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ABSTRACT 

Background and Aims 

The metabolic syndrome and type 1 diabetes are associated with brain alterations such as 
cognitive decline, increased risk for infarction, atrophy, and white matter lesions. Despite 
the clinical importance of these alterations, their pathomechanism is still poorly 
understood. This study was conducted to investigate brain glucose and metabolites in 
healthy individuals with an accumulation of metabolic cardiovascular risk factors and in 
patients with type 1 diabetes in order to discover more information on the nature of the 
known brain alterations. 

Subjects and Methods 

We studied 43 non-smoking 20- to 45-year-old men. Study I compared two groups of 
non-diabetic men, one with an accumulation of metabolic risk factors and another 
without. Studies II to IV compared patients with type 1 diabetes (duration of diabetes 6.7 
± 5.2 years, no microvascular complications) with non-diabetic participants. Brain 
glucose, N-acetylaspartate (NAA), total creatine (tCr), choline, and myo-inositol (mI) were 
quantified with proton magnetic resonance spectroscopy in the frontal cortex, frontal 
white matter, thalamus, and cerebellar white matter. Data collection was performed for all 
participants at baseline after an overnight fast and in subgroups of diabetic and non-
diabetic participants (Studies III and IV), also twice during a 2-h hyperglycemic 
normoinsulinemic clamp that increased plasma glucose concentration by 12 mmol/l. 

Results 

In the men with metabolic risk factors (Study I), the thalamic tCr was 17% higher than in 
the control group and correlated with fasting plasma glucose and with the 2 h plasma 
glucose in an oral glucose tolerance test. During basal fasting glycemia (Study II), regional 
variation in the brain glucose levels appeared in the non-diabetic subjects but not in those 
with type 1 diabetes. Excess glucose had accumulated predominantly in the white matter 
where the metabolite alterations were also the most pronounced. Compared to the 
controls’ values, the white matter NAA was 6% lower and the mI 20% higher. During 
acute hyperglycemia (Studies III and IV), the increase in cerebral glucose content in the 
patients with type 1 diabetes was, dependent on brain region, between 1.1 and 2.0 
mmol/l. While chronic hyperglycemia had led to accumulation of glucose in the white 
matter, acute hyperglycemia burdened predominantly the gray matter. Acute 
hyperglycemia also revealed alterations in glucose uptake or metabolism in the thalamus 
of the diabetic patients. Type 1 diabetes showed no effect on the glucose content at 
baseline or during acute hyperglycemia in the cerebellum. Unlike the cerebral white 
matter, the cerebellar white matter showed no alterations in brain metabolites.  
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Conclusions 

Risk factors of the metabolic syndrome, most importantly insulin resistance, may 
influence brain metabolism. Normal brain glucose concentration differs between brain 
regions. In type 1 diabetes, hyperglycemia raises the cerebral glucose concentration in 
various brain regions depending on its duration: chronically in the white matter and 
acutely in the cortical gray matter. In the cerebellum, glucose concentration is twice its 
concentration in the cerebrum, with type 1 diabetes having no effect. The metabolic brain 
alterations in type 1 diabetes appear before any peripheral microvascular complications 
are detectable. Hyperglycemia is therefore a potent risk factor for diabetic brain disease.   
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1 INTRODUCTION  

The metabolic syndrome consists of a cluster of cardiovascular risk factors such as 
abdominal obesity, hypertension, dyslipidemia, and impaired glucose regulation. Its 
prevalence in the 39-year-old Finnish population has been assessed as ranging from 14 to 
25% (1). The number of patients with type 1 diabetes in Finland is approximately 45 000, 
a number rapidly increasing (2, 3). The metabolic syndrome as well as type 1 diabetes 
have both been associated with various brain alterations.  

 
The accumulation of metabolic risk factors in midlife predicts cognitive decline later in 
life. Hypertension alone causes a 28 to 36% additional risk for cognitive decline (4), and 
in keeping with this, the metabolic syndrome and its separate components also elevate the 
risk for asymptomatic brain infarctions and stroke (5-7). In addition, obesity, 
hypertension, and low-grade inflammation have been associated with brain atrophy and 
white matter lesions. Patients that fulfilll all criteria of the metabolic syndrome have 
decreased nerve fiber integrity in their brain white matter (8). 

 
The harmful effect of diabetes on cognitive function was recognized as early as 1922. The 
most recent meta-analysis showed that memory and learning are spared, but that the 
patients may be less able to apply acquired knowledge flexibly in a new situation (9). Type 
1 diabetes also elevates the risk for lacunar infarctions seven-fold and stroke five-fold 
(10). Brain atrophy and white matter lesions have associations with type 1 diabetes (11) 
although to a lesser degree than with the metabolic syndrome.   

 
Despite their obvious importance, the mechanisms of these metabolic-syndrome- and 
diabetes-related brain abnormalities are poorly known. The general belief regarding 
diabetes-related cognitive decline has been that the most important risk factors are the 
repetitive episodes of hypoglycemia. However, recent studies have shown that chronic 
hyperglycemia may be an even stronger risk factor for normal brain function. The 
proposed mechanisms for metabolic risk factors and diabetes to harm brain tissue are 
macro- and microvascular disease, hyperinsulinemia, and toxic effects of glucose.   

 
This study was conducted in order to investigate brain glucose and metabolites in healthy 
individuals with an accumulation of metabolic cardiovascular risk factors and in patients 
with type 1 diabetes, and in order to provide more information on the nature of the 
known brain alterations.  
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2 REVIEW OF THE LITERATURE 

2.1. The Brain 

The brain is composed of the cerebrum, the cerebellum, and the brain stem. Brain tissue 
consists of gray and white matter. The gray matter regions that are responsible for various 
cognitive functions consist mainly of neuronal cell bodies that are the executive units in 
nerve signaling. The white matter carries the nerve signals between the gray matter 
regions and contains mainly myelinated nerve fibers, the axons. Lipid-rich myelin sheets 
surround the neural axons and serve to accelerate the transduction of the electrochemical 
signals. Glial cells, i.e. oligodendrocytes, astrocytes, ependymal cells, and microglia, make 
up about half of the brain cells and play an important role in their structural and nutritive 
support, in waste disposal, and in neuronal repair and regeneration. 
 
The brain evolves throughout life. Its maturation continues until the end of the second 
decade, and the process of aging starts during the fifth decade when cognitive 
deterioration (12) and morphological changes (13, 14) become more common. These 
changes are further accelerated by life style, smoking (15, 16), and alcohol consumption 
(17).  

The normal age-related morphological changes include reduced brain weight and 
volume, and ventricular and sulcal expansion (14). The white matter declines in volume to 
a greater extent than does the gray matter (18). In the white matter, magnetic resonance 
imaging (MRI) reveals an increasing number and volume of T2-hyperintense foci, i.e. 
white matter lesions. These lesions are suggested to be benign, but they may also result 
from an alteration in the autoregulation of the cerebral blood flow that exposes the tissue 
to brief and repeated episodes of hypotension and hypoperfusion (19). Differential 
histopathology also includes vascular malformations, congenital diverticula of the 
ventricle, demyelination, and isolated white matter infarctions (20). The prevalence of 
white matter lesions has been estimated to be 40% in 30- to 40-year-old adults and 
increases rapidly after 50 years of age (21) so that in old age the majority are affected (22).  

Aging proceeds with a clear anterior to posterior gradient, with frontal lobe volumes 
showing a greater decline than the more posterior ones (14, 23). In addition, the white 
matter lesion burden (23) and decreased nerve fiber integrity found by diffusion-tensor 
(DTI) and diffusion-weighted imaging (DWI) (24, 25) show a predilection for the frontal 
regions. Positron emission tomography (PET) studies suggest that the metabolic rate 
decreases more in the frontal than in the posterior parts of the brain (26-28).  

2.1.1. Brain Glucose 

Brain energy is generated mainly from glucose (29). During starvation, when glucose is 
insufficient (30), and during high-intensity exercise (31), the brain can use other energy 
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substrates such as ketone bodies and lactate. In addition, brain astrocytes contain a 
glycogen store that has been thought to act as a metabolic buffer during physiological 
activity (32). Even so, the diurnal energy requirement of 400 to 460 kcal in relation to an 8 
kcal cerebral energy reserve makes a constant supply of glucose essential. The local energy 
requirement is highly variable and is tightly coupled with neuronal activity (33, 34). The 
availability of glucose to the brain tissue depends on cerebral blood flow (35) and glucose 
uptake (36).  

Cerebral Blood Flow 

Regional differences exist in cerebral blood flow. In subjects who are awake but at rest, 
blood flow is greatest in the frontal brain regions (37). Cerebral blood flow is regulated by 
constriction and dilatation of large arteries in response to humoral, neural, and metabolic 
stimuli, most importantly to hypercapnia, hypoxia, and blood pressure, but also to 
hyperglycemia (38). Most importantly, neural brain activity enhances blood flow in the 
small arteries of the activated regions (39).  

Glucose Uptake and Metabolism 

Brain tissue is isolated from the intravascular space by a specific structure, the blood-brain 
barrier (BBB) (40). Vascular endothelial cells are connected by tight junctions of high 
electrical resistance that provide an effective barrier against molecules and prevent any 
bulk flow. Due to the lipophilic nature of the BBB, hydrophilic substances cannot cross 
it. Notable exceptions are metabolically important components such as glucose (41), 
insulin, free fatty acids, lactate, vitamins, and amino acids that use energy-requiring 
facilitated diffusion. The brain extracts 10 to 15% of the circulating glucose, of which 
approximately one-third is surplus and later transported back into the venous system (40). 
The extracellular glucose concentration in the brain tissue is 20 to 30% that in the blood. 
In rodents, it ranges from 0.35 to 2.2 mmol/l and depends on the brain region and the 
age of the animal (42). Studies in humans have found brain glucose concentrations 
between 0.5 and 2.5 mmol/l (43, 44).  

The facilitated diffusion of glucose from blood to brain is considered an insulin-
independent phenomenon and is mediated by glucose transporter (GLUT) proteins. The 
55-kDa isoform of GLUT1 proteins accounts for at least 95% of the transport from 
blood to brain (36). The GLUT1s are located in the luminal membranes and show a 
three- to four-fold higher abundance at the abluminal membranes (45-47). This ensures a 
low glucose concentration in the endothelial cell and creates a concentration gradient that 
facilitates glucose flow from the blood into the endothelial cells and further into the 
extracellular fluid (ECF). The process of glucose transport in the brain is saturable (48), 
but is not rate-limiting for the metabolic pathway (49).  

GLUT1s are present throughout the brain but has a variable distribution. The highest 
densities in rat brain are in the regions with high capillary density and high energy demand 
(36, 50). Such regions are the frontal cortex, motor cortex, the hippocampus (51), basal 
ganglia, thalamus (52, 52), and cerebellum (53).  

GLUT3 is a neuron-specific transporter widely distributed throughout the brain (54).  
Under basal conditions, glucose is taken up from the ECF directly into neurons by 
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GLUT3s (55) (Figure 1). During physiological activation, a large part of the glucose in the 
ECF is taken up by the 45-kDa isoforms of the GLUT1s into the astrocytes, the cells that 
support the neurons with energy in the form of lactate (56, 57). GLUT3s have an 
approximately 30-fold higher affinity for glucose than that of GLUT1s and are therefore 
able to secure the glucose supply to neurons even at low glucose concentrations (58).  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 Glucose transport from blood to brain, basics of glucose metabolism, and the interplay 
between neurons and astrocytes. TCA = tricarboxycyclic acid, NADH = nicotinamide 
adenine dinucleotide, FADH2 = flavin adenine dinucleotide, PCr = creatine phosphate, Cr 
= creatine, ATP = adenosine triphosphate, ADP = adenosine diphosphate, H+ = proton, 
Gln = glutamine, Glu = glutamate, GLUT = glucose transporter.  

Glucose is oxidized into free energy in two phases: first by glycolysis in the cytosol and 
second in the tricarboxycyclic acid (TCA) cycle in the mitochondria (Figure 1). The free 
energy produced is then trapped by the electron transport chain and transported in form 
of H+ to the site of phosphorylation. Creatine phosphate (PCr) delivers the high-energy 
phosphate to form adenosine triphosphate (ATP) (Figures 1 and 2). ATP is transported 
out of the mitochondrial matrix via the adenosine nucleotide transporter (ANT) (Figure 
2). The PCr formed is shuttled through the cytosol by means of the creatine kinase (CK) 
towards the site of energy utilization (59). When the ATP generation is separated from 
consumption, creatine, by facilitating the transfer of the inorganic phosphate Pi, can act to 
buffer the ATP/adenosine diphosphate (ADP) ratio (60, 61).  
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Figure 2 Energy shuttle system between the site of energy production in the mitochondrion and its 
utilization in the cytosol. PCr = creatine phosphate, Cr = creatine, ADP = adenosine 
diphosphate, ATP = adenosine triphosphate, H+ = proton, ANT = adenosine nucleotide 
transporter, CK = creatine kinase, Pi = monophosphate, ATPase = adenosine 
triphosphatase.  

The brain displays regional differences in its metabolic rate of glucose consumption. The 
metabolic rate detected with 1H13C magnetic resonance spectroscopy (MRS) has been as 
much as four-fold higher in the gray matter around the cingulate sulcus than in the white 
matter in the centrum semiovale (62). Consistently, PET has shown an up to two-fold 
higher metabolic rate in the cerebral cortex, thalamus, and cerebellum than in the cerebral 
white matter (63). The cortex has a higher metabolic rate than the cerebellum (63, 64).  

Brain Insulin  

The brain was considered an insulin-insensitive organ until the 1970s, when insulin 
receptors were found widely distributed in the brain (65). Insulin is transported into the 
brain across the BBB by a saturable, insulin receptor-mediated transport process (66, 67). 
Brain regions with high concentration of insulin receptors (68) and insulin-dependent 
GLUTs (52, 69) are the hypothalamus, hippocampus, olfactory bulb, and cerebellum. 
Insulin-dependent glucose transporters found thus far are GLUT2, GLUT4, and GLUT8. 

GLUT2 may be involved in glucose sensing also in the brain. It is abundant in the 
hypothalamus (70) where insulin function is essential in pathways that lead to such 
neuroendocrine events as suppression of hepatic glucose production (71) and suppression 
of food intake (72). GLUT2 expression is limited to astrocytes, and together with 
GLUT1, to highly specialized hypothalamic glial cells called tanycytes (73). The tanycytes 
may participate in these neuroendocrine events by bridging the gap between the central 
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nervous system and the portal blood (74). High concentrations of GLUT2 also occur in 
the hippocampus (75), where insulin enhances memory formation (76). 

GLUT4 is expressed in the microvascular endothelium (77) and in the neurons (52). 
In cultured cerebellar neurons, insulin has caused translocation of GLUT4 to the cell 
surface and stimulated glucose uptake (78). In animals (79) or in humans (64, 80) 
physiologic concentrations of insulin have not led to an increased glucose uptake into the 
brain. In humans, high-dose insulin has also shown no effect (81). Yet physical exercise 
has in rats shown a similar effect on GLUT4s as does insulin in the cultured cells, and led 
to an acute increase in cerebellar glucose uptake (78). This suggests that at least during 
exercise, insulin may play a role in energy metabolism in the cerebellum.  

2.1.2. 1H MRS of Brain Metabolites 

MRI can reveal brain structure, and proton magnetic resonance spectroscopy (1H MRS) 
can detect and quantify glucose and markers of brain metabolism without irradiation. 
Both methods rely on a physical phenomenon called nuclear magnetic resonance (NMR) 
(82, 83). The first 1H MRS study of the human brain was published in 1988 (84), and the 
method has been applied since both in basic research and clinical use (85). The variety of 
molecules visible with MRS is limited, and they are not always the ones of the greatest 
interest to neuroscientists. Despite the complex nature of 1H MRS, its clear advantage is 
that it allows study of endogenous brain metabolites and native glucose (Figure 3). 

 
 

 

 

 

 

 
 
 
 
 
 
 
 

Figure 3 The main metabolites in 1H MRS with TE/TR 30/3,000 ms are N-acetylaspartate (NAA), 
glutamine-containing compounds (Glx), total creatine (tCr), choline-containing 
compounds (Cho), glucose (Glc), and myo-inositol (mI). Increase in brain glucose during 
hyperglycemia: baseline in solid and hyperglycemia in dashed line.  
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Physical Basis of Magnetic Resonance Studies 

In NMR, the fundamental property of a nucleus is spin. Those nuclei containing odd 
numbers of protons or neutrons or both have a non-zero spin and thus a non-zero 
magnetic moment through which the nucleus can interact with an external magnetic field. 
In the external field, the magnetic moments orient with a low-energy state parallel to the 
external magnetic field (B0) and high-energy state antiparallel to the B0. Since a lower 
energy state is present, slightly more spins are parallel to the B0, forming a macroscopic 
net magnetization parallel to the main field.     

The equilibrium of the spins in B0 can be modified by radiofrequency (RF) pulses. To 
achieve energy absorption (excitation), the nuclear spin system is exposed to energy of a 
frequency equal to the energy difference between the low and high energy states (Larmor 
frequency). An applied RF pulse flips the longitudinal magnetization onto the transverse 
plane, where it can be detected. Magnetization precesses in the xy-plane at Larmor 
frequency, and this oscillating magnetic field is detected by an RF coil. At the same time, 
the magnetization will return to its equilibrium value in a process called relaxation. The 
relaxation rate is characterized by two time constants. T1 relaxation describes the recovery 
of longitudinal and T2 relaxation the recovery of transverse magnetization. T1 depends on 
interactions of the spin with its surroundings, whereas T2 depends on spin-spin 
interactions. T2 relaxation time is never longer than T1 relaxation time. During the 
detection period, a decaying oscillation magnetic field induces a small current in the 
receiver coil. This signal is called free induction decay (FID). In idealized magnetic 
resonance procedures, the FID decays approximately exponentially with a time constant 
T2. The actual observed decay of the FID is determined by T2*, that, in addition to true 
T2, also contains a contribution from magnetic field inhomogeneity to the decay rate. The 
actual spectrum is obtained via Fourier transformation of the time-domain data, FID.  

The Principles of MRI and 1H MRS 

For medical applications, MR procedures require a homogenous and powerful magnetic 
field, usually 0.1 to 3.0 Tesla in strength.   

MRI measures the NMR signal as a function of spatial location. Typically in MRI, the 
signal detected is from hydrogen nuclei, i.e. protons in water or fat molecules. The proton 
concentration of water in tissue is >80 mol/l. The spatial location is determined by 
causing the static magnetic field to vary linearly across the body (a field gradient), so that 
different spatial locations become associated with different precession frequencies. The 
contrast in images is based on relaxation properties of water in different tissue types. The 
contrast can be adjusted by a suitable choice of image acquisition parameters such as echo 
time (TE), repetition time (TR), and inversion time (TI).  In T1-weighted images, fat-
containing tissues typically appear bright and water- and fluid-containing tissues dark. In 
T2-weighted images, brightness is proportional to the mobility of water. T2-weighted MR 
images show high sensitivity to edema and thereby also to pathology. By adding one RF 
pulse (inversion pulse) and by manipulation of the magnetic gradients, a T2-weighted 
sequence can be transformed into a fluid-attenuated inversion-recovery (FLAIR) 
sequence where “free” water including cerebrospinal fluid is dark, but edematous tissue 
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becomes bright. FLAIR images therefore bring out periventricular or intraparenchymal 
lesions better than do pure T2 images.  

In 1H MRS, the main focus is on detection of the signals from metabolites of relatively 
low concentrations (1 to 10 mmol/l) rather than detection of water. Compared to MRI, 
the low concentrations of compounds results in lower amplitude of MR signals, lower 
signal-to-noise ratio (SNR), lower spatial resolution, and to a longer acquisition time. A 
1H MRS measurement results in a spectrum where metabolite protons resonate in 
characteristic frequencies depending on their chemical and physical vicinity in a molecule. 
The surroundings change the local magnetic field experienced by the proton (nuclear 
shielding) and thus its resonance frequency. Instead of frequencies, the resonance 
positions are expressed by a chemical shift scale with a unit of parts per million (ppm) of 
B0. This unit is independent of the magnetic field strength used. Chemical shift and fine 
structure of the resonance allow characterization of the protons responsible for the 
resonance.  

1H MRS Data Acquisition 

What are called single voxel methods acquire the spectrum from a single selected cubical 
volume of typically ml to 10 ml (volume of interest or voxel). The size of the voxel is 
adjusted based on the anatomy of the organ in focus. Increasing the size of the voxel 
raises the SNR but reduces spatial resolution. Raising the number of excitations raises the 
SNR but prolongs data collection time (86).  

The two most common methods are the stimulated echo acquisition mode (STEAM) 
(87) and point-resolved spectroscopy (PRESS) (88). Frequently, PRESS is preferred due 
to its better SNR and simplified signal quantitation. TR is the time between repetitions of 
the PRESS sequence. A relatively long TR is a perquisite for quantitation, since spins have 
enough time to relax towards equilibirium between repetitions. TE refers to the time 
between the first pulse and the start of the signal acquisition. Long TE (typically 144 ms 
or 270 ms) has the benefit of showing lactate but fails to show a number of metabolites 
that have short T2 relaxation times. A short TE shows more metabolites and gives more 
SNR, but the analysis is more complex, since the baseline may become irregular and the 
peaks of different metabolites may overlap. In order to see the metabolites of interest, the 
signals of high concentration molecules such as water must be suppressed.  

Quantitation of the Spectrum 

Although the spectroscopic peak area is proportional to the concentration of the 
metabolite, the acquired data are not unequivocally quantitative. In addition to the 
metabolite concentration, all factors that affect the SNR also affect the peak areas (89). In 
order to minimize the random effects from the instrument or the patient, the data must 
be quantitated (90).  

Peak ratios can be used when one metabolite is not expected to have inter-subject 
variation or is not expected to vary between the brain regions in comparison. The body 
has, however, no constant metabolites able to serve as identical references. Total Creatine 
is one of the most stable and therefore often serves as an internal reference (91). 
Moreover, tissue water concentration in the brain varies only within narrow limits (92) 
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and an unsuppressed water signal can easily be obtained from the same voxels as those 
for the metabolites.  

Absolute quantification with external standard solutions enables quantification of 
absolute concentrations of the metabolites, but using them requires a short TE and long 
TR, additional measurements, and certain corrections. Options are two: sameplace or 
sametime standards. The sameplace standard is positioned at the same location as the 
center of the brain, but its data collection occurs at a different time and is vulnerable to 
random fluctuations in the intensity levels originating from the instrument or from the 
patient. The sametime standard method has identical coil and receiver performance, but it 
requires corrections for temperature and for variation in RF uniformity.  

N-acetylaspartate (NAA) 

Of the brain metabolites, N-acetylaspartate has been considered a neuronal marker (93). 
Its synthesis takes place primarily in the neuronal mitochondria and is dependent on the 
neuronal energy metabolism (94, 95). Its breakdown takes place in the oligodendrocytes 
(96) and at the surface of the astrocytes (97). NAA is therefore present in the neurons at 
relatively high concentrations but is absent from mature glial cells (98, 99). 

N-acetylaspartate has functions in myelin synthesis (100), in cell-specific signaling, and 
in maintenance of the intracellular osmotic balance by removing large amounts of 
metabolic water generated by the neuronal glucose metabolism (101).  

In the normal brain, NAA concentration is age-dependent. Its concentration is high 
during brain development and decreases during aging in the gray (102, 103) but not in the 
white matter (104, 105). Increased NAA has been found in Canavan’s disease (106, 107) 
in which failure of NAA breakdown interferes with the normal myelin production. 
Decreased NAA has been observable in a wide variety of conditions causing neuronal 
dysfunction or loss including brain trauma, tumors, inflammation, infection, ischemia, 
Alzheimer’s disease, and demyelinating diseases (86, 108). N-acetylaspartate may also 
recover during axonal recovery such as in multiple sclerosis (109, 109).  

Glutamate-containing Compounds (Glx) 

Because 1H MRS cannot distinguish between glutamate (Glu) and glutamine (Gln), Glx is 
therefore the sum of both. In the brain, glutamate is the most important excitatory 
neurotransmitter. In the glutamine/glutamate cycle, glutamine is converted to glutamate 
in presynaptic neurons and then released into the synaptic cleft. It is taken up by 
astrocytes that convert it back to glutamine and transport it back to the neurons (110) 
(Figure 1). Glutamate is also involved in the redox cycle that governs lactate 
accumulation. According to the glutamine/glutamate cycle theory, Glx is present in all cell 
types. It is elevated in hyperosmolar (111, 112), hypoxic, and ischemic states and in 
hepatic encephalopathy (109). 

Total Creatine (tCr) 

Creatine in the body is mainly of dietary origin (113) and actively transported into the 
brain from the circulating blood against its concentration gradient (114). The spectrum 
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peak of total Cr consists mainly of creatine (Cr) and phosphocreatine (PCr) and to a 
much lesser degree of γ-amino butyric acid, lysine, and glutathione. A Cr-to-PCr ratio of 
2:1 is normal in healthy humans throughout the brain (91). Diabetes may elevate the 
proportion of PCr by reducing the activity of the enzyme creatine kinase (Figure 2) (115). 
The concentration of tCr is approximately 20% higher in the gray than in the white 
matter, and tCr has been related to both neurons and glial cells. The main function of 
creatine is to serve in an energy shuttle system at the mitochondrial inner membrane and 
in the cytosol (Figure 2).  

In the normal brain, tCr concentration is relatively stable (91). It is thought to increase 
with age (102, 104), although findings are not entirely consistent (103, 116). Increased 
brain tCr level has occurred during increased oxidative metabolism and in hyperosmolar 
states (86). Conversely, decreased tCr has been observable in hypometabolic states 
concomitant with energy failure or cell death caused by such conditions as hypoxia, stroke 
or tumor, and in hypo-osmolar states (93, 93).  

Choline-containing Compounds (Cho) 

Choline is a precursor for acetylcholine, a neurotransmitter, and for phosphatidyl choline, 
a major constituent of all cell membranes and of sphingomyelin. The main determinants 
of Cho concentration in the tissue are the cell density and rate of phospholipid cell 
membrane turnover (117). Because of the abundance of cell membranes in myelin layers, 
Cho is higher in the white than in the gray matter (86). 

Cho increases with age (102, 104). Increased Cho appears in areas with increased cell 
membrane synthesis or breakdown during chronic hypoxia, and during active 
demyelination or inflammation. It also is increased in tumors, in Alzheimers disease, and  
in hyperosmolar states. Decreased levels appear in hepatic encephalopathy and in 
subacute ischemia (86).  

Myo-inositol (mI)  

Myo-inositol has multiple cellular functions. It is a precursor for phospatidylinositol that 
constitutes 5 to 10% of the total cell membrane phospholipids and to inositol 
triphosphate and diacylglycerol that are intracellular second messengers (118). Myo-
inositol is almost exclusively located in the astrocytes and is therefore considered an 
astrocyte marker whose concentration increases both during increased cell membrane 
synthesis (for example gliosis) or breakdown. It also is also one of the most important 
osmolytes in the brain cells (93). 

Myo-inositol has been proposed to increase with age (102), although not all studies 
agree (104). Increased mI has been associated with Alzheimer’s disease, brain tumors, 
hyperosmolar states, and inflammation (86).  

Glucose 

Glucose plays a central role in brain energy metabolism (see 2.1.1). Brain glucose content 
detected with 1H MRS depends upon the cerebral blood flow that delivers glucose into 
the brain, upon glucose uptake, and also upon the metabolic rate of glucose.  
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Tissue Water 

White matter contains approximately 78%, and cortical gray matter 82% water in 
proportion to their wet weight (119). Brain tissue water is compartmentalized into 
intracellular (85%) and extracellular (15%) space. 1H MRS detects only stationary water, 
which means that the circulating blood that accounts for about 10% of the water in the 
brain is not visible with this technique. 1H MRS cannot differentiate between intracellular 
and extracellular water compartments and thus represents a weighted average.  

Brain water content increases during brain edema (120). Vasogenic edema due to BBB 
disruption results in extracellular water accumulation, whereas cytotoxic or cellular edema 
results in sustained intracellular water accumulation. A third type, osmotic brain edema, 
results from osmotic imbalances between blood and tissue. In all these types, gradients 
for osmotically active solutes are the driving forces for the movement of fluid between 
the three compartments: extracellular and intracellular fluids and blood. As mentioned, 
the markers of brain metabolism are osmolally active molecules that contribute to the 
maintenance of normal brain water content.     

2.2. Metabolic Risk Factors and the Brain 

2.2.1. Metabolic Syndrome 

The clinical importance of the accumulation of metabolically related cardiovascular risk 
factors (called here metabolic risk factors) was recognized in the 1980s (121). Thereafter, 
several definitions of the metabolic syndrome have aided in predicting risk for 
cardiovascular and cerebrovascular morbidity (Table 1).  

 
The prevalence of the metabolic syndrome varies according to the definition used. In the 
1990s, the FINNRISK study on the 45- to 64-year-old Finnish population used the WHO 
definition and reported Finnish prevalences of 36% for men and 17% for women (128). 
The Cardiovascular Risk in Young Finns Study compared the different definitions and 
reported the following prevalences in 39-year-old men: National Cholesterol Education 
Program Adult Treatment Panel III (ATPIII) 20%, European Group for the study of 
Insulin Resistance (EGIR) 17%, International Diabetes Federation (IDF) 25% and 
women ATPIII 14%, EGIR 7%, and IDF 17% (1).  
 

 
 



 

 

IDF/NHBI/AHA/
WHF/IAS/IASO

2009

Insulin resistance, IGT, Plasma insulin 3 of the following Abdominal obesity 3 of the following 3 of the following
or diabetes + 2 other > 75th percentile + 2 other

+ 2 other

Abdominal BMI > 30 kg/m2 Waist circumference Waist circumference Waist circumference Waist circumference Waist circumference
obesity and/or WHR M ≥ 94 cm M > 102 cm M ≥ 94 cm for non-Asian for non-Asian

M > 0.90 F ≥ 80 cm F > 88 cm F ≥ 80 cm M ≥ 102 cm M ≥ 94 cm
F > 0.85 F ≥ 88 cm F ≥ 80 cm

Hypertension ≥ 140/90 mmHg ≥ 140/90 mmHg ≥ 130/85 mmHg ≥ 130/85 mmHg ≥ 130/85 mmHg ≥ 130/85 mmHg
or treatment or treatment or treatment or treatment

Dyslipidemia HDL HDL < 1.0 mmol/l HDL HDL HDL HDL
M < 0.9 mmol/l and/or M < 1.0 mmol/l M < 1.03 mmol/l M < 1.0 mmol/l M < 1.0 mmol/l
F < 1.0 mmol/l Tg ≥ 2.0 mmol/l F < 1.3 mmol/l F < 1.29 mmol/l F < 1.3 mmol/l F < 1.3 mmol/l

and/or or treatment or treatment or treatment or treatment
Tg ≥ 1.7 mmol/l

Tg ≥ 1.7 mmol/l Tg ≥ 1.7 mmol/l Tg ≥ 1.7 mmol/l Tg ≥ 1.7 mmol/l
or treatment or treatment or treatment

Impaired glucose Insulin resistance, ≥ 6.1 mmol/l ≥ 6.1 mmol/l ≥ 5.6 mmol/l ≥ 5.6 mmol/l ≥ 5.6 mmol/l
regulation IGT, or IGT, or diabetes or diabetes or diabetes or diabetes

(fP-Glucose) or diabetes but not diabetes
UAER ≥ 20 µg/min - - - - -

AHA/NHLBI 2005WHO 1999 EGIR 1999 ATPIII 2001 IDF 2005

Table 1. Definitions of the metabolic syndrome  

 

 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

WHO, World Health Organization (122); EGIR, European Group for the study of Insulin Resistance (123); ATPIII, National Cholesterol Education Program Adult Treatment Panel 
III (124); IDF, International Diabetes Federation (125); AHA/NHLBI, the American Heart Association/National Heart, Lung, and Blood Institute (126); 
IDF/NHBI/AHA/WHF/IAS/IASO, Joint Interim Statement has been published by the International Diabetes Federation Task Force on Epidemiology and Prevention, National 
Heart, Lung, and Blood Institute, American Heart Association, World Heart Federation, International Atherosclerosis Society, and International Association for the Study of Obesity (127); 
IGT, impaired glucose tolerance; BMI, body mass index; WHR, waist-to-hip ratio; HDL, HDL cholesterol; Tg, triglycerides; UAER, urinary albumin excretion rate; M, males; F, females. 
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The metabolic syndrome clusters in families (129-131), which suggests that genetic 
predisposition plays a central role. A family history of hypertension or of type 2 diabetes 
or both also predicts its occurrence (132). In 35- to 65-year-old individuals, the metabolic 
syndrome elevates risk for type 2 diabetes three- to six-fold in 3 to 7 years’ time (133-
135). The metabolic syndrome is therefore considered a prediabetic state. Approximately 
75% of individuals with impaired glucose tolerance (128) and 87% of those with type 2 
diabetes (136) have metabolic syndrome. Occurrence of metabolic syndrome is also 
promoted by some environmental factors: age, male gender, overnutrition, a sedentary 
lifestyle, smoking (137), and possibly also chronic stress (138) and fetal malnutrition (139).  
 
The pathophysiology of the metabolic syndrome is multifactorial. Major contributors are 
abdominal fat (140), insulin resistance (141), abundance of free fatty acids (142), 
inflammation (143), and oxidative stress (144). Other contributors include disorders of 
the hypothalamus-pituitary-adrenal axis (145), altered glucocorticoid hormone action 
(146), and dysregulation of mitochondria (142). The metabolic syndrome associates with 
hyperuricemia and gout (147), sleep apnea (148), polycystic ovary syndrome (149), 
depression (150), and chronic schizophrenia (151).  

2.2.2. Effects of Metabolic Risk Factors on the Brain 

During the last two decades, metabolic syndrome has been associated with brain 
abnormalities that predispose to brain infarctions and cognitive decline. Very little is, 
however, known about the effect of metabolic syndrome or metabolic risk factors on 
brain glucose and insulin.  

Morphological Abnormalities 

Metabolic syndrome risk factors predispose to asymptomatic structural abnormalities in 
the brain. Increased body mass index (BMI) (152, 153), hypertension (154-156), and high 
concentration of the inflammatory marker interleukin 6 (IL-6) (157) and of homocysteine 
(159) have all been associated with decrease in total brain volume that is a sign of brain 
atrophy. Increased BMI has also been associated with decreased volume of particularly 
the cerebral cortex (153, 160). Hypertensive patients have shown a smaller volume of the 
thalamus and greater volumes of cerebrospinal fluid in the temporal lobes and the 
cerebellum than expected for their age (161). 

Periventricular and subcortical white matter lesions are more common in patients with 
metabolic syndrome (162). Of the metabolic risk factors, an increased waist-to-hip ratio 
(163), hypertension (15, 155, 164, 165), and increased C-reactive protein (CRP) (166), 
increased intercellular adhesion molecule (ICAM) (167), and increased homocysteine 
(168) have been associated with a higher prevalence of white matter lesions. Increased 
anisotrophy that indicates decreased nerve fiber integrity in the white matter has appeared 
in patients with metabolic syndrome, mainly involving the frontal lobe (8). 
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Brain Infarctions 

Metabolic syndrome raises the risk for stroke two- to three-fold in 50- to 60-year-old 
individuals (5-7). Abdominal obesity (169), hypertension, dyslipidemia, hyperglycemia, 
and increased fasting plasma glucose have all been independent risk factors for stroke 
(170-173). The risk, not surprisingly, increases with the increasing number of metabolic 
syndrome risk factors (174-176).  

Metabolic syndrome associates also with asymptomatic brain infarctions (162) and 
asymptomatic carotid atherosclerotic plaques (177, 178). Furthermore, metabolic 
syndrome as a whole as well as its components obesity, high low-density lipoprotein 
cholesterol, and high insulin level individually have predicted carotid intima media 
thickness progression even in 32-year-old adults (179).  

Cognitive Decline   

Cardiovascular risk in midlife predicts worse cognitive function later in life (180-182). 
Obesity, dyslipidemia, and midlife diabetes all serve as independent risk factors for later 
cognitive decline (4, 180, 181). The most important risk factor for such decreased 
cognition in midlife appears to be hypertension, with a 28 to 36% additional risk at 
population level (4). Consistently, antihypertensive treatment has reduced the incidence of 
dementia (183).  

In the elderly, cognitive decline has been associated with the metabolic syndrome in its 
entirety (184) as well as its components and features including obesity (185-187), 
hypertension (187-189), dyslipidemia (190), insulin resistance (191-193), type 2 diabetes 
(194), increased homocysteine (195), and increased CRP and IL-6 (184).   

Brain Glucose and Insulin 

Glucose concentration in the brain tissue depends on cerebral blood flow as well as 
glucose uptake and metabolism. It is possible that the metabolic syndrome has an effect 
on both. 

Cerebral blood flow. PET studies have shown reduced regional cerebral blood flow 
response during cognitive performance especially in the posterior parietal, thalamic, and 
the middle/posterior watershed areas in patients with hypertension (196). Blood flow in 
the middle cerebral arteries has been reduced in patients with obesity (197). Vascular 
autoregulation have been affected by hypertension, dyslipidemia, artherosclerosis, and 
hyperglycemia (38).  

Glucose uptake and metabolism. In insulin-resistant mice, decreased GLUT1 density 
occurs in the thalamus, cerebellum, and hippocampus but not in the cerebral cortex or 
olfactory bulb (198). It is not known whether the metabolic syndrome has an effect on 
brain glucose uptake. In humans, higher cholesterol levels in late middle age have been 
associated with in precuneal, parietotemporal, and prefrontal hypometabolism (199). The 
effect of the other metabolic risk factors on brain metabolic rates remains unknown. 
 
Brain insulin. In rats, insulin resistance gained with fructose feeding has led to a similar 
alteration in insulin-mediated post-receptor signaling in the brain (200, 201), as seen also 
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in the muscle (202) and the liver (203). Studies in humans and rats have suggested that 
insulin resistance and chronic peripheral hyperinsulinemia result in a reduction in insulin 
transport across the BBB, relative hypoinsulinemia, and reduced insulin signaling in the 
brain (204). Hyperinsulinemia has also been associated with cognitive decline and 
dementia (205, 205).  

2.2.3. Effects of Metabolic Risk Factors on Brain Metabolites 

Effects of metabolic syndrome risk factors on the brain have been studied with 1H MRS 
in several brain regions (Figure 4). Results (Table 2) are not always comparable, because 
they apply only to the specific brain region studied. Studies suggest that at least 
hypertension (206), dyslipidemia (207), impaired glucose tolerance, and type 2 diabetes 
(208, 209) may alter cerebral metabolism.  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4 Regions studied with 1H MRS in patients with metabolic risk factors. 
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Study Subject groups  
(n = M/n = F) 

Age  
(years) 

BMI 
(kg/m2) 

Triglycerides; 
HDL cholesterol 
(mmol/) 

Systolic/
diastolic 
blood 
pressure  
(mmHg)

HbA1c

(%); 
duration  
(years) 

Brain regions Findings

Hypertension

Catani   
et al.  
2002 
(206) 

HT+ (5/5)
HT- (5/5) 

78 
79 

NA
NA 

NA
NA 

137/78
130/74 

NA; 0
NA; 0 
 

Paratrigonal 
white matter 
bilaterally 

HT+ vs HT-: NAA/tCr↓ (trend), 
   mI/tCr ↑, Cho/tCr ↔ 

Hypertension and type 2 diabetes 

Kario  
et al.   
2005 
(208) 

T2DHT+ (7/13)  
HT+ (7/13) 
HT- (4/8)  

69 
69 
69 

24.5
23.5 
24.1  

DL in (n)
7 
5 
2 

161/85
158/84 
123/70 
 

NA; 0
NA; 0 
NA; 0 
 

Left 
periventricular 
white matter 

T2DHT vs HT-: NAA/H2O↓,  
   NAA/tCr↓ (trend) 
 T2DHT vs HT+ NAA/H2O↓,  
   NAA/tCr↓   
 T2DHT vs HT- tCr/H2O↔,  
   Cho/H2O↔ 
 HT+ vs HT- NAA/H2O↔,  
  NAA/tCr↔

Dyslipidemia

Sinha  
et al.   
2004 
(207) 

DL+
  DL+MED+ 13  
  DL-MED- 6  
DL- 21 
Altogether: (34/6) 

33 
30 
30 
 

Higher in 
DL+ than in 
DL- 

3.7;  1.0
2.6;  1.1 
1.6;  1.1 

 

NA NA; 0
NA; 0 
NA; 0 
NA; 0 
 

Parieto-
temporal 
region 

DL+ vs DL-: NAA/tCr↔, 
   Cho/tCr↔, NAA/Cho↔ 
 DL+MED+: Tg↑ correlated  
   with NAA/Cr↑ and Cho/Cr↑ 
 DL+MED-: HDL↓ correlated  
  with Cho/Cr↑

Table 2. 1H MRS studies on brain metabolites in patients with metabolic syndrome risk factors 

 



 

 

 

    Occipital 
region 

DL+ vs DL-: NAA/tCr↔,
   Cho/tCr↔, NAA/Cho↔ 
 All: Fat%↑ and HDL↓  
   correlated with Cho/Cr↑ 
 All: TChol↑ and HDL↓  
   correlated with NAA/Cho↓  
 DL+MED+: Age↑  
   correlated with NAA/Cr↓ 
 DL+MED-: Tg↑ and HDL↓  
  correlated with NAA/Cr↑

Impaired glucose regulation 

Sahin  
et al.   
2008 
(209) 

IGT (5/8) 
T2DHbA1c<10% 
(6/4) 
T2DHbA1c>10% 
(6/9)  
NGT (5/9) 

45 
46 
54 
42 
 

NA
NA 
NA 
NA 

NA
NA 
NA 
NA 

NA
NA 
NA 
NA 

5.7; 0
7.9;  9 
13.6;  8 
5.2; 0 

Frontal cortex
 

T2DHbA1c>10% vs   
   T2DHbA1c<10%:     
   NAA/tCr↓, Cho/tCr↓ 
 IGT vs NGT: Cho/tCr↑ 
 T2D vs NGT: mI/tCr↑ 
 All: S-Insulin↑ correlated  
   with NAA/tCr↓ 
 All: HbA1c↑ correlated with  
  NAA/tCr↓ and Cho/tCr↓ 

    Parietal white 
matter 

T2D vs NGT or IGT Cho/tCr↓ 
 T2DHbA1c>10% vs 
T2DHbA1c<10% Cho/tCr↓  
 All: HOMA-IR↑ and fP-Glc↑  
   correlated with NAA/tCr↓ 
 All: HbA1c↑ correlated with 
Cho/tCr↓

    Thalamus No differences in metabolites  
 All: HbA1c↑ correlated                       
  with mI/tCr↑                                    

 

 

 

 

 

 

 

 

 

 

 

 
 
NA, not applied; HT, hypertension; DHT, type 2 diabetes and hypertension; DL, dyslipidemia; TChol, total cholesterol; Tg, triglycerides; HDL, HDL cholesterol; IGT, impaired glucose 
tolerance; NGT, normal glucose tolerance; T2D, type 2 diabetes; Fat%, body fat percent; HOMA-IR, Homeostatic Model Assessment of Insulin Resistance; fP-Glc, fasting plasma glucose; 
NAA, N-acetylaspartate; tCr, total creatine; Cho, choline; mI, myo-inositol; Glc, glucose. 
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2.3. Type 1 Diabetes and the Brain 

2.3.1. Type 1 Diabetes 

Type 1 diabetes is an inflammatory autoimmune disease that leads to β-cell destruction in 
the pancreas and thereby to absolute insulin deficiency. Its etiology is not fully 
understood, but both genetic predisposition and environmental factors are important. 
The incidence of type 1 diabetes has doubled in the world over the past 10 years. In 
Finland, where there are approximately 45 000 patients, its incidence is the highest in the 
world and rapidly increasing (2, 3). Age of onset is often between 4 and 13 years (2). 

The insulin deficiency in type 1 diabetes leads to hyperglycemia that is treated with 
insulin replacement therapy. In order to avoid microvascular complications, the aim is to 
achieve normoglycemia (3.9-6.1 mmol/l, HbA1c 6-7% / 42-53 mmol/mol). The limiting 
factor and the most common side effect in diabetes management is hypoglycemia. The 
hypoglycemic symptoms caused by adrenergic discharge (palpitation, sweating, hunger, 
tremor, and anxiety) and the blood glucose level at which these symptoms appear depend 
on the overall glycemic control and the frequency of hypoglycemic episodes. Lack of 
these symptoms is called hypoglycemia unawareness. The central symptoms (headache, 
confusion, optical illusions, and unusual behavior) appear at around 3.0 to 2.4 mmol/l, 
disorientation and drowsiness at around 2.3 to 1.6 mmol/l, and unconsciousness and 
convulsions at around 1.5 mmol/l (210). Brain damage occurs rather late and not until 
after prolonged severe hypoglycemia. The brain regions most vulnerable to hypoglycemic 
damage are the cortex, basal ganglia, thalamus, and hippocampus (211).  

 
Good glycemic control is important because hyperglycemia is the most important risk 
factor for the diabetic microvascular complications retinopathy, nephropathy, and 
peripheral neuropathy (212). Incidence of the retinopathy that often is the first 
complication to occur, starts to increase after 5 years past diagnosis (213). With improved 
therapy over the last decades, however, the incidence of microvascular complications has 
decreased (214).  

Glycemic control is estimated with glycated hemoglobin HbA1c that indicates the 
mean blood glucose in the past three months. An acceptable HbA1c can therefore be 
reached both with steady or with highly variable blood glucose concentrations (215). 
Although HbA1c variability does predict (216, 217), large daily glycemic variation may not 
predict (218) retinopathy or nephropathy. The peripheral nervous system may, however, 
be particularly vulnerable also to daily glycemic variation (219). Other important risk 
factors for microvascular complications are male gender, smoking (220), and metabolic 
risk factors including obesity, hypertension, and dyslipidemia (221-223). The prevalence 
of metabolic syndrome in Finnish patients with type 1 diabetes is 39% (224), higher than 
in an age-matched non-diabetic population (< 20%) (1).  
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2.3.2. Effects of Type 1 Diabetes on the Brain  

The harmful effect of diabetes on brain function was already recognized in 1922 (225). 
The first attempt to describe cognitive impairment in diabetes was made in 1950 by 
Russel De Jong (226), who called the condition “diabetic encephalopathy.” In the 1960s, 
an autopsy study first showed the widely distributed morphological brain changes typical 
of diabetes (227). Thereafter, diabetes-related brain changes did not enter the limelight 
until the 1980s, when imaging methods started to develop.  

Morphological Abnormalities 

Autopsy studies in young adults with type 1 diabetes and severe microvascular 
complications have shown several types of abnormalities (227, 228). The cortex has 
shown neuronal damage and gliosis and the white matter regional swelling and myelin 
damage. These same diffuse changes have also been seen in the basal ganglia, brain stem, 
and cerebellum. Blood vessels have thickened capillary basement membranes and 
decreased capillary density. These findings have differed from those previously seen in 
patients with hypertension or who had died due to hypoglycemia; the findings were 
regarded as consequences of a combination of primary diabetic abnormality and ischemia.  
 
Type 1 diabetes elevates risk for cerebral atrophy, and possibly also for white matter 
lesions (11). Studies on atrophy are small and sometimes contradictory, but atrophy has 
been associated with onset of diabetes before age 7 (229), with hypoglycemic episodes 
and with poor glycemic control in children and adults (229, 230), and with retinopathy in 
adults (230, 231). An increased volume of white matter lesions has been reported in some 
(232-234) but not in all (235, 236) studies.  

Brain Infarctions 

Type 1 diabetes elevates risk for stroke (10) and cerebrovascular mortality five-fold (237), 
and the risk for lacunar infarctions seven-fold (10). Initial post-mortem studies have 
stressed the frequency of lacunes predominantly within the basal ganglia, paramedian 
basis pontis, and thalamus (238). The frequent hypertension in these patients, however, 
limits evaluation of the findings (239). Studies on stroke risk factors that include only 
patients with type 1 diabetes are sparse, but increased risk has been associated with low 
HDL cholesterol (240). 

Cognitive Decline 

Despite their long history, clinical features of cognitive decline and its causes in patients 
with type 1 diabetes all remain under debate. In a meta-analysis of 33 studies, memory 
and learning seemed to be spared, but modest yet highly significant slowing of mental 
speed and diminished mental flexibility were common findings (9).  

 
Hypoglycemia. The general belief has been that repetitive episodes of hypoglycemia are the 
most important cause of diabetes-related cognitive decline. Although retrospective studies 
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have demonstrated this association (233, 241, 242), large prospective studies have been 
unable to repeat such findings (220, 243, 244). Furthermore, intensive insulin treatment 
that unavoidably leads to an increased number of hypoglycemic episodes has shown no 
effect on cognition in adults (230, 243-245). The effect of hypoglycemia on the 
developing brain may be more detrimental. Early onset of type 1 diabetes (246, 247) and 
repetitive episodes of hypoglycemia during childhood (248, 249) have repeatedly appeared 
as potent predictors of worse cognitive outcome. 

 
Chronic hyperglycemia. Evidence is emerging regarding the deleterious effects of chronic 
hyperglycemia on the adult brain (250). In an 18-year follow-up, patients with HbA1c < 
7.4% (57 mmol/mol) performed better in tasks requiring motor speed and psychomotor 
efficiency than did patients with HbA1c > 8.8% (73 mmol/mol) (244). A large variety of 
cognitive functions improved with better glycemic control. Cognitive decline has been 
associated with retinopathy and neuropathy (9). 

 
Acute hyperglycemia. In children, acute hyperglycemia of > 22.2 mmol/l has been associated 
with cognitive deterioration to the same degree as for hypoglycemia < 3 mmol/l (251). 
Moreover, in adult patients with type 1 and 2 diabetes, acute hyperglycemia > 15 mmol/l 
has been associated with impairment in a variety of cognitive tests (252, 253). 

Brain Glucose 

Brain glucose concentration has been 2 to 3 mmol/l higher in patients with type 1 
diabetes than in non-diabetic individuals (254-256).  Whether the brain is able to adjust its 
glucose uptake or metabolism in response to the altered glycemic conditions is unknown. 
 
Cerebral blood flow. Early studies with PET suggest that patients with diabetes have more 
than a 20% higher local cerebral blood flow than do non-diabetic individuals, and that 
this difference is highest in the frontal brain regions (257, 258). The vasodilatation 
response to a rhythmic handgrip exercise has been increased (259). 

In non-diabetic humans, repetitive hypoglycemia induced an increase in blood flow in 
one study (260) but had no effect in another (261). In type 1 diabetic patients both with 
hypoglycemia awareness (43, 258) and unawareness (258), hypoglycemia enhanced 
cerebral blood flow in the brains frontal regions. Some studies have suggested that the 
whole brain blood flow also increases but not before the blood glucose level is below 2.0 
mmol/l (210, 262).   
 
Glucose uptake and metabolism. Brain glucose uptake can be regulated by modulation of the 
expression of GLUT1s (263) and by changing their distribution between the luminal and 
abluminal membranes of the vasculatory endothelial cells (47). 

Robust animal data have shown that the brain responds to hypoglycemia by 
upregulating glucose transporters (264-266). This hypothesis receives support from the 
early clinical studies that found increased glucose uptake by measuring the arteriovenous 
glucose differences in non-diabetic individuals during repetitive hypoglycemia (260) and 
in patients with type 1 diabetes with tight glycemic control (267). Later studies have 
presented more contradictory results. A PET study on repetitive hypoglycemia in non-
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diabetic individuals showed no effect on their glucose uptake or on its metabolic rate 
(261). A 1H MRS study in turn found a 17% higher glucose concentration in the occipital 
cortex during acute hyperglycemia (16.6 mmol/l) in patients with hypoglycemia 
unawareness than in non-diabetic controls, suggesting that upregulation of glucose uptake 
may have occurred (256). The most recent studies suggest that during hypoglycemia, the 
glucose uptake and brain activity increase regionally, and that this response differs 
between hypoglycemia aware and unaware patients and in patients with and without 
microvascular disease (43, 268-270). These studies suggest that the metabolic rate 
increases in the regions that evoke hormonal and neural responses to hypoglycemia. The 
increased glucose utilization and the decreased densities of GLUT1 have also appeared to 
be similar at a local level (271).  

The effects of chronic hyperglycemia on brain glucose uptake have been studied the 
most. Some studies in rats have reported that, as a result of chronic hyperglycemia, 
GLUT1 expression is decreased (272-274), while other studies reported GLUT1 
expression to be  unaltered (275, 276). Moreover, both down-regulated (271) and 
unchanged (277) glucose uptake have occurred. In PET studies, diabetic patients with 
poor glycemic control have shown an unchanged uptake of glucose during hypoglycemia 
(278), but a 12% decreased glucose uptake during hyperglycemia (279). This is in line with 
a 1H MRS study that assessed glucose uptake or metabolism during hyperglycemia (16.6 
mmol/l) in type 1 and 2 diabetic patients with poor glycemic control (280). The diabetic 
patients had a 10% lower brain glucose concentration than did the non-diabetic 
participants, but this difference was non-significant. In the light of these studies, it is 
possible that chronic hyperglycemia reduces brain glucose uptake.  

As mentioned, an acceptable HbA1c can be reached with steady or with variable blood 
glucose. In healthy individuals with undulating blood glucose concentrations, brain ECF 
glucose concentration parallels plasma glucose concentration at a time lag of 30 minutes 
(281). What is unknown is whether the brain is able to adjust its glucose metabolism in 
response to such blood glucose variation in type 1 diabetes.  

2.3.3. Effects of Type 1 Diabetes on Brain Metabolites 

Several regions in the cerebrum but none in the cerebellum have been studied with 1H 
MRS in patients with diabetes (Figure 5). The studies on the cerebrum provide conflicting 
data (Table 3) which may partly be explained by the following issues: First, in three of the 
nine studies, patients with type 1 and 2 diabetes have not been separated. Second, some 
variation has occurred in inclusion criteria, for example regarding age and gender of 
participants, duration of diabetes, and presence of diabetic complications and 
ketoacidosis. The studies that assessed the glycemic history of patients did it only with 
HbA1c. Plasma glucose values during the study were reported in four studies only. For 
these reasons, drawing any general conclusions is impossible.  
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Figure 5 Regions studied with 1H MRS in patients with type 1 diabetes. 



 

 

Study Subject groups
(n = M/n = F)

Age HbA1c (%); duration 
(years)

Brain regions Findings

Type 1 diabetes  

Kreis et al. 
1992 (254) 

T1D (7/10) 
    9 DKA 
non-DM (19/11)

43
47 

NA
NA 

White matter in 
posteriomedial 
parietal cortex 

T1D vs non-DM: NAA/tCr↓,
   Cho/tCr↔, mI/Cr↑  

  Gray matter in 
posterior occipital 
cortex 

T1D vs non-DM: NAA/tCr↔, 
   Cho/tCr↔, mI/tCr↑ 

Perros et al.  
1997 (233)

IDDM HG- 11
IDDM HG+ 10 

42
45

NA Parietal and frontal 
lobes 

IDDM HG+ vs IDDM HG-: 
  NAA/Cr↔, NAA/Cho↔

Mäkimattila et al.  
2004 (255) 

T1D (10/0) 
    retinopathy and   
    peripheral 
neuropathy 
non-DM (10/0)

36
36 

9.1; 28
5.4; 0 

Frontal cortical gray 
matter 

T1D vs non-DM: H2O↑, NAA/H2O↔,  
   tCr/H2O↔, Cho/H2O↔, mI/H2O↔ 

  Prosterior cortical 
white matter 

T1D vs non-DM: H2O↑,  NAA/H2O↔,  
   tCr/H2O↔, Cho/H2O↑, mI/H2O↑ 
 T1D: Cumlative HbA1c index↑ correlated  
  with NAA/H2O↓ and Cho/H2O↓

  Thalamus 
 

T1D vs non-DM: H2O↔, NAA/H2O↔,   
   tCr/H2O↔, Cho/H2O↑, mI/H2O↔ 
 T1D: Cumulative HbA1c index↑  
  correlated with Cho/H2O↓

Sarac et al.
2005 (282) 

T1D 30  (NA) 
    14 retinopathy 
non-DM 14 

13
12 

11.9; NA
NA; 0 

Posterior parietal 
white matter  

T1D vs non-DM: NAA/Cr↓, Cho/tCr↔ 

Table 3. 1H MRS studies on brain metabolites in patients with diabetes 

 

 

 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                   
 



 

 

Wootton-Gorges et 
al.  
2007 (284)

T1D+DKA 29 12 NA; 45% newly diagnosed Occipital 
gray matter 

 During treatment vs after recovery: 
    NAA/Cr↓ (trend), Cho/Cr↔ 

  
 

 Periaqueductal 
gray matter

During treatment vs after recovery: 
  NAA/Cr↓ (trend), Cho/Cr↔

  Basal ganglia During treatment vs after recovery: 
  NAA/Cr↓ (trend), Cho/Cr↔

Selvarajah et al. 
2008 (285) 

T1D DPN+ (10/0)
T1D DPN- (8/0) 
non-DM (6/0) 

30
26 
43 

7.8; 22
9.1; 8 

Right thalamus lobe Short TE: T1D DPN+ vs T1D DPN- 
   vs non-DM: NAA/tCr↔, NAA/Cho↔,  
   Cho/tCr↔ 
 Long TE: T1D DPN+ vs non-DM:  
   NAA/tCr↓, NAA/Cho↓, Cho/tCr↔ 
     Neural dysfunction but not loss 
 Severity of peripheral neuropathy  
  correlated with brain metabolites↑ 

Type 1 and 2 diabetes not separated

Geissler et al. 
2003 (286) 

T1D (5/1) + T2D 
(14/10) 
    3 DKA 
non-DM (15/15) 

46
37 

8.3; 17
<6.0; 0 

Parietal 
white matter 
 

T1D+T2D vs non-DM: NAA/tCr↔,  
   Cho/tCr↔, mI/tCr↑  
 T1D vs T2D mI/tCr↑ 
 S-Osmolality↑ and S-Sodium↑ correlated  
  with mI/tCr↑

Sörensen et al. 
2008 (287) 

Painful DPN+ (12/0)
    T1D 2 + T2D 10  
DM Pain- (13/1) 
    T1D 6 + T2D 8 
non-DM (9/9)

61
57 
18 

7.5; 15
7.7; 14 
NA; 0 

Anterior 
cingulated cortex 

Painful DPN+ vs DM Pain- vs non-DM:  
   NAA/H2O↔, tCr/H2O↔, Cho/H2O↔ 

  Dorsolateral 
prefrontal cortex

DM Pain- vs non-DM: NAA/H2O↓, 
 tCr/H2O↓, Cho/H2O↔

 

 

 

 
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

NA, not applied; T1D, type 1 diabetes; T2D, type 2 diabetes; non-DM, no diabetes; IDDM, insulin-dependent diabetes; DKA, diabetic ketoacidosis; DPN, diabetic peripheral neuropathy; 
HG, severe hypoglycemias, TE, echo time; NAA, N-acetylaspartate; tCr, total creatine; Cho, choline; mI, myo-inositol; Glc, glucose. 
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2.4. Mechanisms of Brain Damage in Metabolic Syndrome and 

Diabetes 

Brain tissue in patients with metabolic risk factors or type 1 diabetes may be harmed by 
three presumed mechanisms atherosclerosis, hyperinsulinemia, and glucose toxicity 
(Figure 6) (205, 288). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6 Mechanisms that damage the brain in patients with metabolic syndrome and type 1 
diabetes. Modified from Biessels et al. Neurology 2006;5:70 (205) 

Atherosclerosis and microvascular disease may lead to impaired vascular reactivity, 
hypoperfusion, and in time to chronic cerebral ischemia.  

Hyperinsulinemia in patients with impaired glucose regulation or type 2 diabetes has 
been associated with cognitive decline. Because insulin has vasoactive effects, some of 
this association may be mediated through vascular disease (289). Insulin has also been 
suggested to be involved in amyloid metabolism and in Alzheimer’s disease (205). 
Amyloid precursor protein is a transmembrane glycoprotein of undetermined function. 
Its degradation produces amyloid-β peptide that is secreted into the ECF with accelerative 
effect of insulin. In the ECF, amyloid-β peptide can aggregate with other proteins to form 
the senile plaques of Alzheimer’s disease or alternatively be cleaved. The cleavage 
processes are two: through LDL receptor-related protein-mediated endocytosis, or 
through direct extracellular proteolytic degradation. The latter involves an insulin-
degrading enzyme with which insulin competes (290). Hyperinsulinemia may therefore 
inhibit the degradation of amyloid-β peptide and favor the formation of senile plaques.  
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Tissue glucose may cause both microvascular damage and brain tissue damage by four 
different mechanisms (288, 291, 292). First, activation of the polyol pathway converts the 
excess glucose to sorbitol and fructose, which leads to an imbalance in nicotinamide 
adenine dinucleotide phosphate (NADPH) -redox and changes in signal transduction. 
Increased sorbitol has also been linked to alterations in metabolic pathways of 
phosphoinositide (including myo-inositol) and diacylglycerol which, together with 
alterations in calcium homeostasis, affect the activity of protein kinases. Second, the 
irreversible nonenzymatic glycation of proteins leads to formation of advanced glycation 
end-products (AGEs) that alter the function of proteins and cause generalized cellular 
dysfunction. Third, increased activation of protein kinase C leads to activation of growth 
factors and decreased endothelial nitric oxide synthase activation. Fourth, increased flux 
through the hexosamine pathway enhances expression of transforming growth factor-β1 
and plasminogen activator inhibitor-1, both of which are harmful for diabetic blood 
vessels.  

Each of these mechanisms results in production of reactive oxygen species (ROS) in 
the mitochondrial electron transport chain, which is reflected as an overall increase in 
cellular oxidative stress. In vitro work shows that in nerve cells, even short-term 
hyperglycemia leads to oxidative damage and apoptosis (293). The brains of 
hyperglycemic rats have shown increased sorbitol and fructose (294) protein kinase A and 
C (295), AGEs (296), and by-products of lipid peroxidation (297-299). Furthermore, 
activity occurs in the superoxide dismutase and catalase enzymes involved in antioxidant 
defence (297, 299).  
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3 AIMS OF THE STUDY 

The present studies were undertaken in order to answer the following questions: 
 

I. Do the risk factors of the metabolic syndrome influence various brain metabolites?  
 

II. Are there tissue-specific regional differences in the glucose content of the 
cerebrum? Are the distributions of glucose or brain metabolites altered by type 1 
diabetes? 

 
III. How much does acute hyperglycemia raise cerebral glucose in type 1 diabetes, and 

is there regional variability? Do chronic fluctuations in blood glucose alter cerebral 
glucose uptake or metabolism in type 1 diabetes? 

 
IV. Does the cerebellum have a glucose content different from that of the cerebrum? 

Does type 1 diabetes elevate glucose content or alter brain metabolites in the 
cerebellum? Do chronic fluctuations in the blood glucose concentration alter the 
cerebellar glucose uptake or metabolism in type 1 diabetes? 
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4 SUBJECTS AND STUDY DESIGN 

This study is part of the nationwide Finnish Diabetic Nephropathy (FinnDiane) Study 
and was performed at the Department of Medicine, Division of Nephrology, and the 
Department of Radiology of the Helsinki University Central Hospital. 

Forty-three men aged 20 to 45 years were recruited from the Helsinki metropolitan 
area. The patients with diabetes were selected from the database of the FinnDiane study 
or the outpatient clinics of the Helsinki University Central Hospital. The non-diabetic 
participants were recruited by advertisement from the University of Helsinki, the Taxi 
Drivers Union, and Health Care Centers located in the Helsinki metropolitan area. 
Exclusion criteria were head trauma, neurological or psychiatric diseases, smoking, 
cerebrovascular or cardiovascular diseases, known coagulopathy, chronic inflammatory 
disease, and cancer. Previous or present alcohol or drug abuse was not allowed, and 
contraindications for MRI also precluded participation.  

None of the subjects had symptoms or signs of peripheral neuropathy (abnormal 
tendon reflexes or decreased fine touch or vibration perception threshold). Of the 
diabetic participants, two had very mild and two moderate background retinopathy, but 
the others had none. Microalbuminuria was observable in one non-diabetic (39 mg/24h) 
and three diabetic subjects (32, 38, and 115 mg/24h). The diabetic subject with the 
greatest albumin excretion was treated with 10 mg ramipril and 50 mg acetylsalicylic acid. 
He participated in the hyperglycemic clamp in Studies III and IV. Other subjects used no 
regular medication except for insulin for diabetes. Eleven used glargine insulin, two took 
detemir insulin, and five NPH insulin. None of the diabetic subjects had any history of 
unconsciousness due to hypoglycemia, and they reported experiencing hypoglycemic 
symptoms at a blood glucose < 3 mmol/l.    

The non-diabetic control subjects for the diabetic patients were selected in each study 
based on age-matching. In Studies III and IV, BMI-matching was also used.  

4.1. Study I 

Brain glucose and metabolites were compared between nine men with risk factors for the 
metabolic syndrome (risk group) and nine men with no metabolic risk factors (control 
group). Associations were sought between brain metabolites, brain glucose, and metabolic 
risk factors.  

Subjects in the risk group had at least one parent with type 2 diabetes, whereas those 
in the control group had no parent with type 2 diabetes. Risk-factor assessment was based 
on criteria of the IDF (Table 1). Subjects in the risk group fulfillled the main criterion and 
of the additional criteria, had one to four (four had one, three had two, one had three, and 
one had four). Type 2 diabetes was excluded with a 2-h oral glucose tolerance test 
(OGTT). Of the subjects in the control group, one fulfillled the main criterion concerning 
waist circumference and one the minor criteria concerning HDL cholesterol. 1H MRS was 
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performed after an overnight fast. The data from the voxels in the frontal cortex, the 
frontal white matter, and in the thalamus were included in analyses.  

4.2. Study II  

The glucose content and brain metabolites were compared on the one hand between 
brain regions and on the other hand between the group of non-diabetic subjects and the 
group of diabetic subjects. All the 17 patients with type 1 diabetes and 12 age-matched 
non-diabetic subjects were included. The 1H MRS study was performed after an overnight 
fast (fasting glycemia, MRS 0), and the analyses included data from the frontal cortex, 
frontal white matter, and the thalamus.  

4.3. Study III 

Changes in the brain glucose content during acute hyperglycemia were compared between 
brain regions in both non-diabetic and diabetic subjects. Absolute brain glucose content 
and brain metabolites during acute hyperglycemia were compared between the diabetic 
and the non-diabetic subjects. Seven patients with type 1 diabetes and 11 non-diabetic 
controls were selected based on age- and BMI-matching. The diabetic subjects had longer 
than 8 years of diabetes duration and large daily blood glucose variation defined by the 
mean amplitude of glycemic excursions (MAGE; see 5.2). After the collection of the 
baseline 1H MRS data during fasting glycemia (MRS 0), the subjects were studied with a 
normoinsulinemic hyperglycemic clamp (see 5.6.) that imitated a typical hyperglycemic 
episode in diabetic patients with a large daily blood glucose variation. During acute 
hyperglycemia, the spectroscopy data were collected twice (MRS I and II). The study 
included brain glucose and metabolite data from the frontal cortex, frontal white matter, 
and the thalamus. 

4.4. Study IV 

The glucose content and brain metabolites were compared on the one hand between the 
cerebellum and the cerebrum, and on the other hand between men with type 1 diabetes 
and healthy non-diabetic men during fasting glycemia and during acute hyperglycemia. 
Baseline data (MRS 0) on 18 subjects with type 1 diabetes and 20 control subjects as well 
as data during hyperglycemia (MRS I and II) of 7 subjects with type 1 diabetes and 11 
control subjects were included in the analyses. 
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4.5. Ethical Aspects and Informed Consent 

The research project was approved by the ethics committee of the Hospital District of 
Helsinki and Uusimaa, and given research licenses by the Helsinki Health Center, the 
Department of Medicine, and the Department of Radiology of Helsinki University 
Central Hospital. Each subject provided written informed consent prior to participation. 
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5 METHODS  

5.1. Questionnaires and Anthropometric Measurements 

The subjects answered the same questionnaires used in the FinnDiane study, 
questionnaires covering medical history, hypoglycemia awareness, symptoms of peripheral 
neuropathy, alcohol consumption, smoking habits, and the medical history of siblings and 
parents. Waist circumference was measured from midway between the lowest rib and the 
iliac crest. Body mass index was calculated by dividing weight in kilograms by height in 
meters squared (kg/m2). Blood pressure was measured after 10 minutes of rest in a sitting 
position with an automated standardized blood pressure monitor. The mean of at least 
two measurements was used in each analysis.  

5.2. Tests of Glucose Metabolism and Glycemic Control  

In Study I, a 2-h 75-g glucose tolerance test was performed according to WHO criteria 
(122, 122). Blood samples were drawn at 0, 30, 60, and 120 minutes for the determination 
of plasma glucose and serum insulin concentrations. The homeostatic model Assessment 
of Insulin Resistance (HOMA-IR) (300) value was calculated (Diabetes Trial Unit, The 
Oxford Centre for Diabetes, UK; a site which is available at www.dtu.ox.ac.uk, last 
accessed in September 2010).  

In the patients with diabetes, glycemic control was assessed based on one HbA1c. In 
Study III, a variable blood glucose profile in the diabetic patients was verified with a 
continuous glucose monitoring system (CGMS; Medtronic MiniMed, Northridge, CA, 
USA). The glucose monitor recorded the interstitial fluid glucose every fifth minute for 3 
to 5 days prior to the MR data collection. The data were downloaded via the Com_Station 
to the MiniMed Solutions Software version 2.0b (Medtronic MiniMed). To assess glucose 
variability, the daily curves were first assessed manually, and then the MAGE (301) was 
calculated with an in-house script in the Matlab programming environment (MathWorks 
Inc, Natick, MA, USA). The script calculated the arithmetric mean of the differences 
between consecutive peaks and nadirs.  

5.3. Assessment of Microvascular Complications 

Microvascular complications were assessed in all patients with diabetes.  
Symptoms of peripheral neuropathy such as muscle weakness or cramps, prickle or 

tingling and numbness of the feet were gauged with a standardized questionnaire. Achilles 
and patellar tendon reflexes were tested in a sitting position by use of a standard 



 

 41

triangular rubber-headed reflex hammer. Any detectable reflexive response was 
considered an intact reflex. Fine touch was tested from the first toe, the second metatarsal 
bone and from the heel with a 2-g monofilament. Vibration perception threshold was 
tested in the first metatarsal bone and in medial malleoli with a C128 tuning fork.  

Retinopathy was assessed from fundus photographs by an ophthalmologist. The 
photographs were scored based on the Early Treatment Diabetic Retinopathy Study scale 
(302).  

The presence of nephropathy was assessed by urinary albumin excretion rate (UAER) 
from a 24-hour urine collection. When necessary, either additional overnight urine 
collections were performed, or renal status was verified from medical files. 
Normoalbuminuria was defined as an UAER < 30 mg/24 h or in an overnight urine 
sample < 20 μg/min. Microalbuminuria was defined as an UAER 30 to 300 mg/24 h or 
20 – 200 μg/min. Renal function was assessed as creatinine clearance. 

5.4. Laboratory Assays 

Blood samples were drawn from the antecubital vein during a fasting state on the study 
morning or within 2 weeks before the 1H MRS data collection.  

Blood glucose was measured bedside with a Beta-glucose analyzer (HemoCue Glucose 
201+; HemoCue, Ängelholm, Sweden). Plasma glucose was analyzed by the glucose 
oxidase method (Beckman Glucose Analyzer II; Beckman Instruments, Fullerton, CA, 
USA), serum insulin with a time-resolved fluoroimmunoassay (PerkinElmer, Turku, 
Finland). A coefficient of 6.945 served to convert the plasma insulin values from mU/l to 
nmol/l. HbA1c was analyzed by immunoturbidometry (normal range 4.0-6.0% / 20-42 
mmol/mol).  

Plasma creatinine, serum alanine aminotranferase, urea, serum total cholesterol, HDL 
cholesterol, and triglycerides were analyzed with enzymatic photometric assays (Roche 
Diagnostics, Basel, Switzerland). Serum LDL cholesterol was calculated by Friedewald’s 
formula (303). Serum sodium was analyzed by an ion selective electrode method (Roche 
Diagnostics). Osmolality was calculated by the equation 1.86 × S-sodium (mmol/l) + P-
glucose (mmol/l) + S-urea (mmol/l) + 9. 

Serum IL-6 (Bayer, Tarrytown, NY, USA), and urinary albumin concentration and 
plasma CRP (Orion Diagnostica, Espoo, Finland) were analyzed by 
immunoturbidometric methods. Plasma homocysteine was analyzed by an enzymatic 
assay (Axis-Shield Diagnostics, Dundee, UK) and serum soluble endothelial selectin and 
sICAM1 by commercial immunoassays (R&D Systems, Minneapolis, MN, USA).  

5.5. MRI and 1H MRS 

Preparations for the study. Participants were instructed to avoid physical exercise, heavy 
meals, medication, and alcohol on the day previous to the study. They were furthermore 
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instructed not to stay awake late on the previous night and to fast 12 hours before the 
study. The diabetic patients were also asked to avoid hypoglycemic episodes during the 
previous 24 hours. Patients using NPH insulin therefore reduced their normal morning 
dose by 50%, but for others, their dose of glargine or detemir insulin remained normal. 
Hypoglycemic symptoms or verified hypoglycemia (< 2.9 mmol/l) led to rescheduling of 
the study visit.  

Study design. Baseline data (MRS 0) were collected from all subjects. A catheter was 
inserted into the right antecubital vein for drawing of basal blood samples and for a 0.9% 
saline infusion (50 ml/h). Those diabetic subjects with large daily glycemic variation and 
the non-diabetic control subjects continued with a hyperglycemic clamp (see 5.6.) during 
which time, data were collected twice (MRS I and II).  

Data acquisition. The magnetic resonance procedures were performed with a 1.5 T 
magnetic resonance imager equipped with a standard head coil (Siemens Magnetom 
Sonata, Erlangen, Germany). T1-weighted sagittal, T2-weighted coronal, and fast FLAIR 
images were acquired to ensure normal brain structure and to position the voxels from 
which the metabolite data were collected. The voxels were in the midline of the frontal 
cortex (25 x 16 x 20 mm3 = 8.0 ml), the left frontal white matter (30 x 16 x 16 mm3 = 7.7 
ml), the left thalamic lobe (20 x 20 x 20 mm3 = 8.0 ml, shown as white squares in Figures 
4 and 5), and in the middle of the right cerebellar hemisphere (20 x 20 x 20 mm3 = 8.0 
ml). Single voxel 1H MRS was performed with PRESS sequence and chemical-shift 
selective (CHESS) water suppression (TE = 30 ms, TR = 3,000 ms, 64 acquisitions). For 
determining tissue water, non-water-suppressed spectra were collected from the same 
voxels (four acquisitions).   

Quantitation. The MRS data were processed and analyzed with an in-house written 
script running on a Matlab 7.2 platform (MathWorks). The FIDs were apodized with a 
Gaussian function (2.5 Hz broadening factor) and zerofilled up to 2,048 complex points 
prior to Fourier transformation. The peak areas, i.e. metabolite signal intensities, were 
determined for NAA (1.98-2.06 ppm), Glx (3.40-3.45 ppm), tCr (3.00-3.08 ppm), Cho 
(3.18-3.27 ppm), mI (3.52-3.60 ppm) glucose (3.40-3.46 ppm), and H2O (4.2-5.2 ppm) by 
integration. The receiver gain was constant, and the signal intensities were automatically 
corrected for coil-loading and voxel size. The integral data were analyzed as peak ratios of 
metabolite/H2O or metabolite/tCr.  

The increase in glucose concentration in each voxel was analyzed with difference 
spectra (Figure 3). The baseline spectrum was subtracted from the second and third 
spectra (MRS I minus 0 and II minus 0), and a spectrum recorded from 100 mmol/l 
glucose solution was fitted to the difference spectrum (all spectra corrected for voxel size 
and coil-loading effects). For measurement of the glucose phantom spectrum, a 100 
mmol/l glucose solution was prepared in potassium phosphate buffer at pH 7.05. A 50-
ml round-bottomed flask was filled with glucose solution and was positioned within a 4-l 
plastic spherical container filled with 0.1 mmol/l MnCl2 solution and NaCl (0.4%). This 
phantom setup corresponded to approximately the coil loading obtained with in vivo 
studies; thus the required coil loading correction factor was not large. Single voxel 1H 
MRS was performed (voxel size 20 x 20 x 20 mm3) with a PRESS sequence and CHESS 
water suppression scheme (TE = 30 ms, TR = 6,000 ms, 64 acquisitions, spectral width 
of 1000 Hz, 1024 acquired complex points). The FID was apodized with a Gaussian 
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function (2.5 Hz broadening factor) and zerofilled up to 2,048 complex points prior to 
Fourier transformation. 

A neuroradiologist blinded to the clinical data evaluated the MR images and quality of 
acquired spectra before the analysis. Of all the 316 spectra, 37 were disqualified. 

5.6. Hyperglycemic Normoinsulinemic Clamp (III, IV) 

A hyperglycemic normoinsulinemic clamp was performed to increase blood glucose 
concentration to 12 mmol/l above basal level. Acute hyperglycemia was achieved with a 
bolus of 50% glucose solution (0.5 ml/kg body weight) and maintained with a variable 
infusion of 20% glucose solution (50-300 ml/h) into the right antecubital vein. The left 
hand dorsum with a retrograde catheter was kept warm with heat packs and towels in 
order to obtain arterialized venous blood for measurements of blood glucose (304). 
Samples were drawn every 10 minutes, and blood glucose was analyzed bedside in order 
to adjust the 20% glucose infusion.  

To reduce endogenous insulin secretion during the clamp and to avoid reactive 
hypoglycemia, the non-diabetic control subjects also received a bolus (25 μg) and infusion 
(0.75 μg/min) of a somatostatin analogue (Sandostatin; Novartis, Helsinki, Finland) into 
the left antecubital vein. 

Samples for plasma glucose and serum insulin were drawn before and after each 1H 
MRS (0, I and II) data collection. Means of these values served in the analyses.   

5.7. Statistical Methods 

Power calculations were performed and sample size determined based on results of the 
pilot study (255).  

In Studies I, III, and IV, more robust non-parametric tests were chosen, due to the 
small sample size and the non-normal distributions of the variables. Differences between 
study groups and brain regions were examined by the Mann-Whitney U-test. Correlations 
between 1H MRS data and clinical variables were tested with Spearman’s pair-wise rank-
order correlation test. Differences between three repeated measures during the clamp 
were assessed with the Wilcoxon signed rank test. Multiple testing was taken into 
consideration only in Study I, in which we performed the Bonferroni correction. 

In Study II, in which the number of subjects was higher, parametric tests were used: 
Student’s t-test for differences between study groups and brain regions and the Pearson 
correlation coefficient for correlations. The results were confirmed with non-parametric 
tests.  

All analyses were performed with Sigma Stat Statistical Software (SPSS 15.0, Chicago, 
IL, USA).  The data are given as mean ± SD, and p-values of 0.05 or less were considered 
significant. 
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 Control group Risk group 
Age (years) 36 ± 6 36 ± 7 
Waist (cm) 87 ± 8 104 ± 6** 
BMI (kg/m2) 23.0 ± 2.6 29.0 ± 2.5** 
Systolic blood pressure (mmHg) 126 ± 8 144 ± 13** 
Diastolic blood pressure (mmHg) 76 ± 8 89 ± 5** 
Mean arterial pressure (mmHg) 93 ± 7 107 ± 7*** 
xx
Fasting plasma glucose (mmol/l) 4.7 ± 0.34 5.3 ± 0.5** 
Fasting serum insulin (pmol/l) 28.4 ± 11.5 51.1 ± 22.9* 
OGTT:   
   Plasma glucose at 120 min (mmol/l) --- 6.6 ± 1.8 
   Serum insulin at 120 min (pmol/l) --- 215.3 ± 142.0 
HOMA-IR 0.5 ± 0.2 0.9 ± 0.4* 
HbA1c (%) 5.5 ± 0.2 5.3 ± 0.2 
xx
Total cholesterol (mmol/l) 4.4 ± 1.1 4.7 ± 0.9 
HDL cholesterol (mmol/l) 1.4 ± 0.3 1.4 ± 0.2 
LDL cholesterol (mmol/l) 2.5 ± 1.0 2.6 ± 0.6 
Triglycerides (mmol/l) 0.9 ± 0.3 1.7 ± 1.1 
xx
CRP (mg/l) 0.4 ± 0.6 0.5 ± 0.4 
IL-6 (ng/l) 1.9 ± 0.1 2.0 ± 0.2 
sE-selectin (ng/ml) 30.0 ± 15.23 41.4 ± 17.2 
Homocysteine (µmol/l) 7.3 ± 1.3 9.1 ± 4.1 
sICAM-1 (ng/ml) 217.6 ± 32.2 211.0 ± 37.7 

6 RESULTS 

6.1. Metabolic Risk Factors (Study I) 

Subjects 

Subject characteristics are presented in Table 4. The risk group had abdominal obesity 
and increased blood pressure. Markers of insulin resistance were higher in the risk group 
than in the control group, although in the normal range.  

Table 4. Subject characteristics in Study I. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
OGTT, oral glucose tolerance test; CRP, C-reactive protein; IL-6, interleukin 6; sE-selectin, soluble endothelial selectin; 
sICAM-1, soluble inter-cellular adhesion molecule 1; *p < 0.05, **p < 0.01, ***p < 0.001.  

Brain MRI  

Subjects in the control group had normal MR images with no white matter changes. 
Three subjects in the risk group had white matter T2-hyperintensities. One had a mild 
patchy signal increase in the periventricular white matter and had periventricular rims of 
increased signal intensity. Two had a mild patchy signal increase in the peritrigonal white 
matter and mildly widened lateral ventricles. 
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Brain 1H MRS 

Risk group vs. control group. The risk group had higher tCr/H2O in the thalamus than did the 
control group (Figure 7C). No difference existed in the thalamic glucose/H2O, 
NAA/H2O, Cho/H2O, mI/H2O, or tissue water, between study groups (Figure 7). The 
cortex and white matter showed no difference in any of the metabolites between groups. 
 
Brain metabolites vs. brain glucose vs. metabolic risk factors. In the control group, thalamic 
tCr/H2O (Figure 8A) and mI/H2O (Figure 8B) correlated with thalamic glucose/H2O. In 
the risk group, neither tCr/H2O (r = 0.19, p = 0.651) nor mI/H2O (r = 0.43, p = 0.289) 
correlated with thalamic glucose/H2O. Instead, in the risk group, tCr/H2O (Figure 9A) 
and mI/H2O (Figure 9B) correlated with fasting plasma glucose and tCr also with 2-h 
plasma glucose in the OGTT (Figure 9C).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7 Brain metabolite/H2O ratios and H2O in the risk group (gray) and in the non-diabetic 
group (white). Data are mean, SD and minimum and maximum. 
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Figure 8 Associations between thalamic glucose and A. thalamic total creatine (tCr/H2O) and B. 
myo-inositol (mI/H2O) in the risk group ( ) and in the non-diabetic group ( ).   

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 9 Associations between fasting plasma glucose and A. thalamic total creatine (tCr/H2O) and 
B. myo-inositol (mI/H2O), and C. between the 2-h plasma glucose in the oral glucose 
tolerance test (OGTT) and thalamic tCr/H2O in the risk group ( ) and in the non-diabetic 
group ( ). 
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6.2. Type 1 Diabetes 

Subject characteristics are presented in Table 5, where all diabetic and non-diabetic 
subjects have MR images in the normal range.  

6.2.1. Cerebrum at Baseline (Study II) 

Plasma glucose and and serum insulin remained stable during the study in the diabetic (p 
= 0.361 and p = 0.905) and non-diabetic (p = 0.628 and p = 0.083) subjects. The mean of 
plasma glucose was higher in the diabetic subjects (9.2 ± 3.0 vs. 4.8 ± 0.5, p < 0.001), 
whereas the mean of serum insulin were at a similar level (30.5 ± 42.0 vs. 20.8 ± 6.5, p = 
0.437). 
 
Cortex vs. white matter vs. thalamus. The non-diabetic subjects had a 47% higher 
glucose/H2O ratio in the cortex than in the white matter (Figure 10A). The diabetic 
subjects showed no regional differences in cerebral glucose/H2O ratio. The regional 
differences in H2O are presented in Figure 10F.  
 
Type 1 diabetes vs. non-diabetes. Compared to the non-diabetic subjects, the diabetic subjects 
had 64% higher glucose/H2O ratio in the white matter and 25% higher in the cortex 
(Figure 10A). Excess glucose in those diabetic subjects was the greatest in their white 
matter (Figure 11).  

The diabetic subjects also had 6% lower NAA/H2O in their white matter (Figure 10B) 
and 8% higher mI/H2O in their cortices and 20% higher mI/H2O in their white matter 
(Figure 10E). tCr/H2O and  Cho/H2O showed no differences between study groups.  

 
Brain glucose vs. plasma glucose. In the diabetic subjects, brain glucose/H2O correlated with 
plasma glucose in all brain regions (Figure 12). 
 



 

 

 

 
Study II: 

Cerebrum at baseline 
Study IV: 

Cerebellum at baseline 
 

Studies III and IV:  
Acute hyperglycemia 

 Control T1D  Control T1D  Control T1D 
Age (years) 29 ± 6 28 ± 4  33 ± 7 28 ± 4  29 ± 4 31 ± 7 
Waist (cm) 83 ± 5 88 ± 8  92 ± 12 89 ± 9  90 ± 13 84 ± 7 
BMI (kg/m2) 22.4 ± 2.1 24.7 ± 3.0*  25.1 ± 4.2 25.0 ± 3.2  25.1 ± 4.0 22.4 ± 2.3 
Systolic blood pressure (mmHg) 125 ± 7 113 ± 7**  133 ± 14 134 ± 7  134 ± 6 125 ± 7** 
Diastolic blood pressure (mmHg) 73 ± 8 75 ± 7  80 ± 11 76 ± 8  76 ± 9 75 ± 7 
Pulse (beats per min) 57 ± 10 62 ± 6  60 ± 10 64 ± 10  66 ± 15 59 ± 9 
xx
Age at diabetes onset (years)  21 ± 6   21 ± 6   17 ± 4 
Diabetes duration (years)  6.7 ± 5.2   7.0 ± 5.3   12.4 ± 2.8 
HbA1c (%) 5.5 ± 0.2 7.4 ± 1.1***  5.4 ± 0.2 7.4 ± 1.1***  7.6 ± 0.8 5.5 ± 0.2*** 
Insulin dose/weight (IU/kg)  0.7 ± 0.3   0.7 ± 0.3  0.8 ± 0.3  
Urinary albumin excretion rate (mg/24h) 11 ± 8 12 ± 10  19 ± 19 19 ± 28  26 ± 44 15 ± 10 
Creatinine (μmol/l) 79 ± 12 74 ± 13  80 ± 12 74 ± 13  78 ± 17 78 ± 12 
xx
Total cholesterol (mmol/l) 4.2 ± 0.9 4.3 ± 0.9  4.4 ± 1.0 4.3 ± 0.9  4.4 ± 0.8 4.4 ± 1.1 
HDL cholesterol (mmol/l) 1.5 ± 0.3 1.6 ± 0.3  1.4 ± 0.3 1.6 ± 0.3  1.6 ± 0.5 1.4 ± 0.3 
LDL cholesterol (mmol/l) 2.4 ± 0.9 2.3 ± 0.9  2.4 ± 0.8 2.3 ± 0.9  2.3 ± 0.9 2.7 ± 1.0 
Triacylglycerol (mmol/l) 0.7 ± 0.3 0.9 ± 0.4  1.1 ± 0.9 1.0 ± 0.6  1.1 ± 0.7 0.8 ± 0.4 
xx
CRP (mg/l) 0.3 ± 0.3 0.5 ± 0.9  1.9 ± 6.5 0.8 ± 1.4  1.0 ± 1.8 0.5 ± 0.5 
IL-6 (ng/l) 2.1 ± 0.6 2.0 ± 0.3  2.3 ± 1.0 2.1 ± 0.4  2.2 ± 0.5 2.2 ± 0.6 
sE-selectin (ng/ml) 30.0 ± 14.0 41.3 ± 17.9  32.3 ± 16.3 41.0 ± 17.4  35.4 ± 12.4 29.1 ± 14.5 
sICAM-1 (ng/ml) 216.1 ± 27.8 210.2 ± 46.5  218.3 ± 32.2 219.8 ± 60.8  245.7 ± 66.1 226.4 ± 26.7 
Homocysteine (μmol/l) 7.8 ± 1.9 6.5 ± 2.4 8.4 ± 3.0 6.6 ± 2.3 6.9 ± 2.9 7.9 ± 1.9 

Table 5.  Subject characteristics in Studies II, III, and IV. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

T1D, type 1 diabetes; CRP, C-reactive protein; IL-6, interleukin 6; sE-selectin, soluble endothelial selectin; sICAM-1, soluble inter-cellular adhesion molecule 1. *p < 0.05, **p < 0.01, 
***p < 0.001.  
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Figure 10 Brain metabolite/H2O ratios and H2O in diabetic (gray) and non-diabetic (white) subjects. 
Data are mean, SD, and minimum and maximum. 
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Figure 11 Relative amounts of excess glucose in the plasma and brain in diabetic vs. non-diabetic 
subjects. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 12 Associations between brain and plasma glucose during fasting in diabetic ( ) and non-
diabetic subjects ( ).  

Cortex

4 6 8 10 12 14 16

10

20

30

40

50

60

70

80

r = 0.88, p < 0.001

fP-Glucose (mmol/l)

B
ra

in
 g

lu
co

se
/H

2
O

 x
10

-6

White matter

4 6 8 10 12 14 16

10

20

30

40

50

60

70

80

r = 0.78, p < 0.001

fP-Glucose (mmol/l)

B
ra

in
 g

lu
co

se
/H

2
O

 x
10

-6

Thalamus

4 6 8 10 12 14 16

10

20

30

40

50

60

70

80

r = 0.67, p < 0.001

fP-Glucose (mmol/l)

B
ra

in
 g

lu
co

se
/H

2
O

 x
10

-6

0 20 40 60 80 100

Plasma

Cortex
White matter

Thalamus

%



 

 51

6.2.2. Cerebellum at Baseline (Study IV)  

In the diabetic and non-diabetic subjects, plasma glucose concentrations were 9.0 ± 3.0 
mmol/l and 5.0 ± 0.6 mmol/l (p < 0.001) and plasma insulin concentrations 33.8 ± 47.6 
and 35.4 ± 20.7 (p = 0.024).  
 
Type 1 diabetes vs. non-diabetes. No difference appeared in the cerebellar metabolite/H2O 
ratio (Figure 13), or in the glucose/H2O ratio (Figure 14A) or H2O (Figure 14B) between 
diabetic and non-diabetic subjects. 

 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

Figure 13 Cerebellar metabolite/H2O ratios in diabetic subjects (gray) and in the non-diabetic 
subjects (white). Data are mean, SD, and minimum and maximum. 

 
 
 
 
 

 

 

 
 

Figure 14 Cerebellar A. glucose/H2O ratio and B. H2O in the diabetic (gray) and non-diabetic 
subjects (white). Data are mean, SD, and minimum and maximum. ***p < 0.001 
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Cerebellum vs. cerebral cortex, white matter, and thalamus. The glucose/H2O ratio was higher in 
the cerebellum than in the thalamus, cerebral cortex, or the cerebral white matter in both 
study groups (Figure 14A). As shown in Figure 14A, the glucose/H2O was 77.1 x 10-6 ± 
14.9 x 10-6 in the cerebellum and 26.5 x 10-6 ± 6.0 x10-6 in the cerebral white matter (p < 
0.001) in the non-diabetic participants. The H2O was higher in the cerebellum than in the 
white matter in the diabetic subjects and higher in the cerebellum than in the thalamus in 
both study groups (Figure 14B).  
 
Non-published data: brain glucose vs. plasma glucose. During baseline, cerebellar glucose/H2O 
showed no correlation with plasma glucose in the diabetic (r = 0.48, p = 0.073) nor in the 
non-diabetic (r = 0.08, p = 0.709) subjects. Glucose/tCr did correlate with plasma glucose 
in the diabetic (r = 0.69, p = 0.04), but not in the non-diabetic (r = 0.22, p = 0.351) 
subjects. 

6.2.3. Cerebrum and Cerebellum during Acute Hyperglycemia              

(Studies III-IV) 

Hyperglycemic clamp. The clamp raised plasma glucose in the diabetic and non-diabetic 
subjects similarly (11.8 ± 2.9 vs 12.3 ± 1.5 mmol/l, p = 0.892; Figure 15). Mean plasma 
glucose and serum insulin concentrations during the MRS 0, I and II are presented in 
Table 6. Serum osmolality increased from 272 ± 4 to 277 ± 3 mOsm/kg (p = 0.043) in 
the diabetic and from 274 ± 4 to 279 ± 2 mOsm/kg (p = 0.005) in the non-diabetic 
participants. No difference existed between these groups (p = 0.526). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 15 A. Plasma glucose and B. serum insulin concentrations during the hyperglycemic 
normoinsulinemic clamp in diabetic (  ) and non-diabetic subjects (  ). MRS 0, I, and II, 
magnetic resonance spectroscopy data collections. *p < 0.05, **p < 0.01. 
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Table 6. Plasma glucose and serum insulin concentrations during 1H MRS data collection 

 
 
 

 

 

 
T1D, type 1 diabetes; Non-DM, no diabetes. MRS 0, I, and II, magnetic resonance spectroscopy data collections.             
*p < 0.05, **p < 0.01, ***p < 0.001. 
 
Change in brain glucose. Brain glucose increased significantly in all brain regions (p < 0.05). 
The increase observed in the difference spectra was similar in the diabetic and the non-
diabetic subjects in the cerebellum (3.0 ± 0.9 vs. 3.1 ± 0.7 mmol/l, p = 0.739), cortex (2.0 
± 0.7 vs. 2.7 ± 0.9 mmol/l, p = 0.093), and in the white matter (1.3 ± 0.7 vs. 1.7 ± 0.7 
mmol/l, p = 0.306). In the thalamus, glucose increased less in the diabetic than in the 
non-diabetic subjects (1.1 ± 0.4 vs. 2.3 ± 0.7 mmol/l, p = 0.011; Figure 16).  

In the non-diabetic group, brain glucose increased more in the cerebellum than in the 
thalamus or in the white matter, and more in the cortex than in the white matter (Figure 
17). In the diabetic subjects, brain glucose increased more in the cerebellum than in the 
white matter or the thalamus, and more in the cortex than in the thalamus. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 16 Increase in thalamic glucose during acute hyperglycemia in diabetic ( ) and non-diabetic 
( ) subjects. MRS 0, I, and II, magnetic resonance spectroscopy data collections. *p < 
0.05. 

THALAMUS

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

MRS I MRS IIMRS 0

In
c

re
a

s
e

 o
f 
b

ra
in

 g
lu

c
o

s
e

 (m
m

o
l/l

)

*
*

MRS 0 MRS I MRS II

Plasma glucose (mmol/l)

T1D 7.7 ± 2.8 18.7 ± 2.2 19.3 ± 2.4**

Non-T1D 4.7 ± 0.4 15.6 ± 0.7 16.8 ± 0.8***

p T1D vs. Non-T1D 0.005 0.004 0.011

Serum insulin (pmol/l)

T1D 32.4 ± 41.1 24.9 ± 32.0 26.1 ± 32.8*

Non-T1D 27.5 ± 10.7 14.4 ± 13.0 33.7 ± 23.3**

p T1D vs. Non-T1D 0.297 0.683 0.220
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Cortex White matter Thalamus Cerebellum
T1D MRS 0 292 ± 11 279 ± 12 273 ± 15 276 ± 17

MRS I 292 ± 12 278 ± 13 268 ± 14 308 ± 10
MRS II 291 ± 14 277 ± 12 268 ± 15 305 ± 15

p 0.989 0.989 0.812 0.028

Non-T1D MRS 0 297 ± 10 274 ± 9 264 ± 8 267 ± 9
MRS I 294 ± 11 274 ± 12 260 ± 8 303 ± 13
MRS II 296 ± 13 274 ± 9 261 ± 8 304 ± 13

p 0.750 0.998 0.543 0.011

 
 
 
 
 
 
 
 
 
 
 
 

Figure 17 Increase in cerebellar and cerebral glucose during acute hyperglycemia in the cerebellum 
( ), cerebral cortex ( ), thalamus ( ), and in the cerebral white matter ( ). MRS 0, I, 
and II, magnetic resonance spectroscopy data collections. 

Internal references: brain tissue H2O and tCr. Both in diabetic and non-diabetic subjects, H2O 
had a smaller coefficient of variation than did tCr (0.047 ± 0.008 vs. 0.126 ± 0.048, p < 
0.001 for diabetic and 0.102 ± 0.020 vs. 0.036 ± 0.005, p < 0.001 for non-diabetic 
subjects). During acute hyperglycemia, H2O was stable in the cortex, white matter, and in 
the thalamus, but increased 14% in the cerebellum of non-diabetic participants and 11% 
in the cerebellum of diabetic participants (Figure 18A). While H2O increased, tCr was 
stable during the clamp also in the cerebellum (Figure 18B) and therefore served as a 
reference in the analyses that included the cerebellum. No difference existed between the 
study groups either in H2O or in tCr. 
 
Brain glucose vs. plasma glucose. In both study groups, brain glucose/H2O correlated with 
plasma glucose in the cortex, white matter, and in the thalamus (Figure 19). In the 
cerebellum, glucose/H2O and glucose/tCr ratios correlated with plasma glucose only in 
the non-diabetic subjects (Figure 20).  

 

Table 7. Change in brain tissue H2O during acute hyperglycemia 

 
 
 
 
 
 
 
 

T1D, type 1 diabetes; Non-T1D, no diabetes; MRS, magnetic resonance spectroscopy. MRS 0, I, and II,  
magnetic resonance spectroscopy data collections. 
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Figure 18 A. Cerebellar H2O and B. total creatine (tCr) during acute hyperglycemia in diabetic (    ) 
and non-diabetic subjects (    ). MRS 0, I, and II, magnetic resonance spectroscopy data 
collections. *p < 0.05    

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 

Figure 19 Correlations between plasma glucose and brain glucose/H2O during acute hyperglycemia 
in diabetic ( ) and non-diabetic ( ) subjects. 
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Cerebellum
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Figure 20 Correlations between plasma glucose and brain glucose/H2O and brain glucose/tCr ratios 
in the cerebellum in diabetic ( ) and non-diabetic ( ) subjects. 

Steady state hyperglycemia. During MRS II, the glucose/H2O was higher in the cortex than in 
the white matter both in the diabetic and in the non-diabetic subjects (Figure 21). In the 
diabetic subjects, the glucose/H2O was higher in the cortex than in the thalamus and in 
the non-diabetic subjects, higher in the thalamus than in the white matter. Comparison of 
the glucose/H2O ratio between the cerebellum and the other brain regions is impossible, 
because cerebellar H2O levels changed during acute hyperglycemia. In the cerebellum, no 
difference in brain glucose/tCr existed between the diabetic and non-diabetic subjects. 
Excluding the one patient taking medication for microalbuminuria did not affect results in 
Study II. 

 
 
 

 

 

 

 

 

 

 

 

 

 

Figure 21 Brain glucose/H2O ratio in the cortex, white matter, and thalamus during steady state 
hyperglycemia in diabetic (T1D) and non-diabetic subjects (Non-T1D). Data are mean, 
SD, and minimum and maximum. *p < 0.05, **p < 0.01.  

20

40

60

80

100

120

Corte
x

W
hite

 m
at

te
r

Tha
la

m
us

x10-6

p = 0.019

Corte
x

W
hite

 m
at

te
r

Tha
la

m
us

T1D Non-T1D

p = 0.048 p = 0.005

p = 0.034

G
lu

co
se

/H
2O



 

 57

7 DISCUSSION 

7.1. Study Subjects  

Participant selection was particularly important in this cross-sectional study since it 
comprised a relatively small number of subjects. The entry criteria were tight and aimed at 
homogenous study groups and at the exclusion of confounding factors that would affect 
the markers of brain metabolism. Conditions known to alter brain metabolites are aging 
(see 2.1.2.), psychiatric diseases (305), epilepsy (306), sleep apnea (307), sleep deprivation 
(308, 309), alcohol consumption  (310), and smoking (311).  

Only men were studied, since gender differences exist in brain structure and in glucose 
metabolism. A higher metabolic rate has been reported in men in the orbital frontal lobes 
(312), the medial frontal lobes (313), the temporal lobes (312), and the hippocampus (312, 
314). In other studies, a lower metabolic rate has been reported in men in the orbital 
frontal lobes, the medial frontal lobes (315-317), the temporal lobes (315, 316, 318, 319), 
the thalamus (315, 316, 319), and the cerebellum (318, 319). These highly contradictory 
results may in fact reflect the overall difficulty in measuring glucose metabolism. In 
addition, in women, the NAA/tCr ratio in the prefrontal cortex has been shown to 
decline significantly from their follicular to their luteal phase (320). Optimal timing of the 
experiment for one particular phase of a menstrual cycle would have been challenging. 
Further, at which phase of the female cycle the brain metabolites are comparable with 
those of men is unknown.  

Study I 

Few studies have covered effect of metabolic risk factors on brain metabolism. At the 
time of our data collection, the most recent criteria for the metabolic syndrome were 
defined by the IDF (125). These criteria were the most rigorous and therefore most 
suitable for screening individuals at a low but still existing risk (1). Thereafter the Joint 
Interim Statement criteria of IDF/NHBI/AHA/WHF/IAS/IASO have been published 
(Table 1) (127). These criteria differ from those of the IDF by suggesting that waist 
circumference should, instead of being the main criterion, be valued as equal to the other 
criteria. These new criteria also suggest that the waist circumference cut-off should differ 
for different populations. For European populations, until more data become available, 
they recommend the IDF (M ≥ 94 cm, F ≥ 80 cm) or the AHA/NHLBI (M ≥ 102 cm, F 
≥ 88 cm) cut-off values.  

All subjects in the risk group fulfillled the IDF criterion concerning waist 
circumference and one to four of the other criteria concerning blood pressure, fasting 
plasma glucose, serum triglycerides, and serum HDL cholesterol. According to both the 
IDF and the Joint Interim Statement, five of our nine participants had metabolic 
syndrome. This corresponds well with the aim of studying participants with mild 
cardiovascular disease. 
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Hypertension and increased BMI, IL-6, ICAM, and homocysteine have been 
associated with brain abnormalities such as decreased brain volume or white matter 
lesions or both (see 2.2.2). Participants in the present study had increased waist 
circumference and hypertension, but their inflammatory and vascular markers were 
comparable to those of the control group. Although the participants had no atrophy in 
the MR images, three of the nine in the risk group had white matter lesions, suggesting 
that our subject selection was optimal. The white matter lesions imply possible 
hypoperfusion or chronic ischemia.  

Studies II-IV  

It has been suggested that insulin plays no role in brain glucose concentration in healthy 
individuals (321), but possible effects of insulin resistance and hyperinsulinemia on brain 
glucose metabolism are far from being understood. To limit variables to hyperglycemia 
alone, we studied men with only type 1 diabetes. Our rather narrow age-range aimed to 
minimize the effects of both brain maturation and aging. As the majority of 1H MRS 
studies have involved patients with a long diabetes duration, how early brain metabolism 
starts to change is unknown. We selected patients with a rather short duration of diabetes 
and aimed to study which brain regions are the first to be affected if any. 1H MRS was our 
choice because of its ability to detect early changes (322).  

Assessment of cerebrovascular pathology by non-invasive methods is challenging. 
Risk for cerebral vascular disease in the diabetic patients was minimized by selection of 
relatively young non-smoking patients, and by exclusion of patients with metabolic risk 
factors or with modest or severe microvascular complications. Vascular or endothelial 
markers, inflammation markers, and homocystein in the diabetic and non-diabetic 
participants were similar. Retinal status was carefully evaluated because retinal vessels 
share common anatomic, embryologic, and physiologic characteristics with the cerebral 
microvasculature (323), and the eyes have therefore been considered a window to the 
microvasculature in the brain. Two patients had mild and two moderate background 
retinopathy, whereas the others had none. Although patients had no signs of 
microvascular disease such as white matter lesions in the MRI, its existence cannot be 
totally excluded. A recent study has suggested that the increased aortic pulse wave velocity 
that indicates increased aortic stiffness is associated with cerebral small vessel disease 
(324). Tonometry could therefore in future be an easy additional method to assess 
cerebral small-vessel disease.   

According to recent results (see 2.3.2.), hypoglycemia in childhood may have a greater 
effect on the brain than does hypoglycemia in adulthood. We therefore studied patients 
with a late age of onset. They had had no diabetes during brain maturation.  
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7.2. Methodological Aspects 

Hyperglycemic Normoinsulinemic Clamp 

Because we studied an acute increase in brain glucose, the most important target for the 
hyperglycemic normoinsulinemic clamp was to achieve a comparable increase between 
the diabetic and non-diabetic groups in blood glucose concentration. That was 
successfully achieved. Since the basal blood glucose concentrations were higher in the 
diabetic participants, they also were expected to show higher glucose concentrations 
during steady state hyperglycemia.  

The second target was to maintain low blood insulin concentrations, comparable 
between study groups. Infusion of the somatostatin analogue ocreotide is an accurate, 
safe, and widely used method to inhibit insulin secretion (325-327). Without somatostatin, 
induction of acute hyperglycemia would in non-diabetic subjects cause a rapid physiologic 
increase in insulin secretion from the pancreatic β-cells. Because a high serum insulin 
concentration would have had marked effects on glucose metabolism perhaps also in the 
brain, we chose to use a concomitant somatostatin infusion in the non-diabetic 
participants. An important question concerning a possible systematic error in the present 
study is whether somatostatin has an effect on brain glucose concentration on its own. In 
rats with middle cerebral artery occlusion, intracerebral administration of somatostatin has 
led to an increased infarction volume (328). Somatostatin has also caused vasoconstriction 
in the rat brain when administered intrathecally (329). In patients with acromegaly, 
treatment with a long-acting somatostatin analogue for six months has reduced arterial 
stiffness in peripheral large arteries (330). These results are contradictory. More data are 
available on the effects of somatostatin in the cerebellum, where it plays a role in 
embryonic development (331, 332). In the adult rat cerebellum, however, no 
somatostatin-binding sites have been identified (333, 334). It is therefore unlikely that 
somatostatin would have had any immediate effects on glucose concentration in the 
cerebrum or cerebellum or have influenced the results. 

1H MRS  

Voxel locations were chosen according to previous research findings (Figures 4 and 5). 
The cortical and white matter voxels were placed in the frontal lobe because aging starts 
frontally and proceeds along an anteroposterior gradient. We hypothesized that the 
changes associated with metabolic risk factors and diabetes would behave similarly. The 
white matter watershed area is interesting because it is an easily compromised region of 
the circulation. Like the frontal white matter, the thalamus is also susceptible to 
microvascular disease. Its metabolism has also been shown to change in patients with 
severe neuropathic pain (285). The cerebellum was another focus of our interest because 
it tolerates hypoglycemia better than does the cerebrum (335), but its tolerance to 
hyperglycemia has not been negleted.  

The gray matter in the frontal lobes is involved in problem-solving, constituting 
associations, spontaneity, initiation, memory, judgement, impulse control, and social and 
sexual behavior. The white matter carries nerve signals between the gray matter regions. 
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The thalamus is a subcortical gray matter nucleus of the cerebrum that serves as a relay 
station for vision, hearing, taste, and motor signals. It also contributes to regulation of 
arousal, attention, and sleep, and plays a role in the regulation of the higher-level brain 
functions such as learning and memory. The cerebellum, containing both gray matter 
cortex and white matter, is responsible for fine motor control, coordination, and postural 
regulation as well as being associated with many cognitive aspects of behavior (336).  

 
Although its spectrum peak heights are proportional to the concentrations of brain 
metabolites and of glucose, 1H MRS does not provide quantitative data without 
quantitation (see 2.1.2). Each quantitation method has its strengths and limitations (90). 
Using peak ratios has the advantage of requiring no extra imaging time and time-
consuming post-processing. Additionally, the partial volume effects of CSF, and random 
fluctuations in the intensity levels originating from the instrument (inhomogenities of 
magnetic field, instability of receiver gain, temperature of the MRI room) or the 
participant (size and composition of the head) can be avoided. It does, however, provide 
no absolute concentrations for the metabolites. Alteration of the peak ratio can originate 
from a change in the numerator, denominator, or both, and the direction of change 
remains unknown (86). Absolute quantification, on the other hand, lies within an 
estimated 10 mmol/g wet weight concentration for cortical tCr (256, 280, 321, 337) or 
estimated 9.9 mmol/l and 10.5 mmol/l concentrations for NAA in the gray and in the 
white matter (338). These are based on in vitro studies in animals, figures not always 
particularly accurate.  

The aim of the present study was to compare diabetic patients and controls and on the 
other hand compare brain regions, which makes the absolute concentrations unnecessary. 
We used peak ratios, the metabolite/H2O (92, 339, 340) and metabolite/tCr (91, 93). The 
limitation of this approach was that the concentrations of H2O or tCr may have affected 
the results. We observed some regional differences in tissue water content (Figure 10F) 
that may have affected the regional comparison of glucose. We reported, based on the 
higher glucose/H2O ratio, that the cortex contained 47% more glucose than the white 
matter. Because the H2O was higher in the cortex than in the white matter, the difference 
in glucose was even larger. When comparing subject and control groups, one has to be 
aware that the concentration of tissue water may be higher in the patients with diabetes 
(255). In the present data, however, we saw no such difference. Tissue water did increase 
in the cerebellum during hyperglycemia in the diabetic and non-diabetic groups, whereas 
the tCr remained stable and served as an adequate reference for analyzing the change in 
cerebellar brain metabolites during the clamp.  

 
Detection of glucose with 1.5T 1H MRS is not unambiguous, and the terminology 
requires clarification. The term “brain metabolism” normally is used in the context of 
PET, and no established terminology exists for 1H MRS research. We preferred “brain 
metabolites” or “markers of brain metabolism.” 1H MRS is not comparable to PET, a 
method dependent on tracers to assess glucose uptake and consumption. 1H MRS makes 
it possible to detect the level of native glucose at a certain time point. The glucose level 
observed depends on the glucose supply via the circulation, glucose uptake into the brain 
tissue via the BBB, and the rate of glucose consumption in the tissue (see 2.1.1).  
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The glucose signal can be detected at two locations within the spectrum, at 5.23 ppm and 
3.43 ppm. In theory, the signal at 5.23 ppm (anomeric proton of glucose) would be the 
most favorable (256, 280, 321, 337, 341). However, its detection would require a magnet 
with a 4T field. At the 1.5T field, 5.23 ppm is so close to the water signal (4.77 ppm) that 
water suppression will reduce its intensity or even suppress this small glucose signal. In 
the 1.5 T field: 5.23 ppm (glucose) minus 4.70 ppm (water) = 0.53 ppm, i.e. approximately 
34 Hz. Because the band width of the water suppression pulse in our work was about 35 
Hz i.e. +/- 17.5 Hz, the water suppression would extend to only about 17 Hzs distance 
from the glucose signal and would in practice suppress it. Moreover, if the glucose signal 
at 5.23 ppm is not wholly suppressed, depending on the quality of the water suppression, 
the glucose signal may partly overlap with the residual water, which would substantially 
complicate assessment of intensity.  

In our data, the glucose signal at 5.23 ppm was not visible, so we chose to use the 
signal at 3.43 ppm. This has been done successfully (254, 255, 340). In addition to 
glucose, also mI resonates at several ppm including 3.43 ppm. Therefore a small portion 
of the brain glucose increase seen in patients with type 1 diabetes may in fact be an 
increase in mI, but its contribution to the results was estimated to be inconsequential.  

The data representing the increase in glucose concentration during the clamp was 
referred to an external standard of 100 mmol/l glucose solution (see 5.5). As to possible 
sources of error concerning the line shape fitting, the in vivo glucose spectrum and the 
brain spectra may differ in their line shapes and chemical shifts; spectrum line shapes can 
vary due to the shimming (i.e. homogenization of the magnetic field) that occurs each 
time a new patient is positioned in the magnet. These differences can be diminished by 
use of a broader line width, but because of uniform quality data, we were able to use 
constant line widths. The chemical shift may theoretically vary due to differences in pH 
between the data collections. In the human brain this seems unlikely. In addition, heavy 
overlap of metabolites in the spectrum complicates their analysis. What is possible but 
unlikely is a change in concentrations of the metabolites or macromolecules underlying 
glucose during a hyperglycemic clamp. We also fitted the phantom spectrum to the 
difference spectrum which deletes the effect of macromolecules. Concerning water 
increase in the cerebellum during acute hyperglycemia, T2 relaxation may have affected 
the result, but the relatively short TE used in these studies should minimize such effects. 

For technical reasons, 37 spectra were disqualified. This may have affected the results 
because pathological brain tissue may be more likely to produce poor quality spectra than 
normal tissue would. In such cases, the present results would show an underestimation of 
differences between subject and control groups. In Study III, brain metabolites were 
measured repeatedly during the hyperglycemic clamp, although no change was expected. 
The variation in NAA/H2O and tCr/H2O was between -3.4% and +4.7%, in line with 
previous findings (342). 

7.3. Metabolic Risk Factors and Brain Glucose and Metabolites 

In Study I, we sought any association between risk factors for metabolic syndrome and 
brain metabolism. We found that in 36-year-old men with an accumulation of metabolic 
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risk factors, thalamic tCr was increased by 17%. The correct interpretation of the 
increased tCr in the risk group can only be speculated. Total creatine plays a role in 
osmolar regulation. Osmolar regulation in this case, however, seems unlikely, because the 
other osmolar regulators, NAA, mI, and Cho, were unchanged, a finding that also 
suggests that neuronal density as well as metabolism and glial cell membrane turnover 
were intact. Creatine has at least three different neuroprotective mechanisms: First, it 
serves as a reservoir for the high-energy phosphates required for ATP production (see 
2.1.1). Second, creatine inhibits the mitochondrial permeability transition, a process 
involved in apoptosis (343). Third, increased activation of the ADP re-cycling cycle 
reduces production of ROS (344). The protective effects have been evident in mice in 
which dietary creatine supplementation reduced the infarction volume after transient focal 
cerebral ischemia by 40% (345). In the present study any or all of these mechanisms were 
possible.  
 
The risk group comprised men with a family history of type 2 diabetes, hypertension, 
abdominal obesity, and mild insulin resistance. The role of family history in altered 
thalamic metabolism cannot be excluded, because the first step in the pathogenesis has 
not been identified. It is also unclear whether brain metabolism changes due to metabolic 
risk factors or the reverse. Because the thalamus is susceptible to microvascular disease, 
hypertension may play a role. Hypertension occurred in one (206) but not in another 
(208) study associated with decreased NAA in the white matter, implying decreased 
neuronal metabolism (Table 2), but its possible effects on the thalamus seem to be 
unknown. The role of impaired glucose regulation for brain metabolites was examined in 
only one study (209) able to show that the cerebral metabolic disorder progresses when 
the impared glucose tolerance progresses to type 2 diabetes. Total Cr served as the 
internal reference, and therefore no information was available on the tCr itself. However, 
the metabolites in the frontal cortex, the parietal white matter, and the thalamus 
correlated with markers of insulin resistance such as serum insulin and plasma glucose 
concentrations, HbA1c, and HOMA-IR (209).  
 
The brain glucose concentration in healthy individuals correlates linearly with plasma 
glucose (321, 338). Here, the risk group had a 13% higher plasma glucose concentration 
than the control group, but with no difference in thalamic glucose content. The risk 
group thus had an approximately 13% lower thalamic glucose content than expected 
based on plasma glucose. Whether the metabolic syndrome affects glucose uptake or its 
consumption (see 2.2.2.) is unknown, but in the control group, tCr correlated with 
thalamic glucose content, although in the risk group, tCr metabolism and thalamic glucose 
content were uncoupled. Instead, tCr correlated with markers of insulin resistance, i.e. 
fasting plasma glucose and two-hour plasma glucose concentration in the OGTT. It can 
be hypothesized that in the risk group, the association between tCr and impaired glucose 
regulation indicates an increased need for energy to buffer the thalamic cells. This would 
be in accordance with the known neuroprotective mechanisms of tCr.     



 

 63

7.4. Type 1 Diabetes and Brain Glucose and Metabolites 

7.4.1. The Cerebrum 

In Study II, cerebral glucose and metabolites were detectable after an overnight fast when 
blood glucose was in the non-diabetic group 4.8 mmol/l and in the diabetic group 9.2 
mmol/l.  

The non-diabetic participants had a 47% higher glucose content in the cortex than in 
the white matter. In the diabetic participants, the differences in regional distribution had 
vanished. Compared to the non-diabetic participants, the diabetic patients had a 64% 
higher glucose level in the white matter and a 25% higher glucose level in the cortex. The 
difference was the greatest in the white matter, which suggests that in diabetes, the white 
matter contains an excess of glucose exceeding that of the other regions studied. A higher 
glucose content has previously been identified in the parietal than in the occipital cortex 
in diabetic patients (254), but no comparisons between the different tissue types are 
available. 

As for glucose concentration in the tissue, it depends on the one hand on glucose 
supply and uptake and on the other hand on its consumption. It is of note that all these 
are higher in the gray than in the white matter (62, 63, 346). That glucose in the diabetic 
patients accumulated in their white matter suggests that the supply of glucose in relation 
to its oxidation is greater in the white matter than in the cortex. 

 
In Study III, acute hyperglycemia was brought on by raising plasma concentration by 12 
mmol/l for both the diabetic and the non-diabetic group. The resultant increase in 
cerebral glucose in those with type 1 diabetes depended on brain region and ranged from 
1.1 to 2.0 mmol/l. Others report that the brain glucose concentration in healthy human 
subjects is between 0.5 and 2.5 mmol/l (43, 44), but is about 2 to 3 mmol/l higher in 
diabetic patients (254-256). An every-day hyperglycemic episode in a diabetic patient may 
therefore as much as double brain glucose concentration. During acute hyperglycemia, 
cerebral glucose correlated linearly with the plasma glucose concentration in our diabetic 
and non-diabetic groups. A similar correlation has appeared in healthy human subjects 
(280, 338), but to our knowledge we were the first to perform repeated 1H MRS in 
patients with diabetes (Study III). Plasma glucose concentration appears to determine 
brain glucose also in patients with diabetes. 

 
Acute and chronic hypoglycemia had differing effects on brain glucose distribution. The 
Study II finding reveals the effect of chronic hyperglycemia and type 1 diabetes, because it 
was performed after an overnight fast. Exposure to excess glucose was highest in the 
white matter. Study III shows that in diabetic patients accustomed to high blood glucose 
excursions, acute hyperglycemia elevates glucose concentration most in the cortical gray 
matter. These are the first studies to show the differing effects on brain glucose 
distribution of acute and chronic hyperglycemia. Because our diabetic and the non-
diabetic participants showed an equal increase in glucose in their white matter during 
acute hyperglycemia, diabetes seems not to have impaired their glucose supply into the 
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white matter. A possible explanation for this accumulation of glucose in the white matter 
may therefore be the abundant lipid layers of the myelin sheets that hinder the processing 
of water-soluble glucose. The greater exposure of the cortex to excess glucose during 
acute hyperglycemia may, in turn, reflect the greater capillary density and the higher 
density of GLUTs (36, 50, 51), and the higher metabolic rate of glucose (62, 63).  
 
Thalamic glucose content increased less in diabetic patients than in the non-diabetic 
participants during acute hyperglycemia. It is interesting that the thalamus came into 
focus also in Study I, in which men with metabolic risk factors showed increased tCr and 
an unexpectedly low glucose content, particularly in the thalamus. The thalamus is joined 
to the blood via long, non-branching arteries and is thus susceptible to vascular disease. A 
reduced blood flow response (196) and chronic hyperglycemia with impaired 
vasodilatation (347) in the thalamic arteries has been associated with hypertension. In 
addition, reduced gray matter density has been observable in the thalamus in patients with 
type 1 diabetes (348). In theory, these results for the thalamus suggest that the risk group 
in Study I and the diabetic participants in Study III may in fact actually have had mild 
microvascular disease. Another possible explanation for our finding is that in both the 
risk group and in the patients with type 1 diabetes, chronic exposure to glucose may have 
down-regulated the number of GLUT1s in the thalamus and thereby limited glucose 
transport.  
 
Study II shows that in type 1 diabetes, the metabolic brain alterations may appear earlier 
than do peripheral microvascular complications. The diabetic participants had an 8% 
higher mI in the frontal cortical gray matter, and a 6% lower NAA and 20% higher mI in 
the frontal white matter than did the non-diabetic participants.  

Interpretation of the decreased NAA is unambiguous, since it is a neuronal marker, 
and its decrease signifies neuronal dysfunction or loss. The interpretation of the increased 
myo-inositol is, however, more complex. Myo-inositol is derived from glucose, and its level 
may, during chronic hyperglycemia, be increased because of the abundance of its 
precursor. Myo-inositol also has multiple functions in the cell (see 2.1.2). Because Glx, 
Cho, and tCr were normal, altered osmolality seems unlikely. A normal Cho would 
suggest that glial cell membrane turnover is intact. The most probable explanation would 
be an increased need for intracellular messaging due to increased astrocyte activity.  

 The frontal white matter has not been studied earlier with 1H MRS in diabetic 
patients (Table 3). Of the available reports on the posterior white matter, only one 
concerned adult patients with type 1 diabetes and is therefore comparable to our study 
(255). The present study in patients with type 1 diabetes but without microvascular 
complications showed that they had decreased white matter NAA and increased mI, 
whereas the previous one in patients with complications showed increased mI, increased 
Cho, and increased tissue water. The findings of increased Cho and tissue water may 
relate to longer-duration diabetes or to further advanced microvascular disease.  

Brain metabolism in the frontal cortex in adult diabetic patients has been the topic of 
two studies (255, 287) (Table 2). One, a study in patients with type 1 diabetes of long 
duration and severe microvascular complications showed increased tissue water but no 
other metabolite alterations (255). In that study, tissue water served as an internal 
reference for the other metabolites, but because it was higher in the diabetic group, it may 
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have masked a possible metabolite finding. The other study used tissue water as a 
reference but did not include any comparison of levels between study groups (287). The 
authors found no alteration in the metabolites in the frontal cortex, but in the dorsolateral 
prefrontal cortex, NAA and tCr were decreased. These results are not congruent with 
ours probably due to the different management of the internal reference. The second 
study had also included a mix of patients with type 1 and 2 diabetes, quite large 
proportion of whom had newly diagnosed disease. 

As thus hypothesized, metabolic brain damage may be a progressive disorder. One 
case report followed the brain metabolites in two patients suffering from carbon 
monoxide poisoning (349). In the frontal white matter of the patient with the milder 
coexposure, NAA decreased in the acute phase and increased to its normal level during 
the three-month recovery phase. Cho behaved conversely: increased first, and then fell to 
normal. In the more severe case, NAA decreased and remained low, and Cho increased 
and remained high. A similar pattern for NAA and Cho has emerged in patients with type 
1 diabetes and severe diabetic complications (255). Both NAA and Cho correlated 
inversely with duration and severity of glucose exposure. NAA may first increase, 
indicating increased neuronal activity, and then at a certain point, start to decrease, 
indicating neuronal damage and loss. It is possible that the levels of brain metabolites 
depend on the phase and severity of the disease; prospective studies in patients with 
diabetes are therefore needed. Based on our data, hyperglycemia is a potent risk factor for 
diabetic brain disease, and frontal white matter may be the first region to show altered 
metabolism.   

7.4.2. The Cerebellum  

In Study IV, the cerebellum responded very differently from the cerebrum, in that it 
revealed absolutely no difference between diabetic and non-diabetic participants, nor did 
it reveal any difference in their glucose or in their brain metabolites. 
 
In non-diabetic participants, their glucose level was more than twice as high in the 
cerebellum than in the cerebrum. The only available study that has compared glucose 
concentrations between the cerebellum and the cerebrum involves rats (335). The glucose 
content was 12 to 33% higher in the rat cerebellum than in the cerebral gray matter. 
Because in our study the cerebellar voxel contained mostly white matter, this comparison 
between cerebellum and cerebral white matter voxel seemed reasonable. The white matter 
glucose content was almost three-fold higher in the cerebellum than in the cerebrum. 
 
In the present model of acute hyperglycemia and low serum insulin concentrations in 
non-diabetic individuals, the increase in cerebellar glucose concentration was almost 1.8-
fold above that in the cerebral white matter. A model of normoglycemia and low serum 
insulin in healthy 50-year-old men has yelded interesting results. Insulin infusion 
facilitated glucose uptake in the cerebrum but not in the cerebellum. It was suggested that 
whereas the cerebrum needs a higher concentration of insulin than does the cerebellum, 
the abundant insulin receptors in the cerebellum (51, 53, 350) may be saturated even at 
low insulin concentrations. It has therefore been suggested that the regional differences in 
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the effect of insulin (351) and the low insulin effect (352) may be the mechanisms which 
protect vital brain regions such as the cerebellum from hypoglycemia.  

In the cerebellum of patients with type 1 diabetes, chronic hyperglycemia had no 
effect on either glucose content or glucose uptake or metabolism. No such correlation as 
in the cerebrum appeared in the cerebellum between plasma and brain glucose 
concentrations. It seems that, unlike the cerebrum, the cerebellum reveals no association 
between systemic glucose metabolism and brain glucose metabolism.  
 
During acute hyperglycemia in both the diabetic and the non-diabetic groups, the 
cerebellar white matter also showed a 14% increase in its tissue water. Decreased serum 
osmolality is known to raise brain water content, but here the osmolality increased less 
than 2% in both groups. Thus, the excess glucose in the cerebellum may become diluted 
by an increase in its water content. This finding provides no support for a dilution effect, 
but it may still be one factor that protects the cerebellum from the harmful effects of 
glucose. The cerebellar white matter also showed no metabolite alterations and is 
therefore definitely not among the first regions in which brain metabolism is altered in 
patients with diabetes. The cerebellum has in rats maintained its normal energy 
metabolism, i.e. adequate ATP, creatine, and lactate levels, longer than in the cerebrum 
during hypoglycemia (335). Compared to the cerebral white matter, cerebellar white 
matter seems to be more resistant also to the effects of hyperglycemia. 

7.5. Future Perspectives 

This research field concerning effects of insulin resistance (Study I) on the brain is new 
and intriguing. The results of the present study suggest that insulin resistance may have an 
effect on glucose metabolism in the thalamus. In obese individuals, human insulin does 
not affect brain functions as effectively as in lean individuals, indicating the existence of 
central insulin resistance (353). New data show that such central insulin resistance can be 
overcome by use of an insulin analogue that may have enhanced access through the BBB 
such as insulin detemir, which has a better cerebral effect than does human insulin despite 
similar peripheral effects (354, 355). Knowledge of insulin resistance and brain energy 
metabolism is sparse and may deserve further study with special emphasis on the role of 
the thalamus.   
 
These data (Studies II-IV) emphasize the fact that the role of hyperglycemia as a risk 
factor for diabetic brain disease cannot be underestimated. The brain may be a target 
organ for diabetic microvascular complications, and tight glycemic control definitely is 
important in order to achieve normal cerebral function. Yet prospective studies are 
needed to document the progressive nature of diabetes-related metabolic brain disease.  

Cognitive function in patients with diabetes has been the focus of active research for 
decades. Still, researchers have not achieved a consensus concerning the cognitive decline 
profile. The present study showed that depending on its duration, hyperglycemia elevates 
glucose concentration in the different brain regions, chronically in the white matter and 
acutely in the cortical gray matter. Anatomically variable glucose concentrations over the 
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course of time may be one source of variance in cognitive testing.  It may therefore be 
worth studying whether and how acute and chronic hyperglycemia influences various 
brain functions.  
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8 SUMMARY AND CONCLUSIONS  

I. Risk factors for the metabolic syndrome may influence brain metabolism. Insulin 
resistance may be associated with a decreased relative glucose concentration and 
an increased need for energy buffering in the thalamic cells. 

 
II. Healthy individuals have tissue-specific regional differences in the glucose content 

of the cerebrum. In type 1 diabetes, these regional differences disappear, and 
glucose content becomes even. During chronic hyperglycemia, more excess 
glucose accumulates in the white matter than in the gray matter. Type 1 diabetes 
also alters brain metabolism earlier in the white matter than in the cortex or 
thalamus.   

 
III. An everyday hyperglycemic episode in a diabetic patient may as much as double 

the brain glucose concentration. During acute hyperglycemia, the frontal cortex, 
the frontal white matter, and the thalamus are exposed to differing amounts of 
excess glucose, and increase of glucose appears highest in the frontal cortex region 
(regardless of diabetes). In type 1 diabetes, chronic fluctuation in blood glucose 
may be associated with alterations in glucose uptake or in metabolism in the 
thalamus.   

 
IV. The healthy cerebellum contains twice as much glucose as the cerebrum, and type 

1 diabetes alters neither its glucose content nor the brain metabolites. Chronic 
fluctuation in blood glucose concentration has no effect on cerebellar glucose 
uptake or metabolism. The cerebellar white matter is therefore more resistant to 
the effects of hyperglycemia than is the cerebral white matter.  
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