3� 1)
2
+ ��H2

0w
2=9l20 spheres

(57)

giving phase sequence in terms of these microscopic parameters [66, page 144].
An interesting property might arise if the membrane (interface) has a particularly

strong sti�ness toward stretching but small bending rigidity. As one can easily
demonstrate with a piece of paper, bending the membrane in one direction makes it
sti�er in the other, since simultaneous bending modes would require stretching. If the
membrane is exible so that thermal uctuations cause directional disorder in local
scale, this does not imply that the membrane has disorder in the long scale, quite
the contrary [67]. Now, long-scale bending would in this case produce directional
anisotropy but nature resists this and chooses instead to moderate the bending so
as to make the membrane at at large length scales. Thus we have a case were local
thermal undulations lead to long range order. This shows as the bending modulus
being scale dependent.

Ginzburg-Landau models. In the Ginzburg-Landau approach the free energy
is written as a functional expansion of an order parameter � [66]

F [�] =
Z

f(�;r�;r2�)d3r

f = c1(r�)2 + c2(r2�)2 + : : :+
X
n

an�
n (58)

In binary systems, the order parameter is usually the density contrast � = �A� �B .
Ginzburg-Landau theory is a phenomenological model, whose outcome is dictated
by the choice of coeÆcients an and cn. They predict micelle formation and the
interface boundary pro�le and determine the behavior of the structure factor. Most
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famous result is that given by Teubner and Strey [68] for microemulsion theory of
strong amphiphiles. They chose for non-zero coeÆcients a2 > 0, c1 < 0 and c2 > 0
which lead to structure factor

S�1(k) � a2 + c1k
2 + c2k

4: (59)

This form of scattering factor is given by the Debye-Bueche correlation function [69]

g(r) = j0(r=`)e
�r=� (60)

where j0(x) = sinx=x and the two characteristic lengths are

�
`

�
=

"
1

2

�
a2
c2

�1=2

� 1

4

c1
c2

#�1=2

: (61)

Stability requires c21 < 4c2a2. Between 0 < c1 < 2
p
c2a2 ordered domains exist but

the structure factor peaks at zero wavevector length until c1 = 0. This is called
the Lifshitz line. For negative c1 the peak shifts to non-zero wavevector and at
c1 = �2pca2 a transition to an ordered lamellar phase results. However, the above
model also indicates unstability before the ordered phase sets in because the domain
size would also diverge.

Mesoscopic phases of surfactants

As we have seen there is a preferred size and shape of the micelles. This is a big step
toward ordered phases in surfactant systems, i.e. we may have translational instead
of dilatational symmetry. The second requisite is forces between the micelles.

Forces between micelles

Intermicellar forces come in four categories: van der Waals, electrostatic, hydration
and steric forces.

I) van der Waals interaction causes weak attraction between the micelles. Be-
tween two planar surfactant layers [61] the energy scales with layer separation d as
d�2 but drops more rapidly as d�4 when the separation is much larger than the layer
thickness. Similarly, for two spheres the vdW-energy scales as d�1 shifting to d�6 at
large (d � R) separations. For two parallel cylinders the corresponding forms are
d�3=2 and d�5.

II) Electrostatic interaction between the membranes results when the hydrophilic
groups such as the carboxylate group (-COOH) become charged by proton dissoci-
ation or ion binding. It is usually repulsive and has exponential form � e��d where
typical values for the decay length 1=� are 3 �A per squareroot of (molar) electrolyte
concentration. Electrostatic interactions are dominant over van der Waals forces
whenever charges are involved.

III) Hydration forces. Near the interface, the polar matter (water) forms a frozen
structure. This creates a steep potential barrier against the surfaces coming into
contact. The extent of the resultant force is about 15 �A and may be described also
with exponential decay.

IV) Steric forces have gained most interest in the recent years. Steric interaction
arises from the motion of the uid membranes (layers) as they collide with adjacent
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membranes. This results in an outward pressure which acts to increase the membrane
separation. The interaction energy f per unit area was derived by Helfrich [70]

f = 0:23k2T 2=�d2; (62)

where � is the elastic modulus for a single membrane and d is the distance. Simu-
lations suggest a smaller prefactor, 0.074 instead of 0.23, however [71].

The steric interaction competes with the van der Waals attraction, but should
be dominant at large separation (of neighboring membranes) because of the faster
decay of the latter.

If the repulsion is strong enough this is suÆcient to induce ordering since
in the ordered system the micelles are further apart. This distance is least in
spherical form and biggest in lamellar which predicts a general phase sequence
sphere!cylinder!lamelle with increasing interaction.

General remarks on the ordered phases

The formation of ordered phases depends on the amount of amphiphile and the
amphiphile strength [66]. The strength is controlled in various ways depending on
the amphiphile, e.g. by changing concentration or temperature. In ternary systems,
a uid phase is formed in equilibrium with water rich and oil rich phases. As the
external �eld (temperature etc.) is varied, the concentration of oil and water in the
middle phase15 varies, and a sequence of ordered phases may be found. In binary
systems, two phases, a water rich and amphiphile rich are formed. The latter is
often found lyotropic.

The "classical" phase sequence with increasing amphiphile content is
isotropic!cylinderical!lamellar. At the water rich side, these phases are inverted.
Figure 5 gives a typical phase diagram of a fatty acid salt, which is one of the
surfactants used in Paper II. Two curves meet the eye: the uppermost curve (TI)
separates the isotropic liquid from the lyotropic phases. The thick curve in the
middle (TC) separates the crystalline regions from liquid crystalline. The crystal-
lization intercepts the phase sequence so no inverse phases are found in this case. All
aliphatic hydrocarbons exhibit relative high crystallization temperatures depending
on the number of unsaturated bonds. Branched chain surfactants such as AOT,
form inverse-middle phase (inverse hexagonal with water cylinders) [72]. In potas-
sium soaps, the region under crystallization curve may show two appearances [73].
One called gel is a translucent jelly and gives sharp di�raction peaks whose posi-
tions depend on the amount of water. The other coagel is opaque mass and gives
di�raction peaks at the same position regardless of the amount of water. Thus gel
phase has crystallized alkyl chains whereas the polar layer is in amorphous state and
coagel is a dispersion of fully crystalline hydrated solid soap. Lithium and sodium
soaps do not yield \gels". Potassium with even chain alkali carboxylate all form
similar gels with interdigitated chains.

15It's called middle phase because being usually intermediate in density it appears physically in
the middle of the test tube.
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Figure 5: Simpli�ed phase diagram of binary Sodium Dodecanoate / water system, after Madel-
mont et.al [75]. L=isotropic liquid (micellar solution), N=neat (lamellar), M=middle phase (cylin-
drical), C1, C2, C3 are various crystalline phases, W=waxy, I1, I2 are intermediate mesomorphous
phases. Apart from the waxy, pockets of several other forms appear along the temperature axis,
which are not drawn. Intermediate to L, N, M, W and the I phases are regions of two phase
coexistence.

The lamellar and cylindrical phases were �rst to be found16. They organize
in liquid crystalline form which means that there's no periodicity other than that
between the layers or cylinders. The isotropic phase is not actually structureless,
but a disordered solution of spherical or cylindrical micelles.

In present view, the full sequence of phases is as depicted in Fig. 6. Ordered
3-D phases exist in two speci�c places in the phase diagram. Between the isotropic
and hexagonal phases, closed micelles may form ordered structures, which have
commonly cubic symmetry. More intriguing are the cubic phases which are found
between lamellar and cylindrical structures, i.e. at positions I1 and I2 in Fig. 5
and V1 and V2 in Fig. 6. As their position suggests, they can hardly be based on
closed micelles, but both water and amphiphiles form continuous structures. Thus
the matter is said to be bicontinuous.

There was at �rst an understandable confusion between these two forms. In the
early days it was commonly held that cubic phases consist of spherical micelles in
some of the basic crystalline lattices such as the face centered cubic (fcc). Cubic and
rectangular phases having 3-D symmetry were known to appear in high temperature
phases found in e.g. fatty acid soaps [76, 77]. Then an alternative model was
proposed by Luzzati and co-workers [78, 79] They reevaluated earlier results [80]

16In older literature 'neat' and 'middle phase' are synonymous to lamellar and cylindrical (hexag-
onal) forms [74].
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and opined that most, perhaps all, space group determinations of fcc structures
were incorrect. It was found that a variety of amphiphiles [81, 78, 79, 82, 83] showed
strikingly similar structure, which by x-ray scattering seemed to agree with a network
of connected rods. The space group was determined as 230 (Ia�3 d) and the position of
the rods implied the existence of two unconnected networks of rodlike water channels
in hydrocarbon matrix.
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Figure 6: General order of phases found in surfactant/water systems and their standard sym-
bols. Not all phases necessarily appear and there are regions where two phases may be found in
coexistence.

Scriven [84] made an important contribution concerning the nature of these
phases. Though he claims that bicontinuous structures in uids have never been
contemplated before in spite of Luzzati's and others' work presented in the same
journal a few years earlier, he was the �rst to draw attention to the role of the
surface partitioning the two phases, which he assumed as in�nitely periodic minimal
surfaces (IPMSs). Thus the hydrocarbon matrix is really a surfactant bilayer which
divides the two water networks into two symmetric subvolumes. The center of this
bilayer is at the IPMS. The number of di�erent IPMSs is stated to be 17 [85]. How-
ever, it is now widely believed that just three of these appear in practice. These
are Schwartz's P-surface, Schwartz's D-surface and Schoen's G-surface17. Figure 12
gives an illustration of these.

The �rst observed phase Ia�3d is based on the G-surface [76] and it has also
proved to be the most common. Numerous examples may be found in the review
articles of cubic surfactant [86] and membrane lipids [87]. Reports of the two other
surfaces are still rare to date, though researchers have been savvy to look for these.

17\P" is for primitive, \D" for diamond and \G" for gyroid

29



The D-surface was found in Glycerol monooleate (GMO) [88]. It forms a primitive
cubic structure with a tetrahedral space group 224 (Pn�3m). The P-surface seems
rarest of the three and it's existence has even been debated [89]. The GMO was
at �rst determined as based on Schwartz's P-surface with space group 221 (Pm�3m)
[90] or 229 (Im�3m) [91], but was later corrected to be based on the D-surface.
A recent article [92] reports the space group Im�3m in a surfactant referred to as
C17E84 but in this case the aggregates are said to be of closed spherical form, ac-
cording to NMR. Gruner [93] reports this type of structure in methylated DOPE
(dioleoylphosphatidylethanolamine) which shows signs of superimposed Pn�3m (D-
surface) and Im�3m (P-surface or spherical bcc) structures. Recently, Templer has
reported seen all three IPMS's in mixtures of phospholipides and fatty acids [94, 95],
while Jones et al. [96] have investigated ternary water/toluene/DDAB which is said
to organize in this morphology18.

In addition, there are a few occationally appearing phases whose form has been
controversial. The �rst was found not long after the observation of Ia�3d [98] in
an analogous system [99]. The space group was determined as 223 (Pm�3n). The
structure was suggested to be partly connected, consisting of both rodlike network
and quasi-spherical micelles. Inspired by this, Luzzati and coworkers subsequently
proposed similar 'hybrid' phases derived from the bicontinuous phases by replacing
one network with closed micelles [100]. Thus from the G-surface one derives space
group 212 (P4332) and from the D-surface a space group 227 (Fd�3m) is obtained.

The partly connected structure has been rejected by Eriksson and other workers
in the �eld. Based on surfactant self-di�usion results, the Pm�3n structure is shown
to be formed of closed micelles [101]. A plausible model is due to Fontell [102], and
is e�ectively the same as solid O2 and N2, with short rod-like micelles replacing
the diatomic units. Also the proposed 'hybrid' Fd�3m form have later been reeval-
uated [103] in favor of closed micelles [104]. It is possible that the two forms other
than Pm�3n (i.e. 212 and 227) result from impurities in form of coexisting phases.
The Pm�3n form is frequently encountered, however, e.g. in the CS/sodium palmi-
tate/water system studied in Paper II. It has been suggested that all the phases in
in the micellar cubic position (I1) have this structure (Pm�3n) [86]. At the water
rich side (I2), the tendency to form organized phases seems to be lower [86] and
until recently no cubic phases had been identi�ed. It now appears that the micellar
(Fd�3m) phase is the dominant form in this position [105, 103]

Lamellar morphology

The lamellar phase is a one dimensional crystal with the single lattice vector per-
pendicular to the lamellae. One can distinguish two order parameters; translational
and orientational order. Even though they are one dimensional periodic structures,
the lamellar phases cannot often be described with the paracrystalline model. To
see where the distinction arises, let us consider the lamellar phase in the membrane
approach, e.g. where surfactant bilayers are separated by polar media. Recalling
what was said about the e�ect of thermal uctuations, in the extreme cases the
system may show quite remarkable division to long range order (LRO) and short

18These authors place the P-surface in Pn�3m space group [97]. There are more than one space
groups which give the same structure. However, as this space group is also used for the D-surface,
the normal assignment is used here, i.e. Ia�3d for G, Pm�3n for D and Im�3m for P.
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Figure 7: Schematic �gure showing undulat-
ing lamellae in con�ned space.

range disorder. This is schematized in
Fig. 7. Thus very exible membranes,
when little elastic energy is associated
with the bending modes, may be forced
to periodic lattice positions so as to allow
ample space for oscillations of each indi-
vidual membrane. As we have learned,
the order is never strictly periodic but
may nevertheless show quasi-long range
order. The dynamics of each membrane
is equivalent to as if it were con�ned be-
tween two rigid walls of width 2(d � D)
where d is the average lattice period and
D is the closest distance between the
membranes due e.g. to hydration forces
and the thickness of the membrane.

The disorder at short range is shown by the broad maxima in the correlation
function g1(z) (drawn sinusoidal in Fig. 7) in place of sharp delta functions. One
cause of this is that the higher order reections in the di�raction pattern can be quite
weak. It is common that the higher orders are minor to the �rst order by a factor
10�4. The actual distribution of the density along the lattice period d (structure
factor of the membrane) has the same e�ect. The density pro�le depends on the
strength of phase segregation and for weak segregation it is also sinusoidal. In this
case the 'membranes' are replaced by surfaces of constant density.

The quasi-LRO means that the correlation function is ultimately damped to zero
at large membrane-membrane distances. The damping function is observed in the
pro�le of di�raction peak. For example, an exponential decay of the correlation
function leads to lorenzian shaped pro�le of the Bragg reection. In practice the
decay is slower [106, 107] and can be related to the elastic properties of the membrane
and the intermediate matter. Consider the undulations of the n:th lamella as local
displacements un(y) in the z-direction from its equilibrium (lattice) position. The
undulations are associated to an elastic wave denoted by wave vector q = (qy ; qz)
where the z-axis is chosen perpendicular to the lamellae (c.f. Fig. 7) and qy is in
the plane of the lamellae.

The waves propagating along the z-axis will just compress the matter leaving the
membranes at, whereas waves along the the plane of the lamellae do not change
the distance between the membranes and produce only bending of the membranes.
The energy associated with the compression is 1

2Bq
2
zu

2, where B is compressibility.
The bending energy (c.f. Eq.55) depends on membrane rigidity � and curvature.
For a sinusoidal wave, the curvature is R�1 � q2yu and the energy is 1

2�q
4
yu

2.
The sum of these two19 terms is subject to energy equipartition; each wave q

carries energy kT and therefore the square amplitude is moderated by the sum.
Then the uctuation is given by

hu2i = kT

4�3

Z �=d

�=Lz

dqz

Z 1

0

2�qydqy
Bq2z + �q4y

: (63)

19Additional energy terms might include external magnetic �eld H, to align the membrane nor-
mals to the z-direction, and thus to the transverse (y) component would be added 1

2
�H2q2yu

2 where
� is the magnetic susceptibility.
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The cut-o� frequencies are given by membrane separation d and the thickness of the
lamellar stack Lz. We consider here in�nite homogeneous lamella so that the limits
of the inner integral can be taken from zero to in�nity. One obtains [106]

hu2i = kT

8�(�B)1=2
lnLz=d: (64)

This restates Landau's argument that in in�nite one dimensional system, the uc-
tuations also grow in�nite and perfect lamellar crystals cannot exist [56, pp. 432-6].
The ratio of parameters � and B de�nes whether the uctuations are in the trans-
verse or longitudial direction of which the latter is the only one disrupting order.
Thus the quantity (�=B)1=2 � � determines the decay of undulations.

The correlation between displacements is given by

hjun(y)� u0(0)j2i = kT

2�3B

Z
dqz

Z
dqy

1� cos(y � qy + 2�n
d qz)

q2z + �2q4y
: (65)

For large n it has asymptotic solution [107]

' kT

4�(�B)1=2

�
2 ln

y

2a
+E1(

y2d

8�n�
)� f(

�d

�a2
)

�
; (66)

where ln  = 0:577 : : : is the Euler constant, and functions E1 and f are de�ned by

E1(x) =

Z 1

x

dt
e�t

t
= � ln x�

1X
n=1

(�x)n
n � n!

f(x) =
2

�

Z x

0

dt
arctan t

t
: (67)

In the normal direction y = 0 in particular, Eq.(65) yields

hjun � u0j2i = kT

4�(�B)1=2
(ln�n+ ln  � ci �n) ; (68)

where the cosine integral (ci) is an insigni�cant contribution. The logarithmic decay
creates a singularity centered at the position of the Bragg peaks kn = 2�nẑ=d. For
scattering vectors close to these peaks, e.g. K = k� km, the scattering intensity is
predicted to follow

I � K�2+�
z K�4+2�

y (69)

where the deviation from the "regular" lorenzian shape is dependent on the param-
eter

� =
kTk2n

8�(�B)1=2
: (70)

The dependence on the order of the reection, � � n2, is essentially created in making
a harmonic approximation for the displacement correlation function [108, 107]

g(y; z) = exp

�
�1

2
k2zhjun(y)� u0(0)j2i

�
: (71)
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For the present case

g(y; z) =

�
2d

y

�2�

exp

�
��

�
2 ln  � f(

�d

�a2
) +E1(

y2

4�z
)

��
: (72)

The dependence on n has also been veri�ed in experiment [109]. If the repulsion is
due to membrane uctuation, i.e. the Helfrich interaction [70], the theory predicts
for the �rst order reection20

�1 = 1:33(1�D=d)2: (74)

This was demonstrated to hold in the same paper [109].
The pro�le of the m:th Bragg reection may be obtained from

I(k) �
Z

dz

Z
g(y; z)e��r

2=L2 eizkm sin kr

kr
d2y (75)

with r2 = z2 + y2 and km = 2�m=d. The gaussian term e��r
2=L2

takes into ac-
count the �nite size of the crystalline regions. Another way is to calculate the one
dimensional structure factor similar to a paracrystalline stack of N layers [110]

S1(k) = 1 + 2

N�1X
n=1

�
1� n

N

�
exp

�
�k2d2�n + n2Æ2d2=2

1 + 2Æ2d2�n

�

� cos

�
ndk

1 + 2Æ2d2�n

�
=(1 + 2Æ2d2�n)

1=2;

(76)

with �n from Eq.(68)

�n =
�

4�2
(ln�n+ ln  ) (77)

A gaussian instrumental resolution Æ is
directly implemented in Eq.(76). Struc-
ture factors given by the equation are
portrayed in Fig. 8. With vanishingly
small �, all orders of the Bragg reec-
tions are equally intense and their width
is de�ned by the thickness of the stack
of lamellas. As � is increased, the higher
order peaks are rapidly damped and the
di�use tail of each peak becomes con-
versely larger, as predicted. The one di-

0 0.1 0.2 0.3 0.4 0.5
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Figure 8: One dimensional structure function
S1(k) for a stack of 60 lamella and � = 0:01
(solid curve), � = 0:1 (dashed curve ) and
� = 0:4 (dotted curve)

20This dependence is obtained by equating the spring constant (compressibility) B with the
second derivative of the interaction energy (62) with the membrane separation written as d�D

B = 1:38k2T 2=�(d�D)4: (73)
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mensional intensity needs to be multi-
plied with the scattering factor and av-
eraged over di�erent orientations (pow-
der averaging) before comparison with
experiment is made.

An example of experimental data is
presented in Fig. 9. The data is from
a system of AOT/water/polymer, mea-
sured with the point focusing setup in
HU for three hours. AOT21 is frequently
studied surfactant [111, 112, 113]. It
is a branched chain surfactant and does
not crystallize readily. Pure AOT orga-
nizes in inverse hexagonal form [111] and
can dissolve up to 16 % of water in this
structure. For increasing water content,
the normal phase sequence H1 ! V1 !
L� is found. At the lamellar phase the
structure is simply swelled by the wa-
ter. The thickness of the AOT bilayer
remains constant at 19-21 �A [113] while
water pushes the bilayers apart in linear
relation to the volume fraction. In Fig.
9 the lamella separation is 76 �A.

0 0.1 0.2 0.3 0.4
0

1

2

3

4
x 10

−3

Figure 9: Experimental intensity curve
for AOT/water/DMAA system for 25/65/10 %
composition

Up to 82 % of water can be incorporated while the structure still keeps in the
well ordered lamellar state. This is by no means unusual. Very exible membranes
can show extreme swelling and LRO even as little as 0.5 % of the surfactant present
and produce 6500 �A lattice spacing [114, 109]. This type of behavior is observed in
neutral lipids with suÆciently small bending modulus � � kT in which case steric
e�ects dominate over the van der Waals interaction. In charged lamellar system, the
longer ranged electrostatic interaction supersedes steric repulsion due to undulations
and the lamellas atten [115].

Cylindrical morphology

Cylindrical micelles form a two dimen-
sional analogue of close-packing, which
is the hexagonal lattice. The hexago-
nal lattice is span by two vectors a and
b at 120Æ angles, and both of length
a. In perfect crystals, cylinders oc-
cupy the lattice positions denoted by
Miller indices (n;m) at Rnm = na +
mb. However, as was the case in pre-
vious section, perfect crystals do not ex-
ist in two dimensions neither. Thus we

a

b
b*

a*

Figure 10: De�nition of a hexagonal lattice.

21See page 22 for its description; Da Isabel Esteban Ipacios of UNED, Spain is kindly acknowl-
edged for providing me this sample
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expect uctuations to diverge with system size here also. Let us consider again
integral (65) where the bending energy now refers to that of the cylinders. Now the
equation is written as

hjunm(z)� u00(0)j2i = kT

2�3B

Z
dqz

Z
dqy

1� cos(Rnm � qy + zqz)

q2y + �2q4z
: (78)

The z-direction is now taken along the cylinder axis. For z = 0,

hjunm � u00j2i = kT

4
p
2�2B1=2(�B)1=4

1st B.z.Z
dqy

1� cos(yqy)

q
3=2
y

; (79)

where the integral is over the �rst Brillouin zone of the lattice, the gray hexagon in
Fig. 10. Thus

Z
dqy

1� cos(yqy)

q
3=2
y

=

r
�

a

Z 1

0

dx

Z 1

0

dy
3� cos(f)� cos(f � 2�nx)� cos(f � 2�my)

(x2 + y2 � xy)3=4

(80)

where

f =
4�

3
(nx+my � ny=2�mx=2):

Numeric solution suggests that the integral will depend only on the distance
Rnm=a = r = (n2 + m2 � nm)1=2 and has an extremely slow double logarithmic
divergence,

'
r
�

a

�
13

2
ln(ln r +

p
2) + 4

�
r�0:039: (81)

This places the hexagonal phase somewhere between lamellar and solid. The di�use
scattering is expected to be weaker than for the lamellar case.

For a more elaborate derivation, the interaction between the cylinders is to be
included. This is accomplished by introducing, in addition to the bending energy,
a free energy cost for the uctuations of the cylinder axis direction from the local
average (the nematic �eld) [116]. Two new parameters called the Frank constants, �1
and �2, for splay and twist deformations are introduced. Also, for proper calculation
of the elastic energy, the displacements and the single elastic constantB, are replaced
with the strain tensor and the so called Lam�e's coeÆcients � and �. The free energy
is then [117]

Fq =
1

2

�
(�+ 2�)q2y + �1q

2
yq

2
z + �3q

4
z

�
u2L +

1

2

�
�q2y + �2q

2
yq

2
z + �3q

4
z

�
u2T (82)

in which the displacement is separated to longitudial and transverse parts uL and
uT and �3 is the bending coeÆcient previously written without a subscript. The
correlation integral is now

hjunm � u00j2i =
kT

4�3

Z
dqz

Z �
1� cos(Rnm � qy)

(�+ 2�)q2y + �1q2yq
2
z + �3q4z

+
1� cos(Rnm � qy)
�q2y + �2q2yq

2
z + �3q4z

�
dqy : (83)
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As we expect again the result to depend only on Rnm = ra, it should also be permis-
sible to change the integral over a sphere, whose area matches that of the Brillouin
zone, �q20 = 8�2=

p
3a2. Then the integral is transformed to one dimensional with

the expense of having to evaluate the Bessel function J0

hjur � u0j2i = kT

�1

Z 1

0

1� J0(crx)

(x2 + 1x)
1=2

dx+
kT

�2

Z 1

0

1� J0(crx)

(x2 + 2x)
1=2

dx (84)

where

c = 81=2�1=2=31=4 � 3:8093;

�1 = 4��
1=2
1 (�+ 2�)1=2;

�2 = 4��
1=2
2 �1=2;

1 = 2�
1=2
3 (�+ 2�)1=2a=�1c;

2 = 2�
1=2
3 �1=2a=�2c:

For appreciable 1 or 2, the integrals will diverge slowly (with the double logarithmic
form as previously) whereas for vanishing these terms, the divergence will be 'only'
logarithmic.

The scattering of a �nite hexagonal crystal might then be evaluated from the
two dimensional analog22 of Eq.(76)

S2(k) = 1 +
X
r<D

GD(r)Pr exp
�
�k2hjur � u0j2i

�
J0(kr); (85)

where GD(r) is the autocorrelation func-
tion of a circle of diameter D

GD(r) =
2

�

"
arccos

r

D
� r

D

r
1� r2

D2

#
;

(86)

and Pr is the number of lattice points at
distance r from an arbitrary lattice point
in an in�nite lattice.

The structure factors in Fig. 11 are
calculated using the double-logarithmic
dependence (81). The parameters are
chosen so that the � value for closest
neighbors corresponds to same values in
the lamellar case. The di�use scatter-
ing increases rapidly with increasing �
as in the lamellar case as this is mostly
due to closest point correlation. Note the
skewed form of the �rst peak at large �.
Due to the slow divergence, Bragg peaks
are now more pronounced.
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Figure 11: Two dimensional structure func-
tion S2(k) for a bundle of 60 unit cells in diame-
ter and � = 0:01 (solid curve) , � = 0:1 (dashed
curve) , � = 0:4 (dotted curve) and � = 0:8 (thin
solid curve).

22The powder averaging in this case means division by k instead of k2 as was the case in one
dimension
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Unlike the lamellar system, the hexagonal phase cannot support dilution. In the
ordered structures the cylinders are tightly packed with a=D � 1:2. For a higher
ratio the system is weakly ordered and is viewed as a nematic liquid. Structure
factors for these have been derived within RPA. The solution is formally similar
to Eq.(38), but orientation correlations (nematic interaction) are taken into account
and therefore the linear response theorem is applied in the position-orientation space.
The structure factor is of form [118]

S(k) =
P0(k) +R0(k)

1 + v (P0(k) +R0(k))
; (87)

where P0 is the form factor of the cylinders and R0 contains the e�ect of orientation.
The result describes not only cylindrical rods, but sti� polymer chains as well. The
functions can be represented by integrals along the chains [118]

P0(k) =
n

L

Z
L

dr

Z
L

dr0heik�(r�r0)i (88)

U0(k) =
3

2

n

L

Z
L

dr

Z
L

dr0heik�(r�r0)
�
(u � k̂)2 � 1

3

�
i

T0(k) =
3

2

n

L

Z
L

dr

Z
L

dr0heik�(r�r0)
�
(u � k̂)2 � 1

3

��
(u0 � k̂)2 � 1

3

�
i;

where u is the local tangent of the chain, n is polymer density and functions U0 and
T0 de�ne R0 by

R0(k) =
2v1U

2
0 (k)

3 [1� v1T0(k)]
; (89)

where v1 represents the strength of nematic interaction.

Schoot et al. have used a di�erent method of calculation of the structure factor
from the same premise [119]. In their formulation the structure factor is derived for
rodlike molecules (cylinders) of diameter D and length L

S(k) =
F 2(k)

F (k) + �
4L

2Dn
�
2F 2(k) + 5

4G
2(k)

� ; (90)

where F (k) is the form factor of the rods [120], (same as P0 in Eq.(88))

F (k) =
2

kL

Z kL

0

sin t

t
dt�

�
sin kL=2

kL=2

�2

(91)

and

G(k) =
3

k2L2

�
1� sin kL

kL

�
� 1

2
F (k):
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Bicontinuous phases

After their discovery, the bicontinuous cubic phases have attained considerable at-
tention among the ordered phases. These structures may be described in two basic
ways; one is the Luzzatti's network of connected rods, the second is the minimal
surface approach. For visualization, the rod model is de�nitely better.

Imagine identical volumes, blocks, having n arms (rods) which connect to n
neighboring blocks. Simplest of such blocks, capable of forming a periodic three
dimensional structure, would then have have n = 3; 4 or 6. The structure is then
said to be connected 'three-by-three', 'four-by-four', or 'six-by-six'. The arms are
expected to be coplanar in the �rst case, tetrahedrally oriented in the second case
and orthogonal in the �nal case. The question now arises, how the blocks look like,
after their surface is minimized while maintaining their volume and connectivity.

Figure 12: Surface-minimized 6-armed, 4-armed and 3-armed volume blocks.

Finding such a surface exactly is a tedious task, but for the present purposes we
make a coarse calculation, representing the asymmetric surface element by its 3 by
3 lowest Fourier components. In Fig. 12 are resulting surfaces for the three cases for
arbitrarily chosen volumes. When (and if) these can be joined to form an in�nite
network, this network will be the one with least surface for a given volume fraction
of the blocks.

The surfaces in Fig. 12 are the proto-
types of the P,D and G surfaces. Strictly,
they are not yet minimal surfaces, for
a minimal surface divides the space in
two identical subvolumes. To locate the
minimal surface, consider the behavior
of the area as a function of volume as
given in Fig. 13. The distance between
the blocks in each case is scaled to unity.
It is noted that for volume greater than
0.28, the periodic surfaces contain less
area than the sphere. More importantly,
the curves have maxima at volumes 1=2,
4=3

p
3 and

p
2 and they are symmetric

about this point. The reason is obvi-
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Figure 13: Surface areas for the 3-armed (�),
4-armed (5) and 6-armed (Æ) blocks. Surface
area for a sphere (sc) is shown for comparison.
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ous: The network formed by these blocks also de�nes a connected subvolume of
the 'outside', the surface of which is minimized concurrently. Though this does not
prove that this second volume is identical, Fig. 13 suggests that such may be found.
The position of the maxima then correspond to a point where both volumes are
identical. These are the minimal surfaces.

Figure 14: Two intertwining networks formed
by the 6-armed blocks.

Figure 15: Unit cell of systems based on the
P surface.

For the P and D surfaces, these networks are easily found because they constitute
the most obvious ways of connecting the 6-arm and 4-arm blocks. Fig. 14 shows
that if the 6-armed blocks occupy and connect the corners of a simple cubic (sc)
lattice, the second subvolume is at the body centered positions and has the same
symmetry. The unit cell contains two blocks as presented in Fig. 15 and the space
group is the body centered Im�3m. When both volumes �ll half the space, two
surfaces coalesce into a single IPMS. It's area is 2.345 per unit volume as given
directly by the maximum of Fig. 13.

Likewise, the 4-armed blocks are connected to form a diamond network. It is
a more head-ache producing exercise to ascertain that another subvolume with the
same symmetry appears translated half the unit vector of the conventional unit cell
(fcc for diamond), which then contains 16 of our basic blocks (c.f. Fig. 16). Due
to the translation the unit cell reduces to the simple cubic Pn�3m with 1/8 th of the
original cell size and two blocks per unit cell (Fig. 17).
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Figure 16: Two intertwining networks formed
by the 4-armed blocks.

Figure 17: Unit cell of systems based on the
D surface.

In the case of three coplanar arms,
the most obvious choice would be to
construct planar hexagonal networks as
in graphite. This does not �ll space
completely, as is demonstrated in Fig.
18. However these (the vertical net-
works in Fig. 18) make structures known
as hexagonally perforated layers (denoted
RII) which are known in polyelectrolytes
and block-copolymer systems. Such net-
works are also suggested to exist in high
temperature phases in anhydrous soaps
and e.g. lecithin with small fraction of
water [82, 83].

The space �lling arrangement of this
surface requires more ingenuity. Obvi-
ously, we have already encountered the
solution: The network arranges in space
group Ia�3d [78]. Viewed along coordi-
nate axis (Fig. 19 left), the structure

Figure 18: Unsuccessful attempt to �ll space
with the 3-armed surface.

composes of two sets of connected spiral networks. All the rods are oriented
along the face diagonals. A better perspective is to view along the face diag-
onals (Fig. 19 right). From this angle the A and B regions are seen to cre-
ate alternating layers of hexagonal networks, which pierce through the neighbor-
ing layer and connect with the next layer in the sequence. Thus we can once
again ascertain that partitioning into two subvolumes with same connectivity oc-
curs. The unit cell contains no less than 16 basic surfaces. When the volume
of each basic block is

p
2, the two networks �ll the space completely divided
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by Schoen's G minimal periodic surface, which is quite impossible to visualize.

Figure 19: Two di�erent perspectives of the G surface. The structure on the left also gives the
unit cell.

Properties of the minimal surfaces. In the bicontinuous structures of
aqueous surfactant solutions, the surfactant forms a bilayer whose center is at the
minimal surface23. The grey and white networks in �gures 14, 16 and 19 would then
correspond to two unconnected water channels, and the space in between is occupied
by the surfactant. For a nonzero surfactant volume fraction �, the surfactant/water
interface cannot obviously be minimal. Thus the interface is either assumed to lie at a
constant distance �D=2 from the minimal surface, or two constant mean curvature
surfaces enclosing volume fraction (1 � �)=2 are generated e.g. with the method
described above. In either approach a slight frustration is created: In the constant
thickness model the surface area is not at minimum, while using the minimum area
surfaces the surfactant molecules have to conform to layer of non-uniform thickness.
However, this frustration is smaller than in both lamellar and (inverse) cylindrical
phases and therefore it is suggested to be the energetic term responsible for the
formation of cubic structures in between [121, 122]. The addition of hydrophopic
molecules will decrease the frustration [122] whereas large frustration is expected for
chains with low exibility [123].

Any surface minimizing area per volume must have constant mean curvature H .
It follows that at the symmetrical case � = 0:5 the curvature vanishes exactly. This
property de�nes the minimal surface. If we move any surface by an amount L along
the surface normal, the area element changes by

dA0 =
�
L

R1
+ 1

��
L

R2
+ 1

�
dA =

�
KL2 +

1

2
HL+ 1

�
dA: (92)

23In ternary systems, either oil or water phases may constitute this layer.
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In particular, starting from the minimal surface the displaced surface area is

A = A0 + L2

Z
A0

KdA = A0 + 2��L2; (93)

where � is the Euler characteristic of the surface. This is a (negative) whole number
obtained from

� = 2(1� g) (94)

where g is the genus (number of holes) in
the surface. Thus it does not depend on
the actual surface area, but takes a spe-
ci�c constant value depending on what
is the connectivity of our basic surface
block. For n-armed block � = 2� n.

Surface space group � &
G Ia3d -8 3.091
D Pn3m -2 1.919
P Im3m -4 2.345

Table 1: Properties of the minimal surfaces.
The values of & are taken from [124] and may be
seen to correspond to maxima in Fig. 13 with
appropriate unit cell size.

The surface area per repeat unit scales as A0 = &a2, which de�nes another
dimensionless parameter particular to given type of minimal surface. Integrating
Eq.(93) we get a relation

� = 2&

"�
L

a

�
+
2��

3&

�
L

a

�3
#

(95)

between the volume fraction �, the length of surfactant (equal to L) and the size of
the unit cell a. This can be used to assess the structure determination.

The speci�c surface is

S=V =
2�

D

�
1 + �

��2

2&3

�
(96)

where D is the bilayer thickness. Since � is negative, the surface actually has
smaller speci�c area than in the lamellar system albeit by only a few percent. If
the surface favors inward curvature of the bilayer (toward water), the system could
favor the ordered cubic structure in spite of the loss in entropy required to form a
periodic surface. The inward curvature is controlled by the temperature; increased
temperature increases the chain splay and thus the curvature, typically by 0.5 % per
ÆC [125, 126].

Transformations between the phases. Though the basic membrane theories
are able to justify the existence of the bicontinuous cubic phases, still a lot remains
unknown. Recently, interest has been directed to structural transformation between
these phases.

A full sequence of phases has been observed in fatty acid/phosphatidyl choline
mixtures24 in water [94]. The transitions follow sequence HII !G!D!P in in-
creasing water content (between 0.3{0.5). Most notable variable is the unit cell size,
which according to Eq.(95) should be proportional to a � & for constant �; L and
K. The ratio of quantities a=& are said to be 1:1.022:1.07 respectively [127]. The

24Lauric-,myristic-,palmitic- and steric acids with DLPC, DMPC, DPPC and DSPC phospho-
lipids in 2:1 composition
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above phase sequence has been predicted by the calculation of the elastic energy in
the constant mean curvature model [126].

The pathway from one IPMS to another is obtained by systematically linking
the junctions of the bicontinuous labyrinths [128]. Recently Fogden [129] was able
to show that the pathways could also be traced using minimal surfaces. Thus the
intermediate states would not be as energetically unfavorable as in the labyrinth net
models. As the routes are created using rhombohedral and tetragonal distortions,
this is also o�ered as an explanation for observations of these symmetries [123, 78,
82, 89]

Practical phase determination. The past of cubic phase determination
is marred with misassignments, so this seems like a perfect place to bring up the
subject of experimental diÆculties in phase determination.

The major problem is the same as with the lamellar and cylindrical phases; there
are generally too few reections to be seen for de�nite phase determination. Number
of observed reections is higher in cubic systems because of the more 'solid' nature
of the matter, but so is the number of possible structures.

The �rst thing to do is to �nd enough reections to assign correct crystallographic
space group(s). This has some pitfalls. An occasional reection may be absent or
almost absent due to minimum in the structure factor though it may be allowed by
the space group. For the lamellar and to an extent the cylindrical phase, a powerful
method is to make scans with di�erent dilutions to reveal these minima. This has
limited application to cubic phase because these appear in a narrow composition
range.

Second diÆculty lies in the tendency for samples to grow large crystals or the
tendency to orient with shearing or inuence of the sample cell walls. This will
result in false structure factor data if the powder di�raction technique is used. The
sample can be powderized by repeated annealing-quenching cycles [79, 98]. On the
other hand, large mesomorphic 'single-crystal'-domains might also be produced with
thermal treatment [98, 130] or with shearing [131]. Single crystals help tremendously
in solving the crystal structure and are also useful if di�use scattering (peak shape)
analysis is tried [132, 130].

A third problem is that cubic phases are often metastable and occasionally a
number of di�erent phases may coexist [93]. It is common that cubic structures
formed at elevated temperatures may preserve for months [87] in room temperature.
It may thus be diÆcult to decide which are equilibrium structures [133].

Few attempts have been made to obtain density maps, in other words, to relate
the observed intensities to the contents of the unit cell. Most notable e�orts are those
by Mariani [100]. In the early days, structure factors were calculated by modeling
the networks with connected lines or rods and the results thus obtained were fair.

For the case when the surface is de�ned and surrounds a homogeneous region, the
structure factors are most conveniently calculated as a surface integral [59, p.104]

F (k) =
i

k2

Z
A

eik�r(k � dS): (97)

If the surface is further approximated with facets, the integral can be reduced to
summation

F (k) =

facetsX
n

k � ŝn
k2k2n

edgesX
j

lnj (k � v̂nj) eik�cnj sink � lnj=2
k � lnj=2 (98)
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where the �rst sum runs over all at
phases, ŝn are unit vectors normal to
these surfaces and kn is the component of
scattering vector k at the surface plane.
The second sum is over all surrounding
edges lnj (ensure of the correct direction
of circulation), cnj are the middle points
of the edges and v̂nj are unit vectors per-
pendicular to both lnj and ŝn.

For example, Fig. 21 present scatter-
ing intensity for binary AOT/water sys-
tem with water content �w = 0:2. The
data is again taken with the conventional
setup at HU. The reections are easily as-
signed to the Ia�3d space group. However,
the forbidden reection (411) occurs as
suspiciously powerful. As the sample is
slightly into the two phase region be-

kn

njc
njv̂

ln
ŝn

k

lnj 1−j

Figure 20: Illustration of Eq.(98) for the cal-
culation of scattering factor.

tween 16 % and 22 %, the extra reection is due to coexistent hexagonal phase. There
is a well known epitaxy between the Ia�3d and hexagonal phases, where the reections
(211), (411) and (422) transfer into (10), (11) and (20) reections respectively at
exactly same positions [134]. The occurrence of hexagonal impurity has been known
to destroy analysis before [103].

The remaining reections are found to decrease fast with respect to the scattering
angle, contrary to any plausible model (c.f. Table 2). An additional Gaussian
thermal factor is needed to make experiments and models agree [78, 79, 100].

For poorly ordered systems, the intensity curve shows just one broad maximum.
Then recognition of the phase is impossible without additional knowledge. Such
knowledge is provided e.g. by the Porod law. If there exist suÆcient phase segre-
gation and the Porod region in the intensity curve is found, the normalized and slit
corrected intensity follows the form [135, 136]

I(k) ' 2�S

k4V

�
1 +

3

8

�
H2 �K=3

�
k�2 +O(k�4)

�
; (99)

where S=V is the speci�c surface [9]. The mean and gaussian curvatures, H and K,
here stand for their averages over the whole sample. Thus when the two �rst terms
in Eq.(99) can be determined and with the knowledge of the structural length scale
for the only reection, the di�erent morphologies may in principle be distinguished
[136].
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sheets or tubes depending on the superimposed morphology of the surfactant. This
opens a wealth of possible applications [137].

In way of examples, a single polymer chain in solution may be condensed or
folded into a compact particle. Certain gene therapy treatments rely on successful
transfer of the DNA, which is a bulky anionic macromolecule, into the cell through
its protective membrane26. The use of cationic lipides for DNA condensation and the
interaction of these liposomes with the cell membranes is an active �eld of research
[138]. The membranes themselves are complex combinations of various lipids and
proteins [61] and the cell regulates its function by controlling the lipid composition
which directly e�ects the way the lipids pack in the membranes. Similar condensation
may be applied to a whole network of cross-linked polymers in a phenomenon known
as polymer network collapse. Cross-linked polymers swell in solvent and may absorb
water several hundred times their own weight. Addition of certain agent (or change
of temperature or pH) may result in sudden stepwise decrease in the gel volume
[139]. Similar e�ect by surfactants on slightly cross-linked polyelectrolyte gels has
recently been demonstrated [140].

Polyelectrolyte surfactant solutions. The presence of the polyelectrolyte
in a solution of oppositely charged surfactants has the tendency to lower the critical
micellar concentration [141]. This is simply due to increased surfactant concentra-
tion surrounding the polymer chain. At the same time, the overall charge of the
chains decreases due to charge neutralization and the polymer can adopt a more
compact conformation. Ultimately, the complex precipitates from the solvent and
forms a dense neutral phase with 1:1 stoichiometry [142]. This phase still contains
appreciable amounts of the solvent in addition to the complex27. These complexes
exhibit a rich variety of forms. Hexagonal and cubic structures are common. The
bicontinuous cubic phases are not observed. Typical structures are the Pm�3n (223)
(this appears to be quite similar to the surfactant/water case so perhaps this suggests
that the closed micelle model is more appropriate), fcc and hcp [140].The Pm�3n and
hcp structures are observed in Paper II of this thesis.

Polyelectrolyte surfactants in the solid state. When the solvent is evap-
orated, ordered structures of polyelectrolytes and amphiphiles may form. Recently
these have received greater interest (for reviews, see [143] ) The predominant mor-
phology is still lamellar [144]. In several occasions the lamellar form is deformed
with periodic undulations or perforations [145]. The layers stack systematically, so
that the undulations arrange in cubic of rhombohedral (e.g. Fig. 18) structures
[146]. In cylindrical micelles, similar \lumps" may packed in cubic form [147].

The major reason for the dominance of lamellar phases may be the as yet rel-
atively limited group of di�erent samples that have been tried in comparison with
the 'no-polymer' case. Speci�cally, the surfactant has often been aliphatic.

Studies of polymer/amphiphile28 complexes in varying interaction.
It was suggested that even exible polymers with suÆcient amount of surfactant
yield mesophases in a good solvent to the side groups [148]. In the �rst experiment,
this was tested using two di�erent forms of poly(vinylpyridine) (P2VP and P4VP) in

26Currently, viruses are applied to the job and there is call for equally e�ective means but without
the immunological hazards to patients

27In many occasions the polymer and surfactant are dissolved as salts, so the system is more
complicated still as it contains four ionic species which are capable of forming four di�erent neutral
salts in the mixture.

28\Amphiphile" is used instead of \surfactant" which is a term strictly reserved for water soluble
amphiphiles.
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xylene solvent [149]. Liquid crystallinity was indeed observed, though not attributed
to the presence of the solvent.

Next we tried di�erent forms of interaction. In this respect P4VP was also a
very versatile polymer. It can be protonated with a strong acid such as DBSA
[149], coordination complexed with a transition metal [150] or hydrogen bonded
[151]. In addition, the pyridine group can be �rst \doped" or protonated with e.g.
methanesulfonic acid (MSA) prior to hydrogen bonding [152]. Some of the early
observations concerning the required interaction are collected in Paper III.

Ordering transition in hydrogen bonded polymer/amphiphile systems.
The most striking property of some of the hydrogen bonded systems was their ability
to show a sharp ordering transitions. Below the ordering temperature, the SAXS
intensity showed a very sharp reection quite unlike in any other system scanned
so far. Paper IV deals with this transition. It was designated as the order-disorder
transition (ODT), a concept borrowed from block copolymer theory [153] (subject of
the next section). Thus this would be the �rst observation in comb-coil polymers but
it is known in liquid crystalline side chain polymers (LCSCP's) [154]. The side-chain
crystallization observed here is also a common event in LCSCP's.

In block copolymers at ODT, the system goes from homogeneous to microphase

separated state. Same conclusion may
be drawn in the present case from that
the transition is accompanied by the ap-
pearance of optical birefringence. The
ODT in blockcopolymers is weakly �rst
order and also here it gives a small
exothermic peak in the di�erential scan-
ning calorimetry (DSC). Some things are
not that analogous; in this system the
transition seems to be limited to hydro-
gen bonded amphiphiles. The essential
property of the hydrogen bond is its rel-
ative weakness, thus the bonds are con-
stantly created and broken by thermal
motion. Block copolymers, on the other
hand, are permanently attached by cova-
lent bonds.

In SAXS, the ODT is characterized
by discontinuous changes in the maxi-
mum intensity and peak width. These
are exhaustively reported [155]. Let us
still reproduce the scattering intensity of
the P4VP(PDP)x=1:5 system as it serves
as textbook example of lamellar systems
discussed so far. This system shows
both disorder transition and crystalliza-
tion at slightly lower temperature. Fig-
ure 22 shows scattering intensities in log-
arithmic scale within each three regions.
Across the ordering transition (dash to
dot) at Todt, the integrated intensity (in-
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Figure 22: Scattering intensity of
P4VP(PDP)1:5 at three di�erent forms
distinguished by the crystallization temper-
ature Tc and the order-disorder transition
temperature Todt. Solid line: T < Tc, dots:
Tc < T < Todt, dashed line: T > Todt. The
insert shows relative intensity under the main
reection at k = 0:16{0.18 �A�1.
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set) is continuous (true for x � 1). This indicates loss of LRO without reorganiza-
tion of the structure at the molecular level. In essence, the uctuation amplitude
remains constant at the ODT. The crystallization (dots to line) entails a collapse of
the \neat" end-to-end formation of atactic PDP chains into an interdigitated crys-
talline packing. This slight densi�cation of one layer causes immediate jumps in both
quantities. On crystallization, the second order reection, almost totally missing be-
fore, becomes clearly visible. Also, the �rst order reection is more like a crystalline
reection whereas above Tc it has the familiar tail akin to the 'quasi-periodic' LRO
encountered previously. The dynamics of the two cases are totally di�erent; the
mesoscopic phase has exible polymer chains undergoing constant motion whereas
in the second case the chains are e�ectively anchored by the crystallized tails of the
PDP sidegroups.

Liquid crystalline polymers. Above we have followed the route
from polyelectrolyte-surfactant complexes to non-ionic liquid crystalline poly-
mer/amphiphile systems. There is another vast �eld of research, which has come
to use similar ideas { that of polymer liquid crystals (PLC). In the traditional PLC
architecture, the polymer is covalently attached to a mesogenic group via a spacer
group. This is the side-chain liquid crystalline polymer (SCLCP), a type of poly-
mer which due to its form is also called comb-like polymer. Recently, this �eld has
also progressed to supramolecular concepts replacing the noncovalent interactions
with ionic bonding, hydrogen bonding etc. These might be applied in either the
main-chain polymer [156] or the side chain group [157].

Block copolymers

The type of phase segregation found in surfactant/water systems also occurs be-
tween dissimilar polymer chains29. Perfect analogy with amphiphiles is met in block
copolymers30 where the chains are connected with covalent bonds, thus again pre-

venting macro phase separation. Conse-
quently, block polymers exhibit the same
properties as amphiphiles, from being
solubilizers and surface active agents for
selective solvents and homopolymers31 to
forming micelles, emulsions and ordered
phases [158, 159]. From the theoreti-
cal point of view they are more ideal to
study phase behavior than their \molec-
ular" counterparts since e.g. the mean-
�eld picture is better valid for such large
molecules [160]. From the materials syn-
thesis side, the huge choice of chain ar-
chitectures has led to a number of exotic
ordered morphologies.

diblock

triblock

graft

star

(ABA)

Figure 23: Various block copolymer chain ar-
chitectures.

29Even between polymers made of the same monomers but di�ering in chain length N
30Copolymer contains two or more di�erent monomers, which in random copolymers are in ran-

dom order and in block copolymers constitute sequential blocks of the same monomer.
31Selective solvent is the one that dissolves one block only the opposite of which is neutral solvent;

homopolymers are the blocks without the covalent bond between them.
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Order disorder transition in diblock copolymers. Most attempts to
understand block polymer behavior naturally concentrates on the most simple form,

i.e. the diblock copolymer (see Fig. 23). The formation of ordered domains is
governed by the volume fraction � of the blocks. We can predict the following phase
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Figure 24: Left: Theoretical phase diagram for a symmetric diblock near � = 0:5 as �rst con-
sidered by Leibler [153] and later corrected for uctuation e�ects by Fredrickson and Helfand
[161]. In the symmetric case, the disordered to lamellar transition is predicted to vary as
(�N)ODT = 10:495+41:022N�1=3 Right: Actual experimental phase diagram for PS-PI [163, 164]

sequence [153, 161, 162] as given in Fig. 24. The lowest curve outlines the order-
disorder transition temperature, the interaction parameter generally depending on
temperature as � = �=T + �. The di�erence between Leibler's theory [153] and
Fredrickson-Helfand [161] theory concerns the disordered phase near ODT. In the
former theory, the blocks are completely mixed and only weakly perturbed from the
gaussian chains. Thus domain spacings should scale with number of monomers N
in the polymer chains as D � N1=2 though in this picture domains do not exist
above ODT temperature. However, the structure factor contains a maximum due
to correlation hole e�ect32. In the latter theory, the uctuation amplitudes are
comparable below and above the ODT. Both should be considered as microphase
separated states and the chains are expected to stretch out to give D � NÆ where
0:7 < Æ < 0:8 [165]. The disordered phase is said to resemble the late stage spinodal
form [164]. Crossover to the mean �eld region (stretched to Gaussian chain) is
expected to occur at temperatures much higher than ODT.

The nature of ODT has invoked numerous scattering studies, the outcome of
which con�rm the Fredrickson-Helfand theory [165, 166]. There is an inherent prob-
lem in that the polymer length should not be too large in order to have a feasible
transition temperature. On the other hand experiments have been carried out with
very short polymers with high incompatibility (high �) [167]. The ODT in block
copolymers is not as easily seen as it was in e.g. Fig. 22 when conventional x-ray
sources are used.33 Measurements are feasible with synchrotron radiation sources
[168] and results have shown marked analogy to the studied polymer/amphiphile
system.

32De�ciency of close contacts between blocks of type A due to the presence of the connected
block B and vice versa.

33SANS is not very useful either as it has poor energy resolution.
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Ordered phases of block copolymers. The preference of one morphology
over the other follows the same principles as in surfactant/water systems. These
include preferential chain length and surface area for a given diblock and the desire to
�nd surface of constant mean curvature, resulting in inevitable frustration to �ll the
volume with these constraints. There is an important addition to energetics involving
the stretching of the polymer chains which now are much longer than the 10-18 units
in case of the amphiphiles. By nature, a exible polymer is in the form of a random
coil whose length grows less than linearly with N and consequently its cross section
increases with N . Forcing an asymmetric (N1 6= N2) diblock copolymer in a lamellar
morphology requires stretching of the longer block to make the cross sections equal
(c.f. Fig. 25). Thus there is a tendency of curvature toward the shorter block. By
considering just this e�ect in one can generally deduce that lamellar morphology
is preferred between 0:3 < � < 0:7, cylinders appear at minority volume fraction
around � = 0:25 and below that saddle shape surfaces (e.g. bicontinuous structures)
are favored [169].

Figure 25: Packing of diblock polymers within the lamellar and cylindrical phases. The frustra-
tion in latter means that if the phase boundary follows the minimal surface (cylinder), the chains
along the hexagonal corners have to stretch more to ensure constant density.

The actual phase transition compositions (Fig. 24) are slightly di�erent. Note
that the lines separating the ordered phases run practically vertical, e.g. there are no
phase transitions as a function of temperature except for a narrow composition win-
dow between the lamellar and hexagonal phases. The new phases are found near the
ODT line (marked by the dashed line). They include, in increasing temperature[170],
hexagonally perforated layer (HPL) [171], hexagonally modulated lamellar (HML)
(these two are already familiar from polyeletrolyte/surfactant systems) and the gy-
roid [172] (based on the G-surface as in surfactant systems). At low temperatures,
the lamellar phase is usually retained and is expected to be more and more favorable
[173]. The composition window is narrower, the higher the molecular weight [167],
which may be due to diminished uctuations with higher N [165] so the appearance
of the phases is more related to the polymer length and is possibly richer for short
polymers [174].
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The ordered phases get more complicated in e.g. ABC triblock copolymers where
each block constitutes a di�erent phase [175]. Perhaps more interesting are diblock
copolymers synthesized to starblock or graftblock form (Fig. 23), where a number of
identical diblock arms are linked to a common center. These where the �rst where
the gyroid morphology was seen [159, 176] though not identi�ed as such before
similar structures were �rst observed in linear diblock copolymer melts [172, 177].
Originally [176] the gyroid was �rst mistaken as the double diamond (D-surface)
structure and it is still not clear whether other bicontinuous phases are found in
diblock copolymer melts [178].

Contrary to the polymer/amphiphile systems34, the structures found in
block copolymers can be fairly easily imaged directly using electron microscopy.
Compared with the scattering techniques, the EM provides a very detailed
picture, albeit from a tiny volume, as opposed to the \statistical" infor-
mation obtained by SAXS. To illustrate the gap between microscopic im-
age and scattering, consider the Fourier transform of the faked EM im-
ages in Figure 26. For creation of such images, there is an extremely

Figure 26: Computer generated images of two phase lamellar system with variable orientational
distribution. Below is their respective scattering functions. The direct images show only a portion
of the pattern from which the intensity is calculated.

34The spectacular pictures by J. Ruokolainen [179, 180] are rare examples of polymer/amphiphile
microstructure ever been imaged.
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simple algorithm by Cahn [181] who used it to mimic patterns of late-stage spin-
odal decomposition and which has also been applied for modeling bicontinuous mi-
croemulsions [182]. In this method we superimpose a number of waves

G(r) =
X
j

cos [R(k;'j ) � r+ �j ] (100)

whereR(k;'1) denotes rotation of a �xed wavevector k by a random angle (or set of
angles), 'j and �j are random phases. The density is then assigned a binary value by
the output of condition G > 0. In the leftmost frame, k takes random orientations
whereas in the center and right frames the angular range in limited to 70 and 20
degrees respectively. Thus the �rst case resembles images of spinodal decomposition
whereas the rightmost frame is not unlike magni�ed portions of images from truly
lamellar morphologies (compare, for example, to [179, Fig.5]) complete with the edge
dislocations.

The angular range which was used to create the real-space images is clearly seen
in the scattering patterns. The higher order reection rings are obviously created
by the binary clipping process35. Through analysis of isotropic scattering functions
obtained by angle averaging of the �gures one would deem each example as merely
\lamellar". It would be extremely diÆcult to distinguish between orientational dis-
order as pictured here and other e�ects such as thickness variation (e.g. created by
allowing variable values for k) and di�use interfaces.

By further underscoring the di�erence, imagine that the waves are generated to
follow hexagonal symmetry (Fig. 27). With suÆcient randomness the hexagonal
symmetry is far from obvious in the direct image and microscopically the structure
bears close resemblance to the spinodal. Yet, the scattering intensity obtained from
this pattern has distinct di�raction spots according to the hexagonal symmetry.

Figure 27: Computer generated image where the density waves are generated according to a
six-fold symmetry (left) and the resulting di�raction image (right).

35Note that the original lamellae have been skimmed to �ll approximately 1/3 of the volume
which is why orders 3n are damped instead of 2n.
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Block polymer structure factors. The structure factor for the disordered
state was given by Leibler in his mean �eld theory[153]. The calculation is based on
the random phase approximation (38) extended to incompressible two phase system
consisting of ideal polymer chains and interaction between neighbors given by �,

S(k) =
jSij jP

ij Sij � 2� jSij j (101)

where Sij are the partial structure factors and jSij j denotes matrix determinant.
This is the general form. For diblock copolymers the matrix elements are given as
[153]

S11 = Ng1(�; x)
S22 = Ng1(1� �; x)
S12 = S21 =

N
2 [g1(1; x)� g1(�; x) � g1(1� �; x)]

(102)

where g1 is the Debye function

g1(�; x) =
2

x2
�
�x+ e��x � 1

�
; with x =

N

6
k2a2 = k2R2

g (103)

Thus the reciprocal of structure factor

S�1 = F (x; �) � 2� (104)

has temperature dependence through the interaction parameter � only. The uctua-
tions (Fredrickson-Helfand theory) are introduced by substituting for the interaction
parameter a renormalized parameter [162]

�e� = �� vC(�)

2a3N2
[F (x�; �)� 2�e� ] (105)

where C(�) is a composition dependent constant, v is segment volume and x� is
related to wave vector of the uctuations. The principal result of this theory is that
the inverse of the structure factor no longer has the 1=T dependence. This is chiey
the argument on which experimental con�rmation of the uctuation model is based.

Scattering studies of ordered phases have been used successively for structure
determination. Apart from this, one may obtain limited information on the mi-
crodomain size and domain boundary width [183]. Information on polymer segment
as well as solvent distributions require phase contrast techniques and are therefore
more readily performed with neutrons [184].

Liquid crystalline block copolymers. An increasing area of interest is to
introduce a competitive organization to the microphase separation of polymer blocks
within one or several of the blocks. Such competition takes place in e.g. rod-coil
copolymers where the \rod" part is a rigid sticklike polymer which has a tendency to
form orientationally ordered structures [185]. There is thus mesophase formation at
completely di�erent length scales, and we therefore speak of hierarchial structures.
The semicrystalline ionomers which are dealt with in Paper I are also a crude form
of hierarchial structures though they do not show such self organization as is the key
issue here. Paper V studies PS-block-P4VP(PDP)1:0, which is a perfect example of
such concepts. It represents liquid crystalline block copolymers which also have been
reviewed intensively during the recent years [186]. Speci�cally we are dealing with
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a LC side group block copolymer. The liquid crystalline block is again P4VP with
hydrogen bonded PDP sidegroups and the coiled block is polystyrene. Strikingly,
the P4VP/PDP regions seem capable of forming macrophase separated lamellar
morphology within lamellar, cylindrical or spherical domains and allow also the
formation of similar inverse domains of PS in lamellar P4VP/PDP matrix [180]. The
PDP chains orient along the block-block interface which is discernible in the TEM
images [180]. Same conclusion may be drawn from the recent SAXS measurements
on macroscopically oriented samples [187]. These show that the reections from the
LC structure and block copolymer structure occur at right angles to each other [188].

The temperature behavior of the system is studied in Paper V, and the results
indicate independent transitions within both blocks. They seem strangely uninu-
enced by the presence of the other block and the con�nement to the microdomains.
Thus P4VP/PDP exists in the side chain crystalline, lamellar and isotropic forms
with due transitions observable in the SAXS patterns and PS has glass transition
temperature at about 85ÆC. None of the samples that have been measured show
order-disorder transition of the block structure. It may be that at the temperature
near the ODT, the electron density contrast is already too weak to be seen in SAXS.
At high temperatures PDP is gradually disassociating from P4VP. At about same
temperatures, the PS becomes soluble in PDP, i.e. PDP changes from selective to
neutral solvent. This in fact is suÆcient to induce an order-order transition [152] if
the composition lies close to coexistence line36.

Summary of the papers I{V

Paper I. The �rst paper is a result of collaboration with the Laboratory of Poly-
mer Chemistry. The aim of this project is to �nd a cheap and e�ective means of
producing proton conducting �lms from commercial �lms. A series of proton ex-
change �lms have been prepared with irradiation techniques and characterized in
our laboratory with x-ray scattering techniques [189], with both small angle and
wide angle. The present paper present results obtained with a relatively novel tech-
nique of anomalous scattering (ASAXS). The measurements were carried out at
Hamburger Synchrotronstrahlungslabor (HASYLAB). The author was responsible
for both experiments and data analysis. The objective of this work was to learn more
about the distribution of the proposed ionic aggregates within the styrene grafted
poly(vinylidine uoride) (PVDF) �lms. The analysis was able to show that the pre-
pared �lms were organized in a two-level phase separated structure. The sulfonated
grafts are incorporated in the amorphous part of the semicrystalline polymer ma-
trix. The results indicate that it organizes there in a layered form of the hydrated
polysalt. It is discussed that water uptake disrupts this structure and again water
�lled micelles form.

Paper II. The subject of the second paper bears also familiarity of Papers III-
V, in that it deals with attempts to change the conventional polymer conformation
by interaction with functional surfactant molecules. In this work, however, the
polymer is a very hydrophilic polyelectrolyte cationic starch (CS) and the small
angle measurements are carried out of precipitated complexes obtained from aquous
solutions. The precipitants are prepared at the University of Technology, by our
collaborators at the Department of Forest Products Technology. The measurements

36The P4VP in this work was protonated with MSA
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were carried out at HU by myself and Mr. Teemu Ikonen.
The structures were investigated with various surfactants, varying charge density

and neutrality of the solution. Ordered and disordered micellar complexes were
formed. The requirement for the ordered complexes could be outlined in terms of
suÆcient charge density and neutrality. The ordered structures included hexagonal,
hexagonal close packed (hcp) and micellar cubic (Pm�3n) forms.

Paper III. Papers III to V represent cooperation with the Polymer Physics
group from Materials Physics Laboratory at the University of Technology and their
subsequent collaborators. They have studied polymer/amphiphile complexes in the
solid state and the conditions for formation of mesoscopic phases in exible polymer
chains. Paper III sums this work. It is based on small angle and wide angle scattering
studies, infrared spectroscopy (FTIR) and theoretical estimates on the interaction
energies. The authors responsibility has been the SAXS investigations which were
made at HU.

The formation of the mesoscopic phases is observed to require a certain balance
between the interaction strength and the length of the surfactant, longer surfactants
requiring stronger interaction. Strong interaction such as protonation with strong
acid [149] and complex coordination [150] have been shown to give mesophases; same
conclusion can be drawn from alkyl phenols [151] provided that the alkyl length is
between 12 and 22 carbon units. Less acidic groups such as fatty acids and aliphatic
alcohols and amines do not provide suÆciently strong interaction and are either
homogeneous or they phase separate macroscopically.

Paper IV. Paper IV studies in more detail one surfactant, PDP, from the alkyl-
phenyl series. In this system, a sharp order-disorder transition (ODT) was observed
[151]. In this work the ODT is surveyed at varying surfactant concentrations by
simultaneous small angle, wide angle and calorimetry (DSC) measurements at the
synchrotron facility of Daresbury, England. The transition was shown to be of �rst
order and depend on the mole fraction of the surfactant.

Paper V. The �nal paper studies the same complex as in Paper IV, this time
attached to a polystyrene (PS) block. The SAXS studies were performed at HU with
both the conventional setup (as used above) and one that uses the longer distance of
1.2 m between the sample and the detector for studying the block polymer structure.
The con�nement of P4VP(PDP) in the block morphology was expected to a�ect its
thermal phase behavior but this was not found to be the case. The phase diagram as
a function of PS weigh fraction were obtained with transmission electron microscopy.
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