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ABBREVIATIONS
brainPS, phosphatidylserine from bovine brain

CLZ, clozapine

CPZ, chlorpromazine

CsA, cyclosporin A

DMPC, 1,2,-myristoyl-sn-glycero-3-phosphocholine

DPPC, 1,2-palmitoyl-sn-glycero-3-phosphocholine

DSC, differential scanning calorimetry

eggPC, egg yolk phosphatidylcholine

GP, Laurdan emission generalized polarization

HPD, haloperidol

Ie, intensity of the pyrene excimer emission

Im, intensity of the pyrene monomer emission

Ie/Im, pyrene excimer-to-monomer ratio

Laurdan, 6-dodecanoyl-2-dimethylaminonaphthalene

LUV, large unilamellar vesicle

MLV, multilamellar vesicle

NBD-PC, 1-palmitoyl-2-(N-4-nitrobenz-2-oxa-1,3-diazol)aminocaproyl phosphocholine

PC, phosphatidylcholine

PE, phosphatidylethanolamine

PG, phosphatidylglycerol

PgP, P-glycoprotein

POPC, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine

POPG, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol

PPDPC,1-palmitoyl-2-[(6-pyren-1-yl)]decanoyl-sn-glycero-3-phosphocholine

PPDPG, 1-palmitoyl-2-[(6-pyren-1-yl)]decanoyl-sn-glycero-3-phosphoglycerol

RA, relative amplitude

RET, resonance energy transfer

Tm, main transition temperature

Tp, pretransition temperature

t1/2, halftime of the fluorescence decay

X, mole fraction of the indicated compound

γ, surface tension
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π, surface pressure

π0, initial surface pressure

∆π, change in surface pressure

∆Hm, enthalpy of main transition

∆Hp, enthalpy of the pretransition

Ψ, membrane dipole potential

Π, osmotic pressure
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SUMMARY
Lipids form the main structural element of cellular membranes. The lack of covalent

interactions between lipids within these assemblies provides the basis for the highly

dynamic properties of biological membranes. Lipids are synthesized by complex

enzymatic machineries, and a living cell contains a several hundred different lipid

species. The lateral organization of the membranes affects the functions of proteins.

The plasma membrane provides a permeability barrier for the cell and defines its

outer boundaries. Lipid membranes also form intracellular compartments with

specialized (colocalized) functions.

Proteins and DNA are well established targets for medical intervention (drugs) but

much less is known about the importance of lipids as drug targets. Drug-lipid

interactions are important, as the absorption and distribution of drugs at the level of

cells and organisms are highly dependent on the membrane permeability of these

compounds.

Membrane propeties affecting the drug-lipid interactions were studied in this thesis, as

well as changes in membrane properties due to the membrane association of the

drugs. A new finding was that membrane lateral heterogeneity can have large impact

on the membrane association of a model drug, doxorubicin. Also, novel effect of

drugs on the membrane was demonstrated as several drugs were shown to alter the

membrane lipid domain morphology in lipid monolayers. In addition, the effect of

cholesterol on the lipid interactions of Cyclosporin A were studied, and Cyclosporin

A was observed to have strong influence on cholesterol containing membranes. Drug-

lipid interactions of three neuroleptic drugs (clozapine, chlorpromazine, and

haloperidol) were investigated. Clozapine was observed to have a different mode of

membrane interaction as compared to the two other neuroleptics. This is of interest, as

clozapine shows clearly different effects in clinical use.

The factors modulating membrane properties are important in drug-lipid interactions.

Therefore, the effect of surface tension and osmotic pressure on the interfacial

dynamics of a phospholipid bilayer were also compared. Three inert solutes, viz.

betaine, choline chloride, and sucrose were used. The effects on the interfacial
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dynamics correlated with the increment of  surface tension while no correlation to

osmotic pressure was observed. These results are readily explained in the framework

of membrane lateral pressure profile, i.e. surface tension exerts its effects on the thin

interfacial region of the lipid membrane, causing increased packing. These findings

suggest a surface tension mediated mechanism for controlling the membrane

organization and structure.
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1. REVIEW OF THE LITERATURE
In the following sections, the structure and function of model and biomembranes are

briefly outlined. The importance of the drug-lipid interactions are also introduced with

some examples.

1.1. BIOLOGICAL MEMBRANES
Structure and composition
Lipid bilayers form the structural core of cellular membranes. Lipid bilayers in

biological membranes are composed of hundreds of different lipid species (Myher et

al., 1989). The plasma membrane forms the barrier between the extra- and

intraccellular milieu and intracellular membranes colocalize certain functions into

different cellular organelles, for example, the oxidative phosphorylation in

mitochondria, the degradation of protein, lipids, carbohydrates, and nucleic acids in

lysosomes, and the posttranslational modification of proteins in the golgi apparatus

(Lehninger et al., 1997). Biomembranes contain various amounts of integral and

peripheral proteins, and each organelle has characteristic membrane phospholipid

compositions (Lehninger et al., 1997). The physical state of the membrane also varies

from organelle to organelle (Mamdouh et al., 1998). Cholesterol content is highest in

the plasma membrane, and lowest in mitochondria, whereas the negatively charged

cardiolipin containing four acyl chains, is mainly found in the inner mitochondrial

membrane (Lehninger et al., 1997), and glycosphingolipids have an apical/basolateral

polarity 17-fold higher than phosphatidylcholines (van Meer and van Genderer,

1994). Additionally, some lipid species are highly enriched in certain cell types, for

example neurons have an absolute requirement for ω-3 fatty acid containing lipids in

order to maintain their physiological function (Fliesler and Anderson, 1983; Salem

and Ward, 1993; Salem and Niebylski, 1995). To this end, biomembranes are highly

heterogeneous in composition and functions within and between cells.

Dynamics and organization
The fluid mosaic model presented by Singer and Nicolson (1972) describes

biomembranes as a fluid matrix in which membrane proteins and lipids diffuse freely.

The current view of biomembranes is different in many aspects (Mouritsen and
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Kinnunen, 1996; Mouritsen and Andersen, 1998). It has become evident that

membrane components do not diffuse freely in the plane of the membrane, as the

diffusion is limited by multiple factors, such as the cytoskeleton and tight junctions

(van Meer and van Genderer, 1994). A large body of evidence has accumulated on the

structural organization of lipids in cellular membranes (Kinnunen, 1991; Kinnunen et

al., 1994; Mouritsen and Kinnunen, 1996). In plasma membranes the distribution of

lipids between intra- and extracellular leaflet is asymmetric and is maintaned by ATP

dependent systems, resulting in enrichment of cholesterol and sphingolipids on the

extracellular leaflet, and depletion of negatively charged phosphatidylserine from the

extracellular leaflet (Op den Kamp, 1979; Lehninger et al., 1997; Tocanne et al.,

1994). The transbilayer movement of phosphatidylserine to the extracellular side is

important for the platelet aggregation in blood vessels (Bevers, et al., 1999), and is

also one landmark of apoptosis (Adayev et al., 1998).  Lateral organization of

biomembranes has been suggested to be important for the physiological function

(Welti and Glaser, 1994; Mouritsen and Kinnunen, 1996; Prenner et al., 2000; Schütz

et al., 2000). Accordingly, changes in membrane lateral organization occur during cell

cycle and sperm maturation (Welby et al., 1996; Sivashamagam and Rajalakshmi,

1997; Flesch and Gadella, 2000). Likewise, a decrease in membrane cholesterol

content and microviscosity in hippocampal and cortex regions of rat brains has been

observed to correlate with learning processess (Kessler and Yehuda, 1985). The

metastatic potential of LM fibroblasts is highly correlated with the ratio of membrane

fluidity of intracellular/extracellular leaflets of the plasma membrane (Schroeder et

al., 1995). The membrane lipid composition also varies in high and low metastatic

variants of human prostatic cancer cell line (Dahiya et al., 1992), acyl chain

unsaturation in excised leiomyosarcoma correlates with the grade and mitotic activity

of the cancer cells (Singer et al., 1996), and apoptotic thymocytes can be identified by

their decreased membrane lateral packing (Schlegel et al., 1993). The membrane

microviscosity at the hydrocarbon core of plasma membranes of endothelial cells is

decreased in hypertensive subjects as compared to healthy subjects (Zicha et al.,

1999). The physicochemical state of the biomembranes is important as shown by

studies indicating tightly regulated control of membrane lipid composition in response

to several stimuli such as increased growth temperature, altered fatty acid content of

the diet, and exposure to drugs (Christiansson et al., 1985; Lehninger et al., 1997;

Luxo et al., 1998). Several microorganisms maintain their membrane lipid
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composition such that the phase state of the fluid membrane is below the lamellar-to-

nonlamellar phase transition, but on the prevailing condition there is a tendency to

form non-lamellar phases (Goldfine, 1984; Wieslander et al., 1986; Rietvield et al.,

1994; Morein et al., 1996). There is also some evidence that both eukaryotic and

prokaryotic cell membranes (at the growth temperature) are close to phase boundaries

corresponding to lipid phase separations (Linden et al., 1973; Linden and Fox, 1975;

Beehan-Martin et al., 1993)

1.2. LIPID DYNAMICS
Intra- and intermolecular dynamics
Lipid bilayers are highly dynamic structures and lipid dynamics can be divided into

two categories: conformational and translational. The former describes the

intramolecular motions, while the latter indicates the lateral position of the molecule

in the plane of the membrane. The rate of the translational movements is much slower

than those of intramolecular motions. (Fig. 1)

 
Figure 1. The characteristic frequencies of conformational and translational lipid dynamics in

membranes (van Meer and Genderen, 1994).

The free volume of the membrane describes the difference between the effective and

the van der Waals volumes per molecule (Bondi, 1954; Cohen and Turnbull, 1959;

Turnbull and Cohen, 1970). In lipid bilayers, free volume arises from short-lived,
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dynamic defects within the hydrocarbon core, due to trans-gauche isomerizations

resulting from the packing constraints and thermal motion (Xiang, 1993). Membrane

free volume is an important determinant for the lateral diffusion in the membranes

(Galla et al., 1979). Lipid dynamics are highly dependent on many factors, such as the

acyl chain length, number of cis-double bonds, lipid composition, pressure, degree of

hydration, temperature, and phase state of the membrane (Kinnunen et al., 1994). The

commonly used term ”membrane fluidity” is usually not well-defined, and it can be

considered to contain contributions from both conformational (microviscosity) and

translational (lateral diffusion) dynamics (Mouritsen and Kinnunen, 1996).

Lateral pressure profile
The distribution of the lateral pressure is not homogenous throughout the membrane.

(Fig. 2) Thermal motions cause conformational disorder in the acyl chain region

which leads to the tendency for lateral expansion. Binding of water to the lipid

headgroups increases lateral repulsion between headgroups causing membrane

expansion. The lateral expansion is balanced by the interfacial tension generated at

the apolar (hydrocarbon) polar (water) interface due to the unfavourable water-

hydrocarbon contacts (Seddon and Templer, 1995; Cantor, 1997a).

Figure 2. Membrane lateral pressure profile. Headgroup and chain repulsion are compensated by

interfacial tension, as a results π=0 (Kinnunen, 2000).
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This interfacial pressure can correspond to bulk pressures of many hundred

atmospheres (Cantor, 1997a; Cantor, 1999a). The interfacial tension represents a

direct expression of the hydrophobic effect (Tanford, 1980; Cevc and Marsh, 1987).

In some cases there can be attractive potential between polar headgroups, due to the

hydrogen bonding between headgroups (Boggs, 1987).

The equilibrium lateral pressure of lipid bilayers in model and biomembranes has

been estimated to range from 20 mN/m to 56 mN/m (Demel et al., 1975; Fulford and

Peel, 1980; Gruen and Wolfe, 1982; Jähnig, 1984; Nagle, 1986; Konttila et al., 1988;

Marsh, 1996; Crane et al., 1999), but most commonly values of ~30-40 mN/m are

believed to be in the correct magnitude (Marsh, 1996).

Lipid bilayer as a permeability barrier
The lateral pressure profile provides a framework for the description of the membrane

as a permeability barrier. The major barrier for water permeability across lipid bilayer

is formed by the first 7-8 carbons from the carbonyl ester groups (Inoue et al., 1985).

These carbon atoms have the lowest degree of freedom within the bilayer (Petrache et

al., 2000). Permeability through the lipid bilayer is dependent on the lipid packing

both in the interfacial region as well as in the hydrocarbon core (Xiang and Anderson,

1997). The partitioning of benzene into membranes depends on the lateral packing of

the phospholipid acyl chains. By increasing packing density from half maximal to 90

% of maximum, the partitioning of benzene decreases by an order of magnitude, and

the partitioning process is not dependent on the nature of the agent used to modify the

density, as temperature, cholesterol and acyl chain length cause the same effect

(Young and Dill, 1988). Partitioning of compounds into interfacial phase, such as a

bilayer is fundamentally different than partitioning between two bulk phases, such as

octanol-water partition, which is widely used in drug characterization (Young and

Dill, 1988).
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1.3. MEMBRANE HYDRATION
In aqueous solution water molecules associate with lipid headgroups, and interfacial

carboxy-ester groups. This ”bound water” forms the hydration shell of the lipid

(Jendrasiak, 1996). The physical properties of the bound water differ from those of

free, bulk water. The freezing point of bound water can be below 0 oC, and

translational and rotational properties, electrical conductivity as well as density also

differ from bulk water (Jendrasiak, 1996). The magnitude of these membrane effects

on the properties of water decay exponentially as a function of distance from the

surface, and the properties of water molecules in the hydration shell are not

homogeneous (Jendrasiak, 1996). It should be emphasized that the hydration shell is

dynamic, not static in nature.

The hydration of the hydrophilic headgroup plays an important role in the structure

and function of phospholipid bilayers (Jendrasiak, 1996). The membrane surfaces

have significant exposure of hydrophobic surface (Marrink and Berendsen, 1994).

Penetration of water molecules into lipid bilayers is not homogeneous and although

lipid headgroups are charged the organization of water molecules in the hydration

shell of phosphatidylcholine (PC) has been proposed to be similar to an idealized

clathrate structure of water around apolar solutes (Alper et al., 1993). Water

associated with lipid headgroups and the interfacial region is the main determinant of

the dipole potential of lipid membranes (Gawrisch et al., 1992; Brockman, 1994). The

number of water molecules in the hydration shell depends on the phase state of lipids

(McIntosh, 1996), the type of lipid headgroup (McIntosh, 1996), acyl chain

composition and the presence of cis-double bonds (Jendrasiak and Hasty, 1974). The

presence of compounds such as sterols increase membrane hydration (Jendrasiak and

Mendible, 1976; Marsh, 2002), which is augmented as the distance between adjacent

headgroups is increased by the additives (Jendrasiak and Hasty, 1974; Jendrasiak and

Mendible, 1976). Dehydration of phospholipid membranes has been shown to induce

phase separation (Webb et al., 1993; Lehtonen and Kinnunen, 1995) and lamellar-to-

hexagonal-II phase transition (Webb et al., 1993). Dehydration of phospholipid

membranes is also an essential prequisite to the fusion of lipid membranes (Wilschut

and Hoekstra, 1986).
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Any aqueous compartment (e.g. membrane surface) that is inaccessible to solute has

its water activity controlled by the solute concentration, the activity being lowered by

the addition of nonwater molecules (Parsegian and Rand, 1995; Parsegian et al., 2000;

Rand et al., 2000). The exclusion of water from some regions can be obtained by two

qualitatively different mechanisms. When a solute is too large to enter into the region,

steric exclusion occurs (Parsegian et al., 2000; Rand et al., 2000). Preferential

hydration means that the interface prefers to interact with water rather than with the

solute (Parsegian et al., 2000; Rand et al., 2000). However, preferential hydration and

steric exclusion can occur simultaneously in the same system. On the other hand, the

solute may prefer to interact with water more strongly than with the interface. Under

this osmotic pressure the components of the molecular assembly are pushed together

(Parsegian and Rand, 1995).

The introduction of different solutes in an aqueous medium induces structural changes

in water, and these compounds are described as "structure breakers" (chaotropes) or

"structure makers" (kosmotropes), depending on their effect on the hydrogen bonded

network of liquid water (Luu et al., 1990; Collins, 1997). Kosmotropes tend to

decrease the interfacial area while chaotropes have the opposite effect. The magnitude

of these changes depend also on the degree of solute depletion (kosmotropes) or

enrichment (chaotropes) at the interfaces, in comparison to bulk phase (Koynova et

al., 1998). Typically, compounds accumulating on the interface decrease surface

tension.

1.4. MEMBRANE LATERAL HETEROGENEITY
The lateral organization in model and biomembranes occurs in various lengthscales

from nanometer to micrometer scale (Sankaram et al., 1992; Mouritsen and

Jørgensen, 1994; Tocanne et al., 1994; Hwang et al., 1995; Mouritsen and Kinnunen,

1996; Schram et al., 1996; Gliss et al., 1998; Schütz et al., 2000; Loura et al., 2001),

leading to the formation of lipid domains, which are characterised as an area of

membrane having different lipid compositions and/or physicochemical properties than

the neighbouring regions (Welti and Glaser, 1994; Mouritsen and Kinnunen, 1996;

Brown, 1998). Lipid domains have been observed in both model and biomembranes

and the importance of these domains on the biological processes emphasizes the need
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to understand the underlying physicochemical factors for domain formation and

dynamics (Welti and Glaser, 1994; Mouritsen and Kinnunen, 1996; Mouritsen and

Jørgensen, 1997; Stillwell et al., 2000; Leidy et al., 2001).

The coexistence of gel and fluid phases as well as fluid-fluid immiscibility have been

demonstrated for binary phospholipid mixtures (Pagano et al., 1973; Shimshick and

McConnell, 1973; Wu and McConnell, 1975; Mabrey and Sturtevant, 1976;

Sankaram et al., 1992; Hinderliter et al., 1994; Klinger et al., 1994; Jørgensen and

Mouritsen, 1995; Thompson et al., 1995; Schram et al., 1996; Holopainen et al., 1997;

Gliss et al., 1998; Holopainen et al., 2000a; Leidy et al., 2001; Loura et al., 2001). In

lipid membranes containing charged phospholipids, phase separation or microdomain

formation can be induced by Ca2+ (Galla and Sackmann, 1975; Ashley and Brammer,

1984; Eklund et al., 1988), polycations (Galla and Sackmann, 1975; Eklund and

Kinnunen, 1986), electric fields (Lee et al., 1994; Lee and McConnell, 1995), DNA

(Kôiv et al., 1994), peripheral cationic proteins (Kinnunen et al., 1994), peptides

(Hartmann et al., 1977; Denisov et al., 1998), and pH (Tilcock and Cullis, 1981).

Changes in membrane lateral organization are also caused by interactions between

integral membrane proteins and lipids (Sperotto and Mouritsen, 1993). Membrane

dehydration was proposed to induce domain formation (Bryant and Wolfe, 1989) and

has been experimentally verified for binary lipid mixtures (Lehtonen and Kinnunen,

1995). Lateral heterogeneity can also be induced by alcohol (Rowe, 1987; Mou et al.,

1994), and by dynamic fluctuations at the main transition (Freire and Biltonen, 1978;

Pedersen et al., 1996; Nielsen et al., 2000). Mismatch between the effective length of

the phospholipid acyl chains can also cause the formation of microdomains (Lehtonen

et al., 1996a). Mismatch between the hydrophobic thickness of phospholipids and

integral membrane protein was first predicted to cause ordering of the membrane

(Mouritsen and Bloom, 1984; 1993), and later experimentally demonstrated for

bacteriorhodopsin (Piknová et al., 1993; Dumas et al., 1997) and lactose permease

(Lehtonen and Kinnunen, 1997).

The regular distribution of lipids into hexagonal superlattices provides another

mechanism for membrane organization. Based on the observed maximas/minimas on

the fluorescence intensity, anisotropy, and lifetime measurements, and by theorethical

calculations, fluorescent phospholipid analogs and sterols have been suggested to
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distribute regularly in membranes, forming hexagonal superlattices (Somerharju et al.,

1985; Kinnunen et al., 1987; Virtanen et al., 1988; Tang and Chong, 1992; Sugar et

al., 1994; Chong et al., 1994; Tang et al., 1995; Cheng et al., 1997; Liu et al., 1997).

The regular distribution has been suggested to originate from long-range repulsive

interaction between the guest molecules (Sugar et al., 1994), as well as from the steric

elastic strain (Sackmann, 1983), whereas rapid lateral diffusion can destroy the

regular organization (Tang et al., 1995).

1.5. LIPID-PROTEIN INTERACTIONS
Lipid-protein interactions are not trivial modulators of protein function and cellular

signalling cascades. The knowledge on lipid-protein interaction is also warranted for

better understanding of the significance of drug-lipid interactions on the effects of

drugs.

Several membrane properties have been observed to influence the function of

peripheral and integral membrane proteins. Some proteins require specific lipid

species in the membrane for proper and/or optimal activity (Srivastava et al., 1987).

Phospholipase A2 is perhaps the most studied peripheral membrane protein in respect

to the effect of membrane lateral heterogeneity onto its activity. In brief, the

interfacial boundary between lipid  domains creates structural defects in the

membrane, and the activity of phospholipase A2 is increased in the presence of these

defects (Mouritsen and Biltonen, 1993; Burack et al., 1993; Burack and Biltonen,

1994; Hønger et al., 1996; Huang et al., 1998). Likewise, phospholipase C shows an

anomalous increase in its activity near the Tm (Holopainen et al., 2002). HII-

propensity is a tendency for formation of non-lamellar phases, without actual

formation of such phases (Epand, 1991). The activity of several peripheral membrane

proteins, such as protein kinase C (Slater et al., 1994) and CTP:phosphocholine

cytidyltransferase (Epand, 1991; Jamil et al., 1993), and integral proteins, such as

rhodopsin (Brown, 1994), alamethicin (Keller et al., 1993), and insulin receptor

tyrosine kinase (McCallum and Epand, 1995) have all been shown to be snesitive to

HII-propensity.
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Membrane lipid dynamics can affect the conformational state of integral proteins

(Cantor, 1997b; 1999b), as well as the interactions between peripheral membrane

proteins and membrane surfaces (Kinnunen et al., 1994). The depth of the changes in

membrane dynamics can play a dominant role (Cantor, 1997a; 1997b; 1999a; 1999b),

as shown for the opioid receptor, whose substrate binding was sensitive to changes in

membrane interfacial microviscosity, but not to hydrocarbon microviscosity (Lazar

and Medzihradsky, 1992). The lipid phase state also modulates the functions of

integral membrane proteins, as shown for the lactose permease (Zhang and Kaback,

2000). Membrane attachment of chromosome replication initiation protein dnaA is

required for its function. The fluidity of the lipid membrane is important for the

function, and factors increasing fluidity, such as temperature, cis-double bonds, small

amounts of cholesterol, or certain drugs enhance the activity of dnaA protein (Yung

and Kornberg, 1988).

Hydrophobic mismatch between lipids and integral membrane proteins affect the

membrane lateral organization but hydrophobic mismatch can also have large impact

on the activity of proteins, as shown for the leucine transporter (In´t Veld et al., 1991),

cytochrome c oxidase (Montecucco et al., 1982), (Na+-K+)-ATPase (Johansson et al.,

1981a), and Ca2+-ATPase (Caffrey and Feigenson, 1981; Johansson et al., 1981b:

Cornea and Thomas, 1994).

1.6. PHASE TRANSITIONS
Phospholipids exist in two categories, namely thermotropic and lyotropic (Kinnunen

and Laggner, 1991). Biological membranes are mainly in the fluid lamellar phase.

Therefore, the main emphasis will be put on the gel and fluid phases and gel  fluid

phase transitions. (Fig. 3) In the gel phase, the average cross-sectional area per

hydrocarbon chain is approx. 20 Å2 (Seddon and Templer, 1995). At pretransition the

lipid molecules become tilted. This arrangement allows larger headgroup area per

lipid molecule, and the pretransition is accompanied with increase in headgroup

hydration (Janiak et al., 1979; Okamura et al., 1990; Cevc, 1991; Seddon and

Templer, 1995). The lipid bilayer further expands in gel (Lα)  fluid (Lβ) transition

(Seddon and Templer, 1995). The interfacial area per molecule increases by 15-30 %,

with decreasing bilayer thickness, and onset of rapid lateral diffusion (Seddon and
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Templer, 1995). The main transition temperature (Tm) of fully hydrated lipid bilayers

is dependent on the headgroup, chain saturation, and acyl chain length (Koynova and

Caffrey, 1998). Tm increases linearly with added carbon atoms, and decreases with

increasing number of cis-double bonds (Koynova and Caffrey, 1998).

Figure 3. DSC endotherm for DPPC MLVs showing the pretransition (Tp) and main transition (Tm)

peaks. Schematic representation of gel, rippled, and fluid phases (from left to right) are shown.

Dynamic lateral heterogeneity due to the coexisting gel and fluid domains in the main

transition has been suggested (Marsh et al., 1977; Doniach, 1978; Freire and Biltonen,

1978; Pedersen et al., 1996; Jutila and Kinnunen, 1997). The fluctuations of the

coexisting gel and fluid domains are likely causes of the observed maximum in heat

capacity at Tm and maximums in lateral compressibility, bending elasticity, membrane

permeability and activity of phospholipase A2 (Papahadjopoulos et al., 1973; Op den

Kamp et al., 1975; Marsh et al., 1976; Doniach, 1978; Freire and Biltonen, 1978;

Nagle and Scott, 1978; Evans and Kwok, 1982; Maynard et al., 1985; Menashe et al.,
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1986; Bloom et al., 1991; Hønger et al., 1997), and these effects have been attributed

to the presence of domain boundaries (Papahadjopoulos et al., 1973; Hønger et al.,

1996). The length of the interfacial boundary between gel and fluid domains has been

calculated to have a maximum at Tm (Freire and Biltonen, 1978). Based on the pyrene

fluorescence emission and resonance energy transfer measurements the main

transition has been suggested to proceed from gel to fluid via an intermediate phase,

characterized as a strongly fluctuating superlattice (Jutila and Kinnunen, 1997).

1.7. DRUG-LIPID INTERACTIONS
Why to study drug-lipid interactions?
Most of the currently used drugs are amphiphilic in nature, and have a tendency to

self-associate and interact with membranes (Schreier et al., 2000). The main barrier

for passive diffusion through cellular membranes is the lipid bilayer. The differences

in lipid compositions affect the passive diffusion of compounds through lipid

membranes, and eventually affect on the accumulation of drugs in cells (Burns and

North, 1986; Escriba et al., 1990; Mason et al., 1992; Callaghan et al., 1993).

Elucidation of the mechanisms affecting the passive diffusion of compounds through

the lipid bilayer is of primary importance in drug development. Also, the

overexpression of the P-glycoprotein (PgP) is one of the major causes for multidrug

resistance in human cancers (Gottesman and Pastan, 1993; Bosch and Croop, 1996).

PgP is an integral membrane protein, and the effective function of PgP requires the

substrate to be located within the membrane (Romsicki and Sharom, 1999; Lu et al.,

2001). Several drugs are known to be efficiently pumped out from the cell by PgP,

and increase in the intracellular concentration of PgP substrates can be obtained by

co-administrating PgP inhibitor and substrate (Bosch and Croop, 1996).

Conventionally, drug-lipid interactions are neglected as a possible explanation for

increased intracellular concentration of the substrate in studies of PgP function.

However, a PgP inhibitor (verapamil), also increased the passive diffusion of a

substrate (doxorubicin) through liposomal and cytoplasmic membranes (Drori et al.,

1995; Speelmans et al., 1995). The drug-lipid interactions are playing a important role

in physicochemical characterization of compounds during drug development, and

passive membrane permeation is the main pathway for drugs to cross cellular barriers

(Faller and Wohnsland, 2001).
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Binding of drugs to membrane lipids can lead to alterations in the function of proteins

as shown for phospholipase A2 (Mustonen et al., 1991), cytochrome c oxidase

(Nicolay and de kruijff, 1987), lysosomal phospholipases, phosphatidylinositol

specific phospholipase C, sphingomyelinase (Mingeot-Leclercq and Tulkens, 1999),

and protein kinase C (Kumar et al., 1997). The drug-lipid interactions can be involved

in the actual mechanism of action or in the adverse effect of drugs, as proposed for the

lung toxicity of amiodarone (Reasor and Kacew, 1996), cardiotoxicity of doxorubicin

(Goormaghtigh et al., 1982), and nephrotoxicity of aminoglycosides, cephalosporins,

and amphotericin B (Kaloyanides, 1994; Mingeot-Leclercq and Tulkens, 1999).

Displacement of peripheral membrane proteins by competition with drugs for the

liganding lipids is also possible, as demonstrated for cytochrome c (Jutila et al.,

1998). Understanding of drug-lipid interactions is crucial in the design of liposomal

drug carriers (Drummond et al., 1999). Finally, the lipid membrane could represent

the actual target for the drug (Kinnunen, 1991), as shown for amphotericin B (Bolard,

1986), and antimicrobial peptides such as magainin, cecropin, and defensin

(Bechinger, 1997; Matsuzaki, 1998; 1999; Oren and Shai, 1998; Shai, 1999; Sitaram

and Nagaraj, 1999), for which no protein receptors have been identified. Also, the

membrane interactions of general anesthetics are believed to be important in the

mechanism of action (Cantor, 1997a and references therein). The large number of

different lipid species in cells and the organ specific variations in membrane lipid

compositions are likely to be selected by evolution for certain purposes. The thorough

understanding of drug-lipid interactions is important in the light of the examples given

above.

Clinical relevance
For efficient absorption from the gastrointestinal tract a compound has to cross the

plasma membrane of enterocytes lining the gut lumen. The majority of the

compounds crosses the plasma membrane by passive duffusion through the lipid

bilayer (Kansy et al., 2001). The main determinant for absorption thus being drug-

lipid interactions. After the drug has reached the circulation it will redistribute in the

body. The distribution can be limited due to some blood-tissue barriers, such as the

blood-brain barrier (Krämer et al., 2001). The blood-brain barrier is formed by
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endothelial cells sealed by tight junctions in brain capillaries, and several proteins are

involved in the formation of tight junctions (Krämer et al., 2001). The blood-brain

barrier is also metabolically very active and contains large amount of transport

proteins (Krämer et al., 2001). However, most of the compounds going through these

barriers must cross the lipid bilayer of the endothelial cells (Krämer et al., 2001).

Thus, drug-lipid interactions are playing crucial role in the distribution of compounds

across blood-tissue barriers.

Also, if the drug target is intracellular, the permeation through the plasma membrane

of the target cell is of outmost importance. As different cells can have different

plasma membrane compositions and physicochemical properties, a thorough

knowledge of drug-lipid interactions would help the development of optimal

properties for drug candidates.

Aminoglycosides bind to the acidic phospholipids which accumulate into the brush

border of renal cells during hypoperfusion or ischemia (Molitoris et al., 1993).

Megalinin transports aminoglycosides actively into the cells where they accumulate

into lysosomes (Mingeot-Leclercq and Tulkens, 1999). The accumulation of

aminoglycosides into lysosomes changes the properties of lysosomal membranes

leading to formation of myelin bodies and eventually to phospholipidosis (Mingeot-

Leclercq and Tulkens, 1999). By administering compounds which inhibit binding of

aminoglycosides to acidic phospholipids the nephrotoxicity of these important

antibiotics can be decreased (Mingeot-Leclercq and Tulkens, 1999). Several drugs are

known to induce accumulation of lipids into the cell, a toxic side-effect called as

phospholipidosis (Halliwell, 1997). Phospholipidosis is related to the effect of the

drugs on the membrane lipid synthesis, transport, and degradation (Lüllman et al.,

1978). The pathological implications include corneal opacity, decreased glomerular

filtration, acute renal failure, and pulmonary fibrosis (Lüllman et al., 1978).

Importantly, phospholipidosis can be reverted by stopping the administration of the

drug (Lüllman et al., 1978). The high affinity of Amphotericin B towards ergosterol

makes this drug a very specific antifungal agent and it is clinically used to treat

systemical fungal infections (Gallis et al., 1990). Binding of amphotericin B onto

fungal membranes causes the formation of drug-lipid complexes which causes

deterioration of the membrane structure. The state of aggregation of amphotericin B
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(monomers vs. aggregates) is important for the efficacy-toxicity profile. Monomeric

amphotericin B is active only towards ergosterol containing fungal membranes

whereas aggregated amphotericin B causes lysis in both ergosterol (fungal) and

cholesterol (animal) containing membranes (Barwicz and Tancrède, 1997; Andreoli,

1974; de Kruijff and Demel, 1974; Cohen, 1992).

The toxicity of several pharmacological agents such as amphotericin B, doxorubicin,

and paclitaxel can be reduced by encapsulating these compounds into liposomes

(Adler-Moore and Proffitt, 1993; Janoff et al., 1993; Sharma and Straubinger, 1994).

Additionally, the efficiency of these drugs can also be increased by their lipsomal

encapsulation, as shown for doxorubicin (Drummond et al., 1999). As these drugs are

incorporated into liposomes the life-time of the drugs in the body increases

(Drummond et al., 1999). The blood vessels in the tumor tissue are more leaky than in

normal tissue. Thus, the liposomes can enter into extravascular space of tumor tissue,

but in normal tissue the entrance is limited and increases the drug concentration in the

tumor tissue as compared to normal tissue (Drummond et al., 1999). Liposomal

formulations of several drugs are already in clinical use.

1.8. DOXORUBICIN
Doxorubicin is used in the treatment of various cancers and it belongs to group of

antineoplastic drugs called anthracyclines. (Fig. 4) The mechanism of action of

doxorubicin seems to be associated with the binding of doxorubicin to double

stranded DNA (Dollery, 1999a). However, the coupling of doxorubicin onto large

macromolecules prevents the accumulation of the drug in cells and its access to DNA,

but the cytotoxic effect of the drug is not lost (Tritton and Yee, 1982; Wingard et al.,

1985; Barabas et al., 1991; Faulk et al., 1991). Another anthracycline, daunorubicin,

activates sphingomyelinase in cell cultures leading to the degradation of

sphingomyelin to ceramide and phosphocholine. The accumulation of ceramide

induces apoptosis in these cells already at drug concentrations obtained in vivo

(Jaffrézou et al., 1996). In this respect the activation of phospholipase A2 by

doxorubicin in vitro could be an important factor in modulating the pharmacodynamic

effects of this agent (Mustonen and Kinnunen, 1991). The most feared side-effect of

doxorubicin is its dose-dependent cardiotoxicity. Doxorubicin efficiently inhibits
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mitochondrial respiratory chain activities. The inhibition is due to the binding of

doxorubicin to cardiolipin, blocking the binding of respiratory chain enzymes to this

lipid (Huart et al., 1984; Nicolay and de Kruijff, 1987). The association constants of

doxorubicin to cardiolipin and DNA are almost equal (1.8*106 M-1 vs. 3.6*106 M-1),

indicating that cardiolipin can compete with DNA as a drug binding site

(Goormaghtigh et al., 1980). In light of the above findings, the molecular level

knowledge of doxorubicin-lipid interactions is important in order to define its

mechanism(s) of action and adverse effects.

Figure 4. Chemical structure of doxorubicin.

Drug-lipid interactions of doxorubicin have been extensively investigated. Two types

of membrane binding have been established for doxorubicin, one driven by

electrostatic interactions and the other mainly by hydrophobic interactions (Duarte-

Karim et al., 1976; Karczmar and Tritton, 1979; Burke and Tritton, 1985; Henry et al.,

1985). In the latter binding mode the hydrophobic dihydroxyanthraquinone ring is

intercalated between phospholipid acyl chains, whereas in the electrostatic type of

binding the amino sugar of doxorubicin is interacting with the ionized phosphate of

the acidic phospholipid (Karczmar and Tritton, 1979; Burke and Tritton, 1985; Henry

et al., 1985; Fiallo and Garnier-Suillerot, 1986; Dupou-Cézanne et al., 1989).

Phosphatidylethanolamine (PE) and acidic phospholipids enhance the binding of

doxorubicin to membranes, possibly due to hydrogen bonding between PE and

doxorubicin (Speelmans et al., 1997). This enhanced binding is of interest, as the

acidic phospholipids are colocalized with PE into the inner leaflet of plasma

membrane, suggesting a higher drug content on the inner leaflet as compared to outer
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leaflet. The increase in membrane fluidity increases the accumulation of doxorubicin

into cells (Burns and North, 1986), which is in agreement with the higher membrane

partition of doxorubicin into fluid than gel phase membranes (Karczmar and Tritton,

1979).

 Doxorubicin has very small effects on the thermal phase behaviour of zwitterionic

phospholipids (Constantinides et al., 1986). However, when small amounts of acidic

phospholipids are present, doxorubicin causes phase separation (Constantinides et al.,

1986) and decreases Tm, the magnitude of the effect being dependent on the type of

the acidic phospholipids (Tritton et al., 1978; Constantinides et al., 1986).

1.9. CYCLOSPORIN A
Cyclosporin A is an immunosuppressing drug used in the organ transplantation to

prevent the graft rejection by the host immune system (Dollery, 1999b). (Fig. 5) CsA

is composed of eleven amino acids, six of which are methylated, and one amino acid

is D-isomer. The affinity of CsA towards intra-cellular protein cyclophilin is well

established, and the inhibition of the function of cyclophilin-calcineurin complex is

central to the mechanism of action of CsA (Hemar and Dautry-Varsat, 1990;

O´Donohue et al., 1995).

Figure 5. Chemical structure of cyclosporin A.
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Due to its hydrophobicity, CsA readily partitions into lipid membranes. Membrane

partitioning is a prequisite for the efficient interaction of compounds with the PgP

(Romsicki and Sharom, 1999; Lu et al., 2001). CsA inhibits the function of the PgP

which is involved in the excretion of bile salts from liver cells into bile duct. The

impaired excretion of bile salts is involved in CsA induced cholestasis (Yasumiba et

al., 2001). The cholestasis was accompained with concominant increase in

cholesterol/phospholipid ratio and increased DPH anisotropy, i.e. decreased acyl

chain movements (Yasumiba et al., 2001). Accordingly, the binding of CsA into lipid

bilayers can be expected to cause changes in the physical properties of membranes as

has been reported. CsA decreases the main transition enthalpy and temperature of

vesicles composed of saturated DPPC, and abolishes the pretransition (O´Leary et al.,

1986; Wiedmann et al., 1990). NMR measurements revealed CsA to increase acyl

chain order in DPPC liposomes at temperatures above Tm. At temperatures below Tm

of DPPC CsA induced disorder in the acyl chains (Wiedmann et al., 1990). These

changes on acyl chain order below and above Tm of DPPC are similar to those caused

by cholesterol (Wiedmann et al., 1990). The effect of CsA on membranes in living

cells was quite opposite, as at 37 oC CsA decreased the fluorescence polarization of

DPH, indicating decreased acyl chain order (Drori et al., 1995). As these results are

compared to CsA induced changes in canalicular membrane lipid dynamics

(Yasumiba et al., 2001), it is evident that CsA induces cell specific changes in

membrane lipid dynamics. Myelin basic protein induced fusion of lipid membranes

was inhibited by CsA, and the fluid-HII phase transition temperature of

dielaidoylphosphoethanolamine was increased at low CsA-to-lipid ratios and

decreased at high contents of CsA (Epand et al., 1987).

1.10. CLOZAPINE, CHLORPROMAZINE, AND

HALOPERIDOL
Neuroleptic drugs are used in the treatment of schizophrenia and other types of

psychiatric disorders. (Fig. 6) These drugs have been shown to affect the functions of

various receptors, such as adrenergic, muscarinic, histamine, 5-hydroxytryptamine,

and dopamine receptor families (Bymaster et al., 1999). Studies on other than

neurotransmitter receptor mediated effects are limited for CLZ and HPD, whereas

CPZ is a very extensively investigated neuroleptic drug. CPZ has been reported e.g. to
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inhibit protein kinase C (Singh et al., 1992), and to alter the activities of enzymes of

lipid metabolism (Hoshi and Fujino, 1992; Heiczman and Tóth, 1995). The observed

increase in the cellular content of acidic phospholipid and increased

unsaturated/saturated lipid ratio induced by CPZ could represent adaptive responses

(Stuhne-Sekalec et al., 1987).

Figure 6. Chemical structures of clozapine (CLZ), chlorpromazine (CPZ), and haloperidol (HPD).

CPZ binds to the headgroup region of acidic phospholipid, forming a 1:1 complex

(Kubo and Hostetler, 1985; Stuhne-Sekalec et al., 1987). It also penetrates into the

acyl chain region of phospholipid membranes (Römer and Bickel, 1979; Kubo and

Hostetler, 1985). Depending on membrane lipid composition and phase state CPZ has

been reported to cause both an increase and decrease in the acyl chain order in

membranes (Neal et al., 1976; Römer and Bickel, 1979; Zubenko and Cohen, 1985).
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In gel phase phospholipid membranes CPZ induces the formation of fluid domains

(Hanpft & Mohr, 1985). Binding of HPD to phospholipid membranes increases

disorder more in the interfacial region than in the hydrophobic core of the membrane

(Palmeira & Oliveira, 1992). CPZ and CLZ are good antioxidants and decrease

membrane lipid peroxidation (Dalla Libera et al., 1998) whereas HPD has been

reported to have an opposite effect (Sawas & Gilbert, 1985). These effects might be of

importance as lipid peroxidation has been shown to affect the affinity or number of

binding sites in membranes for 5-hydroxytryptamine, muscarinic, α-adrenergic, and

dopamine receptor ligands (Rego and Oliviera, 1995).

1.11. MODEL MEMBRANES
Why to use model membranes?
As described earlier in this chapter, the biomembranes contain large number of

different lipids and proteins. The experiments on lipid-protein and drug-lipid

interactions would initially be very complex to analyze, due to the multiple variables.

By using well-defined model systems, the underlying physicochemical principles and

specific interactions are more precisely interpreted. The dependence of PLA2 activity

on membrane lateral heterogeneity is well established in model membranes

(Mouritsen and Biltonen, 1993; Burack et al., 1993; Burack and Biltonen, 1994;

Hønger et al., 1996; Huang et al., 1998). Recently, the same membrane properties

were shown to determine the PLA2 activity also in biological membranes

(erythrocytes), indicating that mechanisms obtained from simple model membranes

also apply to complex biological systems (Harris et al., 2001).

Liposomes
Liposomes are spherical lipid vesicles formed by a single (unilamellar) or multiple

(multilamellar) bilayers, enclosing small volumes of aqeous solution inside the vesicle

(Bangham et al., 1965). The diameter of liposomes (∅  from ~30 nm to several µm)

depends on the preparation technique. The choice of lipid compositions is limited, as

not all lipids or lipid mixtures form planar membranes which are prequisite for

liposome formation. The curvature of liposomes, and the lipid composition of a single

liposome cannot be exactly controlled. Liposomes can be studied by various

techniques, such as spectroscopy, X-ray diffraction, and differential scanning
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calorimetry. Some of the techniques require the incorporation of probes, such as

fluorescent dyes, spin-labelled molecules, and different isotopes. Liposomes with

diameter of several µm can be visualized directly by phase contrast, fluorescence, and

confocal microscopy. Bilayer curvature depends on the liposome diameter, with small

unilamellar vesicles (∅ <50 nm) having the highest curvature. For giant unilamellar

liposomes (∅ >1 µm) the average bilayer curvature is practically the same as for

planar membranes when considering curvature at molecular level. For a liposome

composed of one lipid species, the bilayer packing defects are highest for small

vesicles. This property (curvature) of liposomes should be taken into account while

comparing the results obtained from measurements using liposomes of different size.

Monolayers
Monomolecular films on the surface of an aqueous solutions are called (Langmuir)

monolayers. At air-water interfaces amphiphilic molecules are oriented so that

hydrophobic parts are exposed to the air and the hydrophilic regions towards the

aqueous phase. Monolayers form an excellent model for studying ordering in two-

dimensions, with two thermodynamical variables, temperature and pressure, being

readily controlled (Kaganer et al., 1999; Brockmann, 1999). In addition, the lipid

composition and lateral packing can be controlled independently from membrane

curvature (Kaganer et al., 1999; Brockmann, 1999). The classical way to characterize

monolayers is to measure surface pressure-area isotherms. In addition, the properties

of monolayers can also be characterized by other techniques, such as surface potential

measurements, and different imaging techniques, the latter providing information on

the lateral organization of the monolayer (Möhwald, 1995). Lipid monolayers exhibit

phase transitions similar to lipid bilayers. The liquid-expanded (LE) phase is

somewhat similar to the fluid phase in lipid bilayers, and a liquid-condensed (LC)

phase somewhat corresponds to a gel phase. Acyl chain mobility is high in the LE

phase, intermolecular interactions low, and lateral diffusion is >10-8 cm2/s (Möhwald,

1995). In contrast, LC phase is characterised by highly ordered acyl chains (oriented

perpendicular to the surface), strong intermolecular interactions, and lateral diffusion

<10-10 cm2/s (Möhwald, 1995). The phase coexistence can be visualized by

fluorescence microscopy. The contrast in the images is due to different dye solubility

or quantum yield in different phases (Möhwald, 1995). Fluorescence microscopy of
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lipid monolayers have been used to study lateral organization of lipid monolayers

(Nag et al., 1991; Maloney and Grainger, 1993). Fluoresecence microscopy of lipid

monolayers has been used to demonstrate phospholipase A2 and cholesterol oxidase

induced changes in membrane heterogeneity (Grainger et al., 1989; 1990; Slotte,

1995), phase coexistence (Weis, 1991), and domain formation induced by Ca2+

(Eklund et al., 1988) and by electric fields (Lee et al., 1994). In giant unilamellar

vesicles (∅ > 1 µm) lipid domains of similar size and morphology as in lipid

monolayers have been reported (Bagatolli and Gratton, 2000).
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2. AIMS OF THE PRESENT STUDY

i) to study the effects of membrane properties on the drug-lipid interactions of model

drugs: chlorpromazine, clozapine, cyclosporin A, doxorubicin, and haloperidol. The

membrane properties of interest were lateral packing and lateral heterogeneity. Also,

the effect of cholesterol and acidic lipids were studied.

ii) to study the effect of chlorpromazine, clozapine, cyclosporin A, and haloperidol on

membrane lateral organization.

iii) to compare the effects of surface tension and osmotic pressure on the interfacial

dynamics of phospholipid bilayers.
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3. MATERIALS AND METHODS

3.1. MATERIALS
Except for cyclosporin A (Novartis, Basel, Switzerland) all compounds were obtained

from commercial suppliers. Deionized water used for buffers was Millipore filtered

(Millipore, Bedford, MA, USA). Concentrations of non-fluorescent lipid and drug

stock solutions were determined gravimetrically using a high precision electrobalance

(Cahn Instruments, Inc., Cerritos, CA, USA). For fluorescent compounds the

concentration were determined spectrophotometrically.

3.2. PREPARATION OF LIPOSOMES
Lipids were mixed in desired molar ratio in chloroform. The mixtures were dried

under a stream of nitrogen, and the dry residues were kept under reduced pressure for

at least 2 h to remove the last trace of solvent. Samples were hydrated in a buffer for

30 min at a temperature of approx. 10 oC above main transition temperature to yield

multilamellar liposomes (MLVs). For DSC measurements the MLVs were maintained

on ice overnight before measurement. When using large unilamellar vesicles (LUVs)

the MLV dispersions were subsequently extruded (Macdonald et al., 1991) through

polycarbonate filter (pore size 0.1 µm, Millipore, Bedford, MA, USA) using

Liposofast-Pneumatic (Avestin, Ottawa, Canada) (Macdonald et al., 1991). For

osmotic pressure studies (IV) the MLVs were freeze-thawed five times before

extrusion.

3.3. DIFFERENTIAL SCANNING CALORIMETRY

(DSC) (I-III)
Heat capacity scans of liposome samples (total lipid concentration 0.4 mM (III) or 0.7

mM (I-II)) were recorded with a high-sensitivity differential scanning

microcalorimeter (VP-DSC, Microcal Inc., Northampton, MA, USA), operated at a

heating rate of 0.5 oC/min. The data were analyzed using commercial software

(Origin, Microcal Inc., Northampton, MA, USA). Transition enthalpies are expressed

as kilojoules per mole of phospholipid and were determined by integration of the
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peaks, using the internal calibration of the instrument as a reference. The deviation

from the baseline was taken as the beginning of the transition and the point of return

to the baseline as the end of the transition. The pretransition temperature (Tp) was

determined as the peak of the smaller endotherm, and the maximum in excess heat

capacity was taken as the lipid main transition temperature (Tm). Data points

illustrated represent the mean for two or three separate samples, and the error bars

indicate standard deviation.

3.4. RESONANCE ENERGY TRANSFER (I)
Distance between two molecules can be determined by using resonance energy

transfer. The efficiency of the transfer depends on the average distance between the

donor and the acceptor being inversely proprotional to r6 (Stryer, 1978). Electronic

energy is efficiently transferred from a fluorescent energy donor to a suitable acceptor

up to a distances of 60 Å (Stryer, 1978). Additionally, orientation of the donor

emission and acceptor absorption dipoles, and the magnitude of the spectral overlap

of the donor emission and acceptor emission spectra determine the efficiency of the

energy transfer process (Stryer, 1978). Doxorubicin has a broad absorption peak

centered at 480 nm, which overlaps the emission spectrum of pyrene (Mustonen and

Kinnunen, 1991). With excitation of the sample at 344 nm and measuring pyrene

(donor) emission at ~480 nm it is possible to measure the binding of doxorubicin

(acceptor) to lipid membranes containing pyrene (Mustonen and Kinnunen, 1991,

1993; Kôiv and Kinnunen, 1994). The membrane association of doxorubicin is

evident as a decrease in pyrene emission intensity. Although the decrease in the

fluorescence intensity correlates with the number of doxorubicin molecules bound to

the liposomes the determination of the actual number of drug molecules bound to the

vesicles is not possible, because at low surface occupancy the number of donors

quenched by each bound acceptor is large. However, upon increasing surface

occupancy by doxorubicin the decrement in emission intensity vs. the number of

additional drug molecules bound diminishes in a progressive manner. Quantitation of

resonance energy transfer processes of this type has been shown to be complex

(Drake et al., 1991).
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3.5 PYRENE FLUORESCENCE EMISSION (I)
Steady-state fluorescence measurements were carried out with a Perkin-Elmer LS50B

spectrofluorometer equipped with magnetically stirred, thermostated cuvette

compartment. The data were analyzed using the dedicated software provided by

Perkin-Elmer. Membrane lateral organization was monitored using pyrene labelled

phospholipid analogs, PPDPC and PPDPG. (Fig. 7)

Figure 7. Chemical structures of PPDPC and PPDPG.

The final lipid concentration in steady-state measurements was 25 µM. Monomeric

pyrene relaxes to the ground state by emitting photons at ~378 nm or at ~400 nm, the

peak intensity and maximum emission wavelength depending on the solvent polarity

(Kinnunen et al., 1993; Duportail and Lianos, 1996). During its lifetime, excited-state

pyrene can form a characteristic short-lived complex, excimer with a ground-state

pyrene. This complex relaxes back to ground-state by emitting quanta as a broad and

featureless band centered at ∼  480 nm (Ie). In the absence of possible quantum

mechanical effects the excimer-to-monomer ratio (Ie/Im) depends on the rate of

collisions between pyrenes (Kinnunen et al., 1993). Consequently, for pyrene-
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containing phospholipid analogs the value of Ie/Im reflects the lateral diffusion as well

as the local concentration of the fluorophore in the membrane (Kinnunen et al., 1993).

Excitation was at 344 nm while pyrene monomer and excimer emission was recorded

at ∼  378 nm and at ∼  480 nm, respectively. The samples were initially equilibrated at

lowest T (~28 oC) for 10 minutes. After recording the spectra, T was increased. The

sample was equilibrated for 3 minutes in the new T before measuring the spectra.

3.6. LAURDAN FLUORESCENCE MEASUREMENTS

(IV)
Laurdan (Fig. 8) steady-state fluorescence measurements were carried out with a

Perkin Elmer LS50B spectrofluorometer equipped with a magnetically stirred cuvette

compartment thermostated with a circulating waterbath (Haake F6/Haake C25,

Karlsruhe, Germany). The data were analyzed by dedicated software from Perkin-

Elmer. The excitation wavelength was 350 nm and emission was monitored at 440

and 480 nm. The emission generalized polarization (GP) was calculated using

equation:

GP = (I440-I480) / (I440+I480)

where I440 and I480 are the emission intensities measured at 440 and 480 nm (Parasassi

et al., 1998). Importantly, these measurements do not relate to emission polarization

but to polarity of the fluorophore surroundings. Final lipid concentration was 25 µM.

Measurements were done at 25 oC.

Figure 8. Chemical structure of Laurdan.



40

3.7. STOPPED-FLOW MEASUREMENTS (I)
The kinetics of binding of doxorubicin to liposomes was measured using a stopped-

flow spectrofluorometer (Olis RSM 1000F, On-Line Instruments, Inc., Bogart, GA,

USA). A computer controlled circulating waterbath (Neslab Instruments, Portsmouth,

NH, USA) regulated the temperature in the reaction chamber and in the syringes. The

final concentrations of phospholipid and doxorubicin were 25 and 4 µM. Excitation

wavelength was at 344 nm, and fluorescence emission was recorded between 375 and

525 nm. The fluorescence decays for each sample were monitored using scanning

rates of 1000, 62, and 10 scans/s with the respective collection times of  0.25, 5, and

96 s.

Values for the given halftimes of the reactions represents averages from at least three

separate measurements. Data with two fluorescence decay processes were fitted by

the equation

Y=A1 x e-k1.t + A2 x e-k2.t

 which was solved with nonlinear least-squares fitting procedures by both Levenberg-

Marquardt algorithm and Successive Integration method using the routines of the

software provided by the instrument manufacturer. The best-fit parameters A1 and A2

represent the amplitudes of the processes and k1 and k2 the respective kinetic rate

constants. In 96 seconds measurements the photobleaching of pyrene due to the 450

W xenon lamp irradiation became evident as an additional slow process. As this

bleaching was very slow (t1/2≈ 115 s) it did not interfere with the recording of the

fluorescence intensity decays due to the membrane association of doxorubicin.

However, because of the large difference in the halftimes of the different components

the routines of the software did not allow to obtain accurate values for the amplitudes

for the two exponential processes measured. Yet, the relative amplitude (RA) of the

fast fluorescence decay seen within the 250 ms timedomain can be calculated from

the data by equation:

 RA=∆I/I0

where I0 is the initial level of fluorescence of the LUVs prior to the rapid quenching

by doxorubicin and ∆I is the amplitude of the rapid fluorescence decay (decrement in

I). (Fig. 9)
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Figure 9. Relative amplitude (RA) of the rapid fluorescence quenching was calculated by equation

RA=∆I/I0. The increase in fluorescence (I0) is due to the addition of pyrene labelled liposomes.

3.8. MONOLAYER PENETRATION

MEASUREMENTS (II-III)
Penetration of drugs into monomolecular lipid films was measured using magnetically

stirred circular wells. Surface pressure (π) was monitored with a platinum Wilhelmy

plate (II) or wire probe (III) attached to a microbalance (KSV2200, KSV instruments,

Helsinki, Finland (II), and µTrough S, Kibron, Inc., Helsinki, Finland (III)). The

aqueous phase was 5 mM Hepes, 0.1 mM EDTA (pH 7.4). Lipids were spread on the

air-buffer interface in chloroform (approx. 1 mg/ml) and were allowed to equilibrate

for 20 min so as to reach different initial surface pressures (π0) before the addition of

drug (in DMSO) into the subphase. The increment in π after the addition of drug was

complete in 2-20 minutes depending on the drug and lipid composition. ∆π was take

to be the difference between the initial surface pressure (π0) and the value observed

after the intercalation of the drug into the film. The data are represented as ∆π vs. π0,

thus revealing the decrement in the intercalation of drug into lipid monolayer upon

increasing lateral packing density of the film. Final concentration of DMSO was <1

vol-%, and at this concentration DMSO had no measurable effect as such on the π.

All monolayer measurements were done at ambient temperature (~22 oC).
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3.9. COMPRESSION ISOTHERMS (III)
Compression isotherms were recorded using 111.1 cm2 (width 55 mm, length 202

mm, subphase volume 22 ml) trough. Surface pressure (π) was monitored with a

metal alloy probe hanging from a high precision microbalance (µTrough S, Kibron

Inc.). For compression isotherms and fluorescence microscopy the indicated mixtures

of lipids and neuroleptic drugs were dissolved in a mixture of

hexane/isopropanol/water (70/30/2.5, by vol.). These solutions were spread on the air-

buffer (20 mM Hepes, 0.1 mM EDTA, pH 7.0) interface. After 5 min equilibration the

film compression was started using two symmetrically moving barriers. The

compression rate was in all measurements one Å2/acyl chain/min. Data is represented

as π vs. area/acyl chain, where each lipid molecule consists of two acyl chains. In the

calculations one drug molecule is taken as equivalent to one acyl chain. All

monolayer measurements were done at ambient temperature (~22 oC). The mean

molecular areas occupied by the drugs (equivalent to one acyl chain) in the film at any

given surface pressure were calculated using the following equation:

AD = (AT-AL) / XD

where AT is the mean molecular area of the molecules in the presence of the indicated

drug, AL is the surface area of the lipids in the absence of the drug, AD is the surface

area of the drug, and XD its mole fraction in the film. The equation applies to the

situation with either ideal mixing or complete immiscibility, i.e. not involving

molecular interactions, condensing effects, or non-ideal partitioning of the drugs.

However, the results allow the qualitative comparison of the drugs.

3.10. FLUORESCENCE MICROSCOPY (II, III)
For fluorescence microscopy a Langmuir trough equipped with a quartz window on

the bottom was placed on the stage of a Zeiss IM-35 inverted fluorescence

microscope. Compression isotherms were recorded as described above with slight

modifications, as follows. After the desired target pressure was reached by continuous

compression by two barriers the film was allowed to stabilize for 10 min before the

image was recorded through a Nikon ELWD (20x) objective. NBD-PC (X=0.02) was
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used as a fluorescent tracer for microscopy. The excitation and emission wavelengths

were selected with filters transmitting in the range 420-480 nm and > 500 nm,

respectively. Fluorescence images were viewed with a Peltier-cooled digital camera

(Hamamatsu C4742-95, Hamamatsu, Japan) connected to a computer. During the 10

min equilibration time a small decrease in π was observed, reflecting the relaxation of

the monolayer. It is to be emphasized that the images obtained are unlikely to

represent true equilibrium. The solid domain growth kinetics has an effect on the

shape and size of these domains (Miller and Möhwald, 1987), thus the relaxation of

the monolayer is a potential source of error in the measurements. Yet, the results

should be amenable to comparison as the equilibration times and compression rates

were kept identical. Moreover, the observed domain morphologies were reproducible.

All measurements were performed at ambient temperature (~22 oC).

3.11. OSMOLARITY AND SURFACE TENSION

MEASUREMENTS (IV)
The freezing point depression method (Micro-Osmometer Model 3300, Advanced

Instruments Inc., Norwood, MA, USA) was used to obtain Π vs. osmolality curve for

choline chloride. All measurements were done in duplicate. The difference between

these duplicate assays was 0-16 mosm/kg, with an average difference of 6 mosm/kg.

For betaine and sucrose the Π vs. osmolality data were retrieved from the homepage

of the Laboratory of Physical & Structural Biology

(http://dir.nichd.nih.gov/Lpsb/docs/OsmoticStress.html). The measurements were

done by the vapor pressure method.

The effect of betaine, choline chloride, and sucrose on the surface tension of water

was measured by a multichannel microtensiometer (MultiPi WS2, Kibron Inc.,

Helsinki, Finland). Sample volume was 50 µl per well. The instrument uses the du

Nouy technique with the wire probes attached to the microbalance sensor heads. All

measurements were done at ambient temperature (~22oC) and for each solute

concentration at least six individual samples were measured. The surface tension

recorded for pure water was 72.8±0.1 mN/m, in keeping with the literature (Adamson,

1990).
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4. RESULTS

4.1. MEMBRANE INTERACTIONS OF

DOXORUBICIN (I)

Kinetics of binding of doxorubicin to liposomes
Kinetics of binding of doxorubicin to liposomes has not been reported. Therefore it

was of interest to study whether the two different binding modes, electrostatic and

hydrophobic, could be detected by the association kinetics of doxorubicin into the

liposomes. Additionally, the effect of dynamic lateral heterogeneity on the kinetics of

binding was investigated. The resonance energy transfer from pyrene to doxorubicin

was used to assess binding of this drug to phospholipid LUVs. PPDPC (X=0.03) was

incorporated into neutral POPC liposomes. POPC was gradually substituted by POPG

in order to obtain negative charges into the liposomes. These lipids have been shown

to mix ideally in absence of divalent cations (Findlay and Barton, 1978; Garidel et al.,

1997). At XPG>0.03 PPDPG was used as the resonance energy donor, and at

XPG=0.01 and XPG=0.02 PPDPC was gradually substituted by PPDPG.

Effect of PG content
The binding of doxorubicin to fluid PC liposomes was observed to have a half-time

(t1/2) of approx. 2 s. (Fig. 10) At XPG<0.04 only one fluorescence decay was observed,

with t1/2 remaining at ~2 s. At XPG=0.04 the decay of fluorescence became two-

exponential, the second fluorescence decay having t1/2 ~1 ms. The fluorescence decay

remained two-exponential upto XPG=1.00. After the appereance of the second, fast

fluorescence decay, the t1/2 of the slower decay continuosly increased, whereas the t1/2

of the faster decay remained within 1-4 ms. The relative amplitude (RA) of the fast

fluorescence decay reached saturation at approx. XPG=0.25. At low PG content t1/2 of

the fast fluorescence decay varied in an irregular manner, reaching a maximum at

XPG=0.065, and at XPG=0.10, while a minimum in t1/2 was evident at XPG=0.09.



Figure 10. Panel A) Kinetics of binding of

doxorubicin to liposomes as a function of PG

content. Panel B) Relative amplitude (RA) of

the fast fluorescence quenching (O) as a

function of XPG.

The increment in t1/2 of the slower fluorescence decay is likely to result from

decreased drug concentration in the buffer after the rapid membrane association. This

was supported by the finding that the kinetics of binding of doxorubicin onto

zwitterionic PC liposomes is dependent on the doxorubicin concentration (Söderlund

et al., unpublished observation).

Doxorubicin has been shown to penetrate through the lipid bilayers into the

liposomes, but the translocation of doxorubicin is rather slow, requiring 5 to 10

minutes to reach the equilibrium (Praet et al., 1993). Accordingly, it is unlikely that

this process would contribute to the fluorescence changes reported here.

Screening of electrostatic charges on PC/PG (75:25) liposomes by NaCl

and CaCl2

The appereance of fast fluorescence decay in the presence of PG suggested this

process to involve electrostatic interactions. In order to verify electrostatic

interactions in the binding the effect of NaCl and CaCl2 were studied. NaCl

completely abolished the fast fluorescence decay at [NaCl]>50 mM. Also, at



46

[CaCl2]>150 µM the fast fluorescence decay was no longer observed. These findings

indicate that fast fluorescence decay involved electrostatic interactions between

doxorubicin and liposomes, and clearly indicate that the two binding modes can be

separated by their respective half-times. (Fig. 11)

Figure 11. Effects of NaCl on the kinetics (panel A) and RA (panel B) of the binding of doxorubicin to

PC/PG LUVs (XPG=0.25). Panel C) illustrates the effects oc CaCl2 on the kinetics and panel D) on the

RA.

Effect of membrane lateral heterogeneity
The strong dependence of the fast electrostatic driven association of doxorubicin to

XPG makes it possible to use this process to probe the initial organization of the

liposome surface before the binding of doxorubicin occurs. The kinetics of binding of

doxorubicin to DPPC/PPDPG (97:3) LUVs were measured in the course of the main

transition. The fraction of negatively charged PPDPG was lower than the amount

required for rapid, electrostatic binding to fluid POPC/POPG vesicles. Only rapid

fluorescence decay was evident at temperatures below 34 oC. The fast fluorescence
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decay (t1/2~2 ms) was observed up to 37 oC, while its relative amplitude decreased as

the temperature was increased, approaching zero at ~38 oC. Increasing the

temperature from 37 to 38.5 oC prolonged t1/2 of the fast component from ~1 ms to 0.2

s. The slower fluorescence decay (t1/2~20 s) was evident and constant at temperatures

34-36 oC. Increasing temperature from 36 to 39 oC resulted a decrease in t1/2 of the

slow fluorescence decay, and at temperatures above ~39 oC only one fluorescence

decay was observed (t1/2 from 0.3 to 0.2 s), t1/2 decreasing as temperature was

increased.

In order to verify the two-exponential

fluorescence decay to arise from the

presence of acidic phospholipid, the

binding of doxorubicin to liposomes

composed purely of PC

(DPPC/PPDPC, 97:3) was measured.

At the temperature range studied (30-

46 oC) only one fluorescence decay

was evident for the LUVs composed

purely by zwitterionic lipids. As the

temperature was increased t1/2 became

progressively faster. At 34 oC a sudden

decrease in t1/2 was observed,

corresponding to the temperature of the

appeareance of slow fluorescence

decay in DPPC/PPDPC liposomes.

(Fig. 12)

Figure 12. Dependence of doxorubicin binding

kinetics and RA on temperature in DPPC

LUVs.
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Changes in the lateral distribution of PPDPC and PPDPG in the course

of DPPC main transition
To obtain more information on the lateral organization during the main transition, the

Ie/Im of DPPC/PPDPC (97:3) and DPPC/PPDPG (97:3) LUVs was measured. PPDPC

is efficiently excluded from gel phase matrix consisting of DPPC, leading to

formation of domains enriched of the former lipid (Somerharju et al., 1985; Hresko et

al., 1986; Marcie and Lentz, 1986). The similar mechanism could also result in the

lateral segregation of PPDPG, but this has not been reported.

Figure 13. Temperature dependence of Ie/Im values of PPDPC (X=0.03, O ) and PPDPG (X=0.03, g) in

DPPC LUVs.

The values of Ie/Im of PPDPG were increased with temperature up to ~34 oC

whereafter a plateau was reached. At ~37 oC the Ie/Im started to decrease in a

progressive manner, until reaching a minima at ~41 oC. At temperatures above 41 oC

Ie/Im increased linearly in liquid crystalline state (fluid) liposomes. These findings

suggest PPDPG molecules to be separated from the gel phase DPPC matrix. The

segragation can be explained as follows. The bulky pyrene moiety in PPDPG perturbs

the effective packing of gel phase DPPC. The segregation of PPDPG into domains
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decreases the level of perturbation. The pyrene excimer formation of PPDPG was

lower than that of PPDPC, likely reflecting electrostatic repulsions between PG

headgroups of the former lipid derivative. (Fig. 13)

Differential scanning calorimetry was used to measure the effect of PPDPC and

PPDPG (X=0.03) on the thermal phase behaviour of DPPC LUVs. The Tm of pure

DPPC LUVs is 41.2 oC and it was decreased to 40.9 oC and 40.4 oC in the presence of

PPDPC and PPDPG, respectively. (Table I & Fig. 14)

Table I. Compilation of the measured and deconvoluted DSC endotherms for the LUVs. The maximum

in heat capacity in each curve is marked as Tm (experimental data) or Tmax (in deconvoluted peaks). The

deviation from the baseline is denoted as T1 and return to the baseline as T2. Numerical data for the

main transitions are those illustrated in Fig. 14.

DPPC DPPC/PPDPC DPPC/PPDPG
97:3, mol/mol 97:3, mol/mol            

 Tm 41.2 oC 40.9 oC 40.4 oC
 T1 37.7 oC 35.6 oC 34.0 oC
 T2 43.0 oC

Peak 1
 Tmax 40.5 oC 40.2 oC 38.9 oC
 T1 37.7 oC 36.2 oC 34.0 oC
 T2 43.4 oC 43.8 oC 43.5 oC

 Peak 2
 Tmax 41.2 oC 40.9 oC 40.5 oC
 T1 39.6 oC 39.8 oC 38.9 oC
 T2 42.8 oC 42.0 oC 42.0 oC

Peak P
 Tmax 40.3 oC 40.0 oC
 T1 39.0 oC 36.9 oC
 T2 41.6 oC 43.3 oC
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Figure 14. DSC endotherms of DPPC LUVs in absence (panel A) and presence of PPDPC (X=0.03,

panel B) or PPDPG (X=0.03, panel C).
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4.2. MEMBRANE INTERACTIONS OF CSA (II)
CsA has been demonstrated to induce cholesterol-like changes in acyl chain order. As

cholesterol is abundant in the eucaryotic cell membranes it was of interest to

investigate the interaction between CsA and cholesterol containing membranes.

Effect of CsA on the thermal phase behaviour of DMPC/cholesterol MLVs

The effect of CsA on the thermal behaviour of DPPC MLVs has been previously

studied (O´Leary et al., 1986; Wiedmann et al., 1990). A low cholesterol content and

a saturated phospholipid was selected for DSC measurements in order to obtain

reliable endotherms. Therefore, the effects of CsA on the thermal behaviour of

DMPC/cholesterol (10:1) MLVs were studied.

Figure 15. DSC endotherms of DMPC MLVs with increasing contents of CsA.

The effects of cholesterol on the phase behaviour of DMPC have been extensively

studied, and cholesterol abolishes the pretransition already at low (X<0.05) contents,

and broadens the main transition accompanied with decreased transition enthalpy

(Koynova and Caffrey, 1998). A single endotherm was observed for

DMPC/cholesterol MLVs with Tm~23.2 oC. CsA decreased the Tm of
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DMPC/cholesterol MLVs in a concentration dependent manner, and at XCsA=0.06 a

drop (~0.6 oC) in Tm was observed.

Figure 16. Panel A) Main transition enthalpy of DMPC MLVs as a function of CsA. Panel B) shows

the effect of CsA on Tm of DMPC MLVs.

The presence of CsA caused a marked broadening of the endotherm, and multiple

shoulders appeared into the endotherm, suggesting phase separations. The effect of

CsA on the main transition enthalpy (∆H) was very complex. At XCsA=0.01 and 0.02

∆H increased from ~11 kJ/mol (in absence of CsA) to ~15 kJ/mol. This increase was

followed by a sudden drop at XCsA=0.03, ∆H decreasing to ~9.1 kJ/mol. At
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XCsA=0.035 to 0.045 ∆H increased to ~14-18 kJ/mol, while at XCsA=0.05 and 0.055 a

sharp minimum in ∆H (~6 kJ/mol) was reached. As CsA content was further inceased

∆H remains at higher values than in absence of CsA. (Figs. 15 & 16)

Binding of CsA to lipid monolayers
The effect of lipid lateral packing and

cholesterol on membrane association

of CsA was studied. At surface

pressures (π) below 19 mN/m the

increase in π  (∆π) due to penetration

of CsA into lipid monolayer was

influenced by cholesterol. The slopes

of the decrease of ∆π at π0<19 mN/m

extrapolated to zero at ~25 mN/m and

~24 mN/m for eggPC and

eggPC/cholesterol (1:1), respectively.

In eggPC monolayers the slope of ∆π

changed abruptly at ~19 mN/m, and

the new slope extrapolated to zero at

~35 mN/m. In the presence of

cholesterol the change in the slope

occurred at ~22 mN/m, and the new

slope extrpolated to zero at ~31 mN/m.

These results indicated that cholesterol

decreased the penetration of CsA into

lipid monolayers at high packing

pressures (π0> 19 mN/m). (Fig. 17)

Figure 17. Increase in surface pressure (∆π) of

eggPC (panel A) and eggPC/cholesterol, (1:1,

mol/mol,  panel B) monolayers after addition of

CsA (final drug concentration was 167 nM) into

the subphase.

Influence of CsA on the lateral organization of lipid monolayers
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The effects of CsA on the lipid domain morphology were visualized by fluorescence

microscopy of lipid monolayers. NBD-PC was used as a fluorescent dye and it

preferentially partitions into LE domains, and as a result the LC domains appear as

dark, non-fluorescent areas (Weis and McConnell, 1985). Accordingly, fluorescence

microscopy of phospholipid monolayers allows the visualization of the co-existence

of LE and LC domains in the transition region (Weis, 1991). The calculated subphase

concentration of CsA was 37.5 nM, i.e. assuming that all of the added CsA would

dissolve into subphase.

Figure 18. Fluorescence microscopy images of DPPC/NBD-PC monolayers in absence (panels A and

C) and presence of CsA (panels B and D). The values of π were (panel A) 13.1 mN/m, (panel B) 14.1

mN/m, (panel C) 18.7 mN/m, and (panel D) 17.8 mN/m. NBD-PC (X=0.02) was incorporated as a

fluorescent probe. Scale bar corresponds to 20 µm.
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In the absence and presence of CsA the LC (dark) domains appeared at π~9-10

mN/m. In DPPC monolayers large solid domains were observed at π~13-14 whereas

the presence of CsA caused a dramatic decrease in the size of these domains. In the

presence of CsA, the relative interfacial boundary length of one domain was

dramatically decreased as compared to domains in absence of CsA. In absence of CsA

and at higher π values (15-25 mN/m) the fluid-solid domain boundaries become

diffuse. In the presence of CsA the domain boundaries remained sharp even at higher

π values (15-25 mN/m), indicating that CsA could stabilize the domain interfaces at

higher π values. As π was increased from ~13 mN/m to 25 mN/m in the presence of

CsA, the circular domains transformed into star-like structures with the area per

domain increasing. (Fig. 18)

The presence of cholesterol (X=0.10) induced changes in the lateral organization of

the monolayer. In the presence of cholesterol no large solid domains were observed,

but instead a large reticular network of solid phase surrounded fluid domains. (Fig.

19) The observed domain morphology was in accordance with previously reported

domain morphologies in DPPC/cholesterol (90:10) monolayers (Worthman et al.,

1997). The domain morphology was in different from DPPC monolayers where solid

domains were surrounded by fluid matrix. CsA completely destroyed the reticular

network induced by cholesterol. In the presence of CsA in the DPPC/cholesterol

monolayer only small circular solid domains were observed in fluid matrix. As π was

increased the number of solid domains increased but their size remained practically

the same. The increase in the number of LC domains per image as π was increased

indicates a larger fraction of the monolayer to be in LC phase. During the monolayer

compression, the mean molecular area decreased, and as the domain size remained

nearly constant, the number of molecules per LC domain thus had to increase. In

addition, the domain boundary length increased as the number of domains becamed

higher.
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Figure 19. Fluorescence microscopy images of DPPC/cholesterol/NBD-PC (88:10:2) monolayers in

absence (panels A-D) and presence (panels E-H) of CsA. Values of π were (panel A) 13.3 mN/m,

(panel B) 18.8 mN/m, (panel C) 19.6 mN/m, (panel D) 30.5 mN/m, (panel E) 13.8 mN/m, (panel F)

17.7 mN/m, (panel G) 22.1 mN/m, and (panel A) 31.4 mN/m. Scale bar corresponds to 20 µm.
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4.3. MEMBRANE INTERACTIONS OF CLOZAPINE,

CHLORPROMAZINE, AND HALOPERIDOL (III)

In the following section the main emphasis is put on the comparison of the effects of

an atypical neuroleptic CLZ, and conventional neuroleptics, CPZ and HPD.

Classification of neuroleptics to conventional and atypical is based on the different

(clinical) effects of these compounds on the negative and positive symptoms of

schizophrenia, not on the chemical structure of the compound (Kapur and Remington,

2001).

Neuroleptic drug induced changes in the thermal phase behaviour of

DPPC/brainPS MLVs
Progressive replacement of DPPC by brainPS broadened the main transition

endotherm, and already at XPS=0.05 a shoulder was clearly evident in the endotherm,

thus indicating a phase separation. The main transition enthalpy decreased as the

content of PS was increased. The Tm decreased gradually as XPS was increased, but a

small peak remained at ~41 oC. (Fig. 20)

The effects of CLZ, CPZ, and HPD on the thermal phase behaviour of DPPC/brainPS

(95/5) MLVs were studied. In the presence of CPZ and HPD, the shoulder at ~41 oC

was still evident, whereas CLZ abolished the phase separation. (Fig. 21) The

pretransition temperature was decreased gradually by all three drugs, CLZ having the

smallest effect. All three drugs abolished pretransition at low concentration

(XCLZ>0.03, XCPZ>0.02 and XHPD>0.02). The Tm was decreased by all three drugs,

With CLZ having the smallest effect. The main transition enthalpy was increased by

CPZ, and HPD caused a biphasic change in ∆H. CLZ had only very slight effects,

except the minima observed at XCLZ=0.05 (corresponding CLZ:PS ratio of 1:1). (Fig.

22)



Figure 20. Effect of brainPS on the endotherms

of DPPC MLVs.

Figure 21. Effects of CLZ, CPZ, and       HPD

(X=0.05) on DPPC/brainPS (95/5) MLVs

endotherms.

Binding of CLZ, CPZ, and HPD to lipid monolayers
The affinities of CLZ, CPZ, and HPD to zwitterionic eggPC and negatively charged

brainPS monolayers were compared. CLZ produced the largest increase in ∆π in PC

monolayers, and was able to penetrate into eggPC monolayer even at π0>36 mN/m. In

eggPC monolayers, the increase in ∆π caused CPZ and HPD was approx. half of that

seen with CLZ. Additionally, the penetration of CPZ and HPD into eggPC

monolayers was prevented at much lower lipid packing densities. In brainPS

monolayers CPZ caused largest increase in ∆π, and CLZ lowest. (Fig. 23)
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Figure 25. Neurolept induced changes in domain morphology of DPPC/brainPS monolayers.

Horizontal rows (from top to bottom): no drug, CLZ, CPZ, and HPD. Vertical rows (from left to right):

15, 20, and 25 mN/m. Scale bar corresponds to 20 µm.

Overall the results indicate that all three drugs induced changes in the domain

morphology and CLZ had the smallest effect. The changes produced by the drugs are

clearly dependent on the compound, and are thus compound-specific.
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4.4. SURFACE TENSION AND OSMOTIC

PRESSURE (IV)
Fluorescence properties of Laurdan
The fluorescent naphtalene moiety of Laurdan possesses a dipole moment due to the

partial charge separation between 2-dimethylamino and the 6-carbonyl residues and,

upon excitation the dipole moment increases (Weber and Farris, 1979; Parasassi et al.,

1998). Laurdan is virtually insoluble to water, thus the calculated GP value is

obtained entirely from the fluorescent probes located into the membrane (Parasassi et

al., 1993). The emission maxima of Laurdan in phospholipid membranes depends

upon the phase state of the lipid, but is insensitive to headgroup, charge, and pH

(Parasassi et al., 1991; 1998). In lipid membranes the fluorescent moiety of Laurdan is

located at the level of glycerol backbones (Parasassi et al., 1998). The emission

maxima is ~440 nm in gel phase and ~490 nm in fluid phase (Parasassi et al., 1998).

The value for GP has been shown to assess the relaxation of the water molecules

surrounding the fluorescent moiety of Laurdan in phospholipid membranes (Parasassi

et al., 1991; 1998). The dipolar relaxation observed during the phospholipid phase

transition and in the fluid phase is not due to the probe itself or reorientation, but is

due to the water molecules penetrating to the glycerol backbone level (Parasassi et al.,

1991; 1998). The generalized emission polarization (GP) value can be used to monitor

water penetration into the bilayer, the higher the GP value, the lower the penetration

(Parasassi et al., 1994; 1998).

Effects of betaine, choline chloride, and sucrose on γ
Several solutes such as NaCl (Adamson, 1990), polyols (Kaushik and Bhat, 1998),

and many amino acid salts (Kita et al., 1994) have been reported to increase surface

tension. Physically, a solute increasing surface tension of water will oppose an

increase in the exposure of a hydrophobic surface to the aqueous phase. The effects of

betaine, choline chloride, and sucrose on the Laurdan GP in bilayer membranes were

measured. POPC LUVs were used as a model membrane. First, the effects of these

three solutes on γ were measured at three osmotic pressures, 0.5, 1.0, and 2.0 osm/kg.

γ was increased in the order of sucrose>betaine>choline chloride at all studied Π.

(Table II) The largest increase was 2.8 mN/m by sucrose at Π= 2.0 osm/kg.
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Table II. Increase in surface tension (∆γ) by betaine, choline chloride, and sucrose shown at increasing

isoosmolar concentrations. The respective molal concentrations are shown in brackets.

Osmolarity (osm/kg)

0.5 1.0 2.0

Betaine 0.17±0.09 0.42±0.15 0.80±0.16
(0.47) (0.90) (1.65)

Choline chloride 0±0.13 0.27±0.20 0.64±0.10
(0.29) (0.59) (1.22)

Sucrose 0.58±0.13 1.34±0.06 2.78±0.18
(0.47) (0.91) (1.70)

Effects of γ  and Π on Laurdan GP
At equal osmotic pressures the GP value increased in the order

sucrose>betaine>choline chloride (Fig. 26), and the increments correlated with the

observed increasing values for γ (Table II). At 0.5 osm/kg choline chloride, a slight

increase in GP without a change in surface tension was observed and could be

explained by an increased osmotic pressure due to the solute. Importantly, as the ∆GP

values were plotted against the change in ∆γ a strong correlation was evident. (Fig.

27) A possible relationship between GP values and ∆γ could be provided by the

change in hydration as such, surface tension induced changes in membrane tension

and membrane stiffness, and consequent changes in the free energy of membrane

fluctuations. Attenuated water dynamics around the fluorescent moieties would likely

cause increase the GP value.

In MLVs the bilayers are pushed into close proximity, which can change membrane

dynamics. Also, in MLVs the access of osmolytes into the interlamellar space can be

limited, thus causing osmotic gradients. In addition, MLVs in contact with excess

solvent can spontaneously deplete small solute molecules from its interior by entropy-

driven mechanisms (Diamant, 2002). For these reasons we used LUVs to exclude the

impact of the above factors on the results. Freeze-thawing did  not have any effect on

the results.
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5. DISCUSSION
When considering the importance of drug-lipid interactions in respect to

pharmacology, it should be considered that most in vivo processess do include an

interaction with a lipid membrane. Accordingly, a detailed knowledge of mechanisms

and consequences of drug-lipid interactions is likely to enhance our understanding on

the mechanisms of action, and/or adverse effects, and the pharmacokinetic behaviour

of drugs. The drug-lipid interactions can lead to many different events, including the

prevention of the access of drug to active (target) site, accumulation of the drugs to

the membrane, conformational change in the drug and in the phospholipids, changes

in lipid dynamics, membrane thickness, permeability, cooperativity, surface potential,

and hydration (Fruttero, 2001). In this respect, also the knowledge of factors affecting

the above mentioned membrane properties is important.

Conventionally drugs are a priori assumed to exert their action in cells by more or

less specific binding to sites in proteins. However, some compounds, such as

amphotericin B (Andreoli, 1974; de Kruijff and Demel, 1974; Gallis et al., 1990;

Cohen, 1992; Barwicz and Tancrède, 1997), and cytotoxic peptides, e.g. cecropins,

defensins, and magainins (Bechinger, 1997) are known to exert their pharmacological

effects by lipid-mediated mechanisms without a known involvement of specific

proteins. In this regard the rich scale of different phases, i.e. membranes with distinct

physicochemical properties, exhibited by different lipids is of interest (Kinnunen and

Laggner, 1991). There is  experimental evidence indicating a correlation between the

physical state, i.e. the phase state of cellular membranes, determined by their lipid

composition, and the physiological state of the cell (Kinnunen, 1991; Kinnunen,

1996). There is no reason to believe that the modulation of specific properties of the

lipid bilayer would be limited to these compounds but it could contribute both to the

therapeutic mechanism as well as side effects of membrane-partitioning compounds in

general.

To this end, a large variety of structurally dissimilar drugs are hydrophobic or

amphiphilic and readily partition into lipid membranes (Fischer et al., 1998; Schreier

et al., 2000), good examples being provided by tacrine (Lehtonen et al., 1996b),

doxorubicin (Mustonen and Kinnunen, 1991; 1993; Mustonen et al., 1993), and
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cyclosporin A (O´Leary et al., 1986; Wiedmann et al., 1990). Drugs may also

modulate peripheral lipid-protein interactions as shown for chlorpromazine (Ito et al.,

1983), doxorubicin (Mustonen and Kinnunen, 1991), lidocaine, and gentamycin

(Jutila et al., 1998).

5.1 DETERMINANTS OF DRUG-LIPID

INTERACTIONS: MEMBRANE PROPERTIES

Acidic phospholipids
Doxorubicin was used as a model drug to study the effect of acidic phospholipid

content on the kinetics of membrane association of a drug. Although exact values for

binding constants cannot be calculated from the resonance energy transfer data the

difference in the values for t1/2 of binding of doxorubicin onto membranes readily

translates into an approx. 1000-fold enhancement in the binding rate in the presence

of the acidic lipid. Reversal of the fast component in the fluorescence decay by

increasing [NaCl] and [CaCl2] clearly indicate this process being mediated by

electrostatic attraction. The large differences in the kinetics of membrane association

of doxorubicin could be important in the cellular distribution (or blood-tissue

distribution) of this drug.

The irregular behaviour of t1/2 of the electrostatic binding of doxorubicin at low XPG

(0.04-0.10) suggests membrane association of this drug to be dependent on the initial

distribution of charges in the membrane (see below). Also, the 1000-fold difference in

the half-times of the binding can be used to assess the membrane lateral heterogeneity

before the binding of doxorubicin.

The monolayer measurements indicate a clear difference in the modes of interaction

of CLZ, CPZ, and HPD with lipid monolayers. Among the three neuroleptics studied,

CLZ had the strongest affinity towards membranes composed by neutral lipids,

whereas CPZ and HPD had higher affinity towards negatively charged lipids. The

ratio of changes in ∆π in PC/PS monolayers was clearly different for CLZ when

compared to CPZ and HPD. (Table III)
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Table III. Increase in π by CLZ, CPZ, and HPD in brainPS and eggPC monolayers at π0= 15, 20, and

25 mN/m. The lower panel shows ∆πPS/PC, the ratio of ∆π in brainPS and eggPC monolayers. All π

values are expressed as mN/m.

CLZ CPZ HPD
π0 ∆π ∆π ∆π
_______________________________________

15 PC 3.8 2.2 1.9
20 PC 2.7 1.7 1.2
25 PC 1.6 0.5 0
15 PS 5.4 10.6 7.8
20 PS 4.9 11.7 8.5
25 PS 2.8 8.4 6.9

PC/PS (π0) CLZ CPZ HPD
_________________________________________
15 0.7 0.21 0.24
20 0.55 0.15 0.14
25 0.57 0.06 0

The number of compounds studied was small, hence it would be of interest to study

whether similar differences in the ratio of ∆π of PC/PS would be observed also for

other atypical and conventional neuroleptics. CLZ had the strongest impact on the

compression isotherms of DPPC/brainPS monolayers. At higher surface pressures the

average molecular area was increased in the order of CLZ>CPZ>HPD. The effects of

these drugs on the average molecular area were increased in the same order as ∆π in

eggPC monolayers. This suggests that the increase in molecular area was mainly due

to the hydrophobic interaction between drugs and lipid monolayer. The electrostatic

interaction between drug and lipid occurs at the headgroup region of the lipid

membrane. The intercalation of the drug between lipid acyl chains after electrostatic

binding is most likely compound-specific. The binding of CPZ has been shown to

induce gauche conformation in gel phase saturated PC/PS membranes without

intercalation of the drug between acyl chains (Nerdal et al., 2000). The work of

insertion of CPZ between acyl chains in acidic monolayers is highly dependent on the

acyl chain length and saturation (Agasøster and Holmsen, 2001). The work of

insertion decreases by 15*10-20 J/CPZ by adding one double bond into acyl chain and

by 5*10-20 J/CPZ by shorthening the acyl chain by two carbons (Agasøster and
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Holmsen, 2001). For CPZ the intercalation of the drug into DPPC/brainPS

monolayers can be expected to be lower than for pure unsaturated brainPS

monolayers. Thus, at least for CPZ, the increase in average molecular area of

DPPC/brainPS monolayers is likely to be caused by (purely) electrostatic interactions.

The drop in ∆π at ~25-26 mN/m observed for each drug in PS monolayers is likely

reflecting a membrane dependent effect rather than drug-dependent. A possible

explanation for the observed effect could be deprotonation of PS at higher lipid

packing densities, leading to formation of hydrogen bonding network between PS

headgroups (Boggs, 1987) and decreased net negative charge of the monolayer. These

results indicated that compared to two conventional neuroleptics, CPZ and HPD, the

atypical neuroleptic drug CLZ had a different effect on the thermal phase behaviour

of DPPC/brainPS.

Reconstituted dopamine D2-receptor requires a mixture of PC, PE, and PS for

restoration of its ligand binding (Srivastava et al., 1987), with PS being particularly

important. The depletion of PS from dopamine D2-receptors could thus diminish the

ligand affinity. HPD has been reported to reverse PS induced inhibition of

phosphatidylinositol formation (Bonetti et al., 1985). Strong interaction between

brainPS and neuroleptic drugs could detach PS from neurotransmitter receptors, e.g.

dopamine D2-receptor, thus leading to altered function of the protein, as shown for the

inhibition of cytochrome c oxidase by doxorubicin (Goormaghtigh et al., 1982).

Membrane lateral heterogeneity
The fast binding of doxorubicin observed at T<34 oC reveals the formation of

microdomains enriched in PG (i.e. with local XPG>0.04), having increased negative

surface density charge. The lack of the slow hydrophobicity driven binding could

reflect the tight packing of the gel state acyl chains preventing the intercalation of

doxorubicin into the bilayer. At T>34 0C also the slow hydrophobicity driven

membrane association of doxorubicin becomes evident. This is likely to result from

the formation of ´fluid´ domains in the bilayer (Marsh et al., 1977; Doniach, 1978;

Freire and Biltonen, 1978; Pedersen et al., 1996; Jutila and Kinnunen, 1997). The

emergence of ´fluid´ domains in gel bulk is consistent with the enhanced hydrophobic
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binding of doxorubicin to the electrically neutral DPPC/PPDPC LUVs (containing no

acidic phospholipid) upon exceeding T≈33 0C. However, as the slow binding process

is observed for the DPPC/PPDPC LUVs already within the temperature range of 30 to

33 0C it is possible that the lack of the slow component for DPPC/PPDPG LUVs at

temperatures <34 0C is apparent only, as follows. For the DPPC/PPDPG liposomes

the slow component would not be seen as a large fraction of the drug is already bound

to the clustered acidic phospholipid, thus reducing the concentration of doxorubicin

remaining in the solution after the fast, electrostatically driven membrane association

of the drug is complete. Also, as PPDPGs are mainly segregated to domains, binding

of doxorubicin to DPPC matrix does not influence on the fluorescence emission. At

T>34 0C also the decrease in RFI as a function of temperature becomes augmented in

DPPC/PPDPG LUVs. In other words, n (the number of PPDPG molecules encriched

in clusters) diminishes already when approaching T=34 0C. Upon exceeding T=34 oC,

another process causing decrease in n becomes effective. The interpretation of the

appearance of the slow fluorescence decay at T=34 0C as the formation of ´fluid´

domains in the gel state bilayer is supported by the DSC measurements which

revealed onset of the main phase transition endotherm at 34 0C in the DPPC/PPDPG

LUVs. Simultaneously with increasing temperature in the range from 34 to 38 0C, the

PG enriched clusters seem to be diminishing either in size or number as the RA of the

fast fluorescence decay is steeply attenuated.

The fast fluorescence decay for DPPC:PPDPG (97:3, mol/mol) LUVs is not observed

at T> 37 0C. This temperature coincides with the plateau in Ie/Im observed in steady-

state measurements. The apparent lack of clusters of PPDPG is revealed by the

absence of the fast, electrostatic component in doxorubicin binding above 37 0C. This

is intriguing as steady-state measurements reveal highly efficient excimer formation

also in the temperature range of 38 to 41 0C. Previously, PPDPC has been suggested

to preferentially accommodate within the interface between gel and ´fluid´ domains of

DMPC (Jutila and Kinnunen, 1997). Similar behaviour for PPDPG in the melting of

DPPC matrix would be compatible with the present data. Accordingly, the

characteristics of the fast component at 37 0C (i.e. minimum in both t1/2 and

amplitude) would result from a change in the dimensionality of the lateral

arrangement of PPDPG from 2-D (clusters) to pseudo 1-D (arrays), the latter being
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formed in the domain boundaries. For the latter efficient excimer formation is still

evident. Importantly, already small amounts of doxorubicin associated with the

PPDPGs concentrated in these 1-D arrays residing within the domain boundaries will

strongly diminish the effective charge density and yield a small RA for the process,

even if the initial affinity would be high.

Alternative explanation is that the size of the PPDPG clusters decreases progressively

with temperature, and reaching at T≥37 0C the domain size no longer having

sufficient number of charges per unit surface area to provide the sites for fast binding

of doxorubicin. However, the latter mechanism does not explain the fact that t1/2 has a

minimum at 37 0C. Also, the area of ´fluid´ domains at 38 0C, for instance, should be

75 % of the total liposome surface area in order to reduce the concentration of the

probe below XPG 0.04 and, accordingly, to abolish the fast binding. This seems

unlikely because the area under the endotherms up to 38 0C corresponds to only

approx. 10 % of the total enthalpy of the transition.

Thus, the first mechanism is considered to be most plausible. The driving force for the

enrichment of PPDPG into the boundaries between ´fluid´ and gel domains in the

temperature range of 34 to 38 0C can be rationalized as follows (Jutila and Kinnunen,

1997). As a perturbating substitutional impurity PPDPG is expelled from the gel state

DPPC matrix leading to segregation of PPDPG into domains as shown for PPDPC

(Galla and Hartmann, 1980; Somerharju et al., 1985; Hresko et al., 1986; Jones and

Lentz, 1986). Upon the gel-to-fluid transition thickness of the DPPC bilayers is

reduced by approx. 4.5 Å, from 23 to 18.5 Å (Chapman et al., 1967; Lewis and

Engelman, 1983). Hydrophobic mismatch has been shown to promote the clustering

of PPDPC in liquid crystalline bilayers of thickness < 20.7 Å (Lehtonen et al., 1996a).

The effective length of PPDPG should equal to that of PPDPC. We can thus expect

PPDPG to be expelled to some extent also from the ´fluid´ domains below Tm,

eventhough fluid domains exhibit higher compressibility (Ali et al., 1998; Li et al.,

2000). Accordingly, preferential partitioning of the probe into the domain boundary

can be anticipated. The compressibility of fluid phase membrane is higher than in gel

phase, and thus a higher content of PPDPG is likely to be present in fluid domains

than in gel domains.
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Taken together, these measurements provide evidence for the formation of ´fluid´

domains in the gel state matrix to begin at a temperature well below the maximum of

the main transition endotherm determined by DSC. The comparison of the stopped-

flow data with values of Ie/Im derived from steady-state fluorescence measurements

provide further evidence for the enrichment of the fluorescent probe, PPDPG into the

interface separating gel state and fluid domains in the coexistence region, present in

the course of the transition. These data lend further support to previous results

indicating the length of the interfacial boundary to have a maximum well below the

main endotherm, in this case at approx. 3.5 degrees below the DSC peak at 40.4 0C.

The fluorescence data indicate lack of ´fluid´/gel phase boundaries in the range from

38 0C to 43.7 0C. Yet, as the peak in heat capacity is observed at 40.4 0C the

molecular mechanisms underlying the enthalpy changes in this temperature range and

the nature of the implied ´intermediate´ phase pose an intriguing problem. Regarding

the latter, it is possible that in this intermediate phase the chain order and lattice

translational and positional order are uncoupled, similarly to the liquid-ordered phase

present in the phospholipid-cholesterol phase diagram (Vist, 1984; Ipsen et al., 1987;

Vist and Davis, 1990).

The uncoupling of lattice melting and acyl chain melting was suggested for lipid

bilayers of long-chain (17-20 carbons) saturated diacyl PCs (Nielsen et al., 1996). The

uncoupling of lattice and acyl chain melting was predicted from computer simulations

based on the experimental DSC data. In this model the sub-main transition (Tp<Tsub-

main<Tm) would represent chain-ordered/crystalline-ordered to chain-

ordered/crystalline-disordered transition, i.e. lattice melting, and in main transition

(Tm) the membrane would proceed from chain-ordered/crystalline-disordered to

chain-disordered/crystalline-disordered, i.e. acyl chain melting. However, the strong

thermal fluctuations near the main transition of DPPC should vanish the sub-main

transition (Nielsen et al., 1996).

Lipid lateral packing and cholesterol
In lipid mixtures cholesterol can cause the formation of ´liquid-ordered phase´, which

possess properties from both gel and fluid phase, i.e. cholesterol decreases the acyl

chain motion of phospholipids, but the lateral diffusion remains high. The phase
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behaviour of cholesterol-phospholipid mixture is complex (Vist, 1984; Ipsen et al.,

1987; 1989; Vist and Davis, 1990; Feigenson and Buboltz, 2001). Membrane defects,

such as domain boundaries are more permeable than the bulk phase, and the increased

membrane permeability is linked to the length of these boundaries (Cruzeiro-Hansson

and Mouritsen, 1988). At low mole fractions cholesterol has been suggested to

preferentially partition into domain boundaries (Weis and McConnell, 1985). This

could explain the permeability enhancing effect of cholesterol when present at low

concentration (Carruthers and Melchior, 1983; Corvera et al., 1992; Zuckermann et

al., 1993). However, at higher concentration of cholesterol, the increased lateral

packing decreases the free volume of membrane, resulting in decreased permeability

(Demel et al., 1972; Almeida et al., 1992; Yan and Eisenthal, 2000). The nature of

cholesterol-phospholipid interactions, and miscibility of cholesterol in membrane

depends on the structure of lipid headgroup and acyl chains and on the temperature

and phase state of lipid bilayer (McMullen et al., 1993; Smaby et al., 1994; McMullen

and McElhaney, 1997).

The biphasic, packing density dependent interaction of CsA with the phospholipid

monolayer reveals cholesterol to decrease the penetration of CsA into the lipid

monolayer in a surface pressure dependent manner. Cholesterol increases lateral

packing density of PC monolayers and decreases the free volume of the hydrophobic

part of the monolayer causing phospholipid condensation (Gershfeld and Pagano,

1972; Smaby et al., 1994). Obviously, this would impede the penetration of CsA into

the lipid. Cholesterol increases membrane lateral compressibility (Rand et al., 1980;

Smaby et al., 1997). Incorporation of identical amount of CsA molecules in PC

membranes in absence and presence of cholesterol, thus causes a larger increase in ∆π

for cholesterol containing membranes. As cholesterol decreases ∆π after addition of

CsA on the subphase, it is obvious that cholesterol decreases membrane partitioning

of CsA. Yet, also more specific lipid-drug interactions could be involved, and could

reflect a pressure-induced change in the conformation and/or orientation of CsA. In

this case, the conformation and/or orientation of CsA in the membrane would also be

sensitive to cholesterol.
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Membrane dipole potential (Ψ) arises from the oriented lipids (dipoles) in the

membrane, in a complex manner as the contributions of bound water molecules,

headgroups, glycerol ester groups, and the terminal methyl groups of acyl chain are

considered (Brockman, 1994; 1999). Ψ originates from the overbalanced dipole

moments of phospholipids by the oriented water molecules (Chiu et al., 1995;

Marrink et al., 1996). The magnitude of electric fields across the membrane interface

can be up to 107 V/cm due to Ψ, and such strong electric fields can be of importance

in the sructure and function of biomembranes (Brockman, 1994). Differences in the

dipole potentials between gel and fluid phases is important determinant of the size,

shape, and lateral arrangement of lipid domains in monolayers (Brockman, 1994).

Also, Ψ effects on the transport rate of hydrophobic anions and cations across the

membrane (Brockman, 1994; 1999). The binding of Ψ decreasing compounds is

augmented by incorporating Ψ increasing compounds into membrane. CsA decreases

Ψ (Söderlund et al., unpublished observation), and cholesterol increases Ψ. However,

as cholesterol decreases membrane binding of CsA it is evident that for membrane

partitioning of CsA, other factors than Ψ are more important.

Cyclosporin A has been shown to make cholesterol in low-density lipoproteins more

susceptible to oxidation (Apanay et al., 1994) although the molecular mechanism(s) is

unclear. In this respect, the CsA-cholesterol interactions and effects of CsA on the

intrinsic dynamics of low-density lipoprotein could provide information on this issue.

Superlattices and irregular dependence of XPG vs. t1/2

The irregular dependence of t1/2 vs. XPG at XPG= 0.04-0.10, and the absence of fast

fluorescence decay at XPG<0.04 could be explained by the formation of superlattices

of acidic phospholipids in the liquid crystalline membranes. Lack of the fast decay at

XPG< 0.04 is not only apparent as RA of this process does not extrapolate to zero at

XPG=0. In brief, due to coulombic repulsion the distribution of the deprotonated PGs

can be readily expected to have a free energy minimum when the separating distances

are maximal (Träuble, 1977; Denisov et al., 1998). At certain XPG the surface charge

density becomes high enough to cause the rapid binding of doxorubicin. The effective

net negative surface charge density does not increase monotonously with XPG but is a

step function due to the higher surface charge densities. As a consequence, there is a
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sharp threshold in XPG above which the coulombic attraction of the drug is greatly

enhanced. At XPG=0.037 maximal separation of charges is achieved when PG

molecules are each separated by 5 rows of PC. However, when XPG exceeds 0.037 the

added PG molecules must be accommodated in the membrane at interstitial sites

within the original superlattice. Accordingly, there is a sharp local increment in net

negative surface charge density. Further increase in XPG necessitates the formation of

a denser lattice. A maximum in t1/2 observed at XPG=0.065. This is in accordance with

previously predicted hexagonal superlattice (Virtanen et al., 1988), yielding the free

energy minimum for this assembly. Importantly, for this lattice the average charge

density is smaller than in the intermediate distribution pattern between XPG=0.037 and

0.065. The free volume in fluid membranes has been shown to be lower at critical

mole fractions where regular distribution is observed (Chong et al., 1994).

Accordingly, the rate of the membrane association of doxorubicin should decrease, as

observed.

In parallel with increase in XPG also the affinity of the bilayer surface for protons

increases progressively thus decreasing the degree of the dissociation of the phosphate

moiety of PG (Träuble, 1977), with concomitant reduction in surface charge density.

In addition, intermolecular hydrogen bonding between protonated and deprotonated

PG headgroups becomes possible (Boggs, 1987), which necessarily will also

influence the ordering in the binary lipid alloy and compete with the interaction of

doxorubicin with the deprotonated acidic phospholipid. The above is in keeping with

the membrane binding of cytochrome c, another cationic ligand, becoming slower

with increasing XPG in the liposomes (Subramanian et al., 1998). Obviously, the

above processes will also affect the rate of binding of doxorubicin to the liposomes.
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5.2. CONSEQUENCES OF DRUG-LIPID

INTERACTIONS: DRUG INDUCED CHANGES IN

MEMBRANES

Membrane lateral organization – thermal phase behaviour
The thermal phase behavior of DMPC/cholesterol (10:1, mol/mol) liposomes as a

function of XCsA is complex. A likely explanation to these data could be provided by

the same principles as forwarded for tacrine induced changes in the thermal behavior

of dimyristoylphosphatidic acid (Lehtonen et al., 1996b). The latter results were

interpreted in terms of formation of regular superstructured regions in the bilayer at

well-defined drug:phospholipid ratios. In principle, all systems organize so as to

minimize their free energy. In a bilayer composite alloy this may require its

components to respond to modified lipid composition by changes in organization.

This is observed by the alterations observed in the main transition enthalpy at

CsA:cholesterol ratios of 3:10 and 1:2 (XCsA=0.03 and 0.05, respectively). The regular

organization of fluid lipid membranes in hexagonal superlattices has been shown to

occur in many different membranes (Somerharju et al., 1985; Kinnunen et al., 1987;

Virtanen et al., 1988; Tang and Chong, 1992; Sugar et al., 1994; Chong et al., 1994;

Tang et al., 1995; Cheng et al., 1997; Liu et al., 1997). The observed minima in

DMPC/cholesterol/CsA mixtures could be resulting from superlattices forming in the

presence of CsA, similarly as suggested for another drug, tacrine (Lehtonen et al.,

1996b). CsA could exert similar effects although not identical to those of cholesterol

(Wiedmann et al., 1990).

Due to the negative charge of brainPS, these lipids would prefer maximum average

distance between the headgroups. The non-saturated acyl chains of brainPS disturb

the packing of DPPC acyl chains. In absence of negative charge in PS, the brainPS

would most likely be phase separated from DPPC matrix as the unsaturated acyl

chains would be expelled from saturated DPPC matrix. Due to the electrostatic

repulsion between PS headgroups, the complete phase separation is energetically

unfavourable. However, at DPPC/brainPS ratio of 95:5, it seems that certain fraction
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of the membrane is devoid of brainPS, as evidenced by the phase separation peak at

~41.3 oC, corresponding to Tm of pure DPPC.

The phase separation in DPPC/brainPS (95/5) MLVs is also readily observed in the

presence of CPZ or HPD. This suggests that these two drugs are not able to efficiently

partition into pure DPPC domains, whereas CLZ abolishes the phase separation. The

effect of CLZ is likely to be due to its stronger hydrophobic interaction with

membranes when compared to CPZ and HPD. The data clearly shows that atypical

neuroleptic CLZ has different impact on the membrane lateral organization than

conventional neuroleptics, CPZ and HPD.

Membrane lateral organization - domain morphology
Fluorescence microscopy results with CsA indicated, that changes in the domain

morphology are dependent on the membrane lipid composition. CsA induced changes

in DPPC monolayers suggest CsA to stabilize domain interfaces, as the diffuse

domain boundaries at higher π become sharp. The present results show that the

interaction of CsA with membranes containing cholesterol are much more complex

than that revealed in previous studies with pure PC bilayers (Wiedmann et al., 1990).

The important question on the drug induced changes in membrane lateral

heterogeneity is whether the changes are drug-specific or non-specific. The

observation that all the three neuroleptic drugs altered the domain morphology but in

a different manner, indicates that the effects were drug-specific.

DSC is not as sensitive technique as fluorescence microscopy, and thus higher

concentrations of both lipids and drugs are needed. Also, the direct comparison of the

different membrane models, liposomes and monolayers, is ambiguous, but all studied

drugs (CsA, CLZ, CPZ, and HPD) changed the membrane lateral heterogeneity in

both liposomal (DSC) and monolayer (fluorescence microscopy) model membrane

systems.
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Drug-induced changes in domain morphology: physiological significance
This is the first time that drugs have been observed to induce changes in domain

morphology in vitro. Previously, using Monte Carlo computer-simulations (in silico)

several membrane-perturbating drugs were found to accumulate in gel-fluid domain

boundaries, inducing alterations in the membrane lateral heterogeneity (domain size

and morphology) at the molecular level (Jørgensen et al., 1991a; 1991b; 1993; Sabra

et al., 1995; 1996). The accumulation of drugs at the domain interfaces leads to a

much higher local concentration of the drug than the bulk drug concentration in the

membrane (Jørgensen et al., 1993). A similar accumulation could also give rise to

local changes at the lipid-protein interface, leading to altered protein conformation

and function (Jørgensen et al., 1993).

The finite lifetime of the observed domains in the simulations are controlled  by line

tension (Mouritsen and Kinnunen, 1996). The determinants of the domain shape in

lipid monolayers have been a subject of intense research (Weis, 1991) and dipole

repulsion and line tension are considered to be the dominant factors (Möhwald, 1995;

Brockman, 1999). Line tension is a 1-D pressure and the dipole repulsion results from

noncompensated molecular dipole moments (Möhwald, 1995; Brockman, 1999). The

line tension tends to make domains compact and circular with minimal domain

boundary length, while dipole repulsion have the opposite effect (Brockmann, 1999).

Even though the domain sizes observed in lipid monolayers are usually larger than

individual cells, the determinants of the domain morphology may also contribute to

the nanoscale organization of the lipid membranes.

In giant unilamellar vesicles, 2-D domain formation can cause changes in 3-D vesicle

morphology, such as budding and vesiculation (Jülicher and Lipowsky, 1993;

Lipowsky, 1993; Sackmann and Feder, 1995; Holopainen et al., 2000b). The shape of

a vesicle depends on the relative area of the inner and outer leaflets, area-to-volume

ratio of the vesicle, shape differences between the lipids in the inner and outer leaflets,

and on the lateral distribution of lipids on the vesicle membrane (Kas and Sackmann,

1991; Döbereiner et al., 1993; Jülicher and Lipowsky, 1993). The formation of

domains can have a significant effect on the local (3-D) shape of the membrane. The

shape taken up by the domain depends on the balance between bending energy and
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line tension of the domain (Lipowsky, 1992; Jülicher and Lipowsky, 1993). The

membrane surface can reduce its energy by forming a bud with the domain boundary

in its base, and provided that the line tension times the boundary length is equal or

greater than the bending energy, the bud can pinch off from the vesicle (Bradley et a.,

1999). Thus, the accumulation of drugs at domain boundaries, and their effect on the

line tension could also cause changes in the 3-D shape of a lipid membrane. This

provides a potential mechanism for the drugs to modulate cellular functions involving

a formation of lipid vesicles.  One of the side-effects of CsA is nephrotoxicity, which

histopathological findings include tubular epithelium and myocyte vacualization

(Randhawa et al., 1993). These vacuoles (vesicles budding off) are typically fine and

isometric in nature (Randhawa et al., 1993). The molecular level mechanisms of this

vacualization remains unknown, but the above discussed mechanism could be

involved.

A two-dimensional reticular structure formed by gel phase leading to the formation of

separated fluid domains has been suggested to occur in lipid bilayers (Vaz et al.,

1989; 1990). This type of two-dimensional ordering can reduce the rate of

bimolecular processes and enzyme catalyzed reactions, if substrates and products are

both confined into fluid, disconnected domains (Melo et al., 1992). In

DPPC/cholesterol monolayers CsA destroyed the reticular network of gel phase to

disconnected small gel domains. This change in lipid organization could affect the

rate of some cellular functions occuring at the membrane surface.

The clinical relevance of the current results are unclear at the moment. However, it

should be emphasized that the blood concentration of CsA in vivo is in the range of

~80-250 nM (Dollery, 1999b), and the calculated CsA concentration in the subphase

in the monolayer experiments was 37.5 nM. Also, for the neuroleptic drugs, the

subphase concentration in fluorescence microscopy measurements was low ~34 nM,

which is much below the dissociation constant (0.1-10 µM) of these drugs from

different receptors and their subtypes (Brody et al., 1998). In addition, the used

neuroleptic drug concentrations were in the range of their therapeutic plasma

concentrations (Dollery, 1991; Spina et al., 2000). Interestingly, it was recently

reported that a correlation exists between surfactant or polymer induced changes in
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the lipid monolayer organization (in µm scale) and the effect of the surfactant or

polymer on the cell growth and viability (Yang et al., 2001).

5.3. INTERFACIAL DYNAMICS OF LIPID

BILAYER: effects of γ and Π
The results with Laurdan GP are readily understood when considered within the

framework of membrane lateral pressure profile. The surface tension exerts its effect

in the thin interfacial region accomodating the fluorescent moiety of Laurdan, i.e. at

the level of phospholipid glycerol backbone within the dynamic interface between

water and hydrocarbon phase. As pointed out by Cantor (1997a) the magnitude of the

pressures prevailing in membranes are considerable, corresponding to bulk pressures

of many hundreds of atmospheric pressures. This is in keeping with the increment of

the main transition temperature (Tm) of dimyristoylphosphocholine by betaine. More

specifically, Tm was increased progressively by this solute, by 5 degrees at 5 M

betaine (Söderlund et al., unpublished results). A similar increment is observed at a

hydrostatic pressure of ~200 atm (Reyes Mateo et al., 1993).

As γ increases the number of interfacial water molecules is reduced due to augmented

lipid lateral packing (i.e. decrease in the mean molecular area per lipid). Bagatolli et

al. (1998) reported a linear correlation between intermolecular distances (ID) and GP.

Comparison of the Laurdan GP value for POPC LUVs at 25 oC in the absence of

kosmotropes to the data by Bagatolli et al. (1998) yields an intermolecular distance of

~2.5 Å. Following this line of analysis we may further estimate the decrease in ID due

to increasing γ, which reveal a linear reciprocal correlation. (Fig. 29) This provides a

method for estimating the effects of γ and Π on the lipid lateral packing in bilayers.

The effect of kosmotropes thus provides a powerful means for the cell to modulate the

physical state and the funtion of membranes and activity of membrane proteins via

changes in water structure. However, this effect would not be limited to integral

membrane proteins only. The denaturation temperature of soluble proteins increases

as γ is increased (Kaushik and Bhat, 1998). We have previously shown that betaine

decrease the hydrodynamic volume and increase the molecular packing of a soluble
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protein, Humicola lanuginosa lipase (Söderlund et al., 2002). The impact of the

increase in γ by betaine on the protein-water interface is thus essentially analogous to

the augmented packing and decreased hydration of the lipid bilayer reported here.

Figure 29. Intermolecular distance (ID) as a function of ∆γ. Changes in γ are due to solutes.

Cells cannot control the chemical potential of pure water, but can change the water

activity by accumulating different solutes (Rand et al., 2000). A change in water

activity can have different responses on  macromolecules. Isolated proteins undergo

reversible transitions and get dehydrated, or kinetically find it more difficult to get to

their more hydrated conformation (Parsegian and Rand, 1995). The osmotic work is

observed as a change to a more dehydrated state (Parsegian and Rand, 1995). For

single unilamellar liposome an analogous behaviour can be expected.
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6. CONCLUSIONS
The stopped-flow fluorescence measurements demonstrated that the hydrophobic and

electrostatic doxorubicin binding sites in liposomes can be distinguished by their

different fluorescence decay halftimes. These different halftimes were utilized for

studying membrane lateral organization on the course of main transition. From these

measurements it can be concluded for the first time that binding of a drug to a

membrane can be controlled by the formation of domains enriched in acidic

phospholipids and with high local negative surface charge density.

The present results show that the interaction of CsA with membranes containing

cholesterol are much more complex than those revealed in previous studies with pure

PC bilayers. CsA was shown to change the thermal phase behaviour of the membrane,

and also to alter the lateral organization in monolayers on a micrometer scale. This

was the first time that a drug was directly observed to affect the lateral heterogeneity.

There is a large body of evidence showing that cholesterol affects a number of

processes of diverse nature in different cells. Moreover, organization of cholesterol in

membranes can be anticipated to be critical to its functions. As the CsA-induced

changes in membrane lateral heterogeneity were modulated by cholesterol, CsA can

be expected to have different effect(s) on the membrane properties (and functions) in

different cells and cell organelles.

All three neuroleptic drugs (CLZ, CPZ, and HPD) caused changes in the membrane

lateral heterogeneity. The effects of these drugs were not identical, indicating the

changes not to be caused by non-specific drug-lipid interactions. The atypical

neuroleptic drug CLZ had different effects on the membrane lateral heterogeneity

than the conventional neuroleptic drugs CPZ and HPD. Accordingly, the mode of

membrane interaction of CLZ was less dependent on the electrostatic interactions than

those of CPZ and HPD.

Definitive conclusions on the pharmacological significance of the findings on the

effects of drugs on the lateral heterogeneity is premature at this stage. The drug

induced effects are likely to be strongly dependent on multiple factors such as

membrane lipid composition, pH, osmolarity, ionic strength and compound itself. Yet,
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in conjunction with the importance of coupling between organization and function in

biomembranes the present studies do indicate that efforts along these lines may

provide novel insights to the understanding of the molecular mechanisms of action

and/or adverse effects of membrane-associating drugs.

Studies with betaine, choline chloride, and sucrose revealed a correlation between

surface tension and interfacial dynamics of lipid bilayers, as measured by Laurdan

GP, whereas osmotic pressure had less effect on GP. These observations suggest a γ-

mediated mechanism for controlling the functional and structural properties of lipid

membranes.
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