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ABSTRACT

Background Cleft palate is one of the most common congenital malformations. The
incidence of non-syndromic cleft palate only is ~1/1000 live births in Finland. The
etiopathogenesis of clefts has been widely studied but is still poorly understood. It has been
estimated that about half of the cases are nonsyndromic. Nonsyndromic cleft palate is
considered to be a genetically complex, multifactorial disease. The aim of our research was to
study genetic component influencing on non-syndromic CPO and Van der Woude syndrome
(VWS), which is one of the most common cleft syndromes. We also wanted to study the role
of collagens in Robin sequence (RS), which is a triad of cleft palate, micrognathia and
glossoptosis.

MethodsPatients and their families were recruited from the Cleft Center, Helsinki University
Hospital. In addition, a few patients were from the USA. Genotyping was done using
polymorphic microsatellite markers. Linkage and linkage disequilibrium (LD) between non-
syndromic CPO and candidate regions/genes 1p34, 2q32, 22q11, MSX1 and TGFβ3 were
analysed using 24 multiplex families. A genome-wide scan was performed in nine of the
largest families with non-syndromic CPO and in one large VWS family unlinked to the
previously reported VWS locus in 1q32-q41. COL2A1, COL11A1 and COL11A2 were
sequenced in 24 RS patients, 17 CPO patients and 21 patients with micrognathia.

ResultsWe found a second locus for VWS in 1p34 that has not previously been reported.
Candidate regions/genes did not show any evidence of linkage or LD with non-syndromic
CPO. In the genome-wide scan, no significant linkage could be detected, but several
interesting regions were found. Two disease-associated mutations were found in COL11A1
and COL11A2 in RS patients. Moreover, two putatively disease-associated mutations were
found.

ConclusionsCandidate regions/genes 2q32, 22q11, MSX1 and TGFβ3 do not play major
roles in cleft palate formation in Finnish multiplex families. Failure to detect significant
linkage in the genome-wide scan suggests that there might be multiple genes involved in non-
syndromic CPO in Finland. Narrowing down the critical region in 1p34 will be essential in
studying the second VWS locus. COL11A1 and COL11A2 have some impact on the Robin
sequence but further studies are needed.

Key words cleft palate, Van der Woude syndrome, Robin sequence, genome-wide scan, 1p34,
22q11, 2q32, MSX1, TGFβ3, linkage
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INTRODUCTION

Cleft palate is one of the most common congenital malformations worldwide. It can appear as
a part of a syndrome, with associated malformations or as isolated, non-syndromic cleft palate
only (MIM 119540). It has been estimated that about half of the cases are non-syndromic
(Murray 2002). The incidence of non-syndromic CPO is approx. 1/1000 live births in Finland
and this is one of the highest seen among white people (Lilius 1992). The autosomal
dominantly inherited Van der Woude syndrome (VWS) (MIM 119300) is one of the most
common cleft syndromes. The incidence of VWS has been estimated to be 1/34 000 livebirths
(Rintala et al. 1985). The Robin sequence (RS) (MIM 216800) denotes a triad of cleft palate,
micrognathia and glossoptosis. The Robin sequence is the most common recurrence pattern
recognised in syndromic cleft palate patients in Finland (Lilius 1992). It can appear in
isolation but it is also seen as a part of another syndrome, most commonly the CATCH and
Stickler syndromes (Sheffield et al. 1987, Jones 1997, Holder-Espinasse et al. 2001, van den
Elzen et al. 2001).

The etiology and pathogenesis of cleft formation have been extensively studied but it is still
poorly understood. On the basis of mouse studies, cleft palate seems to be either a growth or a
fusion failure of the secondary palate. In humans, some families with non-syndromic CPO
show an autosomal dominant model of inheritance but, in most cases, the model of inheritance
is not clearly mendelian. It has been widely accepted that the risk of recurrence is∼ 2 % if one
child already has CPO,∼ 6 % if one parent has it and∼ 15 % if one child and one parent have it
(Curtis et al. 1961). For a monozygous twin the risk is 50-60 % (Murray 2002). These facts
clearly show that CPO has a strong genetic component. Numerous previous studies have
suggested that many extrinsic factors might influence cleft formation. Thus, non-syndromic
CPO and RS are considered to be genetically complex, multifactorial diseases (Murray 1995,
Wyszynski et al. 1996, Schutte and Murray 1999, Murray 2002).

On the basis of studies with knockout mice, cytogenetic rearrangements in humans with clefts,
identified mutations behind cleft syndromes, and genetic studies on cleft lip and cleft lip with
or without cleft palate, several candidate genes and candidate chromosomal regions for CPO
exist. No convincing linkage to non-syndromic CPO or non-syndromic RS has been
established and, thus, no genes causing non-syndromic CPO or non-syndromic RS have been
identified. VWS linked to 1q32-q41 has been found to be caused by mutations in IRF6 gene.

Before and during our study, several association, linkage and mutation studies on CPO have
been carried out. None of them has been performed with patients from isolated populations
like Finland. No genome scans on CPO have been performed. Also, no genetic heterogeneity
in VWS has been reported.

The aim of our study was to map a gene responsible for non-syndromic CPO with the help of
Finnish multiplex families. In the beginning, the other aim was to narrow down the VWS
region in 1q32-q41. We also wanted to study the roles of collagen genes in RS.
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REVIEW OF THE LITERATURE

1 CLEFT PALATE

1.1 Embryology

1.1.1 Normal and abnormal development of the palate

The palate is phylogenetically an old structure. The beginning of the secondary palate is seen
in the most primitive reptiles. The development of the secondary palate in mammals has been
an important step in the evolution because the palate is a necessary aid in the maintenance of
breathing, while the mouth is functioning in eating.

Cleft palate is a common congenital malformation due to unknown etiological mechanisms.
Normally the mouth is roofed by the hard and soft palate, which separate the oral cavity from
the nasal cavities. The hard palate can be divided into the primary and the secondary palate. In
humans the primary palate is anterior to and the secondary palate posterior to the foramen
incisivum. The primary palate and the upper lip are formed from the medial nasal process by
the end of the seventh developmental week (Sariola 2003). At the same time, two palatal
shelves are derived from the maxillar processes (Ferguson 1988). These are composed of
mesenchymal cells surrounded by undifferentiated epithelial cells and the extracellular matrix.
Unsulphated glycosaminoglycans, collagen and other glycoproteins are the main components
of the palatal extracellular matrix (Brown et al. 2002).

Cells in mesenchymal maxillary processi are derived from the neural crest. The neural crest is
a temporary organ, which is obviously induced already in the gastrulation phase. Mammalian
organs like spinal ganglia and part of the autonomic nervous system are derived from the
neural crest. The origins of Schwann cells, glial cells and pigment cells are in the neural crest.
Neural crest -derived cells in craniofacial regions differentiate into cartilage, bone, muscle,
dental papilla ectomesenchyme, dental follicle ectomesenchyme, sensory and motor ganglia
and numerous connective tissue components. Migration of neural crest cells through the
complex extracellular matrix to the final locations is a sensitive process.

At first the palatal shelves are vertically positioned on both sides of the tongue in the primary
oral cavity. Yet unknown mechanisms make the palatal shelves turn to a horisontal position.
Intrinsic tissue pressure caused by hydration of hyaluronic acid may have some impact on
shelf elevation (Brown et al. 2002). During developmental weeks seven and eight the shelves
fuse to each other, to the primary palate and to the nasal septum. The adhesion takes place
between opposite medial edge epithelial (MEE) cells. The loss of the epithelial seam is
suggested to be caused by apoptosis, by migration of the MEE cells, or by transformation of
MEE cells to mesenchyme (Brown et al. 2002). The fusion is completed in the 10th
developmental week. Thus, mainly the formations of primary and secondary palates take place
in different developmental weeks (Sariola 2003).

Neither mechanisms of palatal closure, nor the failure of the closure, have been totally
resolved yet. The fusion failure was evident in at least two animal studies, because the normal
elevations of palatal shelves were seen (Satokata et al. 1994, Kaartinen et al. 1995). Also
defective shelf growth, failed elevation or post-fusion rupture of the shelves, have been
suggested as a possible mechanism (Ferguson 1988). Decreased motility of the mandibula due
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to lack of enough space or to muscle diseases has been proposed to cause cleft palate.
Microarray techniques have shown changes in the expressions of numerous genes during
murine palatogenesis (Brown et al. 2003) The etiology leading to this disrupted palatal
development is considered to include multiple genetic and environmental factors (Schutte et
al. 1999, Murray 2002, Carinci et al. 2003).

1.1.2 Animal studies

Prenatal exposure to corticosteroids was first reported to cause CP in rodents. These results
have frequently been confirmed (Iida et al. 1988, Marazita et al. 1988, Fawcett et al. 1996,
Montenegro et al. 1998). Folate-deficient mice showed delay in palate development (Burgoon
et al. 2002). Prenatal folate administration did not reduce the incidence of CP in procarpazine-
treated dams, but less severe types of clefts were seen (Bienengraber et al 2001). Prenatal
exposure to irradiation increased the incidence of CP in mice (Hiranuma et al. 2000).

Either a deficiency or an excess of vitamin A (retinol) during pregnancy has been repeatedly
found to cause CP among other malformations in pigs and rats (Tyan et al. 1987). Prenatal
exposure to retinoic acid (RA, oxidized form of retinalaldehyde) produces cleft palate and
limb defects in mice (Abbott et al. 1989). Retinoic acid receptorα (RXRα) is involved in the
formation of cleft palate induced by RA (Nugent et al. 1999). RA exposure was shown to alter
the expression of TGFα, TGFβ1, TGFβ2 and TGFβ3 in embryonic palatal shelves (Abbott et
al. 1990, Nugent et al. 1998). RA also inhibits Msx1 mRNA expression in palate
mesenchymal cells (Nugent et al. 1998). It should be emphasized that different strains of mice
show varying susceptibility to cleft palate induced by drugs (Brown et al. 2002).

Mutations in a very distinct type of genes can lead to cleft palate in mice. These genes encode
growth factors, receptors, transcription regulators and enzymes for signalling molecule
synthesis. In most of these studies the penetrance is incomplete. In The Transgenic/Targeted
Mutation Database (http://tbase.jax.org/) nearly 70 mutated mice are reported to exhibit cleft
palate among other malformations.

Msx1 (Hox7) is a member of homeobox containing genes which play important roles during
the early development of vertebrates. Murine and human HOX7 genes are structurally very
close to each other (Hewitt et al. 1991). Cleft palate and tooth anomalies are seen in Msx1-
deficient mice (Satokata et al. 1994). However, Msx1 is not highly expressed in palatal tissue
(Nugent et al. 1998). On the other hand, the penetrance of CP in Msx-1 knockouts is 100%
(Satokata et al. 1994). Other homeobox genes are also involved in palatogenesis. Non-
syndromic cleft palate is seen in Lhx8-deficient mice (Zhao et al. 2000). Lhx8 is a member of
the LIM homeobox gene family. Pax9- (Peters et al. 1998), Hoxa-2- (Gendron-Maguire et al.
1993), Mhox- (Martin et al. 1995), Dlx1- (Qiu et al. 1997) and Dlx2- (Qiu et al. 1997)
deficient mice exhibit cleft palate and other malformations.

Cleft palate, in addition to small mandible, is seen in Egfr (epidermal growth-factor receptor)-
knockouts (Miettinen et al.1999). Abnormal lung development and cleft palate is seen in Tgf
(transforming growth-factor)β3-deficient mice (Kaartinen et al. 1995, Proetzel et al. 1995).
TGFβ3 regulates the expression of chondroitin sulphate proteoglygan on the surface of medial
edge epithelial cells, which have an important role in the fusion of palatal shelves (Gato et al.
2002, Tudela et al. 2002). The expression of TGFβ3 mRNA is mainly seen in mesenchymal-
originated cells (Debrynck et al. 1988). Like other transforming growth factors, TGFβ3
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controls the proliferation and differentiation of multiple cell types. TGFβ3 maps to 14q24 in
humans (ten Dijke et al. 1988).

Cleft palate, among numerous other malformations, is seen in mice lacking Jagged-2 (Jiang et
al. 1998), beta-3 GABAA receptor subunit (GABRB3) (Ciuliat et al. 1995, Condie et al. 1997,
Homanics et al. 1997), and Sek4 and Nuk receptors (Orioli et al. 1996). Titf2-null mutant
mice exhibit cleft palate, in addition to a sublingual or completely absent thyroid gland
(DeFelice et al. 1998).

Homozygous mutations in Col2A1 and in Col11A1 cause cleft palate among other
malformations in mouse (Seegmiller et al. 1968, Brown et al. 1981). Transgenic mice carrying
a dominant mutation in Col10A1 develop craniofacial abnormalities (Chung et al. 1997) Mice
deleted for 22q11 region have deficits in sensorimotor gating, and in learning and memory
(Paylor et al. 2001)

1.1.3 Extrinsic factors in humans

Epidemiological studies have revealed extrinsic factors which seem to increase the risk of
CPO. Overall medicine intake during pregnancy increases the risk (Saxen 1975). Especially
the intake of benzodiazepins during the 1st trimester was found to be associated with an
increased risk for non-syndromic cleft palate (Saxen 1975). Also antipyretic analgesics other
than salicylates and opiates during the 1st, but not during the 2nd or 3rd, trimester, seemed to
increase the risk (Saxen 1975). In a recent study, nonsteroidal anti-inflammatory drugs used in
early pregnancy were found to increase the risk of CL/P but not of CPO (Ericson et al. 2001).
Prenatal exposure to isotretinoin (a synthetic form of retinoic acid) has been reported in
newborn affected by cleft palate and other malformations (Benke 1984, Lammer et al. 1985).
There have been several reports of newborns who were prenatally exposed to corticosteroids
and who suffered from CPO (Doig et al. 1956, Harris et al. 1956). The use of corticosteroids
during the 1st trimester was shown to increase the risk of CL/P (Rodriguez-Pinilla et al. 1998)
but, unfortunately, no epidemiological studies on corticosteroids and CPO can be found.

Paternal age over 30 years and maternal pelvic X-ray examination prior to pregnancy were
also found to be associated with increased risk (Saxen 1975). However, these results have not
been replicated. Maternal age was not found to associate with the risk of CPO (Vieira et al.
2002). High birth order seemed to correlate with the risk of both syndromic and nonsyndromic
oral clefts (Vieira et al. 2002), but conflicting results were found in an Australian study
(Edwards et al. 2003).

Maternal smoking appears to increase the risk more if the mother is a carrier of the rarer allele
(Taq1 RFLP) in the TGFα locus (Hwang et al. 1995, Shaw et al. 1996, Shaw et al. 1998).
Other studies have not been able to confirm these results (Beaty et al. 1997, Christensen et al.
1998). Maternal smoking only was excluded as a causative factor (Shiono et al. 1986, Khoury
et al. 1987, Khoury et al. 1989. Werler et al 1990, Lieff et al. 1999, Mitchell et al. 2001), but
conflicting results have also been found (Ericson et al. 1979, Romitti et al. 1999, Beaty et al.
2001). Wyszynski et al. concluded in a meta-analysis that maternal smoking during the first
trimester is associated with a higher risk of CPO (Wyszynski et al. 1997). Maternal alcohol
consumption during the 1st trimester was also found to be a predisposing factor (Khoury et al.
1989, Lorente et al. 2000) although some others studies did not find any association (Werler et
al. 1991, Munger et al. 1996, Shaw et al. 1999, Beaty et al. 2001, Mitchell et al. 2001). Cleft
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palate is also seen in patients with fetal alcohol syndrome although cleft lip with or without
cleft palate (CL/P) is considered to be more common in FAS (Johnson et al. 1996, Munger et
al. 1996)

A positive association between maternal epilepsy and clefts of offspring has been widely
discussed. Some studies have shown that maternal epilepsy itself increases the risk of CL/P
but not of CP (Abrishamchian et al. 1994), but others have failed to confirm this association
(Owens et al. 1985, Friis et al. 1986). The prevalence of epilepsy in fathers, siblings and 2nd

degree relatives of CPO patients is not increased compared with the general population (Friis
1989, Hecht et al. 1989, Hecht et al. 1990). On the basis of knock-out mice studies, it has been
hypothesised that a decrease in GABAergic transmission might have an impact not only on
epilepsy but also on cleft palate formation (Brown et al. 2002). Anticonvulsant drug therapy
during pregnancy increases the risk of cleft palate, and this causal relationship has been
widely accepted. The use of valproate (Clayton-Smith et al. 1995) or phenytoin (Beghi et al.
2001) during pregnancy is associated wit an increased risk for cleft palate (and also for other
malformations). Both phenytoin and valproate decrease serum folate concentration (Berg et al.
1988, Wegner et al. 1992) and sparse intake of folic acid during the first trimester has been
suggested to increase the risk of cleft palate (Shaw et al. 1995, Czeizel et al. 1999).
Conflicting results have also been published (Hayes et al. 1996).

The methylenetetrahydrofolate reductase (MTFHR) catalyzes the conversion of 5,10-
methylenetetrahydrofolate to 5-methyltetrahydrofolate, which is a cosubstrate for
remethylation of homocysteine to methionine. Methylenetetrahydrofolate reductase deficiency
leads to homocystinuria (MIM 236250). Significantly higher plasma homocysteine levels
were detected in women carrying fetuses affected with neural tube defects (Mills et al. 1996).
C677T mutation reduces the enzyme activity and increases the thermolability of the enzyme,
leading to elevated plasma homocysteine levels (Frosst el al. 1995).

The thermolabile MTHFR variant was found to be more common in patients with CPO than
in controls (Mills et al. 1999). Children with C677T variant in MTHFR seem to have an
approx. two-fold risk of CPO (Jugessur et al. 2003). Maternal multivitamin use in early
pregnancy does not clearly decrease the risk of CPO (Itikala et al. 2001, Beaty et al. 2001).

Wyszynski et al. reviewed numerous studies on other potential teratogens in non-syndromic
oral clefts (Wyszynski and Beaty 1996). Results of separate studies are often conflicting,
which can possibly be explained by variations in genetic and environmental backgrounds
(Mitchell et al. 2002).

1.2 Classification and epidemiology

1.2.1 Cleft types

Clefts of the secondary palate can be divided into five subtypes. The most severe form is a
cleft of both hard and soft palates (CPH complete). In an incomplete cleft palate (CPH
incomplete), a part of the hard palate is closed. The soft palate only can be affected (CPS) and
uvula bifida (UB) can be considered as a separate entity or as a subtype of CPS. Sometimes
the cleft is covered with mucosa (submucous cleft palate, CPSM). In Finland 13.8 % of cleft
palates are submucous (Rintala et al. 1982) Submucous cleft palate might be difficult to
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diagnose and, according to McWilliams, only 36 % were diagnosed before the age of 4 years
(McWilliams 1991).

1.2.2 Epidemiology of cleft palate only

The worldwide overall incidence of clefts is estimated to be 1/700 with wide variability
among races and regions (Murray 2002). Low incidences are seen among black people while
the highest incidences are seen among American Indians, Japanese and Chinese (Vanderas
1987). Usually, the incidence of CL/P is higher than the incidence of CPO (Vanderas 1987),
but the opposite result has been found in few studies (Vanderas 1987, Saxen 1975, Lilius
1992, FitzPatrick et al. 1994, Jakobsen et al. 2003). Usually, the incidence of cleft lip only is
lower than that of CL/P or CPO (Vanderas 1987). In Finland, the incidence of CPO is higher
than average, whereas the incidence of CL/P [0.73 per 1000 live births (Lilius 1992)] is lower
than average. The ratio of CPO / CL/P (%) in Finland is 59/41 (Lilius 1992). The incidence of
non-syndromic cleft palate in Finland was previously reported to be 1.01 per 1000 live births
(Lilius 1992). During the years 1993-2001, the incidence of non-syndromic CPO in Finland
was reported be 10.6 / 10 000, live- and still births included (Ritvanen, unpublished data).
High prevalences of CPO, syndromic forms included, are also seen in the Faroe Islands and
Greenland, 1.5 and 1.1 per 1000 live births, respectively (Jakobsen et al. 2003). In north-
eastern France, the incidence of non-syndromic CPO was reported to be 0.41 per 1000 live
births (Stoll 1991). In Italy, the incidence of non-syndromic CPO was found to be 0.34 per
1000 (Milan et al. 1994). A low prevalence (0.24/1000) of CPO, syndromic forms included,
was detected in an Israeli-Arab community (Jaber et al. 2002).

The distribution of probands is not even in Finland; high incidences are seen in regions near
Oulu and in central Finland (Lilius 1992). The regional differences are more striking when the
birthplaces of grandparents of probands are compared; the Oulu region is heavily
overrepresented (Lilius 1992), but, unfortunately, in this study the syndromic forms are also
included.

In Finland, 40 % of CP patients are male and 60 % are female but these figures also include
syndromic forms (Lilius et al. 1992). Female preponderance, including non-syndromic forms,
has also been seen in other studies (Bonaiti et al. 1982, FitzPatrick et al 1994, Milan et
al.1994, Robert et al. 1996, Shapira et al. 1999).

1.3 Genetics

1.3.1 Model of inheritance and estimation of numbers of loci

Fogh-Andersen noticed, as early as 1942, that the frequency of CL/P in relatives of a proband
with CPO (and vice versa) was not greater than the frequency in the general population, but
that the frequency of CPO in first-degree relatives of a proband with CPO was higher than the
frequency in the general population (Fogh-Andersen 1942). This result has also been
confirmed many times although a few studies have reported opposite results (Vanderas et al.
1987). In a Danish registry study, the sibling risk of non-syndromic CPO was 2.89
(confidence limit 2.01-3.13), while the risk in the general population was 0.058, giving a
lambda value 49.8 (Christensen et al. 1996). Heritability denotes the degree to which a given
trait or disease is controlled by inheritance. Heritability H can be calculated as (CMZ–
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CDZ)/(100-CDZ), whereC means concordance, MZ monozygous twins and DZ dizygous
twins. In Finland, the heritability of CPO was estimated to be 49 % (Nordström et al. 1996).
The risk of CPO for MZ twins is greater than 50%, on the basis of literature review (Murray
2002). Wyszynski estimated the concordance rate to be 22 % (Wyszynski et al. 1996). It has
been estimated that the risk of recurrence is∼ 2 % if one child already has CPO,∼ 6 % if one
parent has it and∼ 15 % if one child and one parent have it (Curtis et al. 1961).

Different models of inheritance for non-syndromic CPO have been proposed. Fogh-Andersen
proposed, in 1942, an autosomal dominant model with greatly reduced penetrance. Shields et
al. analysed Danish CPO pedigrees and proposed the existence of two classes of non-
syndromic cleft palate: familial autosomal dominantly inherited CPO and non-familial CPO
caused by extrinsic factors like maternal age (Shields et al. 1981). Also, according to Carter et
al., some families show an autosomal dominant model of inheritance, while the rest of the
families have heterogeneous factors causing CPO (Carter et al. 1982). Fitzpatrick and Farrall
proposed an oligogenic model with six loci of equal effect. Demenais et al. could not show
any difference between monogenic and polygenic inheritance with a high proportion of
sporadic cases (Demenais et al. 1984). Clementi et al. found evidence of a major autosomal
recessive locus but only when the penetrance was low and the analysis was limited to CPH
(cleft of the hard palate) with no single associated anomaly (Clementi et al. 1997). They did
not include CPSM (submucous cleft) in their analysis. The decision to select only CPH for the
analysis can be based on the observation made by Christensen and Fogh-Andersen that
different subtypes do not segregate within pedigrees (Christensen et al. 1994). The same
observation was made by Clementi et al., but there were so few relative-pairs in both studies
that statistical significance could not be reached. A single, autosomal recessive locus was
found to fit best the CPO data from Latin America (Vieira et al. 2003).

Multiplex CPO families with an autosomal dominant and X-linked recessive model of
inheritance have been reported (Jenkins et al. 1980, Shields et al. 1981, Carter et al. 1982,
Rollnick et al. 1986). However, non-syndromic cleft palate is commonly considered to be a
multifactorial disease with a strong genetic background combined wit a variety of possible
extrinsic factors (Murray 1995, Wyszynski et al. 1996, Schutte and Murray 1999, Murray
2002).

1.3.2 Previous molecular and chromosomal studies

Several association, linkage and linkage disequilibrium studies have been performed (Table
1). No indisputable linkage has been reported. Two genome scans for cleft lip with or without
cleft palate have been published but no convincing linkage was detected (Prescott et al. 1998,
2000, Marazita et al. 2002). No genome scans for CPO have been published.

Brewer et al. reported two patients with CPO, mild facial dysmorphia and mild learning
disability. Both the patients hadde novocytogenetic rearrangements involving the same
region of chromosome 2q32 (Brewer et al. 1999). Cleft palate is frequently seen in patients
with del 4q, dup 3q and dup 10q syndromes. It is occasionally seen in patients with trisomy 8,
trisomy 13, trisomy 18, del 3p, del 4p, del 5p, del 9p, del 18p and del 18q syndromes (Jones
1997). Deletions in 4p16-14 and in 4q31-35 are highly significantly associated with cleft
palate (Brewer et al. 1998). Duplications in bands 3p24-23, 3p26, 3q23-25, 7q22-32, 8q21,
10p15-11, 14q11-21, 16p12-13 and 22q12-13 are significantly associated with cleft palate
(Brewer et al. 1999).
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Authors Material Methods Gene Results

Shiang et al.
(1993)

52 isolated CPO
patients from
Iowa, USA

Association TGF� 1.C2 allele/TaqI
(p=0.003)
2. 3 allele/K
primer (p=0.17)

Stoll et
al.(1993)

57 isolated CPO
patients from
northern Alsace,
France

Association TGF� 1. BamHI
TaqI
No association

Hwang et al.
(1995)

69 CPO patients
from Maryland,
USA

Association TGF� 1.C2 allele/TaqI
(p=0.015)

Shaw et al.
(1996)

141 newborns
with CPO from
California, USA

Association TGF� 1.A2 allele/TaqI
OR 1.6 (0.94-2.8)

Lidral et al.
(1997)

CPO patients
from Philippines

Association TGF� ,TGF
�
2,

TGF
�
3,MSX1

1.No association

Beaty et al.
(2001)

60 CPO patients
from Maryland,
USA

Association,
linkage
disequilibrium

TGF� ,
TGF

�
3,

MSX1,
BCL3

1.TGF� , TGF
�
3,

BCL3: no
association or LD
2.MSX1:
association and
LD: allele 4
(p=0.004)

Mitchell et
al. (2001)

83 CPO patients
from Denmark

Association TGF
�
3,

MSX1
1.MSX1: no
association
2.TGF

�
3: CA

allele 2 (p=0.04,
p=0.01)

Jugessur et
al. (2003)

88 CPO patients
from Norway

Association TGF� ,
TGF

�
3,

MSX1

1.TGF� :
A2/A2 TaqI
OR 3.2 (1.1-9.2)
2.MSX1:A4/A4 +
TGF� : A2/x
OR 9.7 (2.9-32)

Jugessur et
al. (2003)

63 CPO patients
from Norway

Association MTHFR 1.C667T: OR 2.4
(1.2-4.6) with one
allele

Mitchell et
al. (2003)

80 newborns with
CPO from
Denmark

Association RARA 1.No association

Vieira et al.
(2003)

24 CPO patients
from Latin
America

Association MSX1,
TGF

�
3

1.MSX1: No
association
2.TGF

�
3: p=0.02

Hecht et al.
(2002)

12 multiplex
CPO families,
origin not told

Linkage MSX1 1. LOD 2.1
(p=0.01)

Beaty et. al
(2002)

83 isolated CPO
patients from
Maryland, USA

TDT TGF
�
3,

MSX1
1.D14S61
p<0.005, MSX1
p<0.005

Lidral et al.
(1998)

69 CPO patients
from Iowa, USA

Linkage
disequilibrium,
sequencing

TGF� ,
TGF

�
3,

MSX1,
BCL3, DLX2

1.TGF� , BCL3,
DLX2: No LD
2.TGF

�
3, MSX1:

No mutations,
LD between CPO
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and MSX1 CA
allele 4

Machida et
al. (1999)

89 CPO patients
from Iowa, USA

Sequencing TGF� 1.No mutations

Barrow et al.
(2002)

2 CPO patients
from Iowa, USA

Sequencing p63 1.No mutations

Jezewski et
al. 2003

118 CPO patients
from Iowa (USA)
Japan, Denmark,
South America,
Philippines,
Vietnam

Sequencing MSX1 1. 3/118:
272G>A
451+887G>T
451+1046C>T

FitzPatrick
et al. 2003

23 RS patients
and 57 CPO
patients

Sequencing SATB2 1.No mutations

Table1. Previously reported molecular studies on non-syndromic cleft palate.

1.3.3 Associated syndromes

Cleft palate can be a sign of a syndrome. In Finland, a recognisable syndrome was found in a
retrospective study in14.2 % of patients with cleft palate (Lilius 1992). Shprintzen et al. found
a higher prevalence for syndromes in cleft palate patients (Shprintzen et al. 1985). It has been
suggested that approx. 50% of CP cases are non-syndromic (Jones 1988, Murray 2002). Over
300 syndromes are found with the key word “cleft palate” in Online Mendelian Inheritance in
Man (OMIM) database (http://www.ncbi.nlm.nih.gov/Omim/). The three most common
syndromes in Finland, according to Lilius, were Robin sequence (3.1 % of all CP patients),
van der Woude syndrome (2.3 %) and diastrophic dysplasia (0.6 %). Altogether 39 different
syndromes were detected. Twenty-five patients had cleft lip with or without cleft palate but
108 patients had cleft palate only.

Cleft palate associates with some anomalies without any known syndrome. In Finland, 23.1 %
of 938 patients with CP (including recognised syndromes) had associated anomalies (Lilius
1992). Cardiovascular anomalies were most common (16 % of all anomalies) and they were
strikingly often associated with the submucous type of cleft palate (52 % of all cardiac
anomalies in CP patients were detected in patients with CPSM). Anomalies of the lower
extremities were the second most common (15.7 % of all anomalies), with club foot being the
most common. Anomalies of the central nervous system were the third most common (14.0 %
of all anomalies). In northeastern France, 46.7% of patients with cleft palate had associated
anomalies (Stoll et al. 2000).

Mutations have been found out in many cleft syndromes. A heterozygous stop mutation in the
homeodomain of MSX1 causes Witkop syndrome (MIM 189500), which is a rare syndrome
affecting also teeth and nails (Witkop 1965, Jumlongras et al. 2001). A point mutation in
MSX1 was found to be cosegregating with dominantly inherited tooth agenesis in a large
family (Vastardis et al. 1996). Hemizygous deletions of MSX1 have been demonstrated in
some patients with Wolf-Hirschhorn syndrome (MIM 194190), which is considered a
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contiguous gene syndrome due to a deletion or a microdeletion in 4p16 (Campbell et al. 1989,
Zollino et al. 2003). MSX1 maps to 4p16.1 (Campbell et al. 1989, Padanilam et al. 1992)

Mutations in fibroblast growth-factor receptor 2 (FGFR2) cause Apert syndrome (MIM
101200) (Wilkie et al.1995). Treacher Collins syndrome (MIM 154500) is caused by
mutations in TCOF1, which encodes treacle (Treacher Collins Syndrome Collaborative Group
1996). Treacle is a nucleolar protein, but the pathway from mutations to disease has not yet
been characterised (Isaac et al. 2000). A sulfate transporter encoding DTDST maps∼ 900 kb
proximal to TCOF1 and is involved in diastrophic dysplasia (Hästbacka et al.1994). Mutations
in the T-box transcription factor gene (TBX22) were found to cause X-linked cleft palate
(CPX and ankyloglossia) (MIM 303400) (Baybrook et al. 2001). EEC (ectrodactyly-
ectodermal dysplasia-cleft lip/ palate, MIM 604292) syndrome is caused by mutations in the
p63 gene, which is a homologue of the tumour suppressor genep53 (Celli et al. 1999).
Mutations in thyroid transcription factor (TTF-2) cause cleft palate, thyroid dysgenesis and
choana atresia (Clifton-Bligh et al. 1998, Castanet et al. 2002). Lymphoedema-distichiasis
syndrome (MIM 153400) is caused by mutations a forkhead transcription factor gene
(FOXC2) (Fang et al. 2000).

Autosomal recessive ectodermal dysplasia type 4 (MIM 225060) is characterized by CL/P,
hypotrichosis and syndactylies. It is caused by mutations in PVRL1 (poliovirus receptor-like
1) (Suzuki et al. 2000). Interestingly, it was found that heterozygosity of one these mutations
strongly associates with nonsyndromic CL/P in Venezuela (Sözen et al. 2001). This finding
should encourage researchers to study the role of syndromic disorders causing mutations in
more common nonsyndromic forms (in any complex disease) (Murray 2001).

Van der Woude syndrome

Van der Woude syndrome (VWS) (MIM 119300) is a dominantly inherited developmental
disorder, which was first described by Anne Van der Woude in 1954. The hallmarks of this
rare syndrome are pits and/or sinuses of the lower lip, cleft lip and/or cleft palate. The
penetrance is estimated to be∼ 90% (Burdick et al. 1985; Murray et al. 1990; Onofre et al.
1997), and both sexes are equally affected (Burdick et al.1985). Lip pits are present in∼ 80%,
clefts in ∼ 50%, and hypodontia in∼ 25% of gene carriers (Van der Woude 1954; Rintala et al.
1981, Burdick et al. 1986, Schinzel et al.1986, Kläusler et al. 1987). The incidence of the
syndrome is estimated to be 1/34 000 live births (Rintala et al. 1985). VWS was found in
∼ 2% of Finnish cleft patients (Rintala et al. 1985, Lilius 1992). The mutation rate is estimated
to be∼ 1.8 x 10-5 (Burdick et al. 1985).

In 1987, Bocian et al. reported a patient with lip pits and a deletion in 1q32-41. Murray et al.
found a linkage between VWS and chromosome 1 q in 1990. In 1995, the region was
narrowed down to an interval of 4.1 cM on 1q32-41 (Sander et al. 1995), and further to 1.6
cM in 1996 (Schutte et al. 1996). Microdeletions in 1q32-41 have also been reported in
families with VWS (Sander et al. 1994, Schutte et al. 1999). A possible modifying locus at
17p11.2-11.1 was reported when a large Brazilian family was analysed (Sertie et al. 1999). An
allele in this locus would enhance the probability of CP in an individual also carrying a defect
in the VWS locus. Popliteal pterygium syndrome (MIM 119500) was found to be linked to
VWS locus (Lees et al. 1999). A nonsense mutation in exon 4 in interferon regulatory factor 6
(IFR6) was found in a twin affected by VWS (Kondo et al. 2002) Subsequently, mutations in
IRF6 in 45 unrelated VWS families and distinct mutations in 13 families affected with
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popliteal pterygium syndrome were found (Kondo et al. 2002). They also showed that family
members shared the same 18-bp deletion in the IRF6 gene regardless of the different
phenotype.

Van der Woude syndrome is of special interest because the phenotype so closely resembles
non-syndromic forms of both cleft lip and palate (Schutte et al. 1999).

Robin sequence

A combination of micrognathia, glossoptosis (an abnormal backward and downward fall of
the base of the tongue) and an associated cleft of the soft palate is commonly recognised as
Robin sequence (MIM 216800) (Gorlin 1990). The sequence was first described as early as
1822 but it bears the name of French stomatologist Pierre Robin who published his
observations in 1923. Typically, the cleft is U-shaped in Robin patients, while in non-
syndromic cleft patients the cleft is usually V-shaped (Larson et al. 1998, Marques et al.
1998). Increased incidence of twins among Robin patients has been noted (Holder-Espinasse
et al 2001, Knottnerus et al. 2001).

Robin sequence is the most common recurrence pattern recognised in syndromic cleft palate
patients in Finland (Lilius 1992). Robin sequence can appear in isolated form but it is also
seen as a part of another syndrome, the most common being CATCH and Stickler syndrome
(Jones 1997, Sheffield et al. 1987, Holder-Espinasse et al. 2001, van den Elzen 2001). In a
follow-up study of Robin patients, 7 out of 24 were found to have Stickler syndrome
(Sheffield et al. 1987). Van den Elzen found that 63.5% could be categorised as isolated RS,
and the remaining 36.8% could be considered syndromic. Holder-Espinasse classified 48 % as
non-syndromic. Recently, Houdayer et al. described a patient with RS and interstitial deletion
in 2q32.3-q33.2, which is the same CPO-associated region reported by Brewer et al. (Brewer
et al. 1999, Houdayer et al. 2001).

Stickler syndrome

Stickler syndrome(hereditary arthro-ophthalmopathy) is considered to be the most common
autosomal dominant connective tissue disease. The major features are premature degenerative
arthropathy, severe progressive myopia with occasional retinal detachment, sensorineural
hearing deficit and typical facies usually with maxillary hypoplasia (Stickler et al. 1965,
Stickler et al. 2001). Facial dysmorphia, flat face, small mandible, cleft palate are present in
84% of patients (Stickler et al. 2001). The phenotype varies between and within families
(Liberfarb et al. 2003). So far, mutations in three different collagen genes have been found to
cause Stickler syndrome.

Collagen II is found in cartilage. It is composed of three identicalα(II) chains. Stickler sdr
type 1 (MIM 108300) is caused by mutations resulting in a premature termination codon in the
COL2A1 gene (Ahmad et al. 1991, Brown et al. 1992, Ahmad et al. 1993, Ritvaniemi et al.
1993, Annunen et al. 1999). In addition to Stickler syndrome, defects in COL2A1 cause
numerous other diseases (Kuivaniemi et al 1997). COL2A1 maps to12q13.1-q13.2
(Francomano et al. 1987).
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Collagen XI is composed of three differentα chains encoded by COL2A1, COL11A1 and
COL11A2 (Eyre et al. 1987, Ala-Kokko et al. 1995, Vuoristo et al. 1995). Collagen XI
belongs to the fibrillar class of collagens and it is expressed in cartilage and the inner ear.

Defects in COL11A1 are the cause of Stickler syndrome type 2 (MIM 604841) (Richards et. al
1996, Sirko-Osadsa et al. 1998). This disorder is characterized by progressive myopia
beginning in the first decade of life, vitreo-retinal degeneration, retinal detachment,
sensorineural hearing loss, cleft palate, midfacial hypoplasia and osteoarthritis. Marshall
syndrome is also caused by mutations in COL11A1 (Annunen et al. 1999). COL11A1 maps
1p21 (Richards et al. 1996).

Defects in COL11A2 cause a form of Stickler sdr (type 3, MIM 184840) which is
characterized by midfacial hypoplasia, cleft palate, osteoarthritis, and sensorineural hearing
loss, but lacks ocular involvement (Sirko-Osadsa et al. 1998). The lack of ocular involvement
is due to the replacement ofα2(XI) by α2(V) in the vitreous of the eye (Mayne et al. 1993).
COL11A2 maps to 6p21.3 (Brunner et al. 1994). Mutations in COL11A2 also cause non-
syndromic hearing loss and, in addition to Stickler syndrome, they are also associated with
other autosomal dominant and recessive osteochondrodysplasias (Vikkula et al. 1995,
McGuirt et al. 1999, Melkoniemi et al. 2000).

CATCH 22

The incidence of hemizygous 22q11 deletion has been estimated to be 1:4000-6000 live births
(Wilson et al. 1994, Botto et al. 2003). Velocardiofacial syndrome (MIM 192430) and
DiGeorge syndrome (MIM 188400) are overlapping phenotypes commonly found in patients
with 22q11 deletion (de la Chapelle et al. 1981, Goldberg et al 1985, Goldberg et al. 1993,
Stevens et al. 1990). Nine percent of these CATCH patients manifest cleft palate (Ryan et al.
1997). Reish et al (2003) found cleft palate in nine out of 38 patients. Patients also have other
signs such as velopharyngeal insufficiency, hypocalcaemia, thymic hypoplasia, cardiac
problems, renal anomalies, abnormal facies, delayed speech and learning difficulties (Ryan et
al. 1997, Somer et al. 1997, Digilio et al. 2003). Of the patients with velopharyngeal
incompetence but without overt clefting, 12.5% have the 22q11 deletion (Boorman et al.
2001). It has been estimated that 22q11 deletions may be involved in∼ 5 % of congenital heart
diseases (Wilson 1994). Monozygous twins have been described to exhibit different
phenotypes (Singh et al. 2002). The deletions were found to be of maternal origin in 72 % of
inherited cases (Demczuk et al. 1995). No studies on sizes of deletions in different tissues
have been published. The size of the commonly deleted region is∼ 3 Mb (Carlson et al. 1997).
Polymorphic markers in loci D22S944 and D22S941 are most commonly deleted (Morrow et
al. 1995). So far the smallest deletion found has been 20 kb (Yamagishi et al. 1999). The
deletion of 20 kilobases removed exons 1 to 3 of the UFDL1 gene, and the patient had typical
features of 22q11 deletion (Yamagishi et al. 1999). On the other hand, CATCH is considered
to be a “contiguous gene syndrome” (Glover 1995). No hemizygosity of 22q11 was detected
in patients with isolated cleft palate (Mingarelli et al. 1996). Routine screening of 22q11
deletion in CPO patients is not recommended (Reish et al. 2003, Ruiter et al. 2003).
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2 GENE MAPPING

2.1 Gene mapping in complex diseases

2.1.1 Power estimations

Having enough power to detect an existing linkage is an essential question in gene mapping.
The SLINK simulation package is widely used when estimating the power of pedigrees to
detect traditional parametric linkage (Ott 1989, Weeks et al. 1990). Simulation methods for
population data are used when mapping genetically complex diseases. Population size,
“bottleneck” size, genetic drift, number of founders and number of generations are variable
parameters. POPSIM and EASYPOP are packages for population simulation (Hampe et al.
1998, Balloux 2001). Recently, methods and a software package for simulations of human
genetic data in isolated populations were developed (Ollikainen 2002). These population
simulation programs may help the researcher to estimate the sample size and the marker map
density. Elegant simulations reduce the amount of work and also the financial costs later.

A recent extensive meta-analysis on 101 genome wide screens for complex diseases revealed
that a large sample size and genetic homogeneity were the most important factors promoting
successful mapping (Altmuller et al. 2001).

2.1.2 Genetic markers

Restriction fragment length polymorphisms (RFLPs) were the first molecular genetic markers
that could be widely utilised in linkage analyses (Botstein et al. 1980). The first genome-wide
linkage map was mainly based on RFLPs (Donis-Keller et al. 1987). Minisatellites (VNTRs)
were the next step (Jeffreys et al. 1985). Minisatellites usually have a length of over 1000 bp,
which makes it difficult to use PCR-based methods. Short tandem repeat polymorphisms
(STRPs) made analyses more rapid, and also the degree of heterozygosity is higher than in
RFLPs or VNTRs (Weber et al. 1989). Microsatellites are di-, tri- or tetranucleotide repeats
which have provided the main skeleton of the genome-wide human linkage maps (Gyapay et
al. 1994, Murray et al. 1995, Sheffield et al. 1995). The nucleotide repeats must be amplified
in polymerase chain reactions (PCR) (Mullis et al. 1986), and the repeat sizes are separated in
gels with the help of electrophoresis. The alleles are visualised by silver staining, radioactive
or fluorescence labelling.

Single nucleotide polymorphisms (SNPs) are bi-allelic markers, which allow highly
automated genotyping (Kruglyak 1997, Collins et al. 1998). They are estimated to exist in
approx. every 1000th bp, and their total number is estimated to be ten million (Sachidanandam
et al. 2001, Kruglyak and Nickerson 2001). To obtain maximal information, a map must be
dense enough because allele information is based only on two possible polymorphisms. In
fact, map density was shown to be more critical than marker heterozygosity (Kruglyak 1997).

2.1.3 Linkage analysis

Linkage means cosegregation of a trait and a marker. If they are physically closely tightened to
each other, the probability of cross-over is very small. Crossing-over produces a new
combination of alleles between trait and marker loci. The longer the distance between these
two loci, the more probable is the crossing-over event. The proportion of rearranged



20

chromosomes after meiosis is called the recombination fraction. The shorter the distance
between two loci, the smaller the recombination fraction is. This distance can be represented
as Morgans (M). Within a distance of one cM, the recombination fraction is approx. 1 %. The
length of the human genome is approx. 3000 cM.

Linkage analysis tries to localize a gene with the help of polymorphic markers. If a particular
allele is identical-by-descent in all affected members of the same family, one can suspect
linkage. If similar cosegregation of particular alleles in a given maker locus takes place in
many families, one can start to count how probable it is that this kind of inheritance pattern
can happen by chance. If the probability of chance is 1 x 10-3, the logarithm of odds (LOD) is
3 (Morton 1955). In the case of single-gene Mendelian disorder, a LOD score below -2
indicates a region where the possibility of linkage can be disregarded (Morton 1955). Usually,
the linkage is regarded as established when the LOD score is≥3. This corresponds to a 5%
significance level in two-point analysis, and a 9% significance level in multipoint analysis.

The LOD scores are calculated with the help of computer programs. The first computer
program (Liped) for linkage analysis of human pedigrees larger than two-generation was
written by Ott (Ott 1974). MLINK (LINKAGE package) was the first program to perform
multipoint analysis (Lathrop et al. 1984). FASTLINK (Cottingham et al. 1993) is a newer and
improved version of the LINKAGE package. The user of these programs needs to input
accurate parameters in disease models. This demand is difficult when dealing with genetically
complex, multifactorial diseases. The affected-pedigree-member method (APM) compares
IBS (identical-by-state) sharing among affected individuals with IBS sharing expected under
random segregation (Weeks et al 1988). Multipoint sib-pair analysis can be performed for
example in a computer package, MAPMAKER/SIBS (Kruglyak et al. 1995). To extract more
information from a pedigree, Kruglyak et al. applied non-parametric linkage analysis (NPL)
into Genehunter package (Kruglyak et al. 1996). The NPL score (Z) announces whether
affected individuals share IBD (identical-by-descent) alleles more often than expected by
chance.

An association between a disease and a particular allele in a marker locus can be a result of
linkage disequilibrium (LD). LD means a non-random association of alleles in linked loci. It
depends on the age of mutation and the recombination frequency (Jorde 1995). The LD
measure increases when particular alleles of two linked loci cosegregate more often than
expected by chance. LD mapping is especially powerful in isolated populations where one or a
few founder mutations are expected to have taken place (de la Chapelle 1993, Jorde 1995).
The genetic distance between a disease gene and a marker locus can be estimated on the basis
of LD and applying the Luria-Delbruck principle (Hästbacka et al. 1992, de la Chapelle 1993).
This method was successfully used when mapping the DTD gene (Hästbacka et al. 1992).

Recently, Kruglyak estimated that when mapping common disease genes, the useful level of
LD in general and in isolated populations is unlikely to be more than 3 kb and that would
require about half a million SNPs for whole-genome studies (Kruglyak 1999). On the other
hand, he demonstrated that the extent of LD can be larger in populations where the bottleneck
has been very narrow or if the frequency of the rarer marker allele is very low.

The transmission disequilibrium test (TDT) detects linkage between a disease locus and a
marker locus in the presence of association (Spielman et al. 1993). The TDT studies a
transmission distortion of alleles transmitted to an affected offspring from an affected parent
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compared to untransmitted alleles. The statistical significance of the TDT is tested byχ2 or by
the exact binomial test (Spielman et al. 1993). In multiplex families with many generations,
the TDT is a valid test for linkage but not for LD. In multigeneration families, a false-positive
“LD" can be seen because of non-independent observations.

2.2 Finland - the northern isolation

2.2.1 Short review of the history of the Finnish population

The Finnish population was 5 206 295 at the end of 2002 (Statistics of Finland). The growth
has been rapid, since the number was∼ 2 656 000 in 1900. It has been estimated that the very
first immigrants settled in Finland for about 9000 years ago (Virrankoski 2001). The first two
bigger waves of settlement seem to have taken place around 3200 and 2000 B.C.. These
immigrants might have arrived from the east. Immigration from the west took place around
1200 B.C., and those immigrants settled mainly in western Finland (Koskinen et al. 1994).
The size of the population was still extremely small. It has been estimated that during the
whole prehistorian time the size of the population has been at most 5 000 - 10 000 inhabitants
(Jutikkala 1996). At the end of the prehistorian time, only few regions, mainly in the coastline,
were inhabited (Virrankoski 2001). It is important to notice that large regions of Finland were
inhabited only a few hundred years ago. During the period of this so called late settlement the
relative growth of population was the most rapid.

Researchers have not been able to trace the precise origins of the Finns. According to
mitochondrial and genomic DNA diversity, the Finns, with the exception of the Saami, seem
to be genetically indistinguishable from many other European populations (Lahermo et al.
1996). On the other hand, analysis of Y chromosomal diversity suggests the possible origin
for at least a part of the Finnish population in Northern Eurasia (Lahermo et al. 1999). This
finding supports previous theories based on linguistic analysis (Wiik 1997).

Between the years 1698 and 1721, the population diminished greatly because of starvation due
to poor harvests. This period is considered to be a one bottleneck of the Finnish gene pool. A
relative and very effective bottleneck was the emigration from Savo to northern parts of
Finland in the 16th century (Norio 2000). Norio divides Finland roughly into two areas: the
region of the old settlement and the region of the young settlement. The traces of bottlenecks
were seen when Y chromosomal polymorphisms were analysed: the pattern of haplotype
diversity in Finnish males was strikingly narrower than in other European populations
analysed (Lahermo et al. 1999). Also the high prevalence of some recessive diseases, that are
very rare in other countries, reflects bottlenecks followed by a quite rapid expansion of the
surviving gene pool.

2.2.2 The Finnish disease heritage

2.2.2.1 Single-gene disorders

”The Perheentupa stairs” give an informative view of the hereditary diseases which have a
higher relative incidence in Finland than anywhere else (Perheentupa 1972, Norio 2000). The
majority of the genes and their defects behind these diseases have already been identified and
molecular events are being studied at the moment (Peltonen et al. 1999). The enrichment of
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these disease genes, combined with well-organised church registers and the high level of
medical research facilities, have provided an excellent basis for genetic research. The model
of inheritance in these diseases is recessive, with the exceptions of an autosomal dominant
model in two and a X-chromosomal recessive model in two diseases. The most common are
the recessive disorders aspartylglucosaminuria (AGU) (Palo 1967, Ikonen et al.1991),
congenital nephrotic syndrome (CNF) (Norio 1966, Männikkö et al. 1995), and infantile
neuronal ceroid lipofuscinosis (INCL) (Hagberg et al. 1968, Vesa et al. 1995). The sizes of
regions showing linkage disequilibrium flanking the disease genes are approx. 3 cM, 3 cM
and 2,5 cM, respectively. The mutations seem to have taken place about for 80-120
generations ago, i.e. 2000-3000 years ago.

Salla disease (Aula et al. 1979, Verheijen et al. 1999), Northern epilepsy syndrome (EPMR)
(Hirvasniemi et al 1991, Ranta et al. 1999) and vLINCL (Santavuori et al 1982, Savukoski et
al 1998) represent newer mutations. The birthplaces of grandparents of EPMR patients are
located in the Kainuu region and of vLINCL patients in the Ostrobothnia region (Varilo
1999). In vLINCL, LD covering a distance of 11 cM was detected and the mutation was
estimated to have taken place about 500 years ago (Varilo et al. 1996). In Salla disease the
interval for LD is also approx. 10 cM (Schleutker et al. 1995).

2.2.2.2 Genetically complex diseases

Tracing genes involved in multifactorial diseases has been shown to be a demanding task.
Genome-wide scans of several complex diseases in Finnish patients have been performed.
Several examples are listed here. Linkage between non-insulin dependent diabetes mellitus
and chromosome 12 was established (Mahtani et al. 1996). A genome-wide search was
performed in Finnish multiple sclerosis families mainly originating from Ostrobothnia
(Kuokkanen et al. 1997). The prevalence of MS is clearly increased in Ostrobothnia
(Kinnunen et al. 1983). A suggestive linkage to 17q22-q24 was established. Multiple
suggestive loci were found when a genome-wide scan was performed in Finnish schizophrenia
patients (Hovatta et al. 1999). No LD was detected although patients originated from a
restricted Kuusamo area (Varilo et al. 1999). A genome-wide scan for elevated diastolic blood
pressure revealed linkage to the AT1 gene (Perola et al. 2000). A genome-wide scan of obesity
in Finnish sibpairs revealed linkage to Xq24 (Öhman et al. 2000). Evidence for linkage
between 7p14-p15 and three phenotypes related to asthma (asthma, a high serum IgE level and
a combination of the phenotypes) in a Finnish subpopulation from the Kainuu region was
detected in a genome-wide search (Laitinen et al. 2001). Autism-spectrum disorders were
found to be linked to 3q25-27 in Finnish families (Auranen et al. 2002). Also a linkage
between coeliac disease and 15q11-q13 was found when using a subpopulation from the
northeastern part of Finland (Woolley et al. 2002).
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AIMS OF THE STUDY

1 To localize a gene responsible for non-syndromic cleft palate in Finnish patients.

2 To narrow down the critical region in the van der Woude syndrome. While we were
doing this, we found genetic heterogeneity in Finnish VWS families and that result
encouraged us to map a second locus involved in VWS.

3 To find out if mutations in COL2A1, COL11A1 and COL11A2 cause Robin sequence,
non-syndromic cleft palate or micrognathia.
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SUBJECTS AND METHODS

3.1 Ethical issues

The research plan was approved by the Social and Health Ministry of Finland, by the ethical
committee of the University Hospital of Helsinki and by the ethical committee of the
Department of Medical Genetics of Helsinki University. The patients were contacted from the
University Hospital of Helsinki, where they are or have been treated medically. The relatives
were contacted with the permission of the patient. The informed consents were obtained
before taking any samples. No individual data will be published. Personal results (i.e.
genotypes, haplotypes, carrier status) will not be told to participants. All the data concerning
the patient’s disease, family history and research results are confidential. These facts were
written in the informed consent.

Every participant was given a study-specific ID number. ID-numbered samples without names
were handled in the laboratory. The connection between names and numbers is in a database.
Access to the database is permitted only for the researchers named in the research plan and
approved by the ethical committees.

3.2 Patients

Participants were collected from the records of the Cleft Center. Cleft patients in Finland have
been treated centrally since 1948 at the Red Cross Hospital for Plastic Surgery, which then
became, in 1984, the Plastic Surgery Unit of the I Department of Surgery, Helsinki University
Central Hospital. We searched the medical records of all patients with cleft palate from the
years 1967-1996, those years included. All types of cleft palates were accepted. We contacted
250 patients by sending them a letter. The patients were chosen on the basis of three criteria:
1. According to the medical record they did not seem to have other malformations or
syndromes, 2. They had reported of at least one similarly affected relative 3. They could still
be reached by mail.

Twenty-four multiplex CPO pedigrees were chosen for the DNA analysis of candidate regions
(Figs 1-3). The pedigrees consisted of 63 affected, and 112 unaffected, a total of 175
individuals. Families came from different regions of Finland. Probands and as many affected
relatives as possible were examined to rule out undiagnosed syndromes. The whole nuclear
family was asked to meet the examiner, if possible. Family members were then examined and
dysmorphic features were searched for.

Five families with many members affected by VWS were chosen for the VWS study. In the
VWS families, 56 individuals were genotyped, of whom 25 were affected (Fig 4). Family
0057 was re-examined in purpose to confirm the diagnosis and to determine the affection
status of all pedigree members.

During the years 1967-1996, 103 patients with Robin sequence were treated in the Cleft
Center. Ninety-three of them were contacted by sending them a letter. Thirty-three answered
and were willing to participate. Ten out of these 33 were excluded on the basis of a confirmed
or suspected syndrome. Of the remaining 23 patients, seven had had severe breathing
difficulties immediately after delivery. The RS diagnosis was based on cleft palate and small
mandibula in the rest of the patients. Seven patients reported a similarly affected relative but



25

only in one case was the relative a first-degree one. Patients were not re-examined but the
information was collected by questionnaries, telephone interviews and from the medical
records in the Cleft Center. Altogether 150 controls, whose samples were analysed together
with the samples of RS patients, were individuals without any cleft and without relatives with
clefts.

One patient with non-syndromic Robin sequence (patient no. 62) was recruited from the
USA. Seventeen of the 21 patients with non-syndromic micrognathia were recruited from the
Center for Craniofacial Disorders and Department of Dentistry at Montefiore Medical Center,
Bronx, New York, and the remaining four from the maxillofacial surgery service at the
University Hospitals of Cleveland (patients 41 to 61). The medical records and samples of
these 22 patients from abroad were sent directly from USA to Oulu.

3.3 Family history and genealogical studies

Patients were asked about the family names and birth places of their parents and grandparents.
They were also asked for information about any similarly affected relatives, i.e. relatives with
CL, CL/P or CP. Names of affected relatives were asked for to try to connect the families to
each other. Finnish pedigrees were also expanded with the help of the Finnish church records.
Local church records usually show pedigree information on about five generations backwards.
Ancestors born before∼ 1860 can be traced with the help of church records in the Finnish
National Archives. In our study we used patients’ own knowledge about their ancestors and
the local church records to build the pedigrees.

3.4 DNA samples

Blood samples were taken either in local health centers or in the University Hospital of
Helsinki. EDTA-preserved venous blood was either frozen or DNA was immediately
extracted. DNA was extracted non-enzymatically from leukocytes (Lahiri et al. 1991). In this
method no organic solvents are used. Five ml of blood was mixed with 5 ml TKM 1 + P40
buffer for cell lysis. TKM 1 consists of 10 mM Tris-HCl pH 7.6, 10 mM KCl, 10 mM MgCl2,
and 2 mM EDTA. The solvent was centrifuged at 2200 RPM for 10 min, then the nuclear
pellet was washed with 5 ml of TKM 1 buffer and centrifuged again as above. The pellet was
then suspended in 800µl TKM 2 buffer. TKM 2 buffer consists of 10 mM Tris-HCl pH 7.6,
10 mM KCl, 10 mM MgCl2, 0.4 M NaCl and 2 mM EDTA. Fiftyµl of 20 % SDS was added
and the suspension was mixed by pipetting back and forth. The tubes were incubated 1-2 days
at 60° C. Then, 360µl 5M NaCl was added for protein precipitation. The DNA-containing
supernatant was then separated by centrifuging at 12000 RPM for 10 min. DNA was
precipitated by adding 3 ml of cold 100% ethanol. Precipitated DNA was mechanically
transferred to tubes containing 70% ethanol. Finally, DNA was dried in the air and dissolved
in TE buffer to be preserved. DNA was preserved frozen.

3.5 Microsatellite markers

Linkage and association were searched among four candidate regions and non-syndromic
CPO among 24 multiplex families. The 22q11 region was studied using nine polymorphic
markers which are inside the 3 Mb region commonly deleted in patients with velocardiofacial
syndrome (Morrow et al. 1995). Markers at loci D22S941, D22S944, D22S264, D22S311,
D22306, D22S308 and D22S425 were ordered from Research Genetics
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(http://www.resgen.com). Markers at loci D22S1638 and D22S1623 were developed at
Genosys (http://www.sigma-genosys.com). TGFβ3 in chromosome 14 was studied using
polymorphic markers at loci D14S273 and D14S61 which were ordered from Research
Genetics. TGFβ3 is located between these markers in YAC 746B4, which has a size of 1800
kb (Cruts et al.1995). The MSX1 region in chromosome 4 was studied using a polymorphic
marker D4S394, which is located c. 7 cM proximal to MSX1, and with an intragenic
dinucleotide (CA) repeat polymorphism. In addition, the entire chromosome 4 was analyzed
using 20 polymorphic markers from the modified Weber set VI (http://www.pebio.com). The
mean distance between the markers was 11.3 cM. The critical 2q32 region was further
analyzed using polymorphic markers D2S311, D2S348, D2S2392 and D2S115 (Brewer et al
1999, Hadano et al. 1999). The entire chromosome 2 was also analyzed using markers from
the ABI marker set. The mean interval between the 21 markers was 13.8 cM.

The genome-wide screen was performed in nine largest multiplex families with non-
syndromic CP. The genome scan was performed in the Finnish Genome Center
(http://www.genome.helsinki.fi). The 377 fluorescent polymorphic markers used were from
the Applied Biosystems Linkage mapping Set MD-10, Foster City, USA
(http://www.appliedbiosystems.com).

In the genome-wide scan at stage II, six additional markers (D1S247, D1S513, D1S2723,
D1S380, D1S1188, D1S2722) (see below) were used to obtain maximal information from the
interesting VWS region in 1p34. Thus, 1p34 and the entire chromosomes 2 and 4 were
screened in 24 multiplex families. The interval between markers in chromosomes 2 and 4 in
the first nine families was ~ 5 cM, while it was ~ 10 cM in the remaining 15 families.

Linkage was tested between VWS and 1q32-q41 and between VWS and a proposed
modifying locus in 17p11.2-p11.1. At the first stage, nine polymorphic markers (D1S1663,
D1S245, D1S491, D1S3754, D1S2136, D1S3753, D1S205 and D1S414 (Schutte et al. 1999)
were genotyped in 1q32-q41. The genetic distances are provided by the Sanger Center
(http://www.sanger.ac.uk/HGP/Chr1/). Because of the exclusion of the linkage in family 0057
and uninformative results in family 0062, an additional 25 markers were genotyped in
chromosome 1. These markers were from the modified Weber set VI (http://www.pebio.com).
In family 0057, the genome-wide screen was performed with 381 polymorphic microsatellite
markers from ABI PRISM Linkage Mapping Set-MD10 (Applied Biosystems). For the second
stage of analysis of family 0057, six additional markers (D1S247, D1S513, D1S2723,
D1S380, D1S1188, D1S2722) within the region flanked by markers D1S234 and D1S2797
were genotyped. The positions of these markers were ascertained from the Marshfield
comprehensive human genetic map (http://www.marshmed.org/genetics/).

Microsatellite polymorphisms were amplified by PCR (Mullis 1986). When PCR products
were visualised with silver staining, fifty ng of DNA was amplified in 20µl reaction with 20
µM of each primer, 200µM of dNTPs, 2.0µl of buffer, 1 unit of Amplitaq Gold enzyme and
4.68µl of H20. The cycling conditions were within the following ranges: 94°C for 10 min, 30
cycles at 94° C for 30 s, 53-58°C for 35 s, 72°C for 30 s, and 72°C for 10 min. When PCR
products were visualised with fluorescent dyes, 50 ng of DNA was amplified in 15µl reaction
with 5 µM of each primer, 300µM of dNTPs, 1.5µl of buffer, 0.15µl of Amplitaq Gold
enzyme 5 U/µl and 0.35µl of H2O. The PCR conditions were within the following ranges:
94°C for 10 min, 30-35 cycles at 94°C for 30 s, 55°C for 1 min 15 s, 72°C for 1 min, and
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72°C for 30 min. In the genome-wide scan of nine multiplex families performed in Finnish
Genome Center, PCR reactions were done in 5µl volume containing 20 ng of DNA. Reagent
concentrations and temperature profiles were as recommended by the manufacturer (Applied
Biosystems, USA).

When screening the candidate regions in CPO families, the PCR products were fractionated
on 6% polyacrylamide gel. The alleles were visualised by silver staining and they were
numbered on the basis of their sizes. When screening 1q32-q41 and 17p11.2-p11.1 in VWS
families, the allele sizes were separated on an ABI 377 laser fluorescent sequencing machine.
In the genome-wide scan, the samples were electrophoresed on Megabace 1000 (Amersham
Biosciences,http://www.moleculardynamics.com)96 well capillary instrument according to
the manufacturer’s instructions. Allele calling was done using genetic Profiler 1.1 (Amersham
Biosciences) software.

3.6 Linkage and LD analysis

For the linkage analysis in VWS families the penetrance was set to be 95 % (Sander et al.
1993), the model as autosomal dominant, the disease frequency as 1.5 x 10-5 (Rintala and
Ranta 1981) and the mutation rate as 1.8 x 10-5 (Burdick et al. 1985). Individuals with CL,
CL/P, CP and/or lip pits were considered to be affected. When analysing the modifying locus
in 17p11.1-p11.2, the disease model was set as autosomal dominant with a penetrance of 70%
and the disease frequency as 0.001 (Sertie et al. 1999). In this analysis, individuals with CP
were classified as affected, regardless of the presence of lip pits. Multipoint linkage analysis
was performed with theGenehunterprogram (Kruglyak et al. 1996).

For the linkage analysis of candidate region in non-syndromic CPO families no reliable
parameters could be set. Therefore, we analysed non-random IBD allele sharing among
affected individuals. This non-parametric linkage analysis was performed with the
Genehunterprogram (Kruglyak et al. 1996). Pedigree no. 9 was too large for linkage analysis
with Genehunterand was used for LD analysis only. Population-level association could be
assumed and, therefore, we used transmission/disequilibrium tests to test for linkage with
genetic markers (Spielman et al 1993). The TDT analysis was performed with theGenehunter
software package.

In the genome-wide scan, the non-parametric linkage analysis was done usingGenehunter2.1.
Pedigrees 1 and 9 were divided into two because of their size. The data were checked
mendelian inconsistencies using Pedmanager and Pedcheck softwares before the linkage
analysis.

3.7 Power estimations

The power to localize the disease gene by linkage disequilibrium was estimated with the help
of computer simulations. One hundred data sets of 172 chromosomes were sampled from the
multiplex CPO pedigrees. Random haplotypesH of different lengths 1, 2, and 3 were picked
from each data set. Each of these haplotypes was enriched one at a time in the disease-
associated chromosomes by replacing the corresponding alleles in each chromosome with
haplotypeH with probabilityP of 10%, 20%, and 30%. ProbabilityP represents the extent to
which an artificially introduced disease-associated haplotype is overrepresented in the affected
sample. It is analogous toPexcess= (Paffected- Pnormal) / (1 - Pnormal), wherePaffectedandPnormal
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denote allele frequency in patient and control chromosomes, respectively. For each enriched

data set, the highestχ2 value was computed. Then, it was counted how often these highest
values exceeded the corresponding critical thresholds forp=0.05 obtained from a permutation
test (based on 100 iterations). This ratio corresponds to the power to detect linkage
disequilibrium at type I error rate of 0.05.

3.8 COL2A1, COL11A1 and COL11A2 sequencing

DNA analysis

Genomic DNA was extracted from EDTA-preserved blood. Exons and exon-flanking
sequences were amplified by PCR. Forty ng of DNA was amplified using 5 to 10 pmols of
PCR primers, 1.5 mM of MgCl2, 0.2 mM of dNTPs, and one unit of Amplitaq Gold DNA
polymerase. The PCR conditions were as follows: 95° C for 10 min, 33 cycles at 95° C for
30 s, at 54-63° for 30 s, at 72° for 40 s, and finally at 72° for 10 min. Conformation sensitive
gel electroforesis (CSGE) was used, and to generate heteroduplexes, the samples were
denatured (95° C for 5 min) and re-annealed (68° C for 30 min). Twenty ng of each PCR
product was analysed on CSGE gel. Samples that showed heteroduplexes on CSGE were
sequenced (ABI Prism 377 Automatic Sequenator and BigDye Terminator Cycle Sequencing
Kit, Applied Biosysterms). The DNA analysis, except for the extraction of DNA, was carried
out in the Department of Medical Biochemistry and Molecular Biology, University of Oulu.

RNA analysis

RNA was extracted from EBV-transformed lymphoblasts. cDNA was synthesized and
amplificated. The following PCR conditions were used: 95° C for 10 min, 33 cycles at 95° C
for 40 s, at 60° C for 40 s, at 72° for 45, and finally at 72° for 10 min. Twoµl of PCR product,
34 pmol of each primer and five units of AmpliTaq Gold polymerase were used, and the PCR
products were analysed on 1.2% agarose gel. The products of the second PCR were then
sequenced. The RNA analysis was also carried out in Oulu University.
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RESULTS

4.1 Power estimations

The empirical power levels are summarized in Table 2. It shows that the power to detect
linkage disequilibrium is adequate in most candidate regions, if the haplotype of at least two
markers is moderately in excess (P at least 20%) in the affected sample.

L/P 10% 20% 30% L/P 10% 20% 30%
1 0.14 0.39 0.67 1 0.09 0.29 0.47
2 0.35 0.79 0.94 2 0.17 0.61 0.96
3 0.36 0.92 1.00 3 0.23 0.90 1.00

2q32 MSX1

L/P 10% 20% 30% L/P 10% 20% 30%
1 0.17 0.57 0.87 1 0.03 0.15 0.41
2 0.46 0.96 1.00 2 0.07 0.49 0.76

3 0.18 0.67 0.93
TGF-ββββ3 22q11

Table 2 (modified from the table 3 from the article number IV). The empirical power levels
to detect association in candidate regions. L denotes length (number of markers) and P
denotes power to detect association when given % of chromosomes share the same
genotype/haplotype.

4.2 Families with Van der Woude syndrome

Family 0062 was uninformative for all nine markers in the VWS region in 1q32-q41. Families
0059, 0060 and 0061 displayed linkage to 1q32-q41. Cumulative LOD scores obtained from
these three families exceeded 3.8 across the VWS region. Families 0060, 0061 and 0062
shared a common haplotype 3 – 5 – 3 – 5 – 3 from markers D1S1663 to D1S3754. Linkage
between VWS and 1q32-q41 was clearly excluded in family 0057, multipoint LOD scores
ranging from -10 to -21. Also linkage between a proposed modifying locus in 17p11.2-11.1
and VWS was excluded. The cumulative LOD scores were less than –2. In this analysis, the
results from family 0062 were disinconclusive.

Because linkage between 1q32-q41 and VWS in family 0057 was excluded, a genome wide
search was performed. In the initial scan, a 30 cM region in chromosome 1p34 showed the
highest LOD scores. The genotyping of additional markers in this region increased the
maximum LOD score to 3.18 in marker D1S2797 with theta=0. The information content was
0.91. The LOD score of 3.18 is close to the theoretical maximum in this pedigree achieved by
simulation using SLINK with 200 replicates (data not shown). Additional markers did not
narrow the haplotype shared by all the affected. Changing the phenocopy rate to 1x10-3 had no
effect on LOD scores. Lower penetrance of 90 % gave the maximum LOD score of 3.16. In
all other regions of the genome, the LOD scores fell below 1.49.
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4.3 Families with non-syndromic cleft palate

4.3.1 Candidate regions

Linkage between non-syndromic cleft palate and candidate loci could not be detected. In
chromosome 2, the highest Z score (1.34, p=0.09, information content 0.61) was in locus
D2S423. Markers in the candidate region 2q32 showed no evidence of linkage; the maximum
Z score was 0.54 (p=0.29) and the information content was 0.78. In chromosome 22, the
highest Z value was 1.36 (p=0.09) with the information content of 0.77. In the TGFβ3 region
in chromosome 14, the Z score was 0.80 (p=0.20, information content 0.56). The MSX1
region in chromosome 4 showed negative Z scores. The highest Z value in chromosome 4 was
1.64 (p=0.06). Transmission/disequilibrium tests did not demonstrate any significant deviation
from the expected values. No allelic association could be detected.

Marker D22S944 exhibited null alleles in 10 out of 24 families. Null alleles were carried by
fourteen of the affected and 17 of the unaffected. The results were similar with a new set of
primers. Individuals carrying null alleles seemed to be homozygous in that locus, but
mendelian inheritance errors could be detected. No other mendelian errors occurred in
chromosome 22. The marker D22S944 was checked in controls (28 Finnish SLE patients and
63 of their healthy relatives) and again similar null alleles were found in 6 patients and 5 of
the unaffected.

4.3.2 Genome-wide screen

When genome-wide screening nine multiplex families (chromosomes 1-22) (stage 1), no
significant linkage could be detected. The highest NPL scores of all chromosomes in the nine
largest pedigrees are shown in Figures 5-6. The highest NPL score was seen in chromosome 1
at the position of 50 cM from 1pter (Z=2.06, p=0.033, information content 0.58). NPL scores
reaching values over 1.5 were seen in chromosomes 2 (Z=1.97, p=0.038), 6 (Z=1.58,
p=0.062), 11 (Z=1.60, p=0.061), 12 (Z=1.80, p=0.045) and 17 (Z=1.58, p= 0.062). Significant
p-values (< 0.05) were seen in chromosomes 1, 2 and 12, at the positions of 50, 27 and 111
cM, respectively.

Stage two consisted of an analysis of candidate region 1p34 and entire chromosomes 2 and 4
with 24 multiplex families and with a denser marker map (~5 cM). When data from an
additional 15 pedigrees (pedigrees 10-24) were added, the NPL score in chromosome 1 at the
position of 50 cM fell to 1.31 (p=0.098). In the VWS-linked region in 1p34, the highest NPL
score was 1.52 (p=0.069, information content 0.86) at the position of 61 cM. When screening
the entire chromosomes 2 and 4 in 24 multiplex pedigrees, the highest NPL scores were 2.29
(p=0.016, information content 0.67) at the position of 27 cM, and 1.56 (p=0.064, inf. cont.
0.67) at the position of 100 cM. In chromosome 2, NPL scores over 1.5 (p<0.05) were seen at
~5-30 cM. In chromosome 4, the initial scan with nine families did not show any linkage but
additional families and a denser marker map raised a narrow and shallow peak of 1.56
(p=0.064) at 100 cM. The NPL scores over the entire chromosomes 2 and 4 are shown in
Figure 7. The NPL scores in the VWS-linked region in 1p34 are shown in Figure 7.
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4.4 COL2A1, COL11A1 and COL11A2 sequence variations in patients with Robin
sequence, non-syndromic micrognathia and CPO

Less than 20 % of variations detected in CSGE were in exons. Nine nucleotide substitutions
cause one amino acid to chance to another, or creates a translation-termination codon. Six of
these substitutions were found only in patients and in none of the 150 controls.

Two unrelated patients (35 and 39) with Robin sequence had a C to T transition in exon 17 in
COL2A1. The mother of patient 39 was homozygous for the nucleotide chance. She has
CPO. The RT-PCR of patient 35 did not show any splicing defect. Both alleles were
expressed. The father of patient 35 also had the nucleotide change but he does not have any
cleft.

Patient 26 with Robin sequence was found to carry an insertion of a T at the donor site of
intron 50 at nucleotide position +3 in COL11A1. This variation has previously been reported
in a patient with Marshall syndrome (Annunen et al. 1999). The parents of patient 26 did not
have the mutation. Patient 22 with Robin sequence had a G to A transition in IVS45+3 in
COL11A1, and the patient’s mother carried the same mutation. This variation has also
previously been reported in a patient with Marshall syndrome. Both alleles were expressed in
this patient with Marshall syndrome. Two unrelated patients (20 and 33) with RS had a T to
A transition in IVS31-92 in COL11A1. Both the patients have inherited the mutations from a
parent who is healthy and without any cleft.

Patient 62 with Robin sequence was found to have a C to T transition in exon 4 in COL11A2.
This mutation changes Arg to translation termination. The patient’s father had the same
nucleotide change and he was reported to have a high arched palate and small upturned nose.
Patient 53 with non-syndromic micrognathia had a C to T change in exon 13 in COL11A2.
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DISCUSSION

5.1 About the aim of the study

Cleft palate is one of the most common congenital malformations. Its incidence varies among
and between races but, in practise, it is seen worldwide. Treatment of a cleft patient demands
a highly specialised team of professionals. Surgical reconstruction of cleft palate requires
special technical skills. Because of secondary problems (ear infections, speech delay, growth
disturbances of facial bones, dental problems) related to oral clefts, patients must be regularly
followed up during their growing period. Thus, cleft palate causes a medical and social burden
to the patient and financial costs to the society. Perhaps in the future, gene therapy can be
applied also to orofacial clefts, but it should be emphasized that there are many open
questions in gene therapy, and that gene transfer has not yet been used as evidence-based
treatment in any disease.

A family with a child with an oral cleft, should always be given an opportunity to meet a
clinical geneticist. This meeting should have two purposes: First of all, the family should be
informed about the mechanisms and the genetics of clefts. A very important goal of this
information is to vanish false assumptions and guilt. Secondly, an estimation of the recurrence
rate should be given. To give this estimation, the physician should rule out cleft syndromes,
which are inherited dominantly or recessively. To rule out these syndromes, the child and also,
if necessary, other family members, should be carefully examined. One of the aims of our
study was to obtain new information about the mechanisms and the genetics of cleft palate to
be given to the families.

5.2 Methodological considerations

Cleft palate is considered to be a genetically complex disease. In addition to genetic factors,
there are extrinsic factors that influence cleft formation. In non-syndromic CPO, there is no
clear mendelian model for inheritance. Studies on cleft syndromes have taught us that defects
in functionally very different types of genes can cause cleft palate. Because of these facts, we
have been obliged to pay particular attention to phenotyping and choosing the right method
for the linkage analysis. These problems are common to all gene-mapping projects concerning
complex, multifactorial diseases (Lander and Schork 1994, Risch and Merikangas 1996)

The decision to choose patients with CPO and exclude patients with CL and CL/P was based
on previous observations on the epidemiology and embryology of oral clefts. A cleft of the
primary palate and the lip (one or both sides) can occur together with a cleft of the secondary
palate. However, if a proband has a cleft of the secondary palate, the recurrence risk of a cleft
of the primary palate for relatives is no higher than the population risk, and vice versa (Fogh-
Andersen 1942). This observation, combined with the observation on different timing in
embryonic development (see above) leads us to assume that there might be partially different
etiological factors causing and disturbing either the closure of the primary palate only or the
secondary palate only. This assumption is also strengthened by the fact that there are
syndromes in which a cleft palate is a constant sign but a cleft lip is practically never seen.
One should still keep in mind that in some patients these two forms of cleft occur
simultaneously, and that there exist syndromes in which both forms can be seen separately in
a particular pedigree.
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Among CPO patients, it can not be assumed that all affected individuals with similar CPO
phenotypes carry the same mutation, or that they carry mutations in a particular gene. There
are several problems to be considered when working on genetically complex, multifactorial
diseases (Schork et al. 1997). In locus heterogeneity, defects in any gene can lead to a disease
independently of each other. Classical polygenic inheritance denotes a situation in which a
number of mutations in different genes must be transmitted to an individual before they result
in disease. In epistasis, the combined effect of two genes is “more” than or “different” from
the sum of their separate effects (Frankel et al. 1996). The time-dependent expression of a
gene has its most pronounced deleterious effect at a particular developmental stage. Extrinsic
factors can modulate gene expression. Any combination of these variations in gene action can
exist in cleft palate formation.

This fact inevitably leads to the question: Do we have enough power to find linkage or LD (if
one or both exist) in our study? Our simulations showed that in most candidate regions the
power to detect linkage disequilibrium is adequate, if the haplotype of at least two markers is
moderately in excess (P at least 20%) in the affected sample.

The other problem is that the penetrance and the model for inheritance of CPO are not known.
Therefore, we chose to use non-parametric linkage analysis when screening genome-wide and
candidate regions. Sib-pair analysis does not require prior assumptions on parameters but,
unfortunately, there are not enough affected sib-pairs with CPO in Finland. CPO has a
relatively largeλ value and, thus, distant relatives offer greater power than sib pairs (Risch et
al. 1990).

5.3 VWS

Previously, all the VWS families have shown linkage to 1q32-q41 (Murray et al. 1990,
Schutte et al. 1996, Sertie et al. 1999, Wong et al. 1999, Houdayer et al. 1999). We found a
large Finnish family to be unlinked to 1q32-q41. It is remarkable that one affected individual
only carried a lip pit. The diagnosis was based on this sign. Usually lip pits are seen in∼ 80 %
of patients. In this family, cleft palate was seen in all but one of the affected, and only one of
the affected carried cleft lip and palate. This phenomenon can reflect the predomination of CP
over CL/P in Finland (Lilius 1992). Other modifying loci or possibly extrinsic factors might
be involved in determining the exact phenotype. It can also be speculated whether these two
observations might imply a new subtype or variation of the Van der Woude syndrome.

In our study we found VWS in this large family to be linked to 1p34. Several interesting
candidate genes map to 1p34. CRTM (cartilage matrix protein, matrilin-1) has already been
excluded as a major gene in non-syndromic CL/P families (Vintiner et al. 1993). Endothelin-
A receptor–deficient mice manifest cranial neural crest defects (Clouthier et al. 1998).
Endothelin is essential for normal postmigratory differentiation in neural crest (Maschhoff et
Baldwin 2000). Endothelin 2 maps to the region implicated in family 0057. Multiple
epiphyseal dysplasia is caused by mutations in COL9A2 (Muragaki et al 1996), and cleft
palate is seen in many skeletal dysplasias. The new finding on mutations in IRF6 causing
VWS will teach us a lot about cleft formation in the near future.

In family 0062 the haplotypes of the father were IBS (3-5-3-5-3) in VWS region. Analysis of
extended haplotypes showed that the first affected child has inherited the maternal haplotype
from her father and the other affected child has inherited the paternal haplotype from his
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father. Both the parents of the father are unaffected. No clefts are known the have existed in
previous generations or in distant relatives. Interestingly, this haplotype is found also in two
other pedigrees with VWS (0060 and 0061) in affected members. It might be possible that the
father of family 0062 is a true homozygous for VWS causing mutation in 1q32-q41.

5.4 Non-syndromic cleft palate

On the basis of our study, it is obvious that 22q11, 2q32, MSX1 or TGF-β3 do not have major
roles in cleft palate formation in our study sample of the Finnish population. Although no
linkage nor association could be detected, these genes and genes in these regions might still
have some influence on cleft formation.

The genome-wide scan did not find any significant linkage. However, several points should be
emphasized. In the initial scan with nine pedigrees, the highest NPL scores were seen in
chromosome 1p in the same region (48-52 cM, p<0.05), which was linked to VWS in
pedigree 0057 (39-89 cM, p<0.0005). With fifteen additional families (10-24) and six
additional markers in 1p34, the NPL scores fell below 1.52 (p=0.069). In chromosome 2 at
~5-30 cM (2p24-p25) we found a suggestive linkage (Z>1.5 (p<0.05)), Zmax being 2.29
(p=0.016). This is the first time it has been reported that 2p24-p25 shows any suggestive
linkage to CPO. An interesting region was also found in chromosome 12 at 111.0 cM (12q21)
(Z=1.80, p<0.05). Marazita et al. had previously found significant associations for two loci in
chromosome 12 but in different locations (78 and 166 cM).

5.5 Robin sequence

Robin sequence is a triad of cleft palate, micrognathia and glossoptosis (Robin P 1923).
However, there is no convincing evidence that it is a true sequence. The high incidence of
twins among RS patients supports the theory that lack of space mechanically induces RS. On
the other hand, a large proportion of RS patients have either Stickler or velocardiofacial
syndrome, and this fact shows that well-known mutations can lead to RS. Recent conclusions
suggest that RS is causally heterogeneous and also pathogenetically and phenotypically
variable (Cohen 1999).

In our study, we wanted to check whether mutations in genes involved in Stickler sdr cause
Robin sequence, non-syndromic micrognathia or non-syndromic cleft palate. Two unrelated
patient with non-syndromic RS had a similar mutation in exon 17 in COL2A1. The mother of
the other patient was homozygous for the mutation. She has cleft palate only. The mutation
does not change the encoded amino acid. No splicing defects could be detected and both
alleles were expressed. Thus, it is unlikely that this nucleotide change would be disease-
causing, although it was not seen in controls. Three different nucleotide changes, which were
not seen in controls, were detected in COL11A1 in patients with non-syndromic RS. Two of
these mutations have previously been described in patients with Marshall syndrome. Our
patients did not show any clinical features suggesting Marshall syndrome, but different
phenotypes have been described in other diseases caused by collagen defects. Nucleotide
changes IVS45+3G>A and IVS50+3insT were now reported for the first time in patients with
non-syndromic RS. A nucleotide change IVS31+92T>A was detected in two patients with
non-syndromic RS. Both these patients had inherited the substitution from an unaffected
parent. All these three nucleotide changes in COL11A1 are likely to be disease-associated in
non-syndromic RS. An American patient with non-syndromic RS carried, in exon 4 in
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COL11A2, a mutation which changes a codon for arginine to a codon for translation
termination. It is likely that no functional protein is producted by the mutated allele. A patient
with non-syndromic micrognathia carried, in exon 13 in COL11A2, a mutation which
converts arginine to trp. This change should also have some effect because trp is not found in
the non-triple helical region between the major and minor triple helical domains in fibrillar
collagens.

We found several interesting nucleotide changes in COL2A1, COL11A1 and COL11A2,
mainly in patients with RS. They are not clearly disease-causing but disease-associated. The
etiopathology of Robin sequence needs further studies.
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CONCLUSIONS

Three different sequence variations in COL11A1 were found in four out of 24 non-syndromic
RS patients. Two of these variations have previously been reported in patients with Marshall
syndrome. Two different sequence variations in COL11A2 were detected, one in a RS patient
and the other in a patient with micrognathia. An identical variation in COL2A1 was detected
in two unrelated patients with RS. None of these sequence variations were seen in controls.
We conclude that these sequence variations can have impact on RS, CPO and micrognathia in
some but not in majority of these patients.

We studied five Finnish VWS families and in four of them VWS was linked to previously
reported VWS locus in 1q32-q41. Linkage to 1q32-q41 was clearly excluded in one large
pedigree. When, analysing this pedigree, we found in a genome-wide scan a second locus for
VWS in 1p34, which has not previously been reported.

Candidate regions 2q32 or 22q11 and candidate genes MSX1 or TGFβ3 do not play major
roles in cleft palate formation in Finnish families with non-syndromic cleft palate. Genome-
wide scan in these large, multiplex families did not reveal any significant linkage although
several interesting regions were found. The most interesting region is in 1p34 (48-52 cM),
which is the same region that VWS in pedigree 0057 with was linked (39-89 cM). We
conclude that in non-syndromic cleft palate there is locus heterogeneity, but there is a strong
evidence that in some families –yet an unknown- gene in 1p34 has impact on cleft formation.
This region in 1p34 needs to be studied further on.
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