0 HELSINKI INSTITUTE OF PHYSICS

INTERNAL REPORT
HIP - 2000 - 02

Breaking of R-parity and supersymmetry in
supersymmetric models

Kai Puolamaéaki

Helsinki Institute of Physics,
P.O.Box 9, FIN-00014 University of Helsinki, Finland

ACADEMIC DISSERTATION
To be presented, with the permission of the Faculty of Science
of the Unwversity of Helsinki, for public criticism
in the large lecture hall of the Laurikainen building, Siltavuorenpenger 20 C,
on January 5th, 2001, at 12 o’clock.

Helsinki 2000


http://www.iki.fi/kaip/
http://www.hip.fi/

ISBN 951-45-8921-1 (PDF version)
Helsinki 2000
Helsingin yliopiston verkkojulkaisut



Preface

First, I would like to thank my parents Kerttu and Rainer for the last 28
years, my sister Pia for the last 25 years and Anna for being there.

Of my collaborators I would like to extend my special gratitude to Katri
Huitu. Without her supervision, collaboration and support this work would
not have been possible. T would also like to thank Jukka Maalampi for
advice, collaboration and everything. Katri Huitu, Jukka Maalampi and
Claus Montonen have read through this thesis and given valuable comments
and corrections. It has been a great pleasure to work with Mariana Frank,
Homayoun Hamidian, Yoshiharu Kawamura, Tatsuo Kobayashi, Pran Pan-
dita and Da-Xin Zhang. T have learned a lot from all of them, for which I
will be always in debt.

This work has been mainly done in the Helsinki Institute of Physics. My
studies have mostly taken place in the Physics Department of the University
of Helsinki. I have had many excellent teachers, like Masud Chaichian, whose
advice, support and the experience gained in working with him has been
invaluable. HIP and the Physics Department have been good places for
study and research. The administrative branch of the Institute deserves
special thanks for making everything run smoothly. Part of my work has
been financed by the Magnus Ehrnrooth foundation and the Academy of
Finland.

There are people who have made life worth living for during the past years
(even though the presence of some of them may have inadvertently delayed
my dissertation, but only slightly). It would be unfair to name them here,
because the list would be long and necessarily incomplete. But you know
who you are, and I hope we will always be friends. '

Lastly, T would like to extend my special gratitude to the taxpayers from
Finland and all over the world for supporting my research.

LOf a specific request, I would like to mention a certain couple who has always helped
me when I have been hungry.



Contents

1 About this thesis
1.1 Composition of thiswork . . . . . . .. .. ... ... .....
1.2  Some abbreviations used in this thesis . . . . . .. ... ...

2 Supersymmetric gauge field theories
2.1 Historical background . . . . . . .. ... 0oL
2.2 Hierarchy problem . . . . . .. ... ... ... .. ..
2.2.1  Supersymmetry . . . ... ...l
2.2.2  Extra dimensions . . .. .. .. ... ...
2.2.3 Compositescalars . . . . .. ... ... ... ...
2.3 Supersymmetry algebra . . . .. ..o 0oL
2.4 Realisticmodels . . . . ... .o oo oo
2.4.1 Minimal Supersymmetric Standard Model . . . . . ..
2.4.2  Supersymmetric left-right model . . . . . .. .. .. ..

3 Breaking of supersymmetry
3.1 Effective theory: boundary conditions . . . . . . .. ... ...
3.2 Gravity mediated supersymmetry breaking . . . .. .. .. ..
3.2.1 Non-universal gaugino masses and gauge couplings in

SU(B)GUT models . . ... ..o oo o000
3.3 Gauge mediated supersymmetry breaking . . . . .. .. .. ..

4 R-parity symmetry
4.1 Baryon and lepton numbers . . .. ... .. .. ... ... ..
4.2  Gauged R parity symmetry . . .. ..o o000
4.2.1 R-parity breaking SUSYLR models . . . .. ... ...

5 Concluding remarks

12
12
13
13
17
17
19

23
25
26

31
34

40
40
41
42

45



Chapter 1

About this thesis

1.1 Composition of this work

This doctoral thesis consists of the introduction and the following research
publications |1, 2, 3, 4, 5, 6, 7]:

1. Radiative symmetry breaking and the b — sv decay in the gener-
alized GMSB models, by Homayoun Hamidian, Katri Huitu,
Kai Puolaméiki and Da-Xing Zhang. Published in Physics
Letters B448 (1999) 234, hep-ph/9808341.

General class of models with gauge mediated supersymmetry breaking
is studied. The radiative symmetry breaking mechanism and the parti-
cle spectra predicted by this class of models is studied and the b — sv
decay branching ratio in these models is also calculated.

2. SO(10) GUTs with gauge mediated supersymmetry breaking,
by Mariana Frank, Homayoun Hamidian and Kai Puolamaiki.
Published in Physics Letters B456 (1999) 179, hep-ph/9903283.

A general class of SU(10) grand unified theories is investigated within
the framework of gauge mediated supersymmetry breaking. A most
general messenger sector is assumed and the Standard Model gauge
group is embedded into either SU(2), x SU(2)gxU(1)p_r or SU(2)1 X
U(1)r,, x U(1)p-r, left-right symmetry groups. It is found that the
requiring of the perturbativity of the gauge couplings and the gauge
unification leads to an almost unique messenger sector and testable
predictions for the sparticle masses.

3. The supersymmetric spectrum in SO(10) GUTs with gauge medi-
ated supersymmetry breaking, by Mariana Frank, Homayoun
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http://www.elsevier.nl/IVP/03702693/448/234/
http://www.elsevier.nl/IVP/03702693/448/234/
http://arXiv.org/abs/hep-ph/9808341
http://www.elsevier.nl/IVP/03702693/456/179/
http://arXiv.org/abs/hep-ph/9903283

Hamidian and Kai Puolaméiki. Published in Physical Review
D60 (1999) 095011, hep-ph/9904458.

The analysis of Paper 2 is extended by studying particle spectrum and
the properties of the models in more detail.

4. Phenomenological constraints on SU(5) GUTs with non-universal
gaugino masses, by Katri Huitu, Yoshiharu Kawamura, Ta-
tsuo Kobayashi and Kai Puolamiki. Published in Physical
Review D61 (1999) 035001, hep-ph/9903528.

Phenomenological aspects of supersymmetric SU(5) grand unified the-
ories are studied with non-universal gaugino masses. For large tan 3,
constraints arising from the requirement of a successful electroweak
symmetry breaking and the positivity of stau mass squared as well as
the b — sv decay rate are investigated. The nature of the lightest su-
persymmetric particle, neutralino or stau, is determined in the allowed
region. Examples of mass spectra are given. The study concentrates on
the large tan [ scenario, and care has been taken to take the relevant
next-to leading order radiative corrections properly into account.

5. Generic gravitational corrections to gauge couplings in SU(5)
GUTs, by Katri Huitu, Yoshiharu Kawamura, Tatsuo Koba-
yashi and Kai Puolamiki. Published in Physics Letters B468
(1999) 111, hep-ph/9909227.

Non-universal corrections to gauge couplings due to higher dimensional
operators are studied in supersymmetric SU(5) theories. It is found
that the corrections can push up the unification scale, thus avoiding the
relatively short nucleon lifetime prediction characteristic of the SU(5)
GUT models.

6. Critical basis dependence in bounding R-parity breaking cou-
plings from neutral meson mixing, by Katri Huitu, Kai Puola-
miki and Da-Xing Zhang. Published in Physics Letters B446
(1999) 285, hep-ph/9808338.

The limits on the products of two \-type R-parity violating couplings
are derived from neutral meson mixing. It is emphasized that the choice
of the basis of quarks is important in quoting the limits.

7. Higgs sector and R-parity breaking couplings in models with
broken U(1)p_; gauge symmetry, by Kai Puolamiki. Pub-
lished in Physical Review D62 (2000) 055010, hep-ph/0004239.


http://publish.aps.org/abstract/PRD/v60/e095011
http://publish.aps.org/abstract/PRD/v60/e095011
http://arXiv.org/abs/hep-ph/9904458
http://publish.aps.org/abstract/PRD/v61/e035001
http://publish.aps.org/abstract/PRD/v61/e035001
http://arXiv.org/abs/hep-ph/9903528
http://www.elsevier.nl/IVP/03702693/468/111/
http://www.elsevier.nl/IVP/03702693/468/111/
http://arXiv.org/abs/hep-ph/9909227
http://www.elsevier.nl/IVP/03702693/446/285/
http://www.elsevier.nl/IVP/03702693/446/285/
http://arXiv.org/abs/hep-ph/9808338
http://publish.aps.org/abstract/PRD/v62/e055010
http://arXiv.org/abs/hep-ph/0004239

Four different supersymmetric models based on SU(2), x U(l)g %
U(1l)p_r and SU(2), x SU(2)g x U(1)p—_r, left-right symmetry groups
are studied. In these models the U(1)p_; symmetry is broken sponta-
neously by the vacuum expectation value (VEV) of a sneutrino field.
Explicit formulas for masses and mixings in the physical lepton fields
are found. The spontaneous symmetry breaking mechanism fixes the
trilinear R-parity breaking couplings. In particular, a potentially large
trilinear lepton number breaking coupling, which is unique to left-right
models, is found.



1.2 Some abbreviations used in this thesis

CP A combined charge conjugation (C') and parity (P) transformation. The
Standard Model is invariant under C'P-transformation, except for the
strong QCD phase related to the SU(3) gauge symmetry and a phase in
the Yukawa matrices. Supersymmetric model may have more sources
of C'P-violation.

FCNC Flavor-changing neutral currents, a common name for processes in
which a quark or lepton is transformed into a quark or lepton of same
charge, but of a different family. In the Standard Model the FCNC
processes are strongly suppressed, making many of the FCNC processes
sensitive to the radiative effects of non-Standard Model physics.

GeV A unit of energy or mass. The mass of the proton is about 1 GeV.

GMSB Gauge mediated supersymmetry breaking, a mechanism in which
the supersymmetry breaking effects are transmitted to the visible sector
by gauge interactions.

GUT Grand Unified Theory. A hypothetical gauge field theory, relevant at
very high energies, Mgy ~ 10'® GeV, that unifies the electromagnetic,
weak and color interactions.

LEP An electron-positron collider at CERN.

LSP Lightest supersymmetric particle, which is often a neutralino. In GMSB
models the LSP is typically the gravitino. If R-parity is conserved the
LSP is a stable particle.

MSSM Minimal Supersymmetric Standard Model, a supersymmetric ex-
tension of the Standard Model.

NLSP Next-to-lightest supersymmetric particle. In GMSB models the LSP
is the gravitino, and the NLSP is typically a neutralino or the stau.

QCD Quantum chromodynamics, a gauge theory of the strong, or color,
interactions.

QED Quantum electrodynamics, a gauge theory of electromagnetic interac-
tions.



R-parity A quantum number, defined by R = (—1)3B=1+25 where B and
L are baryon and lepton numbers and S is the spin of the field in ques-
tion. Conservation of R-parity implies conservation of B — L quantum
number, which in turn implies that the nucleon is stable.

SM The Standard Model of particle physics, the gauge theory of electromag-
netic, weak and strong interactions. The Standard Model describes all
fundamental forces, except gravity.

SUGRA Supergravity, a non-renormalizable theory of gravity obtained by
localizing supersymmetry transformations. Gravity interactions may

transmit the effect of supersymmetry breaking to the visible sector of
the model.

SUSY Supersymmetry, a symmetry relating bosonic and fermionic degrees
of freedom in a quantum field theory.

SUSYLR The supersymmetric left-right model, an extension of MSSM,

obeying gauge symmetry SU(2)x SU(2)x SU(4) or some of its rank-five
subgroups.

VEV The vacuum expectation value of a scalar field.



Chapter 2

Supersymmetric gauge field
theories

2.1 Historical background

The fundamental interactions of nature, apart from gravity, are described
successfully in terms of relativistic gauge field theories. The gauge theory of
electromagnetic interactions, the quantum electrodynamics (QED), is prob-
ably the most accurately tested physical theory. It is based on U(1) gauge
symmetry, having the photon as a mass-less gauge boson to mediate the
interaction between electrically charged particles. The electromagnetic in-
teractions described by the QED involve vector like (V') fermion currents
which conserve parity (P). There exists another class of interactions that
breaks the parity symmetry, namely weak interactions. These were origi-
nally incorporated in the so-called Fermi theory or V' — A theory, where the
weak interactions are described in terms of non-renormalizable four-fermion
operators.

The QED and the Fermi theory were later unified to what is currently
know as the electroweak theory, a gauge field theory based on the SU(2) X
U(1)y [8, 9]. The fundamental spin-3 fermions of the electroweak theory are
the three families of leptons and quarks. The theory predicts that there are
three heavy weak gauge bosons, two electrically charged and one neutral.
When the electroweak gauge bosons are integrated out of the theory there
appears, apart from a charged current Fermi operator that had been observed
in experiments, also a neutral current operator. The presence of this neutral
current interaction was first confirmed in 1973 by the detection of the reaction
vy + N — v,/U, + (hadrons), where v, /7, is the muon neutrino or its
antiparticle and N is a nucleon [10]. The electroweak gauge bosons (W*, Z)



have been later directly observed |11, 12] and their properties and couplings
have been measured to a great precision.

A corner stone of the electroweak theory is that the masses of gauge
bosons and fermions are generated by the so-called Higgs mechanism | 13, 14,

|. The Higgs mechanism is needed to break the SU(2), x U(1)y gauge
symmetry to the residual electromagnetic U(1).,, symmetry. The Higgs bo-
son is the only particle in the electroweak model which has not been directly
observed so far. The search of the Higgs boson has been, and will be, one
of the top priorities in the present and planned future particle accelerator
experiments.

The electroweak theory combined with the quantum chromodynamics
(QCD), the SU(3)¢ gauge theory of strong interactions, is known as the
Standard Model (SM) of particle physics. It describes all the basic interac-
tions of nature, except gravity. The parameters of the Standard Model have
been measured and verified thoroughly, and to date it is an accurate descrip-
tion of these interactions as far as any experiment can tell — at least when
massive neutrinos are included in the model. Explaining the recent results
of the Kamiokande underground experiment | 16] on atmospheric neutrinos
and the other indications of neutrino oscillations (the deficit of solar neutri-
nos |17] and the claimed observation of the v. — v, oscillation in a laboratory
experiment [18]) is not possible within the framework of the original version
of the Standard Model where neutrinos are strictly massless. The model
should be modified to allow for non-vanishing neutrino masses by extending
its field content or the underlying gauge symmetry in a way that does not
spoil its well-tested predictions.

The Standard Model, while providing an accurate description of nature,
is not yet fully satisfactory in the sense that it has a great number of ad hoc
parameters. The masses and mixings of fermions, as well as the C'P phase
factor taking care of the observed C'P violation of weak interactions, for ex-
ample, have their origins in the Yukawa couplings for which the Standard
Model provides no explanation. The Standard Model does not explain grav-
ity. The so-called hierarchy problem is related to the radiative corrections to
the Higgs mass: barring fine-tunings the Higgs mass term receives radiative
corrections that are proportional to the scale of non-standard model physics

(AcuTorr)-
A very important step forward was the discovery of supersymmetry in
early 70’s [19, 20, 21]. When implemented in the Standard Model, super-

symmetry stabilizes the scalar mass terms of the scalar potential and, as it
was later discovered, it leads to a unification of the gauge couplings near the
Planck scale [22, 23, 24].

The original research papers included in this thesis concern the supersym-



metric version of the Standard Model and its extensions. The main emphasis
is put on the analysis of supersymmetry breaking mechanisms and R-parity
breaking and their experimental verification.

2.2 Hierarchy problem

There are at least two vastly different scales in nature. One is the scale of
the electroweak physics, described by the Standard Model, around 100 GeV,
and another is the scale of gravity. In four space-time dimensions the mass
scale of gravity is given by Newton’s constant Gy [25]

1

Gy = ——
N 8r M2,

(2.1)

where Mp; is the reduced Planck scale Mp; = 2.4 x 10'® GeV. There is a 16
orders of magnitude difference between these two fundamental scales.

The problem of having two vastly separate scales is most acute in com-
puting the radiative corrections to the masses of scalar particles, such as the
Higgs boson. The part of the potential of the fundamental scalar field of the
Standard Model that is relevant for the Higgs mechanism reads

1
V =m%HH" + o (HH*)?, (2.2)

where H is the Higgs scalar. The gauge symmetry is broken by a non-
vanishing vacuum expectation value of the Higgs field H. The vacuum ex-
pectation value of the Higgs field contributes to the masses of the weak gauge
bosons. The VEV is expected to be (HH*) = (174 GeV)? [25]. The mini-

mization of the potential leads to the relation

< a%*> =mi; + f(HH") = 0. (2.3)

The mass term —m?, must be of the order of (100 GeV)? or less. The quantity
m?;, however, receives enormous radiative corrections from any heavy particle
that couples radiatively to the Higgs scalar. This can be seen explicitly by
considering one-loop corrections in a toy model involving two complex scalar
fields ¢ and ¢ and a Majorana fermion field W. The relevant part of the
Lagrangian density reads

1 —
—L = mied" + " + ST



1
X067 00" + SNT (9P, + ¢ Pr) ¥

+ B)\ (m + 2p) pp* + HC} : (2.4)

At tree level the mass of the scalar ¢ is

o 1/ PV N\,
m¢_2<8Regb2 =m”. (2.5)

The masses of the scalar ¢ and the fermion ¥ are at tree level
mi = M2> my = /Ll7 (26)

respectively.

The radiative correction to the mass of ¢ can be found, for example,
by using the effective potential approach [26]. The effective potential is at
one-loop level in the MS scheme

V=W+AVi_1o0p + -, (2.7)

where Vj is the tree level potential given by Equation (2.4) and AVi_jop 18
the one-loop radiative correction given by

1 2J; 4 m% 3
e > (D)2 + 1) my o3 =5 ), (2.8)

A‘/1 —loop = Q2
k=all fields

where my, are the masses of the fields in the theory, J, are their spin and @ is
the renormalization scale. The one-loop correction Ami to the mass of the
scalar ¢ is given by

1 /0*AV

This can be divided into parts corresponding to the boson loops ( 2.10)
and fermion loop (2.11), i.e., Ami = Ami/B + Amfb/F:

10



)\// / \ )\//
Ll "4 A (2.10)
AN
¥
\J
/ /
Am2p = ----- N N +... . (2.11)
¢ ¢
)

The one-loop radiative correction due to boson loops is given by

5 o )\//2 ,u2

where only the terms proportional to p? have been shown. The corrections
due to the fermion loops are in turn given by

1
1672

2

1
1672

12,12 M/Q
AN (1—3111@)%—... . (2.13)

The crucial point is that the corrections to the scalar masses are gener-
ally proportional to the mass of the heaviest particle in the theory. Even
if the heavy particle had no direct coupling with the light degrees of free-
dom in this simple theory, higher loop effects would anyway introduce this
proportionality in any realistic model.

The exact nature of the quadratic dependence on the radiative correc-
tions is determined by the details of the renormalization scheme. In the
cutoff regularization [20], where the momentum integrals are cut off by the
factor e ?’/Abv (p? is the Euclidean momentum), the leading term in the
corresponding radiative correction is proportional to A%,,. The cut-off scale
Ayy can be understood physically as the scale at which new physics becomes
relevant.

In gauge field theories the natural scale of new physics would be near the
Planck scale Mp;. Requiring the scalar potential of the electroweak model to

2 _
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remain at the scale of (HH*) = (7.3 x 10~7Mp;)? requires thus an extreme
fine-tuning of the counter terms that have a quadratic dependence on the
scale of the beyond-the-Standard-Model physics.

2.2.1 Supersymmetry

Supersymmetry [19, 20, 21] solves the fine-tuning problem by requiring the
existence of an equal number of bosonic and fermionic degrees of freedom and
imposing constraints on their couplings. The dangerous radiative corrections
to the masses of scalar fields generated by boson and fermion loops have an
opposite sign and, if supersymmetry is strictly obeyed, they cancel each other.
In the example above the supersymmetric limit is reached by choosing the
dimensionless coupling constants to be equal (A = X = \”) and by requiring
the boson field ¢ and Majorana fermion ¥ to have an equal mass (u = p).
This limit corresponds to a subset of an N = 1 supersymmetric theory defined
by a superpotential

1 1 1
W = 5mos + 51es + 5055, (2.14)

where ¢g and ¢g denote chiral superfields. The superfield ¢g contains the
complex scalar field ¢ and a Majorana fermion and ¢g contains the complex
scalar ¢ and the Majorana fermion W.

2.2.2 Extra dimensions

Another solution to the hierarchy problem, much discussed in literature re-
cently, is to bring the Planck scale down to the vicinity of the electroweak
scale. In this case the quadratic corrections to the masses of scalars are typ-
ically of the order of the electroweak masses, and the fine-tuning problem is
avoided.

The Planck scale can be decreased by introducing extra spatial dimensions
in which only gravity can propagate, in addition to the four ordinary space-
time dimensions |27, 28, 29, 30, 31]. In this scenario the Standard Model
gauge interactions, which have been tested up to the electroweak scale, are
confined to a narrow region, a brane, in the direction of the extra dimensions,
the width being of the order of (1 TeV)~! or less. It is experimentally known
that the gravity obeys the four-dimensional Gauss law V' (r) o< 1/r at scales
larger than about one millimeter |32]. The extra dimensions must therefore
be compactified at a radius R < 1 mm. The Gauss law in 4 + n dimensions

is
1

B 2+n 1+n’
Mpjis iy ™

V(r) o« r <R, (2.15)

12



where Mpj(44r) is the fundamental scale of gravity in 4+n dimensional space-
time. The potential obeys

1

T ar24n pn ot
Mpjiy BT

V(r) o« r>R (2.16)

at the scales larger than the compactification radius R, where

ME R ~ Mp, (2.17)
is the effective four-dimensional Planck mass observed at large scales.

The condition (2.17) can be satisfied with two extra dimensions (n = 2)
so that the Planck scale Mpy44y) is close to the electroweak scale and R is
consistent with the results of gravity measurements. If there are more extra
dimensions, the compactification radius is correspondingly smaller; in the
limit of an infinite number of extra dimensions the radius is R ~ M ;ll( s’

If the fundamental scale of gravity, in this case Mpjyy), is low enough,
one does not need to introduce supersymmetry to avoid fine tuning in the
effective quantum field theory. Nevertheless, supersymmetry may still be

needed for the consistency of the underlying fundamental theory.

2.2.3 Composite scalars

Another suggested solution to the fine-tuning problem is that the Higgs scalar
does not exist on the fundamental level. In the so-called technicolor models,
the Higgs field is a composite object, namely a condensation of fermion field,
which transform under some hypothetical gauge group that becomes strong
at scale Arc ~ 1 TeV; that is, the coupling constant of the gauge group
satisfies arc(Arc) = ghc(Arc)/(4m) ~ 1 [33, 34, 35, 36]. Tt has turned out
to be difficult to construct a model that at the same time generates masses for
all fermions, including the top and bottom quarks, and is not in contradiction
with the experimental measurements involving electroweak gauge bosons and
flavor changing neutral currents.

2.3 Supersymmetry algebra

The supersymmetry algebra is an extension of the Poincaré algebra, i.e.
the algebra of proper Lorentz transformations of SO(1,3) and space-time
translations [19, 20, 21, 37]. The generators of the space-time translations
P, correspond to four-momentum and the generators of the proper Lorentz
transformations M, of SO(1,3) energy-momentum tensor.

13



The Coleman-Mandula theorem states that the most general Lie algebra
of symmetries of S-matrix of a local relativistic quantum field theory in four
dimensional space-time contains only the Poincaré generators and a finite
number of internal symmetry generators that belong to a Lie algebra of
a compact Lie group [38]." The generators of the internal symmetry are
necessarily scalars under the Poincaré group, i.e. they commute with the
Poincaré generators.

Within the assumptions of the Coleman-Mandula theorem there is no
room for supersymmetry, the symmetry between the bosonic and fermionic
degrees of freedom. This restriction can be avoided by allowing also anti-
commutators within the defining relations of the algebra. The resulting al-
gebra is called a graded Lie algebra [39)].

The commuting part of the supersymmetry algebra (denoted generically
by the generator M) is fixed by the Coleman-Mandula theorem. The anti-
commuting part (denoted by ) obeys the following schematic relations:

{Q.Qr=M,  [MQ=Q. (2.18)

A minimal non-trivial supersymmetry algebra is given by the momentum
generators P, and the supersymmetry generators ), and @, (o = 1,2)
behaving like Weyl spinors under the Poincaré transformations:

Qo Pl = Qs Pu] = [P B)] = 0, (2.19)
{Qa, Qs} = {Q4Qp} = 0, (2.20)
{Qa,Qs} = 20%,P,. (2.21)

The supersymmetry generators commute with the energy-momentum tensor,
Qo M) = [@d, MW] = (. These relations describe the simplest supersym-
metric algebra in which there is only one set of supersymmetry generators @,
and Q, (N = 1). In a more general case one can have an arbitrary number N
of such generators. A representation of the supersymmetry algebra, a super-
multiplet, describes fields with N + 1 different kinds of helicities, separated
by a half unit of spin [40]. If N > 2 the multiplet of left-handed leptons or
quarks would also contain their right-handed partners (plus complex scalars).
Due to the supersymmetry the left- and right-handed components of the mat-
ter fermions should transform similarly under the gauge group. However, it
is known from experiments that the left- and right-handed fermions have
different gauge quantum numbers in the SU(2); x U(1)y gauge symmetry.

'In the derivation of the Coleman-Mandula theorem it is further assumed that there
are finite number of particles of given mass and that there is an energy gap between the
vacuum and one-particle states.

14



For this reason it is thought that only N = 1 supersymmetry has relevance
for the low-energy phenomenology.
A finite element of the supersymmetry group is | 37]

G ("¢, &) = /(6QTEQ-w"R), (2.22)

where &, and &, are two-component anti-commuting Grassmann variables.
A linear representation of the supersymmetry group is given by

P, = id,,
iQn = 2 _ioh g
a T 860‘ Uao'c 122
iQy = —%H’eaagda”. (2.23)
00

In group theory the covariant derivative D is an object that (anti)commutes
with the generators of the group. In the case of supersymmetry algebra one
has schematically {D,Q} = {D,Q} = {D,Q} = {D,Q} = 0, or equiv-
alently, [D,G] = 0, where G is an element of the supersymmetry algebra
given in Equation (2.22). The covariant derivative can thus be used to im-
pose constraints that are invariant under supersymmetry transformations. In
the representation (2.23) the covariant derivatives are

0 o a

Da = %—FZO";O-[Q a/“

D, = —% — 0% .0, (2.24)
00

A superfield is a representation of the supersymmetry algebra. A general
superfield can be expressed as a finite series in terms of the Grassmann
variables 6 and 0. A superfield ® satisfying a covariant constraint

Dy® =0 (2.25)

is called a (left) chiral superfield. (A right chiral superfield ® would satisfy
the constraint D,®" = 0.) The chiral superfield can be expressed in terms of
the component fields as

D(y",0) = d(y) + V20T (y) + 00F (y), (2:26)

where y#* = z# + i#o"0. Here ¢ is a complex scalar field, ¥ is a Majorana
fermion and F is an auxiliary field that can be eliminated using the equations

15



of motion. Since D is a linear differential operator, holomorphic functions of
chiral superfields are also chiral superfields.

In a supersymmetric theory the total action is invariant under super-
symmetry transformations. The F-component of a chiral superfield W (the
coefficient of 62 in the expansion with the respect of the Grassmann variables
0, and 0,) transforms as a total derivative in infinitesimal supersymmetry
transformations, i.e., 0F = [d?00W = iv/20,¥o"¢. This expression can
thus be used in constructing invariant Lagrangians, because the variation of
the total action vanishes, 45 = [ d*zd*96W = 0.

Another total derivative can be constructed from the D-term (the coeffi-

cient of 9252) of a product of two chiral superfields: [ d*0d*0®1®.

A chiral superfield contains a complex scalar (spin-0) and a Majorana
fermion (spin-1). A full model that has the Standard Model as low energy
limit must, of course, contain spin-1 gauge bosons as well. These are incorpo-
rated in the so-called vector superfields V' which consist of a Spin—% Majorana
fermion (gaugino) and a spin-1 gauge field. The vector superfields, and thus
the spin-1 vector field, can be required to be real, that is, they satisfy the
covariant constraint

V(z,0,0) =V (z,0,0), (2.27)

which defines an irreducible representation of the supersymmetry algebra.
In a non-supersymmetric theory a scalar or fermion field ® transforms in
a gauge transformation as

P — e 29T P, (2.28)

where ¢ is the gauge coupling, T, are the generators of the gauge group, and
A% are some arbitrary real numbers. In the supersymmetric generalization
of the gauge transformation the field ® and the numbers A® are replaced by
chiral superfields. Then the gauge superfield V transforms as

29T,V —2igT A 2gTo Ve

e —e e 29Tl (2.29)

The gauge superfields V' appear in the Lagrangian in the form of field
strength superfield W defined as

We =D [D,V® +igf™ (DuVi) V] + O (V?) . (2.30)

For an abelian group the terms proportional to O(V?) vanish. For a non-
abelian group the the terms O(V?3) vanish identically in the so-called Wess-
Zumino gauge by the defining condition of the gauge [37]. The W2 is a

chiral superfield, as defined in (2.25), because of the property D’ =0 of the
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covariant derivative. The most general renormalizable Lagrangian involving
chiral and gauge superfields invariant under the gauge and global N =1
supersymmetry transformations can then be written in the Wess-Zumino
gauge as

L= / BPO2OD! 29TV B, + [ / d*0 (6—14WWWM + W (@i)) + HC] :
(2.31)
where the superpotential W (®;) is a holomorphic function of the chiral su-
perfields ®,.
An important consequence of the supersymmetry is that the vacuum en-
ergy vanishes [11|. The Hamiltonian of a globally supersymmetric theory can
be written with the help of the anti-commutation relation ( 2.21) as

H=PF= i (Q1Qi + QiQ1 + Q205 + Q3Q2) . (2.32)

The vacuum energy is always non-negative, since it is a sum of squares of
hermitean operators. The vacuum is invariant under supersymmetry trans-
formations (Q, |0) = 0 and @, |0) = 0) if and only if the vacuum energy is
Zero:

(1) = (01810) = 3 (11 0 + (@ ) + 1@ 10} + [@:10)[) = 0.
(2.33)
Thus in all supersymmetry preserving ground states one has a vanishing po-
tential (V) = 0 to all orders of perturbation theory. On the other hand, a
potential with a positive vacuum energy (V') > 0 implies that the supersym-
metry is broken dynamically.

In locally supersymmetric supergravity models the situation is somewhat
different: the ground state of the potential may have a negative energy. The
positive contribution of the supersymmetry breaking effects to the scalar po-
tential can cancel the negative contribution, resulting in a vanishing vacuum
energy. A vanishingly small vacuum energy is desirable, since it would imply
a very small cosmological constant. It would be consistent with observa-
tional data suggesting that the cosmological constant A is no larger than

A < (10712 GeV)* [12, 13, 44, 17].

2.4 Realistic models

2.4.1 Minimal Supersymmetric Standard Model

The simplest phenomenologically viable supersymmetric model, the Mini-
mal Supersymmetric Standard Model (MSSM) |16, 17|, can be constructed
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starting from the Standard Model. The lepton and quark fields are replaced

by the respective chiral superfields containing a spin-0 scalar and a spin- %

fermion field and the gauge fields are replaced by gauge superfields contain-
1

ing the spin-1 gauge boson and spin- 5 gaugino field. The MSSM obeys the
SU3)e x SU(2)r x U(1)y gauge symmetry.

In the Standard Model there is only one Higgs doublet, H, which gen-
erates masses of quarks through the couplings TrurH and drd H!. In a
supersymmetric theory the latter term is, however, forbidden as it is not
invariant in a supersymmetry transformation. Therefore two Higgs doublet
superfields with opposite hypercharges are needed.

The field content of the MSSM is thus the following. The gauge fields are

arranged in the gauge supermultiplets

G(l (87 170)7
Wa (1737 0)7
B, (1,1,0), (2.34)

where the numbers in parenthesis denote the SU(3)¢ x SU(2)L x U(1)y rep-
resentation. The Higgs fields as well as lepton and quark fields are described
together with their superpartners in terms of the following chiral superfields:

oo 1
Hu - ( HJ ) (1727_§>7

1
Ui = UR; (3*, ]_, ——) s (235)

where ¢ = 1,2, 3 is the flavor index and the color indices have been suppressed.
The most general renormalizable superpotential can then be written as

Wassm = )\eijEiLjTiﬁHd + Adz’jDiQJTiTsz + )\uijUiQ]TiTQHu
+uHTitoHy + Wy + W, (2.36)
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where \., Ay and A, are the Yukawa coupling matrices of leptons and quarks
and Wy and Wp are the lepton and baryon number violating contributions
to the superpotential.

One shortcoming of the MSSM is that it predicts, in contrast to the SM,
the existence of baryon and lepton number violating interactions, which are
strongly disfavored by the observed stability of the nucleons. This problem
is usually solved by introducing an extra symmetry, the so-called R-parity,
that forbids these interactions, i.e. Wy = Wp = 0. The R-parity will be
discussed later in Chapter 4.

In addition to the hierarchy problem, the Standard Model has a unifica-
tion problem: while the SU(2), gauge coupling as is (in the M S scheme) uni-
fied to the U(1)y gauge coupling a; at Mx ~ 10" GeV, a1 (Mx) = as(Mx),
the SU(3)¢ color gauge coupling «g misses this unification. The color and
isospin gauge couplings meet, az(My) = ay(MYy), at scale M% ~ 1016 GeV.
This invalidates the grand unification of the Standard Model forces, which is
required by many candidates for an underlying theory. With the supersym-
metric extension of the Standard Model all three gauge couplings meet at
the scale Moy ~ 2 x 1016 GeV, providing the masses of the supersymmetric
partners are around 1 TeV. The apparent unification of the gauge couplings,
a1 (Maur) = ao(Maur) = as(Mgur), is one of the great advantages of the
MSSM as compared with the SM [22, 23, 24].

The lightest supersymmetric particle (LSP) is stable, if the baryon and
lepton numbers are conserved. If the lightest supersymmetric particle is the
neutralino, it may contribute to non-baryonic cold dark matter density of the
universe |18, 19]. The recent observations seem to favor an accelerating flat
universe, with matter density of about one-third of the critical density | 50,

|-

Consistency with the recent evidence of non-vanishing neutrino masses | 16|
may require the addition of a gauge-singlet sterile neutrino N; = vg; and term

Whirae = Ay NiLjiTaH,, (2.37)

into the theory. The term (2.37) would give origin for a Dirac mass term. A
violation of the lepton number, and thus R-parity, may generate an effective
Majorana mass for neutrinos, even without the sterile neutrino and Dirac
mass term.

2.4.2 Supersymmetric left-right model

As discussed above, the MSSM does not explain, in contrast to the non-
supersymmetric SU(2) x U(1) model, why the baryon and lepton numbers
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should be conserved. Furthermore, the MSSM gives no explanation for the
apparent asymmetry of the interaction of the left- and right-handed fermions.
Let us now discuss an extended model, the supersymmetric left-right model,
that does not have these shortcomings.

The so-called E-chain (... D Er D Eg D SO(10) D ...) of grand unifica-
tion has two physically viable symmetry breaking patterns | 52]:

SO(10) > SU(5) x U(1) 5 SU(3) x SU(2) x U(1) and  (2.38)
SO(10) > SU(2) x SU(2) x SU(4). (2.39)

The breaking chain (2.38) leads to the SU(5) grand unified symmetry (GUT)
as an intermediate step, which breaks further to the MSSM symmetry SU(3)x
SU(2) x U(1) at the scale of around 10'® GeV [53, 54, 55, 56]. In the second
breaking chain (2.39) the SO(10) grand unified symmetry breaks, instead
to the SM gauge symmetry, to the symmetry SU(2) x SU(2) x SU(4), a
maximal subgroup of SO(10), where the left- and right-handed fermions are
treated on the same footing, i.e. the resulting theory is left-right symmetric.
The SU(4) part is further broken to SU(3)¢ x U(1)p_1, where SU(3)¢ is the
color gauge group. The U(1)p_y, implies the conservation of baryon number
minus lepton number, B — L, which is thus an automatic consequence of
gauge symmetry in this model. One of the SU(2) symmetry groups, denoted
by SU(2)p, is associated with the ordinary weak isospin, while the other one,
denoted by SU(2)g, is its counterpart for right-handed fermions | 2, 3, 56].

The gauge quantum numbers are defined so that the electric charge @), the
generator of the gauge symmetry U(1).,, of the electromagnetic interaction,
is given by

Q= I+ p+ (B - L), (2.40)

where I3, is the SU(2)p isospin quantum number, I3 is the respective
SU(2)r quantum number and (B — L) is the U(1)p_, charge. The weak
hypercharge Y is defined as Y = I3z + (B — L).

A typical phenomenologically viable particle content of a left-right model
obeying SU(2), x SU(2)r x U(1)p_1 x SU(3)c gauge symmetry is given by



LAZ A?
Ap=| V2T R B 1,3,-1,1),
i ( AR~ —%5A% ( )
L5+ 5++
= V5" A (1,3,1,1),
R V2R
AT A0
Ap=| V2_F L 3,1,—-1,1),
L ( A —dA; ( )
L(s—i- 5++
op = ( \/?SOL _i6+ (3717171) (241)
L V2oL

The numbers in parenthesis denote the gauge quantum numbers of the rep-
resentations under the SU(2), x SU(2)g x U(1)p_r x SU(3)c gauge group.
The left- and right-handed lepton and quark superfields are accommo-
dated in the SU(2) and SU(2)g doublets L} , and Q} . The two Higgs
bidoublets, ¢; and ¢, contribute to the electroweak symmetry breaking by
obtaining non-vanishing vacuum expectation values (¢?,) = vy and (¢9,) =
vy. These VEVs are controlled by the mass of the the SU(2);, gauge boson
Wi
m%,VLi = %g% (v2 +23) = (81.2 GeV)?. (2.42)
The ratio of the VEVs is denoted by tan § = v, /vy like in the MSSM.

The breaking of the intermediate SU(2)g x U(1)p_; symmetry into the
hypercharge symmetry U(1)y is due to the vacuum expectation value of the
triplet Higgses, (0%) = vsg and (A%) = vag, or to the VEV of the right-
handed sneutrino, (Fr) = ogr. The mass of the right-handed gauge boson
Wg is given by

1
m%/vg = 5912% (QUQAR + QUZAR + afz) , (2.43)

where the contribution of the bidoublet VEVs v, and vy has been ignored.
The experimental lower limit on the mass of the W}f boson, obtained at the
Tevatron, is 715 GeV [57, 25]. The magnitude of the right-handed VEVs, varg,
vsg and og, must therefore be of the order of TeV or more. Limits arising
from the measurements of flavor changing neutral currents may constrain
the right-handed scale to be of the order of 20 TeV or higher [58, 7]. In
GUT models the right-handed scale can be anything between the Planck
scale and TeV-scale: in a typical model it is of the order of 10 GeV, fixed
by requiring the unification of the gauge coupling constants at some higher
energy scale |50].
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The particle content of the model may be expanded from what was pre-
sented in (2.41) by singlet or triplet superfields that have a vanishing B — L
quantum number [59, 60, 61]. The SU(2)r symmetry may in the low-energy
theory be replaced by an U(1)r,,, symmetry [62]. In the SU(2), x U(1)p,, X
U(1)p—r, theory the matter field content can in fact be similar to that of the
MSSM apart from additional right-handed neutrinos [ 7].

Although the supersymmetric left-right (SUSYLR) model may at low
energies be phenomenologically indistinguishable from the MSSM, it differs
from that in many essential respects. In this model the parity symmetry,
while valid at high energies, is broken dynamically in low-energy phenomena,
in contrast to the SM and MSSM, where the parity violation is put in quite
arbitrarily by hand. This model also involves naturally right-handed neutri-
nos whose existence may be necessary for explaining the observed small non-
vanishing neutrino mass. Furthermore, in the SUSYLR model the R-parity
symmetry is automatically present due to the U(1)p_1 gauge symmetry while
in the MSSM it must be separately introduced as an extra symmetry. On the
other hand, in the SUSYLR model the R-parity can be spontaneously broken,
resulting in a predictive pattern of R-parity violating couplings, as will be
discussed in Section 4. The left-right symmetries can be used to make the su-
persymmetric contribution to the C'P violating phases vanish [63, 64, 65, 66].
The doubly charged Higgs bosons and Higgsinos are phenomenologically par-
ticularly interesting, since they can be arbitrarily light, are relatively easy to
observe and have no MSSM counterparts.
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Chapter 3

Breaking of supersymmetry

If supersymmetry were unbroken, the masses of the component fields of a
chiral superfield, like selectrons €; and é; and the electron e, should obey
the relation 2m2 = mZ + mZ,. This would imply the existence of some
supersymmetric particles with masses of the same order of magnitude as
those of their Standard Model counterparts. This is a special case of a
general tree-level result of the theories of chiral superfields | 67] stating

STeM® =) (—1)* (2] + 1)m3 =0, (3.1)

where STr denotes so-called supertrace over the real fields of spin J and
mass 1.

No such light superpartners of any Standard Model particles has been
found, however. The current limits from the direct searches for supersym-
metric particles at the LEP and Tevatron experiments on the masses of the
supersymmetric particles in the MSSM are listed in Table 3.1.

The exact mass limits depend on the experimental setup and the com-
position of the fields. The limits obtained from indirect measurements, such
as the width of the b — sv decay, can sometimes be used to set better, but
more model-dependent, limits than those obtained from the direct searches,
as is pointed out in Papers 1 and 4.

The effective supersymmetry breaking mass terms, which give the spart-
ners a mass consistent with the experimental limits, must thus be at least of
the order of the electroweak scale if the supersymmetric model is to remain a
viable alternative. The tree-level scalar potential of a supersymmetric theory
can be written in terms of the D and F terms as

1 .
V= 2D.D" + FF, (3.2)

23



particle lower limit on mass
chargino (mixtures gaugino and Higgsino) 45-150 GeV
neutralino (mixtures gauginos and Higgsinos) | 23-83 GeV
selectron or smuon 84-89 GeV

stau 71 GeV

sneutrino 43 GeV

stop 87-90 GeV

gluino 180-190 GeV
squarks 230-260 GeV

Table 3.1: Experimental limits on the masses of supersymmetric parti-
cles |25].

where the indices a denote the gauge indices and ¢ the chiral superfields of
the model. It can be shown from general arguments that if supersymmetry is
broken dynamically, the vacuum expectation value of the potential is lifted,
(V) > 0, as was discussed in Section 2.3. Therefore, one must have either a
non-vanishing F-term or D-term in the minimum of the scalar potential. The
F-term supersymmetry breaking (i.e., (F;) # 0) does not alter the supertrace

sum rule (3.1) at tree level [68, 69]. The supertrace sum rule is not violated
by the D-term supersymmetry breaking | 70] ((D,) # 0), either, if the related
gauge symmetry is anomaly-free [67, 71]. Consequently, if the supersym-

metry is broken spontaneously at tree level, then in any reasonable model
there should exist light supersymmetric particles, in contradiction with the
experimental results.

The tree level supersymmetry breaking is thus unacceptable from the
phenomenological point of view. However, the supertrace rule ( 3.1) is in
general modified by radiative corrections. In a typical scenario the model can
be divided into a hidden and a visible sector. In a typical scenario the visible
sector of the model is the MSSM or some GUT model. The supersymmetry
is broken in the hidden sector. By hidden sector one means the part of
the model that has not been directly observed by the current experiments,
because it contains fields that are either too heavy or too weakly coupled.
When the hidden sector is integrated out, it is assumed to create, however,
supersymmetry breaking mass terms of the order of 1 TeV to the Lagrangian.
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3.1 Effective theory: boundary conditions

As discussed in Section 2.2, one of the main motivations for introducing the
supersymmetry is that in supersymmetric theories the quadratic divergences
of scalar masses are canceled. In a non-supersymmetric theory the quadratic
divergences would push all scalar masses naturally close to the Planck scale,
Mp;. The cancellation of quadratic divergences is one example of the so-
called non-renormalization theorems, which state that the superpotential of
an N = 1 supersymmetric theory is renormalized, except by finite amounts,
only by wave function renormalization | 72].

The mass terms of scalars are included in the superpotential part of the
Lagrangian, which can be written as

Lo — / POV (®) + HC. (3.3)

The non-renormalization theorem can be proven heuristically by using su-
perspace formalism [37]: The radiative corrections to the effective action can
always be written as an integral over d*f with no superspace delta-functions.
On the other hand, Ly can be written as a d*6 integral only with superspace
delta-functions. Consequently, the scalar mass terms appearing in the super-
potential are not renormalized. If this property is not spoiled, the breaking of
supersymmetry preserves naturalness. Terms that break the supersymmetry
while preserving the naturalness of the theory are called soft supersymmetry
breaking terms.

One can add to the Lagrangian (2.31) of a supersymmetric model in-
volving chiral superfields ®, and general gauge superfields V' the following
super-renormalizable terms | 73]:

Lopsy = / d'UpO®] e?%Vid, + [ / %0 <@NW°‘WQ + Sjo(%)) + HC]
1 1 -
— _Emil T+ 5 MM+ A;Wi(6) + HC, (3.4)

where the following set of dimension-zero spurions have been introduced:
Uy =m%0%0°, N =DM0> S =A% (3.5)

The W; denote the various terms contained in the superpotential of the
model, W =3, W;.

The mass terms arising from the supersymmetry breaking and generated
by spurions (3.5) can be thought as constant background fields [ 71]. They
preserve the naturalness of the theory.
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If there are no gauge singlet matter fields, then also the following dimension-
three terms preserve naturalness | 75]:

1
‘C;ELH-S-Y = szlm¢£¢l¢m + §mFU\I’Z\I’j + mAm\Ifi/\a + HC (36)

The term proportional to m 4 is possible only if there exist chiral superfields
in the adjoint representation of the gauge group, and the term proportional
to mp can always be rotated away by a re-definition of the superpotential
and the soft supersymmetry breaking terms in Lgggy-. Most supersymmetry
breaking scenarios create an insignificantly small trilinear term Ry;,,,. There-
fore, in phenomenological studies the soft supersymmetry breaking terms
contained in Ll ¢y are usually ignored. This is the case also in the present
work.

The outline of a typical phenomenological study of supersymmetry break-
ing is as follows. The low-energy effective theory is an N = 1 supersymmetric
model, like the MSSM or SUSYLR model. The soft supersymmetry breaking
terms are generated by some mechanism, for example via some supergravity
model or a model with gauge mediated supersymmetry breaking, at some
pre-defined scale. The effects of the hidden sector (where supersymmetry is
broken) are integrated out at a chosen scale, leading to some pattern of the
values of the soft supersymmetry breaking couplings. They result in a set of
parameters at the electroweak scale. One can then investigate the low-energy
phenomena of electroweak interactions, set limits on the model parameters
and study the manifestations of the model in the current and planned particle
physics experiments.

3.2 Gravity mediated supersymmetry breaking

In the minimal supergravity scenario supersymmetry is broken at the scale
Mg ~ 10" GeV in a hidden sector that has only gravitational interactions
with the visible sector, i.e. with the particles of the MSSM. The breaking
of supersymmetry is transmitted by gravity to the visible sector resulting in
supersymmetry breaking effects of order of Mgsysy ~ ggravityM. g ~ 1 TeV,
where ggrquity = M ;ll.

When supersymmetry transformations are made local, one ends up with
non-renormalizable theory of quantum gravity, the so-called supergravity the-
ory. The gravitational interactions are transmitted by a supergravity mul-
tiplet, which contains a spin-2 graviton and a spin—% gravitino. The super-
gravity Lagrangian contains a unique combination of the scalar fields, called
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a Kéhler potential G [70]:

W2
G (61,6) = J (61, 8) + n oL (37)
Mp,
where J is in the minimal case just a quadratic sum of fields !,
J(9l,6) = Mp2sio". (3.8)

The most general globally supersymmetric Lagrangian for chiral and vec-
tor superfields is in the limit of a flat space and small gravitational coupling
given by

L= / d'0p oK (OTe*, @)+ { / 4?0 (LW (@) + ©° fup (B) WWap) + HC} :

(3.9)
where ¢ is a so-called Weyl compensator to be discussed below, and the
function K contains the contribution of the Kéhler potential:

K = —3M%e 5", (3.10)

Since gravitational theory is not renormalizable, the function K and the
superpotential W do generally contain non-renormalizable terms suppressed
by factors of M ;ll.

In the simplest case the hidden sector, where the supersymmetry is broken
spontaneously, and the visible sector have mutually only gravitational inter-
actions. The simplest way to accomplish this is to take the superpotential
to be a sum of hidden and visible sector superfields [ 78, 79, 17], i.e.

W = h(z) + 9(y:), (3.11)

where z; and y; denote the chiral superfields of the hidden sector and the
visible sector, respectively. In our discussion it is sufficient that just one
hidden sector field, say z; = z, achieves a non-vanishing VEV and F-term:

() = aMpy,
oh
<%> = bMsysy Mpy,
(h) = MsysyMp,. (3.12)

1J can be always shifted to the minimal form by a suitable super-Weyl transforma-
tion [77].
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Here a and b are dimensionless parameters of the order of unity, and Mgygy ~
1 TeV will eventually be the scale characteristic of supersymmetry breaking
effects in the visible sector.

As a result of supersymmetry breaking the spin—% gravitino obtains the
mass
) Mpy ~ ezl Mgpgy . (3.13)

(NI

mgp = ¢€

The graviton remains massless.

The Weyl compensator ¢ appearing in the global supergravity Lagrangian
(3.9) is a non-dynamical chiral superfield [80, 37, 81, 77]. It is introduced to
make the action manifestly invariant under Weyl rescaling. The Weyl rescal-
ing of the metric is applied in order to (re-)normalize the gravitational cou-
pling to Gy = (87 M2,)”" and to separate out the scalar auxiliary field of the
supergravity multiplet. The gravitational effects lead also to non-standard
kinetic terms of the type (1+ O (1) (J)) 0"¢0,¢* for the scalar components
of chiral superfields in the action (3.9). The Weyl rescaling is used to trans-
form the gravitational coupling to the measured value and the the vacuum
expectation value of the function .J to zero, restoring the correct form of the
kinetic terms.

The action (3.9) and the Kéahler potential G given in Equation (3.7) are
invariant under Weyl rescaling. The other parameters fields transform as

J — J—71—1,

W — W,

T/3

o — e Py, (3.14)

where 7 is an arbitrary chiral superfield. All explicit mass scales M appearing
in the Lagrangian are rescaled by M — e~7/3M. The super-Weyl symmetry
is broken explicitly if the Weyl compensator has a non-vanishing vacuum
expectation value, (p) # 0. The actual value of the VEV is irrelevant,
since any non-vanishing VEV can be transformed to any non-vanishing chiral
function by a properly chosen super-Weyl transformation. In particular, we
can fix ¢ = 1 and then perform the super-Weyl transformation defined by
T = %\a|2, which disentangles the effect of supergravity from the matter
Lagrangian.
The tree-level effective potential can be written as [ 17]

2

V = " 0/Mi (‘% + Mp o™ W

— 3Mp} |W\2> + (D — terms). (3.15)

Using the Weyl-rescaled superpotential W~ elal/2yy = m2y; + %,uijyiyj +
%)\ijkyiyjyk + ... the potential of the visible sector is in the leading order in
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MSUSY /Mpl given by

%%
V= a@y + Vspsy + (D — terms) (3.16)
where
Vopsy = m§/2¢i*¢i
1
+ <§A>\ijk:m3/2¢i¢j¢k + HC)

2
+ (Cmimgpd; + HC) + ... . (3.17)

1
+ (—Bﬂijm3/2¢i¢j + HC)

The non-renormalizable terms involving the superfields of the visible sector
have been left out from Equation (3.17), since they are suppressed by factors
of M 1311. The values of the parameters A, B and C' depend on the details of
the hidden sector. For the model described above they are given by A = (a+
b*)a*, B=A—1and C = A—2, where a and b are defined in Equation (3.12).
They may contain complex phases originating from the hidden sector. These
phases can lead to observable C'P-violating effects in the visible sector | 82].

The soft supersymmetry breaking terms due to gravity are universal,
as in the Equation (3.17), if the hidden sector fields z; are singlets under
the gauge group of the visible sector. Non-singlet contributions to the soft
supersymmetry breaking terms would lead to mass patterns similar to the
non-universal gaugino masses discussed in the next section.

Another visible sector effect generated by the minimal supergravity model
is the mass term M for the gauginos:

- 1. ofs\ /oG
M = 5@2<G> < 8z»b> <8Z_>Mf;l. (3.18)

Gauginos will have mass terms if the gauge kinetic term is non-minimal
(fao ~ (O(1)2;/Mp; + ...)64) and one of the quantities (0G/dz;) ~ My, is
non-vanishing. The gaugino mass term is then naturally of the order of the
gravitino mass M ~ ms)z.

The minimal supergravity model predicts universal soft mass-squared
terms, gaugino mass terms and trilinear supersymmetry breaking terms.
They are all expected to be of the order of gravitino mass mg/» ~ 1 TeV. The
universality is broken by radiative corrections as the supersymmetry break-
ing parameters are run down from the Planck scale or the GUT scale down
to the electroweak scale.
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The minimal supergravity model provides a simple and working scenario
for the breaking of supersymmetry. It is a standard framework for analyzing
the phenomenology of supersymmetry.

There is also a quantum contribution to the supersymmetry breaking
masses, namely the conformal anomaly, which generates gaugino masses at
one-loop level and mass-squared terms of scalars at two-loop level [ 83, 84].
This contribution is present in all hidden sector models, but in most models
the tree level contributions are dominant, at least as far as the scalar mass
terms are concerned. The conformal anomaly arises if the Weyl compensator
needed to disentangle the supergravity from the Lagrangian has an auxiliary
component H, i.e.

o=1—H6. (3.19)

In a classical treatment the auxiliary component can be rotated away, at
least for the terms involving no explicit mass terms in the supersymmetric
Lagrangian. However, when the Lagrangian ( 3.9) is properly regularized, it
turns out that the anomaly-mediated contributions to the gaugino mass M,
scalar mass m? and trilinear scalar coupling A are, schematically,

«

M = —fH,
47
1 dy
~ 2 - = H2
" 2dlnp
A = =) MH (3.20)

Here (3 is the beta function related to the gauge coupling «,  is the anomalous
dimension, defined as a derivative of the wave function renormalization Z,
v = —3dInZ/dInp, and X is the Yukawa coupling.

The most obvious problem with the pure anomaly-mediated supersym-
metry breaking is that the mass-squared term for a scalar transforming under
an infrared-free gauge group is negative, at least if the Yukawa couplings are
small. Examples of such scalars are the sleptons of the MSSM. One way to
solve this problem is to add a positive universal contribution to the squared
scalar masses.

The most distinctive signature of the models with anomaly mediated su-
persymmetry breaking in collider experiments would be light mass-degenerate
winos and almost mass-degenerate same-flavor sleptons | 85]. The gravitinos
are typically quite heavy, since the supersymmetry breaking masses are sup-
pressed by loop effects relative to the gravitino mass.
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3.2.1 Non-universal gaugino masses and gauge couplings
in SU(5) GUT models

In the minimal supergravity model gaugino masses and gauge couplings unify
at the grand unification scale, as was discussed in the previous section. There
are, however, several viable supersymmetry breaking mechanisms that would
lead to non-universal gaugino masses and gauge couplings at the GUT scale.
One possible mechanism of that kind, studied in Papers 4 and 5 of this
thesis, is the one where gaugino masses arise from a condensation of the F-
component of a chiral superfield in one of the representations 24, 75 or 200
in an SU(5) grand unified theory (GUT) [86, 87, 88].
The gauge kinetic function f,g is generally given by

1

L = 64 d*0 fop(X)WOWP + HC

= = Z Re fas(S)Fo, PO

( > Ff/ﬁ,aggﬂ ) o ys +HC> T (3.21)
aBal B o B!

where (X) = S+ F6?. The superfield X (and its VEV) has been decomposed
into a singlet part X (S and F'°) and non-singlet parts XN (SN and FN),
so that X = >~ X'. The gauge kinetic function can then be decomposed as

X, xV\*
fas(X) = fo(X* aﬁ+Z§N X7 MPl+O (M—alj) , (3.22)

where f, and &y are functions of the gauge singlet superfield X°. The sym-
metric product of the product of two adjoint representations of SU(5), like
the expression W*W¥# in Equation (3.21), is decomposed as follows:

(24 x 24), = 1 + 24 + 75 + 200. (3.23)

Thus, the non-singlet representations X of the chiral superfield X allowed
as a linear term in the gauge kinetic function f,s in Equation (3.21) are 24,
75 and 200.

In the Papers 4 and 5, where the phenomenology of non-universal gaugino
masses is investigated, two basic assumptions have been made. First, the
supersymmetry is assumed to be broken by the F-components of X, i.e.
FI = O(mg/szl), where mg3/; is the gravitino mass. The second assumption

31



is that the GUT symmetry is broken at the GUT scale down to the Standard
Model gauge symmetry by nonzero VEVs SN of the non-singlet scalar field.
The unification condition for the gauge couplings at the GUT scale Mgyr
is given by
ag ' (Mcur)
47

The correction to the universality of the gauge couplings ( da; ! = a;  —agr)
caused by the VEVs SN of the non-singlet fields can be expressed as

6ab = <Refab>. (3.24)

_ 1 3 2
day 1(MGUT) 1 TIE B N T24
ooy (Meur) | = agupr(Meur) | —3 5 ; T75
5(1_1(M ) 10 2 T

3 GUT 2v/21 221 221 200

(3.25)
The xn’s parametrize the VEVs of the Higgs fields in specific directions,

o V26 (5%) SN
N7 f(S5) Mp

(3.26)

Their magnitude is supposed to be of the order SN/Mp; < Mgyr/Mp; ~
1/100 or less.

The corrections can be large enough to push the SU(5) unification close
to the Planck scale, as shown in Figure 3.1 taken from Paper 5. The SU(5)
GUT models are known to suffer from the fact that they typically predict
the nucleon to decay faster than is allowed by the experimental data [ 25].
With the increased unification scale the nucleon decay width falls, however,
below the experimental bounds [89, 90, 91, 92, 93, 94].

The gaugino mass M, at the unification scale, derived from Equation (3.21),
is given by

> FaI’b’ 8fab (S)
Mo(Meur)dar = Z Ref (5] 057, (3.27)
Ia't! a a't!

If the supersymmetry breaking is dominated by one of the F-components the
relative masses of gauginos obey relations presented in Table 3.2.

The particle spectrum of models with non-universal gaugino masses and
large tan 8 are analyzed in Paper 4 of this thesis. The experimental bounds
on the branching ratio of the decay b — sy and the requirement that there is a
successful electroweak symmetry breaking and the unification of the Yukawa
couplings of the b quark and 7 lepton were used to constrain the allowed range
of parameters. The model where F54 dominates the gaugino mass generation
favors the bino as the LSP. In models where the Frg and Fag9 are dominant
the lightest neutralino and the lightest chargino are almost degenerate in
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Figure 3.1: The color gauge coupling as(Mz) and the unification scale T =
log o Mcur |GeV] of the gauge couplings of the MSSM as functions of 6/,
where the non-universal contribution to the gauge couplings at the GUT scale
is assumed to originate from a linear combination to the direction (24) sin 6+
(75) cosf. The plots are given for three different values of x* = 13, + x2s,
where x94 and x75 are defined in Equation (3.25). There exists a solution at
tanf ~ 1.4, denoted by dotted vertical lines, that allows a large unification
scale Mgy, while at the same time the correction to az(My) is very small
due to cancellations between 24 and 75 contributions.
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GUT GUT GUT mz myz mz
Fy M M M M7 M7 M;

1 1 1 1 0.4 0.8 2.9
24 -0.5 —-1.5 1 -0.2 —-12 29
75 ) 3 1 —-2.1 25 2.9
200 10 2 1 4.1 1.6 2.9

Table 3.2: Gaugino masses in the case where one of the F-components dom-
inates the supersymmetry breaking. The gluino mass at the GUT scale is
normalized to unity.

mass. This would be a challenging situation from the experimental point of
view, since a chargino decaying into soft pions and an invisible neutralino
would be quite difficult to detect |95, 96, 97].

3.3 Gauge mediated supersymmetry breaking

If the effects of supersymmetry breaking are transmitted from the hidden
sector to the visible sector by gravitational interactions, the supersymme-
try breaking scale Mg must be, by dimensional arguments, of the order of
Mg ~ 101! GeV. If the supersymmetry breaking interactions are transmitted
by gauge interactions, with couplings of order agauge ~ 0.01, then the super-
symmetry breaking scale can be considerably lower, Mgysy ~ ogaugeMs, i.€.
Mg ~ 100 TeV.

In the so-called gauge mediated supersymmetry breaking (GMSB) mod-
els [31, 98, 99, , , , , , , 106] the supersymmetry is broken
in a hidden sector, resulting in a non-vanishing auxiliary term of some MSSM
singlet chiral superfield X:

(X) =S+ F¢*. (3.28)

This singlet field X is assumed to couple to the messenger fields ®; and
their conjugate fields ®; (or to an adjoint messenger field @Q)) via a Yukawa
interaction:

— 1
L= /d29X ()\icbicbi + 5%@?) + HC. (3.29)

The messenger fields have, by definition, non-vanishing quantum numbers
under the gauge symmetry of the visible sector.

The spinor components of ®; and ®,; form Dirac fermions with masses
mp; = A5, while the non-vanishing F-term splits the mass of the scalar
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components into two non-degenerate values. The scalar components have
the following mass-squared matrix

- S|P ONE P;
‘/mass:(q);'r CI)Z)(|>\F‘1 |)\S |2)<6T)a (330)

with mass eigenvalues

F
AilS?

m%i = m%i (1 +

) . (3.31)

The splitting of the scalar masses breaks the supersymmetry explicitly.
The breaking of supersymmetry is transmitted to the visible sector by gauge
interactions. The gaugino masses are induced at one-loop level and the scalar
mass-squared terms at two-loop level through the following diagrams |

|:

Y

M=—- » (3.32)

=1
N

Il
N}

Fo (3.33)

- -

The loop contributions (3.32) and (3.33) can be calculated, most easily, from
the wave-function renormalization | 109].
The renormalization group equation of the gauge coupling « is

d ., 1

- 34
dlnua 27?5’ (3:34)

where the one-loop beta-function coefficient [ is given by § = 3C — Sg, C
is the Casimir index for the gauge group, and Sg is the sum of the Dynkin
indices of all chiral superfields.
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The particle content of the model changes at the messenger mass scale
Ay = AS, where the messenger fields decouple. The beta-function [ can
thus be expressed as:

Bussm —N > Ay
= 3.35
Blw) { Brrssm s <Ay (3.35)

where Byrs5n is the beta-function of the model, without the contribution of
the messenger fields.

Using Equations (3.34) and (3.35) and the expression (3.24) the gauge
kinetic function can be written as
o (Apv) | Bussu — Nl AX . Brrssm Iy M

w162 M Agy T 162 Max

Ref(X, ) = (3.36)
where Ay > Ay is some constant scale. The gaugino mass at the messenger
mass scale is then given by Equation (3.27):?

F  0f(S) a F

M= SRef(8) 85 'S (3.37)

The contribution to scalar mass terms can be calculated analogously start-
ing from the wave function renormalization term of the chiral superfield @:

L= / d'0Zq (X, X1) Q'Q. (3.38)
The mass-squared terms m; of the scalar fields are
2 2 72
~ 92 (6% F M
=20, ——=N|5| =20,— 3.39
i, = 20750 ‘S S (3.39)

where C} is the quadratic Casimir invariant of the representation of the
chiral superfield in question. The supersymmetry breaking contributions to
the gaugino and scalar mass terms are thus of the same order of magnitude.

There is no contribution to the trilinear A-terms at the messenger mass
scale. Nevertheless, these terms obtain a non-vanishing values between the
messenger mass scale and the electroweak scale due to radiative corrections.

The gravitino mass is proportional to the product of the gravitational
coupling constant and the F-term that breaks the supersymmetry. In the
GMSB model the gravitino mass is thus typically of the order of 1 eV, mak-
ing the gravitino the lightest supersymmetric particle in that model. The

?It has been assumed that z; = |F/A\;5%| < 1. The mass formulas (3.37) and (3.39)
are accurate to the level of one per cent if z; < 0.85. [108]

~
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gravitino cannot be heavier that a few keV in order for its relic density not
to over-close the universe [110]. A light gravitino would couple extremely
weakly to the gauge or matter fields, the coupling being suppressed by fac-
tors of M ;ll. If a pair of gravitinos is produced in a collider as a result of
a LSP neutralino decay into a gravitino and photon, it would show up as
missing energy.

The mass of a gaugino is proportional to the corresponding gauge cou-
pling constant and to the sum of the Dynkin indices of the messenger fields.
The exact mass spectrum of gauginos depends on the choice of the messenger
fields. The bino, the supersymmetric partner of the U(1)y gauge boson, is
usually the lightest gaugino, and it is never heavier than gluinos due to the
relatively small hypercharge gauge coupling and suppressing group theoreti-
cal factors.

The soft mass-squared terms of the scalars are of the order of the squared
masses of gauginos multiplied by some group theoretical factors. Roughly
speaking, the more gauge quantum numbers a particular chiral superfield has,
the heavier is its scalar component. The left-handed squarks are the heaviest
supersymmetric particles. The masses of the right-handed squarks are always
more or less equal to the masses of gluinos. The left-handed sleptons and the
right-handed slepton are typically lighter than squarks. The lightest of the
sleptons is often the supersymmetric partner of the right-handed tau lepton,
the stau. This is because the non-diagonal element of the 2x 2 mass matrix of
staus has a contribution which is proportional to the Yukawa coupling of the
corresponding lepton of the family in question. Since the Yukawa couplings
are the largest in the third family, the mass of the lighter of the two stau
mass eigenstates is smaller than the mass of the light selectron or smuon.
Consequently, the lightest supersymmetric particle is in most scenarios either
stau or possibly some of the neutralinos.

All mass-squared terms evaluated at the messenger scale are according
to Equation (3.39) non-negative. However, the heavy top quarks contribute
to the renormalization group evolution of the mass-squared terms m%{k of
the Higgs scalars. In physically viable scenarios making it negative near the
electroweak scale as it should be in any physically viable scenario.

The so-called SUSY flavor problem arises when the flavor-non-universal
masses of squark and slepton masses cause unacceptably large flavor viola-
tions for example in the j — ey decay or in the K — K system. The flavor
violations would be in control if the relative non-universality of the masses
of squarks and sleptons is at most of the order of one per mille [ 111].

The GMSB contributions to the squark and slepton masses are the same
for all families, because the gauge interactions are flavor-universal. Due to
the relatively low value of supersymmetry breaking in the GMSB theories
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(as compared for example with the SUGRA GUT models) the universality
is maintained as mass parameters evolve from the messenger scale to the
electroweak scale. The only non-universality originates from the Yukawa
couplings. The contribution related to gravity is of the order of M2/Mp, and
it is less than one per mille, as required, if the supersymmetry breaking scale
in the hidden sector is of the order of Mg ~ 10'® GeV or less.

Another attractive feature of the GMSB theories is that they do not
introduce any extra complex phases in addition to the one present in the
non-supersymmetric Standard Model. There can be a phase in the VEV of
the singlet field (X) that contributes directly to the gaugino mass terms.
Nevertheless, if there is only one such field — as is the case in the simplest
models — this extra phase can be rotated away and it is thus not observable
in the visible sector.

The set of messengers is a priori unrestricted. In the so-called minimal
GMSB model [104, , | the messenger fields transform according to the
representation 5+ 5 of SU(5). The representation 5 decomposes under the
MSSM gauge group as 5 = L + D, where the L denotes a field that has the
same gauge quantum numbers as the lepton doublet and D the field with
gauge quantum numbers common with the right-handed down-quarks. In
the minimal model the Yukawa couplings related to the messenger multiplet
5 are required to unify at the GUT scale, i.e., Ap(Mgur) = Ar(Mcur)-

In Paper 1 and in [112] the following general set of messenger fields is
considered:

ng : Q+Q=(3,2 é) + conj.,

ny : U+U=(31, —%) + conj.,

np D+ D= (3,1, %) + conj.,

nr: L+f:(1,2,—%)+conj.,

ng E+FE =(1,1,1) + conj., (3.40)

where the multiplicities of the messenger fields are denoted by ng, ny, np, nr
and ng and the numbers in parenthesis denote their SU(3)cxSU(2),xU(1)y
quantum numbers.

One can set lower limits on the multiplicities of various messenger fields
by requiring that all gauginos obtain a non-vanishing mass. Given fixed
gauge couplings at the electroweak scale, the messenger fields increase the
value of gauge couplings at the GUT scale. One can thus set upper limits
on the number of messengers by requiring that the gauge couplings remain
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perturbative up to some high scale, like the Planck scale. There are 53 sets
of messenger multiplicities that satisfy these requirements. Some of these
sets are redundant, since they result in a similar pattern of supersymmetry
breaking mass terms. Taking this redundancy into account one is left with
32 different possibilities.®

In Paper 1 the radiative symmetry breaking and the width of the ra-
diative decay b — sy are analyzed. The GMSB mechanism creates neither
a non-vanishing bilinear supersymmetry breaking term, nor a bilinear term
in the superpotential. If the bilinear supersymmetry breaking term is as-
sumed to vanish at the messenger mass scale, the particle spectrum and
tan  parameter of the model can be fixed for given messengers multiplici-
ties, supersymmetry breaking scale and sign of the mu-term.

Papers 3 and 4 of this thesis analyze the gauge mediated supersymmetry
breaking mechanism in the framework of the SO(10) GUT with an interme-
diate SUSYLR symmetry. Two fundamental scales were assumed to exist
in the theory, the scale of Grand Unification near the Planck scale and the
messenger scale near the electroweak scale. At the intermediate energies the
theory is assumed to be the SUSYLR model with the messenger fields added.
Below the messenger scale the model is effectively the MSSM.

The requirement of radiative symmetry breaking, perturbativity up to
the GUT scale, unification of gauge couplings scale and the experimental
lower limit on the mass of the stau scalar leads to a very restricted set of
messenger multiplicities. This makes the scenario a predictive alternative
to the models motivated by the MSSM. All models have a NLSP that is
either stau or neutralino, the charged slepton being also light (the LSP is the
gravitino). Squarks and gluinos have mass of 600 GeV or more, and the rest
of the supersymmetric and Higgs particles have a mass between the mass of
the electroweak gauge bosons and that of squarks.

3The messenger multiplicities could be further constrained by requiring that they form
a complete representation of some GUT group, like SU(5) or SO(10), or that the gauge
couplings unify at some scale.
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Chapter 4

R-parity symmetry

4.1 Baryon and lepton numbers

In the Standard Model the conservation of baryon ( B) and lepton (L) num-
bers are accidental symmetries. Given the gauge symmetry and the particle
content, the model does not allow renormalizable interactions that violated
either the baryon or lepton number. In the MSSM the additional squark,
slepton and Higgsino fields make the renormalizable baryon and lepton num-
ber violating interactions possible. It is assumed that the baryon and lep-
ton number violations are suppressed by the conservation of the so-called
R-parity [113, 90, |. The R-parity is a multiplicative quantum number
defined by R = (—1)3B~L)+25 wwhere B and L are baryon and lepton numbers
of respective fields and S is their spin.

Nevertheless, there is no a priori reason for R-parity to be conserved. The
R-parity can in fact be violated, as long as the R-parity breaking couplings are
sufficiently small, so that their effects have not yet been seen in experiments.
There are two kinds of breaking mechanisms of the R-parity, explicit and
spontaneous.

In the spontaneous R-parity violation the lepton number is broken due to
a non-vanishing vacuum expectation value of a neutral scalar field, such as
sneutrino, that carries a lepton number. The spontaneous R-parity violation
conserves the baryon number, since a non-vanishing VEV of a field carry-
ing color quantum number would violate the SU(3)¢ gauge symmetry. In
MSSM all scalar fields carrying color charge are electrically charged: spon-
taneous violation of baryon number at tree level would thus also violate the
conservation of U(1).,, electromagnetic gauge symmetry.

If the full Lagrangian of the model contains R-parity violating terms that
cannot be expressed in terms of VEVs by a suitable rotation of superfields,
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then the R-parity is said to be broken explicitly.
The gauge symmetry allows the following renormalizable R-parity violat-
ing terms in the superpotential of MSSM:

Wr =Wy + W, (4.1)
where
WJZ = /\l]kEZL?lTQLk + A;]leQ‘?ZTQLk + EkLkHu (42)
and
Wp = N UiD; Dy, (4.3)

The terms appearing in Wy violate lepton number, while Wp violates the
baryon number. Since existence of both baryon and lepton number violating
couplings would lead to a rapid nucleon decay |90, 89, |, one must assume
that either baryon or lepton number violating terms vanish to a high accuracy
(WB =0 or Wﬂ = 0)

The trilinear R-parity violating Yukawa couplings can be constrained us-
ing the results of low energy experiments, for example in the Paper 6 of
this thesis bounds were derived on the products of the X-type couplings us-
ing experimental results on the mass difference in the K — K and By — By
systems.

There are also the corresponding R-parity violating soft supersymmetry
breaking contributions to the scalar potential:

Vi = AijiE; LT ity L + Ajy DiQ ima Ly + B Li H,, (4.4)

and

The lepton doublets L; and the Higgs doublet H,; have the same quantum
numbers. If the lepton number is broken (Wy, Vj, # 0) the Higgs and lepton
fields are no longer unambiguous, and they can be re-defined by unitary
rotation of L = (HyLiLyL3)T.

4.2 Gauged R parity symmetry

The R-parity symmetry is a continuous global U(1) symmetry, where each
field has a U (1) quantum number proportional to the B— L quantum number.
If the global symmetry is broken spontaneously, a massless Goldstone scalar,
a majoron (J), should exist [116, : |- This implies a novel decay
channel h — JJ for the Higgs scalar h. The sneutrino acquiring a VEV
must be a SU(2), x U(1l)y singlet, i. e. a right-handed sneutrino, since
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otherwise the majoron would contribute to the invisible decay width of the
Z boson.

A more elegant solution to the proton decay problem is to have the R-
parity as a local, instead of a global, symmetry. The R-parity is then a
discrete subgroup of the gauge symmetry. The massless Goldstone mode
is absorbed into the longitudinal polarization mode of some extra neutral
gauge boson. This is the case for example in the SUSYLR models, where the
R-parity symmetry is a subgroup of U(1)p_; gauge symmetry. The gauge
symmetries are local, and thus protected from gravitational corrections, mak-
ing them an attractive alternative for ad hoc global symmetries.

4.2.1 R-parity breaking SUSYLR models

The supersymmetric left-right (SUSYLR) model contains three left-handed
neutrinos and three right-handed neutrinos and their supersymmetric part-
ners, sneutrinos. The sneutrinos can obtain a non-vanishing vacuum ex-
pectation value in the process of spontaneous symmetry breaking. In some
versions of the SUSYLR it is in fact inevitable that at least one of the right-
handed sneutrinos obtains a non-vanishing VEV [59, , , |. The
R-parity breaking in the SUSYLR models has been investigated in Paper 7
of this thesis.

The spontaneous R-parity breaking in the SUSYLR model takes effect
solely through the vacuum expectation value of the sneutrino field. The R-
parity violation is manifested in the fact that the mass matrix of neutralinos is
mixed with the neutrino mass matrix, and the chargino mass matrix is mixed
with the mass matrix of charged lepton. Similarly, the scalar mass eigenstates
are mixtures of the Higgs and slepton fields. The R-parity violating mixing
terms in the fermion and scalar matrices are proportional to the VEV’s of
the sneutrino field.

The VEV’s of the left-handed sneutrinos, (7) = o, contribute to the
masses of the electroweak gauge bosons and light neutrinos. Taking the
gauge boson masses into account and requiring that the Yukawa coupling
of the top quark remains perturbative sets an upper limit on the VEVs:
S lomk? < (168 GeV)®. Requiring the neutrino masses to remain below
their current experimental limits constrains the VEV to be at most of the
order of |ore| < MeV for the electron sneutrino, of the order of |oy,| S GeV
for the muon sneutrino and of the order of |o.,| < 10 GeV for the tau
sneutrino, barring cancellations in the neutrino/neutralino mass matrix.

From the phenomenological point of view the breaking of the R-parity
via a non-vanishing VEV of a left-handed sneutrino is very similar to the
bilinear R-parity breaking in the MSSM. In fact, the VEV of a left-handed
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sneutrino can always be rotated into a bilinear R-parity breaking parameter
and trilinear R-parity breaking terms in Equation ( 4.2) that are proportional
to the corresponding Yukawa couplings | 122, 123].

The VEV’s of the right-handed sneutrinos, (Pr) = og, can be of the
order of the mass of the right-handed gauge bosons. As a result of the
non-vanishing VEVs of the right-handed sneutrino, og # 0, the lepton mass
eigenstates can be mixtures of gauginos, Higgsinos and lepton interaction
eigenstates. The couplings of physical leptons, for example, to the gauge
bosons of the Standard Model remain however to leading order unmodified,
if the mixing is due to VEVs that are singlets under the SM gauge group.
Furthermore, in the decoupling limit the couplings of charged leptons to the
physical Higgs boson approach their Standard Model values.

In the SUSYLR model, in the limit where o, = 0 and the contribution
of the gaugino mass terms to the neutrino masses is dominant, the neutrino
obtains via a see-saw mixing with gauginos a Majorana mass

2
m,, o~ D , (4.6)
M

where M is an effective gaugino mass term. The quantity m? is given by

2 2.2 2
)\VaRmZL cos” (3
2 2 2
ANog + 1

m3, = : (4.7)
where ), is the Yukawa coupling of the neutrino and p is the mass parameter
appearing in the superpotential.

The R-parity violating couplings are determined by the spontaneous sym-
metry breaking. In SU(2)r X U(1),, X U(1)p_; model the effective R-
parity breaking tri-linear couplings are proportional to the Yukawa matri-
ces of down-type quarks and leptons. They are naturally suppressed below
the current experimental limit. However, the SU(2), x SU(2)gp x U(1)p_1,
SUSYLR-model has more interaction eigenstates sharing the hypercharge
quantum number with the right-handed charged lepton. In Paper 7 it was
found that it is possible to have a large R-parity breaking coupling that is not
suppressed either by neutrino mass constraints or small Yukawa couplings. A
potentially large R-parity violating coupling between an up- and down type
quark, squark, and a charged lepton, proportional to the SU(2)g gauge cou-
pling constant gg, is due to the SU(2)r wino component in the right-handed
part of the charged lepton mass eigenstate. It is given by

L= —ngdeiu_fPRek + HC, (48)

where || < 1, k = e, u, T, are dimensionless parameters and ey, is the lepton
mass eigenstate. The parameter z. is bound by constraints from neutrinoless
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double beta decay, but in the case of heavy lepton families (k = p,7) the
value of the parameter x; can be of the order of unity. The coupling is
the same for all quark families (i = 1,2, 3) due to the universality of gauge
couplings.

An advantage of the spontaneous R-parity violation realized in the SUSYLR
model is that the baryon number is automatically protected by gauge symme-
try, unlike in the MSSM. The R-parity breaking couplings can be parametrized
in terms of few parameters, and the pattern of lepton-number violating cou-
plings, if observed, will be distinctive signatures of the SUSYLR models.
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Chapter 5

Concluding remarks

During the past ten years our understanding of the fundamental theories of
nature has taken great leaps forward. The Standard Model of particle physics
has become the most accurately measured physical theory. Nevertheless, the
quest is far from complete. The Higgs sector of the Standard Model remains
experimentally untested. Furthermore, there are theoretical arguments, like
the hierarchy problem, that suggest that the Standard Model will not by far
be the last word, the Theory of Everything.

The supersymmetry provides a logical solution to the hierarchy prob-
lem. Unfortunately, the supersymmetry brings with it over a hundred new
parameters, reducing the predictability of the model significantly. The su-
persymmetry also brings problems: how is the supersymmetry broken at the
electroweak scale and are baryon and lepton numbers conserved?

Most of the new parameters introduced by supersymmetric models are
associated with the supersymmetry breaking. By assuming a particular su-
persymmetry breaking mechanism one can reduce the number of free param-
eters from a hundred to just a few. The model becomes easier to deal with
and more predictive, and it can be used as a test case in designing new exper-
iments and predicting what the new physics would look like, and ultimately
give hints of the Theory of Everything, the theory that explains all particle
interactions, including gravity. In fact, the consequences of supersymmetry
breaking might be the only direct consequence of quantum gravity theory
that we are able to measure in a foreseeable future.

Another mystery relates to the apparent conservation of baryon and lep-
ton numbers in nature, which is most manifestly apparent in the stability of
the proton. The natural situation in many models is, however, that lepton
and baryon number are broken, not conserved. In particular, in the minimal
supersymmetric model the lepton and baryon number (or R-parity) violating
interactions are a priori unrestricted. Therefore one has to introduce some

45



mechanism that makes these interactions small in order to comply with the
experimental data. Omne such mechanism is given by the supersymmetric
left-right (SUSYLR) model, where the R-parity is conserved by the gauge
symmetry and the R-parity violation, if it takes place, is spontaneous. The
pattern of R-parity breaking couplings is unique to the spontaneous sym-
metry breaking mechanism, as the resulting spectrum of particle masses is
a distinctive feature of the supersymmetry breaking mechanism. Observing
the consequences of these couplings at relatively low energies can thus give
information on the physics at the energies beyond the direct reach of the
experiments.

The nature may be more complex (or simple) than we have thought. But
if something along the lines speculated in these studies is observed in the
current or planned accelerator or other particle physics experiments one has
here a well thought-out framework and tools for studying nature.
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