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No aphorism is more frequently repeated than that we must ask Nature a few
questions, or ideally, one question, at a time. I am convinced that this view is wholly
mistaken. Nature will best respond to a logically thought out questionnaire. Indeed,
if we ask Nature a single question, she will often refuse to answer until some other
topic has been discussed.

Fisher RA. (1926) J Min Agr Gt Brit : 33, 503.
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ACOVA analysis of covariance
ADP adenosine diphosphate
AMP adenosine monophosphate
ANOVA analysis of variance
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ATP adenosine triphosphate
ATPase myofibrillar actomyosin adenosine triphosphatase
BA bile acids
BMI body mass index
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DTT dithiothreitol
E2 estradiol
EDTA ethylenediaminotetra-acetic acid
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LCAT lecitin:cholesterol acyltransferase
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LPL lipoprotein lipase
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INTRODUCTION

The human body is designed for mobility and the instruments of movement are the
skeletal muscles that are composed of muscle fibers with different metabolic and
functional profiles. Type I or slow-twitch (ST) fibers have a high capacity for
oxidative energy metabolism and especially fatty acid oxidation, whereas type II or
fast-twitch (FT) fibers have a high capacity for glycolytic energy production. In the
population, the mean value of the percentage of ST fibers (ST-%) in the vastus
lateralis muscle of the thigh is close to 50 %. However, the power and speed athletes'
ST-% may be as low as 10 %, whereas endurance athletes may have 90 % ST-fibers.
In man, skeletal muscles constitute approximately 40% of the total body weight and
they make a considerable contribution to the glucose and lipid metabolism of the
resting body. Moreover, skeletal muscles may increase their oxidative activity to
several times that of their resting level. Thus, the ST-% has an influence on the
physical performance of an individual, but it may have significant health-related
implications as well. The low incidence of coronary heart disease (CHD) found in
physically active, fit people has been attributed to their high serum high-density
lipoprotein cholesterol (HDL-C) that is shown to protect against the development of
CHD. These individuals may also have some other metabolic factors that are related
to the risk of CHD, like endogenous sex hormones, indicators of body fat, and
fasting serum insulin concentration. Although observational studies regularly report
that the physical activity, especially vigorous exercise in leisure time, protects
against CHD, it is possible that inherited characteristics of the skeletal muscle like
ST-% may influence these results. These findings have aroused some questions. Is
there a selective process in operation that might render individuals both capable of
achieving high levels of physical activity and fitness and endowing them with a
metabolism with a favorable serum lipid profile? Recent findings that physical
activity gives protection against CHD by modifying risk factors, weaken, but do not
entirely negate the argument for a selection process. The present study was
undertaken to explore the role that skeletal muscle properties might have in the
modification of the risk of CHD. This was accomplished by (i) studying men with
different levels of physical fitness and activity as well as men with defined CHD, (ii)
by investigating what effects long-term physical activity has on skeletal muscle
metabolism and health-related fitness, (iii) by studying what impact skeletal muscle
properties have on physical fitness and activity, (iv) by studying former athletes and
their participation in specific types of sports, their continuity of physical activity and
the occurrence of CHD among them.
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REVIEW OF THE LITERATURE

1. SKELETAL MUSCLE

A unique characteristic of the skeletal muscle is its diversity due to its design, i.e. its
fiber composition and the heterogeneity of the individual muscle fibers as well as its
design of metabolic adaptations due to physical activity. The skeletal muscles
representing 35-45 % of body mass, play a central role in the whole-body energy
metabolism, contributing approximately 20 % to the total energy expenditure in man
(Zurlo et al. 1990). Vigorously working skeletal muscles may increase their oxidative
activity to more than 50 times that of the resting level (Åstrand & Rodahl 1986). The
skeletal muscles also possess a remarkable capacity to adapt to the changes in
metabolic demand (Williams & Neufer 1996). Interest in the studies of human
skeletal muscle adaptation has mainly focused on the effects of exercise training on
human athletic performance (Saltin & Gollnick 1983), but recently, the studies on
skeletal muscle metabolism in activity and inactivity has raised health-related
attention  as well (Rogers & Evans 1993, Cartee 1994, Passett Jr 1994).

1.1. Fast- and Slow-Twitch muscle fibers

The existence of two main fiber types was recognised in 1874, when the German
physiologist Ranvier reported that (in animals) muscles which were slow in
contracting appeared red, whereas fast-contracting muscles appeared white. A
breakthrough in the delineation of the fiber types resulted from the combination of
histological and physiological methods (Henneman & Olson 1965). The development
of the percutaneous needle biopsy technique (Bergström 1962) permitted a rather
untraumatic (Gerard et al. 1984) and suitable method to investigate human muscles.

The muscle fibers can be classified on the basis of myofibrillar actomyosin adenosine
triphosphatase (ATPase) activity (Brooke & Kaiser 1970). Myosin, the major myofi-
brillar protein of the thick filament, influences the rate of tension and fatigue devel-
opment during muscle contraction. The activity of ATPase in myosin correlates with
the speed of muscle fiber shortening (Barany 1967). The observation that fast and
slow myosins have different alkaline and acid stability formed the basis for ATPase-
based fiber type delineation (Padykula & Herman 1955). The histochemically fast
(fast-twitch, FT) fibers display high ATPase activity under alkaline staining condi-
tions and low activity under acid staining conditions (alkaline-stable, acid-labile),
whereas the slow (slow-twitch, ST) fibers exhibit the inverse (alkaline-labile, acid-
stable) (Guth & Samaha 1970). The histochemical differences of the two types of
muscle fibers correspond to the differences in contractile properties (Barnard et al.
1971, Burke et al. 1971). The fiber types are distributed in an apparently random or
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mosaic pattern, and one motor unit (i.e. muscle fibers supplied by axonal branches of
a single neuron) is histochemically homogenous (Burke et al. 1971, Edström &
Kugelberg 1968). (Table 1)

Table 1. The main characteristics of the two major human skeletal muscle fibers.

Characteristics ST fibers FT fibers

Speed of contraction Slow Fast

Relaxation time Long Short

Myosin ATPase Low High

Lipid content High Low

Glycogen content Low High

ATP content Same Same

Creatine phosphate content Same Same

Mitochondrial content High Low

Capillary density High Low

Creatine kinase activity Low High

Glycogenolysis Low High

Krebs cycle enzymes High Low

Anaerobic capacity Low High

Efficiency High Low

Number of fibers in motor unit Low High

Different types of muscle fibers are distinguished on the bases of histochemical reac-
tions for enzymes of their energy metabolism (Barnard et al. 1971, Peter et al. 1972).
The ST fibers are generally characterised by high mitochondrial oxidative enzyme
activity, whereas the FT fibers show less oxidative potential but a high glycolytic
potential. The FT fibers may be divided in to FTa and FTb fibers as the former show
both oxidative and glycolytic potential while the latter have primarily glycolytic
potential (Brooke and Kaiser 1970). The development of a technique for single fiber
dissection made it possible to determine enzyme activity profiles microbiochemically
in the histochemically typed FT and ST muscle fibers (Essen et al. 1975, Saltin et al.
1977). In this method, a muscle sample is freeze-dried and individual muscle fibers
are separated under a stereomicroscope, stained for ATPase to identify ST and FT
fibers and analysed for enzyme activity. On the basis of this type of analysis, myosin-
based functional and contractile properties seemed to correlate with metabolic pro-
files (Saltin et al. 1977). The activities of the glycolytic enzymes in the muscle fibers
seem to differ markedly from each other (Essen et al. 1975, Henriksson & Reitman
1976, Spamer & Pette 1977, Lowry et al. 1978, Spamer & Pette 1979, Hintz et al. 1980,
Essen-Gustavsson & Henriksson 1984, Hintz et al. 1984), but overlapping in the oxi-
dative enzyme activities between the ST and the FT fibers has been observed in some
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mammalian (e.g. rat, guinea pig) muscles (Lowry et al. 1978, Hintz et al. 1980, Lowry
et al. 1980, Nemeth & Pette 1981, Hintz et al. 1984. In contrast to other mammals, the
ST in human muscles fibers have substantially higher oxidative capacities and
exhibit higher activity levels of enzymes representing aerobic oxidative pathways
than the FT muscle fibers (Essen et al. 1975, Lowry et al.  1978, Saltin & Gollnick
1983, Pette & Staron 1990). The ST and the FT fibers with widely different metabolic
profiles are dispersed throughout the muscle, and the distribution of the muscle fiber
types is heterogeneous. The percentage of histochemically typed ST fibers (ST-%) in
the vastus lateralis muscle of the thigh (the most commonly studied muscle in man)
varies among individuals from 10 to 90 % with a mean value in the population
usually close to 50 % (Saltin & Gollnick 1983).

1.2. Skeletal muscle metabolism

The skeletal muscles are able to use fatty acids, carbohydrates, ketone bodies and
some amino acids as substrates to fulfil their energy requirements during rest and
exercise (Newholme & Leech 1990). Under normal conditions, fatty acids and glu-
cose are quantitatively the most important oxidizable substrates for muscle cells. In
humans, both fat and carbohydrate is stored. The carbohydrate stores (muscle and
liver glycogen, plasma glucose) are small, totally ca. 8000 kj (2000 kcal), when com-
pared the amount of energy, ca 450000 kJ (110 000 kcal), stored as fat (intramuscular
and adipose tissue) in an average body composition of an 80 kg man (Newholme &
Leech 1990).

Glucose from glycogen in the liver has to be transported by the blood and taken up
by the muscle before it can undergo glycolysis and be released as lactate, alanine or
pyruvate, or be oxidized in the Krebs cycle. Glycogen stored in the skeletal muscle
can undergo glycogenolysis, and hence directly glycolysis, and used for fuel in con-
tractile processes.  The most important physiological stimulator of the muscle glu-
cose uptake is insulin, which influences on glucose transport into the muscle cells
and enhances glycogen synthesis of the muscle in the fed state. During hyperinsu-
linemia and euglycemia, most glucose disposal occurs in the skeletal muscle (Yki-
Järvinen et al. 1987b), skeletal muscle lipid oxidation is nearly entirely suppressed
and glucose becomes the primary oxidative substrate (Yki-Järvinen et al. 1987a,
Kelly et al. 1990). A decreased muscular activity causes various degrees of impair-
ment of insulin action (insulin resistance) (Stuart et al. 1988, Richter et al. 1989,
Mikines et al. 1991), whereas an increased activity level augments insulin action
(Rodnick et al. 1987, Mikines et al. 1989). A greater response of insulin-stimulated
glucose uptake has been observed in the ST versus the FT fibers (Kriketos et al. 1996).
In addition, the glucose transporter protein GLUT-4 is more abundantly expressed in
the ST fibers than in FT fibers (Gaster et al. 2000). Thus, skeletal muscle fiber type
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(Lillioja et al. 1987) and oxidative capacity (Simoneau & Kelley 1997) may play a
genetically determined and/or an environmentally modified role in the develop-
ment of insulin resistance.

Lipids are the predominant fuel at rest in the postabsorptive and fasted state when
the  muscle glucose utilisation is low. The capacity of the muscle fibers to synthesise
fatty acid (FA) de novo is limited. However, over 50 % of the energy requirement of
resting muscle is derived from their oxidation and thus, FAs have to be supplied first
from extracellular sources (van der Vusse & Reneman 1996).  Fat is made available to
the skeletal muscle cells via the blood as plasma nonesterified FAs liberated from the
adipose tissue triacylglycerol (TG) storage after lipolysis or as TGs that form the lipid
core of circulating TG-rich lipoproteins, very-low-density lipoprotein (VLDL) and
chylomicrons (CM). From TG-rich lipoproteins, FAs are made available to the
skeletal muscle after hydrolysis by enzyme lipoprotein lipase (LPL) attached to the
luminal surface of the endothelial cells in the capillary bed of the skeletal muscle
(Braun & Severson 1992). The gene expressing the LPL enzyme appears to be located
in the muscle cells (Camps et al. 1990), and, when needed, LPL is sent to the capillary
beds in search of a substrate by the same signal, which presumably activates intra-
muscular TG hydrolysing hormone-sensitive lipase (HSL) (Oscai et al. 1990).
Intramuscular TGs accumulated in lipid droplets in the cytoplasm of skeletal muscle,
especially in the ST fibers (Essen 1977), represent the major intracellular source of
FAs, and contain more energy than the intramuscular carbohydrate pool (van der
Vusse & Reneman 1996).  The LPL activity in the muscles consisting predominantly
of ST fibers is considerably higher (Linder et al. 1976, Hamilton et al. 1998), and they
exhibit a greater capacity for both transporting long-chain fatty acids like palmitate
into skeletal muscle cells and oxidizing them than muscles consisting predominantly
of FT fibers (Dyck et al. 1997, Bonen et al. 1998).

Approximately 50 % of the FAs liberated from serum TGs are immediately extracted
by the skeletal muscle cells (van der Vusse & Reneman 1996). In the resting muscle,
most of the lipid oxidation is provided by exogenous FAs entering the cells (Dyck et
al. 1997). In the fasted state, the LPL activity in skeletal muscle exceeds that in adi-
pose tissue lipase. Fasting lowers the activity of lipase in adipose tissue but does not
affect or even increase the LPL activity in the skeletal muscle (Nikkilä et al. 1963,
Linder et al. 1976, Sugden & Holness 1993). These observations suggest that in the
fasting state skeletal muscles are more apt to use FAs from the circulating lipopro-
teins for energy conversion and for intramuscular TG storage than adipose tissue to
extract the FAs for storage (van der Vusse & Reneman 1996). Taking into account
that the total skeletal muscle mass is on the order of 40 % of body mass, it can be
inferred that the skeletal muscles may play an important role in the removal of lipo-
protein TGs from blood, and, thus, the skeletal muscle morphology and metabolism
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may significantly alter the plasma lipoprotein metabolism.

2. PHYSICAL ACTIVITY AND SKELETAL MUSCLE

2.1. Muscle fiber distribution

The question of whether FT fibers can be switched to ST fibers (or vice versa) is still
somewhat controversial. Current data suggest, however, that significant transforma-
tions between the two histochemically typed main fiber types do not occur. Electric
stimulation (Pette & Vrbova 1992) and cross reinnervation (Edgerton et al. 1996) as
artificial tools in animal models have been used to induce changes in contractile
properties that are commonly attributed to (partial or complete) transformation of
the fiber types. However, when change in some aspects of the muscle fiber pheno-
types has been observed, significant changes in the percentage of histochemically de-
fined ST vs. FT fibers have not been observed (Pette & Staron 1990, Demirel et al.
1999).

Two changes in the human life span have been suggested to cause fiber transforma-
tion, namely changes in physical activity patterns and ageing. Many of the early
histochemical studies found that exercise-training had no effect on the percentage of
ST fibers (Barnard et al. 1970, Gollnick et al. 1973, Andersen & Henriksson 1977,
Ingjer 1979, Schantz et al. 1982). Whenever change in the ST-% has been reported due
to change in physical activity (Howald et al. 1985, Simoneau et al. 1985), the magni-
tude of change has been within the limits of a sampling error 10 - 15 % (Simoneau &
Bouchard 1995), and the number of studied subjects has been low (Jansson et al.
1978, Howald et al. 1985, Larsson & Ansved 1985, Simoneau et al. 1985). Moreover,
when the ST-% of highly trained endurance athletes have been reported (Costill et al.
1976a, Jansson & Kaijser 1977, Howald 1982), the difference in the ST-% between
athletes and controls in these cross-sectional studies has been far more than the
change observed in training studies, usually from 20 to 40 %. When the histochemi-
cally classified fibers have had a small percentage shift from fast to slow in some
properties of the muscle fibers, the fibers had remained as fast or slow by histo-
chemical analysis (Booth & Thomason 1991, Demirel et al. 1999, O’Neill et al. 1999).
Some studies using biopsy samples provided evidence for a decline in the percent-
age of FT fibers (and a reciprocal increase in the ST-%) with ageing, but studies using
larger sample sizes have not supported these results (Lexell et al. 1988, Rogers &
Evans 1993). Evidently, with the training, endurance or resistance type, and regard-
less of age, the ST-% is unaltered although transformations occur within the FT fiber
subtypes (Pette & Staron 1990, Rogers & Evans 1993, Cartee 1994). Thus, the current
data suggest that it is unlikely that different types of exercise training or ageing
would induce significant FT to ST transitions as a result of normal ambulatory
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physical activity or inactivity in the human skeletal muscles (Fitts & Widrick 1996,
Harridge 1996).

2.2. Skeletal muscle metabolism during exercise

During exercise the increased energy requirements are met by an increase in both
carbohydrate (glucose and glycogen) and fat (fatty acid) oxidation (Newsholme &
Leech 1990, Wolfe 1998). The FAs as energy sources for working muscle provide
more ATP per molecule than glucose (Åstrand & Rodahl 1986). However, to produce
the same amount of ATP, the oxidation of FAs requires more oxygen than the oxida-
tion of carbohydrates, and per unit of time more ATP can be derived from carbohy-
drates than from the oxidation of FAs (Åstrand & Rodahl 1986, Newholme & Leech
1990). It is obvious that skeletal muscle cells need metabolic regulation when they
use available energy sources in an integrated manner at rest, during exercise and
during recovery from exercise. The percentage contribution of glucose, FAs and gly-
cogen to oxygen consumption of working muscle is dependent on the type of exer-
cise, its intensity and duration (Newsholme & Leech 1990). The proportion of oxida-
tion of FAs increases as the intensity of exercise increases from low to moderate but
decreases as the intensity exceeds 65 % of VO2max, and the muscle uses preferen-
tially carbohydrates at high intensity levels of exercise (Romijin et al. 1993). How-
ever, during exercise lipids remain important substrates for the muscle cells when
the intensity of exercise does not exceed 80 - 90 % of VO2max, and human subjects
exercising at a rate as high as 85 % of VO2max are still oxidising FAs at a rate 5 - 6
fold above that seen in the resting condition (Romijin et al. 1993).

In the proposed glucose-fatty-acid cycle (Randle et al. 1963, Randle et al. 1964),
skeletal muscles possess mechanisms that allow carbohydrate and fat as oxidative
energy sources to shift depending primarily on the availability of FAs. An increase in
availability and greater oxidation of FAs leads to decreased utilisation of glycogen or
extracellular glucose or both because the enzyme activities of phosphofructokinase
(PFK) and pyruvate dehydrogenase (PDH) are inhibited by an accumulation of
citrate and acetyl-CoA, respectively (Randle et al. 1963, Newsholme & Leech 1990).
Several other levels of control mechanisms may exist for determining the selection of
either fat or carbohydrates as the prime fuel in the skeletal muscle fibers (Richter
1996, van der Vusse & Reneman 1996, McGarry 1998, Wolfe 1998). Recently, some
have suggested that the fuel selection and regulation operate by the action of
malonyl-CoA that modulates the use of FAs (Ruderman et al. 1999, Båvenholm et al.
2000). Malonyl-CoA exerts an inhibitory action on the mitochondrial carnitine
palmitoyltransferase I (CPT I) enzyme responsible for the conversion of fatty acyl-
CoA derived from FAs from the blood stream or intramuscular TGs (van der Vusse
& Reneman 1996) (Figure 1).
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Figure 1. Features of the glucose fatty acid cycle and the "reverse fatty acid cycle". Fatty acids (FA)
are taken up from the plasma either as free FAs bound to albumin or by the action of lipoprotein
lipase (LPL) or from intramuscular TG by hormone sensitive lipase (HSL). The FAs are transported to
the mitochondria by the CPT system,  where they undergo B-oxidation to produce acetyl-CoA that
enters the Krebs Cycle. Accumulation of acetyl-CoA and citrate inhibits pyruvate dehydrogenase
(PDH) and phosphofructokinase (PFK), respectively. This results in a reduced glucose uptake when
FA oxidation is increased. In the reverse glucose fatty acid cycle malonyl-CoA derived from acetyl-
CoA inhibits the activity of CPT I when carbohydrate oxidation is increased.

The CPT enzyme system has a rate-limiting nature in governing the rate of FA oxi-
dation in the mitochondrial level during acute exercise and after adaptation to exer-
cise training (Mole et al. 1971, Newsholme 1980, Newsholme 1984). This malonyl-
CoA/CPT I system also seems to be involved in the "reverse glucose fatty acid cycle"
(Siddossis & Wolfe 1996, Jequier 1998), a corollary of the glucose-fatty acid cycle, in
which increased glucose oxidation and decreased lipid oxidation results from
hyperglycemia (Mandarino et al. 1993). Fatty acyl carnitine moves across the inner
mitochondrial membrane, fatty acyl-CoA is regenerated, and carnitine is released by
CPT II. Thereafter, fatty acyl-CoA can undergo β-oxidation and acetyl-CoA is formed
for oxidation in the citric acid cycle. In the postabsorptive state or during exercise, an
enhanced supply of FAs to skeletal muscle mitochondria is thought to mitigate the
inhibitory effect of malonyl-CoA on FA oxidation because increased levels of fatty
acyl CoA render CPT I less sensitive to malonyl-CoA (Ruderman et al. 1999). Thus,
FA oxidation increases with a concomitant increment in both citrate and the acetyl-
CoA/CoA ratio, resulting in the inactivation of PFK and PDH, and ultimately the
depression of glucose utilisation according to the classic glucose-fatty acid cycle (van
der Vusse & Reneman 1996). When carbohydrates become the primary oxidative
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substrate as in high-intensity exercise (Gollnick 1985) or in hyperinsulinemia (Yki-
Järvinen et al. 1987a), increased pyruvate availability from glycolysis results in the
increased formation of malonyl-CoA (Ruderman et al. 1999), accelerated glucose
metabolism inhibits FA oxidation resulting in a "reverse glucose fatty acid cycle". In
addition, a decrease in pH associated with an increase in glycolytic flux decreases
CPT activity which decreases FA oxidation  (Starritt et al. 2000).

Fatty acids are the most important energy source for skeletal muscle, particularly
during exercise of mild-moderate  and prolonged duration (Martin III 1996) and
especially in low intensity exercise (Romijin et al. 1993). Fatty acids have an
inhibitory effect on glucose uptake and glycogen utilisation and during exercise this
occurs especially in the ST-fiber rich skeletal muscles and in oxidative fibers (Rennie
& Holloszy 1977, Kiens et al. 1993, van der Vusse & Reneman 1996). Fatty acids are
also derived from the hydrolysis of intramuscular TG by HSL that is activated by a
muscle contraction-induced mechanism similar to that which activates glycogen
phosphorylase and glycogen depletion (Langfort et al. 2000). Contribution from FAs
derived by hydrolysis of TG-rich lipoproteins by LPL in capillary beds of skeletal
muscle has gained interest (Kiens et al. 1993, van der Vusse & Reneman 1996), and in
the postprandial state high concentrations of TG-rich lipoproteins represent a poten-
tial source of FAs for contracting muscle (Hardman 1998). In addition, after exercise
the concentration of malonyl-CoA in skeletal muscle remains depressed (Winder
1998) and thus, fat oxidation is elevated for relatively prolonged periods after a
single bout of exercise (Rasmussen et al. 1998). This permits FAs from muscle
triacylglycerols, and probably from TG-rich lipoproteins as well, to be used as an
energy source during the recovery when glycogen resynthesis has high metabolic
priority, and glycogen is being replenished (Kiens & Richter 1998).

Adaptive changes in skeletal muscles depend on the type of training and muscular
activity (Holloszy & Coyle 1984). Endurance-type training, but not weight training
(Tesch  1992, Kraemer et al. 1996), has been shown to increase enzymes involved
with oxidative metabolism, and with endurance training, fat is used to a greater
extent than carbohydrate at the same absolute exercise intensity (Saltin & Gollnick
1983, Holloszy & Coyle 1984, Brooks & Mercier 199). Glycolytic enzymes like PFK
have been shown to be unaffected by heavy-resistance exercise training (Kraemer et
al. 1996) and unaffected or decreased after endurance-type training (Henriksson &
Reitman 1976, Saltin & Gollnick 1983, Blomstrand et al. 1986). Thus, endurance
training results in a greater FA oxidation (Mole et al. 1971) and in a reduced rate of
glycogen breakdown, glycolysis and lactate formation (Saltin & Gollnick 1983,
Holloszy & Coyle 1984, Brooks & Mercier 1994). In addition, with training attenu-
ated decrease in pH associated with a decrease in glycolytic flux allows CPT to
remain active thus increasing FA oxidation (Starritt et al. 2000). This shift in metabo-
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lism to greater oxidation of fat and concomitant sparing of the utilisation of glycogen
stores is a contributing factor to the enhanced working capacity after endurance
training. This shift to fat metabolism is even more pronounced than the change in
VO2max (Gollnick 1985). Although the LPL activity (Linder et al. 1976) and oxidative
energy conversions of FAs (Okano & Shimojo 1982) in muscles with ST fiber pre-
dominance exceed that of muscles consisting predominantly of FT fibers, training
can result in an increase in these activities in muscles with FT predominance to the
level observed in muscles with high ST-% (Hamilton et al. 1998). In addition, the
capillary supply of the vastus lateralis of the quadriceps femoris muscle in man
increases with endurance training (Ingjer 1978) and the muscle blood flow also in
resting state (fasting, nonexercised) is higher than in sedentary people (Ebeling et al.
1993).

2.3. The influence of skeletal muscle on physical fitness and activity

The plasticity of skeletal muscle energy metabolism is partly possible because of the
mosaic pattern of different types of muscle fibers in skeletal muscle (Booth &
Baldwin 1996). Glycogen depletion, an index of muscle fiber usage during exercise
(Gollnick et al. 1974), shows selective recruitment of the muscle fibers during differ-
ent types of exercises (Connet & Sahlin 1996). During light to moderate exercise,
glycogen depletion and, thus fiber recruitment, is more pronounced in the ST fibers
than in the FT fibers (Gollnick et al. 1974). Muscles with a high percentage of FT
fibers generate a greater torque and higher power at a given velocity than those with
predominantly ST fibers (Fitts & Widrick 1996). The ST fibers are designated for slow
tonic activities such as the maintenance of posture (Saltin & Gollnick 1983), and they
have a lower oxygen consumption while performing exercise at a given power
output (Coyle et al. 1992). Therefore, when contractions are performed isometrically
or at relatively slow velocities, the ST muscle fibers have been observed to be more
efficient than the FT fibers (Rall 1985, Kushmerick 1987). Muscle efficiency also
varies greatly in the highly trained athletes, and most of this variability is related to
differences in their ST-% (Coyle 1995). In the studies of the physiological characteris-
tics of elite runners during the 70’s, Costill and co-workers observed both great aero-
bic power and a preponderance of ST fibers as well as high oxidative enzyme activi-
ties in the skeletal muscles of these athletes (Costill et al. 1976a). These studies also
indicated that the muscle enzyme activities and the ST-% were quantitatively related
to the distance performance (Costill et al. 1976b). When the results of these elite
athletes were combined with the results of well-trained men with a lower quality of
performance and maximal aerobic power, selection rather than that of training was
concluded to be the reason for the invariably high values of maximal aerobic power
noted in the elite runners (Foster et al. 1978). Performance was moderately correlated
with ST-%, and there was a relationship between overall performance quality and
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ST-% among different populations of runners (Foster et al. 1978). Thus, the charac-
teristic values for ST-% reported in top-class sprinters, middle-distance runners and
marathon runners (Gollnick et al. 1972, Costill et al. 1976a, Costill et al. 1976b) sug-
gested that ST-% is related to one’s aptitude for a particular sport event (Foster et al.
1978). Some other findings support the idea that the high ST-% is the result of the
selection of individuals with suitable ST-% for the suitable sport rather than being an
effect of training. Adult dancers have ST-% in their vastus lateralis muscle is similar
to those of endurance trained athletes, and the ST-% of young dancers is higher than
that of the average individual of the same age (Dahlström et al. 1996). The ST-% has
been observed to correlate positively with the attitude to cross-country running, with
the degree of physical activity and with the 9-min run performance in teenagers
(Jansson & Hedberg 1991). Therefore, those persons who have a high ST-% have a
natural endowment towards long-term endurance-type physical activity.

3. PHYSICAL ACTIVITY, FITNESS AND CARDIOVASCULAR HEALTH

Physical activity encompasses all forms of bodily movements, whether undertaken
voluntarily (exercise), unavoidably (occupational and domestic chores), or deliber-
ately, for example, the adoption of an active lifestyle. Leisure-time physical activity
(LTPA) is a form of exercise that is usually performed on a repeated basis over an
extended time (exercise training) with a specific external object such as improvement
of fitness, physical performance, or health. Physical fitness is, in a very broad sense,
determined by the individual’s capacity for optimal work, and motor and sport per-
formance (Åstrand & Rodahl 1986). Health-related fitness refers to those components
of fitness that relate to the health status of the individual, and that may be influenced
by regular physical activity (Bouchard & Shephard 1994). It is also defined as the
states of physical and physiological characteristics that define risk levels for the pre-
mature development of several diseases or morbid conditions, where, on the other
hand, these diseases or conditions are related to a sedentary lifestyle. Fitness is a
physiologic attribute, which can be measured more accurately than physical activity,
which is a behaviour. The level of fitness can be modified by physical activity over
time but fitness, on the other hand, limits the quantity and quality of physical
activity that may be performed. Inherited differences are likely to be involved in
determining the health status of a person and influence on  individual components
of the physical activity-fitness-health paradigm.

3.1. Physical activity, fitness and CHD

Coronary heart disease (CHD) is still the leading cause of mortality in Western coun-
tries and the lifetime risk of developing CHD is one in two for men at age 40 (Lloyd-
Jones et al. 1999). Participation in leisure physical activity has gained increasing
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interest because physical inactivity as well as a low level of physical fitness has been
identified as being independent predictors of cardiovascular disease and especially
CHD (Powell et al. 1987, Berlin & Colditz 1990, Blair 1994, Lee & Paffenbarger Jr
1996). It has been estimated that there is an approximate doubling of CHD risk
among inactive persons when they are compared with their active peers (Berlin &
Colditz 1990). However, the review of national level surveys in many of the  Western
countries indicates that 5 to 15 % of the adult population might be called aerobically
active, that is, engaging in vigorous activities during their leisure-time at least three
occasions weekly for 20 to 30 min or more per occasion (Stephens & Caspersen 1994).

Cardiorespiratory fitness measured in exercise testing is a powerful predictor of
cardiac events and CHD (Table 2). A low fitness level is associated with an increased
risk for CHD (Peters et al. 1983, Ekelund et al. 1988, Farrell 1998), and a high fitness
is associated with a decreased risk and mortality from CHD (Lie et al. 1985). In
healthy men, the fitness level more than the physical activity pattern alone seems to
be an independent protective factor against CHD (Sobolski et al. 1987). In some
studies, no independent effect of physical activity has been observed on cardio-
vascular mortality after accounting for physical fitness (Slattery & Jacobs Jr 1988,
Sandvik et al. 1993). A low level of fitness has been shown to be associated with an
increased clustering of the metabolic abnormalities such as atherogenic dyslipidemia
and glucose intolerance associated with the metabolic syndrome (Whaley et al. 1999,
Carroll et al. 2000), and this finding connects a low fitness level with several adverse
health outcomes including CHD (Blair et al. 1989, Blair et al. 1996, Roger et al. 1998).

Also the health benefits of leanness are limited to fit men (Lee et al. 1999). Because
most of the studies indicate a dose-response effect of fitness (Lee & Paffenbarger Jr
1996), and a marked reduction in age-standardised cardiovascular mortality rates
has been observed in initially sedentary or unfit men who become more physically
active and improved their fitness (Blair et al. 1995, Erikssen et al. 1998), the
conclusion has been drawn that the benefit of physical activity is mediated
particularly by changes in physical fitness. The arguments against a causal
relationship between level of physical fitness and CHD focus on selection bias that
some subjects might self-select themselves into the lower spectrum of physical
activity because of disability, occult disease or because of some constitutional
characteristics reducing their fitness (Milvy et al. 1977).
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Table 2. Some major prospective epidemiological studies of exercise capacity assessed by exercise
testing as it relates to mortality in apparently healthy men.

First author
and year

Follow-up
(mean in

years)

Assessmen
t of fitness

Number
of

subjects

Conclusion

Peters 1983 4.8 BE 2779 Adjusted RR of 2.2 for a low exercise
capacity if other risk factors also present

Lie 1985 7.9 BE 2014
(and 149
athletes )

Higher quintiles of  fitness associated with
decreased CHD and mortality

Sobolski 1987 5 BE 2363 Fitness level an independent protective
factor against CHD

Slattery 1988 5 TM 3043 Middle-aged, unfit men are at greater risk
of dying of CHD

Ekelund 1988 8.5 TM 4276 RR of 2.7 for cardiovascular death in men
with a low exercise capacity

Blair 1989 8 TM 10 224 Physical fitness inversely related to all-
cause mortality

Sandvik 1993 16 BE 1960 Physical fitness graded, independent,
long-term predictor of mortality from
cardiovascular causes

Blair 1995 5.1 TM
Two

exercise
tests

9777 Improvement in fitness reduces mortality
44 %. Men who maintained or improved
physical fitness were less likely to die
from CVD.

Erikssen 1998 22 BE
Two tests
(7 to 10 y

apart)

1756 Graded, inverse relation between change
in fitness  and mortality, irrespective of
initial fitness level

Farrell 1998 8.4 TM 25 341 Moderate and high levels of fitness
provide some protection from CVD
mortality, even in the presence of CVD
predictors.

Lee 1999 8 TM 21 925 Unfit men had a higher risk of CVD
mortality than fit men in all fat and fat-
free mass categories. The health benefits of
leanness are limited to fit men.

BE = Bicycle ergrometer, TM = Treadmill, RR = relative risk, CVD = cardiovascular disease

Physical activity  required by an occupation was first observed to protect against
CHD (Morris et al. 1953, Morris & Crawford 1958, Paffenbarger et al. 1970) and
protection against CHD can be achieved by LTPA as well (Morris et al. 1973). Many
of the studies (Paffenbarger et al. 1978, Kannel et al. 1986, Leon et al. 1987, Slattery et
al. 1989), but not all (Blackburn et al. 1970), have confirmed that low physical activity
increases the risk of cardiovascular mortality and, on the other hand, high leisure
physical activity decreases the risk (Epstein et al. 1976). More detailed analysis of
many of these studies also suggest a dose-response effect of leisure physical activity:
the higher the level of physical activity, the lower the risk of CHD (Lee &
Paffenbarger Jr 1996).  (Table 3)
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Table 3. Some of the major epidemiological studies of physical activity in men as it relates to
cardiovascular mortality.

Investigator, year, type Activity assessment Conclusions

Morris 1953, retrospective Job description PA at work is important in relation to
CHD and  active have less CHD

Morris 1958, retrospective Determined by social
class and occupation

Physical inactivity relates to class and
occupation mortality from CHD

Blackburn 1970, prospective Questionnaire No difference between physically
active and sedentary

Paffenbarger 1970, retrospective Job description Low PA level on the job doubles risk of
fatal MI

Epstein 1976, prospective Questionnaire Vigorous PA at weekend protective
Paffenbarger 1978, prospective Questionnaire Low PA increases risk of MI and death
Kannel 1986, retrospective Questionnaire Low PA increases risk of cardiac

mortality
Leon 1987, prospective Questionnaire Low PA increases risk of mortality
Slattery 1989, prospective Questionnaire Near 50 % increase of death from CHD

in sedentary men
Lee 1995, prospective Questionnaire Total EE  and EE from vigorous PA,

but not non-vigorous PA inversely
related to all-cause mortality

Lee 2000, prospective Questionnaire Light activities were not, moderate
activities somewhat, vigorous activities
clearly  beneficial

PA = physical activity; MI = myocardial infarction, EE = energy expenditure

Physical activity can be divided by the intensity of the activity into light (e.g.
strolling, ≤ 4 kcal/min of energy expenditure), moderate (e.g. walking, < 4-7
kcal/min of energy expenditure) and vigorous (brisk walking, jogging, running,
cycling, > 7 kcal/min of energy expenditure) (Morris 1994). Some studies suggest a
threshold effect for physical activity in protection against CHD (Leon et al. 1987).
When data from five studies, the two studies of British civil servants (Morris et al.
1980, Morris et al. 1990), the study of Finnish men (Lakka et al. 1994), the Harvard
Alumni Health Study (Lee et al. 1995, Lee & Paffenbarger 2000) and the US Railroad
Study (Slattery et al. 1989), regarding the relative merits of vigorous and nonvigor-
ous (light and moderate) physical activity were assessed, researcher observed that
vigorous, but not nonvigorous physical activity, predicted a lower risk of cardiovas-
cular disease. In the study of Finnish men (Lakka et al. 1994), in which fitness was
measured by a symptom limited-exercise tolerance test on a bicycle ergometer, and
physical activity was assessed using a validated questionnaire, both physical activ-
ity, especially conditioning physical activity (intensity of 6 kcal/min/kg) and fitness
independently predicted a lower risk of CHD. However, increasing the time spent
either in nonconditioning physical activity or walking or cycling to work was not
associated with a significant lower risk (Lakka et al. 1994), suggesting that the benefit
of physical activity is achieved only at higher physical fitness levels. It is conceivable
that only vigorous (jogging, running, cycling, swimming, ball games) physical
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activity  is associated with lower incidences of CHD, because it is more efficient in
improving physical fitness.

The question of a genetic contribution to fitness, as well as one's capacity to change
fitness, e.g. to be engaged in physical activity, has been raised (Bouchard et al. 1997).
It seems that a selective process might operate, rendering an individual capable of
achieving high levels of physical fitness and life-time regular activity as well as
averting adverse health outcomes (Noakes & Opie 1976, Lee & Paffenbarger Jr 1996).
To evaluate the inheritance factor using data on participation in competitive sports
has its limitations, but it is reasonable to conclude that persons who compete in vari-
ous sports have above-average physical endowments and an enhanced ability to
engage successfully in physical activity (Milvy et al. 1977). At first sight, this seems
not to be the case because it has been reported that longevity is not affected by past
athletic activity, and that previous vigorous exercise is not related to development of
CHD (Schnohr 1971, Paffenbarger Jr et al. 1984, Morris et al. 1990). However, differ-
ent athletic activities seemed to be related to differences in both life-expectancy and
risk of CHD (Largey 1972, Polednack 1972, Prout 1972, Karvonen 1974, Sarna et al.
1993, Kujala et al. 1994, Lean & Han 1998). It has been suggested that the confusion
surrounding studies of the longevity of athletes may best be explained by recognis-
ing the different somatotype (body build) of the athletes involved in various sports
(Sheehan 1972, Sheehan 1973). Successful participation in sport activities that require
power and speed capability and are not associated with a longer than normal life
span (Yamaji & Shephard 1977) depends upon endomesomorphic (fat-muscular)
body build (Carter 1970), a somatotype that appears to be associated with suscepti-
bility to death from CHD (Spain et al. 1963, Damon et al. 1969). The first to observe
this in athletes were Rook and co-workers, who reported that the prospect of lon-
gevity for heavily built athletes (hammer and weight men) was not as good as it was
for those more lightly built (rowers, runners) (Rook 1954).

In 1956, two years after their first report (Morris et al. 1953). Morris and co-workers
observed that not physical activity solely but self-selection may have influenced their
earlier results on London busmen (Morris et al. 1956). In their study, the bus drivers
had a higher death rate from CHD and tended to be heavier (larger waist and girth
measurement) than bus conductors even at the beginning of their employment
(Morris et al. 1956). The drivers also had higher serum cholesterol levels and blood
pressure measurements than did conductors (Morris et al. 1966), and in addition, in a
subsequent study it was documented that even the recruits for the jobs differed in
lipid level and in weight (Oliver 1967).

A rational explanation for these findings is that some individuals are genetically
more capable of staying or becoming physically fit or that physical activity is easily
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acceptable to them because of some inherited or genetic predisposition. The protec-
tive effect of high physical activity carried out only at younger ages tends to disap-
pear at the age of 50 (Schnohr 1971, Paffenbarger Jr et al. 1984, Paffenbarger Jr et al.
1997). Being fit, however, provides no protection against CHD in sedentary men
(Hein et al. 1992), and only life-long, relatively intense, regular physical activity
seems to reduce risk of CHD (Pomeroy & White 1958, Leon et al. 1997, Sherman et al.
1999).

3.2. Physical activity, fitness and serum lipids and lipoproteins

In observational studies physically active persons usually have more favorable
serum lipid and lipoprotein values than age-matched sedentary counterparts
(Dufaux et al. 1982, Durstine & Haskell 1994). Yet, many studies have not observed
differences in serum total cholesterol or low-density lipoprotein cholesterol (LDL-C)
concentrations between physically active and inactive persons (Tran et al. 1983,
Durstine & Hasell 1994) but differences have been observed in cross-sectional studies
in highly (endurance) trained individuals when compared with sedentary people
(Wood et al. 1976, Williams et al. 1986). However, high serum HDL-C and low serum
triglyceride levels are commonly observed in regular exercisers (Dufaux et al. 1982).
An increase in serum HDL-C especially, observed after exercise training (see Table 4)
has been suggested to indicate the protective effects of physical activity against CHD
(Dufaux et al. 1982) because the serum HDL-C level is diminished in atherosclerosis
(Barr et al. 1951, Nikkilä 1953, Miller & Miller 1975) and both epidemiological and
observational studies have demonstrated that serum HDL-C is inversely related to
the incidence of CHD (Gordon et al. 1977, Kannel 1983, Castelli 1984, Castelli et al.
1986, Gordon & Rifkind 1989). Serum HDL-C is thought to exert an antiatherogenic
effect through its role in "reverse cholesterol transport" (see Figure 2), in which
excess free cholesterol in peripheral tissues, including the arterial wall, is
incorporated into HDL in plasma, esterified by lecithin:cholesterol acyltransferase
(LCAT), transported to the liver and subsequently secreted into bile as cholesterol or
bile acids (Hill & McQueen 1997). Because HDL-C has shown to be an independent
and powerful predictor of the risk of CHD (Pocock et al. 1989) protection against
CHD gained by regular exercise is biologically plausible. Indeed, physical activity
reduces risk of CHD particularly in men (Haapanen et al. 1997). Thus, physiologi-
cally desirable and potentially effective means for increasing serum HDL-C concen-
tration in men prone to CHD are being sought, and one method among those
attracting wide attention today are programs for promotion of physical activity and
fitness (Berg et al. 1994).

A high serum level of HDL-C has regularly been observed in endurance trained per-
sons (Wood et al. 1976, Wood et al. 1977, Adner & Castelli 1980, Herbert et al. 1984,
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Thompson et al. 1991) but not in individuals who engage primarily in anaerobic type
power-speed activities or resistance exercises (Clarkson et al. 1981, Berg et al. 1982,
Farrell et al. 1982, Kokkinos & Hurley 1990). Similarly, regular participation in
endurance-type of physical activities is associated with lower serum TG concentra-
tion (Durstine & Haskell 1994) but not participation in anaerobic type of activities or
resistance exercises (Kokkinos & Hurley 1990, Durstine & Haskell 1994). Thus, the
type of training as well as the amount and/or intensity of exercise achieved by
individuals relates to their serum lipid and lipoprotein levels (Durstine & Haskell
1994). Moreover, the results of many cross-sectional studies have shown a "dose-
response" relationship (Kokkinos & Fernhall 1999). As the mileage of running
increases (distance or frequency per week, as well as duration of exercise session),
serum HDL-C concentration seems to increase (Higuchi et al. 1989, Kokkinos et al.
1995, Williams 1997, Williams 1998) and serum TG and LDL-C decrease (Kokkinos et
al. 1995). Even at the extreme end of a continuum, such as represented by well-
conditioned, middle-aged marathon runners, serum lipoproteins were related to the
degree of fitness (measured by the marathon running time), as HDL-C was higher
and LDL-C lower in the fastest when compared with the slowest runners (Ketelhut
et al. 1996). Moreover, the fittest runners also showed greater increases in HDL-C
after the marathon run (Ketelhut et al. 1996).  In addition, when serum LDL-C con-
centration has been lower in trained persons, the concentration has been inversely
related to the distance run each week (Tran et al. 1983, Wood et al. 1983). In the
studies in highly active, regular runners both larger volume of training (Williams
1997) and faster running speed in 10-km running (Williams 1998) were associated
with significantly higher serum HDL-C levels as well as lower serum LDL-C levels
in a dose-response manner.

An issue often arising pertains to the volume of exercise necessary to induce the
changes in lipid and lipoprotein profile. Usually prolonged exercise has been shown
to elevate HDL-C immediately after exercise as well as in the days following exercise
(Enger et al. 1980, Thompson et al. 1980, Durstin et al. 1983, Kantor et al. 1984,
Dufaux et al. 1986).  Serum lipids and lipoproteins were not changed after an 800-
kcal treadmill running session but a 1600-kcal session caused a significant increase in
HDL-C concentration (Visich et al. 1996). When two exercise intensities (50 and 75 %
of VO2max) were studied in trained runners, and energy expenditure was held con-

stant at 950 kcal per session, no change was observed in HDL-C concentration im-
mediately after or in the days following the exercise (Davis et al. 1992). However, in
sedentary men a short duration (30 min) and low-to-moderate-intensity exercise has
been reported to increase HDL-C immediately after and 24 hours after exercise
(Angelopoulos et al. 1993). In healthy men, the 800-kcal session was able to decrease
serum TG concentration, 1100 kcal of energy expenditure was needed to elicit a sig-
nificant increase in serum HDL-C concentration, whereas a 1300-kcal energy expen-
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diture was necessary for a decrease in LDL-C (Ferguson et al. 1998). Thus, consider-
able amount of exercise, at least in some individuals, is needed to induce significant
changes in serum lipids. Moreover, the length of regular training in cross-sectional
and observational studies has usually been for several years.

The magnitude of a favorable change in HDL-C level is often related to the amount
of exercise performed per week. HDL-C concentration is frequently increased by an
exercise regimen that requires 1000 - 1200 kcal of energy expenditure per week
(Williams et al. 1982, Superko 1991, Wei et al. 1997). Usually favorable changes in
HDL-C appear to reach statistical significance at an energy expenditure of 1200 to
1600 kcal per week (Kokkinos & Fernhall 1999). Epidemiological findings (Leclerc et
al. 1985, Lakka & Salonen 1992) suggest a minimum level of exercise intensity for
each session with an energy cost of 5 - 6 kcal/min/kg or more as the threshold for
favorable changes in HDL-C. Thus, the findings on serum lipids and lipoproteins
and especially on serum HDL-C support the epidemiological studies indicating that
moderate-to-vigorous physical activities as a form of exercise that is usually per-
formed on a repeated basis over an extended period of time (exercise training) are
associated with a reduced risk of CHD (Morris et al. 1980, Slattery et al. 1989, Morris
et al. 1990, Lee et al. 1995, Williams 1997, Williams 1998).

3.3. The influence of exercise training trials on serum lipids and lipoproteins

The results from exercise training trials have usually not revealed significant changes
in total cholesterol concentration (Durstine & Haskell 1994). In some studies, but not
in all (Thompson et al. 1988), LDL-C concentration has decreased in longitudinal
endurance-exercise training studies (Wood et al. 1988, Stein et al. 1990), and the
change has been inversely related to the distance run each week (Tran et al. 1983,
Wood et al. 1983). In addition, an increase in physical activity, that has induced
changes in cholesterol or LDL-C levels, has usually resulted concomitantly in weight
loss and reductions of body fat (Tran et al. 1983, Wood et al. 1991, Durstine &
Haskell 1994). Serum TG concentrations are usually reduced by exercise training
when baseline concentrations are elevated (Huttunen et al. 1979, Thompson et al.
1988, Wood et al.  1991), but not always (Mann et al. 1969).

Aerobic training in randomised trials of exercise (Table 4) usually results in changes
in HDL-C that are qualitatively similar to those observed in physically active persons
or endurance athletes (Tran et al. 1983, Durstine & Haskell 1994) but not always
(Juneau et al. 1987, Hellenius et al. 1993,  Stensel et al. 1993, Suter et al. 1994). The
mean changes induced by exercise training alone, however, are modest in magnitude
(Huttunen et al. 1979, Kiens et al. 1980, Baker et al. 1986, Blumenthal et al. 1991)
when compared with substantially (20-30 %) higher serum HDL-C values observed
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in highly active individuals than in inactive controls in cross-sectional studies
(Durstine & Haskell 1994).

Table 4. Randomised trials of training in healthy or hyperlipidemic middle-aged men.

First author
and year

Number of subjects , age
in years,  lipid status,
initial fitness  level

Description of exercise
program (type;  intensity;
time;  sessions; duration,)

Change (%) in
fitness and HDL-C ;
Comments

Baker 1986 n=45, >50, HL, 31.5 Walking, running; 80 %; 48
min; 3 x wk; 20 wks

16.8 and 16,6 %

Blumenthal 1991 n=97, >60, HL, 19.5 Ergometer, jogging; 84 %; 55
min; 3 x wk; 17 wks

16 and 7 %

Hellenius 1993 n=78, 35 - 60, HL Walking, jogging; 50 %; 30-40
min; 2-3 x wk; 26 wks

4  % and  ns

Houmard 1994 n=20, 40-65, NL, 29.0 Treadmill and walking; 68 %;
30 - 45 min; 4 x wk; 14 wks

21 and 11 %

Huttunen 1979 n=90, 40-45 , HL, 43 Walking and jogging; 64 %;
30 min; 3 x wk; 17 wks

10 and 11 %

Juneau 1987 n=113, mean 48, HL, 31.9 Walking, jogging; 72 %*; 50
min; 5 x wk; 24 wks

15 % and ns

Kiens 1980 n=37, mean 40, NL, 37.8 Leisure-time conditioning;
80-85 %: 45 min; 3 x wk; 12
wks

12 and 8 %;
Weight unchanged

King 1991 n=300, 50 - 65 , NL
28.7, 30.1 and 30.8

Walking, jogging,; 45 % and
76 %; 40 min; 3 x wk; 52 wks

6 , 4 , 5 % and ns;
Training  improved
fitness but not risk
factors

Stein 1990 n=49, mean 44 , HL
25.1-35.9, 28.4-35.9, 30.3-
31.5

Ergometer; 42%, 57 and 72 %;
30 min; 3 x wk; 12 wks

mean 23, 13 - 19 %

Stensel 1993 n=65, 42-59, HL, 35.9 Brisk walking; 56 %;  from 20
to 45 min; 7 x wk; 52 wks

6.5 % and ns

Suter 1994 n=75, mean 41, HL, 38.1
and 35.3

Jogging and walking; 50 %
and 75 %; 30 min; 6 x wk

7% and ns;
Association between
amount of training and
increase in HDL-C

Williams 1994 n=88, 30 - 59, NL Walking and jogging; 56 %;
40/50 min; 5 x wk; 52 wks

na and 7-13 %;
Greatest in normal-to
high initial HDL- C

Wood 1983 n=81, 30 - 55, HL, 35.2 Jogging and running; 56 %;
3 x wk; 52 wks

21 and 8.7 %;
Threshold of 12.9 km
per wk

Wood 1988 n=81, 30 - 59, HL Walking and jogging; 65 %;
40/50 min; 4 x wk; 52 wks

Fat loss by dieting or
exercising produced
comparable changes in
plasma lipoproteins

NL=normolipemic, HL=high lipemic; Initial fitness = VO2max (ml/min/kg);
Intensity as % of VO2max or maximal heart rate*; ns= not significant, na= not available

Exercise training with (Wood et al. 1988) or without (Thompson et al. 1997b) changes
in body weight induces increases in HDL-C but the mean increase (see Table 4) is
usually less than that expected by most clinicians and the expected value based on
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results in cross-sectional studies. Although exercise training benefits are small at the
individual level, they may be significant for public health. It has been estimated that
a 0.026 mmol/l increase in HDL-C would reduce the risk of CHD by 2 % in men
(Gordon & Rifkind 1989). Thus, in a recent meta-analysis of randomised controlled
trials, 0.05 mmol/l increase in HDL-C, represents a 3.8 % decrease in CHD risk
(Halbert et al. 1999).

For individuals with a risk of CHD, exercise is often recommended for  increasing
HDL-C levels. Persons who have normal-to-high serum HDL-C levels have better
ability to increase HDL-C levels through endurance exercise training (Williams et al.
1994, Thompson et al. 1997b, Zmuda et al. 1998), but this ability is limited in subjects
with low initial HDL-C levels (Zmuda et al. 1998). On the other hand, individual
responses in increasing HDL-C levels through endurance exercise training are highly
variable (King et al. 1995a, Zmuda et al. 1998, Hagberg et al. 1999a, Hagberg et al.
1999b), and changes in lipids and lipoproteins may be genotype-dependent (Despres
et al. 1988, Hagberg et al. 1999a, Hagberg et al. 1999b). Differences in the lipid levels
between the trials (Tran et al. 1983, Halbert et al. 1999) are probably accountable to
the varying responses of blood lipids within individuals. Possible contributors to the
heterogeneity also include the variability in the age of the subjects, differences in
pre-training fitness level and in pre-training lipid concentrations of the subjects,
varying exercise programs and interaction amongst exercise intensity, frequency,
duration of each exercise session and length of the exercise training period (Durstine
& Haskell 1994).

Cross-sectional studies in exercisers vs. controls may be biased by a selection effect
(Durstine & Haskell 1994), but there is also reason to suspect the same in randomised
trials of exercise training. In one of their early studies, Wood et al. (1983) observed
that although lipoprotein concentration change uniformly in the runners vs. controls
and favored reduced risk of CHD, changes were not significant when all 46
participants with complete data were included (Wood et al. 1983). However, the 25
men who averaged at least eight miles (12.9 km) per week of running increased their
HDL-C levels significantly when compared with controls (Wood et al. 1983). The
finding that men with higher initial levels of serum HDL-C will tend to run more
when undertaking an exercise program and that their concentrations of HDL-C and
LDL-C did not begin to change until a threshold exercise level of 16 km run per week
was maintained for at least nine months (Williams et al. 1982) also supports the
possibility of the influence of selection. These results, among others, underline the
importance of the intensity (Stein et al. 1990) and the duration (King et al. 1995b) of
the exercise program, the determinants of exercise training influenced by inherited
fitness characteristics of an individual (Bouchard et al. 1997).
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 3.4. The effects of skeletal muscle and exercise on serum lipids and lipoproteins

Plasma TG-derived FAs are taken up by skeletal muscle through the action of LPL
found anchored to the luminal side of the capillary endothelium where its main
function is to mediate the initial hydrolysis of triglycerides in circulating lipoproteins
(Eckel 1989). The hydrolysis of lipoprotein triglycerides decreases the triglyceride
content of the lipoprotein particles, a process that modifies both the blood lipid
profile and the properties of the lipoprotein particles (Figure 2). The HDL level is
dependent on the rate by which free cholesterol, phospholipids and apolipoproteins
are released from TG-rich lipoproteins during lipolysis and taken mainly by HDL.
Indeed, variations in the fractional catabolic rate of TG-rich lipoproteins have been
shown to correlate positively with the HDL-C concentration (Hamsten 1990). In
addition, the HDL particle distribution in plasma is determined by the transfer of
cholesteryl esters and triglycerides between HDL and the TG-rich lipoproteins
resulting in triglyceride-rich HDL (HDL2) that is a preferred substrate for hepatic
lipase. By depleting triglycerides from HDL (HDL2) hepatic lipase remodels HDL
towards HDL3. (Figure 2)

Lipid oxidation contributes about 50 % to the overall energy conversion in human
subjects exercising at 65 % of VO2max for 60 -100 min (van der Vusse & Reneman

1996). Exercise training increases LPL activity in skeletal muscle (Nikkilä 1987) and
FA oxidating capacity of skeletal muscle (Mole et al. 1971). Thus, it is tempting to
suggest that skeletal muscle may be responsible for increased hydrolysis of plasma
TG during exercise and thus, may alter plasma lipoprotein metabolism after exercise
training, inducing a favorable lipid profile, low serum TG and high serum HDL-C
values, most often observed in regular exercisers (Figure 2). This presumption is also
supported by the finding that the utilisation of FAs has been observed to be related
to changes in serum lipoprotein concentrations (Kiens & Lithell 1989). Indeed, the
metabolisms of serum TG and HDL-C are coupled (Eisenberg 1984, Sady et al. 1986,
Sady et al. 1988) and skeletal muscle LPL plays a central role in this regulation
(Nikkilä 1987, Berg et al. 1994). Although extraction rates of circulating triacyl-
glycerides under resting conditions have been observed to be 8 % in untrained
compared with 15 % in trained thigh muscles, differences in TG utilisation during
exercise are relatively small (Kiens et al. 1993). The contribution of lipoprotein-
derived FAs to muscle total lipid energy utilisation during exercise has been
estimated at no more than 3-10 % (Nikkilä 1987, Oscai et al. 1990, van der Vusse &
Reneman 1996). Moreover, endurance training enhances lipid oxidation at low
relative (< 40 % of VO2max) exercise intensities (Bergman & Brooks 1999). Most

athletes and regularly physically active persons exercise at higher intensities, and
therefore, the utilisation of FAs from plasma TG during exercise probably have a
minor effect on plasma lipoproteins.
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Figure 2. Overview of lipid and lipoprotein metabolism. Skeletal muscle contributes to lipid
metabolism by using fatty acids from serum triglycerides as an energy source or by storing fatty acids
as intramuscular triglycerides. Abbreviations see page 6.

During exercise intracellular stores of intramuscular TG can provide 20 - 25 % of
energy requirements (Romijin et al. 1993, Guo et al. 2000). In untrained subjects, an
exercise-induced increase in total lipid oxidation at low-intensity exercise is
associated with an increase in the oxidation of both plasma TG- and intramuscular
TG-derived FAs but as the intensity increases, but still remains below 65 % VO2max,
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the contribution of intramuscular TG to total lipid oxidation increases (Turcotte
2000). With training, an increase in total lipid oxidation appears to be associated with
the increased oxidation of FAs from both plasma and intramuscular TG (Turcotte
1992, Bergman 1999). However, regularly trained persons may use more fat from
intramuscular stores during high-intensity exercise than untrained persons at the
same relative exercise intensity (Coggan et al. 2000). Thus, the replenishment of
intramuscular TG from FAs of plasma TG-rich lipoproteins after exercise by muscle
LPL (Oscai et al. 1990), as well as FA utilisation from plasma TG-rich lipoproteins
and from intramuscular TG after exercise when muscle glycogen stores are
replenished (Kiens & Richter 1998), have been suggested to be crucial in influencing
serum lipids and lipoproteins (Kiens & Lithell 1989).

The importance of skeletal muscle LPL to clear triacylglycerides from body circula-
tion after exercise in replenishing muscle triacylglyceride stores (Oscai et al. 1990,
van der Vusse & Reneman 1996) is supported by the results indicating that exercise
before fat-rich meal can significantly attenuate a postprandial hypertriglyceridemia
response (Zhang et al. 1998). Indeed, local muscle contractile activity is required for
increasing muscle LPL expression (Hamilton et al. 1998), and the acute post exercise
increase in muscle LPL mRNA and mass (Seip et al. 1995) as well as activity
(Ferguson et al. 1998) coincidences with the post exercise fall in circulating TG
(Cullinane et al. 1982, Seip & Semenkovich 1998) and increase in serum HDL-C later
(Enger et al. 1980, Thompson et al. 1980, Durstin et al. 1983, Kantor et al. 1987). In
sedentary men the elevation of HDL-C concentration has been observed 24-78 hours
following the exercise session (Kantor et al. 1987) but in trained men the elevation of
HDL-C concentration has been observed both immediately after (Kantor et al. 1987)
and in hours following an exercise session (Kantor et al. 1984, Dufaux et al. 1986,
Sady et al. 1986). The LPL activity and oxidative energy conversions of FAs in
muscles consisting predominantly of ST fibers are considerably higher than in
muscles with FT fiber predominancy (Linder et al. 1976, Okano & Shimojo 1982,
Hamilton et al. 1998, but training causes a significant rise in LPL activity in FT fibers
(Hamilton 1998). In addition, the FA transport rate into muscle cells is higher in ST-
than in FT-rich muscles because FA transporters are abundantly available in the ST
fibers (Bonen et al. 1998). These findings may explain the high LPL activity in
endurance trained runners (Nikkilä et al. 1978) and enhanced TG clearance in
endurance trained athletes (Sady et al. 1988, Cohen et al. 1989).

4. OTHER CHD RISK FACTORS

Endogenous sex hormones are candidate modulators of plasma lipoprotein metabolism
and determinants of CHD. In general, steroids with estrogen activity increase plasma
levels of HDL-C and steroids with androgenic activity have the opposite effects
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(Crook & Seed 1990). Increased LDL-C and decreased HDL-C levels in post-
menopausal women are believed to be the result of decreased estrogens associated
with menopause (Crook & Seed 1990). This is consistent with the sex differences in
HDL-C levels, in the CHD incidence and mortality in women and men (Jousilahti et
al. 1999). An association between testosterone or estradiol and cardiovascular risk
factors has not been consistently observed however (Haffner & Valdez 1995).

Serum testosterone  may have an influence on the gender differences in CHD
incidence, but studies of sex hormones and lipoprotein levels in men have yielded
conflicting results. In adolescent males, puberty and increasing testosterone levels
are associated with decreasing serum HDL-C levels (Morrison et al. 1979,
Laskarzewski et al. 1983, Kirkland et al. 1987), and the suppression of endogenous
testosterone in men has lead to an increase in serum HDL-C (Goldberg et al. 1985,
Bagatell et al. 1992). Some studies have reported a positive relationship between
testosterone levels and serum HDL-C (Stefanick et al. 1987, Khaw & Barrett 1991),
which is inconsistent with the associations of CHD with low HDL-C levels and the
male gender. Significantly lower testosterone levels in persons with prevalent CHD
than persons without heart disease has been observed (Lichtenstein et al. 1987), it is
not possible to conclude whether the difference in serum hormones between the
CHD-patients and the healthy men is a consequence of the disease rather than a
cause of CHD. Indeed, much of heterogeneity in HDL-C levels can be accounted for
by environmental factors like strenuous physical activity (Duell & Bierman 1990).
Although in healthy middle-aged men, single point plasma androgen measurements
fairly reliably reflect the annual mean androgen level (Vermeulen & Verdonck 1992),
exercise training may cause variations in hormone levels of physically active men
(Hackney et al. 1988) and this may have an influence on serum lipoproteins and thus
on the risk of CHD. Markedly reduced serum testosterone levels have been observed
after prolonged exercise (Aakvaag et al. 1978, Kuoppasalmi et al. 1980, Kuusi et al.
1984) and after extreme physical training in athletes (Wheeler et al. 1984) but also
after a person completes an exercise training program (Frey et al. 1983). In non-
competitive joggers, a significant decrease in serum testosterone levels and increase
in serum HDL-C levels has been observed after marathon running (Kuusi et al.
1984).  After 10 weeks of training, serum testosterone has been observed to correlate
positively with serum HDL-C, and, moreover, training-induced changes in these two
variables correlated significantly and positively (Frey et al. 1983). Thus, physical
activity may be one confounding factors in the androgen-lipoprotein relationships,
and the exercise-induced changes in testosterone in men may mediate changes in the
lipoprotein response to physical training.

Serum estradiol, in contrast to serum testosterone, is associated with a reduced CHD
risk. Hepatic lipase (HL) (Figure 2), an enzyme inversely related to serum HDL-C
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(Kuusi et al. 1980) because it catalyses the degradation of HDL lipids (Nikkilä et al.
1982), is jointly regulated by endogenous androgens and estrogens (Sorva et al.
1988). When there is an increase in physical fitness in men, there is a decrease in HL
activity (Kuusi et al. 1982). It is possible that estradiol effects lipid and lipoprotein
levels because of its estrogen-mediated or estrogen-androgen balance -mediated
influence on HL activity. In addition to influencing the HL activity, estradiol may
increase skeletal muscle LPL activity, which has been observed in exercised male rats
(Ellis et al. 1994). An increase in estrogens in men in response to exercise training has
been observed to correlate positively with changes in HDL-C (Frey et al. 1983).
Serum LDL-C concentration, which is regulated by endogenous estradiol in women
(Tikkanen et al. 1986), is suggested to be more sensitive to changes in endogenous
estrogens than in androgens (Sorva et al. 1988). Serum estrogens in men were signifi-
cantly increased by exercise training, and LDL-C concentrations decreased (Frey et
al. 1983). Both more training and a faster running speed in male but not in female
runners were associated with significantly lower serum LDL-C concentrations in a
dose-response manner (Williams 1996, Williams 1997, Williams 1998). Thus, training
seems to have different effects on serum LDL-C in men and women and various
changes in endogenous estrogens may mediate this difference.

Sex hormone binding globulin (SHBG), a glycoprotein that transports sex steroids in
human plasma, has been observed to associate positively with serum HDL-C
concentrations (Semmens et al. 1983, Hämäläinen et al. 1986, Hämäläinen et al. 1987).
This association may be important because serum SHBG may be a significant
negative risk factor for CHD mortality (Lapidus et al. 1986). However, both serum
SHBG (Adlercreutz et al. 1986, Hämäläinen et al. 1987) and serum HDL-C (Durstine
& Haskell 1994) levels are increased by physical activity which may explain the posi-
tive association between them. When physical activity has been combined with a
low-fat, high carbohydrate diet, an increase in serum SHBG level has been observed
(Tymchuk et al. 1998). Whether this increase in SHBG is determined by the sex
hormone balance of the subject (Semmens et al. 1983, Hämäläinen et al. 1986,
Lapidus et al. 1986) or merely reflects differences of liver induction due to environ-
mental factors such as diet (Adlercreutz et al. 1987) or due to physical activity
(Hämäläinen et al. 1987) has not been established.

Dehydroepiandrosterone (DHEA), with its sulphate conjugate (DHEAS), is the major
secretory steroidal product of the adrenal gland. The serum concentration of DHEAS
is 300-500 times higher than that of DHEA and 20 times higher than that of any
steroid hormones. Despite the high concentration of DHEAS in the blood, its
physiological role has remained unknown. Low levels of DHEAS may predict car-
diovascular disease in men (Barrett-Connor et al. 1986). In addition, the role of
DHEAS as a possible cardiovascular risk factor has gained attention as cross-
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sectional data relate low level of DHEAS to atherosclerosis as assessed by coronary
angiography (Herrington et al. 1990). In female runners, regardless of menstrual
cycle status, DHEAS has  significantly correlated with HDL-C and apo A-I
(Thompson et al. 1997a). In the Helsinki Aging Study however, low plasma DHEAS
appeared to be a secondary phenomenon rather than a specific risk indicator (Tilvis
et al. 1999) and, after checking for disease, DHEAS did not predict an increased risk
of all-cause or cardiovascular mortality during the follow-up (Tilvis et al. 1999).

A high fasting insulin concentration is an important predictor of CHD in healthy
middle-aged Finnish men (Pyörälä et al. 1998). Adjustment by multivariate analysis
for several confounders do not significantly diminish this association (Despres et al.
1996). However, a negative association between fasting insulin concentration and
physical activity has been observed among non-diabetic men and women (Regen-
steiner et al. 1991). Physical activity is perhaps the most important single determi-
nant of insulin sensitivity (Rosenthal et al. 1983), and increasing the intensity or
duration of exercise has a graded relation to improvements in insulin sensitivity
(Mayer-Davis et al. 1998). Interestingly, skeletal muscle fiber type has been sug-
gested to determine and modulate whole body insulin action synergistically with
physical activity (Storlien et al. 1996), and skeletal muscle oxidative capacity and ST-
% have been suggested to play a role in the development of insulin resistance
(Lillioja et al. 1987, Kriketos et al. 1996). A variation in subcutaneous adipose tissue
in the abdominal region is also an important determinant of individual differences in
insulin sensitivity (Goodpaster et al. 1997).

An excess of body fat is shown to be associated with unfavorable risk profiles for
cardiovascular disease (Anderson et al. 1988, Seidell et al. 1991). Body mass index
(BMI, the weight in kilograms divided by the square of the height in meters), is an
indirect but simple and commonly used indicator of general adiposity (Garrow &
Webster 1985). The categories and cut-off points widely used in Europe are for
normal weight 20-25, overweight 25-30 (Bray 1985). BMI over 30 is a commonly used
criterion for defining obesity (Ravussin & Swinburn 1992), but a BMI already greater
than 25 is known to be related to an increased risk for cardiovascular disease (Hubert
et al. 1983, Calle et al. 1999). Subcutaneous adipose tissue, especially subscapular and
abdominal fat, is closely associated with an unfavorable lipid profile in men
(Despres et al. 1985).

Overweight men with low fitness have a high risk for developing CHD (Wei et al.
1999), but moderate-to-high fitness has been shown to reduce the risks of obesity
(Lee et al. 1999). A low body fat content may partly explain favorable lipid levels
associated with a high fitness and physical activity level (Marti et al. 1989). Thus, the
changes in body weight and adiposity may be responsible for the exercise-induced
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changes in serum lipids and lipoproteins (Williams et al. 1983) as well as influencing
the risk of CHD (Wood et al. 1988, Williams et al. 1990, Williams et al. 1992). Subjects
regularly involved in vigorous activities are leaner than those not participating in
these activities (Tremblay et al. 1990). Indeed, vigorous LTPA, despite a lower total
energy cost, induces a greater loss in subcutaneous adipose tissue, increases oxida-
tive potential and is more effective for stimulating fatty acid oxidation than a moder-
ate intensity program (Tremblay et al. 1994, Chilibeck et al. 1998).

A reduced capacity for fat oxidation related to a reduced capacity in skeletal muscle
to take up and oxidize the circulating lipids may be an important factor for obesity
(Ravussin & Swinburn 1992). Indeed, leanness is associated with an increased oxida-
tive capacity in skeletal muscles (Kriketos et al. 1996), and a low activity of oxidative
enzyme KGDH in the Krebs cycle in skeletal muscle has been observed to contribute
to one's proneness to gain subcutaneous adipose tissue over time (Simoneau et al.
1996). Adiposity seems to be inversely related to ST-% (Lillioja et al. 1987, Wade
1990, Kriketos et al. 1996, Kriketos et al. 1997), but coincident correlations between
fitness, physical activity and fatness may be confounders in these studies.
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THE AIM OF THE STUDY

In the present study, investigations on skeletal muscle properties (muscle fiber
distribution and regulatory enzyme activities in energy metabolism), physical fitness
and physical activity and their influence on variations of serum lipids and lipopro-
teins, and eventually on the risk of CHD were carried out. In addition, the influence
of fitness and physical activity on serum sex hormones, serum insulin and body
adiposity were also examined in order to study the effects of skeletal muscle proper-
ties on variations of these risk factors.

The specific aim of this work was to study the following hypotheses:

1. The percentage of ST and FT muscle fibers in the vastus lateralis muscle of the
thigh may affect serum concentrations of lipids and lipoproteins, especially
HDL-C, which may influence an individual’s risk of CHD.

2. Progressive exercise training has a significant influence on the regulatory-
enzyme activities of energy metabolism in slow- and fast-twitch skeletal muscle
fibers though the effects of training may differ depending on the muscle fiber
type and the proportion of these fibers in the muscle.

3. Skeletal muscle properties, especially the percentage of ST fibers (ST-%), have
an effect  on physical fitness and physical activity. Moreover, the ST-%, fitness
and physical activity may have significant interrelationships in their influence
on serum lipids and lipoproteins.

4. Natural selection to different types of sports at a young age may bias the asso-
ciation between physical activity and the occurrence of CHD, but the continuity
of physical activity may have an influence on the risk of CHD also later in life.

5. Physical fitness and physical activity affect serum hormones, body adiposity
and serum lipoproteins and, thus, may significantly confound the associations
observed between these variables.
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MATERIALS AND METHODS

1. Study population

A total of 122 men (mean age 41.8 years, SD 6.9 years) volunteered for this study and
they were recruited as follows. Of the total, 60 sedentary men offered either to begin
an exercise training program arranged by their employer or to participate in one
arranged by the city of Helsinki, 36 physically active men came from sports clubs
from the Helsinki area, and 26 were CHD patients who had undergone coronary
angiography at the First Department of Medicine, University Central Hospital of
Helsinki. Data on cigarette smoking and alcohol consumption were obtained from
questionnaires and by personal interviews. All had a Western-type diet and no
heavy drinkers or those with vegetarian or other special diets were included in the
study. The study protocol was approved by the Ethical Committee of the First
Department of Medicine in Helsinki University Central Hospital.

1.1. Healthy men (Study I, IV ,V)

The healthy men (n= 96, mean age 40.0 years, SD 5.6 years) were not under long-
term medication, and they had no history of endocrinological, liver, kidney or gas-
trointestinal diseases. They all had negative histories of CHD, which were confirmed
by exercise electrocardiograms (ECG) in progressive cycle ergometer tests. Their
maximal oxygen uptake (VO2max) showed a mean value of 35.2 ml/min/kg with SD
7.4 .

Forty-one of the healthy men (mean age 39.5 years, SD 5.6 years), who had not par-
ticipated in regular intense leisure-time physical activity before the study, but
reported to have had irregularly participated in ball games, jogging, swimming or
walking 0 - 3 times per week, gave muscle samples for ST-% analysis and blood
samples for lipid and lipoprotein analysis (I). Detailed information about the leisure
physical activity of 36 of these men was obtained from questionnaires and personal
interviews (IV).

Nineteen of the healthy men (mean age 38.7 years, SD 3.4 years), sedentary white-
collar office workers, volunteered to begin an exercise training program arranged by
their employer (V). These men were selected to the training group, because they
were employed by the same car-selling company and, thus, it was easy to keep close
contact with them. They had not participated in any competitive sport or regular
intensive exercise training before. Two of the men did not complete the training pro-
gram (one moved to Lapland during the study year and was not able to attend
meetings and come to the laboratory, and the other stopped training after two
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months because of observed hypertension needing treatment with medication). Five
of the men, after receiving information about the training, did not want to participate
in the program because they felt that it was too demanding and time-consuming.
These five men did volunteer for the exercise testing and gave blood and muscle
biopsy samples at the beginning of the training year and attended all the monthly
meetings. As they received the same information as the 12 men (aged 37.4 years, SD
3.4 years) who completed the 12-month training program, these five men (mean age
38.6 years, SD 3.3 years) formed an internal control group

Thirty-six physically active men (mean age 43.0 years, SD 5.6 years) had trained
(running and cross-country skiing, swimming, bicycling, ball games) regularly 3 to 7
times per week for the last five years (I, IV). They displayed no evidence of coronary
heart disease, as judged by their negative histories and normal exercise electro-
cardiograms during a graded, maximal bicycle-ergometer test. In this test their
VO2max was determined and showed a high level of fitness with a mean value of
54.2 ml/min/kg, and SD 7.9. Detailed information of their leisure physical activity
was obtained from questionnaires and personal interviews (IV).

1.2. CHD patients (Study I, IV ,V)

The twenty-six CHD patients (mean age 47.9 years, SD 7.9 years) showed none of the
following: unstable angina pectoris, hypertension (diastolic blood pressure ≥105 mm
Hg), diabetes, thyroid, liver, kidney, gastrointestinal or endocrinological diseases.
They did have significant coronary artery narrowing (more than 50 % of the vessel
diameter) of at least one main artery (6 with a one-vessel disease, 10 with a two-
vessel disease and 10 with a three-vessel disease). In 14 of the 26 patients, at least one
previous acute myocardial infarction, based on the typical history of chest pain,
enzymatic changes (aspartate aminotransferase, creatine kinase or creatine kinase
MB-isoenzyme) and positive signs of myocardial damage in the ECG, had been
diagnosed 8 to 13 years before they were included in the study. The patients had
never taken any lipid-lowering drugs, and none had a recent cardiac event.
However, at the time of the study the patients were taking ß-blockers (12 took
metoprolol, 100 - 200 mg /day and 14 took either pindolol, 5 - 10 mg /day or
atenolol, 50 - 200 mg /day), and, in addition, 23 were taking either prazosine,
mexilethinehydrochloride, a thiazide diuretic, nifedipin or sublingual nitroglyc-
erides. All CHD patients smoked, mean of 3.7 (SD 3.3) cigarettes per day. In twenty
CHD patients (mean age 47.9 years, SD 5.2 years), serum hormones were also ana-
lysed, and the results were compared with the 72 healthy men with different level of
fitness and physical activity (IV).
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1.3. Former athletes and controls (Study VI)

The associations between natural selection to sports at a young age, continuity of
physical activity, occurrence of CHD, and physical activity among former athletes
and controls were studied using questionnaires, three nationwide registers and
death certificates. The extent to which selection to specific types of sports at a young
age predicted later physical activity (in 1985) and prevalence of coronary heart
disease (in 1985 and 1995) was analysed. Male athletes who had represented Finland
between 1920 and 1965 at least once at the Olympic games, world or European
championships, or other international competitions in selected sports were identified
(Sarna et al. 1993). The full name, place, and date of birth were traced for 98% of the
athletes from selected sports. Controls were selected from among Finnish men who
at about 20 years of age had been classified as completely healthy (military class AI,
fully fit for ordinary military service) at the medical examination preceding their
conscription (Sarna et al. 1993). They were drawn from the public archives of the
register of men liable for military service and matched for birth cohort and area of
residence with the athletes. The original cohort of athletes included 2401 men and
the reference group 1712 men (Sarna et al. 1993).

In 1985, 1282 (response rate 80-90% by sport of those alive in 1985) athletes and 777
(response rate 77%) controls responded to the questionnaires. For the present study,
those athletes and controls who provided complete data on the 1985 questionnaire
were selected. From the athletes, two extreme groups according to the presumed
type of muscle fiber composition (Saltin & Gollnick 1983) suspected as giving the
best advantage for a specific type of sports event, and thus being a selective factor for
natural selection to different types of sports. Endurance runners (n=101) and cross-
country skiers (n=65) were assigned to the ‘endurance’ athlete group, and sprinters
(n=73), weight-lifters (n=66) and track and field throwers (shot putting, n=22; discus,
n=24; hammer, n=20; javelin, n=30) to the ‘power-speed’ athlete group. The third
athletic group ‘other athletes’, comprised 154 soccer, 108 ice-hockey and 67
basketball players, as well as 131 boxers, 131 wrestlers and 243 men from other than
the aforementioned track and field disciplines.

Data were collected from the 1985 and 1995 questionnaires, and morbidity data were
compiled from three nationwide registers covering all citizens in Finland: the
registers for hospital inpatient discharges, reimbursable medications and disability
pensions (Kujala et al. 1994). In addition, causes of death were available from the
Cause of Death Bureau files at the Central Statistical Office of Finland. The personal
identification (social security) code assigned to all Finnish citizens permitted
accurate computerised record-linkage. Based on registers and death certificates, the
occurrence of coronary heart disease was analysed using the International
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Classification of Diseases (ICD) codes (ICD-8 from 1970 to 1985 and ICD-9 from 1986
to 1995) (WHO 1969, WHO 1977), rubric code 410-414 indicating CHD.

From 1986 to 1995, 232 (18.8%) of the 1235 athletes and 158 (21.3%) of the 743
controls died. In 1995, 931 (91.9%) of the 1013 athletes and 535 (91.5%) of the 585
controls alive in 1995 responded to the second questionnaire. For those who died
during the last 10-year follow-up or who did not respond to the 1995 questionnaire,
the follow-up data were derived from death certificates and morbidity registers. The
1985 and 1995 questionnaires included items on physical attributes (height, current
weight), occupation, smoking, physical activity, and any diseases verified by a
doctor. The questionnaire included the question: "Has a doctor said that you have or
have ever had angina pectoris (chest pain due to coronary heart disease) or
myocardial infarction?"

Cause of death data were available from 1936 to December 31, 1995. Since 1967, all
hospital discharges in Finland have been recorded annually in a nationwide register
at the National Board of Health. The reports are obligatory for all public and private
hospitals. Record linkage was not possible until 1969, because the data were too
incomplete for accurate identification. Thus, the follow-up with hospital records in
the present study started from the beginning of 1970 and continued to December 31,
1995. The validity of the register for epidemiological studies of coronary heart
disease and myocardial infarction has been shown to be very good (Heliövaara et al.
1984, Pietilä et al. 1997). Data on disability pensions and reimbursable medication
were obtained from the register of the Social Insurance Institution, the public agency
responsible for basic social security covering all residents of Finland (Kujala et al.
1994). The follow-up of the disability pension records started from 1970, when
pensions granted earlier in surviving subjects were coded and continued to 1985.
Detailed data on reimbursements due to CHD were available from 1986 to 1995.

Subjects who had CHD, including physician-diagnosed angina pectoris or myocar-
dial infarction, based on the 1985 questionnaire or at least on one of the registers be-
fore January 1, 1986, were determined to have coronary heart disease in 1985. Those
with CHD in 1985 or coronary heart disease based on the 1995 questionnaire, or on
the hospital discharge registry, the reimbursable medication registry or death certifi-
cates before January 1, 1996, were determined to have CHD in 1995. Those who had
CHD in 1995 but not in 1985 were considered to be incident cases of CHD during the
last ten-year follow-up. Occupational data were collected partly from the Central
Population Registry and partly from the 1985 questionnaire study. The main occu-
pational groups were as follows: executives, clerical staff, skilled workers, unskilled
workers and farmers (FCSO, 1972). Each person was classified according to the
occupation they had held longest during their lifetime. The calculation of body-mass
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index [weight (kg) by height (m) squared] in 1985 was based on the self-reported
height and weight in the questionnaire. The tobacco smoking status of the subjects
was classified according to their responses to a detailed smoking history (Kaprio &
Koskenvuo 1988). Non-smokers were men who had smoked no more than 5 to 10
packs of cigarettes (or the equivalent of other tobacco products) throughout their
lifetime. Other subjects were classified as current smokers or ex-smokers according
to whether they were smoking daily at the time of the questionnaire or had quit.

1.4. Animals (Study III)

Thirty-two 2-3 -month-old male rats of the Sprague-Dawley strain were used in a
training study, after which selected hind limb muscles and muscle fibers from these
muscles were analysed for regulatory enzymes. The rats were provided with food
(62 % carbohydrate) and water ad libitum. Sixteen rats were randomly selected for
training five days per week over an eight-week period on a tread-mill. The other
sixteen rats served as sedentary controls.

2. Collection and storage of samples

2.1. Blood sampling (Study I, IV,V)

The blood samples of the healthy men were collected when they came to the labora-
tory for the personal interview. To avoid the acute effect of physical strain on serum
parameters, the physically active subjects were asked to refrain from competitive
sport for one week and from exercise for one day before the blood sampling. The
blood samples of the CHD patients were collected when they came to the hospital
for coronary angiograms. After an overnight fast, two blood samples (within 15 min
intervals) were drawn between 7:30 and 9:30 a.m. by venopuncture from the
antecubital vein with the subjects in a sitting position. A small portion of the pooled
serum samples was stored at 4 °C for lipoprotein analysis, which was completed
within two days. The other half of the pooled sample was frozen immediately and
stored at -20 °C  for hormone analysis.

The blood samples for lipid and hormone measurements from different groups were
collected during the same time of the year (I, IV) and the training of the sedentary
men (V) lasted for one year. Thus, the possible confounding influence of the annual
variation of sex hormones and serum lipids were minimised. Pulsative secretion and
cicardian variation were controlled by careful timing of blood sampling and by using
a pooled serum of at least two consecutive blood samples for each subjects. In addi-
tion, blood sampling of the men was performed in the same body position after a
half hour rest.
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2.2. Muscle sampling in men (Study I, IV, V)

The skeletal muscle samples were taken from the lateral portion of the quadriceps
femoris muscle with a biopsy needle (Tru-Cut®, Travenol Laboratories Inc., Illinois,
U.S.A.). After local anesthesia of the skin, a small incision (1-2 mm) was made with a
scalpel, and the biopsy needle was advanced 3-4 cm into the muscle at the mid-point
between the greater trochanter and the articular cavity of the knee. Two samples
were taken through the same incision: the first sample was taken by advancing the
needle toward the more distal and the second by advancing the needle toward the
more proximal part of the muscle to avoid the possibility of taking the second
sample from a previously sampled muscle area. The muscle specimens (ca. 10 mg,
each sample consisted of 100-300 muscle fibers) were frozen immediately in liquid
nitrogen and stored at -75°C until analysed.

2.3. Muscle sampling in rats (Study III)

At the end of the training period, four trained and four sedentary rats were killed by
decapitation without anesthesia, at rest. The gastrocnemius muscle (mosaic mixture
of both FT and ST muscle fibers and therefore called in this study "mixed muscle"),
tibialis anterior muscle (predominantly FT fibers, called "fast muscle") and soleus
muscles (predominantly ST fibers, called "slow muscle") were excised (Rice et al.
1988). Muscle samples were frozen immediately in liquid N2 and stored at –75°C
until analysed for enzyme activities. Gastrocnemius muscles from eight trained rats
and eight sedentary rats, killed at rest, were used for the single muscle fiber analysis.
The effect of training on skeletal muscle was studied by investigating muscles con-
taining different proportions of ST and FT fibers as well as investigating single ST
and FT fibers of gastrocnemic muscle.

3. Analytical methods

3.1. Serum lipids and lipoproteins (Study I, IV, V)

Serum total cholesterol and triglyceride (TG) concentrations were analysed with a
Hitachi 705 automatic analyser utilising enzymatic methods (Boehringer-Mannheim
GmBH, West-Germany). Cholesterol in the high density lipoprotein fraction (HDL-
C) was measured after precipitation of other lipoproteins (LDL and VLDL) by
dextran sulphate-Mg++. Serum apo A-I was determined immunoturbidometrically
using a Kone-CD compact Clinical Analyser (Kone OY, Helsinki, Finland) and apo
A-I reagents (Orion Diagnostica, Espoo, Finland). The between-assay imprecisions
for serum cholesterol, serum HDL-C, serum TG and serum  apo A-I were 2.1, 2.5, 3.5,
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3.5 %, respectively. Serum LDL-C was calculated according to the formula of
Friedewald et al. (1972).

3.2. Serum sex hormones, sex hormone binding globulin and insulin (IV, V)

Serum testosterone (Nordiclab, Oulunsalo, Finland) and serum estradiol (Sorin Bio-
medica S.p.A., 13040 Saluggion (VC), Italy) were measured by radioimmunoassay.
The serum sex hormone binding globulin (SHBG) was measured by an immuno-
radiometric assay (IRMA) method of Orion Diagnostica (Oulu, Finland). The  serum
free, non-protein bound testosterone (free testosterone) was calculated using the
results of total testosterone and SHBG (Anderson' 1976). The serum free, non-protein
bound estradiol  (free estradiol)  was calculated using results of total estradiol and
SHBG (Moore 1982). Serum insulin was measured with a radio-immunoassay kit
from Pharmacia (Uppsala, Sweden). Serum dehydroepiandrosterone sulfate
(DHEAS) was determined using a commercial RIA kit (Wien Laboratories, Inc.,
Succasunna, NJ, USA). The serum free, non-protein bound estradiol (free estradiol)
was calculated using the results of total estradiol and SHBG (Moore et al. 1982).
Serum luteinizing hormone (LH) was determined utilising a commercial RIA kit
from CIS International (France).

3.3. Muscle fiber distribution analysis (I, IV, V)

The skeletal muscle fiber distribution (the percentage of ST fibers, ST-%) was ana-
lysed from samples taken from the lateral portion of the quadriceps femoris muscle
with a biopsy needle. The muscle samples were sectioned in a cryostat and stained
for ATPase, preincubated at pH 4.3 (Guth & Samaha 1970). In this staining, the two
main fiber types, ST and FT fibers, can be separated clearly: ST fibers are stained
dark but FT fibers remain unstained (Guth & Samaha 1970, Saltin et al. 1977, Saltin &
Gollnick 1983). The number of ST and FT muscle fibers was calculated from both
samples, and the proportion of the fiber types was used as a muscle fiber distribu-
tion percentage. The muscle samples were coded and the (same) technical worker
did not know which samples she was analysing. Repeated sampling from the same
muscle gave a coefficient of variation for the fiber composition of less than 15 %
which has been similarly observed in earlier studies due to sampling and technical
errors (Simoneau & Bouchard 1995).

3.4. Measurement of enzyme activities in muscle samples

The activities of phosphofructokinase (PFK), ketoglutarate dehydrogenase (KGDH)
and carnitine palmitoyl transferase (CPT) were measured because these enzymes are
rate limiting (key-enzymes) and provide quantitative information on the maximal
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capacities of glycolysis, oxidative metabolism in the citric acid cycle (Krebs cycle)
and fatty acid metabolism, respectively (Newsholme 1980, Newsholme 1984).
Skeletal muscle lipoprotein lipase (LPL) plays a central role in the trafficking of lipo-
protein derived FAs (Nikkilä 1987), and it hydrolyses circulating lipoprotein triacyl-
glycerols, liberates FAs for tissue uptake and changes lipoprotein composition in a
way that may lower atherosclerotic risk (Nikkilä 1987, Seip & Semenkovich 1998).

3.4.1. Chemicals, enzymes and equipment

Carnitine acetyltransferase (CAT) from pigeon breast muscle (5 g/l), acetyl-CoA
(trilithium salt), adenosine 5' monophosphate (AMP), adenosine 5' diphosphate
(ADP), adenosine 5' triphosphate (ATP), nicotinamide adenine dinucleotide (NAD+)
(free acid) and NAD reduced (NADH) were from Boehringer Mannheim, Germany.
Alpha-ketoglutarate dehydrogenase (KGDH), alpha-ketoglutarate (KG), L-carnitine-
HCL, bovine serum albumin (BSA), imidazole base (grade III, low fluorescence
blank) were from Sigma Chemical CO, St. Louis, MO, U.S.A.. Dithiothreitol (DTT)
was obtained from Calbiochem, San Diego, CA, U.S.A.. All the other reagents were
of analytical grade from Merck AG, Germany.  The water used in analysis was pre-
pared by the Millipore Super Q system. Transcon 102 FN Fluoro-nephelometer
(Elomit Ltd, Helsinki, Finland) was used in skeletal muscle enzyme measurements.
The excitation wavelength was 360 nm (Corning filter no. 5840) and emission wave-
length 460 nm (Corning Nos. 4303 and 3387 with the latter facing the phototube).

3.4.2. The preparation of muscle samples for enzyme analysis (III, IV, V)

Human muscle samples.  For the determination of enzyme activities, the muscle
samples (ca. 10 mg) were homogenised in 10 volumes of 50 mmol/l Tris-HCl buffer,
pH 7.4, containing 0.5 mmol/l DTT, 2 mmol/l MgCl2 and 1 mmol/l ethylene-
diaminetetra-acetic acid (EDTA). Later, the protein content of the water-diluted
homogenates was measured (Lowry et al. 1951), and for better comparison of results,
enzyme activities are expressed as µmol/min/mg protein.

Rat muscle samples.  Twenty mg of muscle tissue was homogenised in ground-glass
homogenizer with 10 vol of homogenising medium containing 50 mmol/l Tris-HCl
buffer, pH 7.5, 0.5 mmol/l DTT, 2 mmol/l MgCl2 and 1 mmol/l EDTA. The protein
content of the water diluted homogenates was measured (Lowry et al. 1951), and for
a better comparison of the results, enzyme activities are expressed as µmol/min/mg
protein.
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3.4.3. The preparation of muscle fibers for enzyme analysis (III)

Approximately 20 mg wet weight of gastrocnemius muscle was freeze-dried in
aluminium holders in glass vacuum tubes in the freeze-dryer (Heat, Brokered,
Denmark) at –45° C for 48 h. The dried samples were stored in vacum tubes at -25°
C, and the tubes were always warmed up to room temperature before they were
opened. Because freeze-dried material may absorb moisture and labile compounds
may therefore be destroyed, dissection was done only on days when the relative
humidity of the air was less than 50 %. The preparation of single muscle fibers
(dissecting and weighting per sample) took 10 - 15 min, and according to knowledge
and experience, this has no effect on the enzyme activities of frozen dried muscle
samples at room temperature in relative humidity of below 50 %.

For the individual muscle fiber analysis, freeze-dried muscle fibers were separated
under a stereomicroscope at room temperature at x 15 magnification, stained for
ATPase to identify ST and FT fibers and analysed for enzyme activity. In this
process, individual fibers (2–5 mm) were teased apart at room temperature and
stored under vacuum at -25° C. For muscle fiber analysis, a piece of freeze-dried
muscle fiber was cut from individual fibers for ATPase staining to identify the fiber
as ST or FT before enzyme analysis. The fiber pieces to be identified were placed into
water droplets on the microscope slide and the droplets were dried at room tem-
perature for at least 30 min. To minimise the problem of identifying the fiber pieces
as either ST or FT fiber, 20 µm sections of rat muscle were cut in a cryostat at - 28° C
with a microtome and placed on the same microscope slide as the fiber pieces.
Stained muscle sections were then used as reference guides for stained fiber pieces.
In staining for actomyosin ATPase, the method adapted from Guth and Samaha
(1970) was used.

When enzyme activities are measured in very small samples as in the present study,
the weighing and the analysis must be performed with exceeding accuracy and pre-
cision. Two self-made, quartz-fiber fishpole balances, one ranging from 0.3 - 3.0 µg
and another ranging from 1.0 - 10.0 µg, were used for weighing individual muscle
fiber pieces (Lowry et al. 1972).  The coefficient of variation of these balances were 1-
2 %. The balances were calibrated and the linearity checked with p-nitrophenol
crystals (Sigma Chemical Company, St. Louis, MO, U.S.A.). After measuring the
deflection on the fishpole balance, the crystals were dissolved in 1 ml 0.1 mol/l
NaOH and the absorbance measured in a spectrophotometer. A Sartorius analytical
balance was used in reference weighings. For better comparison of results, enzyme
activities are expressed as µmol/min/mg dry weight.
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3.4.4. The measurement of enzyme activities in muscle samples (Study III, IV, V)

Phosphofructokinase. Assay medium was principally as described by Lowry et al.
(1978) and contained 50 mmol/l Tris-HCl, pH 8.1, 1 mmol/l ATP, 2 mmol/l MgCl2,
0.02 % BSA, 10 mmol/l K2HPO4, 1 mmol/l AMP, 1 mmol/l DTT, 10 µmol/l NADH,

50 U/ml triose-P-isomerase, 90 mU/ml aldolase and 1 U/l glyserin-3P-DH. The
reaction was started by adding 2 mmol/l of fructose-6-P and followed kinetically at
+25oC for 1-2 min. Two duplicated calibrators, containing 2 µmol/l and 4 µmol/l of
fructose-1,6-P in final concentrations in the assay medium, were used and treated in
the same way as the samples.
Ketoglutarate dehydrogenase. Assay medium in rats was principally as described by
Read et al. (1977) with modifications for fluorometric determination. Assay medium
contained 100 mmol/l Tris-HCl, pH 7.4, 2 mmol/l DTT, 1 mmol/l KCN, 0.4 mmol/l
ADP, 1 mmol/l NAD+ and 0.5 mmol/l CoA. The reaction was initiated by adding 1
mmol/l of KG. Formation of NADH was followed kinetically at +25° C for 2-3 min.
In calculations, 5 µmol/l of NADH in the final concentration in assay medium was
used as calibrator. Assay medium for KGDH in human skeletal muscle was prin-
cipally as described by Cooney et al. (1981) with the following modifications for
fluorometric determination: Assay medium contained 100 mmol/l Tris-HCl, pH 7.4,
250 mmol/l mannitol, 10 mmol/l KH2PO4, 10 mmol/l KCl, 5 mmol/l MgCl2, 1
mmol/l DTT, 0.05 % Triton X-100, 1 mmol/l NAD+ and 0.5 mmol/l CoA. The
reaction was started by adding 1 mmol/l of KG. Formation of NADH was followed
kinetically at +25 °C for 2-3 minutes.
Carnitine palmitoyl transferase I.  The release of CoA in reaction with palmitoyl-CoA
and carnitine was used as an index of enzyme activity. Assay medium was princi-
pally as described by Yates and Garland (1970) and contained 100 mmol/l Tris-HCl,
pH 7.4, 80 mmol/l KCl, 1 mmol/l KCN, 1 mmol/l EDTA, 0.1% BSA, 1 mmol/l KG,
0.5 mmol/l NAD+, 1 mmol/l carnitine and 50 mU/ml of KGDH. The reaction was
started by adding 50 µmol/l of palmitoyl-CoA and followed kinetically at +25oC for
2-3 min. In calculations, 5 µmol/l of NADH was used as calibrator.
Carnitine palmitoyl transferase II. Formation of carnitine in the reaction between
palmitoyl-carnitine and CoA was used as an index of enzyme activity. The method
of Deufel and Wieland (1983) was used with the following modification: Carnitine
formed in the reaction was measured using CAT. CoA formed in this reaction from
acetyl-CoA was measured in the medium containing 50 mmol/l Imidazole-HCl
buffer, pH 6.7, 1 mmol/l MgCl2, 0.5 mmol/l EDTA, 0.5 mmol/l NAD+, 0.5 mmol/l

KG, 1 mmol/l DTT, 0.02 % BSA and 0.1 mmol/l acetyl-CoA and 40 mU of KGDH.
Both 400 µl of this solution and 20 µl of a CoA-containing medium were pipetted to
Transcon microcuvettes, initial fluorescence was read and the reaction started by
adding 20 mU of CAT. The reaction was completed in 5 min at +25°C and the
formation of carnitine was calculated. Carnitine in a concentration of 5 µmol/l was
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used as calibrator.
Skeletal muscle LPL Skeletal muscle lipoprotein lipase (LPL) activity was measured
from 3-8 mg of skeletal muscle pieces assayed for heparin-releasable lipoprotein
lipase activity (Taskinen et al. 1980). Enzyme activity was expressed as µmol of FAs
released from the triacylglyceride substrate in 1 h by 1 g of tissue.

3.4.5. The measurement of enzyme activities in muscle fibers (Study III)

Phosphofructokinase. For measurement of PFK activity, 0.30 - 0.50 µg fiber pieces were
placed close to the bottom of the tube. The reaction was started by adding 100 µl of
assay reagent to the tubes in an ice bath. The assay reagent was essentially the same
as in homogenate measurement except that 100 µmol/l of NADH was used. The
tubes were transferred to a 37° C water bath and incubated for 30 min. The reaction
was stopped by boiling the tubes for 2 min. One ml of 50 mmol/l Tris-HCl buffer,
pH 8.1, was added, and the tubes were cooled to +25° C before the fluorescence was
read. Triplicate calibrators of fructose-1,6-P (in 4 µmol/l and 8 µmol/l final concen-
trations) were treated in the same way as the samples.
Ketoglutarate dehydrogenase. In the analysis, 0.5 - 2.0 µg of individual muscle fiber
pieces were used. Because the muscle fiber pieces did not disintegrate in aqueous
droplets (see Lowry et al. 1978), the fibers were placed in the tubes and incubated at
+25°C for 30 min in 5 µl of reagent containing 100 mmol/l Tris-HCl, pH 7.4, 2
mmol/l DTT, 0.02 % BSA, 1 mmol/l MgCl2, 0.5 mmol/l EDTA and 0.6 mol/l KCl.
Thereafter, 10 µl of assay reagent containing 100 mmol/l Tris-HCl, pH 7.4, 2 mmol/l
DTT, 0.02 % BSA, 2 mmol/l KCN, 1 mmol/l ADP, 2 mmol/l NAD+, 1 mmol/l CoA,
1 mmo/l MgCl2, 0.5 mmol/l EDTA and 2 mmol/l KG was added in the tubes, and
samples were incubated at 37° C for 60 min. The reaction was stopped by adding 5 µl
of 6 mol/l NaOH and heating at +80° C for 20 min. To increase the sensitivity of the
measurement, enzymatic cycling (Lowry & Passonneau 1972, Lowry, 1980) was
used. The method, adapted from Hintz et al. (1980), in which glutamate dehydrogen-
ase and glucose-6-phosphate dehydrogenase are used, gave a 300-fold amplification
in one hour.
Carnitine palmitoyl transferase II. The measurement was performed with samples
pooled from 3 - 6 individual fibers of the same type (total weight 5 - 7 µg from the
same rat). The volume of the assay reagent was reduced to half of that used in the
homogenate measurement. The tubes were incubated at +37° C for 60 min, and the
reaction was stopped by adding 10 µl of 0.7 mol/l perchloric acid. After neutralisa-
tion with 3 µl of 2.5 mol/l KHCO3 and centrifugation for 10 min at 3000 g, 20 µl of
supernatant was taken for carnitine measurement as described earlier.
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4. The measurement of physical fitness (Study I, IV, V)

The fitness of the healthy men was assessed during a graded bicycle-ergometer test
to volitional exhaustion. In this test, expiratory gas flow, oxygen and carbon dioxide
concentrations were measured with an automated open circuit gas analysis system
(Oxycon-4, Mijnhardt, the Netherlands), which was calibrated against gas mixtures
of known concentrations before each test. The highest oxygen uptake per minute
reached was defined as the maximal oxygen uptake (VO2max) and expressed as

ml/min/kg of body weight. In these tests, no evidence of coronary heart disease (as
judged by a normal exercise ECG and a symptomless performance at heart-rate level
above 90 % of the age-related maximum) was observed. The fitness of CHD patients
was assessed with a progressive, symptom-limited exercise-tolerance test on an
electrically braked cycle ergometer, and VO2max was estimated using the formula:

12.3 x peak power in Watts (Mertens et al. 1994). When fitness was expressed (in the
study IV) as metabolic equivalents (METs, see below) VO2max as ml/min/kg was

divided by 3.5 which is the oxygen consumption at rest.

5. The assessment of physical activity (Study IV, V, VI)

A questionnaire as well as a personal interview provided the data for the assessment
of the healthy men's leisure-time physical activity (LTPA). The intensity of physical
activity was expressed in metabolic units (metabolic equivalents of oxygen consump-
tion, MET). MET is a ratio of the metabolic rate during exercise to the metabolic rate
at rest, which corresponds to oxygen consumption of 3.5 ml/min/kg body weight.
The list of activities included the most common leisure-time activities of Finnish
men. The healthy men (Study VI, V) were asked to record the frequency and average
duration in hours and minutes per session. Physical activity was categorised
according to type: walking 4.2 MET, jogging 10.1 MET, cross-country skiing 9.6 MET,
cycling 5.8 MET, swimming 5.4 MET, rowing 5.4 MET, ball games 6.7 MET, gymnas-
tics or weight lifting 5.0 MET. The former athletes and their controls (VI) were
divided into two classes according to their participation in vigorous activity in 1985.
The volume of physical activity in 1985 was computed from responses to three
structured questions. Those whose exercise intensity usually corresponded to
jogging or running were vigorous exercisers. By assigning a MET score to activity
and calculating the product of intensity times duration times frequency of activity,
the cumulative leisure-time MET-hours per week (LTPA index) was calculated
(Study IV,VI) (Kujala et al. 1994). Since one MET corresponds to an energy expendi-
ture of approximately one kilocalorie per kilogram of body weight per hour, the
LTPA index (in kcal/wk) was calculated by multiplying body weight by activity (in
METs) and duration (in hours) of activities per week (Study V).
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6. Exercise training programs

6.1. Healthy men (Study V)

The training of the 12 men consisted of self-conducted, mostly home-based exercise.
In order to have long-term compliance, the participants were encouraged to increase
the kind of physical activity (mostly ball games) they were already engaged in. The
men either had no leisure-time physical activity or it was at the lower range of the
recommendations (Pate et al. 1995) but according to the activity level reported they
can be considered as sedentary before training (Stephens & Caspersen 1994). In order
to have long-term compliance, the men were encouraged to increase the kind of
physical activity they were familiar with. According to the training diaries their
physical activities were jogging, cross-country skiing, cycling and ball games, and
such activites usually classified as vigorous. An exercise training prescription and
general information on the health benefits of exercise training were given to the
whole study group of 17 men (the 12 Sedentary men and 5 men in the internal con-
trol group) at the monthly meetings. The subjects submitted their LTPA  diaries from
the previous month at these meetings. They were also interviewed to confirm their
continuous training, and those needing individual guidance for training received
this. The weekly goal of the exercise program for LTPA was set at 1000 - 2000 kcal
divided into 3 - 5 sessions per week. Thus, the men were instructed to increase their
LTPA ca. 100 kcal/wk every month. All 17 men attending the meetings were dis-
couraged from altering their diet composition during the year.

6.2. Animals (Study III)

Sixteen rats trained five days per week over an eight-week period on a tread-mill.
The running speed on the treadmill was 10 m/min and the running time per day
was progressively increased from 15 min during the first week to 2 h during the last
week of training. The training of the rats represented intensity approximately 50 %
of maximum (Gillespie et al. 1982, Sonne 1989, Patch & Brooks 1980) and thus, it can
be consider as low- to moderate intensity exercise. Sixteen sedentary rats served as
controls. For the acute exercise experiment eight randomly selected sedentary rats
were made to run on a treadmill for 15 min twice a week. To study the acute effects
of exercise, four trained and four sedentary rats ran on a treadmill at a speed of 20
m/min until exhaustion. Running time for trained and sedentary rats was 2-3 and
0.5–1.5 h, respectively.
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7. Other methods

Body mass index  (BMI)  was used as a measure of relative body weight and was
calculated as weight (in kg) divided by height (in m) squared (kg/m2).
Subcutaneous adipose tissue of the healthy men (in Study IV and V) was estimated by
measuring skinfold thicknesses from four standard sites - subscapular, triceps,
biceps and suprailiac skinfold regions - from the right side of the body were
measured with a Harpenden calliper by the same experienced technician. The sum of
the four skinfolds was used as indicator of subcutaneous adipose tissue. The intra-
assay imprecision of this method is 3 %.
Onset of blood lactate accumulation  (OBLA), For the measurement OBLA (in Study V),
venous blood was collected by a catheter from an antecubital vein during the last 15
s of every 3-min stage in their exercise testing. The OBLA was determined from these
venous blood samples by using both the increase of lactate 1 mmol/l above the
baseline criterion (OBLA-1) as described by Coyle et al. (1995), and the fixed level of
4 mmol/l (OBLA-4) criterion as described by Karlsson et al. (1984). The OBLA points
are the work loads in Watts in corresponding levels of blood lactate. Perchloric acid
extracts of venous blood were made for measurement of blood lactate, which was
determined using fluorometry (Lowry & Passonneau 1972).
The total blood volumes  of the men before and after training (Study V) were measured
using an isotope dilution method in which autologous red cells were labeled with
radioactive 99m Tc (Thomsen  et al. 1991).
Isometric trunk extension torque (TET)  in Newtons per kilogram of body weight
(N/kg) was measured (Study V) on a dynamometer. For the measurement of TET,
the subjects were pulling a handle in a sitting position. Three maximal isometric
trials lasting 3 - 5 s were performed, and the best TET was used for further analysis.

8. Statistical methods

For the statistical analyses, computer programs StatView 4.5 and SuperAnova
(Abacus Concepts, Inc., 1984 Bonita Ave., Berkeley, California, USA) and JMP
statistical software (SAS Institute Inc., Cary, NC, USA) were run in an Apple
Macintosh (model Quadra 650 and 700) computer. The Confidence Interval Analysis
(CIA) (Gardner & Altman 1990) program and BMDP (Dixon 1992) were run in a PC.
Results are presented as mean values and standard deviations (SD) (IV,V), mean
values and standard error means (SEM) (III) or mean values with 95 % confidence
intervals (95 % CI) (I,V). All P-values are based on a two-sided alternative hypo-
thesis, and P less than 5% was considered statistically significant.

Univariate associations between the variables were estimated as Spearman's rank
correlation coefficients (rs). The Wilcoxon Signed-Rank test was used in the paired
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comparison of the results. The Mann-Whitney U test was used in the unpaired com-
parison of the results. When the overall differences among the study groups were
tested with the Kruskal-Wallis test, the pairwise comparisons of the group means
were performed using the Mann-Whitney U-test and the significance levels in these
comparisons were adjusted using the Bonferroni method. Shapiro-Wilk W-test in
JMP statistical software (SAS Institute Inc., Cary, NC, USA) (Lehman 1989) was used
to test the normality of the distributions, and the variables were transformed, when
necessary, to correct for the marked skewness of the distributions.

Analysis of variance (ANOVA) and Fisher’s Protected Least Significant Difference
(PLSD) or Dunnett's Test for multiple comparisons were used in post-hoc multiple
comparison procedures when comparing the groups. When the two qualitative fac-
tors, time of the measurements (rest or exercise), and the training state (sedentary or
trained) and their influence on the enzyme activities in each muscle were compared
in study III, statistical analyses were performed using the two-way analysis of vari-
ance. Analysis of covariance (ACOVA) and multiple regression analysis were used
as the multivariate techniques in order to control the possible confounding effects of
other variables (age, BMI, smoking, alcohol consumption, group).

The K-means clustering technique (Dixon 1992) was used in order to see whether the
individuals studied could be formed into a natural system of groups by using vari-
ables having  strong associations with HDL-C. In this method, the number of groups
is not specified in advance. The subjects fall into groups determined by the values of
the variables. The individuals within a group resemble each other in the values taken
by the variables more than the individuals in different groups do.

The extent to which selection to specific types of sports at a young age predicts later
physical activity in 1985 and prevalence of CHD in 1985 and 1995 were analysed.
Differences between groups in 1985 were analysed using ANCOVA, and the
Newman-Keuls test was used for post hoc comparisons. The odds ratios (OR) and
their 95 percent confidence intervals (95% CI) for CHD in 1985 and 1995 for different
athletic groups were compared to controls using logistic regression models (Dixon,
1992). In addition, to test the hypothesis endurance athletes were tested with power
and speed athletes. Age, BMI, smoking and occupational group were included as
confounding factors in the analysis and P values here are from Wald’s test. In
analysing those without CHD in 1985 to determine whether selection to sports at
young age or activity in 1985 was the stronger predictor for CHD in later life, the OR
and their 95% CIs for the occurrence of CHD from 1986 to 1995 were calculated using
logistic regression models, adding the physical activity variables in 1985 to the
aforementioned confounding factors.
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RESULTS

1. Muscle fiber properties and CHD risk (Study I, IV, V, VII)

The mean value of the muscle fiber distribution in all men studied (VII) was 51 %,
ranging from 12 to 88 %, and the mean value in all the CHD patients studied was
significantly lower than that in all the healthy men studied (Figure 3). The
percentage of ST-fibers in nine out of ten men who participated in jogging (Study I)
was more than 50  whilst that in more than half of sedentary men and in nearly two
thirds of the CHD patients was less than 50.
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Figure 3. Muscle fiber distribution (ST-%) in all men studied, in all healthy men and in all CHD
patients. Tertiles of physical activity according to LTPA index in 72 healthy men are from the Study
IV. Values are mean ± SD. Horizontal lines are in 35 and 65 % of the distribution. * denotes significant
difference p<0.01.

When the 72 healthy men (Study IV) were divided into tertiles according to their
physical activity, the men in the highest tertile of activity had higher ST-%s than the
men in the other two tertiles (Figure 3). Similarly, the men in the  highest tertile of
VO2max had higher ST-%s than the men in the other two tertiles (Table 4). However,
the distribution of muscle fibers in the men in the lowest tertiles of VO2max and
physical activity did not differ significantly from that in the CHD patients (Table 4
and see Study IV, Tables 5 and 7). In addition, the CPT enzyme activities in the
skeletal muscle of the men in the lowest tertiles were similar to those observed in the
CHD patients. The activities of CPT in the men in the highest tertiles of VO2max and

physical activity were higher than the activities of the men in the lowest tertiles.
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Table 4. Body adiposity (BMI and sum of skinfolds), maximal oxygen uptake (VO2max), leisure-
time physical activity index (LTPAI), skeletal muscle properties, serum lipids and lipoproteins and
serum levels of insulin, sex hormone binding glopbulin (SHBG) and testosterone in the CHD patients,
in the healthy men and in healthy men divided in tertiles of fitness according to their VO2max. Mean
(SD).

Variable

Healthy

men

(n=72)

Low

fitness

(n=24)

Moderate

fitness

(n=24)

High

fitness

(n=24)

BMI (kg/m2) 28.0 (3.6)(#,1,2,3 23.6 (2.5) 24.7 (2.1) 23.9 (2.6) 22.3 (2.3)

Sum of skinfolds (mm) - 40.1 (13.0) 47.7 (11.8) 41.3 (10.4) 31.2 (11.5)

VO2max (ml/min/kg) 16 (7)(#,1,2,3 46 (11) 34 (5) 46 (3) 59 (5)

LTPAI (METs x hour /wk) - 32.6 (29.1) 8.4  (13.4) 27.3 (16.8) 62.0 (24.5)

Skeletal muscle

ST-% 44 (13)(#,2,3 57 (15) 46 (13) 56 (13) 69 (9)

KGDH (µmol/min/mg prot) 4.9 (2.8)(#,1,2,3 8.8 (3.1) 7.8 (2.4) 9.4 (2.3) 9.3 (4.1)

CPT (µmol/min/mg prot) 0.28 (0.18)(#,2,3 0.48 (0.22) 0.39 (0.22) 0.52 (0.18) 0.54 (0.22)

PFK (µmol/min/mg prot) 45.0 (31.0) 38.1 (33.3) 39.4 (26.3)  40.7(35.4) 34.3 (38.1)

CPT/KGDH x 10 -3 53 (28) 57 (33) 47 (18) 57 (22) 67 (50)

PFK/CPT 210 (154)(#,1,2,3 99 (99) 139 (115) 92 (102) 69 (61)

Serum lipids  

Triglycerides (mmol/l) 2.39 (1.00)(#,1,2,3 0.99 (0.32) 1.01 (0.29) 1.04 (0.32) 0.92 (0.33)

Cholesterol (mmol/l) 6.9 (1.5)(#,1,2,3 5.6 (0.9) 5.9 (1.0) 5.8 (0.9) 5.3 (0.8)

HDL-C (mmol/l) 0.91 (0.18)(#,1,2,3 1.55 (0.32) 1.34 (0.18) 1.54 (0.32) 1.76 (0.30)

LDL-C (mmol/l) 4.90 (1.30)(#,1,2,3 3.64 (0.95) 4.05 (0.95) 3.76 (0.91) 3.11 (0.76)

Apo A-I (g/l) 1.36 (0.22)(#,1,2,3 1.98 (0.36) 1.76 (0.32) 1.99 (0.33) 2.20 (0.29)

Hormonal variables  

Insulin (mU/l) 13.8 (7.5)(3 11.0 (11.0) 17.1 (13.5) 11.5 (10.5) 5.0 (2.0)

SHBG (nmol/l) 29 (13)(3 32 (12) 23 (9) 33 (10) 38 (10)

Testosterone (nmol/l) 19.6 (6.6.)(#,1 23.1 (6.3) 24.6 (8.8) 21.9 (4.7) 22.7 (4.3)

Free-Testosterone (pmol/l) 324 (87)(1 372 (100) 435 (132) 346 (58) 337 (63)

#) significant (p<0.05) difference from all healthy men
1,2,3) significant (p<0.05) difference from low, moderate or high fit men, respectively .

A high positive correlation was found between the ST-% and both the VO2max and
the LTPA index in all the healthy men (Table 5). A high correlation between VO2max

and LTPA index was observed as well. Both ST-% and VO2max correlated positively

with KGDH activity and with CPT activity. The LTPA index correlated positively
with CPT activity. The PFK activity did not show significant correlations with ST-%,
LTPA index or VO2max, but its ratio to CPT correlated negatively with ST-%, VO2max

and LTPA index.
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Table 5. Significant correlations (rs) between skeletal muscle properties, VO2max and physical
activity (LTPA index) in healthy men (n=72) in Study V.

Variable VO2max LTPAI KGDH activity CPT activity PFK/CPT

ST-% 0.62*** 0.62*** 0.25* 0.29** - 0.33**

VO2max - 0.81*** 0.29* 0.36** - 0.32**

LTPA index - - - 0.33** - 0.35**

* = p<0.05, ** = p<0.01, ** *= p<0.001

2. Muscle fiber properties and serum lipids and lipoproteins (Studies I, IV)

High positive correlations between the ST-% and serum HDL-C concentration and
between the ST-% and serum apo A-I concentration were found (Table 6) in all men
investigated (see Study I, Table 3 and Figures 2 and 3).

Table 6. Correlations (rs ) between ST-% and serum levels of HDL-C, apo A-I and triglycerides in all
men (n=102) in Study I.

Variable HDL-C Apo A-I Triglycerides

ST-% 0.57* 0.60* - 0.43*

* = p<0.001

On the contrary, a negative correlation was observed between the ST-% and concen-
tration of serum triglycerides (Table 6). This negative association was especially
observed in sedentary men and in CHD patients separately (see Study I, Table 3).
The ST-% significantly associated with serum HDL-C and serum apo A-I values after
taking into account  age, body mass index, smoking, alcohol consumption and
physical activity in the regression model.

The ST-%, VO2max and LTPA index correlated positively with serum HDL-C and

with apo A-I but negatively with serum LDL-C in the healthy men of Study IV
(Table 7). The most physically active and fit men had the lowest serum LDL-C con-
centrations (Table 4), (see also Study IV, Tables 4 and 5). Serum cholesterol did not
show significant correlations with ST-%, VO2max or LTPA index. Significant differ-
ences in serum cholesterol or serum triglyceride concentrations between the tertiles
of physical activity or VO2max were not observed (Table 4).
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Table 7. Correlations (rs ) of ST-%, VO2max and physical activity (LTPA index) with serum HDL-C,
LDL-C and apo A-I in the healthy men in Study IV.

Varibles HDL-C LDL-C Apo A-I

ST-% 0.54 *** -0.26 * 0.54 ***

VO2max 0.54*** - 0.37** 0.56***

LTPA index 0.51*** - 0.32** 0.53***

* = p<0.05, ** = p<0.01, *** = p<0.001

3. Other  risk factors for CHD (Study IV)

In the healthy men, BMI correlated negatively with the ST-%, and a negative corre-
lation was found between subcutaneous adipose tissue measured as skinfolds and
the ST-% as well (Table 8). The strongest association was observed between ST-%
and the skinfold of spina iliaca in the abdominal region (rs = -0.42, p<0.001). Serum

triglycerides correlated positively with BMI and with the sum of skinfolds. On the
contrary, negative associations were observed between BMI and serum HDL-C con-
centration as well as between the sum of skinfolds and serum HDL-C concentration
(Table 8).

Table 8. Correlations (rs) of body adiposity (BMI and sum of skinfolds) with ST-% and serum levels
of triglycerides and HDL-C in healthy men in Study IV.

Variable ST-% Triglycerides HDL-C

BMI - 0.38 0.44*** - 0.30 *

Sum of skinfolds - 0.34 0.35** - 0.41***

* = p<0.05, ** = p<0.01, *** = p<0.001

When the healthy men were divided into tertiles according to their VO2max and
LTPA index (see Study IV, Tables 4 and 5), the men in the highest level of VO2max

and physical activity were characterised with a lower BMI and subcutaneous
adipose tissue when compared with most unfit and sedentary men. When the
healthy men were divided in two groups according to their BMI, the 25 overweight
men had higher serum TG concentrations than the 47 lean men. No other significant
differences in risk factors for CHD were observed between the overweight and the
lean men, however.

Serum total testosterone and estradiol or free estradiol were not significantly
different between the fitness and physical activity tertiles. Serum total and free
testosterone or estradiol, or serum DHEAS did not significantly differ between the
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CHD patients and the healthy men after adjusting age (see Study IV, Tables 1 and 7).
Serum free testosterone was the highest in the men with the lowest VO2max and

physical activity.  On the other hand, serum SHBG, was the highest in the men in the
highest tertile of VO2max (Table 4) and physical activity (see Study IV Tables 5 and

7).

In healthy men, significant correlations were not observed between serum total
testosterone and serum lipids and lipoproteins. However, serum free testosterone
correlated negatively with serum HDL-C and with apo A-I levels and, moreover,
with VO2max and with LTPA index (see Study IV, Tables 2 and 3). Serum SHBG

showed positive correlations with serum HDL-C and apo A-I levels as well as with
VO2max and LTPA index (Table 9). Serum SHBG associated negatively with sum of

skinfolds, serum LDL-C and with serum insulin (Table 9). Serum insulin correlated
negatively with serum levels of HDL-C  and apo A-I but positively with serum LDL-
C level and sum of skinfolds. The correlation between VO2max and LTPA index with

serum insulin level was highly negative. (Table 9)

Table 9. Significant correlations (rs ) of serum SHBG and insulin with other clinical variables

Variables HDL-C Apo A-I LDL-C VO2max LTPA
index

ST-% Sum of
skinfolds

Insulin

SHBG 0.47 0.48 -0.28 0.54 0.54 0.47 -0.37 -0.53

Insulin - 0.45 -0.45 0.39 -0.54 -0.63 -0.63 0.35 -

* = p<0.05, ** = p<0.01, *** = p<0.01

The ST-% showed a strong negative correlation with serum insulin level (rs = -0.63,
p<0.001) but correlated positively with serum SHBG level (rs=0.47, p<0.001). A high
serum insulin concentration (> 20 mU/l) was found only in 15 sedentary or moder-
ately active men but not in any of the highly active men.

4. The effects of progressive training on skeletal muscle fibers  of rats (Study III)

In the sedentary rats, the activity of the glycolytic enzyme PFK in fast muscle was 1.4
times as high as that in the the mixed muscle and 3.4 times as high as that in the slow
muscle. The activities of the mitochondrial enzymes CPT and KGDH in the slow
muscle were 1.3 and 1.7 times as high as these activities in the fast muscle. Corre-
spondingly, these activities were 1.3 and 2.8 times as high as those in the slow mus-
cle than in the mixed muscle. (Study III, Table 1)

In the acute exercise experiment, the trained rats ran twice as long as the sedentary
rats. After acute exercise, the activities of mitochondrial enzymes KGDH and CPT in
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the skeletal muscles of both trained and untrained rats tended to increase, but the
activity of PFK did not increase (see Study III, Table 1). Similarly, higher activities of
the mitochondrial enzymes KGDH and CPT were observed in the gastrocnemic
muscle of the trained rats when compared with untrained rats (Figure 4). However,
the activity of PFK in the gastrocnemic muscle did not differ between the untrained
and trained rats. After training, a higher activity of the oxidative enzyme KGDH was
observed both in the ST and in the FT fibers, but the activity of the enzyme in fatty
acid metabolism, CPT, was higher only in the ST fibers (Figure 4).
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Figure 4. The activities of KGDH and CPT in the gastrocnemic muscle and in ST and FT fibers of
sedentary and trained rats. * denotes p < 0.05

5. The effects  of  training in sedentary men (Study V)

Before training, the VO2max mean value of  of the sedentary men was 32 ml/min/kg.

In 12 months, the men increased their LTPA from a mean of 728 to 1526 kcal/wk.
Thus, the recommended level of physical activity (Pate, 1995) was reached during
the study year. Their training was effective because the men increased their VO2max

and isometric trunk extension torque (Figure 5). Although VO2max increased, the
total blood volume before and after training was the same. The VO2max level of the

five men in the internal control group was similar to that of the men in the training
group. VO2max did not change significantly during the follow-up in the control

group. The weight of the trained men did not change but their skinfold thickness
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measured from the abdominal (spina iliaca) area decreased by 12 %.

The skeletal muscle LPL activity increased by 65 %, and the higher the activity was
before training, the larger the increase tended to be (see Figure 2 in Study V). Skeletal
muscle KGDH and CPT enzyme activities were markedly increased after training
and attained the level observed in previously physically active men (see Tables 10
and 11). Training also markedly increased the work loads in Watts in the two OBLA
points determined (Figure 5). However, neither PFK activity nor the PFK to KGDH
ratio changed significantly, but a marked decrease in the PFK to CPT ratio was
found (see Tables 10 and 11).
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Figure 5. Effects of 12 months of training in 12 previously sedentary men. Mean of change (%) from
pre-training values presented. TET is trunk extension torque and Free T is free testosterone. For other
abbreviations, see text.

After training, a large increase in serum HDL-C and a large decrease in serum LDL-
C and in the ratio of LDL-C to HDL-C were observed (Figure 5). The higher the
serum HDL-C concentration was before training, the larger the increase in it tended
to be (see Figure 2 in Study V). The increase in skeletal muscle CPT activity
correlated (rs = 0.81, p < 0.01) with the increase in HDL-C concentration. Training

did not significantly alter serum triglyceride or cholesterol levels but the ratio of
cholesterol to HDL-C decreased by 17 %. Total and free testosterone concentrations
decreased considerably and serum SHBG concentration increased after training.
Serum LH concentration also decreased by 32 %. The concentrations of serum
estradiol, free estradiol or DHEAS were not changed after training, but the ratios of
free estradiol to free testosterone and serum DHEAS to free testosterone were higher
after training (95 and 25 %, respectively).
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6. The comparison of  healthy men before and after training with CHD patients
and with physically active men (Study V)

Test results of sedentary men before and after training were compared with results
of twelve CHD patients and 30 physically active men of the same age (Tables 10 and
11). The ST-% and the skeletal muscle enzyme activites of the sedentary men and
CHD patients did not differ significantly. However, the CHD patients had higher
serum SHBG and lower serum free testosterone levels than the sedentary men before
training (Table 10).

Table 10. ST-%, activities of skeletal muscle enzymes and their ratios and serum levels of
testosterone and sex hormone binding globulin (SHBG) of the previously sedentary men before
training compared with the CHD patients. Mean (SD).

Variable Sedentary men  before training

(n=12)

CHD patients

(n=12)

ST-% 42 (12) 44 (16) #

KGDH (µmol/min/mg prot) 6.3 (2.3) 4.9 (2.4) #

CPT (µmol/min/mg prot) 0.29 (0.12) 0.23 (0.16) #

PFK (µmol/min/mg prot) 42 (36) 47 (39) #

PFK/KGDH 7.2 (5.9) 9.7 (5.9) #

PFK/CPT 204 (176) 241 (150) #

Testosterone (nmol/l) 24.5 (9.1) 20.7 (8.1)

SHBG (nmol/l) 21 (5)* 31 (15)

Free Testosterone (pmol/l) 448 (144)* 331 (106)

* = p<0.05 between sedentary men  before training and CHD patients
# p < 0.05 between  CHD  and physically active High-ST-Men (see Table 11).

After training, the KGDH and CPT activities of the healthy men were higher than
activities observed in CHD patients. After training total and free testosterone of the
healthy men decreased to the same level observed in both in the CHD patients and
in the healthy, physically active men. (Tables 10 and 11).

The 30 physically active (activity more than 3 times per week) men were divided
equally into two groups according to their muscle fiber distribution  (high-ST-men
and low-ST-men). The mean difference in the ST-% between the high-ST-men and
low-ST-men was 24 %. The sedentary men and the physically active low-ST-men did
not differ from each other with respect to ST-%, but the difference between the high-
ST-men and the sedentary men was 31 %.
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The high-ST-men and low-ST-men had higher VO2max than the previously sedentary

men both before and after the training. The LTPA index for the high-ST-men was 9
times as high as that of the sedentary men before training and 2.5 times as high as
that after the training. Moreover, the high-ST-men engaged in almost twice as much
leisure physical activity as the low-ST-men. (Table 11)

After training both KGDH and CPT activities in skeletal muscle of the previously
sedentary men increased to the levels observed in physically active men, but PFK
activity and the ratios of PFK to KGDH and PFK to CPT remained higher after
training in the previously  sedentary men when compared with physically active
high-ST-men.

Table 11. Maximal oxygen uptake (VO2max), leisure-time physical activity (LTPA), activities of
skeletal muscle enzymes and their ratios and serum levels of testosterone and sex hormone binding
globulin (SHBG) of the previously sedentary men after training compared with the physically active
men with low  ST-%s and with physically active men with high ST-%s. Mean (SD).

Variable Men after training

(n=12)

Low-ST-Men

(n=15)

High-ST-Men

(n=15)

VO2max (ml/min/kg) 37 (5)* 46 (5) 56 (7)

LTPA (kcal /wk) 1526 (459)* 2137 (1367) 3845 (2043)

KGDH (µmol/min/mg prot) 8.9 (3.0)§ 9.1 (2.4) 9.7 (3.)

CPT (µmol/min/mg prot) 0.44 (0.18)§ 0.47 (0.16) 0.56 (0.23)

PFK (µmol/min/mg prot) 48 (43)# 32 (23) 19 (16)

PFK/KGDH 4.9 (3.5)#§ 3.7 (2.7) 2.1 (1.4)

PFK/CPT 110 (83)#§ 79 (64) 38 (28)

Testosterone (nmol/l) 18.8 (3.5) 22.5 (5.5) 23.0 (3.3)

SHBG (nmol/l) 24 (9)# 31 (15) 36 (10)

Free Testosterone (pmol/l) 335 (62) 358 (67) 350 (48)

* = p<0.05 between men after training and both groups of physically active men.
# p < 0.05 between men after training and physically active High-ST-Men.
§ p<0.05 between men after training and CHD patients (see Table 10)

The high-ST-men had the highest serum HDL-C levels but also the lowest serum
LDL-C levels when compared with the low ST-men. These groups did not differ
from each other with respect to serum testosterone, estradiol, free estradiol and
DHEAS concentrations. The sedentary men had the lowest serum SHBG
concentrations and the highest free testosterone concentrations and the highest ratios
of free testosterone to free estradiol before they started training (Tables 10 and 11).
After training, the corresponding values were similar to those observed in CHD
patients and in active men.
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7. Cluster analysis in healthy men (Study IV)

Multiple regression analysis showed that ST-%, fitness and LTPA index explained 32
% of the variation in HDL-C in the healthy men. Cluster analysis was used to find
out which parameters create natural groups in the study population, thus exhibiting
strong associations with serum HDL-C levels. The number of groups was not
specified in advance. The best result was obtained in three clusters, when leisure-
time physical activity (categorised as no leisure-time physical activity per week,
physical activity 1-3 times per week, physical activity more than 3 times per week),
fitness, ST-% and serum SHBG were taken into the clustering model. In this model,
the first cluster showed the physically active men (n=20) of whom 60 % of the cluster
members had leisure-time exercise sessions more than 3 times per week. In the
inactive men (n=27) in the second cluster, 67 % of the members reported no leisure-
time physical activity per week. In the third cluster (n=25) the men were fit but only
44 % of these men reported exercising 1- 3 times per week, and 20 % of them
reported no leisure-time activity per week. (Table 12)

Table 12. Mean values (SD) of the characteristics of 72 healthy men divided into three clusters in
Study IV.

Variable Active

(n=20)

Inactive

(n=27)

Fit

(n=25)

P-value*

ST-% 66 (10) 42 (9) 66 (9) 0.0001

VO2max (ml/min/kg) 52 (10) 37 (8) 51 (9) 0.001

CPT-activity (µmol/min/ mg prot) 0.57 (0.21) 0.38 (0.21) 0.52 (0.22) 0.006

PFK/CPT 55 (45) 149 (129) 81 (68) 0.002

HDL-C (mmol/l) 1.83 (0.35) 1.36 (0.20) 1.54 (0.24) < 0.0001

LDL-C (mmol/l) 3.30 (0.92) 4.00 (0.81) 3.52 (1.02) 0.03

Insulin (mU/L) 5.8 (4.5) 19.3 (13.7) 3.3 (3.9) <0.0001

Free testosterone (nmol/l) 340 (54) 417 (132) 351 (61)  0.01

SHBG (nmol(l) 46 (7) 23 (8) 29 (5) 0.0001

* from ANOVA

The physically active men had high ST-%s, high levels of fitness, and high serum
HDL-C and serum SHBG concentrations but low serum insulin concentrations and
low serum LDL concentrations. On the contrary, the inactive men had low ST-%s,
low levels of fitness and their mean values for skeletal muscle enzyme activities,
serum HDL-C, LDL, SHBG and insulin were different when compared with
physically active men. In addition, they had higher serum free testosterone con-
centrations than the men in the other two clusters. The fit men had high levels of
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VO2max high ST-%s, and their mean values for HDL-C, LDL-C, SHBG and serum
insulin were between the values of the two other clusters.

8.  Physical activity and CHD in former athletes and controls (Study VI)

More members in all groups of the former athletes (endurance, power-speed and
others) participated more often in vigorous physical activity in 1985 than the controls
(Table 13). The mean total volume of leisure-time physical activity in 1985 in terms of
the LTPA index was significantly higher in all former groups of athletes than in the
controls. The former endurance athletes participated more often in vigorous physical
activity than the former power-speed athletes (age-adjusted P = 0.006) and had a
higher LTPA index (age-adjusted P = 0.015). In addition, BMIs in the former
endurance athletes were lower than in the former power-speed athletes, in other
athletes and in controls. BMIs of the former power-speed athletes were higher than
those of controls.

Table 13. Percentage of participation in vigorous physical activity in the groups of former athletes
and controls in 1985. Mean total volume of leisure-time physical activity in terms of the LTPA index
and body mass index (BMI) of groups of  athletes and controls.

Variable Controls
(n=743)

Power-speed
athletes
(n=235)

Other
athletes
(n=834)

Endurance
athletes
(n=166)

P-value *

Participation
for vigorous activity

12 % 28 % 38 % 37 % < 0.001*

LTPA index
(METs x hour /wk)

15 32 29 38 < 0.001*

BMI (kg/m2) 26.4 27.1 26.1 24.4#

* age-adjusted P-value for all comparisons between former groups of athlete and controls.
# significantly lower than in other groups.
 significantly higher than in controls.

In 1985 and in 1995, after adjustment for age, occupational group and smoking, both
endurance and other athletes had less CHD compared with controls, while the
difference between controls and power-speed athletes was non-significant. After the
same adjustments, former endurance athletes had significantly less CHD than
power-speed athletes both in 1985 with the odd ratio for CHD, 0.34 (95%CI from 0.17
to 0.73, P = 0.004) and in 1995 with the odd ratio for CHD, 0.51 (95%CI from 0.30 to
0.87, P = 0.015).

Even though the 1985 group differences in CHD prevalence persisted in 1995, there
were no group differences in CHD incidence from 1986 to 1995 among those without
manifest CHD in 1985 (n=1688). In contrast, among those free of CHD in 1985 but the



62

non-participants in vigorous physical activity, 15 % had CHD before 1996, compared
with 6 % who did participate in vigorous activity (age-adjusted P < 0.001). The mean
LTPA index in 1985 was 27 for those who did not acquire CHD during the next ten
years, compared with 20 for those who did (age-adjusted P = 0.042). In order to
determine the most important predictors of new CHD cases from 1986 to 1995, all
variables (age, occupational group, smoking, BMI, study group, participation in
vigorous activity, LTPA index) were included in a fixed logistic regression model. In
this model, the OR for CHD increased by 4% per year as age increased, and 7% per
unit of BMI increase; the odds ratio was increased for smokers compared with non-
smokers, and decreased (OR 0.57, 95% CI from 0.34 to 0.94, P = 0.025) for those who
participated in vigorous activity compared with those who did not.
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DISCUSSION

1. Muscle fiber distribution and CHD risk

The men with defined CHD had the mean ST-% less than that in the healthy men.
On the contrary those healthy men that were physically highly active and had a high
level of cardiorespiratory fitness had the mean ST-% higher than that of sedentary
men. Thus, the present study shows that the ST-% is quite heterogeneous among
individuals and among different populations. This has previously been observed in
athletic populations: a low ST-% in power and speed athletes and a high ST-% in
endurance athletes. The findings of the present study suggest that the inherited ST-%
is not solely attributed to athletic endowments but that the low ST-% of an
individual increases the risk for CHD. Indirect support to this observation gives the
finding that CHD was more common in former power and speed athletes than in
former endurance athletes.

The distribution and the mean of ST-% in all the men in the present study agrees
wholly with the results of the previous studies (Saltin & Gollnick 1983, Simoneau &
1989). It is estimated (Simoneau & Bouchard 1995) that about 75 % of North
American men and women of European ancestry have ST-% between 35 % and 65 %
and this figure corresponds to the mean ± SD of the present study (see Figure 3.).
Normal ambulatory activity does not result in a significant conversion of the
histochemical appearance of the two main fiber types, although changes can occur in
some other particular (metabolism, contractile proteins, etc.) property of fiber
phenotype (Baumann et al. 1987, Pette & Staron 1990, Fry et al. 1994, Demirel et al.
1999, O’Neill et al. 1999). Familial concentration and heritability are noteworthy in
the ST-% but the extent to which human skeletal muscle fiber types are under the
control of genetic factors is not currently known. Nevertheless, the variability in ST-
% within a pair of twins (Komi et al. 1977) suggests that there are genetic factors that
predispose some individuals to higher or lower ST-% (Komi et al. 1977, Bouchard et
al. 1997). Thus, the level of individual or group differences in ST-% cannot be
explained by differences in the life-style, age or sampling error.

Based on the findings of the present study it can be hypothesised that the inherited
distribution of ST and FT fibers in the skeletal muscle of an individual, low or high
ST-%, may increase or decrease the risk of developing CHD. The possible mecha-
nism by which ST-% may influence the risk of CHD is that ST-% may have effects on
the known risk factors of CHD such as cardiovascular fitness, physical activity and
serum lipoproteins. In addition, because ST-% contribute to athletic ability, the
influence of ST-% may account in part for the variations in physical activity.
Alteration of physical activity of an individual is known to influence the serum
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levels of  lipoproteins, sex hormones, fasting insulin and the body distribution of fat.
Thus, ST-% may have direct influence on the risk factors for CHD or ST-% may affect
the mechanisms by which these risk factors influence the risk of CHD.

 2. Physical inactivity and activity: The influence of ST-% on the risk of CHD

Those men in the present study, who were considered to be sedentary according to
their history and who had a low measured cardiorespiratory fitness (Studies I, IV, V)
also had a mean ST-% lower than average and similar to the mean ST-% of the CHD
patients. Accordingly, it suggests that a low ST-% is associated with a low level of
physical activity and cardiorespiratory fitness, and both are associated with an
increased risk of CHD (see Tables 2 and 3). Thus, a low ST-% of an individual may
influence the level of physical activity and cardiorespiratory fitness and ultimately
the risk of developing CHD (Figure 6).

Coronary Heart Disease

PHYSICAL 
INACTIVITY

PHYSICAL
ACTIVITY

ST-%
HIGHLOW

LOW
FITNESS

HIGH
FITNESS

+ -

Figure 6. Outlook of the possible influences of muscle fiber distribution (ST-%) on physical activity
and fitness, and their relationships to the risk of coronary heart disease. (+ and - denotes increased
and decreased risk, respectively).

The ST-% correlates strongly and positively with both cardiorespiratory fitness and
physical activity (Study IV) and those men who had a high ST-% have a high level of
both physical activity and cardiorespiratory fitness (Study V). Another important
issue that arises from these findings is “positive” selection: the individuals capable of
achieving a high level of physical activity will constitute a group with an inherently
low risk of CHD. The participation in competitive sports from as early as at the age
of 10 - 19 years has been observed to be a powerful predictor in maintaining a high
level of physical activity independent of the presence of chronic disease (Hirvensalo
et al. 2000). Moreover, it has been argued that individuals with a natural ability in
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selected types of physical activity are at a decreased or an increased risk of
developing CHD (Noakes & Opie 1976, Milvy et al. 1977, Lean & Han 1998). Indeed,
in this study the former athletes were more physically active than the control group.
Furthermore, the former endurance athletes who participated in vigorous physical
activity more often, had significantly less CHD than the former power-speed
athletes. Thus, aptitude for endurance sport is associated with protection against
CHD. The findings of this study are the first that give direct evidence that the lower
rates of CHD in active men may be due to inherited factors that lead to a more active
lifestyle and to a decrease in the risk of CHD. Because ST-% was low in both CHD
patients and in sedentary men but high in physically active fit persons, inherited
skeletal muscle properties may give an explanation for these findings. Therefore, ST-
% may be one factor that is associated with “positive” selection, ie that some
individuals like former endurance athletes are capable of achieving a high level of
physical activity also in later life (Figure 6).

It has also been argued that it is current activity that is protective (Paffenbarger Jr
1984, Morris 1990). The protective effects of physical activity on CHD in former
athletes (Study VI) as well as findings of others (Paffenbarger Jr et al. 1993, Blair et al.
1995) showing that an increase in physical activity gives protection against CHD,
weaken, but not entirely negate the argument for a positive selection process. These
findings merely suggest that physical activity or inactivity amplyfies or diminishes
the effects of variations in inheritance, like ST-%, on the development of CHD
(Figure 7).

Coronary Heart Disease

Low VO2max High VO2max

ST-%
HIGHLOW

Physical activity

Figure 7. The possible influence of muscle fiber distribution (ST-%) on physical fitness (measured as
VO2max) and physical activity, and their relationships to coronary heart disease. Inactivity and
physical training  modifies the influence of inherited ST-% on CHD.
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The endowment of athletic activities increases participation in leisure activity in
older age. As shown in this study, those with a high ST-% (Study IV) and who have
an aptitude for endurance sports (Study VI) readily engage in regular physical
activities which provide health benefits. The cluster analysis indicates that those who
have a high ST-% have a high level of cardiorespiratory fitness. Inherited factors, like
ST-%, explain in part the individual variation in participation in physical activities
(Maes et al. 1996, Bouchard et al. 1997, Beunen & Thomis 1999). The aerobically fit
middle-aged individuals are observed to be more physically active than persons
with low VO2max (Brochu et al. 1999). During light to moderate physical activity, the

ST fibers are recruited easily (Connet & Sahlin 1996), and the activity of normal
ambulatory individuals has shown to correlate closely with the ST-% (Monster et al.
1978). Thus, the reason for the association between the ST-% and physical activity
may be that skeletal muscles in those with a high ST-% are more aerobic and there-
fore less susceptible to fatigue during physical activities (Figure 8). This suggestion is
supported by the findings that VO2max correlated with KGDH and CPT activites,

which provide an assessment of the capacity for aerobic ATP generation; these
enzyme activites were the highest in the muscles of most active and fit men, which
suggests that the men will depend less on anaerobic metabolism in ATP formation
and therefore less lactic acid is produced resulting in less fatigue and lower level of
perceived exertion. Thus, a high ST-% is advantageous for regular physical activites
because it encourages those with a high ST-% to exercise regularly compared to
those with a low ST-% (Figure 8).

High ST-% Low ST-%
Glycogen

Pyruvate Lactatic acidCO2

In muscle:
- Low oxidative capacity
- More muscle fatique
- Higher level of perceived exertion
- Discourages exercise

In muscle:
- High oxidative capacity
- Less muscle fatique 
- Lower level of perceived exertion
- Encourages exercise

Figure 8. Those who have a high ST-%  have a higher oxidative capacity than those who have a low
ST-% and consequently in latter muscles have to rely more on lactic acid formation. Those with high
ST-% suffer less muscle fatigue which encourages them to exercise regularly.
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3. The influence of skeletal muscle on serum lipids and lipoproteins

A positive correlation between ST-% and serum HDL-C but a negative correlation
between ST-% and both serum LDL-C and serum TG levels could explain the asso-
ciation of low ST-% with high prevalence of CHD. Studies by Frick (1987) and
Manninen (1988) show an inverse relationship between serum HDL-C and the inci-
dence of CHD, and a slow rate of progression of coronary atherosclerotic lesions cor-
relates with serum HDL-C (Levy et al. 1984, Nikkilä et al. 1984, Brown et al. 1990).
Two factors concerning skeletal muscle, namely the distribution of the two muscle
fiber types and the effects of physical exercise on the metabolism of the fibers, result
in variations in the metabolic characteristics of the skeletal muscle that may give an
explanation for the associations between ST-% and serum lipoprotein levels.

The variations in the fractional catabolic rate of TG-rich lipoproteins and serum
HDL-C concentrations have been shown to correlate positively (Hamsten 1990). The
initial hydrolysis of triglycerides in circulating TG-rich lipoproteins is mediated by
the LPL enzyme anchored to the luminal side of the capillary endothelium (Figures 2
and 10). It is suggested that the percentage of ST fibers in the skeletal muscle may
explain in part the hydrolysis of serum triglycerides and the increased level of HDL-
C. Skeletal muscle uses fatty acids from circulating triglycerides for oxidation (Cryer
1987).  In the present study the activity of CPT, the key enzyme in the pathway of the
oxidation of fatty acids, in skeletal muscle correlated negatively with serum tri-
glyceride levels but positively with HDL-C and ST-% (Study V). These results sug-
gest that increased capacity  for oxidation of fatty acids is associated with the ST-%.
Thus, variations in ST-% may influnce serum triglyceride hydrolysis in skeletal
muscle and may have influence on the formation of HDL-C.

In the present study the ST-% correlated positively with the activity of KGDH which
is in accordance with previous reports (Blomstrand et al. 1986) and suggests that ST-
% and oxidative capacity of the muscle are coupled. In earlier studies muscle LPL
activity has been shown to be directly related to ST-% (Jacobs et al. 1982) and to the
capillary supply (Lithell et al. 1981). In the ST fiber-rich muscles the hydrolysis of
triglycerides is supported by the surrounding capillaries that also provide oxygen
for the oxidation of the fatty acids in the muscle fibers. The number of capillaries
surrounding an individual fiber is between 2-3 for FT fibers and 3-4 for ST fibers but
in locally homogenous areas, where an individual muscle fiber is surrounded only
by those of a similar type, as many as 4-11 capillaries per ST fiber can be found
(Saltin et al. 1977, Saltin & Gollnick 1983). In addition, a high ST-% and a high CPT
acitivity were clustered together. Consequently, the muscles with a high ST-% are
highly capable of participating in the interaction of the TG-rich lipoproteins with
LPL in the abundant capillary bed, and of liberating and using FAs from TG-rich
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lipoproteins. Taking into account that total skeletal muscle mass is about 40 % of
body mass, the lipolysis of TG-rich lipoproteins in the capillaries in peripheral
skeletal muscles may be quantitatively important in the whole body turnover of
lipoproteins and therefore in increasing the serum HDL-C level (Figure 9).

Cross-sectional studies in athletes show a high ST-% in endurance athletes who also
have a high HDL-C level (Durstine & Haskell 1994). However, athletes participating
primarily in speed or power events have a low ST-% (less than 50 %) (Bergh et al.
1978, Saltin & Gollnick 1983), and they also have serum HDL-C levels similar to
those of sedentary subjects (Clarkson et al. 1981, Farrell et al. 1982, Durstine &
Haskell  1994) or even lower (Berg et al. 1982). Therefore, inherited muscle ST-%
alone may be an important factor altering the metabolism of lipoproteins. Indeed,
factors other than physical exercise have been suggested to account for differences in
HDL-C (Sady et al. 1988) and current results suggest that the ST-% of a person may
be one factor influencing HDL-C levels without physical exercise by the mechanisms
outlined above. Indeed, in cluster analysis those fit men who did not have much
leisure-time activity but had a high ST-% also had high HDL-C and high CPT activ-
ity in their skeletal muscles. The importance of ST-% is supported by the finding that
the ST-% of an individual significantly contributed to the serum HDL-C level after
the regression model takes into account several confounding factors including
physical activity.
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4. The effects of exercise and muscle metabolism on serum  lipoproteins

The training in rats increased KGDH activity in ST and FT fibers suggesting that
oxidative capacity in the whole muscle increases in both fiber types. In FT fibers this
adaptation offers better oxidative metabolism and thus, reduces the formation of
lactic acid and spares the muscle glycogen stores during exercise (Figure 10). The
increase in CPT activity in ST fibers (see Figure 4) but not in FT fibers suggests
increased capacity to oxidise fatty acids in the trained ST fibers. Increase in fatty acid
oxidation during low- to moderate-intensity exercise is important because it also
spares glycogen (Golnick 1985). This could be another factor reducing fatigue during
physical activity. Thus, the muscles composed of predominantly FT or  ST fibers
have the metabolic profile already needed for their function: high oxidative and lipid
oxidating capacity in ST fibers and high glycolytic capacity in FT fibers. Moreover,
physical exercise evokes a set of metabolic adaptations that streghtens the character-
istics of these fibers for their functions during exercise.

FT FT

ST ST

BEFORE 
TRAINING

AFTER 
TRAINING

H20
CO2

lactic acid

lactic acid

glycogen glycogen

glycogen glycogen

FFA FFA

FFAFFA

TG TG

TG
TG

glucose glucose

glucoseglucose

H20
CO2

H20
CO2

H2O
CO2

FIBER FIBER

FIBERFIBER

Krebs
cycle

Krebs
cycle

Krebs
cycle

Krebs
cycle

lactic acid

lactic acid

Figure 10. Overview of the effects of endurance training on the pathways of energy metabolism in
FT and ST muscle fibers. Thickness of the line denotes relative flux through the pathway. FA= fatty
acids, FT=fast twitch, ST=slow twitch, TG=triacylglyceride
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To summarise, these observations in rats strengthen the idea that due to the different
metabolic profiles of the two fiber types, the ST-% of the muscle influences the meta-
bolic response in the muscle during acute exercise and during exercise training.
There is an increase in the oxidative capacity for oxidative metabolism in ST fibers
and, especially, an increase in lipid oxidation within these fibers; this decreases the
formation of lactate, decreases the use of glycogen and prevents fatigue in the
muscles for the same amount of work (Figure 10). Thus, those with a high ST-% have
a metabolic  “advantage”, they can more easily cope with reglular physical exercise
since less lactic acid is produced and training further increases the metabolic
capacity in their skeletal muscle (see Figure 8).

Physical exercise increased the activites of LPL and KGDH suggesting that exercise
increases skeletal muscle oxidative and lipid oxidating capacities. After exercise
training the increase in CPT activity in skeletal muscle and the increase in serum
HDL-C concentration correlated positively suggesting that skeletal muscle fatty acid
oxidation may influence serum lipoprotein metabolism. This is also supported by the
finding that the onset of lactic acid accumulation in the blood decreased after
training suggesting a lower lactic acid level in skeletal muscle, attenuated decrease in
pH, less inhibition of CPT activity and, thus favouring the oxidation of fatty acids
during exercise (Bergman & Brooks 1999, Starritt et al. 2000). An increase in the
uptake and oxidation of fatty acids may facilitate the hydrolysis of TG-rich
lipoproteins by reducing the end-product inhibition of muscle LPL (Kiens & Lithell
1989). The degradation of circulating TG-rich lipoproteins by muscle LPL and the
formation of HDL has been shown to be significantly higher in the trained than in
the untrained leg both when individuals are at rest and exercising (Kiens & Lithell
1989). Although the contribution of lipoprotein derived fatty acids to total lipid
energy utilisation of the muscle may be small in magnitude, it may be significant if
exercise is performed on a regular base for longer periods like in the training
program in this study (van der Vusse & Reneman 1996). Indeed, the activity of CPT
seems to be sensitive to exercise. Physically active men with low ST-% had 50 %
higher CPT activity than the sedentary men and the CHD patients suggesting that a
daily physical activity does not markedly increase the activity of CPT in sedentary
individuals who have a low ST-%. However, after the training the activity of CPT in
former sedentary men was at the same level as observed in highly active men with
similar ST-%. Nevertheless, the activity after training was nearly one third lower
than the CPT activity observed in physically active men with a high ST-% suggesting
that both high physical activity and high ST-% contributed to the high activity of
CPT in their skeletal muscle.

Significant alterations in the level of fasting serum triglyceride level after physical
exercise was not observed and fasting serum triglycerides in healthy men did not
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differ between the tertiles of physical activity and fitness nor did they correlate with
cardiorespiratory fitness or LTPA index. Physical exercise however reduces serum
triglycerides only when the baseline concentration has been elevated (Huttunen et al.
1979, Thompson et al. 1988, Wood et al. 1991, Halbert et al. 1999) which was not the
case in the healthy men of this study. Before training the healthy men had normal
levels of HDL-C (see Study V) suggesting that they had a normal and effective
clearence of TG-rich lipoproteins (Patsch et al. 1983, Patsch et al. 1992). On the con-
trary, physically inactive CHD patients had higher levels of serum triglycerides and
lower levels of HDL-C and, in addition, lower levels of skeletal muscle oxidative and
lipid oxidating enzyme activites. The earliest effect of physical activity is suggested
to be the decrease of the levels of fasting and postprandial TG-rich lipoproteins and
this probably precedes the effect exercise has on HDL levels (Weintraub et al. 1989).
Moreover, physical activity should be taken frequently to maintain the improvement
in serum lipids and lipoproteins (Hardman et al. 1998). According to the present
study those persons who have a high ST-% partake in regular exercise and they are
better able to exercise at the level of intensity that is beneficial.

Subcutanous adiposity in the abdominal region decreased after training. In addition,
in the tertiles of physical activity subcutaneous adiposity decreased with the increase
in leisure physical activity. Thus, physical exercise may prevent adipose tissue
accumulation by partitioning more fatty acids from lipoprotein triglycerides into
muscles for oxidation instead of their storage in adipose tissue. Fatty acids for
oxidation in skeletal muscle are hydrolysed also from adipose tissue TG-storage.
Thus, the increased oxidation of fatty acids in skeletal muscle may be one
explanation why adiposity is usually inversely associated with HDL-C concentration
and why a higher HDL-C is associated with leaness and an increase of serum HDL-C
after exercise training is suggested to be due to a decrease in adiposity.

The influence of increased LPL activity of the skeletal muscle on the serum level of
HDL-C in previously sedentary adults was confirmed in the present study. The
activity of LPL is usually increased during the hours after the exercise (Seip &
Semenkovich 1998). This explains why HDL-C may be higher several hours after the
exercise (Kantor et al. 1987) and why exercising before fat meal has beneficial effects
on the triglyceride response and HDL metabolism in several investigations (Kantor
et al. 1984, Zhang et al. 1998, Malkova et al. 1999). This was also seen in this study
since fasting serum HDL-C levels were high and serum triglyceride levels were low
for at least 48 h after the last exercise session because the men did not exercise on the
day before the blood sampling.

Intense exercisers like the physically active men in this study use more intra-
muscular energy sources, glycogen and intramusclular TG store, during exercise.
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The trained persons may use more fat from intramuscular stores than untrained
persons at the same level of relative exercise intensity (Coggan et al. 2000). Thus, an
increase in LPL activity after exercise may facilitate the replenishment of muscle TG
storage from fatty acids of serum TG-rich lipoproteins (Oscai et al. 1990). In addition,
the increase in fatty acid utilisation for energy from plasma TG-rich lipoproteins
after exercise has been suggested to occur when muscle glycogen stores are
replenished (Kiens & Richter 1998). Therefore, the degradation of TG-rich-lipo-
proteins after intense exercise is suggested be more important for its potential long-
term influence on blood lipid profiles than only the  contribution of exercise to a
higher rate of oxidation during exercise (Kiens & Lithell 1989). Again those with a
high ST-% readily accept long term regular exercise gaining the most of these
possible benifits of exercise on lipid metabolism.

5. Physical exercise and CHD risk factor modification

One of the key findings of this study is that a home-based exercise training
programme can increase fitness and improve the serum lipid and lipoprotein profile
in a sedentary population prone to CHD. During the training year the men reached
the recommended level of 1500 kcal/week (Pate et al. 1995). The increase in their
cardiorespiratory fitness was comparable to that observed in some similar studies
(Stein et al. 1990, Shoemaker et al. 1996, Zmuda et al. 1998). Their VO2max after
training was still 20 % lower than that of  the men with similar ST-% who had been
physically active for longer period and reported a mean leisure-time energy
expenditure a more than 2000 kcal/week. Moreover, the physically active men with
a high ST-% had a mean leisure-time energy expenditure almost two times and
VO2max 20 % higher than that of physically active low ST-men. These results suggest
that although persons who have a low ST-% can significantly increase their fitness by
regular training, the persons with a higher ST-% may have a superior ability for high
level physical activity and fitness and have long term adherence to vigorous physical
activities. In addition, the findings in the former endurance athletes suggest that ST-
% may influence the long term adherence to leisure activity and to a continuity of
vigorous physical activity. Inherited characteristics that are regulating skeletal
muscle properties, and especially ST-%, may be linked to both athletic performance
and health-related physical activity. The large variation of ST-% in the population
may explain why the responses to exercise interventions are often highly variable. In
addition, when in cross-sectional studies athletes and sedentary persons are com-
pared with each other, the large differences in some CHD risk factors like
cardiorespiratory fitness and serum lipids and lipoproteins between them may be
explained by the possible influene of ST-% on these variables.

The twelve men in training attained leisure-time energy expenditure levels in which
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favorable changes in serum HDL-C appeared to occur (Kokkinos & Fernhall 1999).
After the 12-month home-based moderate to vigorous physical exercise, an increase
in the mean level of HDL-C in these twelve men was similar to that observed in
healthy outpatients (Stein et al. 1990) and in men with premature myocardial infarc-
tion (Mendoza et al. 1991) but the increase was more than had been observed in
some of the earlier studies (Tran et al. 1983, King et al. 1991, Halbert et al. 1999). Half
of the men had a modest increase in HDL-C but in the other half the increase was
substantial (see Study V, Figure 2). Indeed, after similar types of exercise, some
subjects may have markedly higher HDL-C levels than others (King et al. 1995a,
Thompson et al. 1997b).  Because exercise training has little effect on HDL-C levels in
healthy men with initially low HDL-C (Stefanick et al. 1998, Zmuda et al. 1998) the
normal levels of HDL-C in these twelve men in training may have influenced the
results. This study showed that the higher HDL-C was, the larger the increase
tended to be after training, and similar finding has been observed in one earlier
study (Williams et al. 1982). New observations in this study were that the higher the
LPL activity in the skeletal muscle was before training, the larger the increase in LPL
activity. Although in cross-sectional studies ST-% correlated with HDL-C and LTPA
index, in the training study ST-% did not correlate with an increase in the level of
physical activity or with an increase in HDL-C concentration. The lack of correlations
there may be due to the small number of subjects or a too homogenous ST-% of these
men.  These findings may indicate that, in addition to the ST-%, some other inherited
properties in skeletal muscle such as capillary density and metabolism capacity may
have influenced the results of training.

The findings that serum LDL-C was the lowest in highly active men and that regular
training significantly reduced serum LDL-C in previously sedentary men with high
serum LDL-C may have clincial importance. Currently there is considerable
disagreement in the exercise research community over the benefits of low and
moderate amounts of physical activity recommended to the public (Barinaga 1997).
In a recent meta-analysis the comparison of intesities showed that exercise pro-
grammes at intensities greater than 70 % of VO2max produced larger chages in LDL-
C while programmes at lower intesitites modified triglyceride and HDL-C levels
(Halbert et al. 1999). It is suggested that a higher level of physical activity increases
the oxidative capacity of the skeletal muscle and the hydrolysis of triglycerides in
muscle and that the oxidation of fatty acids is increased. This could result in an
increased turnover of serum triglycerides in the body which could result in a greater
uptake of LDL and a greater production of HDL from the liver (Figure 9). This
assumption is supported by the findings that skeletal muscle capillary density, a sign
of oxidative capacity in the muscle, is related to serum levels of LDL-C (Shone et al.
1999). Because there is a negative association between LDL-C lowering and the
reduced rate of progression of atherosclerosis, cardiac events and mortality (Barth
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1995) the results of this study give support to many epidemilogical studies
suggesting that only high levels of physical activity and cardiorespiratory fitness
prevent premature progression of CHD in middle-aged.

Two studies have investigated the influence of physical exercise on the development
of coronary lesions in CHD patients and they show that an advance of lesions may
be stabilised if a person expends 1500 to 1700 kcal/week, however,  about a 2200
kcal/week expenditure is needed to induce a possible coronary lesion regression
(Hambrecht et al. 1993, Niebauer et al. 1997). Thus, at least healthy persons who are
low level exercisers like most men with a low ST-% in this study, should try to
engage in more vigorous regular physical activities (jogging, cycling, swimming, ball
games) than has been recommended to the general public as initial step. It is
however possible that a high level of physical activity can only be achieved by some
persons, and the observation that vigorous physical activity was performed espec-
ially by former endurance athletes supports this assumption. The results from this
study suggest that these persons are those who have a high ST-%.

It should be remembered however that high level regular endurance exercisers may
develop CHD (Rennie & Hollenberg 1979, Eichner 1983, Noakes 1987). Nevertheless
regular moderate to high intense physical activity does give protection against the
risks of unaccustomed acute vigorous exercise (Mittelman et al. 1993, Willich et al.
1993, Albert et al. 2000). This may be one explanation for the lower CHD mortality in
former endurance athletes who reported regular vigorous activity.

6. Physical activity, serum sex hormones and serum lipids

The serum level of total testosterone or estradiol did not show significant
correlations with serum lipids and lipoproteins in healthy men. This supports the
idea that serum sex hormones explain only a small percentage of the variations in
serum lipids and lipoproteins (Haffner et al. 1992, Alexandersen et al. 1996) and in
predicting CHD (Cayley et al. 1987, Contoreggi et al. 1990). Lower serum free
testosterone was observed in the CHD-patients when compared with the healthy
sedentary men of the same age. Persons with CHD may have significantly lower
testosterone levels than persons without heart disease (Lichtenstein et al. 1987). It
can be speculated however that the lower levels of testosterone or free testosterone
in CHD-patients may not be the cause of the disease but merely that the decrease is
induced by the stress related to their disease (Kaufman & Vermeulen 1997). That
serum testosterone or free testosterone did not differ significantly between the CHD
patients and the physically active men supports this suggestion. One potential
confounder is the high level of endurance-type of physical activity, which is known
to decrease serum sex hormone levels (Wheeler et al. 1984, Hackney et al. 1988,
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DeSouza & Miller 1997). Although an increase in physical activity in the previously
sedentary men caused a decrease in serum levels of total and free testosterone levels
and an increase in the serum level of HDL-C is in accordance with the finding that
the suppression of endogenous testosterone leads to an increase in serum HDL-C in
men (Goldberg et al. 1985) it does not explain the low levels of both serum HDL-C
and testosterone in CHD patients. Thus, associations between serum sex hormones
and serum lipids and lipoproteins may not be causal but may represent a secondary
phenomenon like stress related to physical activity or disease rather than a direct
atherogenic influence. Therefore, these findings do not support the suggestions that
positive associations found between serum levels of testosterone and HDL are
clinically relevant. Merely, the results suggest that physical activity-inactivity in the
study population should be considered whenever the associations between serum
levels of sex hormones, lipids and lipoproteins and cardiovascular risk are
investigated.

The concentration of serum free testosterone, that is generally considered to be a
parameter of the biologically available testosterone, was low in highly physically
active men and the concentraion in serum decreased after exercise in previously
sedentary men. The serum levels of estradiol and DHEAS, both associated with
cardiovascular risk, did not change due to an increase in physical activity, and they
did not show any significant differences between the tertiles of fitness or physical
activity. Therefore, the ratio of free testosterone to free estradiol decreased in
association with physical activity. The concerted regulation of hepatic triglyceride
lipase (HL) activity by both endogenous androgens and estrogens may explain some
of the findings in this study. An increase in testosterone-estradiol ratio causes a
concomitant increase in HL activity (Sorva et al. 1988). The triglyceride-rich HDL
(HDL2) is a preferred substrate for HL, and by depleting triglycerides from HDL2,
hepatic lipase remodels HDL towards HDL3 (see Figure 9). In contrast to LPL in
skeletal muscle, HL catalyses the degradation of HDL lipids and the activity of HL is
inversely related to serum HDL-C (Kuusi et al. 1980, Kuusi et al. 1989). Moreover,
the HL activity decreases (Kuusi et al. 1982) but skeletal musce LPL activity increases
along with an increase in physical fitness. Thus, skeletal muscle LPL activity and HL
activity have opposite effects on serum HDL-C levels. Accordingly, one explanation
for an increased serum HDL-C in physically active men may be the decreased free
testosterone to free estradiol ratio. In addition, the increased estrogenic effect after
training may be enhanced due to the increased ratio of DHEAS to free testosterone
which may enhance the estrogenic effects of DHEAS in situations when the
androgenic milieu in men has changed (Ebeling & Koivisto 1994). Since estradiol is
shown to increase the skeletal muscle LPL activity (Ellis et al. 1994), the increased
estrogenic milieu may be one reason for the observed increase in LPL activity. That
physiological levels of serum estradiol offer some degree of CHD protection and
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persevere serum HDL-C level in men (Bagatell et al. 1994) supports these findings.

Also serum levels of LDL-C are regulated by endogenous estradiol (Tikkanen et al.
1986, Sorva et al. 1988). Men in physical training may have significantly increased
serum estrogens and decreased serum LDL-C levels (Frey et al. 1983). The estrogen
level was not shown to increase in this study but it is possibly that the estrogenic
effect has been enhanced by the decrease in the androgenic milieu due to physical
activity by the mechanisms outlined above. This gives an explanation why the most
physically active men in the present study had the lowest LDL-C level and training
decreased serum LDL-C level.

7. The clustering of physical activity and serum levels of SHBG, apo A-I and
insulin

The cluster analysis in healthy men showed that high ST-%, a high level of  physical
activity, high serum levels of SHBG, HDL-C, apo A-I and a low serum level of
insulin are associated. Although the serum level of SHBG correlates positively with
HDL-C, the concentration of SHBG is probably of minor importance as a risk factor
for cardiovascular disease in men (Barrett-Connor et al. 1988, Hautanen et al. 1994).
This association probably reflects the influence of physical activity or inactivity on
both variables. Similarly the association between a high level of serum insulin and a
low percentage of ST fibers observed in this study and in other studies as well
(Lillioja et al. 1987, Marin et al. 1994), may represent physical inactivity merely than
being the reason for one or the other.

A low level of physical activity and fitness was associated with a high level of serum
insulin. This association may explain a low level of serum SHBG in sedentary men
because insulin is an inhibitor of SHBG production (Plymate et al. 1988). When the
level of serum insulin is high, the activity of HL is increased (Katzel et al. 1992).
Thus, a high level of serum insulin in sedentary men may both decrease SHBG
production in the liver and reduce serum HDL-C because the activity of HL is
observed to be inversely related to serum HDL-C levels (Kuusi et al. 1980, Kuusi et
al. 1989).

Physical exercise increased apo A-I level and physical activity correlated strongly
with apo A-I, the main apolipoprotein of HDL. Nascent HDL contains apo A-I and
collects free cholesterol from extrahepatic tissues (Figure 9). Apo A-I is an activator
of the enzyme lecithin:cholesteryl acyltranferase (LCAT) that esterifies cholesterol
enabling further cholesterol uptake for reversed cholesterol transport. A higher
HDL-C level in physically active men is associated with increased apo A-I survival
(Thompson et al. 1991) and exercise training increases apo A-I level by increasing its
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intraplasmic half-life (Thompson et al. 1988). This suggests that the clustering of high
levels of SHBG, high levels of apo A-I, high levels of HDL-C and low levels of
insulin together is due to their shared association with physical activity, and that
high ST-% clustered with these variables is an explanation for high levels of physical
activity.

8. Adiposity, physical activity and serum lipids

In the healthy men both BMI and subcutaneous adipose tissue were associated with
an atherogenic lipid profile (see Study IV, Table 2), positively with serum TG and
LDL-C and inversely with serum HDL-C. A low BMI or adiposity has been sug-
gested to explain favorable lipid levels associated with physical activity (Williams et
al. 1983, Marti et al. 1989, Williams et al. 1992). Also Mahaney and co-workers
(Mahaney et al. 1995) have observed that physical activity accounts, in part for
associations of plasma HDL-C and TG levels with adiposity. Indeed, in healthy men
BMI correlated negatively with physical activity in this study. It has been suggested
(Sardinha et al. 2000) that especially truncal skinfolds are associated with serum lipid
levels independently of fitness. In the previously sedentary men, training induced
changes in serum lipoprotein levels without influencing body weight but in these
men training resulted in both increase in fitness and in the reduction of
subcutaneous adipose tissue in abdominal region. Therefore, training can alter both
serum lipoprotein levels and the regional distribution of fat (Schwartz et al. 1991,
Houmard et al. 1994) and induce changes in serum lipids without altering body
weight (Kiens et al. 1980, Thompson et al. 1988, Thompson 1997b). These findings
suggest that factors other than weight loss solely are involved in improvement in the
plasma lipid profile in connection to exercise training. Increases in VO2max and in
skeletal muscle lipid oxidation capacity suggest that the role of skeletal muscle in
inducing changes in serum lipids and body adiposity may be important (Figure 11).
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Figure 11. The possible role of ST-% in physical acitivity, fat gain and risk of CHD.

The CHD patients (Study IV and V) had a low ST-%, the highest BMI and the lowest
activites of oxidative and lipid oxidising enzymes in their skeletal muscles. In
addition, the most sedentary men had low activities of oxidative and lipid oxidising
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enzymes in their skeletal muscles, as well as significantly more subcutaneous
adipose tissue than the most active and fit men who had the highest lipid oxidising
enzyme activities (Study IV). In support of these findings Kim and co-workers have
also observed that in obese human skeletal muscles the activities activities of CPT
and citrate synthase are reduced (Kim et al. 2000). Thus, a reduced capacity for fat
oxidation in skeletal muscle may be an important factor for gaining fat (Figure 11).
Indeed, a high oxidative capacity of skeletal muscle has been observed to prevent
weight gain over a period of time (Simoneau et al. 1996). It should also be noted, that
vigorous physical activity increases oxidative potential more, is more effective for
stimulation of fatty acid oxidation and induces a greater loss in adiposity than the
moderate intensity program (Tremblay et al. 1994, Chilibeck et al. 1998). It can be
concluded that moderate fitness and physical activity levels decrease CHD risk by
altering serum lipids without much change in weight or adiposity, but more
vigorous physical activity decreases the risk for CHD more by increasing further the
fat oxidating capacity of skeletal muscles and reducing body fat and finally
preventing weight gain.

BMI of the former endurance athletes was significantly lower than in other athletes
and controls and they were physically the most active. An earlier finding in former
athletes (Kujala et al. 1994) has revealed that only 2 % of endurance athletes had BMI
more than 30 compared with 23 % and 12 % of power athletes and controls, respec-
tively. The differences between the groups of former athletes support the suggestion
of the significance of skeletal muscle properties on fat gain. Indeed, an inverse
relationship between ST-% and body adiposity was observed in healthy men and a
similar kind of relationship has been observed in some other studies as well (Wade
et al. 1990, Hickey et al. 1995, Kriketos et al. 1996, Kriketos et al. 1997, Helge et al.
1999). Because in the present study ST-% correlates strongly with fitness and
physical activity, the associations between ST-% and body fat indicators may merely
be related to the effects of ST-% on the physical activity and fitness level of a person.
Thus, it is suggested (Figure 11) that the ST-% may play a role in fat gain and finally
in the risk of CHD.



80

PRACTICAL CONSIDERATIONS AND SUGGESTIONS FOR FUTURE

The skeletal muscle properties seem to be clustered together with several CHD risk
factors. Thus, skeletal muscle properties may explain individual differences in
health-related fitness phenotypes. One possibility is that the clustering of CHD risk
factors is mainly as a result of physical inactivity due to the low ST-% of an
individual. On the contrary, a high ST-% seems to make it easier for individuals to
achieve high levels of physical activity and fitness, and this may serve to prevent
obesity, increase insulin sensitivity and change serum lipid profile to reduce risk of
CHD.

One important public health challenge is to move our society from being sedentary
to being physically active (Booth et al. 2000). The public health emphasis has shifted
from the traditional structured exercise programme to ‘active living’ (Pate et al.
1995), i.e. an increase in our daily physical activity. However, beneficial effects of
physical activity may be mediated through fitness (Blair et al. 1995, McMurray et al.
1998, Strenfeld et al. 1999) but increase in fitness in ‘active living’ groups (Dunn et al.
1999) are a fraction of the improvement observed in more vigorous interventions
(Wood et al. 1983, Wood et al. 1988. Wood et al. 1991). The most intensive exercise
intervention seems to be the most effective but long term adherence to exercise is
difficult in all participants (Harland et al. 1999). Motivating sedentary people to start
exercise, to exercise at the level that improve fitness and to maintain this behaviour
is a complex process. It is known that about one third of those to whom exercise
programmes are offered will actually start participating, but 3 to 6 months later, only
50 - 60 % of the original participants are still in the programme (Lechner & De Vries
1995). How much skeletal muscle properties or perhaps other inherited character-
istics of an individual have effect on these figures has not been studied. Also how
these factors can be taken into account when prescribing physical activity to
sedentary individuals should be studied. Thus, the influence of ST-% on the results
of studies in health-related-fitness and physical activity should be investigated in
more detailed.

The present study included only men. Gender-related differences in the metabolic
response to exercise (Friedlander et al. 1998, Esbjörnsson-Liljedahl et al. 1999) and
differences in effects of physical activity on CHD-risk (Haapanen et al. 1997,
Sherman et al. 1999) have been observed. Thus, studies on the influence of skeletal
muscle properties on physical activity and health-related fitness in women are
needed.
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CONCLUSIONS

The key findings of this study are as follows:

1. The percentage of ST fibers in the vastus lateralis muscle associates positively
with the serum HDL-C concentration and negatively with the serum triglyceride
concentration in middle-aged men with different levels of physical activity and
fitness. The association between ST-% and favorable serum lipid and lipoprotein
levels may be due to the fact that ST muscle fibers have a high capacity to use
fatty acids liberated by LPL from TG-rich lipoproteins, which decreases serum
TG concentration and elevates serum HDL-C levels.

2. Long-term, progressive training increases the activities of key enzymes in
oxidative metabolism in both FT and ST muscle fibers and especially those of
lipid metabolism in ST muscle fibers. Thus, a high ST-% and long-term endur-
ance training contribute to the oxidative and lipid metabolism of skeletal muscle.
An increase in oxidative and lipid metabolism of skeletal muscle, may also be
achieved by regular and long-term physical activity in those initially unfit
individuals who have a low ST-% and these changes favour changes in serum
lipids and lipoproteins, especially in serum HDL-C.

3. The percentage of ST fibers has a significant impact on both fitness and physical
activity level. A person who has a high ST-% may, by having natural
endowment for physical activity, adopt high physical activity characteristics that
give protection against CHD by modifying several CHD risk factors. The
clustering of ST-%, fitness and physical activity strengthens the argument for
selection processes in health-related fitness variables and gives one explanation
for observations that more protection against CHD is regularly observed in
endurance-trained persons.

4. Previous aptitude for endurance athletic events and continuity of vigorous
physical activity associates with protection against CHD, but aptitude for power-
speed events does not bestow protection against CHD. Thus, both natural
selections to sport at a young age and physical activity in later years are
predictors of CHD. Skeletal muscle properties may have influence on both
selections to and continuity of regular vigorous physical activity, and ultimately
the risk of CHD.

5. Differences in fitness, physical activity and ST-% of the study population have
influence on the associations between serum hormones and lipids and
lipoproteins as well as associations between body fat distribution and serum
lipids and lipoproteins. Therefore, when the variations of these CHD risk factors
are studied, the contribution of the effects of fitness, physical activity and
skeletal muscle properties on these variables must be taken into account.
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SUMMARY

The percentage of slow-twitch (ST) muscle fibers (ST-%) in men correlated positively
with a favorable serum lipid profile, especially with the serum HDL-C level. The ST-
% also correlated with fitness and leisure-time physical activity (LTPA). In multiple
regression analysis ST-%, fitness and LTPA explained about 32 % of the variation in
serum HDL-C. In the sedentary men with a low ST-% (a mean of 42 %) the activities
of enzymes in lipid and oxidative metabolism within skeletal muscle were similar to
those in CHD patients. However, in physically active men the ST-% was as high as (a
mean of 65 %) usually observed in endurance athletes and the skeletal muscle
enzyme activities were the highest. The men with a high ST-% reported 9 times more
leisure-time physical activity than the sedentary men, and two times more than
physically active men with a low ST-%. In cluster analysis 72 healthy men fell
naturally into three groups; one group was characterised by a low ST-% (mean 42 %),
low fitness and low HDL-C but high serum insulin; the second group had a high ST-
% (66 %), high fitness and a moderately high HDL-C ; the third group had a high ST-
% (66 %) and high fitness and the highest HDL-C but low LDL-C and low serum
insulin. More men in the third cluster were physically active (> 3 times per week)
compared with those in other clusters. Serum total sex hormone concentrations did
not correlate with serum lipids, but serum SHBG associated positively with HDL-C,
fitness and LTPA. On the contrary, serum insulin associated with unfavorable serum
lipid profile and with indicators of body fat and there was a negative correlation
with ST-%, fitness and LTPA. Serum free testosterone was the lowest in physically
active men, its level correlated negatively with HDL-C and was decreased after
training but was also low in CHD patients. Body adiposity correlated negatively
with ST-% and HDL-C. Thus, all associations between serum hormones, serum lipids
and obesity may not be causal but may represent secondary phenomenon like
physical activity or the influence of  ST-% on these variables.

In previously inactive men with a low ST-% (a mean of 42 %), a 12-month home-
based moderate to vigorous exercise programme increased fitness and especially the
skeletal muscle enzyme activities that before training were similar to those of CHD-
patients of the same age. Also the ratio of the activites of enzyme in glycolysis to
activites of enzymes in fatty acid metabolism decreased and this was reflected as a
decrease in lactate accumulation during exercise indicating tighter control between
glycolysis and lipid oxidation in the skeletal muscle after training. The activity of
enzymes in fatty acid metabolism correlated negatively with serum triacyglyceride
concentration but positively with serum HDL-C concentration and an increase in the
activity correlated positively with an increase in serum HDL-C. The effects of
progressive, endurance training on Type I (slow-twitch, ST) fibers and Type II (fast-
twitch, FT) fibers was studied in rats. Training increased oxidative enzyme activity
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in the FT muscle fibers and the activities of enzymes in both oxidative and lipid
metabolism in the ST muscle fibers. Thus, endurance exercise training evokes a set of
metabolic adaptations in skeletal muscle that may produce significant health-related
influences of physical activity on serum lipids.

To investigate the associations between a natural selection to sports, the continuity of
physical activity and the occurrence of CHD, a prospective cohort study in male
former top-level athletes participating at a young age in different types of sports
(endurance, power-speed and ‘other’) and a healthy control group of 20 year olds
was carried out. Data on the occurrence of CHD was obtained by means of death
certificates, three nationwide registers and questionnaire studies, and data on
physical activity in later life through the questionnaires. All groups of former
athletes were more physically active than the control group. Despite a rather similar
total volume of physical activity, compared to power-speed athletes, former
endurance athletes participated more often in vigorous activity and had less CHD.
Both endurance and other than power and speed athletes had less CHD than the
control group. The incidence of new CHD was lower among those who participated
in vigorous physical activity at the beginning of the nine years follow-up. Thus, both
previous aptitude for endurance athletic events and the continuity of vigorous
physical activity seem to be associated with protection against CHD, but aptitude for
power-speed events does not bestow protection against CHD.

In conclusion, both high physical fitness and physical activity are associated with a
lower CHD risk profile and support is given to the findings that regular moderate to
vigorous activity provides protection against CHD. However, the most favorable
combination seems to be high physical activity in those individuals who have
inherited high ST-%. This strengthens the argument for selection processes in health-
related fitness variables and explains the better protection against CHD in
endurance-trained persons. A low ST-% seems to be a risk factor for CHD but
exercise training induces a set of metabolic adaptations in skeletal muscle that
increase lipid metabolism in the skeletal muscle and ultimately influence serum
lipids and lipoproteins. In addition, skeletal muscle properties, especially ST-%,
should be considered as important aspects in studies addressing the influence of
fitness and physical activity on other CHD risk factors.
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