
Medical Imaging Center and 

Transplantation and Liver Surgery Clinic 

University of Helsinki 

Finland

MR IMAGING OF THE LIVER: 

STUDIES ON THE DETECTION AND CHARACTERIZATION OF FOCAL 

LIVER LESIONS AND LIVER CIRRHOSIS 

Kirsti Numminen 

Academic Dissertation 

To be presented, with the permission of the Medical Faculty of the University of Helsinki, for 

public examination in the Richard Faltin Auditorium at the Surgical Hospital,        

Kasarmikatu 11-13, Helsinki University Hospital, 19 November 2004, at 12 noon. 

Helsinki 2004 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Helsingin yliopiston digitaalinen arkisto

https://core.ac.uk/display/14918485?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Supervisors

Professor Krister Höckerstedt 

Transplantation and Liver Surgery Clinic, Department of Surgery 

Helsinki University Hospital 

Docent Pekka Tervahartiala 

Medical Imaging Center 

Helsinki University Hospital 

Reviewers

Docent Eija Pääkkö 

Department of Diagnostic Radiology 

University of Oulu 

Docent Tapani Tikkakoski 

Department of Radiology 

Keski-Pohjanmaa Central Hospital 

Opponent

Professor Osmo Tervonen 

Department of Diagnostic Radiology 

University of Oulu 

ISBN 952-91-7886-7 (paperpack) 

ISBN 952-10-2147-0 (PDF) 

Yliopistopaino

Helsinki 2004 



 3 

1. ABSTRACT 

The liver is a common target for a variety of primary malignancies. In the past, mortality 

following liver surgery was high and curative treatment was seldom available. Early 

identification of liver metastases provides the opportunity for the success of liver surgery as a 

therapeutic approach. The resection of metastases is beneficial, especially in patients 

presenting with liver metastases from colorectal carcinoma. Deciding patients’ eligibility for 

these invasive therapies requires accurate preoperative assessment of the liver tumors, liver 

parenchyma and the extent of the disease. Differentiation between hemangiomas and other 

focal liver lesions, such as liver metastases, is also of high clinical importance, especially in 

the case of patients with a history of a malignancy. 

The aim of this thesis was to evaluate the lesion characterization potential of MRI by 

evaluating several unenhanced MR sequences and the dynamic gadolinium (Gd)-enhanced 

technique. The diagnostic value of MDCT and MRI in the preoperative assessment of liver 

tumors was analyzed. The sensitivity and specificity of MRI in diagnosing cirrhosis was also 

investigated. 

In this study, lesion detection was analyzed preoperatively using MRI and MDCT. Thirty-one 

patients were included in our prospective study. The results showed that triphasic MDCT with 

thin (2.5 mm) slices and a high-volume, high-concentration contrast material is a very 

sensitive noninvasive technique in preoperative liver assessment. Both lesion detection and 

the depiction of lesions in relation to vascular structures were more precise than with MRI. 

However, both methods had only a limited value in the detection of extrahepatic disease. 

The role of MRI in lesion characterization was evaluated in 116 patients. Histological proof 

of lesion or hemangioma with follow-up was the inclusion criterion. The results indicated that 

the use of multiple sequences in conjunction with Gd enhancement makes MRI extremely 

useful in liver lesion classification, while its potential in the assessment of specific diagnosis 

is only moderate.

Sixty-eight patients were included in the study designed to assess the capability of the true 

FISP sequence in distinguishing between hemangiomas and malignant liver lesions. The 

results confirmed that reliable differentiation between hemangioma and malignant liver lesion 

is possible with the true FISP sequence.
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The potential of MRI in diagnosing liver cirrhosis by evaluating the most characteristic MRI 

features of cirrhosis was also investigated. Study population was 56 patients. All cases were 

verified histologically. MRI proved to be accurate in diagnosing Child B and C cirrhosis. The 

most characteristic MRI features of cirrhosis were a large segment one, narrowing of the 

hepatic veins and signs of portal hypertension, fibrosis and a nodular margin of the liver. MRI 

was also a sensitive way to detect occult hepatocellular carcinoma. 

In conclusion, the studies included in this thesis show that MRI is an accurate method in 

lesion characterization and in diagnosing liver cirrhosis. The true FISP sequence provides a 

non-invasive and reliable tool in hemangioma diagnostics. In preoperative liver evaluation, 

especially in lesion detection; however MDCT performed better than MRI.



 5 

2.CONTENTS

1.Abstract 3 

2.Contents 5 

3. List of original papers 7

4. Abbreviations 8

5. Introduction 9

6. Review of the literature 10

6.1. History of liver MRI 10

6.2. Liver MRI scanning technique 10

6.2.1. General remarks 10

6.2.2. Sequences 11

6.2.2.1. T1-weighted sequences 11

6.2.2.2. T2-weighted sequences 12

6.2.2.3. True fast imaging with steady state free precession (FISP) 13 

6.3. MRI contrast agents 13

6.3.1. Non-specific extracellular contrast agents 13

6.3.2. Liver-specific contrast agents 13

6.3.3. Dynamic multiphasic liver imaging 14

6.4. Multidetector computer tomography (MDCT) in liver imaging 15

6.5. Intraoperative ultrasonography 15

6.6 Other imaging modalities 16

6.7. Liver diseases 16

6.7.1. Benign hepatic tumors 16

6.7.1.1. Hepatic cyst 17

6.7.1.2. Hepatic hemangioma 17

6.7.1.3. Focal nodular hyperplasia 17

6.7.1.4. Hepatic adenoma 18

6.7.2. Malignant liver tumors 18

6.7.2.1. Liver metastases 18

6.7.2.2. Hepatocellular carcinoma 19

6.7.2.3. Cholangiocarcinoma 20

6.7.3. Liver cirrhosis 20

6.8. Treatment of malignant liver tumors 21

7. Aims of the study 23



 6 

8. Materials and methods 24

8.1. Patient population 24

8.2. MR imaging 26

8.3. MDCT imaging 27

8.4. Intraoperative ultrasonography 27

8.5. Image analysis 27

8.6. Statistical analysis 28

9. Results 29

9.1. Lesion detection by MRI, MDCT and IOUS 29

9.2. Detection of extrahepatic disease and assessment of vascular proximity 29 

9.3. Lesion characterization by MRI 29

9.3.1. Lesion classification 29

9.3.2. Specific diagnosis 30

9.4. Differentiation between hemangiomas and malignant liver lesions by MRI 32 

9.5. Liver cirrhosis 34

10. Discussion 36

10.1. Lesion detection by MRI, MDCT and IOUS 36

10.2. Extrahepatic disease and vascular proximity 37

10.3. Lesion characterization 38

10.3.1 Collection of sequences 38

10.3.2. Unenhanced and gadolinium-enhanced T1-weighted sequences 38 

10.3.3. T2-weighted sequences 39

10.4. Characterization of hemangiomas by MRI 39

10.5. Liver cirrhosis 40

10.6. Future aspects of liver MRI 42

11. Conclusions 44

12. Acknowledgements 45

13. References 47



 7 

3. LIST OF ORIGINAL PAPERS 

This thesis is based on the following publications. 

I Numminen K, Halavaara J, Isoniemi H, Tervahartiala P, Kivisaari L, Numminen 

J, Hockerstedt K. Magnetic resonance imaging of the liver: true fast imaging with steady state 

free precession sequence facilitates rapid and reliable distinction between hepatic 

hemangiomas and liver malignancies. J Comput Assist Tomogr. 27:571-576, 2003.  

II Numminen K, Halavaara J, Tervahartiala P, Isoniemi H, Kivisaari L, Palomäki 

M, Hockerstedt K. Liver tumour MRI: what do we need for lesion characterization? Scand J 

Gastroenterol. 39:67-73, 2004. 

III Numminen K, Isoniemi H, Halavaara J, Tervahartiala P, Mäkisalo H, Laasonen 

L, Höckerstedt K. Preoperative assessment of focal liver lesions: multidetector CT challenges 

MRI in lesion detection. Accepted for publication in Acta Radiol. 

IV Numminen K, Tervahartiala P, Halavaara J, Isoniemi H, Höckerstedt K. Non-

invasive diagnosis of liver cirrhosis: MRI presents special features. Accepted for publication 

in Scand J Gastroenterol. 

The publications are referred to in the text by their Roman numerals. 



 8 

4. ABBREVIATIONS 

3-D three-dimensional 

CC cholangiocarcinoma 

CNR contrast-to-noise ratio 

CTAP computer tomography during arterial portography 

EPI echo planar imaging 

FISP fast imaging with steady state free precession 

FNH focal nodular hyperplasia 

FSE fast spin echo 

Gd gadolinium  

GRE spoiled gradient echo 

HASTE half-Fourier single-shot turbo spin-echo 

HCC hepatocellular carcinoma 

IOUS intraoperative ultrasonography

kV kilovolt 

MA matrix 

mAs milliamperesecond 

MDCT X-ray computer assisted multidetector tomography 

MR magnetic resonance 

MRI magnetic resonance imaging 

NEX number of excitations 

NMR nuclear magnetic resonance 

PET positron emission tomography 

PSC primary sclerosing cholangitis 

RARE rapid acquisition with relaxation enhancement 

RES reticuloendothelial system 

ROI region-of-interest 

S1/RL ratio between transverse diameters of liver segment one and right lobe 

S1/RLm modified ratio between transverse diameters of liver segment one and right lobe 

SE spin echo 

SI signal intensity 

SNR signal-to-noise ratio 

STIR short inversion time inversion recovery 

T tesla 

TE time to echo 

TR repetition time 

TSE turbo spin echo 
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5. INTRODUCTION 

The approach taken in the treatment of cancer patients relies on knowledge of liver status: 

high-sensitivity imaging in lesion characterization and detection may prevent unnecessary 

liver resections or, on the other hand, justify surgery (43, 69). In selected patients presenting 

with malignant primary or secondary hepatic tumors the potential benefit of surgical resection 

is well established (24). In general, the outcome in cases of malignant liver tumors is closely 

related to the stage of the disease. Accurate evaluation of hepatic tumor involvement and 

possible extrahepatic disease constitutes the basis for appropriate selection and tailoring of 

treatment for cancer patients. In this process, imaging studies play a pivotal role. 

Liver cirrhosis and its complications, especially hepatocellular carcinoma, are major clinical 

problems that carry a considerable risk of disability and death (174). Traditionally, liver 

cirrhosis has been diagnosed by liver biopsy. This invasive procedure in cirrhotic patients 

may run a risk of bleeding complications due to coexisting coagulopathy. Liver resection in 

cirrhotic patients also carries a high risk of operative mortality (60). Non-invasive tools for 

the evaluation of liver parenchyma and the detection of tumors are therefore of the utmost 

importance. 

Magnetic resonance imaging (MRI) provides versatile and unique soft tissue contrast, and is 

thus a powerful tool for evaluating a wide range of liver disorders. Over the past two decades 

MRI of the liver has experienced unprecedented growth due to advances in hardware and 

software. At present, MRI is considered to possess greater diagnostic accuracy than computer 

tomography  during arterial portography (CTAP) and helical CT (142, 143, 145, 148). 

However, the introduction of x-ray computer-assisted multidetector tomography (MDCT) 

challenges the superiority of MRI (40, 83). 

This thesis evaluates the lesion characterization potential of MRI by evaluating several 

unenhanced MR sequences and the dynamic gadolinium (Gd)-enhanced technique. The 

diagnostic value of MDCT and MRI in the preoperative assessment of liver tumors is also 

analyzed, and the sensitivity and specificity of MRI in diagnosing cirrhosis is investigated. 
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6. REVIEW OF THE LITERATURE 

6.1. History of liver MRI 

The first reported whole-body line-scan experiment was performed during the evening of 

April 13, 1978. The nuclear magnetic resonance (NMR) image obtained showed the upper 

abdominal internal organs, including the liver and gall bladder. The thickness of the cross-

sectional slice was approximately 4 cm and the scanning time for this one slice was 40 

minutes (99). The first case report of a liver tumor diagnosed with NMR was published in 

January 1981 by Smith et al. (152). In May 1981, Smith et al. (153) were also first to report 

NMR imaging results for 30 patients with liver disease, including liver cirrhosis and benign 

and malignant liver tumors. Smith concluded that: “NMR tomographic imaging appears to be 

an excellent non-invasive technique for the demonstration of various liver conditions. It can 

demonstrate the presence of malignant and benign liver tumors, obstructive jaundice and 

inflammatory conditions such as cholecystitis. This short series suggests that there is a large 

potential for this non-invasive, non-ionizing technique”. 

Since these early experiences, MRI of the liver has advanced significantly. In 1986, Hennig et 

al. (61) developed a faster way to acquire a T2-weighted image, and the rapid acquisition with 

relaxation enhancement (RARE) sequence was launched. Also in 1986, Frahm et al. (45) 

reported rapid MR imaging using low flip angle pulses. The first clinical study using a 1.5 T 

unit for hepatic imaging was performed in 1987 by Foley et al. (39). Gadolinium chelates 

were introduced for clinical abdominal MR imaging in 1984 (19). Superparamagnetic iron 

oxide was the first tissue-specific contrast agent for the liver (134).

In the 1990’s, MRI of the liver progressed significantly with scanner hardware improvements 

such as high-performance gradient coils and improved body coil design. In addition, the 

evolution of MRI software with advances in fast imaging techniques, motion artefact 

suppression, and sequences with greater T1 and T2 weighting has allowed good image quality 

to be obtained routinely. 

6.2. Liver MRI scanning technique 

6.2.1. General remarks 

High-quality images of the liver are usually obtained by using a dedicated abdominal coil, 

preferably a phased array multicoil, which significantly improves the signal-to-noise ratio 

(SNR) of the image. The improved signal-to-noise ratio afforded by phased array coils allows 

thinner slices, a smaller field-of-view, and thus higher resolution images to be obtained than 

with the body coil (18). With fast scanning capabilities, breath-hold imaging can be used to 
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replace non-breath-hold approaches for improved image quality and can also shorten the 

examination time (7, 144). Excitation-spoiling chemically selective fat suppression greatly 

diminishes motion and phase artefacts from respiration and improves the dynamic range of 

signal intensities of abdominal tissues. Fat suppression improves the signal-to-noise and 

contrast-to-noise (CNR) ratios of focal liver lesions and is also particularly useful for the 

visualization of contrast enhancement in regions bordered by fat, such as subcapsular liver 

parenchyma (8, 96, 138, 139). 

6.2.2. Sequences 

In abdominal MRI, T1- and T2-weighted sequences are the basic requirement for organ 

visualization as well as for lesion detection and characterization (114).

6.2.2.1. T1-weighted sequences 

T1-weighted images demonstrate imaging features for various types of liver lesions. Cysts, 

hemangiomas, and other lesions with a high fluid content are very low in signal. Lesions that 

are hypovascular or have high fibrous tissue content, such as colon cancer metastases, 

transitional cell carcinoma metastases, antibiotic-treated abscesses, chemotherapy-treated 

metastases that are fibrotic, and hepatic fibrosis, are moderately low in signal. Hemorrhagic 

lesions, including hemorrhagic metastases and liver hemorrhage, high-protein-content lesions, 

including hepatocellular carcinoma and hepatic adenoma, and melanin-containing lesions, 

such as melanoma, are high in signal (88).  

Spin-echo (SE) or spoiled gradient echo (GRE) sequences are most commonly used to 

produce T1-weighted images. However, GRE sequences allow the liver to be imaged within a 

single breath-hold, whereas SE sequences take several minutes to perform and some form of 

respiratory movement compensation is mandatory to reduce motion artefacts (85). GRE has 

achieved widespread use as a primary T1-weighted sequence for evaluating the liver (100).

Three-dimensional GRE imaging minimizes vascular pulsation artefacts and permits the 

acquisition of thinner sections. This technique allows a multiplanar display and is useful for 

defining hepatic blood vessels (89). Three-dimensional GRE sequences such as volume-

interpolated breath-hold examination (VIBE) can produce thin slices with fat saturation and 

without gaps. This allows MR angiograms to be produced (130). Magnetization-prepared 

GRE sequences acquire data as a single section technique with each individual section 
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acquired in less than 2 sec. This sequence is relatively insensitive to artifacts from patient 

motion and breathing, and has thus been termed breathing-independent (141). 

Fast T1-weighted imaging with GRE sequences is the technique most frequently used to 

obtain images with extracellular contrast agents (56, 130, 139). 

6.2.2.2. T2-weighted sequences 

Normal liver parenchyma has a relatively short T2 time, producing a hypointense signal 

relative to the spleen, kidneys and most other soft tissues, including tumors. For this reason, 

T2-weighted images have been considered useful for the detection of focal hepatic lesions that 

are hyperintense relative to hepatic parenchyma. There is no general opinion on the best T2-

techniques and the techniques vary widely depending on equipment and user preferences. 

RARE (61) and its modifications fast spin-echo (FSE) and turbo spin-echo (TSE) are basic 

T2-weighted sequences in liver imaging. These techniques can produce T2-weighted images 

in less time than conventional spin-echo imaging (20). Fat suppression and respiratory 

triggering are often combined with the sequences in order to improve the signal-to-noise and 

contrast-to noise ratios of focal liver lesions (96, 138). 

An additional modification of the RARE technique is half-Fourier single-shot turbo spin-echo 

(HASTE) also known as single shot fast spin echo. The HASTE sequence uses half-Fourier 

reconstruction to decrease the acquisition time. Because data can be acquired in a very short 

time, HASTE can provide T2-weighted images during one breath-hold (161). HASTE 

generates heavily T2-weighted images and is therefore used to differentiate fluid content 

lesions from solid liver tumors (162); it is also applied in MR cholangiopancreatography 

(111).

Echo planar imaging (EPI) is another method of obtaining breath-hold T2-weighted scans 

(135). EPI requires strong and specialized gradients and also a well-shimmed magnetic field 

with homogeneous fat suppression (47). Short tau inversion recovery (STIR) imaging 

provides strong image contrast. With STIR, images are generated in which the signal from fat 

is suppressed while the signal from most pathologies (and fluid) appears bright (151). STIR 

images can also be obtained with a TSE technique (63) and with breath-hold (36).  
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6.2.2.3. True fast imaging with steady state free precession (FISP)

True FISP is an ultrafast gradient-echo MR sequence in which echo (TE) and repetition times 

(TR) are kept as short as possible in order to minimize motion and susceptibility artefacts. 

Image contrast is related to the T2*/T1 ratio. Acquisition time is approximately 10 seconds, 

allowing scanning to be performed during breath-hold (79, 166). The true FISP sequence has 

been applied in the MR imaging of the vascular and biliary systems, and in MRI interventions 

(34, 79).

6.3. MRI contrast agents 

The need to characterize more accurately different histological types of liver lesions and to 

detect the full extent of malignant liver lesions has been the main reason for the use of 

contrast agent (147). The use of contrast agents potentially increases the sensitivity and 

specificity of liver MRI in numerous pathological conditions by improving morphological 

information and adding functional information (7). Contrast agents can act as positive or 

negative enhancers, depending on their nature, concentration, and the imaging pulse 

sequences (7, 53, 54). Contrast media can be classified into three categories according to their 

biodistribution: 1) non-specific extracellular contrast agents; 2) agents that are taken up by 

hepatocytes and excreted to variable extents via the hepatobiliary route; and 3) 

reticuloendothelial system (RES)-targeted agents (147). 

6.3.1. Non-specific extracellular contrast agents 

Non-specific extracellular contrast agents constitute a group of different types of gadolinium 

chelates. They have been available since 1984 and have the best documented clinical 

applications and safety profile. Gadolinium chelates are paramagnetic complexes that increase 

T1-relaxivity. Tissues where it accumulates are seen brighter in the enhanced T1-weigthed 

clinical images than in the unenhanced images (172). The standard clinical dosage for the 

administration of Gd chelates is 0.1 mmol/kg.  

6.3.2. Liver-specific contrast agents  

Liver-specific contrast agents represent a heterogeneous group of compounds in regard to 

their biodistribution, pharmacokinetic properties, contrast behavior, and most important, their 

target tissue. With respect to their target tissue, liver-specific contrast media can be divided 

into hepatocyte-selective and Kupffer’s cell-selective contrast agents. 
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Mangafodipir trisodium (Mn-DPDP) is the oldest hepatocyte-selective contrast agent in 

clinical use (147). Hepatocyte-selective contrast agents enhance T1 relaxation of normal liver 

parenchyma. In T1-weighted images, the signal intensity from normal liver and focal hepatic 

lesions containing hepatocytes increases. Lesions that do not contain hepatocytes remain 

unchanged (55). Gadolinium-BOPTA and Gd-EOB-DTA are liver-specific contrast agents 

that can also be used in a way similar to non-specific extracellular agents (21). 

RES-specific contrast agents include of superparamagnetic iron oxide particles (SPIO) and 

ultrasmall superparamagnetic iron particles (USPIO). The presence of the iron particles, 

which are captured in the Kupffer’s cells in the normal liver, increases T2-relaxitivy. In 

clinical T2-weighted MR images the signal intensity obtained from the normal liver 

parenchyma decreases. Malignant liver lesions do not contain Kupffer’s cells and their signal 

remains unaltered, and therefore the contrast between malignant lesions and liver increases 

(53, 134). 

Good results has been achieved with liver-specific contrast agents. Ferumoxide-enhanced MR 

imaging has been proved to be more effective in lesion detection than spiral CT and CTAP 

(81, 126, 142, 143) and Mn-DPDP has been effective in lesion characterization compared to 

dual-phase spiral CT (119). 

6.3.3. Dynamic multiphasic liver imaging 

Dynamic imaging after bolus injection of a gadolinium chelate may be the most important 

component of liver MRI, particularly for characterization of a liver lesion. Optimal dynamic 

scanning usually depends on the use of the multisection spoiled GRE technique, which allows 

the entire region of interest to be imaged during a single suspended respiration. Images of the 

liver are obtained during four phases relative to the injection of the contrast agent: 

precontrast, arterial (pre-sinusoidal or capillary), portal (sinusoidal), and delayed (interstitial) 

phases (56, 147). 

The arterial phase images are obtained 20-30 seconds from the start of the injection of 

contrast material. Imaging slightly earlier, when opacification is limited to hepatic arteries 

only, may be achieved if the injection rate of the contrast material is fast and the sequence is 

acquired with a very short time (94). In the hepatic arterial dominant phase, gadolinium is 

present in hepatic arteries and portal veins but absent from hepatic veins. Arterial phase 

images are important for depicting enhancing hypervascular metastases and hepatocellular 

carcinomas (109, 159, 177).
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Portal-venous phase images are obtained approximately 1 minute after the injection of the 

contrast material, at which time the delivery of blood by way of the portal-venous system 

predominates. Because the portal vein supplies 75-80% of the blood flow to the liver, hepatic 

parenchyma enhances markedly during this phase. The simultaneous delivery of contrast 

material to the liver lesion will reduce liver lesion contrast for hypervascular tumors. Because 

most liver tumors are hypovascular relative to the liver parenchyma, they will be visualized as 

hypointense lesions relative to the enhancing liver in portal-venous phase images (109, 120, 

176).

Equilibrium-phase images are obtained 90 seconds to 5 minutes or more after the injection of 

contrast material. In this time, the injected gadolinium chelate diffuses widely across the 

capillary endothelium into the interstitial space of the liver and tumors. Most liver lesions 

become less conspicuous in equilibrium-phase images. However, some tumors with a 

prominent interstitial space, including cholangiocarcinoma, will accumulate more contrast 

material than the liver, increasing their conspicuity in delayed images (116). Extrahepatic 

disease, including peritoneal metastases, is also best visualized in delayed images (93). 

6.4. Multidetector computer tomography (MDCT) in liver imaging  

MDCT, initially introduced in 1998, has substantially improved the performance of helical 

CT in several clinical applications, including liver tumor imaging (40, 41, 83). MDCT allows 

very fast scanning to be performed with thin slices. It can be five to eight times faster than 

conventional helical CT. A high spatial resolution enables high-quality multiplanar and three-

dimensional (3D) reformations to be constructed from the raw data. A high temporal 

resolution permits multiple precisely defined imaging phases, which is especially useful in 

hepatic imaging (40, 41, 83). At present, MRI is considered to possess higher diagnostic 

accuracy than CT during arterial portography and helical CT (142, 143, 145, 148). However, 

MDCT challenges MRI in liver imaging (40, 133).

6.5. Intraoperative ultrasonography 

Intraoperative ultrasonography (IOUS) is regarded as a highly sensitive technique for the 

accurate staging of liver tumors (44, 136, 167, 173). At present, liver surgery in cases of 

metastatic and primary malignancies relies on IOUS findings. In a study conducted by 

Solomon et al. (156), pathological deposits detected by IOUS changed the surgical approach 

in up to 67% of operations. Surgical palpation and IOUS are routinely used to evaluate the 

liver before resection, mainly for the detection of occult additional hepatic lesions and to 
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assess the relationship of tumors to major vessels and extrahepatic structures such as gall 

bladder and peritoneum (69). 

6.6. Other imaging modalities

Positron emission tomography (PET) is a molecular imaging technique that provides images 

of physiologic processes. In a large meta-analysis by Kinkel (82)  FDG-PET was the most 

sensitive non-invasive imaging modality for detection of hepatic metastases of colorectal, 

gastric, and oesophageal cancers. However, in detection of hepatic primary malignancies, 

PET has proved to be insensitive (165). Combined PET/CT devices offer several potential 

advantages over a PET scanner alone: better quality PET images because of the more accurate 

correction for attenuation provided by CT, automatic registration of CT (anatomic) and PET 

(metabolic) information, and shorter imaging times (131). 

Ultrasound plays valuable role in the screening of the patients with suspected hepatic disease. 

Both US and CT are usually the first-line imaging modalities in hepatic diseases (163). 

Ultrasound also possess high diagnostic performance to identify hepatocellularcarcinoma 

(165). Ultrasound guided techniques provide commonest interventional techniques for 

biopsies and drainages (163) and duplex-Doppler technique is a cost-effective modality to 

evaluate hepatic veins and to obtain hemodynamic information (1).  

CTAP was long regarded as the most sensitive method for staging patients with focal liver 

metastases. However, it is an invasive procedure with attendant risks and it has low specificity 

(78, 145). Conventional angiography has no role in liver diagnostics today (78). Previously 

hepatic scintigraphy has been widely used to characterize hemangiomas (33). 

6.7. Liver diseases 

6.7.1. Benign hepatic tumors 

Benign tumors of the liver are classified pathologically by their cell origin. Lesions of 

epithelial origin include hepatic cyst, focal nodular hyperplasia (FNH), hepatocellular 

adenoma, cystadenoma and biliary hamartoma. Lesions of mesenchymal origin include 

hemangiomas, angiomyolipomas, and lipomas (51). In most cases typical MR imaging 

characteristics can be observed.  
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6.7.1.1. Hepatic cyst 

Hepatic cysts are common, and most are asymptomatic. Hepatic cysts form as a result of 

cystic dilatation of aberrant bile ducts in the liver. These hepatic ducts are incompletely 

developed and do not connect with normal bile ducts (73). MRI shows the cysts to be 

hypointense in T1-weighted and hyperintense in T2-weighted images. Simple cysts do not 

enhance and have a homogeneous and well-defined appearance (115). 

6.7.1.2. Hepatic hemangioma 

Hepatic hemangiomas are the most common benign solid liver tumors, with a reported 

incidence of up to 20% (76). Almost invariably, they are asymptomatic and therefore detected 

only incidentally during routine abdominal ultrasound examinations (108). 

Histopathologically, cavernous hemangiomas are well-defined, blood-filled tumors with 

vascular channels lined with epithelium, separated by fibrous septa. Calcification, internal 

hemorrhage, thrombosis, and extensive fibrosis may occasionally be present (110). 

Hemangiomas generally have moderately low signal intensity in T1-weighted images and 

high signal intensity in T2-weighted images with a homogeneous pattern. They maintain high 

signal intensity in heavily T2-weighted images (104). Hemangiomas have three basic 

enhancement patterns: uniform enhancement on arterial phase scans, typically seen in 

hemangiomas 1 cm in size or smaller, nodular peripheral enhancement with centripetal filling 

on sequential sequences, and nodular peripheral enhancement with centripetal filling in with 

persistence of a non-enhancing central scar (140). 

6.7.1.3. Focal nodular hyperplasia 

FNH accounts for approximately 8% of all primary hepatic tumors in western world (51). 

Most FNHs are seen in women (80%-95%) in the third to fifth decades of life. FNH is thought 

to arise as a localized hepatocyte response to an underlying congenital vascular malformation 

(168). The signal intensity of both T1- and T2-weighted images may be close to that of 

normal liver parenchyma (103). If a central scar is present, it is hyperintense in T2-weighted 

images. With intravenous gadolinium injection, FNH displays a characteristic pattern of 

marked, uniform enhancement in arterial-phase images obtained immediately after the bolus 

administration. In the subsequent portal-venous phase, the lesion rapidly fades, becoming 

isointense or only mildly hyperintense relative to liver parenchyma (97). 
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6.7.1.4. Hepatic adenoma

Liver cell adenomas are rare benign tumors associated in particular with the use of oral 

contraceptives or anabolic steroids. They can also occur in patients with metabolic disorders 

such as diabetes mellitus, galactosemia, and glycogen storage disease (80, 132, 154). The 

incidence of adenomas in patients with long-term oral contraceptive use is approximately 3 to 

4 cases per year per 100,000 population (132). Histologically, adenomas are composed of 

cords of hepatocytes, large amounts of fat and glycogen. There are no bile ductules, portal 

venous tracts, or terminal hepatic veins (51). Adenomas are usually vascular-rich tumors and 

have a propensity to outgrow their vascular supply, resulting in hemorrhage and necrosis, and 

large ones may occasionally rupture. The MR imaging appearance can be variable and non-

specific. Most have a heterogeneous appearance correlating with the amount of fat and 

hemorrhage (122). Adenomas often enhance strongly in arterial phase images (25). 

Differential diagnosis with respect to hepatocellular carcinomas can be difficult if adenomas 

contain fat or hemorrhage (108). Because of the risk of hemorrhage, adenomas may require 

surgical treatment (106, 108). Malignant transformation is rare (50). 

6.7.2. Malignant liver tumors 

6.7.2.1. Liver metastases 

Metastatic disease is the most common cause of malignant liver lesions, outnumbering 

primary hepatic neoplasm by 18 to 40 times (5, 51). Up to 75% of primary tumors drained by 

the portal venous system (pancreas, large bowel, small intestines and stomach) will have 

metastatic involvement at some stage of the disease. About 10% of these will have a solitary 

liver metastasis. This figure is much lower for other tumors such as those of the breast and the 

lung (71). Metastases are classified as hypo- or hypervascular. The majority of liver 

metastases are hypovascular, usually originated from gastro-intestinal tract and from breast 

and lung carcinoma. (120). Hypovascular metastases are best depicted in portal-venous phase 

images. These metastases receive minimal blood supply from the hepatic artery. During the 

portal-venous phase, the liver parenchyma demonstrates marked enhancement while 

hypovascular metastases show only minimal enhancement, producing the greatest difference 

in liver-lesion signal intensity (109, 120, 175). In arterial phase images, rim-enhancement has 

been reported to be highly specific for hypovascular metastases (98). Hypervascular 

metastases are supplied by the hepatic artery and enhance rapidly after injection of 

gadolinium chelates. Typical hypervascular liver metastases arise from renal and breast 

carcinoma, islet cell tumors, melanoma, and sarcoma (120). Thus, in arterial phase images, 

hypervascular metastases will show marked enhancement against a background of minimally 
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enhancing liver parenchyma (87, 159). In later phases the contrast agent within the tumor will 

wash out and the tumor will become hypo-or isointense to liver parenchyma. 

In T2-weighted MR images, metastases are usually mildly hyperintense relative to the liver. 

However, some metastases, particularly liver metastases from breast and colon carcinomas 

and metastases from neuroendocrine malignancies and chemotherapy-treated lesions, may 

have a high signal intensity in T2-weighted images (146, 159). In unenhanced T1-weighted 

images they are hypointense except for occasional melanoma metastases, which may appear 

bright (88) and demonstrate a low signal in T2-weighted images due to the presence of  

melanin (90).

6.7.2.2. Hepatocellular carcinoma 

Hepatocellular carcinoma is the most common primary malignancy of the liver. Patients who 

are carriers of chronic hepatitis B or C virus infection, or those who have cirrhosis caused by 

alcohol or hemochromatosis are at greater risk of developing HCC (71). The fibrolamellar 

variant of HCC, however, has usually no association with cirrhosis. HCC arises from 

dysplastic nodules (35). Dysplastic nodules progress from low-grade dysplastic nodules to 

high-grade dysplastic nodules. High-grade dysplastic nodules may develop microscopic foci 

of HCC that then enlarge to become a frank malignant HCC. HCC can appear as a solitary or 

multifocal liver mass or as a diffuse infiltrative tumor. Portal-vein invasion and intrahepatic 

metastases and tumor capsule are characteristic features of HCC (38). 

HCC shows a highly variable appearance in both T1- and T2-weighted images (46, 175). 

Hyperintense regions within HCC in T1-weighted images reflect the presence of fat, copper, 

or protein. On T2-weighted images HCCs are generally hyperintense (102), although well-

differentiated tumors may be isointense to liver parenchyma (64, 118). A mosaic pattern is 

seen if the tumor is larger than 3 cm (74). HCCs are mainly nourished by the hepatic artery. 

They are usually greatly enhanced in arterial dominant–phase images. The enhancement is 

often homogeneous in tumors less than 2 cm in diameter and heterogeneous in tumors larger 

than 2 cm. However, a well-differentiated HCC often shows minimal arterial–phase 

enhancement (175). There is overlapping between imaging features of regenerative, dysplastic 

and HCC nodules. Especially signal intensity of dysplastic nodules overlaps significantly with 

those of small HCCs (64, 84). Also enhancement pattern of dysplastic nodules can be similar 

to small HCCs. In difficult cases only follow up or biopsy can verify the diagnosis (70).
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6.7.2.3. Cholangiocarcinoma 

Cholangiocarcinoma (CC) arises from bile duct epithelium and is the second most common 

primary malignancy, accounting for 8.2% of all primary malignant hepatic neoplasms (71). 

An increased incidence of CC has been associated with a variety of predisposing factors such 

as primary sclerosing cholangitis, cystic biliary disease, intrahepatic ductal calculi, and 

congenital biliary atresia. 

In T1- and T2-weighted images, cholangiocarcinoma is hypo- and hyperintense, respectively. 

A small central type of cholangiocarcinoma can be obscured by dilated bile ducts. After 

injection of gadolinium, CC displays a characteristic pattern of slow, gradual enhancement. 

The delayed enhancement of CC in equilibrium-phase images is considered to be a 

characteristic feature (158). 

Hepatic angiosarcoma, biliary cystadenocarcinoma, epitheloid hemangioendothelioma, 

lymphoma and nonvascular sarcomas are rare primary liver malignancies. 

6.7.3. Liver cirrhosis 

Liver cirrhosis is characterized by the presence of extensive fibrosis and innumerable 

regenerative nodules replacing the normal liver parenchyma. These features represent the 

final common pathway of chronic liver injury due to a variety of causes. The process is 

initiated by parenchymal necrosis, followed by connective tissue deposition, nodular 

hepatocyte degeneration, and distortion of the lobular and vascular hepatic architecture (15). 

In Europe the most common etiology for cirrhosis is alcohol (26). The prevalence of other 

chronic liver disorders such as viral hepatitis, primary biliary cirrhosis, primary sclerosing 

cholangitis, and autoimmune hepatitis varies considerably in different countries (12, 101). 

The Child-Pugh scoring system is used to assess the severity of liver cirrhosis. The Child-

Pugh grade is related to bilirubin, albumin, and prothrombin values and to the presence or 

absence of hepatic encephalopathy and ascites (table 1)(149). The clinical manifestation of 

cirrhosis is related to loss of hepatocellular function and complications of portal hypertension 

(137). Traditionally, cirrhosis has been established invasively by liver biopsy, although 

cirrhotic patients often suffer from coagulopathy (137). Liver cirrhosis is also associated with 

a markedly increased risk of hepatocellular carcinoma (71, 169). The role of radiology in the 

evaluation of cirrhosis is primarily to characterize the morphologic manifestations of the 

disease, evaluate the hepatic and extrahepatic vasculature, assess the effects of portal 

hypertension, and detect hepatocellular cancer (16). The typical radiological manifestations of 

the liver cirrhosis are ascites, spenomegaly, portosystemic shunt vessels, large segment one, 
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nodularity of the liver, shrinkage of the right lobe (16) and large gall blader fossa (66). Liver 

transplantation is nowadays widely accepted as a therapeutic option for patients with terminal 

liver failure (9). 

Criteria assessed Points scored for increasing abnormality 

1 2 3

encephalopathy (grade) none 1-2 3-4

ascites absent slight moderate

serum bilirubin (µmol/l) <35 35-50 >50

serum albumin (g/l) >35 35-28 <28

prothrombin time (s) 1-4 4-10 >10

total score 5-6 7-9 10-15

Child´s grade A B C

overall mortality in 

Pugh`s series (%)

29 38 88

Table 1 Child-Pugh scoring system 

6.8. Treatment of malignant liver tumors 

The majority of liver resections are performed for metastatic colorectal cancer. One-third of 

colorectal carcinoma patients develop liver metastases, 20% of which are confined to the 

liver. Approximately a quarter of these 20% may be candidates for liver resection. The 

ultimate indications for liver surgery vary between different units. Potential candidates for a 

liver resection must have no evidence of extrahepatic spread of the disease and have no 

comorbid conditions to preclude a major operative procedure (60, 71). The predictors for a 

good outcome are a surgical margin of at least 1 cm, four or less liver lesions, a serum low 

carcino-embryonic antigen level and the small size of the metastasis (17, 24, 42, 43). A long-

term survival rate of 25%-39% has been reported after curative resection, whereas the rate is 

only 2% after medical therapy or no therapy (42, 60, 164). Previously 5-fluorouracil has been 

the commonest cytotoxic agent for systemic chemotherapy. Improved results have been 

achieved after combining fuorouracil/leucovorin with bevacizumab, which is a monoclonal 

antibody to vascular endothelial growth factor (72). Very promising results have been seen 
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with more a modern chemotherapeutic regimen comprising irinotecan, oxaliplatin and 

capecitabine, which is an oral formula (14).

The only curative treatment for HCC is surgical resection or liver transplantation. However, 

HCC is mostly associated with cirrhosis and therefore usually beyond the reach of resection. 

On the other hand, resection of a cirrhotic liver is associated with relatively high morbidity 

and mortality (86, 171, 178). Death is usually caused by liver failure or severe dysfunction or 

finally multiorgan failure. The 5-year survival of patients resected for HCC is about 50% (92, 

127, 178). The favorable determinants of survival include no vascular invasion or extrahepatic 

disease, asymptomatic status, and a solitary and encapsulated tumor less than 5 cm size. A 1 

cm tumor-free margin is an even more important determinant of prognosis in HCC than in 

colorectal cancer metastases (22, 127, 150). Fibrolamellar HCC is a rare variant of HCC. It is 

not associated with cirrhosis, and the surgical survival rate after 10 years can be up to 70% 

(60, 71). 

The alternative therapeutic techniques for surgical treatment include chemoembolization, 

percutaneous ethanol injection therapy, cryotherapy, microwave ablation and interstitial laser 

coagulation. At the moment radio-frequency ablation is considered to be the most promising 

technique (48). The main indications for these local ablative techniques is poor liver function 

with insufficient liver reserve after liver resection or comorbid conditions (23). Although a 3-

year-survival rate as high as 46% has been reported (155), patients with potentially resectable 

tumors should be treated using hepatic resection, which is still considered to be the gold 

standard therapy (105). 
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7. AIMS OF THE STUDY 

The aims of the present study were 

1. To study the diagnostic value of MDCT and MRI in the preoperative assessment 

of liver tumors in relation to lesion detection, the lesion’s vascular proximity and extrahepatic 

disease (study III). 

2. To determine the potential of MRI in liver lesion characterization by using 

tumor histology as the gold standard (study II). 

3. To analyze the potential of the true FISP sequence in distinguishing between 

hemangiomas and malignant liver lesions (study I). 

4. To investigate the sensitivity and specificity of MRI in diagnosing liver cirrhosis 

by evaluating the most characteristic MRI features of cirrhosis. Co-incidental HCC was also 

analyzed (study IV). 
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8. MATERIALS AND METHODS 

8.1. Patient population 

A total of 180 patients were examined in this investigation. 91 patients were same in different 

publication. In the retrospective studies (I, II and IV) the inclusion criteria were either 

histological proof of a lesion and liver parenchyma or a hemangioma with a follow-up. In 

study III, 31 consecutive patients eligible for hepatic surgery during 2002 were included. All 

investigations were made in a hospital orientated to hepatic surgery. This influenced to patient 

selection. The patient characteristics are summarized in Table 2. 

Study I II III IV

Patients 68 116 31 56

female 38 70 14 28

male 30 46 17 28

female, mean age, (range) 55.5 (35-76) 53.2 (25-78) 58.3 (29-69) 52.3 (28-75) 

male, mean age, (range)  56.2 (35-82) 56.7 (35-77) 57.4 (26-75) 57.6 (35-78) 

Histology (n=patients) 

HCC 10 17 3 13

cholangiocarcinoma 7 12 3 5

gall bladder carcinoma 2 6

angiosarcoma 1 1

colorectal metastases 17 24 20 1

other metastases 8 16 2

no tumor 28

hemangioma 23 23 2

FNH 11 1 5

adenoma 3 1 1

other benign liver lesions 3 1

mean diameter of 

malignant lesions (cm)  
3.9 (2-12) 5.1 (1-15) 3.0 (1-10) 

hemangiomas 3.1 (1-14)

Table 2. Patient characteristics in studies I-IV 
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Study I consisted of sixty-eight patients. The hemangioma group contained 23 patients with 

45 hemangiomas. There were 17 women (age range 35-75 years, mean 48.5) and 6 men (age 

range 35-69 years, mean 54.5). Histological proof was obtained from 14 hemangiomas. The 

remaining 31 hemangiomas demonstrated typical T2-signal behavior and characteristic fill-in 

enhancement patterns during dynamic gadolinium-enhanced MRI. None of the hemangiomas 

showed progression during a mean follow-up time of 16 months (range, 6-24 months). The 

mean diameter of the hemangiomas was 3.1 cm (range 1.0-14.0 cm). The patient group with 

malignant liver lesions contained 21 women (age range 36-76 years, mean 62.4) and 24 men 

(age range 43-82 years, mean 57.9) with 51 focal lesions. There were a total of 31 metastases. 

19 metastases (17 patients) originated from the colorectum and 12 metastases (8 patients) 

were of other origin. Additionally, there were 10 cases of hepatocellular carcinomas, seven 

cholangiocarcinomas, two infiltrating gall bladder carcinomas, and one angiosarcoma. The 

mean diameter of the malignant liver lesions was 3.9 cm (range 2.0-12.0 cm). All malignant 

lesions were histologically verified. 

Study II involved a total of 116 focal liver lesions in 116 patients. The patient group with 76 

malignant liver lesions included 38 men (age range 45-86 years, mean 60.2) and 38 women 

(age range 36-84 years, mean 62.7). The malignancies consisted of metastases (n=40), 

hepatocellular carcinomas (n=17), cholangiocarcinomas (n=12) and gall bladder carcinomas 

(n=6), and there was one case of angiosarcoma. The metastases originated from the 

colorectum (n=24), breast (n=4), pancreas (n=4) and gall bladder (n=2), and there were also 

one metastasis each from a teratoma, melanoma, leiomyosarcoma, hemangiopericytoma, 

kidney and carcinoid tumor. The mean size of the malignancies was 5.1 cm (range, 1.0-15.0 

cm). The group of patients with 40 benign focal liver lesions included 8 men (age range 25-

60, mean age 53.2) and 32 women, (age range 23-80, mean age 43.6). The benign hepatic 

lesions consisted of hemangiomas (n=23), focal nodular hyperplasias (n=11), adenomas 

(n=3), cystadenoma (n=1), hemangioendothelioma (n=1) and a complicated cyst. The mean 

size of the benign liver lesions was 4.7 cm (range, 1.0-15.0 cm). 

In study III, 31 patients were preoperatively imaged. There were 17 men (age range 26-75 

years, mean 57.4) and 14 women (age range 29-69 years, mean 58.3). Twenty patients had 

hepatic metastases from colorectal cancer, one patient from breast carcinoma and one patient 

had metastases from a clear cell sarcoma originating from the kidney. Three patients suffered 

from hepatocellular carcinoma and three had cholangiocarcinoma. Additionally, there was 

one case of atypical focal nodular hyperplasia, one adenoma and an old granulomatous 
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tuberculous lesion (the patient had a history of renal carcinoma). Eleven patients with 

colorectal metastases received chemotherapy before surgery. All lesions were histologically 

verified. The mean diameter of the lesions was 3.0 cm (range 1-10 cm). 

Study IV comprised 56 patients. The cirrhosis group consisted of 30 patients. There were 18 

men (age range 35-68 years, mean 52.7), and 12 women (age range 30-75 years, mean 56.3). 

The etiology of liver cirrhosis was alcohol (n=8), primary biliary cirrhosis (n=7), primary 

sclerosing cholangitis (PSC) (n=5), autoimmune hepatitis (n=3), post-viral hepatitis (n=2) and 

cryptogenic (n=5). Ten patients had coexisting HCC and one patient had a hemangioma. 

Seven patients were in Child-Pugh class A, 18 in class B and five in class C. The control 

group included 26 patients, comprising 16 women (age range 28-72 years, mean 48.2) and 10 

men (age range 42-78 years, mean 58.9). Histological findings from the liver showed normal 

liver parenchyma (n=5), nearly normal parenchyma (n=2), mild hemosiderosis (n=1), 

steatosis (n=13), mild fibrosis (n=3), and necrosis (n=2) within the liver. The main diagnoses 

of these patients were cholangiocarcinoma (n=5), focal nodular hyperplasia (n=5), 

hepatocellular carcinoma (n=2), fibrolamellar HCC (n=1), hemangioma (n=2), adenoma 

(n=1), colorectal metastasis (n=1), acute liver failure (n=2), autoimmune hepatitis (n=2), 

chronic hepatitis of unknown etiology (n=1) and PSC (n=4). PSC cases were diagnosed by 

endoscopic retrograde cholangiography.

8.2. MR imaging 

In all studies MR imaging was performed with a clinical 1.5 T system (Magnetom Vision, 

Siemens, Erlangen, Germany). A dedicated phased-array body coil was used. Fat-suppressed 

T2-weighted HASTE with TR = 4.2 ms, TE = 59 ms, slice = 5-6 mm, matrix (MA) = 128 x 

256, number of excitations (NEX) = 1, fat-suppressed T1-weighted fast low angle shot (2D-

FLASH) TR = 85.6, TE = 4.1, slice = 5 mm, average MA = 192 x 256, NEX = 2 and true 

FISP TR = 6.3, TE = 3.0, slice = 5mm, average MA = 263 x 350, NEX=1 sequences were 

acquired. Dynamic Gd-enhanced MR imaging using the fat-suppressed T1-weighted sequence 

was subsequently performed in the arterial and portal venous phases. The imaging parameters 

were kept identical. A power-injector was used for the gadolinium injections (Magnevist, 

Schering AG, Germany, dose 0.1 mmol/kg body weight; injection rate 2 ml/s). All acquired 

sequences were performed in the axial plane in breath-hold. Liver-specific contrast agent 

agents were not included in our clinical routine. 
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8.3. MDCT imaging 

In study III, a triphasic contrast-enhanced MDCT study was performed with a four-channel 

scanner (LightSpeed, General Electric Medical Systems, Milwaukee, WI). A 120-140 kV tube 

voltage and 300-380 mAs current were used. After contrast agent injection at 5 ml/s (150 ml, 

Ultravist 370 mgI/ml, Schering, Berlin, Germany), bolus-triggered scans in the early arterial, 

late arterial and portal venous phases were acquired (approximately 20, 40 and 65 seconds 

after injection). A collimation of 5 mm was used in the arterial phases of imaging, and a 

collimation of 2.5 mm in the portal venous phase scanning. All phases of imaging were 

performed with a 0.8 sec gantry rotation, a pitch of 6 and a 15 mm table feed with each gantry 

rotation.

8.4. Intraoperative ultrasonography 

In study III, IOUS was performed by both a radiologist and a surgeon in a systematic fashion 

using GE Logiq 700 equipment with a dedicated 7.5 MHz intraoperative probe (General 

Electric Medical Systems, Milwaukee, WI). In the department of liver surgery and 

transplantation IOUS has been used for 15 years.

8.5. Image analysis 

In studies I, II and IV, the images were evaluated retrospectively and in study III 

prospectively. In none of the investigations was clinical data available to the readers. The 

images were analyzed separately in studies I and II and as a consensus reading in studies III 

and IV by two readers. 

In studies I and II, the readers were asked to determine whether the lesion was benign or 

malignant, and to propose a specific diagnosis. The determination was assessed on the basis 

of lesion signal characteristics, enhancement patterns and morphology. After the film reading 

in study I, the principal investigator measured the lesion CNR values and evaluated lesion 

borders from the true FISP images. For the calculations, signal intensities (SI) were obtained 

from the lesions and from normal liver parenchyma using the standard region-of-interest 

(ROI) technique. The largest possible ROI covering the entire lesion was chosen and its 

periphery was excluded to avoid the partial volume effect. The SI value of the liver was 

obtained from the vicinity of the respective lesion, and the background noise was determined 

using a ROI in the phase-encoding direction ventral to the patient. CNR was defined as 

(SIlesion – SIliver) divided by the standard deviation of the background noise. 
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In study III, the sizes and numbers of liver lesions as well as the hepatic segments involved 

were recorded for the solid lesions. Couinaud’s anatomical description of eight liver segments 

(27) for lesion localization was used. Coexisting benign lesions such as hemangiomas and 

cysts were also noted. The anatomical proximities of the lesions to the inferior vena cava or 

hepatic veins, hepatic hilum, and to the main portal branches were assessed. For this purpose, 

a scale for the lesion’s proximity of less than 1 cm or more than 1 cm was used (17). Benign 

or suspected malignant lymph nodes were scrutinized and the possibility of other extrahepatic 

involvement such as infiltration through the hepatic capsule or peritoneal metastases was 

considered.

In study IV, the readers determined the following liver parameters: enlargement of segment 

one, atrophy of the right lobe, enlargement of the hilar periportal space, a nodular liver 

surface, liver nodules, signs of iron deposition, signs of fibrosis (regions of low signal 

intensity in unenhanced T1-weighted images and increased signal intensity in T2-weighted 

images), an expanded gall bladder fossa (67), presence of ascites, signs of portal hypertension 

(enlargement of spleen, portosystemic collaterals), and narrowing of the hepatic veins and 

vena cava (a subjective criteria was used). The ratio between the transverse diameters of liver 

segment one and the right lobe (S1/RL) determined by Harbin (59) was measured. Also, the 

modified ratio between segment one and the right lobe (S1/RLm) as described by Awaya (4) 

was calculated. Hepatocellular carcinoma or other possible neoplasms were scrutinized. The 

determination of HCC was assessed on the basis of lesion signal characteristics, enhancement 

patterns and morphology Finally, readers determined whether the patient had a cirrhotic or a 

non-cirrhotic liver. 

8.6. Statistical analysis 

In study I, the statistical difference between the true FISP, HASTE, and Gd-enhanced imaging 

in diagnosing hemangiomas was assessed using the McNemar test. The statistical difference 

between the CNR values obtained with the true FISP and HASTE was calculated using a two-

tailed unpaired t-test. The McNemar test was used in study II to calculate the statistical 

difference between the collection of sequences and the individual sequence, both in lesion 

classification and in assessing a specific diagnosis. The McNemar test was also used in study 

III to measure the statistical significance of the sensitivities between the different imaging 

modalities. In study IV, the ²-test was used to evaluate the statistical significance of the 

difference in imaging findings between the cirrhosis and control groups. The statistical 

difference of S1/RL and S1/RLm measurements between the cirrhosis and control groups was 
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determined using the two-tailed unpaired t-test. A p < 0.05 was considered to indicate a 

statistically significant difference in all tests. In studies I and II, interobserver variances were 

determined using kappa statistics. A kappa value greater than 0.81 is considered excellent, a 

value of 0.61-0.80 substantial, 0.41-0.60 moderate, 0.21-0.40 fair, and 0.01-0.20 slight. 

9. RESULTS 

9.1. Lesion detection by MRI, MDCT and IOUS (study III) 

A total of 45 solid lesions from 31 patients were detected by IOUS and palpation during 

operations. Tumors were verified either by biopsy or from explants histopathologically. From 

the 45 solid liver tumors, MDCT revealed 43 lesions (96%) and MRI 35 lesions (78%). The 

differences in the sensitivity of lesion detection between MDCT and MRI were statistically 

significant (p=0.008). Between MDCT and IOUS no statistically significant difference was 

detected (p=0.25). However, the differences in sensitivity between MRI and IOUS were 

statistically significant with a p value of 0.001. All cysts and the solitary hemangioma were 

detected by IOUS, MRI and MDCT.

9.2. Detection of extrahepatic disease and assessment of vascular proximity 

During the operation, metastatic lymph nodes were found in six of  31 patients. In one case 

lymph nodes were considered potentially metastatic in MDCT as well as in MRI. Capsular 

infiltration (n=5), peritoneal metastases (n=3) and mesenteric metastases (n=2) were detected 

by IOUS in seven patients. This extrahepatic involvement was suspected in two cases in 

MDCT and in one case in MRI. Assessment of the lesion in relation to hepatic vessels, to 

inferior vena cava and to portal branches was correct in 98% of measurements by MDCT and 

in 87% by MRI. This difference was statistically significant (p=0.002). 

9.3. Lesion characterization by MRI (study II) 

9.3.1. Lesion classification 

Lesion classification into benign or malignant tumors was correctly assessed by reader 1 with 

the true FISP, HASTE, unenhanced T1- and Gd-enhanced T1-weighted sequences in 70%, 

72%, 58%, and 79% of cases, respectively. The respective figures for reader 2 were 75%, 

76%, 66%, 81%. When all sequences were evaluated collectively, correct characterization of 

lesions as benign or malignant was achieved in 83% by reader 1 and in 89% of cases by 

reader 2. The reading of all sequences collectively was superior to the best individual 

sequence (Gd-enhanced T1-weighted sequence), demonstrating statistical significance 
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(p=0.02). The difference between the Gd-enhanced T1-weighted sequence and HASTE also 

showed statistical significance with a p-value of 0.02. In lesion classification, interobserver 

variance varied from 0.22 to 0.38, indicating fair agreement. The results of lesion 

classification are presented in Figure 1. 

The results of lesion classification

58

79 83
75 76

66

81

7270%

89

0

20

40

60

80

100

true FISP HASTE T1W GdT1W all

sequences

reader 1

reader 2

Figure 1. Histogram demonstrating the rates of correct lesion classification into benign or 

malignant with different MRI techniques. The number of lesions was 116, of which 107 were 

verified histologically and 9 hemangiomas had a follow up. The figures shown are 

percentages.

9.3.2. Specific diagnosis 

Collective evaluation of all sequences gave the best result in terms of assessment of specific 

diagnosis. Reader 1 correctly diagnosed 60% of cases and reader 2 71%. There was no 

statistically significant difference between best individual sequence (Gd-enhanced T1-

weighted sequence) and the collective evaluation (p=0.06). However, there was a statistically 

significant difference between Gd-enhanced T1-weighted and T2-weighted sequences, the p-

value being 0.03. 

Reader 1 reached the correct specific diagnosis with the true FISP, HASTE, unenhanced T1- 

and Gd-enhanced T1-weighted sequences in 50%, 56%, 41%, and 59% of cases, respectively.

The corresponding figures for reader 2 were 53%, 58%, 50% and 65%. The kappa values in 
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the assessment of specific diagnosis varied from 0.52 to 0.62, indicating moderate agreement.

The results for the assessment of specific diagnosis are presented in Figure 2.

The results of accurately assessed specific diagnosis
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Figure 2. Histogram demonstrating the rates of correct specific diagnoses with different MRI 

techniques. The number of lesions was 116, of which 107 were verified histologically and 9 

hemangiomas had a follow up. The figures shown are percentages. 
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9.4. Differentiation between hemangiomas and malignant liver lesions by MRI (study I) 

With the true FISP sequence, a correct hemangioma diagnosis was achieved in 96% and in 

89% of cases by readers 1 and 2, respectively. The kappa value was 0.65. With the HASTE, a 

correct diagnosis was reached in 89% and in 80% of cases by readers 1 and 2, respectively. 

The kappa value was 0.33. There was no statistically significant difference between true FISP 

and HASTE in diagnosing hemangiomas (p=0.125). With the unenhanced T1-weighted 

sequence, only 24%, (reader 1) and 49%, (reader 2) of hemangiomas were correctly 

diagnosed. Gd enhancement considerably increased the rate of accurate classification: for 

readers 1 and 2 they were 78% and 82%, respectively. There was no statistically significant

difference between true FISP and Gd-enhanced MRI in diagnosing hemangioma (p=0.06). 

The results of the reader analysis are summarized in Figure 3.

The results of accurately diagnosed
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Figure 3. Independent reader analysis with different MR imaging sequences showing correct 

classification of all hemangiomas (n=45). The figures are shown in percentages. 

The calculated specificity of the true FISP sequence was 100% for reader 1 and 98% for 

reader 2. Twenty-seven of the 45 hemangiomas were 1 to 2 cm in diameter. Both readers

correctly diagnosed this subgroup of small hemangiomas better with true FISP than with 
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HASTE or with dynamic Gd-enhanced MRI. The results for these small lesions are 

summarized in Table 3. 

true FISP HASTE Gd- T1W

Reader 1 25 (93%) 22 (81%) 17 (63%) 

Reader 2 23 (85%) 19 (70%) 20 (74%) 

Table 3. Independent reader analysis with different MR imaging sequences showing 

correct classification of small hemangiomas (1-2 cm in diameter, n 27).

The mean CNR value for the hemangiomas was 21.2, SD 9.2, and for malignant lesions 4.9, 

SD 3.9. The difference in the CNR values between the two lesion groups was statistically 

highly significant (p<0.0001). There was only a slight overlap in the CNR values between the 

lesion groups with only two malignant lesions, demonstrating CNR values (11.0 and 21.0) 

similar to those for hemangiomas (Figure 4). 
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Figure 4. CNR values for hemangiomas (n=45) and malignant liver lesions (n=51). The graph 

shows the calculated CNR values of the various liver lesions. Hepatic hemangiomas

demonstrate significantly higher CNRs than liver malignancies (p<0.0001). 
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9.5. Liver cirrhosis (study IV) 

The overall sensitivity and specificity of MRI in the diagnosis of liver cirrhosis were 87% and 

92%, respectively. The most characteristic imaging findings suggestive of liver cirrhosis were 

enlargement of segment one (83% of cases) and narrowing of the hepatic veins (83% of 

cases). The respective numbers in the control group were 11% and 23%. These differences 

showed statistical significance (p-values < 0.0001). Enlarged spleen and liver fibrosis were 

found in 77% of cases. A nodular surface of the liver was detected in 70% of patients with

cirrhosis. Regenerative nodules, enlargement of the hilar periportal space, ascites and atrophy 

of the right lobe were observed in 67%, 60%, 57%, and 50% of cases, respectively. 

Portosystemic collaterals, expanded gall bladder fossa and iron depositions were detected in

47%, 37%, 23% of patients, respectively. 

All co-incidental HCC deposits (n=10) and the solitary hemangioma were correctly diagnosed 

in the cirrhosis group. However, there was one false positive diagnosis of HCC. The lesion 

proved to be a large regenerative nodule, six core needle biopsies were taken from lesion. 

In the control group, enlargement of the spleen was detected in three patients (11%). Enlarged

hilar periportal space, narrowing of hepatic veins, ascites and fibrosis were observed in 30%, 

23%, 27%, and 15% of patients, respectively. In two patients (8%), regenerative nodules and 

a nodular surface of the liver were noted. In one case (4%), an expanded gall bladder fossa 

was found. In the control group neither iron depositions, atrophy of the right lobe nor 

portosystemic collaterals were found in any patients. Both cases of HCCs were detected.

There was a statistically significant difference in every radiological finding between the 

cirrhosis and control groups, p-values ranging from < 0.0001 to 0.03. The results are 

summarized in Figure 5. 

In the cirrhosis group, the ratio between segment one and the right lobe was 0.8 (SD 0.3) and 

the modified ratio was 1.15 (SD 0.38). In the control group the respective values were 0.51 

(SD 0.11). and 0.81 (SD 0.21). The difference in both S1/RL and S1/RLm values between the 

cirrhosis and control groups demonstrated very high statistical significance, with p-values of 

p<0.0001 and p<0.0002, respectively. 
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Radiological findings in the cirrhosis and control groups
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10. DISCUSSION 

10.1. Lesion detection with MRI, MDCT and IOUS 

The relative accuracy of CT compared with MRI has been the subject of numerous reports in 

the literature, with conflicting results (142, 143, 145, 157). Most studies are difficult to 

interpret with regard to currently available technology. What was true 5 years ago is not 

necessarily true today, in view of  the significant advances made during recent years in MRI 

and especially in CT (MDCT). Few studies have compared what would be regarded as state-

of-the-art MRI and CT techniques. 

In the past, MRI was reported to surpass the performance of spiral helical CT in lesion 

detection (143). However, CT arterial portography (CTAP) was long regarded as the 

nonoperative gold standard for the imaging detection of hepatic lesions. Semelka et al. (142, 

145) found MRI, including dynamic contrast-enhanced sequences, to be less sensitive than 

CTAP, but with fewer false positive results thanks to its better lesion characterization. They 

found MRI to have greater diagnostic accuracy, while being considerably less invasive and 

less expensive. Unenhanced T1- and T2-weighted sequences have proved to be useful in 

lesion detection. Dynamic gadolinium-enhanced MR imaging has not improved lesion 

detectability. The rate of false negative and false positive observations has been higher in 

gadolinium-enhanced images (57). The addition of liver-specific contrast agents has further 

improved MRI sensitivity for focal liver lesions. Ferumoxide-enhanced MR imaging has been 

shown to be effective in preoperative liver assessment (81, 126). However, this was not 

included in our clinical routine due several cases of side effects of iron particles. 

Advances in MDCT have challenged the superiority of MRI in liver imaging. MDCT allows 

fast multiphasic liver scanning. Thin (1.25-2.5 mm) sections can be obtained routinely in 

single breath-hold scans (133). The results of study III suggest that MDCT is more sensitive 

in lesion detection than Gd-enhanced MRI. This contradictory result may have several 

explanations, basically concerned with the technical improvements introduced through 

MDCT. In the present  investigation thin slices of 2.5 mm were acquired, whereas in earlier 

studies (10, 142, 143, 145, 180), 5-10 mm slice thicknesses were used. High scanning 

parameters with a tube voltage of 120-140 kV and a current of 300-380 mAs were used to 

avoid noise and to achieve the best possible image quality. Weg et al. (170) reported that the 

use of 2.5 mm thick sections resulted in an 18% better detection rate than when 5 mm thick 

slices were used. The injected contrast material (150 ml) had a high iodine concentration (370 
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mg I/ml). In previous reports, the administration of a high concentration of contrast material 

has improved the detection of both hypervascular liver tumors such as HCC and hypovascular 

lesions such as colorectal metastases as a result of the greater tumor-to-liver contrast (3, 58). 

Moreover, in this investigation, dynamic triphasic contrast-enhanced scanning was utilized 

with arterial phase imaging in both its early and late phases. This method has been reported to 

improve the depiction of hypervascular liver tumors and to reduce the rate of false positive 

findings (117). The obvious disadvantage of MDCT with thin slices is high radiation dose. 

But in selected cases, especially when curative treatment is considered (e.g. liver surgery), the 

dose of radiation can not be the limiting factor.  

All patients in whom MRI missed liver lesions had a history of chemotherapy. Cytotoxic 

agents can considerably alter lesion appearance in MR images. Chemotherapy-treated lesions 

have been reported to show low signal intensity in both T2- and T1-weighted images with 

negligible enhancement after gadolinium administration. In superficial lesions, capsule 

retraction may be the only sign of metastases (13). 

At present, intraoperative ultrasonography is regarded as the most accurate technique for liver 

tumor imaging. Several earlier reports have shown that IOUS is more sensitive in lesion 

detection than helical CT (44, 69, 81, 156, 167, 180). However, neither thin slices (2.5 mm), 

triphasic imaging nor high concentration contrast material were used in these studies. The 

results of the present study show that MDCT with thin slices and high volume, high 

concentration iodine contrast material is comparable with IOUS in lesion detection.  

10.2. Extrahepatic disease and vascular proximity 

According to the present results, IOUS with palpation performed better than MRI and MDCT 

in depicting extrahepatic disease. This may have several explanations. The MR imaging 

protocol used did not include a double dose of gadolinium, delayed imaging (5-10 minutes 

after injection), or coronal plane scanning. These methods are considered to be more effective 

than CT in the detection of malignant extrahepatic disease, especially involving the liver 

capsule and peritoneum (93, 95). Lymph nodes were detected with MRI in two patients and 

with MDCT in seven patients, but with both methods, however, only in one case were lymph 

nodes considered to be potentially malignant. The radiological criteria for lymph node 

malignancy are commonly considered to be the size (>1.5 cm) and spherical shape of lymph 

nodes. Moreover, it has been demonstrated that the macroscopic appearance of lymph nodes 

is unreliable in determining micrometastases (129). Routine lymph node palpation and 
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sampling are therefore mandatory to identify patients with extrahepatic extension of disease 

(49).

Vascular proximity was correctly assessed with the use of MDCT in 98% of lesions, 

compared with 87% for MRI. The difference was statistically significant (p=0.002). The 

difference may be partly due to the fact that MR images were obtained only in the transaxial 

plane, while MDCT images were also evaluated using a CT workstation, where multiplanar 

reformations could be reconstructed when necessary. In depicting the vascular proximity of 

lesions, MDCT was comparable with IOUS and resection histopathology, and no statistical 

significance (p=0.125) was observed. The results suggest that the preoperative assessment of 

vascular proximity is accurately determined using MDCT with multiplanar reformations. 

10.3. Lesion characterization 

10.3.1. Collection of sequences 

The results show that the classification into malignant and benign liver lesions, and the 

assessment of specific diagnosis were most reliably achieved when all sequences were 

collectively evaluated. Several previous investigations also advocate the use of a combination 

of sequences in liver diagnostics (28, 97, 123, 144). Coulam et al. (28) reported a sensitivity 

of 97% and a specificity of 95% in revealing clinically relevant focal liver lesions using a T1-

weighted multiphase contrast-enhanced 3D sequence. However, they regarded unenhanced 

T1- and T2-weighted sequences as helpful in lesion characterization. This assumption is 

supported by previous reports of similar enhancement patterns for both benign and malignant 

liver lesions (97, 172, 179). 

10.3.2. Unenhanced and gadolinium-enhanced T1-weighted sequences 

According to the present results, the best individual sequence in distinguishing between 

malignant and benign liver lesions is the dynamic Gd-enhanced T1-weighted sequence. This 

sequence also demonstrated the highest success in the assessment of specific diagnosis, with a 

63% rate of correct diagnosis. Several previous studies support this result as Gd-enhancement, 

particularly when used in a dynamic fashion in different phases of enhancement, has been 

considered to be highly important in liver tumor characterization (28, 46, 56, 125, 147, 148, 

172).

As shown by the results of this study and by earlier investigations, the unenhanced T1-

weighted sequence is of limited value in lesion characterization (28, 56, 176). Only 62% of 
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lesions were correctly classified and specific diagnosis was assessed in 46% of cases. The T1-

weighted sequence is, however, useful for the evaluation of hemorrhagic lesions, tumors with 

a high fat or copper content such as hepatocellular carcinoma and hepatic adenoma, and 

lesions that contain melanin such as melanoma metastases. All these lesions may demonstrate 

a high signal intensity in unenhanced T1-weighted images (77). The current results support 

these previous findings. HCCs were correctly diagnosed in 76% of cases. This compares well 

with the result gained in the study conducted by Pauleit et al. (121) with correct 

characterization of HCC using an unenhanced T1-weighted sequence in 71% of cases. 

Although the benefit of the unenhanced T1-weighted sequence is considered to be in lesion 

detection (57), it is also valuable in lesion characterization. 

10.3.3. T2-weighted sequences 

T2-weighted sequences are discussed in chapter 8.4., Characterization of hemangiomas by 

MRI.

10.4. Characterization of hemangiomas by MRI 

The main value of T2-weighted MR imaging is in the diagnosis of hemangiomas. T2-

weighted MRI has limited value in the characterization of malignant liver lesions because of 

the wide variety of lesion appearances (146, 159). Reduced lesion conspicuity and the overlap 

in signal intensity characteristic of benign and malignant nodules diminished the diagnostic 

value of T2-weighted images in cases of cirrhotic liver, too (64). 

The results of study I demonstrate that additional lesion information is obtained with the true 

FISP and T2-weighted sequences, especially in hemangioma diagnostics. Hepatic 

hemangiomas were correctly diagnosed with great confidence and without Gd enhancement. 

The true FISP sequence and HASTE correctly gave the specific diagnosis in 92% (mean 

value) and in 84% (mean value) of hemangioma cases, respectively. All hemangiomas 

appeared bright in true FISP images, while the malignant liver foci were nearly isointense 

relative to normal liver parenchyma. The high signal of hemangiomas is probably due to the 

fact that in the true FISP sequence, the FISP and PSIF (reverse FISP) echoes are produced at 

the same time, and thus only one combined signal is received. FISP produces images with 

T2*/T1 contrast due to the preserved transverse magnetization component, and PSIF produces 

images with heavy T2-weighting due to the very long echo times. Malignant liver lesions 

demonstrated nearly the same signal intensity compared to the surrounding normal liver 
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parenchyma in true FISP images. A similar finding has been reported with HASTE (162). 

Analysis of lesion CNR values supported the film reading. All hemangiomas demonstrated 

very high CNR values, while the CNRs for the malignant liver lesions were considerably 

lower. The difference in CNR values between hemangiomas and malignant liver lesions was 

highly statistically significant (p<0.0001). 

The results indicate that both true FISP and HASTE are valuable tools in routine liver MRI 

protocol for distinguishing hepatic hemangiomas from liver malignancies, as previously 

suggested by Herborn et al. (62). 

The specific diagnosis of hemangiomas was reached with Gd enhancement in 80% of cases. 

Hemangiomas may show various enhancement patterns (140, 172). Small hemangiomas, in 

particular, may demonstrate strong and uniform early arterial enhancement identical to that 

shown by hypervascular liver metastases and hepatocellular carcinoma (140). Hence, small 

liver lesions constitute a problem with Gd-enhanced MRI (97, 147, 172). 

The results of study I indicate that small hemangiomas and malignant liver lesions can also be 

reliably differentiated from each other with the true FISP sequence. In the present study, of 

the 27 hemangiomas with a diameter of 1-2 cm, 25 and 23, respectively, were correctly 

diagnosed by the two readers. True FISP was superior to dynamic Gd-enhanced MRI in the 

characterization of small hepatic hemangiomas. 

10.5. Liver cirrhosis 

According to the results of study IV, liver cirrhosis can be diagnosed with great confidence 

with MRI: the sensitivity was 87% (26/30) and the specificity 92%. Every Child-Pugh class B 

and C cirrhosis was correctly diagnosed. All four false negative cases were in Child-Pugh 

class A. Class A cirrhosis is often asymptomatic and may be discovered during a routine 

clinical examination or by biochemical screening. Morphologic changes of the liver are also 

seen less frequently in class A patients, especially in early cases (68).

The results indicate that the most characteristic MRI feature of liver cirrhosis is the 

enlargement of segment one. The cause of segment one hypertrophy is unclear, but it is 

thought to be linked to alterations in portal blood flow. Segmental hepatic blood volume is 

related to portal venous blood, which carries various trophic factors (160). The blood supply 
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to segment one arises predominantly from the left branches or from bifurcation of the portal 

vein (113). However, a branch to the caudate process from the posterior segmental branch is 

present in 51% of cases (112). The segment one branches have a shorter intrahepatic course 

than other vessels, and this may be a factor in the relatively greater preservation of segment 

one blood supply (32). Atrophy of the right lobe is also considered to be related to changes in 

portal blood supply (4). Atrophy of the right lobe was observed in 50% of our cirrhotic cases. 

The ratio between the transverse diameters of segment one and right lobe has previously been 

measured using the main portal vein bifurcation as a landmark to divide the lobes. A ratio 

greater than 0.65 has been considered to be sensitive and specific for cirrhosis (59). Recently, 

however, it has been reported that the bifurcation of the right portal vein is even more 

sensitive and specific for representing the division between segment one and the right lobe 

(4). According to the present results, however, both measurements were equally accurate in 

diagnosing cirrhosis. 

A new observation in study IV was that, in cirrhotic livers, the hepatic veins and vena cava 

were narrowed. This feature was present in 83% of the patients. Hepatic fibrosis causes 

attenuation of the intrahepatic portal and hepatic venous branches, and the hepatic vascular 

bed is reduced. Impaired drainage of blood from the liver, caused by compression of hepatic 

venous tributaries by regenerative nodules and fibrosis, increases the resistance to portal flow 

(124).

In this study, parenchymal fibrosis was also a frequent imaging feature (77% of patients). 

Fibrosis appeared as regions of low signal intensity in unenhanced T1-weighted images. 

Fibrosis usually showed mild enhancement in MR images and was seen with high intensity in 

T2-weighted images. Fibrosis is usually diffuse, but a patchy focal appearance is also possible 

mimicking hepatocellular carcinoma on imaging (31). 

As the fibrosis progresses, hepatic failure and portal hypertension ensue. Portal hypertension 

results from obstruction of hepatic sinusoids. Signs of portal hypertension, such as 

enlargement of the spleen, venous collaterals and ascites, were commonly observed in the 

present study. During the early stages of portal hypertension, the portal system dilates but 

flow is maintained. Later, numerous portosystemic collateral pathways from the high-pressure 

portal system to the low-pressure systemic circulation develop, reducing the volume of flow 

to the liver and decreasing the size of the portal vein (68). 
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In the current study, 70% of the livers represented a nodular margin in patients with cirrhosis. 

This finding correlates directly with the size of underlying regenerative nodules. A surface 

that is smooth or deformed by multiple small nodules is typical in micronodular cirrhosis; a 

coarse nodularity of the margin is the result of macronodular cirrhosis (31). In the study by Di 

Lelio (30) nodular liver surface was seen in 88% of cirrhotic patients.  

Cirrhosis may cause hepatic parenchymal iron deposition. In the cases studied here, however, 

this feature was present in only 23% of cirrhotic livers. The amount of iron in a cirrhotic liver 

can also vary depending on the etiology of the cirrhosis (107). The etiology of the cirrhosis in 

the present study was predominantly primary biliary cirrhosis, and iron was seen as low-

signal siderotic nodules in T2-weighted images. Diffuse hepatic iron deposition is also 

possible in cirrhotic hepatic parenchyma, and with extensive fibrosis parenchyma can appear 

rather heterogeneous in T2-weighted images (65).  

An expanded gall bladder fossa is considered to be a specific indicator of cirrhosis (66). In the 

present study material this finding appeared in conjunction with 37% of cirrhotic livers. 

Moreover, there was only one false positive case. The results thus agree with the earlier 

findings that an expanded gall bladder fossa, although not a common finding, is highly 

specific to liver cirrhosis. Enlargement of the hilar periportal space, seen in 60% of the cases 

in this study, is also caused by morphologic changes in the liver (67). This sign was also seen 

in 30% of the livers in the control group, and is considered to be the earliest sign of incipient 

cirrhosis. 

Liver cirrhosis is associated with a markedly increased risk of hepatocellular carcinoma, and 

cirrhosis has been reported to be present in 90% of patients with HCC (169). In the present 

study, 30% of patients demonstrated HCC. One false positive case was also noted. This was a 

large regenerative nodule. In previous studies, MRI has proved to be highly sensitive in 

depicting HCC (35). However, one-third of suspected tumors may be false positive lesions (6) 

due to fact that signal intensities and enhancement patterns overlap between small HCCs and 

degenerative and especially dysplastic nodules (64, 70).

10.6. Future aspects of liver MRI 

Liver MRI has been and still is the subject of great interest. Yet it is impossible to predict 

which of today’s topics in radiological literature have true value in future clinical work. 
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The relative values of MDCT and MRI in liver imaging have not been established, since at 

the moment there are only a few comparative studies available on MDCT and MRI in liver 

diagnostics. MDCT has obvious advantages over MRI. Technical advances in hardware and 

software mean that MDCT allows high-quality multiplanar reformations and three-

dimensional models from raw data. 3D models constructed from MDCT raw data are already 

being used in the preoperative evaluation of living donor liver transplantation and these 

models probably will play important role in planning of tumor resection (37, 52, 75). 

There continues to be much interest in several tissue-specific contrast agents (11, 81). Despite 

the broad spectrum of investigation, none of these contrast agents has yet made a true 

breakthrough in clinical work. Tumor-targeted MR contrast agents may play an important role 

in the future (128). Preliminary studies have been made of the 3 T field strength in the liver 

(29), but there are many technical problems to solve, especially concerning artifacts. MR 

cholangiopancreatography will probably maintain its position as an excellent tool for non-

invasive evaluation of the bile ducts (91). MRI perfusion imaging has shown promising 

results in determining the severity of cirrhosis and portal hypertension (2). 

Although methods such as PET and CT PET with potential applications in liver diagnostics 

are evolving, MRI will certainly continue to play an important role in liver imaging because 

of its superior soft tissue contrast compared to any other imaging modality. 
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11. CONCLUSIONS 

1. Triphasic MDCT with thin slices and high-volume, high-concentration contrast 

material is a very sensitive and noninvasive technique in preoperative liver assessment. Both 

lesion detection and the depiction of lesion in relation to vascular structures were more 

precise with MDCT than with MRI. However, both methods had only a limited value in the 

detection of extrahepatic disease. 

2. The use of multiple sequences in conjunction with Gd enhancement makes MRI 

extremely useful in liver lesion classification, although its potential in the assessment of 

specific diagnosis is only moderate. 

3. The true FISP sequence has potential in the diagnosis of hemangiomas and can 

differentiate reliably between hemangiomas and malignant liver lesions. 

4. MRI is an accurate method for diagnosing Child B and C cirrhosis. The most 

characteristic imaging features of cirrhosis were a large segment one, narrowing of the hepatic 

veins and signs of portal hypertension, fibrosis and a nodular margin of the liver. MRI is also 

a sensitive way to detect occult hepatocellular carcinoma. 
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