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ABSTRACT

In this thesis the non-Rutherford elastic scattering cross sections of hydrogen, helium, lithium and

boron ions for several target elements have been investigated. To broaden the useable ion energy

region for materials analysis methods, e.g., backscattering and elastic recoil detection analysis, from

pure Rutherford scattering region to scattering in which the nuclear effects arise, the non-Rutherford

elastic scattering cross section have been experimentally determined.

Proton scattering by helium, natural copper, molybdenum, silver and tin have been measured at ion

energies below 7 MeV through several scattering angles. Helium, lithium and boron ion scattering

by natural nickel have been measured near the Coulomb barrier. The backscattering angles were

selected so that by kinematically reversing the reaction, the recoil angles are 20
�
, 30

�
and 40

�
. The

scattering cross sections or ratios of the cross section to Rutherford cross section have been given in

the non-Rutherford energy region.

The threshold energies for the non-Rutherford energy, above which the scattering of the ion is not

purely from the Coulomb potential of the target atom and the cross section starts to deviate 4% or

more from its Rutherford value, have been given. Also a model to predict the threshold energy for

non-Rutherford cross section at large scattering angles is presented.

Optical model calculations were used to determine the elastic scattering cross sections, the shape and

dimensions of the target atom potential. With the optical model calculations the elastic scattering cross

sections were determined at non-measured energies and scattering angles and interpolated between

the measured data points.
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1 INTRODUCTION

The era of ion beam experiments in nuclear physics started with Geiger’s and Marsden’s experiments

with alpha particles from an alpha source and a very thin gold leaf target [1]. They bombarded the

golden leaf with MeV energy alpha particles and studied the angular distribution of ions scattered in

collision with the target. These experiments proved the theory developed by Ernest Rutherford of the

Coulomb scattering model of the scattering cross sections [2].

Rutherford’s scattering event is based on the electrical interaction between the ion and the target. It

is now quite simple to derive the theoretical formulation for the scattering cross section of this event.

The Rutherford cross sections have been used in the appropriate energy and particle mass regions in

nuclear physics and materials science for many decades.

Modern ion beam analysis was initiated in the fifties. By using proton backscattering Rubin and

Rasmussen studied smog [3] and Sippel measured the diffusion of Au into Cu [4]. Maybe the most

famous alpha-scattering experiment was to analyze the composition of the lunar soil [5]. This ex-

periment was the first widely published practical application of the ideas of Rutherford, Geiger and

Marsden to a problem of nonnuclear interest.

Quantitative analyses with ion beam analysis (IBA) techniques are based on the knowledge of the

interaction cross sections. In materials science with ion beams the elemental, quantitative and depth

distribution analyses of the studied sample are the main goals. The most important analytical method

is the ion backscattering technique [6]. Conventionally, the method is called Rutherford backscatter-

ing spectrometry (RBS) and the analysis is done in the energy, angle and particle mass region where

the scattering is assumed to take place from the Coulomb potential.

Rutherford backscattering spectrometry is an established analytical technique, with the characteristics

of the technique well known. The surface and shallow depths of solid samples can be analyzed for

elemental depth distributions with good sensitivity for high mass elements and good mass separation
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for low mass elements. The weaknesses are related to the opposite conditions; sensitivity of detecting

light elements and low mass separation of heavy elements.

In recent years, arising from ever-increasing needs of materials physics applications, RBS has been

developed to overcome its inherent weaknesses. Higher ion energies lead to larger probing depths,

better mass resolution for heavy elements and often higher detection sensitivities for light elements.

As a consequence, the simple Rutherford model has to be abandoned since the nuclear effects begin to

contribute. With the higher energies, the cross sections may vary even by magnitudes from Rutherford

and the exact values can not be predicted theoretically. Therefore, experimental scattering cross

section data for the higher ion energies are needed.

Experimentally one can also determine the threshold energy for the non-Rutherford scattering from

the experimental scattering cross section excitation curve. With the knowledge of the threshold energy

the ion energy may be limited so that the scattering is purely Rutherford when, for example, the cross

sections become too small above the threshold.

Another analytical technique based on the same elastic collision is called the elastic recoil detection

analysis (ERDA). In ERDA the heavier ion collides with the lighter target atom which recoils after

the collision. The recoiled target atom is then detected.

ERDA is nowadays used in elemental analysis and depth profiling as a standard procedure. As with

backscattering, the knowledge of the cross sections is necessary for quantitative analysis with the

ERDA technique. Cross sections exceeding the Coulomb cross sections lead to enhanced detection

sensitivities. The ion energy threshold for the non-Rutherford scattering in elastic recoil detection

analysis is much higher than in backscattering spectrometry because of the kinematics. With appro-

priate ion-target pairs the threshold still may be reached and unwanted nuclear effects may arise.

Optical model (OM) is a powerful tool to calculate the cross sections over a wide range of ions, ion

beam energies and scattering angles [7] and it has been used as a basic tool in nuclear physics for
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many decades. In the OM calculations, the theoretical scattering model is under study and the ions

are treated as plane waves in these calculations. The plane waves scatter by the spherical target atom

in the collision and after the collision the scattered waves are treated as spherical waves. The shape

and dimensions of the target atom’s potential may be characterized with the wave number and the

wave length before and after the collision.

As the analytical techniques RBS and ERDA are two faces of the same elastic collision, the same

kinematical treatment applies to them both. In this thesis the kinematical reversal has been applied to

convert the ion energy, the scattering angle and elastic scattering cross sections from backscattering

spectrometry to elastic recoil detection analysis.

2 STRUCTURE AND PURPOSE OF THIS STUDY

This thesis consists of the summary and the following six articles which are referred to by Roman

numbers. A brief summary of the articles included is given below.

Article I: Elastic scattering cross sections of protons by copper, molybdenum, silver and tin
near the Coulomb barrier, A. Nurmela, V. Zazubovich, J. Räisänen, E. Rauhala and R. Lappalainen

Journal of Applied Physics 84, (4) (1998) 1796-1799.

The elastic scattering cross sections of protons by copper, molybdenum, silver and tin are

determined experimentally at energies below 6.5 MeV through scattering angles of 135
�

and

165
�
. Part of the focus is in the threshold energy where the Rutherford cross section becomes

invalid. A brief literature survey of the proton elastic scattering cross sections by lighter ele-

ments is included in the article.

Article II: Elastic scattering cross sections for the p+He system in the energy region of 1.4 - 24
MeV, A. Nurmela E. Rauhala and J. Räisänen, Journal of Applied Physics 82 (5) (1997) 1983-1988.

Proton backscattering by helium and helium recoil scattering by hydrogen have been investi-

gated. Wide proton and helium ion energy ranges and large distribution of scattering angles,

which are typical in materials analysis, have been studied.

Article III: Elastic scattering cross sections for the analysis of helium by 1H backscattering and
hydrogen by 4He ERD, A. Nurmela E. Rauhala and J. Räisänen, Nuclear Instruments and Methods
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in Physics Research B 136-138 (1998) 77-80.

The ratio of the cross section to Rutherford cross section for proton backscattering by helium

through scattering angles of 110
�

to 160
�

has been investigated. Data for the kinematically

reversed elastic recoil scattering are presented.

Article IV: Elastic scattering cross sections for 6Li and 7Li scattering by aluminum, silicon
and titanium below 12 MeV at angles of 140

�
and 170

�
, A. Nurmela E. Rauhala and J. Räisänen,

Nuclear Instruments and Methods in Physics Research B 155 (1999) 211-220.

The contribution of the isotopic effect to the scattering cross sections and in the threshold

energy has been studied. Most of the threshold energy models are more or less linearly depen-

dent on ion and target mass so that the heavier mass predicts higher threshold energy. In this

article is shown that a lighter isotope of the ion may have higher threshold energy than heavier

isotope in the scattering by the same target element through the same scattering angle.

Article V: RBS and ERD cross sections and optical model parameters for the analysis of lithium,
boron and nickel, A. Nurmela, P. Pusa, E. Rauhala and J. Räisänen, Nuclear Instruments and Meth-

ods in Physics Research B 161- 163 (2000) 130-135.

The article deals with optical modeling of the elastic scattering excitation curve as a function

of energy and scattering angle. Results of the scattering model have been compared with

experimentally determined elastic scattering cross sections.

Article VI: He + Ni elastic scattering near the Coulomb barrier and optical model parame-
ters, A. Nurmela, P. Pusa, E. Rauhala and J. Räisänen, Journal of Applied Physics, submitted for

publication.

The energy and angular distribution of scattering cross sections for helium ion scattering by

nickel have been measured. The developed optical model code has been applied to new exper-

imental elastic scattering cross section data.

Publications are result of group work. All measurements and experimental data analysis were done

by the author except in article I in which some of the measurements and data analyses were done by

a co-author. The author was the responsible author in all of the articles writing most of the articles I,

IV - VI and participated in writing articles II and III.

The purpose of the thesis is to present new non-Rutherford scattering cross section data for backscat-

tering and recoil scattering systems. The new cross section data provide a data base for theoretical
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calculations in nuclear physics and optical model (OM) calculations. With accurate cross sections the

nuclear model may be further elaborated. For example, the resonances in the cross sections reflect the

excitation states of the nucleus. With the OM we get more accurate forms of the nuclear potentials.

Also, with the OM the cross sections may be extrapolated into the non-measured energies and angles.

In the case where the Rutherford cross sections are not valid due to nuclear effects the accurate cross

sections have to be known in IBA based applications. Depending on the masses of the ion and the

target the cross sections may increase or fall off. The new cross section data extends RBS and ERDA

applicability to broader energy range and wider scattering angle distribution. In the thesis the safe

energy limits for the Coulombic scattering have been investigated as well. There are several threshold

energy models and in the thesis a more accurate threshold energy model is given.

A thin film areal density hydrogen standard in many research and development areas in industrial

applications is of great importance. The thin film areal density hydrogen standard is a sample in

which the hydrogen content is known very accurately. The sample may be taken as a reference when

other samples with hydrogen content are studied. In semiconductor technology, for example, the

hydrogen standard is needed because of dielectric properties of hydrogen in semiconductors. As a

common impurity on the sample surfaces, hydrogen always plays some role in ion beam analysis.

By bombarding helium ions into the thin film target the surface density of hydrogen atoms may be

determined by ERDA. The cross sections for the 1H(4He,p)4He reaction are thus important in the

hydrogen detecting process. A collaboration to prepare a hydrogen standard is briefly described in

Section 6.

3 ELASTIC COLLISIONS

According to the scattered particles the ion-target collisions may be divided into four distinct events:

Elastic scattering by electrons of the target atom, inelastic scattering by the electrons of the target

atom, elastic scattering by the nucleus of the target atom and inelastic scattering by the nucleus of the
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target atom. Basic phenomena studied in this thesis are the ion elastic scattering by the nucleus of the

target atom and scattering near the Coulomb barrier of the target atom and by its nuclear potential.

3.1 Kinematics of the elastic collision

In the scattering process the accelerated ion collides with and scatters by the target. After the collision

through a certain scattering angle the scattered ions are detected. The scattering angle may vary from

0
�

to 180
�
. In applications the mass of the ion is usually smaller than the mass of the target atom.

In the elastic recoil process the ions give recoil energy to the target atoms and after the collision the

recoiled atoms are detected. The recoiled atoms scatter through recoil angles less than 90
�
. When

this process is used as an analytical tool, the ion is typically heavier than the target.

The kinematics of elastic backscattering is described in terms of the kinematic factor K. The K value

is defined as energy of the scattered ion divided by the initial ion energy. Fig. 1 shows the K values

for protons, 4He, 7Li, 11B and 12C ions as a function of target mass through scattering angle of 170
�
.

The kinematic factor K follows from the conservation of the momentum and energy. With the K value

the energy of the elastically scattered ions may be determined and separated from the inelastically

scattered ions. The knowledge of the energy of the scattered ion is important in the measurements

when several peaks are observed in the spectrum. This is due to the yield from different elements

and their isotopes and also from the reaction products in the scattering event. The elastic peak of the

element may be determined by multiplying the initial ion energy with the K value. Also, if the nuclear

reactions occur the energies of separate reaction products may be calculated.

The ion-target system in backscattering process may be converted to the recoil process by kinemati-

cally reversing the reaction. This can be done by first changing the coordinates from the laboratory

to the center of mass frame of reference. In the center-of-mass system the initial ion or target are

not distinguishable. By exchanging the roles of the initial ion and target and by converting back to
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Figure 1: The kinematic factor K values for protons, 4He, 7Li, 11B and 12C ions as a function of target
mass through the scattering angle of 170

�
.

the laboratory frame of reference, the quantities describing the kinematics of a reversed process are

achieved.

The converted ion energy from the laboratory coordinates to center of mass frame is Ecm
� Elab

�
1 �

m1 � m2 � , where m1 and m2 are the masses of the incident ion and target, respectively. From this we

get a ratio between ion energies in elastic recoil detection (ERD) and in backscattering spectrometry

(BS), Eion � ERD
� Eion � BSmtarget � BS � mion � BS, where Eion � ERD is the energy of the ion in ERD, Eion � BS,

mtarget � BS and mion � B are the energy of the ion in BS, the mass of the target atom in BS and the mass

of the ion in BS. The relation between the backscattering angle θ in the laboratory coordinates and in

the center of mass frame is

θcm
� arcsin

� mion

mtarget
sinθ � � θ � (1)
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The recoil angle in the center of mass frame of reference is ϕcm
� π � θcm. The relation between the

recoil angle ϕ in the laboratory and center of mass frames of reference is ϕ � ϕcm � 2. The formulas

above give the energy and angular conversions from backscattering to recoil geometry.

A conversion for the cross sections from backscattering to elastic recoil scattering is obtained as

follows. The backscattering cross section ratio between the laboratory and the center of mass frame

is

dσBS
lab

�
θ �

dσBS
cm
�
θcm � � sin2 θcm

sin2 θlab

1
cos

�
θcm � θlab � (2)

and the corresponding ratio for recoil cross section is obtained by the equation

dσERD
lab

�
ϕ �

dσERD
cm

�
ϕcm � � 4cosϕ � (3)

According to principle of detailed balance [8] the scattering cross section is equal to recoil cross

section in the center of mass frame of reference. By taking this into account and combining Equations

(2) and (3) we get the expression for the ratio between the recoil and backscattering cross section in

the laboratory frame as

dσERD
lab

dσBS
lab

� 4cosϕcos
�
θcm � θlab � sin2 θlab

sin2 θcm
� (4)

The recoil cross sections are obtained this way by scaling from the direct cross section values for each

angle and energy. The ratios of cross sections to Rutherford cross sections dσ � dσRuth 	 are equal for

the direct and recoil scattering processes with converted energies to recoil or backscattering events.
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3.2 Elastic scattering cross sections

3.2.1 Rutherford cross sections

Rutherford cross section in the laboratory frame of reference is

dσ
dΩ

��
 Z1Z2e2

16πε0E � 2 4

sin4 θ

��
1 ��� m1

m2 � 2
sin2 θ � cosθ � 2

�
1 ��� m1

m2 � 2
sin2 θ � (5)

where Z1 and Z2 are atomic numbers and m1 and m2 are the masses of ion and target, respectively. E

is the incident laboratory energy of the ion and θ is the laboratory scattering angle. The Rutherford

cross sections describe the interaction probability in the Coulombic collisions between the ion and

the target. In the thesis the experimental cross section values are compared with Rutherford cross

sections.

3.2.2 Non-Rutherford cross sections

Non-Rutherford elastic scattering cross sections appear when the ion energy is so high that the ion

starts penetrate the Coulomb barrier of the target atom. When the ion penetrates the Coulomb barrier

of the target atom, the scattering is from the target atom’s nuclear potential and the effect of the nuclear

forces for the scattering then become significant. Also resonances may cause significant deviation to

the scattering cross section from its Rutherford value.

When the ion energy is low enough the screening of the electrons around the target nucleus affect the

cross sections [9]. The ion does not fully interact with the whole charge of the target nucleus and the

cross section is smaller than Rutherford cross section.
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Figure 2: The ratios of the scattering cross sections to Rutherford cross sections in the shape elastic
scattering for reaction Si(7Li,7Li)Si (data from article IV) as a function of energy through scattering
angle of 140 � . Error bars are due to statistical errors.

The screening effect decrease the cross section only some ten percents while the ion scattering from

the target nucleus and the resonances may increase or decrease the scattering cross sections even by

several magnitudes.

3.2.3 Shape-elastic scattering

In shape-elastic scattering the excitation curve for the ratio of the cross section to Rutherford cross

section as a function of energy decreases smoothly above the non-Rutherford threshold energy. This

is a result of destructive interference between the partial scattering amplitudes from Coulomb and

attractive nuclear potentials. A typical excitation curve of the ratio of the cross section to Ruther-

ford cross section for shape-elastic scattering from article IV is shown in Fig. 2. The reaction is

Si(7Li,7Li)Si and the excitation curve is given as a function of energy through the scattering angle
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Figure 3: Resonance scattering for 4He(p,p)4He through the scattering angles of 140
�

and 170
�
(data

from article II). Also the Rutherford cross sections multiplied by 100 are presented at the same scat-
tering angles.

of 140
�
. At lower ion energies the dσ � dσRuth 	 values are near unity and after the non-Rutherford

threshold energy of 6.8 MeV the excitation curve decreases smoothly and rapidly without resonance

behavior, as can be seen from the figure. This behavior is typical of dσ � dσRuth 	 excitation curves for

heavy ions and heavy targets.

3.2.4 Compound elastic scattering

Compound-elastic scattering indicates the formation of excited states in the compound nucleus cre-

ated by ion and target, followed by re-emission into the elastic scattering channel. In in articles I and

IV of this thesis the compound elastic scattering has been observed. Broad resonances in the cross

section excitation curve refer to compound elastic scattering.
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3.2.5 Resonances and resonance scattering

In all articles in this thesis resonances or resonance like behavior is observed. In articles II and III the

resonance scattering with very broad and strong resonances is characteristic. The reaction investigated

in these p + 4He articles is

1H � 4 He � 5 Li ��� 1 H � 4 He � (6)

where an excited state of the compound nucleus gives rise to resonance scattering [11]. Fig. 3.

illustrates the strong and broad resonance for 4He(p,p)4He scattering at the proton energy of about

2.2 MeV through the scattering angles of 140
�

and 170
�
. The Rutherford cross sections, which are

multiplied by 100, are also shown at the same scattering angles. As can be seen from Fig. 3. the

dσ � dσRuth 	 results range from 30 to 500 in the energy region studied. Similar results have been

obtained at Sandia National Laboratories for the reaction p(4He, p)4He through the recoil angle of

30
�

in the energy range of 10 to 12 MeV [24].

Resonance scattering is more common for proton scattering by light target elements in typical energy

range for materials analysis than for heavy ion scattering by heavier target elements. For example,

proton scattering by carbon, nitrogen and silicon in Ref. [12], by carbon, oxygen and silicon in Ref.

[13] and by beryllium in Ref. [14] have been studied and very strong resonances, where the highest

dσ � dσRuth 	 values from 2.3 to 80 are observed in these proton-light target experiments.

3.2.6 Threshold energy for non-Rutherford cross sections

The threshold energy, where the Rutherford cross section becomes invalid, is defined as the energy

where the elastic scattering cross section deviation from the Rutherford value becomes significant. In

this thesis the non-Rutherford threshold energy is adopted as the energy where the measured cross
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Figure 4: The lower and final threshold energy values for Al(7Li,7Li)Al scattering (data from article
IV)

section values deviate 4% from the Rutherford value. In some cases there are also determined the

lower threshold energy. This is due to resonance structure in a ratio of the scattering cross section to

Rutherford cross section excitation curve after which the value of the ratio returns back close to unity.

With higher energies than the final threshold the ratio does not reach unity. Fig. 4 illustrates the ratio

of the scattering cross section to Rutherford cross section excitation curve Al(7Li,7Li)Al as a function

of energy through the scattering angle of 140
�

(data from article IV). At the 7Li ion energy of 5.75

MeV the lower and at 6.7 MeV the final threshold energies are shown by arrows. The thinner dashed

lines show the 4% deviation from unity.

Some models to predict the non-Rutherford threshold energy have been developed. The classical

analytical model by Bozoian et al. is based on solving the problem of Coulomb backscattering in the

presence of a weak Yukawa-like nuclear potential perturbation [15–17]. They have also made a linear

fit to the classical analytical calculations. According to these fits the non-Rutherford threshold energy
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in the center of mass coordinates is Z2/10 MeV for protons and Z1Z2/8 MeV for helium and heavier

ions. Z1 and Z2 are the atomic numbers of the ion and target elements, respectively.

Hubbard et al. have studied also the Eth = Z1Z2e2 � r0(A1 � 3
1 + A1 � 3

2 ��� 1 model, where r0 = 1.3 fm, at

the scattering angle of 180
�
, but noticed it to overestimate the threshold energy [18].

Also for heavier ions a model for deducing the threshold energies has been developed. Räisänen et

al. have developed a (A1 � 3
1 +A1 � 3

2 ��� 1 dependent model. They measured the elastic scattering cross

sections for carbon, nitrogen and oxygen ions by a sulfur target and made a wide literature search for

other cross section data of different ion and target pairs. Then fitting the parameters to the experi-

mental and literature data they found parameters that agreed well with their threshold energy model

[21, 22].

In article I a threshold energy fit for protons has been presented. The second order curve was fitted

to the obtained experimental threshold energies determined from the measured cross sections in the

article and to the published data found by a literature survey.

These threshold energy models are dependent on the masses of the ion and the target atom, i.e., with

heavier isotope of the ion one should have higher threshold energy. However, the heavier ion isotope

does not automatically predict the higher experimental threshold energy when scattering by the same

element. In article IV the determined threshold energies of 6Li and 7Li ion scattering by the same

element are quite near to each other, but in some cases 6Li has higher threshold energy than 7Li in the

scattering by the same element.

4 EXPERIMENTAL METHODS

All the elastic scattering cross section measurements were done at the Accelerator Laboratory of the

University of Helsinki using the 2.5 MV Van de Graaff and 5 MV EGP-10-II Tandem Van de Graaff

accelerators. Proton beams at energies from 1.4 to 2.7 MeV in articles II and III were obtained
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Figure 5: Measured Ni(4He,4He)Ni spectrum at He ion energies of 4.0 MeV through scattering angle
of 137

�
(data from article VI).

from the 2.5 MV Van de Graaff accelerator. The structure of the samples, i.e., the thicknesses and

the composition of the layers in articles I, IV, V and VI were determined by 4He � beam which

was obtained from the Van de Graaff accelerator. All other ion beams reported in the articles were

generated by the EGP-10-II accelerator.

4.1 Determination of the scattering cross sections

A typical spectrum in article VI for the cross section measurements is shown in Fig. 5. In the spectrum

three peaks may be observed of which two originate from two thin gold films and one peak from a

nickel film. The yield from the silicon wafer, on which the gold and nickel films were evaporated,

may also be noticed in the spectrum. The yield of the peak in the measured spectrum depends on the

elastic scattering cross section dσ
�
E � θ ��� dΩ, the beam dose Q, solid angle Ω, surface density

�
Nt �

and scattering angle θ as follows [10]:
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A � dσ � E � θ �
dΩ QΩ

�
Nt �

cos
�
θ � 2 � � (7)

Once the ratio of the yields in two peaks is obtained, the cross section may be calculated from the

following formula:

σ1
�
E1 � θ �dΩ

� �
Nt � 2�
Nt � 1 A1

A2

dσ2
�
E2 � θ �dΩ � (8)

where the subscripts 1 and 2 refer to the sample element and the reference element, respectively. The

scattering cross section of the reference element is assumed pure Rutherford and Eq. (5) has been

applied. Also the ratio of the cross section to Rutherford cross section of the sample element may be

calculated from Eq. (8) by dividing both sides of the equation with the Rutherford cross section of

the sample element.

The background subtraction procedure of the spectrum under the studied peak was done either by

fitting n’th grade (n=1, 2, 3, ...) polynomial to the background or by measuring the substrate spectrum.

Then by subtracting the yield under the peak the signals from the original element were counted. In

some cases when very low background and extra peaks from nuclear reactions were observed in the

spectrum the pure substrate spectrum was measured to distinguish the additional peaks.

The surface density (Nt) of implanted helium in tantalum foils in articles II and III was studied by

the transmission-ERD measurement method. In this measurement 10.8 MeV 28Si ions were used as

probing beam. In Fig. (6) the simultaneously measured transmission-ERD spectrum of He(Si,He)Si

recoil scattering and normal RBS spectrum of Ta(28Si,28Si)Ta scattering are shown.

The height of the tantalum plateau in the Ta(28Si,28Si)Ta backscattering spectrum is proportional to

the number of Si ions collided into the foil according to Eq. (9):
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Figure 6: A 4He(28Si,4He)28Si transmission-ERD spectrum. The recoil angle was 10
�

and 28Si ion
energy 10.8 MeV. The insert shows the simultaneously measured Ta(28Si,28Si)Ta spectrum through
the backscattering angle of 170

�
(data from article II).

H � dσ � dΩBSΩBSQδEBS 
ε0 ! cosθ � (9)

where dσ � dΩBS is the backscattering cross section, ΩBS is the backscattering solid angle, Q is the

number of incident ions, δEBS is the energy/channel ratio,
 
ε0 ! is the stopping cross section factor and

θ is the backscattering angle. The height (H) was determined with the GISA computer code [19].

The silicon stopping cross sections for tantalum were taken from Ref. [20], but will be determined

experimentally.

The area of the helium signals in the He(Si,He)Si recoil spectrum depends on the amount of the Si

ions as follows:
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Figure 7: Measured Ni(4He,4He)Ni spectra at 4He ion energies of 3.0, 5.0 and 14.3 MeV through
scattering angle of 137

�
(data from article VI). Ni peaks are pointed by arrows.

A � Qdσ � dΩERDΩERD
�
Nt �

cosϕ
(10)

where Q is the number of incident ions, dσ � dΩERD is the recoil scattering cross section, ΩERD is the

solid angle for recoil ions,
�
Nt � He is the surface density and ϕ is the recoil angle.

With these equations the surface density may be determined as the number of ions is the same for

both recoil and backscattering spectra. The equation for the surface density is:

�
Nt � He

� Adσ � dΩBSΩBSδEBS

H
 
ε0 ! ΩERDdσ � dΩERD

� (11)

Fig. (7) illustrates the typical decreasing behavior of the nickel peak with increasing energy in the

measurements. The three Ni(4He,4He)Ni spectra at energies of 3.0, 5.0 and 14.3 MeV were measured
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through the scattering angle of 137
�
. The Ni peaks are normalized by the area of the two gold peaks

in the spectra. In the first and second spectrum the nickel peak is distinguishable and in the third

spectrum it can be hardly noticed.

4.2 The optical model in scattering analysis

In articles V and VI the optical model (OM) has been one of the methods by which the elastic scat-

tering cross section results have been studied. The OM is a powerful tool for the scattering analysis

because with it the cross sections at non-Rutherford energies may be predicted [7]. In the OM calcu-

lations the nuclear potential consists of two parts, real and complex one. The most commonly used

OM potential is Woods-Saxon:

U
�
r � � � V0

1

1 � e
r " R

a

� iW0
1

1 � e
r " RW

AW � (12)

where R is the radius of the nucleus, a is the surface diffuseness which affects to the form of the

nuclear potential well. Parameters RW and AW are the corresponding quantities for the imaginary

potential.

The goal is to find the optical model parameters. It is done by solving the radial Schrödinger equation

with different OM parameters and by comparing the OM cross sections with experimental data. The

best fit parameters are found by using the χ-test. With the best fit parameters the cross sections may

be extrapolated between data points of the studied energy and angular region.
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Figure 8: Elastic scattering cross sections for 4He(p,p)4He scattering as a function of ion energy and
scattering angle (data from articles II and III and from Ref. [23]).

5 SUMMARY OF RESULTS

5.1 Proton scattering

With protons as the probing beam the ratio of cross section to Rutherford cross section excitation

curve is not usually smooth. In article I are shown the dσ � dσRuth 	 curves for proton scattering by

copper, molybdenum, silver and tin. For every proton-target pair the resonances are observed. For

proton scattering by copper, molybdenum and tin the resonance-like behavior is more characteristic

through scattering angle of 135
�
. The ratio of the cross section to Rutherford cross section excitation

curves for protons by these elements through the scattering angle of 165
�

are smoother than through

135
�
. The threshold energies for proton scattering by silver and tin through larger scattering angles are

higher. It is characteristic that the ion scattering through a larger scattering angle has lower threshold

energy than trough a smaller scattering angle.
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Figure 9: Measured Ni(4He,4He)Ni ratios of the cross section to Rutherford cross section through
scattering angles θ of 96

�
, 117

�
and 137

�
and recoil angles ϕ of 40

�
, 30

�
and 20

�
(data from article

VI).

Elastic scattering cross sections for 4He(p,p)4He scattering through the scattering angles of 85
�
, 106

�
,

128
�
, 140

�
, 170

�
are shown in Fig. (8). Some of the data are from articles II and III and some are

from Ref. [23]. As can be seen from Fig. (8) the cross section values increase as a function of

increasing backscattering angle and the local cross section maximum for all angles is at about 2.2

MeV. The ratio of the cross section to Rutherford cross section through these scattering angles range

from 5 to 540. The overall trend in the angular distribution is that the proton scattering through the

angle of 85
�

gives the minimum cross section values at almost all proton energies. Our results have

been compared with recoil scattering data measured at Sandia National Laboratory by Jim Browning

et al.[24] and are in excellent agreement with our data.
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5.2 Helium ion scattering

In Fig. (9) the ratio of the cross section to Rutherford cross section (dσ � dσRuth 	 ) excitation curves

are shown for Ni(4He,4He)Ni scattering as a function of energy through the scattering angles of 96
�
,

117
�

and 137
�

and recoil angles of 40
�
, 30

�
and 20

�
. All dσ � dσRuth 	 curves are smooth and no

resonance-like behavior is observed. Therefore the scattering is shape-elastic for all measured scat-

tering angles. We have also measured the angular distribution of scattering cross sections for the

reaction Ni(4He,4He)Ni at the energy of 14.0 MeV. With these data we have fitted the optical model

parameters and the extrapolated cross sections between the measured scattering angles (see article

VI).

5.3 Lithium and boron ions

In articles IV and V the lithium and boron ion backscattering by several target elements is discussed.

Typically the scattering of these ions near the Coulomb barrier is shape-elastic scattering and the ratio

of the elastic scattering cross section to Rutherford cross section excitation curve is very smooth.

Anyway, in the articles IV and V all ion-target pairs have resonance-like structure at one or more

scattering angles used in the measurements.

The uncertainties in all the measured cross section values are partly due to statistical errors and un-

certainties in the background subtraction. The other possible error sources are uncertainties in surface

densities of the samples and solid angles. The error contribution of the surface densities are reduced

by normalizing the dσ � dσRuth 	 values to unity at low energies in articles I, IV, V and VI.

5.4 Model for the non-Rutherford threshold energy

One of the aims in this thesis is to present a new model to predict the non-Rutherford threshold

energies for helium and heavier ions through backscattering angles. Previous models, which are
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Figure 10: Previously measured and present threshold energy data as a function of target atomic
number for helium and heavier ions. The threshold energies are given in the center of mass coordinates
and have been divided by the ion atomic number.

discussed earlier in this thesis, are made for lighter target elements, where Z2 # 25 and usually for

protons and helium ions. Some of the models are very complicated to use and very accurate. These

older models for the threshold energy are presented in Ref. [10].

We have fitted a second order equation for the proton threshold energies by heavier target elements,

where 25 $ Z2 $ 50:

Eth
� 7 � 71 % 10 � 4Z2

2 � 8 � 12 % 10 � 2MeV � (13)

The accuracy of this fit is quite good even in some cases the threshold energy is 30% below the

measured value.

For heavier ions we have developed a linear fit for the non-Rutherford threshold energy. The new
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elastic scattering cross section data which are measured after 1993 have been extended with the results

from the older cross section measurements. The threshold model is fitted to the cross section data

which are measured at scattering angles of θ $ 150
�
. The ions with 2 # Z1 # 8 were investigated.

The model estimates the threshold energy in the center of mass coordinates. When the threshold

energy is given in the center of mass coordinates, the transformations to determine the laboratory

energy both for recoil and backscattering processes are presented in Chapter 3.1.

The threshold energy values needed for developing the present model were extracted both from

printed figures and tables given in published articles. In the procedure the energy where 4% devi-

ation in the cross section from its Rutherford value were evaluated. The threshold energy values were

usually obtained in the laboratory frame of reference and therefore the energy values were changed

into the center of mass coordinates. To get a more universal fit the center of mass threshold ener-

gies were divided by the atomic number of the ion. By fitting a first order equation we obtained the

following formula for the threshold energy:

Eth
� Z1Z2

9
� 0 � 2 � (14)

where Eth is given in MeV and Z1 and Z2 are the atomic numbers of the ion and target, respectively.

In Fig.10 the threshold energies are shown in the center of mass coordinates divided by the atomic

number of the target. The accuracy of this model is good. The largest deviation in energy from

the existing data is 0.7 MeV for Pb(16O,16O)Pb scattering. The largest relative deviation is 25% for

Be(4He,4He)Be scattering. The mean deviation of the fit is less than 2%. Data from Refs. [18, 25–43]

were used in model development.

As no proton data were used in developing the fit given Eq. (14), the Eq. (14) deviates from the fit

presented in article I (Eq. (13)) by 50% at low Z2 values, is in good agreement at Z2 values near 45

and deviates again by 30% at Z2 = 90.
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In Table 1 the experimentally determined threshold energies presented in this thesis are summarized.

The values from the measurements of article IV deviate 1.8%, 3.0% and 7.2% from the values pre-

dicted by the present model in Si(6Li,6Li)Si, Al(6Li,6Li)Al and Ti(6Li,6Li)Ti reactions, respectively.

Table 1: The non-Rutherford threshold energies (in MeV). The criterion for the threshold is defined
as the energy where the cross section deviates by 4% from Rutherford cross section. The laboratory
scattering angles are indicated. Superscript 1 indicates a threshold energy taken from a resonance.

Ion Target Threshold energies
θ � 135

�
θ � 165

�
Analytical model
(Refs. [15–17])

Proton Cu 3.5 3.4 2.8
Mo 5.1 5.0 4.0
Ag 5.0 5.8 4.5
Sn 6.1 6.2 4.7

θ � 96
�

θ � 117
�

θ � 137
�

4He Ni 7.541 7.84 7.141

8.441 7.341

8.74 7.54
Analytical model Simplified formula

θ � 140
�

θ � 170
�

(Refs. [15–17]) Z1Z2
8
� m1 � m2 �

m1
6Li Al 6.151 6.20 5.44 5.96

6.40
Si 6.601 6.251 5.87 6.37

6.70 6.50
Ti 8.901 8.851 8.35 9.28

9.25 9.55

7Li Al 5.751

6.65
Si 6.80
Ti 8.401

8.95

θ � 115
�

θ � 135
�

Ni 10.41 11.7 1

11.7 12.4

θ � 89
�

θ � 110
�

θ � 132
�

11B Ni 19.01 18.01 21.4
22.5



29

6 CONCLUSIONS

In this thesis the elastic scattering cross sections of several ions by many target elements have been

investigated as well as the non-Rutherford threshold energies have been determined. A simple but

still quite accurate model to predict the threshold energy for the non-Rutherford scattering has been

presented.

Elemental analysis and depth profiling with proton backscattering in ion beam analysis becomes more

difficult when nuclear reactions arise. If the non-Rutherford energy region is applied in the measure-

ments the analysis of the measured spectrum should be done with advanced computer programs like

GISA [19] or IBA DataFurnace [44–48]. Typical impurities on sample surfaces, like hydrogen, car-

bon and oxygen, may cause unexpected effects to the measured backscattering spectrum. In proton

scattering, resonances are characteristic in the cross section excitation curve. Even with heavier target

elements like molybdenum and tin, a resonance-like structure are observed in the cross section exci-

tation curve. Because of smaller nuclear contributions, heavier ions may be more suitable even for

lighter target elements when higher energy ion beams are applied. If the measurements are to be done

in the Rutherford scattering energy region, the energy limit is defined usually by the lightest target

element. For example, with protons as probing beams the energy region in the measurements is quite

limited.

One of the future prospects is to determine the full energy and angular windows for the Rutherford

backscattering spectrometry. By measuring the effects of electronic screening to the cross sections

the threshold for Rutherford scattering in 4% accuracy at low energies and small scattering angles

may be determined.

The work with the hydrogen standard is still unfinished. The co-operation with Sandia National

Laboratory to make the standard has been fruitfully started and will be continued. The task in the
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project will be high accuracy elastic scattering cross section measurements for the 1H(4He,p)4He

reaction.

In the hydrogen standard project we have so far measured 4He(p,p)4He cross sections through the

scattering angles of 85
�
, 106

�
and 128

�
in the energy range from 1.2 to 5.2 MeV. When the scattering

of 4He(p,p)4He reaction is reversed kinematically to 1H(4He,p)4He reaction the recoil angles are

40
�
, 30

�
and 20

�
, respectively. The energy range for the reversed reaction is from 4.8 to 20.6 MeV.

The Sandia group has made recoil cross section measurements for the reaction 1H(4He,p)4He [24].

They have measured the cross sections through the recoil angle of 30
�

in the energy range from 9.9

to 11.7 MeV. Fig. (11) shows the recoil cross section results of the Sandia measurements and our

kinematically reversed cross sections through the recoil angle of 30
�
. The circles illustrate the Sandia

measurements and the crosses are our kinematically reversed cross sections. The solid line has been

drawn to guide the eye. The figure shows that the deviation between the four cross section data points

obtained at Sandia and our data is negligible.
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