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ABSTRACT 
 

The properties of the diamond-like carbon (DLC) coatings prepared with the filtered pulsed 
arc discharge (FPAD) method developed in our laboratory are exceptional; they are high-
quality (>80% sp3 diamond bonds), ultra-thick (up to 200 µm) and have excellent adhesion. 
These features, especially the thickness of the coating, are essential in applications. 
Typically the thickness and the quality of the DLC coating or thin film are compromised to 
avoid poor adhesion due to the internal stress in the coating. Superior adhesion is achieved 
with the FPAD method, where carbon ions have high energies and they form a mixing 
layer between the substrate and the coating. The deposition process was studied in detail 
and a simple and fast new method to simultaneously test the adhesion and quality of the 
DLC coating was developed and is reported in this thesis. Another indication of the 
exceptionality of the deposition system was obtained when the light emitted by the plasma 
in the FPAD system was studied with a spectrograph. This revealed that the energies (from 
Doppler shifts) and charge-states (line spectra of carbon) of the carbon ions differ 
significantly from those of reported in the literature. The carbon ions in the FPAD plasma 
have higher energies and higher charge-states than those typically reported for carbon ions. 
 
The benefits of using tantalum as an intermediate layer between the substrate material and 
the DLC coating are discussed in this thesis. The tantalum layer was first introduced as it 
improved the adhesion and allowed a wider variety of substrate materials to be used. At 
present, the use of tantalum is recommended to prevent pinhole failure. In a corrosion 
experiment with tantalum coated and uncoated human hip joint prostheses it was found that 
when exposed to 10% HCl solution tantalum coating decreased the corrosion rate of 
CrCoMo acetabular cups by a factor of 106. 
 
The modification of the FPAD method to prepare novel DLC-polymer-hybrid coatings is 
also covered in this thesis. Both the coatings and their deposition method are recent 
innovations of our research group. In the novel coatings the properties of the polymer and 
the hard DLC can be combined. Common non-stick polymers, polydimethylsiloxane 
(PDMS) and polytetrafluoroethylene (PTFE), have been used as the polymer component in 
the hybrid coatings and as a result coatings that are considerably hard and water and oil 
repellent have been prepared. The water and oil repellency is observed in the high contact 
angles of water and oil on the surface of the coating and also in the sliding angle 
measurements: water and oil droplets leave no visible trace on the surface of the hybrid 
coatings and with DLC-PDMS-hybrid coating an extremely low sliding angle of only 
0.15°±0.03° was measured with a 20 µl distilled water droplet (the lowest sliding angle 
value given in the literature is 1°). 
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1   INTRODUCTION 
 
The first diamond-like carbons (DLC’s) were prepared in the beginning of the 1970s when 

Chabot and Aisenberg used the direct ion beam deposition to prepare DLC thin films [1]. 

Since then the pursuit to harness the exceptional properties of natural diamond, such as 

high mechanical hardness and chemical inertness, in coatings has been ongoing (see Table 

1). DLC is a viable material for wear-resistant applications such as the protective coatings 

on magnetic hard disks and their reading heads, cutting tools, automotive components and 

orthopaedic prostheses [2-11,II].  

 

In wider industrial use the price of the coating plays an important role. The price of the 

resulting coating depends on the deposition method and its efficiency. Thus, for practical 

applications a deposition method with a high deposition rate is needed. For example, the 

method applied to prepare the first DLC’s had a low deposition rate and is therefore only 

suitable for laboratory use.    

 

It has been found that DLC’s properties similar to those of diamond are achieved in an 

isotropic disordered thin film with no grain boundaries [12]. This excludes the chemical 

vapor deposition (CVD) methods where thin films consisting of small crystallite diamonds 

are formed via a chemical process from various gaseous hydrocarbons. These films have a 

high hydrogen content (20-50%), their surface is quite rough because of the crystallites and 

consequently they have weaknesses due to the grain boundaries.  

 

 

Table 1. Some properties of diamond [13] vs. high-quality DLC [12,14-17]. 

 

 Amount of sp3 
diamond bonds 

Hardness 
(GPa) Density (g/cm3) Resistivity (Ωcm) 

 
Diamond 100% 100 3.515 1020

 
High-quality DLC 
 

>80%(*)
 

70-80 
 

3.1-3.5 
 

109-1011

 
(*) Determined with electron energy loss spectroscopy (EELS). 
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The Helsinki University Diamond Group, led by Prof. Asko Anttila, has been studying 

DLC coatings since the 1980s [5-9,18-27]. With the filtered pulsed arc discharge (FPAD) 

deposition method developed in the laboratory superior DLC coatings can be prepared. 

FPAD is a physical vapor deposition (PVD) method, which utilizes high-energy carbon 

plasma beams yielding high deposition rates, thus making it also suitable for industrial use. 

The coatings prepared with FPAD are amorphous (the carbon atoms that form these 

coatings are isotropically disordered and no grain boundaries exist), ultra-thick (up to 200 

µm), high-quality (amount of sp3 diamond bonds >80%) and well-adherent. It should be 

clarified here, that the term ‘high-quality’ in context with the DLC coatings refers to the 

high amount of sp3 diamond bonds in the coating. 

 

To reach a thickness of 200 µm for a high-quality DLC film is exceptional and as far as we 

know coatings with these properties have not been prepared elsewhere in the world. 

Typically the thicknesses of the coatings (or thin films when thicknesses are less than a 

micron) are orders of magnitudes thinner. For instance, Chhowalla [4] reported that the 

internal compressive stress in the high-quality DLC film rose rapidly to ~10 GPa as the 

film thickness exceeded 10 nm. The stress saturated at that maximum value in films with 

thicknesses of 20-100 nm and after this the stress dramatically decreased as delamination 

occurred. The same kind of stress behavior of DLC film from 0 to 10 nm was also reported 

in Ref. [28].  

 

Carbon is a very versatile element as it can form bonds in several different ways and thus it 

is found in many different materials. Carbon forms a variety of crystalline and disordered 

structures, because it has three different bonding configurations (Figure 1) [29].  In the 

nature elemental carbon is usually found in one of its two allotropic forms, viz. graphite 

and diamond. In diamond, the carbon atom’s four valence electrons are each assigned to a 

tetrahedrally directed sp3 orbital, which makes a strong covalent bond with an adjacent 

atom. In graphite, three valence electrons enter trigonally directed sp2 orbitals and form 

covalent bonds. The fourth valence electrons form a 2D electron gas and the sp2 bonded 

planes interact via weak Van der Waals forces. The strong and equivalent covalent sp3 

bonds in diamond explain its extreme physical properties. In graphite the weaker bonds 

between the covalently bonded planes explain its brittleness and also its use as a solid 

lubricant because its covalently bonded planes are able to move with respect to each other. 
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In the sp1 configuration the covalently bonding electrons are in orbitals directed along the 

x-axis while the other two electrons are along y and z directions and forming weaker 

bonds.  

 

In the diamond crystal structure carbon atoms are densely packed: the lattice is fcc (face-

centered cubic) Bravais lattice with a basis of two [13]. In amorphous DLC coating, the 

carbon atoms are arranged so that no long range order is present. To give an idea of this 

kind of structure (a carbon system with 80% sp3 bonds), a computer simulation to model 

the structure is presented in Figure 2 [30]. The figure shows that the structure consists of a 

net of carbon atoms bonded in various directions with no long range order.  

 
Figure 1. The three different bonding configurations of carbon. 
 

 

 

a)

 

b)

 

 

 
Figure 2. a) Computer simulation of the structure of DLC (512 carbon atoms in a system 
with about 80% sp3 bonds) [30]. b) For clarity only half of the structure presented in a) is 
shown. In the simulation the cells were made with the Brenner II hydrocarbon potential 
[31], starting from random atom coordinates at high pressures and temperatures that were 
then slowly cooled down to 300 K and ambient pressure in several stages. 
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The ambiguity of the nomenclature concerning DLC is worth mentioning here. In a recent 

review J. Robertson defined: “Diamond-like carbon is a metastable form of amorphous 

carbon (a-C) containing a significant fraction of sp3 bonds”[12]. However, the term DLC 

has been used as a general term for carbon coatings with some diamond-like bonding. It 

does not guarantee high or even a significant sp3 fraction and thus the term tetrahedral 

amorphous carbon (ta-C) has been suggested [16,32] for DLC with high sp3 fraction to 

distinguish it from the sp2 bonded a-C. A contradictory term, amorphous diamond (AD), 

has also sometimes been used. The term draws attention to itself, because it points out the 

exceptionality of the material, but it has been disputed since diamond is the term for a 

distinct crystal structure far from amorphous [17].  

 

In Papers I-III, the terms tetrahedral amorphous carbon (ta-C) and diamond-like carbon 

(DLC) are both used, but in papers published in physical journals ta-C is preferred. In 

Papers IV and V, DLC was chosen for the new term to describe the novel hybrid coatings, 

because the DLC-polymer-hybrid (DLC-p-h) coatings can have quite a low amount of 

‘diamond component’ in them if the amount of polymer component is raised. In this 

summary, the term diamond-like carbon (DLC) is used instead of tetrahedral amorphous 

carbon (ta-C) for simplicity. 

 

Overall, the exceptional properties of the DLC and DLC-polymer-hybrid (DLC-p-h) 

coatings and their preparation methods are discussed in this thesis. The motivation for this 

study was to develop the deposition system and to understand the processes that take place 

during the deposition. In Paper I, the superior adhesion and high-quality of the DLC 

coating prepared in our laboratory is demonstrated and a simple and fast method to test 

these properties is presented. Paper II focuses on one of the applications of DLC coatings, 

viz. artificial hip implants, and proves that the use of tantalum as an intermediate layer 

between the substrate and the coating is highly beneficial. In Paper III, the energies and 

charge-states of the carbon plasma generated in our deposition system are examined and 

the results are found to differ significantly from the results obtained with other arc 

discharge plasmas. Papers IV and V present the results of pioneering research work aiming 

at novel diamond-like carbon - polymer -hybrid coatings.  
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2   THE DEPOSITION PROCESS OF DIAMOND-LIKE 

CARBON  
 

 

2.1   The filtered pulsed arc discharge (FPAD) method 
 

The deposition method used in our laboratory for preparing DLC coatings is the filtered 

pulsed arc discharge (FPAD) method [20]. With slight modifications the FPAD unit is also 

suitable for the deposition of DLC-p-h. A schematic representation of the FPAD unit is 

shown in Figure 3.  

 

 
 

Figure 3. A schematic representation of the FPAD unit. 
 

 

When preparing DLC with FPAD a graphite cathode is used. The FPAD unit is in a 

vacuum at a pressure of about 100 µPa and in order to create carbon plasma an arc similar 

to lightning is generated from the surface of the graphite cathode by discharging the 

ignition capacitor bank (C=10-20 pF). This causes electrons and carbon ions (plus 

unwanted neutral carbon atoms and larger particles) to ‘explode’ out of the cathode [21]. 

The cathode is worn in this violent process and its wearing effects the generation of plasma 

in the following pulses and therefore the cathode is usually rotated and the surface is 

cleaned continuously by abrading it against an alumina sheet [22]. The plasma generated in 

the arc discharge then encounters a ring shaped graphite anode, which is at a higher 

potential (U=500-6000 V). As the plasma (lighter electrons first and the heavier carbon 

ions after) reaches the anode, the main capacitors are discharged. The main RCL-circuits 
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parameters are typically the following: the tuning resistor R≈0.1 Ω, main capacitor 

capacitance C≈10-30 µF, filtering solenoid inductance L ≈ 3 µH. The current (in the order 

of several kA) from the main capacitors is led through a curved solenoid and a 

synchronized magnetic field  (~1 T) is created to steer the plasma towards the sample and 

to filter out the unwanted neutrals and larger particles. The pulse frequency can be tuned 

from f=0-10 Hz. The ignition capacitor bank is discharged when the voltage is high enough 

(~2 kV) and striking occurs in the breaker gap, short-circuiting the ignition circuit. The 

breaker gap can be adjusted and thus controls short-circuiting and the pulse frequency. 

 

With the FPAD method, energetic plasma pulses with a high ion density can be generated. 

From the volume and density of the deposited DLC coating and the deposition time, one 

can estimate the average current the plasma carries in the FPAD to be in the order of 

amperes. The FPAD method is a fast method to produce DLC; the maximum deposition 

rate is 6 µm/h for an area of 25 cm2 and coatings as thick as 200 µm have been deposited. 

The high deposition rate facilitates the industrial use of the method. The 200 µm DLC 

coating was deposited in our laboratory for pure scientific interest only, but nevertheless to 

our knowledge it is the world record for thickness of DLC coating. However, for practical 

applications a thickness of a couple of tens of microns is sufficient.   

 

 

2.2   Substrate properties 
 

Several factors need to be taken into account when starting a FPAD deposition. The key 

factor limiting the use of DLC coatings is the lack of adhesion between the substrate and 

the coating. Therefore, the sample material has to be carefully considered: the substrate has 

to be ”soft” enough (Vickers hardness, HV<3 GPa) [23]. If the substrate material is hard 

(HV>3 GPa) the deposited DLC coating easily peels off the substrate because of the high 

internal stress of the coating (compressive internal stress can be up to 10 GPa [4,24,28]). In 

addition to proper hardness, the substrate material should be a carbide forming material. 

For example, copper is soft enough, but it does not form carbides and therefore direct 

deposition of DLC on it fails. Using carbide forming materials, such as tantalum, as 

intermediate layers thick (≥100 µm) DLC coatings can be prepared [23]. Furthermore, if 

the substrate material is soft the possibility that the substrate material will be deformed 
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under the highly stressed DLC coating has to be taken into account. This is the case with 

e.g. a copper substrate when a several millimeter thick copper plate is bent under a thick 

(several tens of microns) DLC coating. A typical well-behaving and commonly used 

substrate material is stainless steel AISI316L.  

 

Before depositing the coating, the geometry of the sample has to be considered and a 

proper sample holder has to be designed (samples can be rotated during deposition to reach 

all sides on the sample). If the sample has sharp edges there is a risk that the coating will 

not properly adhere onto these areas because the internal stress in the coating accumulates 

on these areas.  

 

In Paper I, a simple method to test the adhesion and quality of DLC coating is presented. 

The test is largely based on facts explained in the previous paragraph and the observation 

that the compressive internal stress of DLC coating can break and peel off the surface of 

the silicon wafers [24]. Hard, but carbide forming silicon is used for the deposition of DLC. 

Because silicon is a hard and brittle ceramic material, the DLC coating will eventually peel 

off the surface and, if the adhesion is good, the deposited coating will peel off and break 

the substrate. The peeling off effect is typically measured with a profiler (Figures 4 and 5, 

see also Figures 2 and 3 of Paper I). The interpretation of these events is consistent: first, if 

the coating peels off without breaking the substrate, the adhesion is insufficient. Secondly, 

if the coating peels off and breaks the substrate, the adhesion is good and the peeling 

thickness indicates the quality of the DLC: the thicker the coating was before the break 

down occurred, the poorer the quality (lower internal stress) of DLC. For instance, the 

amount of sp3 bonds in a sample with peeling thickness of 0.5 µm was 85% and with 1.5 

µm it was 80% [I].  

 

The calibration samples of this method were measured with X-ray photoelectron 

spectroscopy (XPS) in order to establish the amount of sp3 bonds in them. XPS 

measurements are rather expensive and time-consuming and thus can be performed only on 

special occasions. Another method often applied in our laboratory to measure the quality of 

the coating is electronic resistivity measurement, based on the fact that the resistance of the 

coating increases as a function of the quality.  This method is simple and fast for quality 

determinations but of course useless for adhesion determinations.  
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Figure 4. 3D scan of a sample with about 1 µm thick DLC coating on Si substrate. The 
DLC has been peeled off and the silicon substrate has thereby been damaged. 
 

 

 
 
 
Figure 5. The scan in Figure 4 was performed with a 3D stylus profiler (KLA Tencor P-15) 
in a clean room environment at the University of Helsinki Department of Physical 
Sciences.   
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2.3   Sample cleaning 

 

Before deposition the sample is, when necessary, polished (a substrate roughness of about 

50 nm is sufficient). This is followed by chemical cleaning with acetone and ethyl alcohol 

in an ultrasonic washer. Next, pressurized nitrogen is used to remove particles from the 

sample surface. The sample is then placed in the vacuum chamber and it is sputtered with 

high purity (99.999%) argon. In sputtering, atoms from target are ejected because of 

collision events caused by ion impacts on the target. The sputtering yield naturally depends 

on the sample material and the energy and mass of the sputtering ion. For instance, for 

argon with an energy of 0.5 keV the sputtering yield is 1.05, 1.10, 1.22 and 0.50 atoms/ion 

for Al, Fe, Co and Si, respectively [33]. For cleaning purposes a couple of atomic layers to 

several hundreds of nanometers can be removed with sputtering. The sputtering cleaning 

process is usually about a ten minutes task with our DC sputtering apparatus (4 kV, 20 

mA). Argon sputtering removes e.g. an undesired layer of adsorbed water (instantly formed 

from ambient air before the sample is placed into the vacuum) from the surface of sample. 

 

 

2.4   Tantalum intermediate layer 

 

The intermediate tantalum layer was originally introduced since it enhanced the adhesion 

between the substrate and the DLC coating. Using a tantalum layer, a wider variety of 

substrate materials can be coated. The intermediate tantalum layer is deposited with a 

magnetron sputtering apparatus. In the magnetron sputtering apparatus the electrons 

emitted from the cathode are accelerated towards the anode but are then trapped in a 

magnetic field parallel to the target surface and left spinning there, enhancing the ionization 

of the working gas. The ionized working gas, in our case argon with purity of 99.999% at a 

pressure of 2 Pa, sputters the tantalum target and as a result a tantalum coating is formed on 

a substrate. With this method high deposition rates are achieved. The plasma power is 

about 700 W (U≈400-600 V and I≈1-2 A) and the base pressure in the vacuum chamber is 

~10-4 Pa. The purity of the tantalum target used in our system is 99.99%; the main impurity 

being niobium and the deposition rate achieved is 0.4 µm/min.    
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It is known that bulk tantalum is “soft” (HV=1.1 GPa) and chemically very corrosion 

resistant [34] but it has been reported that tantalum is somewhat difficult to deposit and that 

it has a tendency to form hard and brittle phases [35,36]. Despite this, the deposition of 

tantalum with magnetron sputtering was successfully carried out in our laboratory. In Paper 

II it was demonstrated that in addition to improved adhesion a tantalum layer is useful as it 

increases the corrosion resistance of the coating (patent pending, [37]).   

 

The use of a 4-6 µm thick tantalum coating on CrCoMo acetabular cups (cup part of the 

human hip joint prostheses) decreased the corrosion rate by a factor of 106 when tantalum 

coated and uncoated cups were exposed to a 10% hydrochloride acid (HCl) solution at 

room temperature. Drops of the HCl solution from the cups were taken after different 

periods of exposure and they were allowed to dry on a 2 µm Kapton® foil. The amount of 

dissolved chromium, cobalt and molybdenum were measured from these samples with 

proton induced X-ray emission (PIXE) [38-40]. PIXE is a very sensitive method (accuracy 

of ppm is easily achieved) for elemental analysis. In PIXE, a proton beam targeted on the 

sample excites the electrons on the inner K and L shells of the atom and when deexcitation 

occurs X-ray radiation is emitted. Thus, X-rays with characteristic energies corresponding 

to the atom that emitted it can be detected. The probabilities for a fluorescence photon to be 

emitted are known (the intensities of characteristic X-ray emission lines) and the amounts 

of different elements can be determined using standard specimens. In Paper II, an inner 

standard element (Se) was added to the samples before PIXE measurements.     

 

The increase in the corrosion resistance of the coating with tantalum intermediate layer can 

be explained by understanding the failure mechanism caused by a pinhole in the coating. A 

microscopic hole in the coating, i.e. pinhole, can be formed in the coating, e.g. if a dust 

particle is left on the surface of a sample after cleaning. In a hostile environment the 

substrate material can be dissolved through a pinhole, which can cause crack formation. In 

the case of a coating with high internal stress, interface cracks can lead to the complete 

delamination of the coating. The pinhole effects can be avoided by preparing thicker (tens 

of microns) DLC coatings and by using an intermediate layer that is corrosion resistant to 

protect the substrate material.  
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Of course, in addition to corrosion resistance, other properties of the material in the 

intermediate layer have to be compatible. In Paper II, the intermediate layer is used in the 

diamond-like carbon coated artificial hip joints, which sets even more demands on the 

material. Tantalum was chosen for this task since it fulfills all the requirements, e.g. good 

adhesion to both the substrate and the DLC coating, suitable hardness, good fatigue 

properties under long lasting mechanical cyclic stress and insolubility in body fluids and 

biocompatibility [34,41].  

 

 

2.5   High-energy deposition 
 

The deposition system (Figure 6) consists of two FPAD units, one for the purpose of 

producing high-energy plasma and the other for carbon plasma with a lower energy. The 

deposition of the actual DLC coating begins with the high-energy carbon plasma in order to 

create an intermediate adhesion layer (10-50 nm) where carbon atoms are mixed into to 

substrate and if possible, carbide is formed. The high-energy FPAD unit has high anode-

cathode voltage (6 kV) and high peak current (13 kA). The pulse duration is short (15 µs). 

In the high-energy deposition the plasma ion energy is significantly higher (200-600eV) 

than the ion energy required to achieve the maximum fraction of sp3 bonds [25-27,III] and 

this unit produces low-quality coatings (sp3 fraction about 40%). Thick well-adherent DLC 

coatings can be easily prepared onto some soft carbide forming materials such as bulk 

aluminum and bulk titanium without any intermediate layers (tantalum or carbon deposited 

with high-energy), but for example on stainless steel (AISI 316L) thick coatings fail 

without high-energy adhesion layer. 

 

 

2.6   Low-energy deposition 
 

The low-energy FPAD unit is used for preparing the actual high-quality (>80% sp3 bonds) 

DLC coating. The ion energy is a crucial parameter for obtaining sp3 bonds and therefore, 

the energy of the carbon ions in the low-energy FPAD unit is optimal for this  E≈100 eV 

[16,17,27,42,43]. The low-energy unit is similar to the high-energy unit, except that the arc 

discharge voltage is lower (500 V) and the pulse duration is longer (60 µs).  
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Figure 6. Plasma deposition system at the University of Helsinki Accelerator Laboratory.  
Attached to the vacuum chamber are: on the left is the argon sputtering unit; straight ahead 
the high-energy deposition unit; on the right are the turbo and oil diffusion vacuum pumps. 
 

 

2.7   The energies and charge-states of carbon ions in the plasma 

 

The energies of the carbon ions in the arc discharge plasma have been measured in our 

laboratory with the time-of-flight (TOF) method [25,26]. The principle of this method is to 

measure the flight time of the ions between two observation points of known distance. In 

our measurement system this is accomplished by observing the light the plasma emits: 

optical fibers are placed into the vacuum chamber to look over two points inside the 

solenoid, the fibers lead the light to pin-diodes and the signal from them is amplified and 

read from the oscilloscope.  

 

The TOF apparatus is simple and quick to build and use, but its disadvantage is that its 

accuracy decreases as the ion energies increase. Thus, another method for energy 

determination was needed. Measuring the speed of a plasma pulse (pulse duration 10-60 

µs) in vacuum is a complicated task and even the measuring apparatus easily disturbs the 

plasma. Also, any electronic measuring apparatus can get damaged because of the 

electromagnetic pulses (EMP) generated by the arc discharge unit. The disturbance is 
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negligible when only the light the plasma emits is observed. The energy of the carbon ions 

was measured by studying the Doppler shifts in the line spectra emitted by carbon plasma. 

In Paper III, the energies and the charge-states of carbon ions in the plasma discovered 

from the line spectra data are reported. The results were exceptional, especially in the case 

of the charge-states, because multiply charged carbon ions were detected.  

  

The Doppler shift method is based on the Doppler effect: the frequency (and wavelength, 

λ=c/f) of light is altered if the sender of the light is in motion. If the sender of the light 

moves with velocity of v (v<<c, velocity is much smaller than the speed of light) the 

wavelength λ of the light it emits is altered to λ´ [44]: 

⎟
⎠
⎞

⎜
⎝
⎛ ±= θλλ cos1´

c
v . (1)

 

When the sender is approaching the observer with velocity v, the light is blue shifted to 

smaller wavelengths and ‘-‘ sign is applied in the equation. When the sender is receding 

from the observer, the light is red shifted to larger wavelengths and ´+´ is applied. The 

angle θ has to be taken into account if the movement of the sender is not straight towards or 

away from the observer (θ is the deviation from this). 

 

The carbon ions in the plasma are in motion and they emit light characteristic of the carbon 

atom.  The characteristic wavelengths are a discrete set of spectral lines formed out of the 

transitions of electrons between quantized energy states (in deexcitation a photon is 

emitted) of corresponding atom and can be observed with the help of spectrograph. The 

characteristic wavelengths of carbon, including neutral atom and its different ionization 

states, are well known. Also, the intensities of the lines are known to some extent.  

 

A schematic representation of the apparatus for measuring the line spectra of the carbon 

plasma and the Doppler shifts is presented in Figure 7. The light emitted by the carbon 

plasma is guided from the vacuum chamber to the spectrograph using optical fibres. The 

fibres can be set to different angles in respect to trajectory of the plasma, and depending on 

these angles the Doppler shifts are be observed. A special fibre stand was designed and 

built for this purpose. In the crossed dispersion spectrograph glass optics are used, 

including several mirrors and a grating (300 lines/mm). The spectra are recorded on a film. 
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The fibre stand allows the use of a reference light source, and the output of the 

spectrograph was first calibrated using argon and helium discharge lamps. However, this is 

not necessary for every measurement since the Doppler shifts can be calculated from the 

difference between shifts of the same line from different fibres, e.g. at +45° and -45° angle 

in respect to the plasma (see Paper III, Figures 2 and 3). The wavelength range that can be 

detected with this apparatus is limited by its components: the working range of the 

spectrograph is 370-550 nm and the useful detection range of the film is from 350 to 520 

nm (the fibres caused no limitation in this wavelength range).  

 
After recording the spectra on film, the photographs were studied with a CCD-

videomicroscope and transferred to a computer. The images were then analyzed with an 

image processing tool and the centroids and the intensities were calculated from the line 

profiles (see III, Figures 2 and 3). For instance, energy of 100 eV corresponds to a velocity 

of about 40 km/s and in the measurement set-up of the fibres at ±45° this would mean a 

∆λ≈0.88 Å difference in the shifted wavelengths of the 4647.42 Å line and on the film this 

leads to an approximately 0.11 mm separation in the line positions (linear dispersion 7.6 

Å/mm), which is easily measured with our system.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7. Measurement apparatus for the line spectra of the carbon plasma (not to scale): 1. 
the collimated fibres in the vacuum chamber, 2. fibre stand, 3. slit, 4. spherical mirror, 5. 
glass prism (separates the light into a spectrum in the vertical plane), 6. diffraction grating 
(separates the light into a spectrum in the horizontal plane), 7. tilting mirror, 8. spherical 
mirror, 9. plane-convex field lens and  10. film. 
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The results obtained from these measurements differ significantly from those reported in 

previous studies. Earlier it was thought that the single ionization state would be dominating 

for carbon [14,45-49], but in our measurements the ratios for carbon ions of charge-states 

1+, 2+ and 3+ (or C+, C2+ and C3+) were 4, 23 and 73, respectively [III]. The abundance of 

different ionization states is deduced from the intensity information found in the literature 

[50,51], which, unfortunately, is usually rather inaccurate. The presence of C4+ can only be 

speculated, since the relative intensities of 4+ charge-state lines are very low in the working 

range of our spectrograph they were not observed. The ionization energy for C4+ is not 

significantly higher than that for C3+[50]. The energies of the carbon ions were found to 

vary depending on the charge-state of the ion. The energies for carbon ions of charge-states 

1+, 2+ and 3+ were 32, 110 and 250 eV, respectively. The earlier studies [14,45-49] on 

ionization states and their energies were obtained with arc discharge devices, but the 

currents used in them were significantly lower (≤200 A) than those used in our laboratory 

(7.5-10 kA). 

 

 

 

3   DIAMOND-LIKE-CARBON - POLYMER -HYBRID 
COATINGS 

 

In Papers IV and V the research work done concerning the discovery of novel diamond-

like-carbon - polymer -hybrid (DLC-p-h, patent pending [52]) coatings are presented. The 

DLC-p-h coatings can be prepared with slight modifications to the FPAD deposition 

system. In deposition of the DLC-p-h coating a graphite-polymer cathode is used. The 

properties of the DLC-p-h coatings vary mainly depending on the amount of polymer 

component in them. It is possible to alter the amount of the polymer component in the 

resulting coating by changing the pulse frequency (even during deposition), which mainly 

controls the polymer evaporation. Using polydimethylsiloxane (PDMS) and 

polytetrafluoroethylene (PTFE) polymers in the deposition process, DLC-PDMS-h and 

DLC-PTFE-h coatings with remarkable properties are created. These polymers were 

chosen because they are common non-stick materials (“silicone rubber” and teflon®) and 

their anti-soiling properties were also desired for the novel hybrid coatings.  
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Non-stick and anti-soiling surfaces can be discussed using the theory of wetting and non-

wetting, i.e. whether the liquid spreads on the surface or not. In this context the term 

hydrophobicity (water repellency) is typically used since water is such a common liquid, 

but other liquids such as oils (oleophobicity, oil repellency) should also be recognized. 

Anti-soiling properties are crucial in several applications and they have so far been pursued 

through extreme surface characteristics, either by creating a surface that is philic (e.g. 

hydrophilic, water spreads on the surface) or phobic (e.g. hydrophobic, water forms droplet 

on the surface) [53]. Sprays that make a surface more hydrophilic can be purchased in 

order to ease the cleaning of household windows or to prevent fogging in swim goggles. 

Hydro- and oleophobic surfaces are familiar from e.g. frying pans. In nature some plants 

have leaves that are highly hydrophobic. Ideas for the usage of hydrophobic surfaces 

include glass buildings and windows, windshields and mirrors of cars, hulls of ships, tubes 

or pipes and bio applications [54-61]. Also, lab-on-a-chip technology benefits from non-

wetting surfaces [62]. Philic and phobic surfaces can be used in anti-soiling applications, 

but the benefit of a phobic surface is that it limits chemical reactions or bond formation 

because of the small contact area and thus it prevents various phenomena on the surface 

such as snow-sticking, contamination or oxidation and current conduction [54,55].  

 

In Papers IV and V, novel hybrid coatings with exceptional properties are presented. The 

DLC coating is a hard (Vickers hardness 80 GPa) material with a water contact angle (see 

next chapter) of around 70° to 80°. When a suitable polymer is added to this during the 

deposition the resulting coating can have properties varying from DLC-like to polymer-

like. For example, with a soft non-stick polymer, PDMS, a combination of 26 GPa Vickers 

hardness and 109° water contact angle in the coating was easily achieved. In fact, the DLC-

PDMS-h coating was found to be an excellent non-stick coating, having high contact 

angles >100° and low sliding angles < 1°, and in demonstration water and oil droplets slid 

smoothly across the surface of the coating leaving no observable trace (see Paper V, Figure 

2). The surface properties of the novel DLC-p-h coatings were analyzed with static and 

dynamic contact angle measurements and with sliding angle measurements as explained in 

the following chapters.    
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3.1   Static contact angle measurements 
 

Water and oil repellency are described with the terms hydro- and oleophobicity. Whether 

the surface is hydro- or oleophobic, can be simply estimated by placing a small droplet 

(~10 µl) on the surface and measuring the contact angle θ (see Figures 8 and 9). This is 

called the static contact angle. If the contact angle is high, for instance over 90° in the case 

of water, the surface is said to be hydrophobic. With oils no strict limit exists since they 

tend to spread on surfaces and they have much smaller contact angles compared to water. 

In this situation Young’s equation can be applied [63,64]: 

slsvlv γγθγ −=cos , (2)

where γlv, γsv and γsl are the interfacial tensions or free energies per unit area of liquid-

vapor, solid-vapor and solid-liquid interfaces, respectively, as presented in Figure 8 a).     

 

The contact angles have been measured in our laboratory with an apparatus specially 

constructed for this purpose (Figure 8 b). The contact angle measurement apparatus is 

constructed on a stone table and it consists of an optical bench, in which the sample holder 

(a millimeter table that can be inclined) and a prism are attached to so that the picture of the 

droplet can be taken with a CCD-videomicroscope facing down. The pictures are saved to a 

computer where the analysis is performed with suitable software.  

 

Common image processing software have distance and angle measuring tools which can be 

applied in the contact angle analysis. The static contact angles can also be examined via a 

geometrical approach, where the contact angle is obtained from the equation: 

 ⎟
⎠
⎞

⎜
⎝
⎛=

x
harctan2θ , (3)

where h and x are height and half of the width of the droplet, respectively, as plotted in 

Figure 9. 
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b)
a) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8. a) The interfacial tensions contributing to the contact angle θ of liquid droplet on 
solid surface. b) The contact angle measurement apparatus. 
 
 
 
 
 
 
 a) b) 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 9. a) Picture of a 5 µl water droplet obtained with the CCD-videomicroscope.  b) 
Contact angle analysis of the droplet. 
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3.2   Dynamic contact angle and sliding angle measurements 
 

The static contact angle measurements with water and oil give the basic estimation of the 

hydro- and oleophobicity of the surface, but for a more detailed analysis dynamic contact 

angle and sliding angle measurements should be performed. In dynamic contact angle 

measurement the surface is inclined to a position in which the droplet moves very slowly 

down on the surface. In this position the maximum value for the contact angle is gained on 

the side of the advancing contact angle θA and on the other side the receding contact angle 

θR is measured (Figure 10).  

 

The sliding angle is the critical angle at which a droplet begins to slide down an inclined 

plane. Our measurement apparatus is suitable for the dynamic contact angle and sliding 

angle measurements since the sample holder can be inclined. However, for the samples 

with the lowest sliding angles another apparatus with higher precision for the inclination 

angle was constructed.  

 

 

 
 
Figure 10. Dynamic contact angle measurement and the advancing and receding contact 
angles, θA and θR. 
 

 

3.3   Effect of surface topography 
 

Theories and studies from several decades concerning how liquids spread and move on 

surfaces exist and even the founding Young’s law dates back to 19th century [63]. It is 

worth mentioning the huge impact of the surface geometry and chemical heterogeneity on 
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the contact angles [65-72]. In fact, a water contact angle of only around 120° is achieved 

with material of lowest surface energy (surface with regularly aligned closest hexagonal 

packed -CF3 groups) [73], after this the increase in the contact angle is due to the surface 

topography. On hydrophobic surfaces roughness decreases wetting as the drop is pinned on 

the surface. On hydrophilic surfaces roughness increases wetting as the drops appear to 

sink into the surface. In the case of hydrophobic material it is also possible that air pockets 

are left in the roughest regions. The contact line of the drop can have complex shape 

because of surface geometry or chemical heterogeneity and this has its effect on contact 

angle.   

 

The leaf of a lotus flower has such a surface structure combined with hydrophobic surface 

material that water droplets have high contact angles and they drip off the surface of leaves 

taking powder-like contaminants along [74]. Attempts to copy nature have been made, but 

problems exist, e.g. aging and decay, which do not occur in nature where leaves repair 

themselves. Also, if the textures of a rough surface are filled with water the material loses it 

water repellency [75]. The invasion can occur e.g. through an external pressure.  

 

 

3.3   Anti-soiling, high contact angles and low sliding angles 
    

Sliding angles are rarely reported in the literature. From the earlier publications only 

qualitative information on this subject can be found. In the preparation of anti-soiling 

surfaces this however is an important property. Firstly, a significant fact is that higher 

contact angles do not always correlate with smaller sliding angles [76], meaning that the 

term hydrophobicity has been used in cases where perhaps the ‘true’ repellency of water 

has not been present. Secondly, it has been reported that if the surface really repels the 

droplet on it the contact angle hysteresis (θA-θR) is small and the drop moves spontaneously 

or easily on horizontal or near-horizontal surfaces [77]. Our results in Papers IV and V are 

in agreement with the aforementioned.  

 

The first statement is observed with e.g. PTFE and also with DLC-PTFE-h coatings. These 

materials have high contact angles and they are said to be hydrophobic, but their sliding 

angles are far from low and water droplets stick on them. The second statement is in 
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agreement with the results of Paper V (see V, Table 1): in DLC-PDMS-h coatings high 

contact angles and extremely low sliding angles (and small contact angle hysteresis) have 

been measured.   

 

An extremely low sliding angle of only 0.15°±0.03° was measured with the 20 µl distilled 

water droplet on the surface of DLC-PDMS-h coating. A sliding angle of only 0.15° is 

exceptional, for instance in [78] Miwa et al. reported a sliding angle of ~1° for a 7 mg 

water droplet on a surface made out of a boehmite (AlOOH) ethanol mixture coated with a 

thin layer of hydrophobic fluroalkysilane. They also state that it is the lowest sliding angle 

value ever reported for solid surface. The gravitational force moving the 7 mg droplet is 

twice the force affecting to the 20 µl droplet. The roughness of the boehmite coatings was 

59 nm and the film surface had a needle-like structure of sharp islands which is thought to 

lead to very low sliding angle, as the droplet sliding down the surface hardly touches the 

surface but moves on an air cushion. The RMS roughnesses of the DLC-p-h coatings are 

typically 20-30 nm and no needle-like structure exists. The ultrahydrophobic surfaces with 

contact angles much higher than 120° and even with low sliding angles are gained with 

extreme surface topography, whose failure points are their ageing and decay under 

demanding conditions. This is not the case with the novel DLC-polymer-hybrid coatings.        

 

 

 

4   CONCLUSIONS 
 

High-quality and ultra-thick diamond-like carbon coatings can save money and human 

lives e.g. as a protective coating on artificial hip joints. The novel hybrid coatings are 

promising materials of the future. Their possible applications are tied with various places 

where they could be used for preventing surfaces from getting dirty: e.g. kitchens, food 

industry’s apparatus and hospitals. Hybrid coatings are being tested in several applications: 

in different molds enhancing the properties of the final product and extending the life time 

of the mold, in different biomedical devices and tools and even as a biomaterial in places 

where the adhesion of bacteria or unwanted cells have to be avoided. 
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Large amount of experimental work has been done in order to understand and optimize the 

deposition process of diamond-like carbon (DLC) with the filtered pulsed arc discharge 

(FPAD) method. Ultra-thick (up to 200 µm), high-quality (amount of sp3 diamond bonds 

>80%) DLC coatings with superior adhesion and can be deposited with the FPAD method. 

A modification of the FPAD deposition system has led to the development of a totally new 

group of materials, namely DLC-polymer-hybrid coatings. The novel coatings can be made 

water and oil repellent with suitable polymers, such as the polydimethylsiloxane (PDMS). 

DLC-PDMS-h coatings that are hard and hydrophobic have been successfully prepared. 

These coatings have low sliding angles for water and oil, furthermore, they cannot be 

marked with common marker pens and oil drops slide down their surface leaving no trace 

on them. 
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NOMENCLATURE 
 

DLC  Diamond-like carbon, a general term for carbon material with some 
sp3 diamond bonds.  

 
ta-C  Tetrahedral amorphous carbon, a term used to describe carbon 

material with significant amount (>80%) of sp3 diamond bonds 
(‘tetrahedrally bonded’) and amorphous structure (having no long 
range order).  

 
AD Amorphous diamond, a term used to describe amorphous carbon 

material with properties similar to diamond. 
 
Amorphous No long range order, without any real or apparent crystallity.
 
DLC-p-h Diamond-like carbon - polymer -hybrid, a novel coating developed 

at the Helsinki University Diamond Group, a coating with polymer 
and carbon with diamond bonds.   

 
PDMS Polydimethylsiloxane, polymer best known from silicone rubbers, 

chemical formula [(CH3)2-Si-O]n. 
 
PTFE Polytetrafluoroethylene, polymer best known by the trade name 

teflon®, chemical formula [CF2]n. 
 
DLC-PDMS-h  Diamond-like carbon - polydimethylsiloxane -hybrid, a coating with 

polydimethylsiloxane and carbon with diamond bonds. 
 
DLC-PTFE-h Diamond-like carbon - polytetrafluoroethylene -hybrid, a coating 

with polytetrafluoroethylene (teflon®) and carbon with diamond 
bonds. 

 
FPAD method Filtered pulsed arc discharge method, the deposition method 

developed at the Helsinki University Diamond Group. 
 
PVD Physical vapor deposition, methods in which the film deposition 

occurs via physical processes through the gas phase. 
 
CVD Chemical vapor deposition, methods in which the film deposition 

occurs via chemical processes through the gas phase. 
 
PIXE Proton induced X-ray emission, materials analysis technique, where 

proton beam targeted to the sample under examination excites the 
sample atoms so that they will emit characteristic X-rays and by 
detecting and identifying these, the elemental analysis can be 
conducted.   
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XPS X-ray photoelectron spectroscopy, materials analysis technique, 
where X-rays targeted to the sample under examination cause 
emission of electrons. Measuring the energies of the electrons the 
elemental analysis and identification of chemical bonds can be done 
(the binding energies of the electrons depend not only on the element 
they are associated with but also on the chemical environment of the 
element).  

       
EELS Electron energy loss spectroscopy, materials analysis technique, 

where electron beam passing through the sample (thickness 10-20 
nm) loses its energy in collision processes. The energy loss depends 
on the atoms in the sample and their chemical environment. 

 
TOF Time-of-flight, energy measurement method in which the time-of-

flight between certain points of known distance is measured. 
 
CCD Charge-coupled device, a semiconductor device that is used as an 

optical sensor, stores charge and transfers it sequentially to an 
amplifier and detector.     

 
AISI 316L Stainless steel alloy, contains iron and 18% chromium, 10% nickel 

and 3% molybdenum.  
   
EMP Electromagnetic pulse, high-intensity, short-duration burst of 

electromagnetic energy. 
 
Plasma Fourth form of matter, gas-like collection of charged particles. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

30

ACKNOWLEDGEMENTS 
 

I wish to thank the former and current heads of Accelerator Laboratory, Doc. Eero Rauhala 

and Prof. Jyrki Räisänen for placing the facilities of the laboratory at my disposal. I also 

thank the head of the Department of Physical Sciences, Prof. Juhani Keinonen for the 

opportunity to conduct research at the department.   

 

I wish to express my sincere gratitude to my supervisor Prof. Asko Anttila for his expert 

guidance and enthusiasm for experimental research work. I would also like to thank my 

colleagues at the Accelerator Laboratory and outside world and especially Diamond Group 

for providing valuable discussions and entertaining events. 

 

Warm thanks to my family and friends and especially to Kari for supporting me and for 

building our house. 

 

Financial support from the National Graduate School of Materials Physics, Magnus 

Ehrnrooth, the Väisälä and Olga Leikola Foundations as well as the University of Helsinki 

Chancellor’s travel fund is gratefully acknowledged. 

 

Helsinki, March 2004 

Mirjami Kiuru 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

31

REFERENCES 
 

 

1. S. Aisenberg and R. Chabot, Ion beam deposition of thin films of diamondlike 
carbon, J. Appl. Phys. 42, 2953 (1971). 

 
2. J. Robertson, Requirements of ultrathin carbon coatings for magnetic storage 

technology, Tribology Intern. 36, 405 (2003). 
 
3. A. Ferrari, Diamond-like carbon for magnetic storage disks, Surf. Coat. Technol. 

180-181, 190 (2004). 
 
4. M. Chhowalla, Thick, well-adherent, highly stressed tetrahedral amorphous carbon, 

Diamond Relat. Mater. 10, 1011 (2001). 
 
5. V-M. Tiainen, Protection of industrial sensors with ta-C, Vacuum 67, 599 (2001). 
 
6. R. Lappalainen, H. Heinonen, A. Anttila, S. Santavirta, Some relevant issues related 

to the use of amorphous diamond coatings for medical applications, Diamond Relat. 
Mater. 7, 482 (1998). 

 
7. A. Anttila, R. Lappalainen, H. Heinonen, S. Santavirta, Y. T. Konttinen, Superiority 

of diamondlike carbon coatings on articulating surfaces of artificial hip joint, New 
Diam. Front. C. Tech. 9, 283 (1999). 

 
8. V-M. Tiainen, Amorphous carbon as a bio-mechanical coating – mechanical 

properties and biological applications, Diamond Relat. Mater. 10, 153 (2001). 
 
9. R. Lappalainen, M. Selenius, A. Anttila, Y. T. Konttinen, S. Santavirta, Reduction of 

wear in total hip replacement prostheses by amorphous diamond coatings, J. 
Biomed. Mater. Res. Part B: Appl. Biomater. 66B, 410 (2003). 

 
10. A. Grill, Diamond-like carbon coatings as biocompatible materials - an overview, 

Diamond Relat. Mater. 12, 166 (2003).  
 
11. R. Hauert, A review of modified DLC coatings for biological applications, Diamond 

Relat. Mater. 12, 583 (2003). 
 
12. J. Robertson, Diamond-like amorphous carbon, Mat. Sci. Eng. R. 37, 129 (2002). 
 
13. J.E. Field, The Properties of Diamond (Academic Press, London, 1979) p.641-653.  
 
14. P.J. Fallon, V.S. Veerasamy, C.A. Davis, J. Robertson, G.A.J. Amaratunga, W.I. 

Milne, J. Koskinen, Properties of filtered-ion-beam-deposited diamondlike carbon as 
a function of ion energy, Phys Rev. B 48, 4877 (1993). 

 



 

 

32

 

 

15. T.A. Friedmann, J.P. Sullivan, J.A. Knapp, D.R. Tallant, D.M. Follstaedt, D.L. 
Medlin, P.B. Mirkamiri, Thick stress-free amorphous tetrahedral carbon films with 
hardness near that of diamond, Appl. Phys. Lett. 71, 3820 (1997). 

 
16. D. R. McKenzie, Tetrahedral bonding in amorphous carbon, Rep. Prog. Phys. 59, 

1611 (1996).  
 
17. Y. Lifshitz, Diamond-like carbon - present status, Diamond Relat. Mater. 8, 1659 

(1999). 
 
18. A. Anttila: in ‘Structure-Property Relationships in Surface-Modified Ceramics, 

NATO ASI Series’, ed. C. J. McHargue et al., p.455-475 (Kluwer, The Netherlands 
1989) p.455-475. 

 
19. J.-P. Hirvonen, J. Koskinen, R. Lappalainen, A. Anttila, Preparation and properties 

of high density hydrogen free hard carbon films with direct ion beam or arc 
discharge deposition, Materials Science Forum 52-53, 197 (1989). 

 
20. A. Anttila, J.-P. Hirvonen, J. Koskinen, Procedure and apparatus for the coating of 

materials by means of a pulsating plasma beam, US Patent 5078848 (1992). 
 
21. M. Hakovirta, J. Salo, A. Anttila, R. Lappalainen, Graphite particles in the diamond-

like a-C films prepared with the filtered pulsed arc-discharge method, Diamond 
Relat. Mater. 4, 1335 (1995). 

 
22. M. Hakovirta, I. Koponen, R. Lappalainen, A. Anttila, Protrusions on the surface of 

of graphite cathode used in the tetrahedral amorphous carbon film deposition, 
Diamond Relat. Mater. 7, 23 (1998). 

 
23. A. Anttila, R. Lappalainen, V-M. Tiainen, M. Hakovirta, Superior attachment of 

high-quality hydrogen-free amorphous diamond films to solid materials, Adv. Mater. 
9, 1161 (1997).  

 
24. A. Anttila, J. Salo, R. Lappalainen, High adhesion of diamond-like films achieved by 

the pulsed arc-discharge method, Mater. Lett. 24, 153 (1995).  
 
25. J. Salo, R. Lappalainen, A. Anttila, Energies of carbon plasma beams in the 

deposition of diamond-like coatings with the pulsed-arc-discharge method, Appl. 
Phys. A 61, 353 (1995). 

 
26. J. Salo, An opto-electronic method for measurement of plasma beams generated by 

the pulsed arc-discharge method, Nucl. Instr and Meth. B 95, 119 (1995). 
 
27. M. Hakovirta, J. Salo, R. Lappalainen, A. Anttila, Correlation of carbon ion energy 

with sp2/sp3 ratio in amorphous diamond films produced with a mass-separated ion 
beam, Phys. Lett. A 205, 287 (1995). 

 



 

 

33

 

 

28. M-P. Delplancke-Ogletree, O.R. monteiro, Measurement of stresses in diamond-like 
carbon films, Diamond Relat. Mater. 12, 2119 (2003).  

 
29. J. Robertson, Amorphous carbon, Adv. Phys. 35, 317 (1986).  
 
30. K. Nordlund, private communication. 
 
31. D.W. Brenner, Empirical potential for hydrocarbons for use in simulating the 

chemical vapor deposition of diamond films, Phys. Rev. B 42, 9458 (1990). 
 
32. D.R. McKenzie, D. Muller, B.A. Pailthorpe, Compressive-stress-induced formation 

of thin-film tetrahedral amorphous carbon, Phys. Rev. Lett. 67, 773 (1991). 
 
33. M. Ohring, The Materials Science of Thin Films (Academic Press, Inc., San Diego, 

1992) p.109-132. 
 
34. J. Black, Biological performance of tantalum, Clin. Mater. 16, 167 (1994). 
 
35. S.L. Lee, M. Cipollo, D. Windover, C. Rickard, Analysis of magnetron-sputtered 

tantalum coatings versus electrochemically deposited tantalum from molten salt, 
Surf. Coat. Technol. 120-121, 44 (1999). 

 
36. D.W. Matson, E.D. McClanahan, S.L. Lee, D. Windover, Properties of thick 

sputtered Ta used for protective gun tube coatings, Surf. Coat. Technol. 146-147, 344 
(2001). 

 
37. E. Alakoski, M. Kiuru, A. Soininen, V-M. Tiainen, A. Anttila, R. Lappalainen,  

Tantaalin käyttö suojaavana välikerroksena PVD-timanttipinnoitteiden alla, FI-
patent application 12.3.2002, application number 20020463.  

 
38. A. Anttila, J. Räisänen, R. Lappalainen, On the optimization of external PIXE 

arrangement, Nucl. Instrum. Meth. B 12, 245 (1985). 

 
39. R. Lappalainen, L. Kaartinen, K. Veijalainen, P.L. Kuosa, S. Sankari, S. Pyörälä, M. 

Sandholm, Sequential changes of mineral and trace elements in milk during the 
course of endotoxin-induced mastitis as analyzed by particle induced -X-ray (PIXE), 
-gamma-ray emission (PIGE) and ion selective electrodes, J Vet. Med. B 35, 664 
(1988).  

 
40. S.A.E. Johansson, J.L. Campbell, Pixe, A Novel Technique for Elemental Analysis 

(John Wiley & Sons Inc., New York, 1988) p.1-341. 
 
41. H. Matsuno, A. Yokoyama, F. Watari, M. Uo, T. Kawasaki, Biocompatibility and 

osteogenesis of refractory metal implants, titanium, hafnium, niobium, tantalum and 
rhenium, Biomaterials 22, 1253 (2001). 

 



 

 

34

 

 

42. S. Xu, D. Flynn, B.K. Tay, S. Prawer, K.W. Nugent, S.R.P. Silva, Y. Lifshits, W.I. 
Milne, Mechanical properties and raman spectra of tetrahedral amorphous carbon 
films with high sp3 fraction deposited using a filtered cathodic arc, Phil. Mag. B 76, 
351 (1997). 

 
43. M. Chhowalla, J. Robertson, C.W. Chen, S.R.P. Silva, C.A. Davis, G.A.J. 

Amaratunga, W.I. Milne, Influence of ion energy and substrate temperature on the 
optical and electronic properties of tetrahedral amorphous carbon (ta-C ) films, J. 
Appl. Phys. 81, 139 (1997).  

 
44. G. Fiksel, D.J. Den Hartog, P.W. Fontana, An optical probe for local measurements 

of fast plasma ion dynamics, Rev. Sci. Instrum. 69, 2024 (1989). 
 
45. W.D. Davis, H.C. Miller, Analysis of the electrode products emitted by dc arcs in a 

vacuum ambient, J. Appl. Phys. 40, 2212 (1969). 
 
46. I.I. Aksenov, S.I. Vakula, V.G. Padalka, V.E. Strel´nitskii, V.M. Khoroshikh, High-

efficiency source of pure carbon plasma, Sov. Phys.-Tech. Phys. 25, 1164 (1980). 
 
47. I.G. Brown, B. Feinberg, J. E. Galvin, Multibly stripped ion generation in the metal 

vapor vacuum arc, J. Appl. Phys. 63, 4889 (1988). 
 
48. I.G. Brown, X. Godechot, Vacuum arc ion charge-state distributions, IEEE Trans. 

Plasma Sci. 19, 713 (1991). 
 
49. Anders, A periodic table of ion charge-state distributions observed in the transition 

region between vacuum sparks and vacuum arcs, IEEE Trans. Plasma Sci. 29, 393 
(2001). 

 
50. CRC Handbook of Chemistry and Physics, 82nd edn., ed. D.R. Lide, (CRC Press, 

New York, 2001) Section 10, p.1-87 and p.175. 
 
51. A.R. Striganov, N.S. Sventitskii, Tables of Spectral Lines of Neutral and Ionised 

Atoms, (Plenum, New York, 1968) p.92-110. 
 
52. E. Alakoski, M. Kiuru, A. Soininen, V-M. Tiainen, A. Anttila, R. Lappalainen,  

Timanttisidoksiset hiili-polymeerimateriaalit, FI-patent application 12.3.2002, 
application number 20020462.  

 
53. R. Blossey, Self-cleaning surfaces – virtual realities, Nature Mater. 2, 301 (2003). 
 
54. A. Nakajima, K. Hashimoto, T. Watanabe, Recent studies on hydrophobic films, 

Monatsh. Chem. 132, 31 (2001). 
 
55. A. Nakajima, A. Fujishima, K. Hashimoto, T. Watanabe, Preparation of transparent 

superhydrophobic boehmite and silica films by sublimation of aluminium 
acetylacetonate, Adv. Mater. 11, 1365 (1999). 



 

 

35

 

 

 
56. Y. Taga, Recent progress in coating technology for surface modification of 

automotive glass, J. Non-Cryst. Solids 218, 335 (1997). 
 
57. J. Tsibouklis, M. Stone, A. A. Thorpe, P. Graham, T.G. Nevell, R. J. Ewen, 

Inhibiting bacterial adhesion onto surfaces: the non-stick coating approach, Int. J. 
Adhesion Adhesives 20, 91 (2000).  

 
58. J. H. Clint, A. C. Wicks, Adhesion under water: surface energy considerations, Int. J. 

Adhesion Adhesives 21, 267 (2001). 
 
59. B. Janocha, D. Hegemann, C. Oehr, H. Brunner, F. Rupp, J. Geis-Gerstorfer, 

Adsorption of protein on plasma-polysiloxane layers of different surface energies, 
Surf. Coat. Tech. 142-144, 1051 (2001).  

 
60. J.-D. Kim, K.-H. Lee, K.-Y. Kim, H. Sugimura, O. Takai, Y. Wu, Y. Inoue, 

Characteristics and high water-repellency of a-C:H films deposited by r.f. PECVD, 
Surf. Coat. Tech. 162, 135 (2003).  

 
61. H. Ji, A. Côté, D. Koshel, B. Terreault, G. Abel, P. Ducharme, G. Ross, S. Savoie, 

Hydrophobic fluorinated carbon coatings on silicate glaze and aluminum, Thin Solid 
Films 405, 104 (2002).  

 
62. K. Huikko, P. Östman, K. Grigoras, S. Tuomikoski, V-M. Tiainen, A. Soininen, K. 

Puolanne, A. Manz, S. Franssila, R. Kostiainen, T. Kotiaho, Poly(dimethylsiloxane) 
electrospray devices fabricated with diamond-like carbon – poly(dimethylsiloxane) 
coated SU-8 masters, Lab Chip 3, 67 (2003). 

 
63. T. Young, An Essay on the Cohesion of Fluids, Philos. Trans. R. Soc. London 95, 65 

(1805). 

64. D.Y. Kwok, A.W. Neumann, Contact angle measurement and contact angle 
interpretation, Adv. Colloid Interface Sci. 81, 167 (1999).  

 
65. R.N. Wenzel, Resistance of solid surfaces to wetting by water, Ind. Eng. Chem. 28, 

988 (1936). 
 
66. A.B.D. Cassie, S. Baxter, Wettability of porous surface, Trans. Faraday Soc. 40, 546 

(1944). 
 
67. R.E. Johnson, R.H. Dettre, Contact angle, wettability and adhesion, Adv. Chem. Ser. 

43, 112 (1964). 
 
68. P.S. Swain, R. Lipowski, Contact angles on heterogenous surfaces: a new look at 

Cassie’s and Wenzel’s laws, Langmuir 14, 6772 (1998). 
 



 

 

36

 

69. D. Öner, T.J. McCarthy, Ultrahydrophobic surfaces. Effects of topography length 
scales on wettability, Langmuir 16, 7777 (2000). 

 
70. S. Brandon, N. Haimovich, E. Yeger, A. Marmur, Partial wetting of chemically 

patterned surfaces: the effect of drop size, J. Colloid Interface Sci. 263, 237 (2003). 
 
71. J.P. Youngblood, T.J. McCarthy, Ultrahydrophobic Polymer Surfaces Prepared by 

Simultaneous Ablation of Polypropylene and Sputtering of Poly(tetrafluoroethylene) 
Using Radio Frequency Plasma, Macromolecules 32, 6800 (1999). 

 
72. Z. Yoshimitsu, A. Nakajima, T. Watanabe, K. Hashimoto, Effects of Surface 

Structure on the Hydrophobicity and Sliding Behavior of Water Droplets, Langmuir 
18, 5818 (2002). 

 
73. T. Nishino, M. Meguro, K. Nakamae, M. Matsushita, Y. Ueda, The Lowest Surface 

Free Energy Based on -CF3 Alignment, Langmuir 15, 4321 (1999). 
 
74. W. Barthlott, C. Neinhuis, Purity of sacred lotus, or escape from contamination in 

biological surfaces, Planta 202, 1 (1997). 
 
75. A. Lafuma, D. Quéré, Superhydrophobic states, Nature Mater. 2 457 (2003). 
 
76. H. Murase, T. Fujibayashi, Characterization of molecular interfaces in hydrophobic 

systems, Prog. Org. Coat. 31, 97 (1997). 
 
77. W. Chen, A.Y. Fadeev, M.C. Hsih, D. Öner, J. Youngblood, T.J. McCarthy, 

Ultrahydrophobic and Ultralyophobic Surfaces: Some Comments and Examples, 
Langmuir 15, 3395 (1999). 

 
78. M. Miwa, A. Nakajima, A. Fujishima, K. Hashimoto, T. Watanabe, Effects of the 

Surface Roughness on Sliding Angles of Water Droplets on Superhydrophobic 
Surfaces, Langmuir 16, 5754 (2000).  

 
 
 
 
 
 
 
 
 
 
 


	Mirjami Kiuru
	ABSTRACT
	LIST OF PUBLICATIONS
	1   INTRODUCTION
	2   THE DEPOSITION PROCESS OF DIAMOND-LIKE CARBON
	2.1   The filtered pulsed arc discharge (FPAD) method
	2.2   Substrate properties
	2.3   Sample cleaning
	2.4   Tantalum intermediate layer
	2.5   High-energy deposition
	2.6   Low-energy deposition
	2.7   The energies and charge-states of carbon ions in the p

	3   DIAMOND-LIKE-CARBON - POLYMER -HYBRID COATINGS
	3.1   Static contact angle measurements
	3.2   Dynamic contact angle and sliding angle measurements
	3.3   Effect of surface topography
	3.3   Anti-soiling, high contact angles and low sliding angl

	4   CONCLUSIONS
	NOMENCLATURE
	PVD Physical vapor deposition, methods in which the film dep
	PIXE Proton induced X-ray emission, materials analysis techn
	XPS X-ray photoelectron spectroscopy, materials analysis tec
	EELS Electron energy loss spectroscopy, materials analysis t
	TOF Time-of-flight, energy measurement method in which the t
	CCD Charge-coupled device, a semiconductor device that is us
	AISI 316L Stainless steel alloy, contains iron and 18% chrom
	EMP Electromagnetic pulse, high-intensity, short-duration bu







	ACKNOWLEDGEMENTS
	REFERENCES



