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2. ABBREVIATIONS

ATM: ataxia telangiectasia mutated

BER : base-excisio n repair or n ucleotide-ex cision repa ir

CGH: comparative genomic hybridization

CIN: chr omoso mal instability

CISS: chromosome in situ suppression hybridization, CISS

CTCL: cutaneous T-cell lymphoma

EORTC: The European Organization for Research and Treatment of Cancer

FICTION: fluorescence immunophenotyping and interphase cytogenetics as a tool for investigation of neoplasms

FISH: fluorescence in situ hybridization

FM: follicu lar mucinos is

ISH: in situ hybridization

LINE: long interspersed nuclear element

LPP: large plaq ue parapsoriasis 

LOH : loss of heteroz ygosity

MF: mycosis fungoides

MFISH: multifluor FISH, one form of 24-colour FISH e.g. multicolour FISH

MMR : mismatch repair 

NER : nucleotide-e xcision repa ir

NHEJ: non homo logous end joining

PPS: parapsoriasis en plaques

PUVA: Psoralen + UVA

SKY: spectral karyotyping, one form of 24-colour FISH e.g. multicolour FISH

SS: Sézary syndrome
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3. ABSTRACT

Cutaneous T-cell lymphomas (CTCL) are a heterogenous group of non-Hodgkin-lymphomas (NHL), belonging to 

primary cutaneous lymphomas and show a growing incidence. The most common form of CTCL is mycosis fungoides

(MF), and its leukaemic form with erythrodermia and affected lymph nodes is called Sézary syndrome (SS). Sézary

syndrome  may evolve  from M F, or start direc tly as SS. 

Clinically, MF usually develops slowly over years from ec zema  like  patches  resulting in tumours or erythroderma. In the

skin lesion of MF malignant CD4-positive, atypical lymphocytes infiltrate towards the epidermis, surrounded by reactive

(e.g. cytotoxic) T lymphocytes. At later stages, the malignant cells may be observed in the lymphoreticular system, blood,

kidneys, lungs and brain. The cause, anatomical site and timing of malignant transformation are unknown. Early-stage MF

is difficult to diagnose clinically and histologically, because it resembles benign, inflammatory eruptions e.g. alopecia

mucinosa  or large-plaq ue parap soriasis (LP P).  A con troversy prev ails, as to whether L PP is a pr emalignant o r a fully

malignant condition.  T-cell gene rearrangemen t analysis has not provided decisive help beacuse of its relative lack of

specificity, but has indicated early systemic spread of the disease. None of the treatments used is curative, but at early

stages of the disease, long term remissions can be achieved.

Acquired , recurrent chr omoso mal aberra tions in cance r associate with m alignant transformation and disease progression.

Such aberrations may reveal microscopically observable amplification of oncogenes, deletions of tumour suppressor genes

or transloca tions producing functional fusion genes or disrupting tumour suppressor gene s. Patients with C TCL c ommon ly

show a wide variety of clonal or non-clonal chromosomal aberrations in their blood or skin. The conventional cytogenetic

studies of CTC L are difficult, as the  malignant ce lls respond p oorly to mito gens need ed for indu cing visible, ana lysable

mitotic chromosomes for G-banding staining. Before the molecular cytogenetic  studies presented here, no recurrent specific

abnormality had been found in CTCL.

In the two first studie s of this thesis, chromosomal aberrations in the peripheral blood were screened with both G-banding

and in situ hybridizations (ISH) to interphase cells. Statistica lly significant differences between different diagnostic groups

(healthy, parapsoriasis and CTCL) were found for aberrations of several chromosomes, that can together be applied in

diagnostics. In the follow-up, patients with an active  and prog ressing diseas e differed fro m patients in stab le remission for

aberrations of chromosomes 1,6,8,11,and 17. Remarkably, patients in stable remission also differed from healthy controls

for chromosomes 1,6,11, indicating a persisting disease.  Patients  with active but sta ble disease  differed from  healthy

controls  for aberrations of the same chro mosom es and chro mosome  8, too. Healthy controls  did not differ statistically from

controls with non-malignant conditions treated with PUVA, the most commo nly used treatm ent of the patien ts included in

the studies. The presence of chromosomal clones were assoc iated with  active or progressive disease, e.g.  preceded a

relapse. T he finding of ch romoso mal abno rmalities or a clo ne in LPP  was novel.

The phenotype of individual chromo somally clonal malignant cells in tissue samples was studied in Sézary syndrome using

a new modification of the combination of  immunohistology with fluoresc ent in situ  hybridization (FICTION). W ith the

phenotype CD45RA+, CD45RO+, CDw150±, IL-4+, IL-2-, IFN-(-, and variation in IL-10 expression between the patients,

the clonal  cells  seem to be intermediate forms between naive CD45 RA+ an d mature C D45R O+ T h2 cells. Cell s

representing the malignant chromosomal clone were detected  in lymph nodes with dermato pathic lymphono ditis histology,

γ
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even several months prior to histologically  malignant infiltrate in the skin. Thus, this study confirms the concept of the early

systemic nature of CTCL.

Patient DNA-based comparative genomic  hybridization (CGH), that  reveals also potential aberrations in cells not inducible

to division, showed losses (deletions) of DN A-regions m ost comm only in chrom osomes 1 0q25-q 26, 13q 21-q22  and gains

(amplifications) in chromosom es 8 and 17q21 -q25 in Sézary syndrom e. This was the first CGH study of CTCL, and the

results have been confirmed by later studies. The chromosomal regions found by this method ma y harbour genes important

for the aetiology or progression of CTCL.  The method is not suitable for the study of balanced translocations with no

visible loss of ch romoso mal material. 

The  or ig in  of  chromosomes involved in clonal  translocations in blood lymphocytes was studied with 24-colour

hybridizations to the blood lymphocyte metaphases of a group of consecutive CTCL-p atients. The most commo nly affected

chromosome in this analysis was chromosome 12q. Locus-specific probes showed, that the break-point of a balanced

translocation of on e patient was  in th e middle o f the 7 YAC ’s long minima l commo n region of a proximal and a distal

deletion of two other patients. The translocation disrupted a 40 exon-long gene, neuron navigator 3 (NAV3). Using FISH

with BAC-probes specific to parts of the gene, deletions of the gene were observed in the skin lesions of 4 of 8 (50%)

patients with early MF and a deletion or a translocation was observed in 11 of 13 (85%) patients with advanced MF or SS.

Of the three patiets studied ab ove, the first patient having a distal deletion showed a point mutation in NAV3. NAV3

(POMFIL 1), with possible  location in the nuclear pore complex. It is expressed in neural tissue and by RT-PCR performed

in this study, in normal lymphocytes. By structure, it is a helicase and may also have roles in cell signalling. NAV3 may

also be a no nclassical tu mour sup pressor ge ne showing h aploinsufficienc y. The dele tion of N AV3 is c urrently bein g

develop ed for a new  clinical diagno stic test.
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4. INTRODUCTION

Cutaneous T-cell  lymphomas (CTCL) a re a heterogenous group of non-Hodgkin-lymphomas (NHL), belonging to  primary

cutaneous lymphomas,  that first present in the skin (Willemze et al. 1997). During the past decades,  the incidence has been

increasing in the developed world including Finland; however the increasing trend  in USA has  possibly  stabilized lately

(Weinstock and Horm 1988, Weinstock and Gardstein  1999, Siegel et al. 2000, Väkevä et al. 2000; The incidence is higher

in men, in Finland now about 2.5 /100 000 men (Väkevä et al. 2000).  

The most com mon form of CT CL is mycosis  fungoides (MF), which is difficult to diagnose in its early presentations since

the skin lesions resemble benign , inflammatory c onditions like e czema (W illemze 19 87, Payn e et al. 1992, Shapiro and

Pinto 19 94) or the  premaligna nt large-plaq ue parap soriasis (LPP , Parapso riasis en plaqu es), that may evolve into MF or

even already be MF (Burg et al. 1995, 1996, 2001, King-Ismael et al. 1992, A ckerman a nd Schif f 1996, MacK ie 1998). T-

cell gene rearra ngement an alyses have no t provided  decisive help  for their unspe cifity, and histolog ic examinatio n still

shows high ra tes of false negativ es (up to 25 %, Santuc ci et al. 2000). 

In the early phase of CTC L, CD4 -positive lymp hocytes  infiltrate  towards the  epiderm is. The time a nd comp artment o f

malignant transformation are not known (Veelken et al. 1995, MacK ie 1998, Burg et al. 2001). In most cases, MF develops

slowly over years from eczema-like  patches, through plaques to tumours or erythroderma. The skin infiltrates of CTCL

typically also consist of a dense infiltrate of reactive T lymphocytes. A cytotoxic T-cell respons e directe d against th e

tumour cells seems to control the malignancy to some extent (Bagot et al. 1998, MacK ie 1998, Bagot et al. 1998). At later

stages, malignant cells may be observed in the lymphoreticular system and peripheral blood, and they invade kidneys, lungs

and brain. The triad of erythroderma, with lymphoid and blood affision, showing  malignant cells with cerebriform nuclei

(Sézary ce lls),  is called Séza ry syndrome  (SS; Séza ry and Bouvrain 1938, Willemze et al. 1997), an aggressive form of

CTC L. The latter  may also evo lve directly, witho ut preced ing MF. 

The 5 year survival in MF is 87%, but prognosis varies with stage (Willemze et al. 1997).  The 5-year survival of patie nts

with Sézary syndrome is 11%  (Willemze et al. 1997, Whittaker et al. 2003, review).  Abo ut  20% of CTCL  cases undergo

rapid progression or transformation which cannot be predicted by any current means. The 5-year survival of these patients

is less than 15%  (Cerroni et al. 1992).

A conservative and stage-adjusted treatment approach is widely accepted. Comm only used treatments  for early-stage CTCL

include topical corticosteroid s, mechlorethamine, carmustine (BCNU), electron beam irradiation, low-dose methotrexate,

UVB and PUVA.  Local e lectron beam irradiat ion therapy is used for  s tages  IB-IIB, and whole body TSEB (tota l skin

electron beam)  is indicated for widespread infiltrated plaque and tumour stage disease. Interferon alpha has been used

alone or  in combination with PUVA. Retinoids may be valuable for early and moderately advanced CTCL and may be

used in combination with IFN (Whittaker et al. 2003). Systemic disease (III-IVB) requires combination chemotherapy but

responses are usually of short duration. The costly extracorporeal pho topheresis (ECP ) has been used for Sézary syndrome

but the response rates vary widely among treatment centres and there are no randomized studies to clarify whether it has

any effect on overall survival (Roupe et al. 1996, Willemze et al. 1997, Muche et al. 2000a, Whittaker et al. 2003). None

of the therapies used is curative, but as treatment at early stages may resu lt in long-lasting remissions (Roupe et al. 1996),

more sens itive and acc urate diagno stic method s are neede d.  

The aetiology and pathomechanism  of CTCL are poorly  understood. Studies of retroviruses, occupational or env ironmenta l

factors have  not revealed  a consistent, ca usative agent (R anki et al.  1990, Burg et al.  2001; Girardi 2004, review).

Cytogenetic studies preced ing the studies presented here, showed  a large repertoire of chromosomal aberrations, clonal or

non-clona l, but no specific or recurrent one, leading to a hypothesis of genetic instability (Whang -Peng et al. 1982; Kaltoft

et al.  1992, 1994, Thestrup-Pedersen et al.  1994). T he conven tional G-banding method used, required mitotic c ells
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typically difficult to obtain in CTCL (Burg 1978). Gene-level abnormalities were unknown, except for the observations of

roles or lacking of roles of some common oncogenes often in a small number of cases (p53, c-myc, lyt-10; Peris et al. 1991,

Tosca et al. 1991, Ro et al. 1993, G aratti et al. 1995, Laurizen et al. 1995).

In the studies p resented he re, the new me thodolog y of in situ hybridization s was used  for  studying interph ase cells fo r

diagnostic and follo w-up purp oses, for the stud y of the role of c hromosomes in the pathogenesis and progression of the

disease, for id entification of ind ividual malign ant cells for the stud y of  their phenotype, for screening the whole genome

to detect DNA-copy number changes reflecting regions of amplified oncogenes or deleted tumour suppressor genes, and

finally, for specifying previously unidentifiable chromosome parts in structural chromosome ab errations  and for th e

identification o f genes involve d in them. All the se appro aches pro ved to be  fruitful.
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5. REVIEW OF THE LITERATURE

5.1.     Clinical and pathologial aspects of cutaneous T-cell lymphoma (CTCL)

5.1.1. The classification of cutaneous T-cell lymphomas

Classification of primary cuta neous lymph omas  The pre viously used c lassifications, such  as the  upda ted Kie l

classification, the Working Formulation (of NIH) and the Revised European-American Lympho ma (REAL) classification

were inadequate for class ifying primary cutaneous lymphomas, as they e.g. could group together clinically different

diseases and immunophenotyping was not used as a grouping criterion. Thus, The European Organization for Research and

Treatment of Cancer (EORTC) Cutaneous Lymphoma Project Group published (Willemze et al. 1997) a new classification

of primary cutaneous lymphomas,  that is based on clinical, histological,  and some immunophenotypical and genetic features

(CD3 0 antigen po sitivity, T-cell receptor gene analysis). After that, WHO has published a new, general classification of

lymphomas (Sander et al. 2001 re viewed in G irardi et al. 2004).

EORT C classification of primary cutaneous lymph omas The EO RTC classi fication defines primary cutaneous

lymphomas as non-Hodgkin lymphomas presenting in the skin, with no evidence of extracutaneous disease at the time of

diagnosis and within the first 6 months after diagnosis. Exceptions to the 6 months’ rule are classical mycosis fungoides

(MF) p resenting in the sk in with periphe ral lymph node involvement and Sézary syndrome (SS). Malignant lymphomas

with secondary skin involvement,  lymphomas in immunocompromised patients and HTLV-I-associated adult T-cell

lymphom a leukaem ias (ATL L) are exclu ded. 

Primary cutaneous T-cell  lymphomas in EORTC classification Accord ing to the EORTC classification, primary

cutaneous T-cell lymphomas are mycosis fu ngoides (M F), MF-asso ciated follicular  mucinosis, va riants of MF , pagetoid

reticulosis, and granulomatous slack skin, Sézary synd rome (SS ), lymphom atoid pap ulosis, CD3 0-positive larg e T-cell

lymphom a (anapla stic, pleomo rphic or immunoblastic), CD30 -negative large T-cell lymphoma (pleomorphic large cell, or

immunob lastic), pleomorp hic (small/medium-sized) lymphoma and subcutaneous panniculitis-like T-cell lymphoma. The

most common is MF, with a relative frequency of 44% of all primary cutaneous lymphomas, and a median 5-year survival

of 87% depending on the stage  (Willemze et al. 1997).  The 5-year survival for stage IA  patients has been reported to be

nearly normal, and for stage IB, IIA, IIB, III, IVA and IVB patients has been reported to be 73-86%, 49-73%, 40-65%, 45-

57%, 15-40% , and 0-15%, respectively (Whittaker et al. 2003, re view).  In contrast, Sé zary syndro me, with a relativ e

frequency of 2%,  is an aggressive disease  with 5-year survival of 11% (Willemze et al. 1997).

In the EORTC classification, MF is defined as an epidermotropic CTC L characte rized by a p roliferation of sm all or

medium-sized neoplastic  T lymphocytes with cerebriform  nuclei. Classica lly, it evolves from p atches, to plaques, and later

tumours (Willemze et al. 1997).  Histopath ologically,  papillary dermis shows epidermotropic, band-like infiltrates of small,

medium-siz ed and o ccasionally larg e monon uclear cells with hyperchromatic, cerebriform nuclei and an admixture of

inflammatory cells. Small groups of neoplastic cells colonize lower layers of the epidermis. Characteristic Pautrier’s

microabscesses (clusters of malignant cells in the epidermis) are seen in only a minority of cases. As MF pr ogresses to

tumour stage , the infiltrates beco me more  diffuse, the proportion and size of tumour cells increases, and ep idermotropism

decreases (Willemze et al. 1997).

The malignant cells in MF are mature Th1 memory cells, and immunop henotypica lly usually CD3+, CD4+,CD45RO+, CD8-,

and CD30-,  in rare cases CD3+,  CD4-,  and CD8+ (Saed et al. 1994, Willemze et al. 1997).

Sézary syndrome (SS) is defined by erythroderma, generalized lymp hadenopathy and  the presence of neop lastic T cells,

Sézary cells, w ith cerebrif orm nuclei ,  in the blood (Willemze et al.  1997 re view). SS m ay be preceded by MF or
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nondiagn ostic  dermati t is .  SS pat ients  character is t ical ly have a  prur i t ic  erythroderma,  and may have alopecia ,

onychodystrophy or palmoplantar hyperkeratosis (Willemze et al. 1997 re view). 

Histopathologically SS resembles MF, but the lymphocyte infiltrate may be more monotonous and epidermotropism may

be absent. The same type of infiltrate of SS cells is seen in lymph nodes. A usual criterio n for Sézar y syndrome  diagnosis

is  at least 1,000 Sézary cells  per mm3 of blood, but this level can been reached in benign erythrodermas as well, and

EORTC has proposed an additional criterion the ratio CD4/CD8 >10 (Willemze et al. 1997).

The malignant cells in SS are mature Th2 memory cells, and immunop henotypically usually CD3+, CD4+, CD45RO+, CD8-,

and CD30-, in rare cases CD3+, CD4-, and CD8+ (Vowe ls et al. 1992, Saed et al.1994, Dummer et al. 1996, Willemze et al.

1997).

Up to 20% of cases with advanced CTCL transform cyto logically, deve loping the ap pearance  of a large-cell lymphoma

showing more than 25% of  pleomorphic large cells with prominent nucleoli, CD 30 positivity  an d an increa se in the

clinical aggress iveness of the d iseases (Cer roni et al. 1990, 1992, Wolfe et al. 1995).

MF-associated follicular mucinosis is a special group of T-cell lymphomas in EORTC -classification. Follicular mucino sis

is characterized by accumulation of mucin within hair follicles. The reaction may occur in a number of inflammatory,

infectious and  neoplastic c onditions (C erroni et al. 2002). A non-maligna nt, idiopathic  FM (synonym alopecia areata) has

been co nsidered to  occur pre ferentially in childre n and youn g adults, and FM asso ciated with MF oc cur in older patients.

However, according to recent reports, the two groups cannot be distinguished in a clear cut manner.  There is overlapping

of the age spectrum of the patients, locations of the lesions (often in head and neck), and histopathology, with dense

lymphoid infiltrates in seen also the idiopathic  form. The conditions cannot be distinguished immunohistologically either,

and the frequency clonal TCR- gene rearrangements (see below) is similar (Mehregan et al. 1991; van Doorn et al. 2002,

Cerroni et al. 2002, b oth including  references to  previous stud ies). As prog ression of idio pathic follicular  mucinosis into

CTCL has also been documented in several cases, it has been suggested, that  idiopathic  follicular mucinosis  may represent

a form of localized CT CL (Sentis et al. 1988, C erroni et al. 2002, inc luding referen ces to prev ious studies). 

WHO classification The classification of WHO resembles the EORTC classification, except that the CD30 positive large

cell cutaneo us T-cell lymp homa and  the pleom orphic (sm all/medium sized) cutaneous T-cell lymphomas are grouped

together into p eripheral T -cell lymphom a, not otherw ise specified (Willemze et al. 1997, Sander et al. 2001 re viewed in

Girardi et al. 2004). 
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5.1.2. Staging of MF and Sézary syndrome

Cutaneous lymphomas can be staged according to the TNM-system (Table Ia ) or a clinical staging system designed for

CTC L and SS  suggested b y the North A merican MF Cooperative Group (Table Ib ).  The latter has been used in Helsinki

Universi ty Central Hospital Skin and Allergy Hospital. The staging systems are based on skin, nodal, visceral and blood

involvement (Bunn et al. 1979, 1 980b, M acKie 1 998, G irardi et al. 2004, review).

Table Ia. TNM-classification of CTCLa

T1 Limited patches/plaques (<10% of total skin surface)

T2 Extensive patches/plaques (>10% of total skin surface)

T3 Tumours

T4 Erythroderma

N0 No clinical lymphadenopathy

N1 Histologically uninvolved, enlarged lymph nodes

N2 Histologically involved, unenlarged lymph nodes

N3 Histologically involved, enlarged lymph nodes

M0 No visceral involvement

M1 Visceral involvement

B0 No peripheral Sézary cells (<5% of total lymphocyte count)

B1 Peripheral blood Sézary cells (>5% of total lymphocyte count)
aBunn and Lamberg 1979

Table Ib. Staging of MF by North American MF Cooperative Groupa 

IA T1, N0, M0

IB T2, N0, M0

IIA T1 or T2, N1, M0

IIB T3, N0 or N1, M0

III T4, N0 or N1b

IVA T1 - T4, N2 or N3, M0

IVB T1-T4, N0-N3, M1
aBunn and Lamberg 1979. bStage III can be further divided into IIIA (T4N0M0) 

 and IIIB (T4N1M0) (Girardi et al. 2004, review).

5.1.3.   Parapsoriasis en plaques

Parapsoriasis is a term including a group of uncommon but not rare inflam matory diso rders, which a re not nece ssarily

related.  T he terminolo gy was previo usly very variab le, but the fo llowing groups have gained general practical acceptance

(Lambe rt and Eve rett 1981 , MacK ie 1998 ). 

Large plaque p arapso riasis  (LPP; parapsoriasis en plaques, synonyms atrophic  parapsoriasis,  poiki lodermatous

parapsoriasis). The skin shows slighty indurated, re d-blue scaly p laques with ind istinct, irregular bo rders mainly o n the

buttocks, proximal extremities or in women, on the  breasts. The size of most lesions is over 10 cm in diameter. Epidermal

atrophy is often seen. The histology of early lesions is not diagnostic. Slight spongiosis with minimal exocytosis and slight

upper dermal perivascular lymphocytic  infiltrate may be seen (Lambert and Everett  1981). A lichenoid  or interface reaction

may be seen at the dermo-epidermal junction and a band-like infiltrate in the papillary dermis may be seen. The overall
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pattern may be reminiscent of mycosis  fungoides (MacK ie 1998). About 10% of cases deve lop cutane ous lymphoma. Most

cases pro gress to cutan eous lymph oma (La mbert and  Everett 19 81). 

Small plaque parap soriasis  (Variants: digitate dermatosis and xanthoerythrodermia persistans). In skin, especially  on the

trunk, well-define d, round o r ovoid, slightly sc aly, nonatrop hic, nonindu rated, erythem atous, yellow or blown macules or

very thin plaq ues, mostly less tha n 5 cm in dia meter, are seen. In digitate dermatosis, the lesions are e longated a nd tend to

palisade, in xantho erythroder mia persistan s, a variant o f  digi ta te dermatosis ,  the colour  of  the les ions is  yellow.  The

histology is  not  diagnostic. (Lambe rt and Eve rett 1981 ). Epiderm is shows small fo cal areas of hyp erkeratosis  and

parakeratosis, and in dermis, small aggregates of mo rphologic ally normal T -helper cells ar ound the v asculature (M acKie

1998). Previous ly, progression to cutanenous lymphoma was not implicated (MacK ie 1998), however, according to a recent

Finnish study, a minority of patients may develop MF (Väkevä et al. 2004 submittted). The term guttate parapsoriasis has

been used to denote pityriasis lichenoides, but some authors use it for small plaque parapsoriasis (Lambert and Everett

1981).

Pityriasis lichenoides (Synonyms: pityriasis lichenoid es et varioliformis acuta,  PLEVA, PLVA, Mucha-Habermann

disease). All authors d o not acce pt this disease into  the group o f parapso riases (Lam bert and Everett  1981). Clinically, the

skin shows generalized erythematous or brown, often haemorrhagic, scaly papules and small macules that either persist for

several months or recur periodically. Histologically, paraker atosis, epide rmal necro sis, dilated and haemorrhagic small

blood  vessels in  the pap illary der mis and  a wedg e-shape d lymphohistio cytic inflammato ry infiltrate is seen. Atypical

lymphocytes and histiocytes may be present, and such cases are termed lymphomatoid papulosis. Pityriasis lichenoides

tends to clear spontaneously after weeks to months (Lambert and E verett 1981). Lymp homatoid pap ulosis has usually a

benign clinical  course, but up 20% of patients develop a malignant lymphoma, e.g. myco sis fungoides, Hodgkin’s disease

or CD30+ large cell lymphoma (Willemze et al. 1987).

The term guttate parapsoriasis has been used to denote pityriasis lichenoides, but some authors use it for small plaque

parapsoriasis (Lambert and Everett 1981).

A controversy prevails  over, whether LPP is already an early stage MF (King-Ismael and Ackerman 1992, Burg et al. 1995,

1996, 2001, Ackerman and Schiff 1996). Like MF, LPP may show clonal TCR gene  rearrangements (se e below) and

abnormal telomerase activity is present (see below), which would point to an existing neoplasia from the beginning of the

skin lesion. However, early LPP can not be discerned histologically from non-malignant conditions, which would indicate

a step-wise process occurring in the skin (Kiku chi et al. 1993, Burg 2001). A similar debate concerns small plaque

parapso riasis (Ackerm an and Sc hiff 1996). 
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5.1.4.  The biology and development of T-lymphocytes in relation to the development of CTCL

About the aetiology of CTCL Normally, precursors of T-cells proliferate in the thymus, where they select their antigen

specificity, and sp ecialize to naiv e cytotoxic o r naive helpe r T- cells.  T hereafter, they cir culate betw een blood and

secondary lymphoid organs, where they may be activated by antigen presenting cells, proliferate, and enter through blood

their  target  tissue, l ike skin,  where they polar ize to  e .g , Th1 or Th2-ce lls.  The cause, compartment or t iming of

malignisation of T-cells in CTC L are not kn own. A co ntinuous or lo ngstanding  p olyclonal pr oliferation could give rise to

malignant transformation. Such a p roliferation has been suggested to be caused by infectious agents and occupational

exposures, but no consistent evidence exists  (Fischmann et al. 1979, Greene et al.  1979, R anki et al.  1990, Zucker-

Franklin et al. 1991, Heald et al. 1993, Lambert 1994, Kim et al. 1998, Abra ms et al.1999, Burg et al. 2001; Girardi et al.

2004, review). A malignant clone may be present in the skin from the beginning of the infiltrative process (Veelken et al.

1995). The skin infiltrates of CT CL typically also consist of a dense infiltrate of reactive T lymphocytes. A cytotoxic  T-cell

response directed against the tumour cells seems to control the malignancy to som e extent (B agot et al. 1998). On the other

hand, bcl-2 mediated apoptosis is weak (Dummer et al. 1995, Nevala et al. 2001). 

Cell cycle  Cell proliferation occurs in cycles consisting of four phases regulated by activation and degradation of cyclins

associated with cyclin dependent kinases (CDK) (Figure 1.)  The CDKs are activated by dephosphorylation of threonine

and tyrosine residues by Cdc25s phophatase s upregulate d in the G1  to S transition an d inhibited b y several inhibito rs, e.g.

p15INK4b, p16INK4a, p21CIP, and p27KIP1 (reviewed in Fukada et al. 1998). T- cell proliferation or differentiation is influenced

by molecules of their surroundings, for example, by cyto kines including  e.g. interleukin s, which are so luble prote ins

influencing  e.g. cell proliferation, differentiation, and inflammation (pro and anti-inflammatory cytokines, distinction not

sharp; Del Prete et al. 1993, Lauw et al. 2000, Schreiber et al. 2000; Alam and Gorska 2003, Borish and Steinke 2003,

reviews), and activate cells by specific receptors. The signal of cytokine receptors situated on the cell surface is commonly

mediated by receptor-associated janus kinases (Jak) phosphor ylating signal transd ucer and a ctivator of trans cription

(STAT) mo lecules, that enter the cell nucleus, bind to DNA and regulate transcription (O’Shea et al. 2002 re view). For

example, activated STAT3 induced by interleukin (IL)- 6 receptor promotes G1 to S transition by upre gulating cyclins D

and A and cdc25 and inhibiting p21 and p27, inhibitory factors upregulated by IL-6 receptor, too (Fukada et al. 1998,

Heinrich et al. 2003 review ab out IL-6-type cytokine signalling). Also, STA T5 regulates transcription  of cyclins D1 /D2

(Matsumura et al.  1999, Wen et  al. 1999, d e Groo t et al.  2000).  In some other cases,  cyclins may regulate STATs

(Drosophila; Chen et al. 2003). 

 Figure 1 a and b.   Cell cycle
consists of four phases, G1, S
(DNA-syn thesis) ,  G2   and  M
(mitosis). It is regulated by cyclin
dependent kinases (CDKs) along
with the increase or decrease of the
l e v e l s  o f  o f  c y c l i n s ,  a n d
p h o s p h o r y l a t i o n  o r
d e p h o s p h o r y l a t i o n  o f
retinoblastoma protein regulating
the level of free E2F transcription
fac tor .  P16,  p17 and p21 ar e
inhibitors of cell cycle progression.
(Modified from Sherr 1993, Murray
2004, reviews).
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T-cell  development in thymus T-cells develop (lineage commitment) in the thymus, where they select their antigen

specificity  rearranging their TCR receptor gene structure by V(D)J recombination, where parts of the gene are cut off the

sequence (Rothenberg and Dionne 2002 review). The process is analogous to the assembly  of immunoglobulin genes (Jung

and Alt 2004, review). Th ymocytes ex pressing bo th CD8 a nd CD4  develop  either to CD 8 positive cyto toxic T-ce lls or to

CD4 positive naive T-helper cells (Th).

T-cell development in secondary lymphoid organs In lymph nod es, the naive CD 4+ T-c ells  proliferate activated by

signals of TC R and the c ostimulatory CD28  molecule, and express inte rleukin (IL)-2 . (Figure 2) After a few da ys the

proliferation ends and cells enter an anergic state maintained by C TLA-4 , an inhibitory ligand of CD28, and are transferred

by the circulation to their target tissues. (Mohrs et al. 2003). M aturing of  T h memor y cells in secondary lymphoid  tissues

shifts expression of CD45 tyrosine phosphatase isoforms from CD45RA to  CD45RO and ce l l s become capable to

responding by proliferation to recall antigens. However, in later proliferation processes cells coexpress CD45RO and RA

isoforms during S, G2 and M phases of the cell cycle (LaSalle and Hafler 1991, Picker et al. 1993a ). 

F i g u r e  2 .  T h e

d e v e l o p m e n t  o f

Th1 and Th2 ce lls.

Af te r  commi tment

to T-cell  lineage and

r e a r r a n g in g  t h e ir

T C R  g e n e s ,  n a ive

C D 4 +  T - c e l l s

c i r u c l a te  in  blo o d

a n d  s e c o n d a r y

l y m p ho i d  o r g a n s ,

w he r e  t h e y  g et  in

contact with antigen

p r e s e n t i n g  c e l l s

(APC, e .g. dendritic

cel ls  der ived from

s k i n ) .  T h e  l a t t e r

stimulate the TCR -

C D 3  - c o m p l e x  o f

naive T-c ells  with

MCHII complex in

association with the

antigen. Several co-

s t i m u l a t o r y

me c h a n is m s exist,

the most  important

o f  t h e m  b e i n g

CD28 -B7-mediated

c o - s t i m u l a t i o n

(Drawn according to

ideas and figures in

O p a l  a n d  D eP a l o

2 0 0 0 ,  H o  a n d

G l i m c h e r  2 0 0 2 ,

Murp hy and Reiner

2 0 0 2 ,  r e v i e w s ,

A r s t i l a  a n d

H ä n n i n e n  2 0 0 3 ,

textbook ). 
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T-cell migr ation to sk in The cause of pro liferation of malignant T-cells in skin is not known. A superantigen could cause

a polyclon al proliferati on, followed by a malignant transformation. Alternatively, a maligna nt clone is pre sent from th e

beginning of the infiltrative process. Skin keratinocytes respond to cellular injury or stress by releasing cytokines that up-

regulate ad hesion mo lecules on the  surfaces of de rmal endo thelial cells and c hemokine s attracting lymp hocyte s

characteristic to  inflammation  (Girardi et al. 2004, review). T he migration of Th m emory cells to different comp artments

of skin is depe ndent on the  interactions of a large variety of molecules expressed on the cell surface of T-cell and

endothelium of postcapillary venules, compo nents of connective tissue in dermis and basement membrane, and keratinocyte

membranes  (Watson et al. 1996; Schön et al. 2003, review). Du ring the virgin to memory cell transition in lymph nod es,

virgin, maturing T-cells start expressing the cutaneous lymphocyte associated antigen (CLA, Picker et al. 1993b), that

interacts with E-selectin and P-selectin during the first step of extravasation, cell rolling on the endothelium (Schön et al.

2003 review). CLA and CC chemokine receptor (CCR) 4 , which interacts with its ligand TARC (thymus and activation

regulated chemokine or CCL17)  may together, and with CCR10, regulate the migration of Th memory cells to skin (Reiss

et al. 2001, H omey et al. 2002, F erenczi et al. 2002, Schön et al. 2003, review). Patients with erythrodermic CTCL have

elevated lev els of CD4 5RO+  ,CLA+ m alignant cells in their blood, as defined by TCR receptor analysis (Heald et al.

1993), and skin infiltrates of early (patch or plaque) skin lesions also show a predom inantly CLA+ T-cell  phenotype (Picker

1990, Heald et al. 1993).  CT CL patients with peripheral blood involvement show increased leves of cells coexpressing

CLA an d CCR 4+. Hig h levels of such cells and abundant expression of CCR4 ligands TARC/CCL17 and MDC/CCL22

can be fou nd in the skin lesio ns  (Ferencz i et al. 2002).  T he migration o f CTCL  cells to the epid ermis may b e further

enhanced by their integrin adhesion molecules (e.g. "E$7) and chemokine recepto rs (e.g. CCR4 and CXC) that bind ligands

on endo thelial dells, keratino cytes and La ngerhans’ ce lls (Girardi et al. 2004, re view). In the skin  lesion, maligna nt cells

concentrate close to the skin surface, whe reas non-m alignant cells pre dominate  in the derma l infiltrate (Bago t et al. 1992,

Cerroni et al.  2000, Gellrich et al.  2000, Y azdi et al.  2003; G irardi et al. 2004, re view). A dyna mic comm unication

between L angerhans ’ cells and CT CL-cells stimula ting the latter to pro liferate against their own tumour antigens has been

suggested (Berger et al 2002).

Polarization In the target tissues, the anergic checkpoint of Th-cells is bypassed or released by signals from TCR/CD28

and cytokines activating STA Ts (Mo hrs et al. 2003). Determined by their cytokine milieu, Th-cells  polarize to ty pe 1

(Th1) or type 2 (Th2) helpe r cells with distinct profiles of functions and cytokine production (Figure 2.) The development

of Th1 cells  requires interleukin 12 (IL-12) and interferon gamma (IFN-().  Intracellularly, the a ctivation of cyto kine

receptors is mediated by janus kinases (Jak), and STAT 4 or ST AT1 a nd T-be t, a membe r of T-bo x  family of transcription

factors. Th 2 develo pment req uires IL-4, followed by intracellular activation of STAT6, and activation and autoactivation

of GATA3, a zink finger protein. C-maf, a basic-leucine zipper protein, is induced by TCR signalling. Several factors

involved in Th1 and Th2 development inhibit each other, and the intracellular pathways  involved show multiple interactions

with each other and other pathways (Kaplan et al. 1996, Takeda et al. 1996, Zheng and Flavell 1997,  Szabo et al. 2000).

After differentiation of Th cells, STAT3 and STAT 5 are selectively activated in Th1 but not in non-polarized or Th2 cells

possibly having a role in the maintenance of the Th1 and Th2 phenotypes (Anderson et al. 2003). The polarization process

possibly req uires several c ell divisions, after which the cytokine expression pattern is no longer dependent on the cytokine

environment (reviewed  by Mohrs et al. 2003). O verexpre ssion of GATA3 and underexpression of STAT4 have been

reported  in Sézary synd rome (K ari et al. 2003).

Local growth factors possibly involved in cell  proliferation in CTCL Interleukins IL -2, IL-7  and IL-15 are growth

factors of T-cells, and they  trigger mitogenesis, sustain growth and inhibit or promote (IL-2 after the clonal expansion of

CD4+ cells in vivo) apoptosis. Their receptors are structurally related with partly common subunits associated with Janus

kinases which  phospho rylate STA T-transcrip tion factors including STAT5 (Döbbeling et al. 1998, Qin et al. 1999, 2001,

Eriksen et al. 2001, all including a review; Lero y et al. 2001). IL-15 is also a chemoattractant of T-cells (Wilkinson and

Liew 1995). IL-2, IL-12, IL-15 and interferon gamma produced by antigen presenting cells induce expression of IL-2R",

c-myc and pim-1  genes in T-cells. (Matikainen et al. 1999). In normal skin, keratinocytes produce IL-7 (M atsue et al.

1993), and only small amounts of IL-15, the latter  increasing after UVB exposure. IL-15 protein level is regulated at post-

γ
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transcriptional level  (Mohamadzadeh et al. 1995, Leroy et al. 2001 including a review). IL-15 is also produced by antigen-

presenting cells (Kanegane and Tosato 1996).

In parapso riasis and CTCL, especially mycosis fungoides, the keratinocytes seem to express IL-15 protein (Asadullah et al.

2000, L eroy et al. 2001).  IL -7 and IL-1 5, more than IL-2,  promote growth and survival of CTCL cells in vitro and

stimulate DNA -binding of JU ND, ac tivator of gene  transcription (D alloul et al. 1992, Döbbeling et al. 1998, Qin et al.

1999). Particularly,  in later stages of CTCL, tumour cells may become independent of these three exogenous growth factors

by several mechanisms including their own autocrine production of IL-15, production of new DNA-binding factors

associating to the same sequences as IL-7 and IL-15-stimulated STAT s, interleukins activating a larger spectrum of STATs

than normally (loss of specificity o f STAT s), constitutive expression of  STATs (1 to 6, observed in several cell lines), and

constitutive phosphorylation and DNA-binding of e.g. STAT3 (Döbbeling et al. 1998, Asadullah et al. 2000, Eriksen et al.

2001, Qin et al. 1999, 2 001). ST AT3  m ay act as an on cogene (S inibaldi et al. 2000, Bowman et al 2001), a nd it also

mediates constitutive expression of suppressor of cytokine signaling 3 (SOCS-3) in CTCL (Brender et al.  2001).

Constitutive S TAT 3 expressio n and a resu lting IL-10 sec retion in some  tumours see ms to induc e T-cell tolerance toward

the tumour c ell by impairing the maturation and activation of dendritic cells (Wang et al. 2004).   S tats 1 to 6 are  also

present in skin lesions in CTCL, most promine ntly STAT5 (Quin et al. 2001). STAT 5a/b is constitutively activated in many

neoplasias, including lymphomas (Weber-Nord t et al. 1996). In Sézary syndrome, a dysregulation of the balance between

full-length and truncated forms of STAT5 leading to a predominant expression of the truncated form after m itogenic act-

ivation, has been observed (Mitchell  et al. 2003). IL-2-induced cell cycle progression of peripheral T-cells is dependent on

STAT5 signalling (M origgl et al. 1999).  Underexpression of  STAT4 has b een repo rted in Séza ry syndrome  (Kari et al.

2003).

TCR gene rearrangments in the study of CTCL The cause of proliferation of malignant T-cells in skin is an open

question. A  superantige n could ca use a polyclo nal proliferatio n, followed b y a malignant transfor mation. Alter natively, a

malignant clo ne is present fro m the begin ning of the infiltrative process. The clonal origin of T-cells can be studied by

analysis of TCR gene rearrangements. In contrast  to the normally polyclonal  occurence of cells  with varying TCR-

receptors,  different tissues of CTCL-patients often show one or a few clones o f cells with one kind  of TCR  recepto r

(Whittaker et al.  1991, Zelickson et al.  1991,  Wood et al.  1994a , Vega et al.  2003).  The receptor compo sition is

been confirmed (Gorochov et al. 1995). However, a decrease in the complex ity of the T-cell  repertoire is se en comp arable

to that seen in HIV-infected patients. A decrease is normal T-cells occurs in a non-random fashion (Yawalkar et al. 2003).

The TCR clones in CT CL are observed with a frequency that is utterly dependent on the method used (Southern Blotting

techiques, different PCR m ethods with low or very high sensitivity, microdissection; e.g. Wood et al. 1994b review;

Cerroni et al. 2000, Gellrich et al. 2000, Costa et al. 2004). In  some studie s, clones are fo und mor e often in patien ts with

an advanced than an early stage disease (Ralfkiaer et al. 1987, F raser-Andrews et al. 2000), b ut with sensitive me thods,

TCR clones have also been found at the early stages (Wood et al. 1994a, Muche et al. 1997, Fraser-An drews et al. 2000)

even in morphologically normal extracutaneous tissues (Veelken et al. 1995). In CTCL, the TCR clones are con sidered to

have progno stic significance (Fraser-Andrews et al. 2000, Muche et al. 2000b, Delfau-Larue et al. 2000), but in blood they

may also be age-related (Delfau-Larue et al.  2000). TC R clones and chro mosomal clones stud ied with the sensitive

Genescan method coincide in the same patients, and in Sézary syndrome, they can be observed in the same cells (Muche

et al. 2004). 

TCR clones have also be detected in the skin lesions in large plaq ue parap soriasis (LP P, Kikuc hi et al. 1993, Simon et al.

2000, Klemke et al. 2002), primary follicular mucinosis  and lymphom atoid papulosis  (Zelickson et al. 1991), each of which

may develop into CTCL (Wood et al. 1995, Willemze et al. 1997). According to Simon et al. (2000) , TCR c lones in skin

lesions in LP P do no t have prog nostic significance, or allow distinction of  the disease from early stage MF (Simon et al.

2000). They have also been found in blood (Muche et al. 1999) and in the skin lesions  (Haeffner et al. 1995, Klemke et al.

individual, an d a restricted  use of V$ segments (Jack et al. 1990), tha t would  suggest one kind of a superantigen, has notβ
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2002)  in small plaqu e parapso riasis, that accor ding to a rec ent epidem iological study, may develop into CTCL (Väkevä et

al. 2004, in p ress). Solid tissue  samples o f some non -malignant diseases, like sarcoidosis (Sawabe et al. 2000) and lichen

sclerosus et atro phicus (Luk owsky et al. 2000) a lso show clo nal TCR  rearrangem ents. 

5.2.      Chr omoso me aber rations o bserved  in cance r and the ir origin

Cancer may be defined as a genetic disease due to accumulation of mutations causing the respective cells to lose sensitivity

to growth co ntrol mecha nisms (Sara sin 2003 , review). A ccord ing  to  the  two hi t -hypothesis based on studies o f

retinoblastoma, both alleles of one gene are affected, so that one mutation may be inherited, the other acquired, or both

acquired (Knudson 1971). As the incidence of adult tumours increases exponentially with age, it  has been estimated, that

at least 4 to 7 different mutations in key genes are needed (Fearon and Vogelstein 1990). A mutator phenotype with an

elevated mutation rate caused by an initial mutation affecting DNA synthesis or DNA repair (caretakers) or a gene

regulating cell cycle or apopto sis (gatekeepers), and resulting in more mutations in the whole genome has been postulated

(genetic instability). An alternative hypothesis suggests a normal mutation rate combined with clonal selection (Loeb et al.

1991, Rajagopalan et al. 2003, Sieber et al. 2003). This may be the case in e.g. many leukaemias, lymphomas and sarcomas

characterized by solitary, specific translocations, and genetic instability emerging  later during the  disease as a p ossible late

consequnce of mutations of a few key genes, e.g. TP53  preventing apoptosi s of cells defective in DNA repair (Knudson

2001). Cutaneous T-cell  lymphoma shows a large variety of both numerical and structural chrom osomal ab normalitie s, and

genetic instab ility has been sugg ested  (Ka ltoft et al. 1994).

The majority of cancers sho w genetic instab ility observab le at  chromo some or g ene-level. G ene-level instab ility may be

produced by mutations in DNA polymerase genes or overexpression of error-prone polymerases (Sarasin 20003, review)

or defects in DNA- repair. Subtle sequence changes instab ilities arise from de fects in base-ex cision repair (BER) o r

nucleotide-excision repair (NER, NIN). Mutations in NER-genes cause diseases with sun sensitivity, like Xeroderma

pigmento sum, that also in cludes proneness to cancer especially in skin (Hoeijmakers 2001). Mismatch repair deficiencies

(defects in M MR ge nes) cause m icrosatellite instab ility (MIN) with point mutations and instability of repeat seq uencies in

microsatellites also inside exons. The wild  type allele is often lost or methylated. MIN is seen  especially in cancers o f

colon, end ometrium a nd ovary (L each et al 19 93, Pelto mäki et al.  1993; H oeijmake rs 2001 , Sarasin 20 03 review s). 

A special form of genetic instability is chromosomal instability (CIN), an increased rate of occurrence of chromosomal

aberration s compa red to nor mal cells.  Tumo urs are chara cterized by microscopically observable, acquired numerical or

structural chromosome aberrations and chromosomal instability  (CIN). Often karyotypes vary slightly from cell to cell. The

karyotype may remain fairly stable over long periods of time, or new clones with genomic changes conferring growth

advantage emerge (Gollin 2004, review). The possible development of metastatic clones arising from genetically unstable

cells at the same  time as the primary tumour, has been suggested (Boveri 1929 reviewed in Gollin 20 03, Kuu kasjärvi et al.

1997, Chiba et al. 2000, Schmidt-Kittler et al. 2003).   

Microscop ically, chromosome ab errations are classified as numerical or structural. Numerical aberrations can be multiples

of the haploid chromo some number o r extra or missing chromoso mes as compare d to the nearest multiple of the haploid

chromosome number of the specific cell (aneuploid y). Structural ab normalities inc lude all aber rations, where  the integrity

of a chromosome is broken. They include for example deletions, translocations, inversions and multiplications of parts of

the chromosome (duplications or higher order amplifications).

Chromosomal abnormalities cause loss or defects in tumour suppressor genes, amplification of oncogenes, and generation

of fusion genes with altered function or enhanced  expression , phenom enons ob served in leuk aemias and  lymphomas

(Nowe ll and Hungerford 1960, Benedict et al. 1983, Coque lle et al. 1997, Tanaka and Kamada 1998, MacLeod et al. 2000;

Difilippantonino et al. 2002; Marculescu et al. 2002, G laddy et al. 2003, Martín-Subero et al. 2003; Vega et al. 2002,
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review). A wide variety of chromosomal abnormalities, both numerical and structural, is typical to CTCL (Whang-Peng et

al. 1982)  suggesting gen etic instability (Ka ltoft et al. 1992, 1994; Thestrup-Pedersen et al. 1994). 

5.2.1.    Numerical chromosome aberrations

Numerical chromosome aberrations are the most common cytogenetic changes observed in 2 0 000 m alignancie s studied

(Heim and Mitelman 1995 referred in Krämer et al. 2002). In the early 1900s’ Boveri suggested that cancer arises from a

single cell with an abnormal genetic constitution resulting from defects in mitotic spindle app aratus (referre d in Gollin ,

2003). In contrast,   the “somatic gene mutation hypothesis”, DNA-sequence-level gene mutations activating c ellular

oncogenes or inactivating tumour suppressor genes, alone cause cancer, and chromosomal instability is a mere consequence

of malignant t ransformation. However, new evidence suggests that aneuploid y is a distinct form o f genetic instability in

cancer (Sen 2000, review).  For the separation of chromosomes during mitosis, see Figure 3.

Numeric al abnorm alities are cause d by defe ctive segregation of chromo somes, which may result from ab normalities in

chromosome condensation, kinetochore-spindle interactions, premature chromatid separation, multipolar spindles,

centrosome am plification or abnormal cytokinesis ( Gebhart 1989, Hirano et al. 1994, Mich aelis et al. 1997, C ahill et al.

1988, Pihan et al. 1998,  Tatsuka et al. 1998, C arroll et al. 1999).

Figure 3. Regulation of chromosome

separation in mitosis .  Chromosomes

unat tached to  the  sp indle  genera te  a

signal delaying progress to anaphase ,

t r a n s d u c e d  b y  s p i n d l e - c he c k p o i n t

pro te ins  (e .g .  MAD/BUB ) ,  un ti l  a l l

chromo somes are  properly  at tached.

T h e n  M A D  i s  r e l e a s e d  f r o m  t h e

anaphase  p romoting  comple x  ( A P C,

attached to the cofactor CDC20).  The

l a t t e r  i s  a c t i v a t e d ,  s e p a r i n - s e c u r in

complex is  degraded releasing acti ve

s e p a r i n ,  a  p r o t e a s e  c a t a l y s i n g  t h e

cleavage of cohesin complexes that have

held the siste r chromatids together.  The

sis ter  chroma tids  a r e  sepa ra t ed  and

migrate towards the  poles (M odifie d

from Jal lep al l i  a n d  L e ng a u e r  2 0 0 1,

review)

Recently, cen trosome a bnorma lities have bee n under inten sive study (Martín-Subero et al.  2003) Many solid human

tumours, including brain, breast, lung, colon, prostate, pancreas, bile duct, and head and neck, show supernumerary

centrosom es (Pihan e t al 1998; Krämer et al. 2002, review). In acute myeloid leukaemia both numerical and structural

aberrations of centrosome are seen (Neben et al. 2003). Malignant cells in non-Hodgkin’s lymphomas  have abnormally

large centrosomes. Large  centrosomes have been suggested to reflect clustering of centro somes to c reate a bipo lar spindle

(Krämer et al. 2003). Increased levels of centrosome proteins found in tumours may lead to acentriolar  assembly  of spindle

poles and  aneuploid y, or functional d efects of centro somes (P ihan and D oxey 199 9, review). 
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Centrosomes c ontrol chro mosom e segregatio n and cytok inesis and all othe r microtub ule-related functio ns, such as cell

shape, polarity, adhesion, motility, intrace llular transpor t and positioning of organelles. The centrosome reproduction cycle

is regulated by G1/S  phase regulatory proteins, and both DNA replication and ce ntrosome  duplicatio n are controlled by the

Rb pathw ay (Kräm er 2002 ,  Nigg 200 2, reviews).  An abnormal num ber of centrosome s could arise by 1) formation of

centrioles de  novo,  2) o verduplica tion of centrosomes within one cell cyc le during inhib ition of DN A replicatio n for

example in response to drugs, 3) if cells are fused,  4) if cell divison is delayed by spindle assembly  checkpoint that allows

anaphase onset only after all chromosomes are properly  attached to the spindle (Nigg 2002, review). Consequently, a large

number of genes involved in the control of the cell cycle e.g. cyclin E,  p53 pathway, DNA-repair, protein degradation and

mitosis, and several kinases are implicated in centrosome amplification and numbers (Fukasawa et al. 1996, Z hou et al.

1998, C arroll et al. 1999, Mussman et al. 2000, M eraldi et al. 2002,  Anand et al. 2003; Krämer et al. 2002 N igg 2002,

Gollin 2003, Pihan 2003, reviews). A transient tetraploidization has been proposed to be a major step in the formation of

numerical ce ntrosome  aberration s (Mera ldi et al. 2002). A defec tive p53 pathway favou rs the proceeding of the abnormal

cells to mitosis rather than apopto sis (Meraldi et al. 2002, Nigg 2002, review). P53 mutations also enhance the microtubule

nucleation capacity of centrosomes (Lingle et al. 2002)

At present, different op inions abo ut the timing of ce ntrosome  aberration s and their significa nce to the de velopme nt of

cancer prevail (Lingle et al. 2002, Merald i et al. 2002, Nigg 2002, review, Pihan et al. 2003, Rajagopalan et al. 2003).

Centrosome aberrations occur at a higher frequency in advanced than in early stage cancer (Pihan et al. 2001; Krämer et al.

2002, review), but centrosome and chromosome abnormalities are also observed in in situ lesions without p53 mutations,

and centrosome defects and CIN have been suggested to contribute to the earliest stages of cancer development (Lingle et

al. 2002, Pihan et al. 2003, Nowak et al. 2002, Rajagopalan et al. 2003).

Specific aneuploid ies seem to ha ve a role in m alignant transfor mation or p rogression  of cancer (K nauf et al. 1995). They

may cause loss of one allele of a tumour suppressor gene (loss of hetero zygosity LO H) or enh ance the exp ression of an

oncogene when several copies of the respective c hromoso me are pre sent.  Cells try to co unteract these  processe s with

functional do sage com pensation, o r by duplica ting the remainin g whole chr omoso me. If the remaining chromosome has a

small deletion , the aberratio n may be hid den in a cytog enetic exam ination (Br at et al. 1997, Thiagalingam et al. 2001,

McE voy et al.  2003; Krämer et al.  2002,  Rajagopalan et al.  2003, reviews). A  common trisomy of chromosome 7

involving a non-random duplication of the chromosome with a mutant allele of the onc ogene M ET has  been ob served in

hereditary papillary renal carcinoma (Zhuang et al. 1998). In addition, trisomy of one chrom osome misregulates t he

expression of genes in other chromosomes (FitzPatrick et al. 2002). Numeric  aberrations of specific chromosomes are seen

in several malignancies or their subtypes, and they, as well as hypod iploidy as a whole, may be used  as prognost ic factors

(Krämer et al.  2002, re view, Raimon di et al.  2003). Aneuplo id genom es are  pron e to chrom osome b reakage w ith

erroneo us rejoining p roducing  structural chro mosom al abnorm alities, as  recombination repa ir of DNA de pends on the

presence of the homologous chromosome and  many genes involved in DNA repair are haploinsufficient (Hoeijmakers

2001, Matzke et al. 2003, re views). 

5.2.2. Structural chromosome aberrations

Structural abnormalities include all aberrations, where the integrity of a chromosome is broken. They include for examp le

deletions,  t ranslocations,  inversions and mult ipl ications of parts  of  the chromosome (dupl icat ions or higher  order

amplification s). They ca use losses of ch romoso mal regio ns with tumour s uppresso r genes, amp lification of regio ns with

oncogenes, and formation of fusion genes. Structural  chromosomal abnormalit ies arise from erroneous repair of  DNA

double strand breaks, which may be caused by for example ionizing radiation or other genotoxic a gents or rep lication of

spontaneous single strand breaks (Hoeijmakers 2001, Obe et al. 2002), apopto tic endonucleases followed by cell recovery,

and chemicals binding topoisomerase II, an enzyme active in replication (Greaves and Wiemels 2003, review).
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Normally, double stra nd break s are repaire d in S and G 2 by homo logous rec ombination, which requires a sister chromatid

to be used as a template, or by joining the broken ends (non homologous end joining, NHE J), in G1, wh en no siste r

chromatid is available (Hoeijmakers 2001). Erroneus rejoining of DNA breaks may produce dicentric chromosomes, that

in anaphase form a breaking bridge between two spindle poles (breakage-fusion-bridge-cycle, Coque lle et al. 1997, Gollin

2003, review) and mediate chromosomal instability. Certain DNA sequences near the breakpoints, like repetitive long

interspersed  nuclear elem ents (LINE), Alu repeats, intrachromosomal telomeric or subtelomeric sequences, homological

subtelomeric sequences in two different chromosome pairs, or topoisomerase II DNA-consensus binding sites or viral

integration sites may predispose to chromosomal rearrange ments observed in cancer, including leukaemias and lymphomas

(Rogers et al. 1985, Azzalin et al. 1997, D ay et al. 1998, Busson et al. 2000, MacLeod et al. 2000, P adilla-Nash et al.

2001; M efford and  Trask 20 02, Kolomietz et al. 2002, Oliveira and Fletcher 2003, reviews). 

A break in  DNA  is followed b y a damage  response in  several signalling pathways  e.g. DNA-repair, cell cycle chec kpoints

and telomere maintenance or apoptosis (Gollin 200 3), events controlled by man y tumour suppressor ge nes or genes o f

chromosomal instability and cancer syndromes. One of the latter is ATM  (ataxia telangiectasia mutated), the key gene at

the beginning of DNA damage signalling pathways  (Shiloh 20 03). M utations in AT M cause  the recessive d isorder atax ia

telangiectasia with sensitivity to ionizing radiation and increased levels of chromosome rearrangements (Chan and

Blackburn 2003, Shiloh 2003, review). Another early response  gene is ATR (Rad3-related), that is required for stability of

fragile sites in chromosomes  and inhibition of gene amplification by breakage-fusion-bridge-cycles (Coquelle et al. 1997,

Casper et al. 2002).  Mutation s in ReQ he licases, involve d in homo logous rec ombinatio n, cause rece ssive disord ers with

chromosomal abnormalities, e.g. Bloom syndrome and Werner syndrome, that also show and increased risk of diverse

malignancies (Prince et al. 2001, Hickson 2003 review, Sengupta et al. 2003).

Many malignant tumours appear to lack replicative senescence, e.g. their cells have an infinite replicative life span, a

property explained with abnormalities in their telomeres, which may also explain microscopically visible chromosomal

abnormalities.  Chromosome ends are protected from shortening during replication (end rep lication prob lem) by telo meres,

that consist of looping tandem TTAGGG repeats and binding  proteins. Many of them are  involved in NHEJ, homologous

recombination or V(D)J recombination (Blasco 2002, 2003, Jung and Alt 200 4, reviews), an d function e.g . as negative

regulators of telomere  length, or in pro tecting or rep airing telomer es. In somatic  cells, the telomeric  sequence is shortened

by every cell division, leading to critically short telomeres leading to NHEJ-mediated telomere fusions, breakage of

dicentric chr omoso mes in subse quent cell cyc les and apo ptosis (Artan di et al.  2000; Blasco 2002, Karlseder 2003,

reviews). I n germline an d stem cells, telo mere length is sta blilized by te lomerase enzyme. Most cancer cells show short

telomeres, telomerase activity and chro mosome abnormalities, interpreted as a sign of a period with telomere dysfunction

in their past, which they have survived by activating telomerase  and conse quent regeneration of their short telomeres

(Artandi et al. 2000, O’Hagan et al. 2002, Blasco 2002, 20 03, Chan and Blackburn 2003, Sharpless and D ePinho 2004).

Expression of telomerase may create a state of limited chromosomal instability allowing healing of broken chromosomal

ends with different mechanisms, like copying the end of another chromosome with a homologous region, translocation or

creation of a new telomere (Gisselsson et al. 2001, Stellwagen et al 2003; Feldser et al. 2003, Cech 2004, reviews). Some

cancer ce lls conserve their telomeres by an alternative pathway, alternate lengthening of telomeres (Chang et al. 2003;

Neumann and Reddel 2002, Stewart  et al. 2002, Meeker and de M arzo 2003 reviews). Skin biopsy-derived skin-homing

T-cell lines an d periphe ral blood  mononu clear cells (includ ing lymphoc ytes) have a high  level of telomerase activity and

short telomeres. Both are observed already in parapsoriasis patients and have been suggested  to be impo rtant in the

tumorigenesis of CTCL (Wu et al. 1999).

Structural chromosome aberrations may promote carcinogenesis by causing losses of chromosomal regions with tumour

suppressor genes and  amplification of regions with oncogenes, with gene -level effects resembling those  caused by

numerical chromosome aberrations but with possible changes of position effects (Brown et al. 1999, Baur et al. 2001,

Carvalho et al. 2001; Mefford and Trask 2002, review). Additiona lly, unlike numerical aberrations, structural chromosome

aberration s may cause fo rmation of fusion genes encoding fusion proteins (Vega et al. 2002, 2003, Scandura et al. 2002).
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Many translocations associated with leukaemias and lymphomas, especially  of  B-cell origin,  have been extensively studied

(reviewed in Vega et al. 2002, 2003, Scandura et al. 2002, a nd Stilgenbauer 200 2, Huntly et al. 2003), a nd  occur  also in

some sarcomas (reviewed in Rego and Pandolfi, 2002).  Most of these translocations are observed only in one or a few

types of cancer. Their freque ncy varies from less than one perce nt of cases of the respective diseas e to the majo rity of

patients (Rego and Pandolfi 2002, and Scandura et al.  2002, and Vega et al. 2002, reviews),  and may be the only

chromosome abnorm ality observed at early stages of the diseases, which have been regarded as “one hit” cancers (Knudson

1971, Knudson 2001 review). However, many of the tumour specific translocations are observed commo nly in normal ce ll

populations, with a low frequency, like in one cell of 104 to 108 cells for each translocation. Their significance awaits

further research. They might be somatic, non-dividin g cells, or their ma lignant potential is restrained by some yet unknown

mechanism. The view has emerged, that translocations alone are not sufficient to cause overt cancer, but other mutations

are needed (Lim pens et al. 1995, Biernaux et al. 1995, Trümper et al. 1998, M aes et al. 2001, Marculescu et al. 2002,

Vega et al. 2002, Bäsecke et al. 2002, Janz et al. 2003; Vega et al. 2002, Oliveira and Fletcher 2003, Greaves and Wiemels

2003, re views).  - In contra st to many non -Hodgk ins lymphomas, Hodgkin’s lymphoma shows mainly complex structural

and numerical abnormalities, although rare cases with t(2;5)(p23;q35),(see below), have been reported (Weber-M atthiesen

et al. 1993 a  and b, 19 95, Li et al. 1997, Barth et al. 2003; Re et al. 2002 re view). 

Interestingly, translo cations may a ffect genes coding transcription factors, nucleoporins, protein tyrosine kinase genes,

nucleoporins,  or factors regulating cell cycle or apopto sis.  One reciprocal translocation produces two fusion genes. Usually

one of them has been considered to be decisive in carcinogenesis, but in some case s the other one also plays a role

(reviewed in Vega et al. 2002, Rego and Pandolfi, 2002, Scheijen and Griffin 2002, Scandura et al. 2002). One gene may

have sever al alternative tran slocation p artners form ing different fusion  genes.  In leukaemias, the function of the gene

taking part in the fusion, is often changed through an alteration in its structure (Scandura et al. 2002, Vega et al. 2002,

2003, G reaves and  Wiem els 2003 ). Alternatively, the tra nslocation m ay put an oncogene under the control of regulatory

elements of a nother gene, changing the expression of a structurally normal protein (Pekarsky et al. 2001, Vega et al. 2002,

2003, G reaves and  Wiem els 2003 ). In lymphomas, such translocations often arise by errors during V(D)J recombination

that place another gene und er the contr ol of an immunoglobulin gene. Such illegitimate V(D)J recombination may occur

during selection of the variable  region of immunog lobulin during class switch or light chain c hange called  receptor e diting.

Analogica lly, illegitimate V(D)J recombinase  activity can combine TCR genes with oncogenes,  two genes others than TCR

genes, or inactivate tumour suppressor genes by deletions (Aplan et al. 1990, Brown et al. 1990, Cayuela et al. 1997,

Marculescu et al. 2002; Vega et al. 2002, 2003 reviews, Messier et al. 2003). Gesk et al. (2003) did not find breakpoints

in TCRA/D  or TCRB genes with locus-specific FISH among 12 patients with CTCL not showing cytogenetic evidence of

translocation s involving the  re spective cyto genetic regio ns. 

Some translocations are accompanied by deletions in the translocated chromosomes spanning up to 1 Mb. They may be

associated with sequences rich in Alu repeats, and cause haploinsufficiency (König et al. 2002, Kolomietz et al. 2001,

review). Fo r example , the translocation t(9;22 )(q34;q 11.2) pro ducing P hiladelphia  chromosome (Nowell 1960, Rowley

1973), and fusing of genes BCR and ABL in chronic myeloid leukaemia (CML) shows deletions up to several hundred

kilobases at the translocation breakpoint (Sinclair et al. 1997). The deletions arise during the translocation process, and

correlate with a shorter survival (Sinclair et al 2000,   H untly et al. 2003, review, Lee et al. 2003). A part from all p atients

with CM L, the fusion gen e is observe d in 25%  of patients with ad ult (ALL) an d 5% o f childhood ac ute lympho blastic

leukaemia. However, two thirds of cases with ALL show another breakpoint within the BCR gene than patients with CML,

but in rare cases it may involve a deletion, too (Hun tly et al. 2003, review). ALL  cases without BCR/ABL translocation

may rarely show a deletion in ABL (Lee et al. 2003).

Anaplastic large cell lymphomas (ALCL) of T-cell or null cell phenotype (Vega et al. 2002, 2 003), and  rarely primary

CD30 positive CTCL (Beylot-Barry et al. 1996,  1998,  show t(2;5)(p23;q35) with a  fusion gene of  nucleophosmin (NPM)

and anaplastic lymphoma kinase (ALK) gene, a tyrosin kinase receptor (Vega et al. 2002, 2003). ALK shows also other

fusion genes in alternative translocations and in an inversion of chromosome 2  (Pittaluga et al. 1997, Vega et al. 2002,
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2003). The cytogenetic t(2;5), or the transcript with PCR  or immmu noreactivity o f the protein have been observed in a

minority, at most  20%  of cases with primary CD30 positive CTCL (Lopategui et al. 1995, Shiota et al. 1995, Beylot-Barry

et al. 1996,1998,Wood 1998 review). Controversially, in ma ny studies evide nce of the translocation has not been observed

in the patients (Wellman et al. 1995, DeCoteau et al. 1996, Sarris 1996, Wood et al. 1996, Woo d 1998 review) but  with

PCR it has been observed in the blood of healthy persons, (Trümper et al. 1998).  Its significance for the pathogenesis of

the primary cutaneous CD30 positive lymphoma has been questioned (Wo od 1998), and it has not been observed in

transformed (Wolfe et al. 1995) large cell CD 30 + CT CL (Li et al. 1997). It was observed, exceptionally, in a few cases

with lymphomatoid papulosis  and in 6/27 cases with CD30+ MF , by one group with a highly-sensitive nested PCR

method, but no ALK1 immunoreactivity was seen (B eylot Barry et al. 1996, 1 998; W ood 19 98 review ). By quan titative

RT-PCR, Maes et al. (2001)  observed  a low level exp ression of ALK-fusion genes, not supported by cytogenetic  or FISH-

studies in ALK-immunohistologically negative ALCL, Hodgkin’s disease and non-neop lastic cells suggesting the presence

of transcripts in normal cells (Maes et al. 2001).

5.2.3.  Previous chromosome studies in CTCL

The cytogenetic  studies in MF or SS patients preceding the first publication of this thesis, were performed  mostly on blood

lymphocytes (Fukuhara et al. 1978, Edelson et al. 1979, Van Vloten et al. 1980, Nowell  et al. 1982, 1986, Whang-Peng et

al. 1982, Johnson et al. 1985, Gamperl 1986, Barbieri et al. 1986, Berger and Bernheim, 1987, Mecucci et al. 1988, Berger

et al. 1988, Shapiro et al. 1987, D’Alessandro et al. 1990, 1 992, K altoft et al. 1992, 1994), and revealed a large spectrum

of chromosomal abnormalities, both numerical and structural.  No specific abnormality could be detected, but some non-

randomness was observed. According to a 41 patient study of Whang-Peng et al. (1982), e.g. the ten or nine chromosomes

most often involved in structural abnormalities were chromosomes 1 (10 patients) , 6,7 (9), 4, 9 (8),10, 12, 14, 15 and 17

(7), and in nu merical ab normalities ch romoso mes 11,2 1,22 (15  patients) ,8,9 (14),15,16 and 17 (11), respectively, but the

continuum went on involving a ll the chromosomes. C ytogenetic abnormalities were observed prior to histological

malignancy, and were suggested to have a significant diagnostic and prognostic value (Whang-Peng et al. 1982). 

5.3.     Molecular cytogenetic methods

Conven tional cytogenetics with G-banded chromosomes is time consuming and detects only  spontane ously dividing cells,

or cells inducible to division in cultivation, which in CTCL are often difficult to obtain (Burg et al. 1978, Bunn et al.

1980a , Dalloul et al. 1992, Abrams et al. 1993, Hindkjær et al. 1993, Berger et al. 2002).  Additionally, G-banding does

not allow identification of the chromosomal origins of all chromosome parts involved in chromosome aberrations. Many

of these pro blems ma y be solved  by use of mo lecular cytoge netic techniqu es. 

Both interphase cells and metaphase chromosomes can be analysed by in situ hybridization with chromosome centromere

specific pro bes for num erical aberr ations of spe cific chromosomes.  Locus-specific probes can be used a nalogically .

Tumour DNA can be studied to show amplification or loss of chromosome regions by comparative genomic  hybridization,

in which tumour and reference DNA are hybridized to no rmal metap hases, in which th ey compe te for their spec ific

hybridizatio n target region s (CGH , Kallioniemi et al. 1992b).  In metaphases, whole chromosomes or their arms can be

“painted”, and the 24-colour methodology for identification of every chromosome pair, especially suitable for the study of

translocation s and origin o f marker chr omoso mes, beca me availab le during the tim e course o f the studies included in this

thesis. 
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5.3.1.  Non-radioactive in situ hybridization with centromere- or whole chromosome-specific probes, or locus-       

      specific probes 

In situ  hybridization utilizes nucleic acid  probes, that detect sim ilar target seque nces in tissue sec tions, cytologic al or

chromosome preparations. In situ  hybridization was originally developed for radioactive detection, which has largely been

replaced by  non-radioactive in situ hybridization (ISH) with no irradiation hazard, better spatial resolution, and allowing

simultaneous multi-colour analysis of several targets and long-term storage of probes (Komminoth et al. 1992, Poddighe

et al. 1992).  Both DNA and RNA can be used as probes or detected (Gall and Pardue, 1969, John et al. 1969, Pardue and

Gall, 1969, Raap et al. 1991, Komminoth et al. 1992, Poddighe et al. 1992, Werner et al. 1997). If not otherwise stated,

in situ hybridization in the present text refers to non-radioactive DNA in situ hybridization using  DNA probes.  The probes

can be made by cloning the sequences into cosmids (insert size 40 kb), phages (P1-phages, ~100kb), bacteria (P1-derived

artificial chromosomes, PACs, ~100-150 kb; BACs, ~100-200kb) or yeasts ( yeast artificial chromosomes YACs, 100-

1000k b). 

The number and localization of a specific chromosome centromere in a given interphase or metaphase cell may be studied

using centromere-specific probes, that represent repetitive sequences, classical satellite, alpha-satellite or beta-satellite,

present in the heterochro matin near the centromere of the given chromosome. The chromosome specificity  of these probes

is sensitive to hybr idization co nditions, and  there is polym orphism o f  the size of the reg ion detecte d. Nowa days, specific

probes for each human chromosome centromere are available, except for 13 and 21 having a common probe (Devilee et al.

1986a,b).

Human chromosomes in somatic  hybrid cell lines, flow-sorted chromosomes or microdissected chromomosomes have been

used to create probes specific for individual chromosomes or chromosome arms (chromosome- or arm-specific painting

probes, Cremer et al. 1988, Lichter et al. 1988, Lengauer et al. 1990, Carter et al. 1992, Guan et al. 1994a, 1994b, 199 6),

smaller parts of chromosomes (band-specific probes) specific chromosomal regions or chromosome aberrations (Carter et

al. 1992, Meltzer et al. 1992, Guan et al. 1993, 1994a). These probes are used especially for detection of translocations or

numerical a berrations in  metaphas es.   

Labelling Labelling of the probes may be performed by several methods using nucleotides conjugated with a reporter

molecule. In nick translation, the DNA template is nicked with DNAse I, DNA polymerase I extends the nicks to gaps by

the 5'->3' exonuclease activity and replaces the missing nucleotides by a mixture of labelled and unlabelled  ones (Rigb y et

al. 1977, Langer et al. 1981). Other common labelling methods are for example random primed labelling (Feinberg and

Vogelstein 1984), Polymerase chain reaction labelling (PCR  labelling, Lo et al. 1988) adding labelled nucleotides to the

5'or  3'-end of the probe (Kempe et al. 1985, Murasugi and Wallace 1984, Schmitz et al. 1991; Höltke et al. 1995 review

to several methods).  Diverse commercial methods based on chemical reactions are available.

The length of the probe affects its penetration, diffusion, hybrid formation and hybrid stability. After labelling, the optimal

length for centromere-specific probes is 200–400bp, for CGH probes about 600-2000bp (Unger 1 990, K allioniemi et al.

1994a ). In nick translatio n, the length of t he probe is regulated by the relation of DNAse and polym erase as well as  the

reaction time . In random  primed lab elling, the length o f the produc t depend s on the DN A to be lab elled.  

Hybridization and detecti on In the hybridization process, the DNA double helix of the probe and the target DNA are

unwound in a denaturation reaction, generally by heating, and the hybridization of the probe to the its complementary

sequence in the target, is allowed to proceed in a warm, sub- melting point, moist chamber. Unhybridized probe is washed

off, and the reporter molecules are detected either directly with fluorescence microscopy or enzymatic colour reactions, or

indirectly, after enhancement by sandwiching with several  layers of molecules. They  may be  for example avidin or

streptavidin conjugated with a fluorescent colour or an enzyme, used with anti-avidin or anti-stre ptavidin antib odie s

conjugated with biotin, or antibodies to digo xigenin,  conjugated with  fluorescent colo urs or enzymes producing colour
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reactions. The enzym es may be selected along  with substrates producing a  colour visible in fluorescent or bright light

(Jablonsk i et al. 1986 with references to previous studies; Unger 1990, P oddig he et al. 1992, Raap et al. 1990, Holtke et

al. 1995, reviews). For FISH, the colours must have different absorption and emission spectra s, separable  by the opti cal

system (filters) of the microscope.

The hybridization of painting probes to repeated sequences as Alu and KpnI is suppressed (chromosome in situ suppressio n

hybridization, CISS) using unlabelled total  human DNA , usually of placental  origin (e.g.  Cot-1 DNA, placental DNA

enriched for repetitive sequences) mixed with the probe (Cremer et al. 1988a, Lichter et al. 1988). Cot-1 DNA is also used

for reducing unspecific hybridization of centromere-specific probes (e.g. Karenko et al. 1997).

Alternatively, hyb ridization m ay be perfor med with unlabelled, synthetic oligonucleotides, specific for the chromosomal

region or gene studied, and the process is continued as a PCR reaction, where a thermostable polymerase inco rporate s

labelled nucleotides (PRimed In situ  labelling, P RINS, Koch et al. 1989). Compared to conventional FISH, its advantages

are  the simple produc t ion of the probes and speed,  but  only one s ignal  colour  is  produced in  one PCR reaction.

The prepara tions made for bright field microscopy are counterstained and mounted according to the requireme nts set by the

colours used, even permanent prepara tions can be made. Preparations made for fluorescent microscopy tend to bleach with

time, although  they a re  mounted in  flu ids  con ta ining an ti -fade  agen ts .  They are often m ixed with a co unterstain, fo r

example 4' ,6-Diamidine-2'-Phenylindole Dihydrochloride (DAPI), that stains mitotic chromosomes with a band pattern

resembling  a reversed  G-band ing. 

Imagining Video- or digital cameras, connected to the microscope,  have replaced  kinofilm cameras used in the beginning

of these studies for documentation. Imagining FISH is often performed with a high-resolution black-and white camera

taking one picture of every colour of one microscope field at the time. The computer assignes a different p seudoco lour to

every shot, and combines the images to one picture. Thus superimposed signals of d ifferent colours are discerned, and

further com puterized  image analysis is p ossible (V iegas-Peq uinot et al. 1989). Laser microscope enables  the study o f

relative positions of chromosomes and even their banding pattern in interphase  cells (Lichter et al. 1998, Carvalho et al.

2001, Müller et al. 2002, Lemke et al. 2002).  

Factors affecting reliability  Evaluation of hybridization signals should be performed only in well hybridized areas of the

preparation. Good hybridization quality often requires the use of protein degrading enz ymes, as pro teinase K o r pepsin ,

especially whe n the target is a tis sue section. T he hybridiza tion conditio ns are usually o ptimized for each type of target

material and probes, and may be calibrated by using normal tissue contro ls and internal c ontorols o f different type of c ells

on the same slide  (Pinkel et al.1986, W alt et al. 1989, Larsson et Hougaard, 1990, Hopman et al. 1989, 1991, Poddighe et

al. 1992, van Dekken et al. 1993). For metaphase p reparation s in FISH-p rocesses, the  visual quality of D API-ba nding in

microscopy after denaturation is used for optimization of hybridization conditions (Karhu et al. 1997).    

The reliability of scoring of interphase cells with chromosome aberrations detected with in situ hybridization depends on

the choice o f the target mater ial used. In pre parations b ased on ce lls suspensio ns dropped on slides, overlapping cells are

avoided. Split spots (paired arrangement) are counted as one (Poddighe et al. 1992).   In tissue sections, the location of

abnormal cells in relation to other tissue components is preserved and intratumoural heterogenity  is better observab le than

by using single ce ll preparatio ns. On the o ther hand, a p art of the cell is often cut off, or c ells are upon  each other , thus

affecting the number of signals designated for each cell. Therefore, in studies using tissue sections, diverse mathematical

evaluation systems calibrated in relation to normal tissue or single cell suspension-based preparation of the same tumour

have been used used. (Dhingra et al. 1992, Qian et al. 1996, Poddighe et al. 1992, van Dekken et al. 1993). Thick sections

(20:m) have been used  in confocal microsco py (Thomp son et al. 1994), and also in bright-field microscopy (Looijenga

et al. 1993). The abovemen tioned pro blems ma y also be reso lved by using w hole nucle i isolated from paraffin sections

(Hyytinen et al. 1994). Biopsies snap-frozen with liquid nitrogen and mounted in a standard pathologic freeze preservative,
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may be pr essed gently ag ainst a slide to p roduce w hole-cell touch prep arations, which are easy and reliable to hybridize.

Recently, FIS H has be en perform ed in suspen sion (S-FIS H), which will o pen new p ossibilites for the study of interphase

cell architechture, as the cell conserves its spherical form during microscopy (Steinhaeuser et al. 2002).  

Resolution achieva ble with locus-spe cific probes  Locus-spe cific probes are mostly used in combination with fluorescent

detection. They can be localize d to metap hase chrom osome b ands, a nd their order in metaphase or prometaphase

chromosom es, or chromosomes streched mechanic ally in the cytocentrifuge, or interphase nuclei,  can be discerned with the

resolution of approx imately 2-3 Mb, 1 Mb, 400-500kb, 50-1000 kb, respectively.  (Trask et al. 1991, Laan et al. 1995, Haaf

and Ward 1994b). Fiber-FISH, where the target of hybridization is DNA deposited on microscope slides, yields a resolution

of 1-300kb (Heng et al. 1992, W iegant et al. 1992, Parra and Wind le 1993, Fidlerová et al. 1994, Haaf and Ward 1994a,

Housea l et al. 1994, Senger et al. 1994, Heiskanen et al. 1995).

5.3.2.  Combined DNA in situ hybridization and immunocytochemistry

Conven tional cytogen etics, or in-situ hybridizations using conventional chromosome preparations, can not be used to study

the phenotype of the abnormal cells, as cell mem brane and  cytoplasm ha ve been re moved  by hypoto nic treatment,  fixation

and dro pping of the  cells to the slid es, all designed to spread the chromosomes and remove other cellular materials

disturbing the  analysis. Chromosome analysis with diverse stand ard cytoge netic stainings of im munoph enotyped  cells, a

method c alled  MA C (morp hology, antib ody, chrom osomes) is p ossible by usin g a mild   hypotonic treatment leaving the

cytoplasm and cel l  membrane intact ,  cytocentri fugic  spreading of  cells  on the s l ides,  and avoiding of  ac id ic  or

formaldeh yde contain ig fixatives befor e immuno cytochemistry (Stenman et al. 1975, Bernheim et al. 1981, T eerenhov i et

al. 1984, Knuutila and Keinänen 1985, Perry and Thomson 1986, Pérez et al. 1991, Schlegelberger et al. 1994b ; Knuutila

et al.  1994a, review). The immunocytochemical staining and chromoso mes can b e analysed e ither in two sep arate ,

sequential steps, so that same cells are photographed twice, or simultaneously in a single step (Knuutila et al. 1994). The

requirement of mitotic cells and difficulties in obtaining a good  spreading  and staining q uality of the chro mosom es limits

the use of MAC method (W eber- Matthiesen et al. 1992).

The yield of MAC-technique may be improved by combining it with in situ hybridization (M ACISH ), but interpha se cells

offer a larger and more easily processa ble material fo r study, especia lly in diseases, whe re metaph ases are difficult t o

obtain. Analogically with MAC, immunocytochemistry and in situ hybridization of interphase  cells may be p erformed  in

two sequential steps or in one step with simultaneous detection of both (Wessman and Knuutila 1988, Tiainen et al. 1992,

Knuutila  et  al, 1994a  review, 19 94b). Both b right field microscopy (Haas et al. 1987, Mullink et al. 1989, van den Brink

et al. 1990, Looijenga et al. 1993, S trehl and Am bros 19 93, Spee l et al.1994a,b, Knuutila et al. 1994b, K erstens et al.

1994), and  fluorescent dyes (fluorescence immunophenotyping and interphase cytogenetics as a tool for investigation of

neoplasm s, FICTI ON, W eber-M atthiesen, 19 92, 1993a, 1993b, Price et al. 1992) h ave been  used. Th e antibod ies used in

immunoh istochemistry m ust not cross-re act with antibo dies used fo r the detectio n of in situ hybridization, although the

antigenic prop erties of prote ins are destro yed to som e extent during  the hybridiza tion proce dure. Th e choice o f colours is

limited by the tendency of  the fluorescence colours of immunohistochemistry to fade during the hybridization procedure.

The colourigenic complexes on the cell surface or in the cytoplasm should not hinder probe penetrance. When bright field

microscopy is used, particular attention must be paid to the transparency of immunohistochemical staining, which must not

hide the hybridization signals. FICTION has been used for the study of several lymphom a-specific chromosome aberrations

(Martín-Subero et al. 2002, Barth et al. 2003, Gesk et al. 2003).   
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5.3.3.   Multicolour FISH, cross-species colour banding and bar coding methods

Structural rea rrangeme nts of the whole genome can be screened with multicolour FISH, that discerns also balanced

translocations. Multicolour FISH is based on chromosome-specific painting probes, that are labelled (Nederlof et al. 1990,

Dauwerse  et al. 1992, Ried et al. 1992) with several colours, so that every chromosome has a specific colour combination.

Translo cations are o bserved a s a change in th e colour co mbination o f the parts of the c hromoso mes involve d. 

The most commo nly used, nowada ys commercial methods of multicolour FISH are multifluor or multiplex FISH (MFISH,

Speicher et al. 1996) and spectral karyotyping (SKY , Schröck et al. 1996). Their main difference is in the imaging, which

in MFISH is done with one image for each six colours including DAPI, and the images are combined with the computer.

In SKY, only one image is taken through a triple-band pass filter and analysed spectroscopically (Fourier analysis), which

excludes the  effect of changes in the intensity of the colour (Speicher et al. 1996, Schröck et al. 1996, Macville  et al. 1997,

Schröck and Padilla-Nash, 2000).

In MFISH and SKY, the probes are labelled in a binary fashion (combinatory labelling): each colour is present in or absent

from each chrom osome and usu ally at least six colours have to be detectable  with the microscope and camera, if all probes

are hybridized in the same time instead of sequential (Speicher et al.  1996, Schröck et al. 1996, Müller et al. 2002)

hybridizations. In contrast, the colour-changing karyotyping (CCK) method is based on intensity differences, achieved

using specific colours as d irect or indirec t labels, and an alysable with  a stan dard fluore scent micro scope with o nly three

filters (Henegariu et al. 1999). Other methods are based on delayed luminescence (Tanke et al. 1998), o r mixing of ratio

colours and binary colours (Combined Binary Ratio labelling, COBRA, Tanke et al. 1999).

Multicolour FISH defines the origins of marker chromosomes or partially identified chromosomes observed in G-banding,

and may reveal aberrations not detectable by G-banding  (Veldman et al.  1997, Rao et al.  1998, Sawyer et al.  1998,

Zattara-Can noni et al. 1998, R owley et al. 1999, Uhrig et al. 1999, Nordgren et al. 2002). Howev er, the sensitivity o f

mult icolour FISH for detection of translocations depends on the condensation of the chromosomes and the colour

combination of the chromosomes involved, and may be quite low, between 320kb to 2.6 Mb, especially  in the subtelomeric

regions (Schröck et al. 1996, Uhr ig et al.  1999,  Kearney 1999, Azofeifa et al.  2000).   The s tandard  MFISH can be

improve d with the use o f arm-specific probes adding one more colour, that adds the capacity to distinguish the arms

involved in translocations and  to detect pericentric inversions (Sallinen et al. 2003). However,  generally the colour system

of multicolou r FISH d oes not de tect intrachromosomal events.  Inversions, duplications or deletions must be approximated

using the DAPI staining, the quality of which is quite variable.

Intrachromosomal rearrangements can be sought with bar code probes made of YACs (L engauer et al. 1992, 1993) o r

radiation hybrids (Müller et al. 1997).  YAC prob es and subtelomeric probes have been combined to a modified MFISH

(goldFISH) (Saracoglu et al. 2001). Cross-species colour banding (Rx-FISH, Müller et al. 1997, 1998, 2002 ) is a coarse

whole-genome screening method based on probes made of primate chromosomes, the DNA of which hybridizes to different

human chromosomes forming bands, and can be combined with other probes or with G-banding (Schröck and Padilla-Nash

2000, Teixeira et al. 2000). Multicolour banding can also be achieved with partially overlapping probes derived from

microdissected normal human chromosomes (Chudoba et al. 1999, Lemke et al. 2002).  



26

5.3.4.   Comparative Genomic Hybridization (CGH)

Comparative genomic  hybridization (K allioniemi et al. 1992b ), which is base d on analysis o f DNA o f malignant cells and

does not require metaphase preparations of malignant cells,  has been most useful in the study of solid tumours (Kallioniemi

et al. 1994b).  Comparative genomic  hybridization  allows identification and localization of DNA copy-number changes of

the whole genome in a single experime nt. In short, the patient’s DNA, labelled with a green fluorescent colour, for example ,

FITC (fluorescein  isothiocyanate), is mixed with  a reference DNA labelled with red fluorescent colour, for example, Texas

Red, and  hybridized  to norma l chromo somes, wh ere they com pete  for suitable binding sites reflecting their relativ e

concentrations. Each colour in the metaphasis as well as the DAP I backgro und stain are d etected sep arately with  a UV-

microscope and captured with a CCD-camera (charge coupled device). Computer software analyses the light intensities of

each pixel along the axis of each chromosome, and  subtracts the background noise. The result is shown as a green to red

ratio profile, wh ere the avera ge norma lized green to red intensity ratio is 1.0 for the entire metaphase. To reduce the noise,

data from multiple metapha ses is comb ined giving  p rofiles for the me an ratio ± 1 S.D. A comparison between two normal

DNA  samples is alwa ys included to  control hybridization quality, so that the normal variation ( ± 1 S.D) does not exceed

0.85 or 1 .15 (Ka llioniemi et al. 1994a).

The original method of CGH detects deletions of 10-20 Mb (revi ewed in  Kallioniem i et al. 1994a, Bentz et al. 1998).

Amplifications (gains) of small sequences, even 1 Mb,  including whole oncogenes,  may be detected, if they are highly (5-

10x) am plified (Ka llioniemi et al. 1994a, Forozan et al. 1997, re view). T rue polyploidy itself is not possible  to detect, nor

balanced structural chromosome aberrations.  Normal cell contamination, increases the proportion of normal DNA in the

sample, so that more than 50% of normal cells m akes the ana lysis increasingly difficult; at least 35% of cells with a similar

aberration should be present, but the sensitivity can be increased by selection of statistical thresholds taking into account

the variation of normal chromosome regions (Kallioniemi et al. 1994a, du Mano ir et al. 1995, Lichter et al. 2000, review).

Heterogenity in the tumour is hidden and prop erties of small subclones possibly giving  rise to metastase s may go

undetected  (Lichter et al. 2000 review).  The sensitivity for deletion detection depends on ploidy level, as the number of

normal chromosomes in the malignant cell may exceed the number of chromosomes with a deletion.  Repeat sequences, like

in peri-centro meric and  heterochro matic regions, cannot be analysed with CGH. They have to be blocked with Cot-1 DNA

during the hybridization to avoid large ratio changes.  Telomeres are often excluded from analysis for their weak staining

intensity, and chromosome s 1p32-pte r, 16p,19 , and 22 m ay show false d eletion (Ka llioniemi et al. 1994a).  Sensitivity of

CGH for deletions can be increased to the range of 3 Mb by use of standard reference intervals, based on a series of normal

samples (K irchhoff et al. 1999). New matrix-based CGH, with hybridization of tumour DNA to arrays of large insert

genomic clones (B ACs or cDN A clones) or oligonuc leotides on chips,  allows analyses at single gene level, especially of

high-level amplifications (Solinas-Toldo et al. 1997; Albertson and Pinkel 2003, Schwaenen et al. 2003, reviews), and has

also been used in the study of CTCL (Mao et al. 2003a). . 
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6.          AIMS OF THE STUDY

The aims of this thesis  were to detect and characterize chromosomal aberrations associated with the aetiology and

progression of CTCL using cytogenetic and molecular cytogenetic methods, and to examine their association with clinical

progression of the disease, in order to provide diagnostic  and progno stic tools and investigate  the aetiology of the disease.

This was ac hieved by 

1. investigating chromosome aberrations by cytogenetic and simple centromere-sepcific in situ hybridizations 

2. by following-up of the clinical condition and changes in the above chromosomal aberrations

3.  studying immunohistoche mically the expression of mo lecules with functional or signal-transducing properties i n

malignant ce lls identifiable by in situ hybridizations 

4.  searching chromosomal regions with DNA amplified or lost, possibly harbouring oncogenes or tumour suppressor genes,

using comparative genomic hybridization (CGH)

5. identifying the most common chromosomal abnormality observable with 24-colour in situ  hybridization in blood

metaphase cells,  identifying the gene involved, and  studying its ploidy level in skin lesion cells 
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7.         MATERIAL AND METHODS

7.1.      Material

7.1.1.   Patients

Patients were from the Departm ents of Dermatology and Venereology of Helsinki University Central Hospital’s  Skin and

Allergy Hospital,  Helsinki,  of Tampere University Hospital, Tampere (7 SS-patients  in study I), Finland and of the Medical

University  of Gdansk (4 SS-patients  in study V), Gdansk, Poland. The studies were approved by the ethical review boards

of the respec tive Hosp itals. 

The diagnosis was based on clinical, histologica l and immun ohistologica l findings (review ed in Kuz el et al. 1991), the

latter two in at least two consecutive biopsies according to the principles of the European Organization  for Research and

treatment of Cancer (EORTC, Willemze et al. 1997).

The patients were seen a nd samples were o btained in the context of the patients’ regular hosp ital visits and examinations,

and therefore the intervals between sampling of the individual patients were irregular. Also, while some patients were

untreated,  many had received different treatment modali ties, e .g. psoralen and UVA (PUVA) as topical or systemic

treatment, electron beam treatment or chemotherapy.  All the patients had given informed consent for the additional

samples o btained for  this study.

For contr ol purpo ses, periphe ral blood  of 38 health y persons  (for details see  the studies I to V ), 4 patients with p soriasis

vulgaris or alopecia treated with P UVA (p soralen + U VA, stu dies I and II) , frozen tissue b iopsies of on e patient with

histopatho logically  confirmed lymphom atoid papulosis (study III) volunteering for this study were obtained. Also skin

biopsies fro m 9 patien ts with histopatho logically confirm ed lupus eryth ematosus d iscoides or eczema, typically with non-

malignant T lymphocyte infiltrates (study V), obtained after informed consent, were used.

The number and staging of patients are shown in Table  IIa. Individual patients appearing in more than one study are shown

in Table IIb. 

Table IIa. The number of patients  studied and the cytogenetic methods used

Diagnosis LPP/FM MF/Stage SS/Stage Methods

Study IA IB IIA IIB III IVA

I 3/1 2 4 3 1 3/IIIB1 G-banding, centromere specific FISH

II 4/1 2 1 1 2 2/IVA G-banding, centromere specific ISH

III 2/IVA FICTION
IV 1 3 5/IVA;2/IIIB1 CGH

V 1 6 1 6 2 8/IVA MFISH/SKY: 12 patients; CGH 5:patients;

locus-specific FISH: 21patients

LPP: large plaque parapsoriasis, FM: follicular mucinosis, MF: mycosis fungoides, SS: Sézary syndrome

ISH: in situ hybridization, FISH: fluorescent ISH, MFISH: multifuor FISH, SKY: spectral karyotyping

FICTION: fluorescence immunophenotyping and interphase cytogenetics as a tool for investigation of neoplasms

CGH: comparative genomic hybridization
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Table IIb. Cases appearing in multiple studies 

Case number of the specific patient in the respective studies 

Diagnosis/stage Study I Study II Study III Study IV Study V

AlopM 1 4

LPP 2 3

LPP 3 1

LPP 4 5

MF/IA 5 13 8

MF/IA 6 9
MF/IB 7 11 16

MF/IB 8

MF/IB 9 7 15

MF IB->IIB 10 21

MF/IIA 12 9

MF/IIB 11 6 1 20

MF/IIB 12 10 4
MF/IIB 13 8

MF/III 2 23

MF III->SS IVA 14 7

SS/IIIB1 15 9

SS/IIIB1 16

SS/IIIB1 17 8

SS/IVA 14 1 6 1
SS/IVA 15 2 11 3

AlopM: alopecia mucinosa, LPP: large plaque parapsoriasis, MF: mycosis
fungoides, SS: Sézary syndrome
For stages, see Table I.

7.1.2.   Patient sam ples 

Peripheral heparin and EDTA blood was sample d in studies I, II , IV  and V. L esional skin or lymph node biopsies were

obtained  in studies II to V, snap frozen in liquid nitrogen and stored in -70/C. In addit ion, in one ca se, post-mo rtem

lesional skin and lymph node samples were studied (studies III and V).

7.2.      Methods

7.2.1.   Basic principles of the studies and methods used

Study I Conven tional metap hase slides we re prepa red of T -cell mitogen stim ulated blood lymphocytes cultures, and used

for traditional G-banded metaphase analyses, and fluorescent in situ hybridizations (Figure 4) with probes selected on basis

of findings of Whang-Peng et al. (1982). Chromosomally aberrant cells were scored, and analysed statistically. Some

chromosomal findings were further studied with enzyme-detected in situ hybridizations (EDISH).

Study II As in Study I, conventional metaphase slides we re prepar ared from  T-cell mitog en stimulated  blood lym phocyte

cultures, and used for traditional G-banded metaphase analyses, and in situ  hybridizations (Figure  4), which were all

performed with an own version of the EDISH method, producing archivable  preparations. Centrom ere-specific  probes were

selected on the basis of the findings of the first study (Karenko et al. 1997). Follow-up samples were taken. Chromo somally

aberrant ce lls were score d and ana lysed statistically.
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. 

Figure  4. Principles of studies I and II

Cultivated b lood lymp hocyte preparations

with metaphases and interphase cells were

used for G -banding stud ies of the mitoti c

chromoso mes and in situ  hybridizatio n

analyses of the interphase cells. Studies I

and II.

Study III  Pheno type  and  func ti o n - a s s o c i at e d  m a r k e r s  o n  i nt e r p h a s e  c e l ls  w e r e  de t ec t ed  wi th f luo rescent

immunohistochem istry, followed by  in situ hybridizations allowing an individual identification of malignant cells (an own

modification of the FICTION method of W eber-Matthiesen et al. 1992, 1993) (Figure 5).

Figure 5. Simultaneous immuno labelling

and in situ  hybridizat ion  (Study III).

Nat ive separated blood lymphocytes or

touch preparations of whole cells of frozen

b i o p s i e s  w e r e  im m u n o l a b e l l e d  a nd

hybridized with chromosome centromere-

specific probes allowing the individual

identification of malignant c ells showin g

a b e r r a n t n u m b e r s  o f c h r o m o s o m e

centromeres.

Study IV  Peripheral blood lymphocyte DNA of CTCL-patients was studied with comparative genom ic hybridizatio n in

order to reveal DN A copy-numbe r changes and to localize them  to the respective chromo somal regions (Figure 6). 
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Study V Peripher al blood lym phocyte m etaphases o f seven conse cutive patie nts with Sézary syndrome  and four p atients

with mycosis fungoides were studied with 24-colour FISH (multicolour FISH, including spectral karyotyping, S KY, o r

multi-fluor FISH, MFISH) detecting every chromosome pair with  a specific colour combination (Figure 7) in order to find

the most co mmon ch romoso me affected  by structural abnorm alities. The ab errations in the m ost comm only affected

chromosome band were studied with locus-spec ific YAC- and BAC-probes revealing the gene affected. Mutations affecting

the microscopically intact chromosome arm allele were sought with DHPLC and/or s equencing. Gene expression was

studied with RT-PCR. The abnormality was further studie d with locus-sp ecific FISH  in skin or lymph  node bio psies of 21

CTCL patients at different stages of the disease.

Figure 6. Principle of CGH . (Study IV)

Pa t ient  b lood or  sk in  les ion  DNA was

l a b e l l e d  w i t h  a  g r e e n  co l o u r  a n d  a

reference DN A sample  with red colour.

They were mixed and hybridized to normal

chromosomes of  a  heal thy person.  T he

DNAs comp ete from hybridization target

sequences on the chromosomes, resulting

in a banding pattern. Images were captured

and analysed digitally creating a profile ,

t ha t  demo n s t r a te s  r e g io n s of  re la t iv e

e x c e s s  o f p a t ie n t D N A  a s  g r e e n  a nd

relative loss of patient DNA as red.

Figure 7 . Principle  of  24-colour  FISH

(MFISH, SKY) Every chromosome pair is

d e t e c t a b l e  w i t h  a  sp e c i f ic  c o l o u r

combin ation allowing the identification of

c h r o m o s o ma l  o r i g in  o f  c h r o m o so m e

f r a g m e n t s  t r a n s f e r r e d  t o  a n o t h e r

ch romoso m e .  I n  t he  F i g u r e , o n l y  o ne

chromosome pair is shown as an example.
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7.2.2.   The purification of DNA

Lymphocytes were extracted from peripheral blood with Ficoll gradient centrifugation, and DNA was purified with phenol-

chloroform extraction (Sambrook 1989) The skin tumour or lymph node samples were snap frozen in liquid nitrogen,

ground in a mortar, and the DNA was extracted with phenol-chloroform (Sambrook 1989).

7.2.3.   Metaphase preparations, G-banding and chrom osomal ana lysis (Studies I, II, V) 

Peripheral blood lymphocytes were stimulated with PHA, cultured for three to four days, and metaphases G-banded in the

conventio nal way (Verma and  Babu, 198 9). In initial samples, 100 metapha ses and  in follow- up samples, 20 to 100

metapha ses were ana lysed. 

7.2.4.   In situ hybridizations (all studies)

Probes and probe labelling  DNA probes, 200-400 bp in size after labelling, and specific for the pericentromeric regions

of chromosomes 1, 7, 8, 9, 11, 12, 17 and 18  (see Table III) were biotinylated (Bio Nick kit; Gibco BRL, G aithersburg,

MD U SA) or lab elled with with dig oxigenin -11 -dUTP  (Boehrin ger Ma nnheim, G ermany) b y nick translation (BioNick

kit). The commercial probes are indicated  (B iotinylated: On cor Inc. G aithersburg, M D, USA , digoxigenin-labelled:

Boehrin ger Ma nnheim). 

Table III. Centromere-specific probes and labels used

Centromere-specific label (study)

Chromosome probe

1 1q12[pUC177] B(I,II,III);D(I,II),TxRX(III)

6 Commercial D(I,II);B(II)
7 p7alphaTET[PUC99] FITC,TxR

8 D8Z2[pJM128] B(I,II);D(II);A488,A594(III)

9 pHuR98 B,D(II)

11 pSP65[pLC11A] B(I;II);D(II)

12 pA12H8 D(I,V);B(V)

13 and 21 Commercial B,D(II)

15 Commercial B,D(II)

17 D17Z1[p17H8] B,D(I);

18 p18R D(I,V);B(V)

B: Biotin, D: Digoxigenin-11-dUTP, FITC: Fluorescein isothiocyanate-dUTP

TxR: Texas Red-dUTP, TxRX: Texas Red X, A488: Alexa 488, A594: Alexa 594

Microdissection painting probes specific for chromosomes 2, 4p, 4q, 5, 6q, 8q, 10q, 12q, 13q, 18q (kindly provided by Dr.

X-Y. Guan, NIH, USA; Guan et al. 1996) were directly labelled with FITC-dUTP or Texas Red-dUTP (DuPont) and a

PAC clone specific for 13q22 labelled with digoxigenin and biotin (Laan et al. 1996; kindly supplied by Dr. Tuomas

Klocka rs, Institute of Na tional Hea lth, Helsinki, Finla nd) by nick tra nslation as ab ove, for valid ation of CG H results. 

Chromosomes 12 and 18 were studied with locus-specific YAC- probes (obtained from Fondation Jean Dausset, France),

BAC- and PAC -probes (obtained from Research Genetics Inc., Huntsville, AL, USA ), which were se lected with the h elp

of NCBI databases (MapViewer p rogram). T he prob e identities were  confirmed using PCR with locus-specific primers

accordin g to NCB I’s database s. The YAC-probes used for chromosome 12 are indicated in Figure 8. YACs and BACs for

chromosome 18q are indicated in Table  IV .  BACs used for the study of 18p11.3 were  RP11-683l23 (AP001005.5),

RP11-705O1  (AP000845.4), RP11-683J11 (AP000900 .3), RP11-720L2 (AP000915 .5),  RP11-778P8 (AC021474 .3), and

of 18p11.2,  RP11-771 B1  (AP000 876.2).
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The Y AC, BA C, and PAC DN As were isolated using routine techniques and labelled with FITC (Fluorescein-12-dUTP,

NEN Life Science Products,  Inc, Boston MA USA), Alexa 488®,  Alexa 594®  (both Molecular probes),  biotin-14dATP

(Gibco Invitrogen, Rockville, MD, USA) or  digoxigenin-11-dUTP (Roche, Mannheim, Germany) using nick translation.

Figure 8 .  Breakpoint  of
t r a n s l o c a t i o n
(12;18)(q15or21;q21) and
deletions of 12q in SS (cases 1
and 2) were specified with
part of the  YAC contig 12.4.
PCR confirma tions of the
localisation of the respective
YACs a re  ind icated  wi th
s y m b o l s  b e l o w .
Approximation region 12q15
to 12q21 is marked with grey
i n  t h e  c h r o m o s o m e  1 2
ideogram (NCBI), with an
approximation of the distal end
of 12q21.1 with an asterisk.
Additionally, other  YACs
o uts ide  th i s  r eg ion  were
studied:  893A3 (12q12, contig
1 2 . 1 , W I - 1 8 5 1 ;   8 5 0 H 3 ,
765B4, 12q13, contig 12.4,
m a r k e r s  D 1 2 S 7 2  a n d
AFMB303XC1, respectively,
patient 2), 803C2, 745A10 
(12q14-q15,  cont ig  12.4,
m a r k e r s  W I - 3 0 7 2  a n d
D12S313 ,  r e s p e c t i v e l y) ,
939H2 and 825G7 (cases 1 and
3;  S c h o e n m ak e r s  e t  a l .  1 9 9 5 ) ,
8 1 7 H10,  829B5 ,  896H8 ,
823E12, 948E9 (12q22-12q23,
c o n t i g  1 2 . 5 ,  m a r k e r s
C H L C . G A T A 6 9 F 0 6 ,
D12S318, D12S338, D12S78
Renault  et al .  1995).  For 12q24,
PA C S  R P 3 - 4 4 3 K8 ,  R P 3-
462E4, RP1-315L5 and BAC
R P 1 1 - 1 4 4 J 4  w e r e  u s e d
(AC005907, AC 003029.3,
AC002395.1, AC079406.6,
respectively)
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Table IV. Probes in 18q used for specifying the breakpoint in translocation t(12;18)(q12;q21), patient 3

Band

    
YAC or BAC Accession nr

of the BAC
Markers in the BAC or YAC Genes in the probe

18q12.3 RP11- 687F6 AP002391.1 StSG46608 piasx-beta
18q21 RP11- 699C17 AP002393.1 WI-19692 MBD1
18q21 RP11- 839G9 AP001910.2 SHGC-58160 RAB27B, part, Se57-1, LOC3427765
18q21.1 RP11- 837M2 AC091111.4 StSG47676 TCF4, part
18q21 852H2 AFM357TD5, AFM191XCP9
18q21 RP11- 619L19a AC018994.7 AFM357TD5 TCF4, part
18q21 RP11- 397A16a AC022031.8 RH123771 LOC350570, LOC 284256
18q21 RP11- 214L13a AC027584.4 SHGC-79995 LOC 284256
18q21.2 RP11- 450M22a AC016165.11 RH98615 LOC 284256
18q21 RP11- 822F4’ AC090758.2 D18S69 LOC342769, LOC342770
18q21 RP11- 859C21 AC090408.2 SHGC-7237 LOC342772, TNXL,WDR7, part
18q21 RP11- 383D22 AC012301.5 SHCG-103952 WDR7, part
18q21 RP11- 700H19 AC090296.2 SHCG-103952 WDR7, part, LOC350571
18q21 RP11- 660C14 AP001772.2 D18S1245 LOC350572, LOC342773, SIAT8C, 

LOC342774
18q21 RP11- 248C13 AC084350.1 D18S1245 SIAT8C, LOC342774, Onecut, 

LOC342775
18q21 RP11- 837J4 AP002417 WI-20204 FECH, NARS, ATP8B1, part
18q21 RP11- 275K5 AC022724.8 SHGC-154413 ATP8B1 part, LOC342776, 

LOC284288, LOC342777 part
18q21 RP11- 693L9 AP001487.3 SHGC-154413 LOC284288, LOC342777
18q21 762D8 WI-5450, WI5827
18q21 789F3 D18S1144, WI-5827
18q21 817C16 WI2299, D18S1103 MALT1
18q21.3 LSI/IGH/BCL2b BCL2

a Backs in the same region as YAC 852H2 (between AFM357TD5 and AFM191XCP9)

b LSI/IGH/BCL2 dual color, dual fusion translocation probe Vysis, Vysis Inc., Downers Grove, Illnois, USA

In situ  hybridizations of centromere-specific probes to metaphase preparations (Studies I, II, III, V) Centromere-

specific probes were hybridized to metaphase preparations (studies I and II) essentially as previously  described in Hyytinen

et al. (1994).  Target interphase cells and metaphases on slides were denatured in for 2 to 3 minutes in 70%  formamid e

/2xSSC solution (pH 7.0) at 70 to 73/C, and dehydrated in 70%, 85%, and 100% ethanol, and treated with proteinase K

(1:g/ml, Sigma Chemical Co, St Louis, MO, USA) in 20 mM Tris/2mM CaCl2 (pH 7.5) buffer for 7.5 minutes at 37/C, and

dehydrate d as abov e. Hybridization mixture containing the labelled probe (1-5ng), dextran sulphate  (10%, Sigma, St. Louis

Mo, U.S.A), formamide (55% in SSC) and herring sperm DNA  (0.5:g/ml in TE buffer, pH 8.0; Sigma) and optionally,

Cot-1 D NA (e.g. 125ng; Gibco BRL, Gaithersburg, MD USA, or Boehringer Mannheim/Roche, Mannheim Germany) was

denatured in 70/C for 5 minutes and applied on the pretreated slides, sealed under a coverslip  with Rubber Cement (Starkey

Chemical Co, LaGrange IL USA ) and allowed to hybridize in a humid chamber (37/C) overn ight.  

In Study  I, depending on the probe (FISH or EDISH),  the procedure continued in two different ways. The slides for FISH

were preblocked with 1% BSA (Sigma) in 4xSSC, incubated with avidin-FITC (avidin fuorescence isothiocyana te 5 :g/ml;

Vector L aborato ries,  Burlinga me, CA,USA) ,  washed  wi th  4 xSSC and PN solu t ions  (0 ,1M NaH 2H P O 4,  0,1 M

Na2HPO4/0,1%NP-40, pH  8,0). Further preblocking was done in PNM (5% C arnation dry milk/PN), prior to biotinylated

anti-avidin antibody (5 :g/ml; Vector Laboratories) as described before (Hyytinen et al. 1994). Finally, the slides were

stained anew with avidin-FITC, washed, and mounted in 10 :l propidium iodide (1:g/ml propidium iodide, Sigma) in an

antifade solution (Vectashield, Vector Laboratories). In the EDISH method, digoxigenin-labelled probe was detected with

mouse anti-digoxige nin antibody (Boehringer Mannheim) followed by biotinylated anti-mouse antibody, and avidin-biotin-

peroxid ase-mixture (Vectastain Elite mouse IgG kit; Vector Laboratories). Diaminobenzidine (DAB) with nickel was used

as chromo gen (DA B Subs trate Kit, Ve ctor Labo ratories) . The sl ides were counterstained with alum-kernechtrot

(Al2(SO4)3.18H20, 10g, kerne chtrot 0,2g , H20 200ml, both Merck, Darmstadt, Germany) for 5 minutes, washed with tap

water, dehyd rated, and m ounted in E ntellan (M erck). Th e hybridizatio n results were e valuated wit hout knowledge of the

patient's cl inical  diagnosis and the result  of G-banding.   Overlapping nuclei were not analysed. The signals had to be of

equal intensity and clearly separate. At least a hundred interphase nuclei were analysed from each sample, with a few

exception s.   

:

:

:

:

::
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In Study II, hybridizations were performed as above with the modification of the simultaneous use of two probes, labelled

with digoxigenin and biot in .  The digoxigenin-label led probe was detected with sheep anti -digoxigenin ant ibody

(Boehringer Mannheim), followed by AFOS-conjugated donke y anti-sheep (S igma) and  goat anti-equ ine (Harlan Sera-lab,

Crawley Dow n, Sussex, En gland) antib odies, and  visualisation with N itro blue tetr azolium ch loride (N TB) m ixed with

5-bromo -4-chloro-3 -indolyl-phosp hate, 4-toluidin e salt (0.5% and 0.4%, respectively, in TRIS-buffer with 0.1 mo l/l of

NaCl and MgCl2; Boehringer Mannheim). The biotin-conjugated probes were detected with two layers of avidin peroxidase

(Vector Laboratories) , biotinylated mouse anti-avidin (Sigma) between the layers, and visualised with a purple  chromogen

(Vector VIP®, Ve ctor Laboratories). The preparations were washed and mounted in Pertex (Histolab, Göteborg, Sweden).

The number of centromere signals of each chromosome studied was counted among 400 interphase cells in well hybridised

Hybridizations with painting probes and locus-specific probes to metaphase preparations (Studies IV and V) For

hybridizatio n with painting p robes (Stu dy IV), 8:l of one probe labelled with FITC and another labelled with Texas Red

were mixed and precipitated by adding 1/10 volume 3M sodium acetate and 2x volume 100% ethanol, and centrifuged. The

supernatant was discarded,  the pellet  was al lowed to dry,  after  which the DNA was dissolved in 10:l of a mixture

consisting of 5 0% form amide, 10 % dextra n suphate, 2 x SSC, pH 7. The hyb ridization was then performed as above. The

slides were counterstained with DAPI. For enzyme detected ISH, the above probes for chromosomes 6q, 8q , 10q, 12q and

13q were labelled with digoxigenin-11-dUTP (Boehringer Mannheim). They were hybridized as other painting probes

above, washed 3 times with 50% formamide in 2xSSC, pH 7, 4xSSC, and 0.1 xSSC, all at 45/C, and with 4xSSC, 2xSSC

and PBS at room temperature. The hybridized prob e was detected with mouse anti-digoxigenin antibody (Boehringer

Mannheim), followed by biotinylated anti-mouse antibody (Vector laboratories), avidin peroxidase (Vector laboratories),

biotinylated mouse anti-avidin (Sigma St. Louis, Missour i, USA) and another layer of avidin-peroxidase. VIP® (Vector®

VIP Substrate K it, Vector lab oratories) w as used as ch romoge n. The slide s were washe d with distilled wa ter, dehydrated,

and mounted in P ertex (Histolab Produc ts AB, Västra Frölunda, Sweden), and evaluated with bright-field microscopy. The

locus-specific probes (Study V) were precipitated and hybridized to metaphase slides as above. The biotin labelled probes

were detected w ith one or two  layers of avidin-C y3 (ExtrA vidin-Cy3 co njugate, Sigma-Aldrich, St Louis, Missour i, USA)

or avidin-FITC (Vector Laboratories). The digoxigenin labelled probes were detec ted either with she ep anti-digo xigenin

antibody (Roche, Mannheim, Germany) followed by donkey anti-sheep antibody labelled with FITC (Jackson Immuno

Research Laboratories) or by sheep anti-digoxigenin-rhodamine antibody (Roche, Mannheim). Digital images of the

In situ hybridization of centrom ere-spec ific probes or locus-specific probes to touch preparations (Studies III and V)

In the study III, after immunohistological staining, the samples were fixed with 1% paraformaldehyde in PBS for 3 minutes

or 1% p arafo rmaldehyde for 4 minutes,  washed in PBS or dehydrated and hybridized (see Study I above) with a

chromosome 8 and 1 centrome re-specific probes (Table III) labelled with colours or haptens to be detected with colours

different from the colour used in the immunolabelling. In  study V, two-color  interphase fluorescence in situ hybridization

(FISH)  with BAC s in the region o f NAV3  was perfo rmed. The slides were pretreated modifying the method used in study

III, the probes were prec ipited as painting probes ab ove. To detec t the deletions, digoxigenin labelled B ACs 136F16 and

36P3 were cohybridized together with a centrome re-specific  probe labelled with biotin. The translocation was detected with

digoxigen in labelled BACs 136F16 and  P36P3 with biotin labelled BA Cs 786 A1 and 4 94K1 7. After hybrid ization, the

probes were detected with avidin-FITC and anti-digoxigenin rhodamine as described above and  counterstained with DAPI.

Comparative genomic hybridization (Studies IV and V) CGH was performed essentially as described before (Kallioniemi

et al. 1994a , Visakorp i et al. 1995). Briefly, the patient’s DNA was labelled with fluorescein  isothiocyanate-dUTP (FITC-

dUTP, DuPo nt) using nick translation resulting in DNA fragments  of 600-2000 bp. DNA  of a healthy control was similarly

labelled with Texas Red-dUTP (DuPont). About 400ng of each of the labelled DNAs and 10:g of Cot-1 DNA (Gibco

BRL, Gaithersburg, MD USA) were mixed, ethanol precipitated and dissolved in 10:l of buffer containing 50% formamide

and 10% dextran sulphate  in 2xSSC, pH 7. The DNA mixture was denatured and hybridized to metaphase preparations of

normal lymphocytes denatured and treated with proteinase K (concentration optimized, ad 0.1 mg/ml) as explained above.

areas with low background colour.

metaphases were taken and analysed as described above.

:

:

:
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The hybridization was allowed to take place at 37/C in a moist chamber for 16-40 hours. The slides were washed and

counterstained with 1:M 4,6-d iamidino-2 -phenylindo le 0.1:g/ml (DAPI, Boehringer Mannheim) in an antifade solution

(Vectash ield  ® ,Vector Laboratories).

Multicolour fluorescent in situ hybridization (Study V) . Multicolour fluorescent in situ hybridization (multicolour FISH)

was performed either as sp ectral karyotyping (SKY ; Schröck et al. 1996), or as multifluor FISH (MFISH: Speicher et al.

1996). The SKY  was performed according to the protocol recommended by the manufacturer (Applied Spectral Imaging,

ASI, M igdal HaE mek, Israel). F or MF ISH, the m etaphase p reparation s were pos tfixed with 0.1% paraformaldehyde and

denatured as in Study I and II, and  hybridized with probe mixture (24XCyte-MetaSystems’ 24 colour kit, MetaSystems

GmbH , Altlussheim, G ermany) co ntaining differen tly labelled painting probe combinations specific for each chromosome

pair labelled  with a chrom osome -sp ecific fluorochrome combination, that had been denatured in 76/C for 6 minutes and

incubated in 37/C for 60 minutes, as recommended by the manufacturer. After hybridization for 3 to 5 days in 37C, and

washes, the biotin labelled probes were detected with one or two layers of streptavidin-Cy5  (B-tect kit, MetaSystems

GmbH ), and the pre parations w ere moun ted in antifade  and DA PI. 

Immunolabelling and the preparations used (Study III ). Cytospin preparations of Ficoll-enriched blood mononuclear

cells or touch preparations of frozen skin or lymph node biopsies were fixed in ice-cold  acetone, and an immunohistological

staining was performed using antibodies to CD3, CD4, (Dako, Glostrup, Denmark),  CD45RA (Caltag, Burlingame,

California, USA), CD45RO, CD8 (D ako), granz yme B, IL-2 , IL-4, IL-10 (Santa Cruz Biotechnology Inc., Santa Cruz,

California,  USA),  IFN-( (Neom arkers, Frem ont, CA, USA) and signalling lymphocytic activation molecule (SLAM,

CDw1 50; A12  antibody kin dly provided by Dr. G. Av ersa, DN AX Re search Institute o f Molecu lar and Ce llular Biolog y,

Palo Alto, California, USA). The primary antibodies were mon oclonal m ouse antibo dies excep t for the polyclo nal rabbit

antibodies against CD3 and IL-2, and goat anti-bodies against granzyme B, IL-4, and IL-10. The secondary antibodies were

anti-rabbit  or anti-mouse goat conjugates of Texas Red X or Alexa 594 ® (Molecular Probes,  Leiden, Netherlands), or anti-

rabbit, anti-goat or anti-m ouse don key conjug ates of Rhodamine R ed X (Jackso n Immuno Re search Laborato ries, West

Grove, PA, USA). W hen necessary, for detection of weak mouse primary antibodies, Rhodamine Red X-conjugate was

followed with anti-rhodamine rabbit (Molecular Probes)  and an anti-rabbit donkey conjugate Rhodamine Red X (Jackson

Immuno Research Laboratories). All antibody layers were preced ed by a layer of normal serum  from the animal species,

in which the secondary antibody was raised. Through every step of the process, each slide was accompanied by a similar

control slide  with no prima ry antibody.

Alternative stainings were used to confirm the results. The immunohistology was performed by detecting the primary mouse

antigen with bio tinylated anti-mo use raised in ho rse, followed  by avidin conjugated with FIT C (Vector Lab oratories).

Alternatively, the primary mouse antibody was detected with rabbit anti-mouse antibody (Sigma), followe d by anti-rabb it

raised in swine (Dako), anti-swine raised in rabbit (Rockland, Gilbertsville, PA, USA),  and finally goat anti-rabbit

conjugated with a blue color (Alexa 350®, Molecular probes).

The form alin-fixed, paraffin-embedded skin biopsies of cases 1 and 2 were examined for CD30 and a skin biopsy of the

third patient with lymphomatoid papulosis for granzyme B with standard immunoperoxidase technique (for CD30,

StreptABC Complex/HRP kit, Dako followed by 3-amino-ethylcarbazole, for granzyme B (Nevala et al. 2001).

γ
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7.2.5.   Analyses and imaging

G-banded chromosome preparations (Studies I, II, V) The chromosomal aberrations were classified according to ISCN

1995 (Mitelman 1995 ). As polyclo nal, numerical  chromosomal aberrations are common in CTCL, a chromo somal clone

was defined as 3 or more metaphases with the same numerica l aberration, o r 2 or more metaphases with the same structural

aberration (ISCN 1995) per 100 metaphases. In initial samples, 100 metaphases and  in follow- up samples, 20 to 100

metaphases were analysed. Metaphase preparations were also used for in situ hybridization s (Studies I, II, V ). 

Analyses of in situ hybridizations In situ  hybridizations with centromere specific probes, FICTION and locus specific

hybridizations were  analysed blin ded for the  diagnosis an d identity of the p atient. In two-co lour EDISH preparations, 400

interphases and in touch preparations, at least 50 interphase cells were analysed. In SKY or in MFISH, 10 to 70 metaphases

and in CGH at least four metaphases were analysed.  Only good hybridization quality was accepted, and no overlapping

nuclei were analysed. In CGH, relative DNA sequence copy number changes were detected as differences in the ratio of the

green (FITC) to the red (Texas Red) fluorescence colour intensities along the length of all chromosomes from pter to qter

in the metaphase spread. The results were displayed as a set of average profiles with +\- 1 SDs for each chromosome.

Chromosomal regions with the mean ratio of +1 SD below 0.85 were considered as lost, and regions with the mean ratio of

-1 SD ex ceeding 1 .15 as gaine d (Kallion iemi et al. 1994a).

Micr osocpy  and im aging Microscopy was performed with a Leitz Dialux (Germany)(Studies I , II) or  Olympus BH-2

Tokyo , Japan, eq uipped w ith a kinofilm cam era (Olym pus C-35 AD-4, T okyo, Japan ( Study I)  Olympus BX 50, Tokyo,

Japan, equipped with equipped with filter set 8300 and tripleband exciter 83103x, Chroma Techno logy Corp.,  Brattleboro,

VT, USA) and a cooled C CD camer a (Sensi Cam, PCO, Computer Optics, Kelheim, Germany) combined to a computer

(Dell, Limerick, Ireland) with software Cario Image (Immagini & Computer SNC, Milano, Italia) inserted in Image pro

Plus ( Media  Cybernetics, Silver Spring, MD, USA) (Studies II, III); or  Zeiss Axioplan 2 equipped with a CCD camera and

a computer (D ell, Limerick, Irland) with software Ikaros or I sis of MetaSystems GmbH with MF ISH-program modul e

(Metasyste ms, Altlusheim  German y (Study V) . For SKY (Study V), image acquisitions were preformed using a SD200

Spectracube system (ASI) mounted on a Zeiss Axioskop microscope with a custom-designed optical filter (SKY-1, Chroma

Technology, Brattleboro, VT, USA). The conversion of emission spectra to the display colours was achieved by assigning

blue, green, a nd red co lours to spec ific sections of the e mission spec trum. 

Digital images in CGH  (Study IV) were analysed with an epifluorescence microscope (Nikon SA, Nikon Corp. T okyo ,

Japan) equipped with a camera (Xillix CCD, Xillix technologies Corp.,  Vancouver, BC, Canada) and a computer and a Sun

LX workstation (Sun Microsystems Com puter Co rp., Mo untain View, C A, USA ; Visakorp i et al. 1995) or using an IPLab

Spectrum Image acquisit ion system (Signal Analytics Corporation,  Vienna,  VA) and Quips 2.3 Software (Vysis Inc.

Downe rs Grove , IL6051 5). Each fluo rochrom e was seque ntially excited, and images of 3-6 adequate quality metaphases

of every sam ple were sto red and a nalysed. Relative D NA seq uence co py numbe r changes we re detected  as differences  in

the ratio of the green (FITC) to the red (Texas Red) fluorescence colo ur intensities along  the length  of all chromosomes

from pter to qter in the metaph ase spread . The results w ere displayed  as a set of average profiles with +\- ISDs for each

chromosome. Chromosomal regions with the mean ratio of +1 SD below 0.85 were considere d as lost, and regions with the

mean ratio o f -1 SD exc eeding 1.1 5 as gained  (Kallioniem i et al. 1994a).
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7.2.6.   Statistical analyses

The stat istical ana lyses. The statistical analyses were performed with the BMDP package  (BMDP, Statistical Software)

(Studies I an d II). In the study I, The G-banding results were analysed with the Kruskall-Wallis nonparametric ANOVA

continuing wit h the Dunn multiple com parison test. The FISH  results were evaluated with the Ma nn-Whitney U-test . All

p-values < 0.05 were considered statistically significant. As the number of patients studied was small, p-values 0.05-0.10

are also reported. The FISH- and G-ba nding results we re compa red with the K appa test. An aberration rate higher than the

highest obse rved individ ual aberratio n frequenc y in the healthy con trol group in  FISH wa s considere d abnor mal. 

The follow -up statistical analyse s (Study II)  For EDISH, all the chromosomes studied were tested separately. For

G-banding, the metaphases with numerical aberrations (GN) or numerical or structural aberrations (GS) of the chromosomes

1,6,8,9,11,15,13, and 17 were co unted and  tested. In add ition, the total perc entage of aberrant metaphases of every sample

was tested (Gtot).

To study the frequency of aberrations in different diagnostic group s (Table V), the patients we re groupe d 1) acco rding to

the diagnosis (SS, MF or LPP), 2) whether CTCL or LPP, and  3) all patients . In the groupings 1-3, every person was

represente d by the me an of aberr ant interphases or metaphases weighted for the total amount of interphases or metaphases

studied in his/her samples.

The effect of the activity of the disease was studied by dividing all patients’ separate samples into two groups (Table V),

those taken during active disease or those obtained during remission (grouping 4).

Both healthy individuals and non-c ancer patie nts treated with P UVA  were always inc luded as co ntrols (excep t for

chromo some 13 /21, with only he althy controls). 

The relationship between chromosomal findings and disease outcome  was studied by dividing the samples of grouping 4

(see above) further according to the clinical disease course after each sampling until the next sample  or the end of the study

(grouping 5, Table V). Stable disease was defined as neither complete  regression of previous skin lesions (desp ite therapy)

nor appearance of new lesions. Remission was defined as disappearance of all visible skin lesions and resolution of eventual

lymphadenopathy (i. e. complete remission). Regarding SS, the presence of morphological Sézary cells in the peripheral

blood w as also taken in to accoun t.

All groupings were tested w ith Kruskall-W allis, continued  with paired co mparison s corrected  for the numb er of pair s

(Dunns’ test). As there were only two patients with Sézary’s syndrom e, they were excluded from  the paired comp arisons.

To evaluate the relationship b etween any ind ividual chro mosome  EDISH , GS or GN finding and the development of the

disease, the percentage of ab errant cells in ea ch sample  was comp ared to the n ormal distrib ution of percentage of aberrant

cells in the healthy controls. For G-banding, the total percentage of aberrant metaphases (G tot) was also calculated for each

patient sample and co mpared with the norm al distribution of the aberration frequency  in  the  hea l thy  con tro ls .  The

percentage of samples representing progressing or stable disease and showing aberration levels within or above the normal

range (cut off-level 5% probability) was also calculated.

The agreement between both the change in the chromosomal finding and the  change in the  clinical cond ition in two

consecutive samples of each patient, was studied by dividing the paire d samples  and chro mosom al aberratio n findings into

four group s: a) both the c hromoso mal finding and clinical disease had changed, b) both were unchang ed, c) a cha nge in

clinical condition but not in chromosomal finding d) a change in chromosomal finding but not in clinical condition. The

change o f the chromosom al finding was defined as |a-b |-2SDc > 0, where a and b are the percentages of abnormal

interphases (EDIS H) or me taphases (G -banding, G N, GS, or G tot) of the two patient samples, and SDc is the standard
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deviation of the abnormal metaphases of the healthy controls. The agreement  was tested with the Kapp a-test. The statistical

analyses were  performe d with BM DP (1 992). 

Table V. Grouping of patient samples for comparisons by Kruskall-Wallis tests

Gr 1 Gr2 Gr 3 Gr 4 Gr 5

LPP LPP All patients Active disease Active disease->progression

MF CTCL Active disease->remission

SS Active disease->stable

Remission Remission->progression

Remission->stable

PUVA-c PUVA-c PUVA-c PUVA-c PUVA-c

Healthy c Healthy c Healthy c Healthy c Healthy c

Gr: grouping, LPP: large plaque parapsoriasis, MF: mycosis fungoides,

CTCL: cutaneous T-cell lymphoma, SS: Sézary syndrome, 

PUVA-c: PUVA-treated controls, Healthy c: healthy controls

7.2.7.   Sequencing

All exons and one intron region (intron 20) of the NAV3 gene in two patient blood cell-derived DNA samples (cases 1 and

3) were am plified with primers specific for each exon or the intron, and subsequently sequenced with ABIPRISM 310

sequence r. The mu tation and p olymorph isms were sub sequently seq uenced in th e reverse d irection as we ll. To study the

frequency o f sequence  variations in the normal population, all exon s were amp lified and seq uenced fro m one hea lthy

control s ample and , in addition, D NA sam ples of 50 healthy volunteers were amplified and sequenced for exon 37 and

intron 35. 

7.2.8.   Denaturing High-Performance Liquid Chromatography (DHPLC) 

All exons of case 2 were studied with DHLPC. PCR products were denatured for 3 min at 95<C and then  reanneale d

gradually  over 30 min using a 95<C to 40<C temperature gradient.  The optimal melting temperature for each PCR amplicon

was obtaine d by analy sis of the wild-type sequence, using an algorithm at the Stanford Denaturing High-Performance

Liquid Chr omatogr aphy (DH PLC) w eb site http://insertio n.stanford.edu/melt.html). DHPLC heteroduplex analysis was

performed using automated HPLC-instrumentation (Agilent Technologies)  equipped with a Helix Analysis Column (3.0mm

ID x 50mm length, Varian). The analytical gradient composed of Varian BufferPak A (100 mM TEAA and 0.1 mM EDTA,

pH 7.0) and Varian Bufferpak B (100 mM TEAA, 0.10 mM EDTA, and 25% acetonitrile  pH 7.0) with a flow rate of 0.450

ml/min. The injection volume of each PCR sample was 5-7 :l. The analysis time for each sample  was 6 min, including an

equilibration step. Exons showing abnormalities were were sequenced as above.

NAV3 expression by reverse transcriptase-PCR The expression o f NAV3 m RNA was stud ied by reverse transcriptase

polymerase chain reaction (RT-PCR ) in Ficoll-purif ied and PHA-stimulated blo od lymph ocytes  (Gib co Invitr ogen,

Rockville, MD, USA) o f  a healthy perso n on the third d ay of the culture, to tal skin lesion biopsies of case 15,  and human

foetal l iver cDNA library (Clontech, Palo Alto, CA, US A). The h uman  astro cyte-derived  cell line, CCF -STT G1, ( a

generous gif t f rom prof . Jorma Isola ,  University of  Tampere), served as a reference. For com parison, a to tal skin lesion

biopsy of an additio nal patient sufferin g from  a CD 30+ C TCL w ith translocatio n t(2;5)(p?23; q?21) (Karenko et al.

unpublished observation), was also studied. T he total RN A was purified  with pheno l-chloroform and precipitated in

isoprop anol. The cDNA was transcribed with Revert Aid TM  First Strand cDNA Synthesis Kit (Fermentas, St.Leon-Rot,

Germany), and PCR was then performed wi th  Nav3A-EcoF and Nav3A-SalR pr imer  pairs , f ragment  s ize  565bp. The

amplification  produc t was visualized  in 1.5 % a garose gel. 

:
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8.         RESULTS

8.1.     The most common chromosome abnormalities in CTCL observable with conventional G-banding and         

            centromere-specific in situ hybridizations c an be used in dia gnostic purp oses (studies I and II)

Numerical and structural chromosome aberrations were detected by G-banding in PPS and all stages of CTCL and

differences between the diagnostic groups were observed All CTCL and PPS patients in the Study I examined showed

numerical and structural chromosome abnormalities so that numerical aberrations were more common in each group. In the

Study I, the median of the percentage of chromo somally abnormal metaphases was highest in the MF-group (15%). As only

two G-banded samples were available from the SS-group, it was thus not included in this statistical analysis. The difference

of the total number of chromosomally abnormal metaphases between all  the other groups was significant (p= 0.03,

Kruskall-W allis test). Significant differences between the diagnostic groups were observed for numerical abnormalities of

chromosomes 6,13,15,  and 17,  and s t ructural  aberrat ions of chromo somes 3, 9 , 13 and m arker chro mosom es, e.g .

unidentifiable aberrant chromosomes (study I, Figures 9 and 10). The existe nce of statisti cal differences between all

diagnostic groups a nd healthy controls  in G-banding for  the chromosomes s tudied was confirmed by the Study II .  The

median  percentage of aberrant metaphases for MF-patients was 17.6%,  comparable to that observed in the  the Study I,

but higher for  SS-patients  ( 87% ).  Healthy controls  and  PUVA-treated controls  had only non-clonal aberrations (medians

7.9%, and 9.8%, respectively). PUVA treatment did not significantly relate to the observed chromosomal abnormalities; In

Study I the untreated CTCL or parapsoriasis patients showed a higher total percentage of chro mosom ally aberrant c ells in

G-banding than controls  treated with PUVA. Contrasting with the findings in patients with PPS or CTCL, most aberrations

in PUVA-treated controls  were structural. Controls  treated with PUV A did no t differ from healthy controls  in any statistical

test (Study II).

Figure  9 . Parapso riasis

and CTCL pat ien ts  had

s i g n i f i c a n t l y  m o r e

numerical  chromosomal

aberrations o f indiv idual

c h r o m o s o m e s  i n  G -

b a n d i n g  th a n  h e a l t h y

controls. The total length

of  each column ind icate s

the media n  percentage of

aberrant metaphases for the

s p e c i f i c  c h r o m o s o m e .

S i g n i f i ca n t  d i f f e re n c e s

between heal thy controls,

the parapsoriasis group and

the MF-group are indicated

as *p<0.05 and **p<0.02,

Kruskall-Wallis. In paired

compar i sons  there was a

s i g n i f i c a n t  d i f f e r e n c e

(p<0.05) between h ealthy

controls and patients with

MF for chromosomes 6, 13,

15, and 17.
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Figure 10. Parapsoriasis

and CTCL pat ients  had

s i g n i f i c a n t l y  m o r e

structural chromosomal

aberrations in G-banding

than healthy controls. The

length of each bar indicates

the media n  percentage  of

aberrant metaphases for the

sp ec if i c  c h r o m o s o m e  of

each patien t g roup.  Median

p e r c e n t a g e  o f  h e a l t h y

c o n t r o l s  w a s  0  f o r  e a ch

chromosome.  Signi ficant

differences between healthy

controls, the parapsoriasi s

group and the MF-group are

indica ted  as  *p<0 .05  and

**p<0.01, Kruskall-Wallis .

In paired comparisons fo r

marker chromoso mes, the

difference between healthy

c o nt ro ls  an d  M F o r  P PS

patients was also significant

(p<0.0 5).  The SS-group is

n o t  i n c l u d e d  i n  t h e

statistics.

Also in situ hybridization showed significant differencies between patient groups and healthy  controls  In the Study

I, patients with CTCL had more aberrat ions in FISH than healthy controls .  Combining the results obtained in all

chromosomes studied (1, 8, 11 and 17, biotinylated probes), the median percentage of abnormal interphase cells was 1.0%

(range 0.0-8.0) in the healthy control group, 3.4% (range 0.0-8.3) in the PPS-group, 4.8% (range 0.0-11.5) in the MF-group

and 7.0%  (range 3.0-16.0) in the SS-group. The differences between the healthy control group and MF- or SS-group were

significant (p<0.01). Also, the number of abnormal interp hases in the SS - group significa ntly exceede d that in the PPS-

group or in the MF- gr oup (p< 0.05). The significance of differences for individual chromosomes is given in Figure 11. For

chromo some 11 , the difference b etween hea lthy controls an d the SS-gro up appr oached  significance (p=0.06). The patient

with follicular mucinosis  (alopecia  mucinosa) had the lowest percentage (5%) of metaphases with  aberrations in G-band ing

in the statistical PPS-group, and not higher than the mean (7%) or median (8%) of  the healthy control group.  In EDISH,

(Study II), healthy controls  showed a slightly higher percentage of abnormal interphases than in FISH , e.g. for chromosome

1, the med ian percen tage of abe rrant interphases in  healthy controls was 1.3% (range 0.3 to 2.3%) and in  PUVA-treated

controls 1.6% ( range 0.6 to 2.0%), and for chromosome 8, 2.5% (range 1 to 6.5%)  and  2 .8% ( range  1 .8  to 4 .25%),

respectively.  However, EDISH showed significant differencies between the pa tient and the co ntrol group s (grouping s 1 to

3, Table V; p<0.01  to p<0.0 5) regard ing aberratio ns of all chrom osomes stu died (1, 6 , 8, 9, 11, 13/21, and 17). In paired

comparisons, patients with CTCL, and also, all patients (CTC L and LP P together ) differed significa ntly from health y

controls (p<0.01 to p<0.05) for all chromosomes with all methods used. Patients with LPP differe d from hea lthy controls

for chrom osomes 1 1 and 13  and for chro mosom e 17 from patients with CTCL with the EDISH method. PUVA- treated

controls did  not differ from  healthy contro ls by any test. 
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F i g u r e  1 1 .

Chromosomally aberrant

ce ll s  de tec ted  by  F IS H

w e r e  s i g n i f i c a n t l y

i n c r e a s e d  in  C T C L

p a t i e n t s .  S i g n i f i c a nt

d i f f e r e n c e s  b e t w e e n

individual chromosomes are

indicated in the Figure. (For

c h r o m o s o m e  1 1  i n  P PS

group n= 1.)

Chromosomal aberrations and disease activity  The presence of chromosomal abnorma lities associated  with the activity

or progression of CTCL or large-plaque parapsoriasis (studies I and II).  In study II, a significant difference was observed

in paired co mparison s between p atients with active disease and healthy controls  (groupings,  see Table V ) for all

chromosomes studied with E DISH  and the total p ercentage o f aberrations  in G-band ing, except f or chromosome 9 in

EDISH (p = 0.067). In addition, statistical differencies were found between patients with active and progressing disease and

patients in stable  remission (ch romoso mes 1,6,8 ,11,17, G -banding o r EDIS H, p<0 .05). Patien ts with active but stable

disease or patients with active disease preceding later remission differed from healthy controls  for chromosomes 1, 6, 8, and

11 or chromosomes 1 and 8, respectively  (grouping 5). All patients in remission (grouping 4) differed from healthy controls

for chromosom es 1, 6 and 11; and in addition to these chromosomes, patients in stable remission (grouping 5) differed for

chromo some 8 fro m patients with a ctive, progre ssive disease. P atients with LPP  differed from  healthy contro ls for

chromosomes 1 and 13/21 (E DISH, p<0.01 and  p<0.05, respectively).

Chromosomal clones In both studies c hromoso mal clones a ssociated w ith active or pr ogressing d isease leadin g to death

in 3 of 4 (Study I) or 4 of 7 cases (Study II) during 22 and  29 months of  follow-up, respec tively. Of the th ree surviving

patients with a clone in Study II, one had active LPP, and other relapsing CTCL in the same restricted anatomical regions

(IA) as previously. The three different clones of the third patient disappeared after treatment as remission was achieved.

However, this patient later developed new chromosomal aberrations and relapsed (Muche et al. 2004).  In both studies, no

association with any treatment modalities or chromosomal clones could be observed, as clones were observed in pa tients

with different treatm ent histories or w ithout any pre ceding treatm ent. 

The different cytogenetic and molecular cytoge netic methods showed agreement (Study I) The ability of FISH and G-

banding to detect monosomy of chromosomes 8 and 17 , and monosomy of chro mosom es 1, 8, 11 and 1 7 studie d

collectively, agreed in 76-93% of tests perform ed,  (6=0.48-0.87) in all available samples. In other cases, the observed

agreement rate was usually larger than that expected by chance, but not significan t. FISH an d EDIS H were co mpared  in

four samples, and yielded compa rable results, so that  EDISH detected 2.4-4.5  % more interphase cells with one signal only

than FISH, while less than 3% differencies in either direction were seen in interphase cells with 3 or more signals, or among

signals in metaphases. The num erical chromosom e aberrations observed with G-banding were also detected with EDISH.

κ
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8.2.     Chr omoso mally clonal cells coexpressed CD45RA and CD 45RO in the Sézary syndrome and were detected

            in lymph nodes histologically characterized as non-malignant

The immunophenotype of the chromosomally clonal cells revealed a coexpression of CD45RA and CD45RO in the

Sézary syndrome and malignant cells in lymph nodes histologically characterized as non-malignant  A similar and

constant phenotype over more than 2 years of  time was found in malignant cells with clonal chromosomal aberrations (i.e.

supernumerary copies of chromosome 8 in near-diploid or near-tetraploid cells ) in the blood, skin and lymph nodes of the

two Sézary syndrome patients. The malignant cells were CD3- positive and CD4-positive but CD8-negative. Both CD45RO

and CD45RA  positivity was observed in the majority of clonally malignant cells in both patients,  although in the blood of

both patients and in the skin of case 2, the staining with CD45RA was of weaker intensity1.  In the post-mortem lymph node

of case 1, both antigens showed intense staining in the clonal cells. The lymph node biopsies of both patients obtained

before histo logically verified  lymphom a involvem ent, showed chromosomally clonal cells in hybridisation (25 to 35% of

the cells in the touch prepara te in case 1  and 24 to 42%, respectively, in case 2. In both cases, these clonal cells expresse d

both CD45RO  and  CD45RA  markers.  The CDw150 (SLAM) ant igen,  characterising ac tivated mem ory T cell s

(CD45RO high); was detected in all tissues of case 1. In the skin of both patients, the expression was observed in about half

of the clonal ce lls. In contrast to p ositive contro l samples (blo od lymph ocytes of a he althy person, an d the patient w ith

Lymphomatoid papulosis), granzyme B-positive cells were observed only occasionally in the skin or lymph node samples

of case 1, an d none o f these cells represented the malignant clone.  A few (less than 10%) clonal skin cells of case 2

expressed  granzyme B  very weakly. 

The majority of clonal T-cells expressed IL-4 typical to Th2 cells  To assess the Th polarization, the cytokine expressio n

in the skin lesion of both patients and a post-mortem lymph node of one of the patients was studied. The majority of clonal

cells express ed IL-4. T he staining intensity w as variable with all colours used (Rhodamine Red X, Alexa 594 ®) showing

very bright colour intensities in up to 50% of the clonal cells. At most 20% of the clonal cells  were IL-4 negat ive. The

majority of clonal cells of case 1 were IL-10  negative (95  to 98% ), but the majority o f the cells of case 2  were IL-1 0

positive (80%). The majority of the clonal cells of both patients were IL-2 negative (range 97% to 98%), and none

expressed IFN-(. Thus, the cytokine expression pattern of the clonal cells in skin and lymph node was IL-2 negative, IL-4

positive, varaible for IL-10, and IFN-( negative. 

8.3.     Comparative genom ic hybridization (CGH) revealed copy number changes and potential tumour suppressor

           or oncogene locations in chromosomes 10q and 13q

Copy number changes were observed in the blood of SS patients but not in the blood of MF patients  Six of seven SS

patients, but none of four M F cases, showed D NA copy nu mber changes (see Table I in Study IV). Losses were more

common than gains. In SS-patients  6, 7 and 11, G-banding confirmed complex chromosomal aberrations (data not shown).

Two patients h ad near-tetra ploid cells wit h the same re arrangeme nts as their near-d iploid clon al cells (case 6  and the

follow-up sam ple of case 1 1). 

The most common aberration was loss in 10q Losses of DNA copy number were most frequent at 10q. The losses were

found in four of the seven SS-patients, with a minimal overlapping region at 10q25-q26. The disease of three of these

had losses of chromosome 13, with minimal overlapping region at 13 q21-q2 2. These  are potentia l oncogene or tumour

suppresso r gene loca tions. For other  copy  number changes, see the Table I in the original publication (Karenko et al.

1999) . 

Follow-up samples showed partly common changes with the first sample   CGH changes, partly common with the first

sample (T able I in Stud y IV), persiste d in the two follow-up samples of cases 6 and 11 obtained during active disease, and

patients (case s 6, 10 and  11, Tab le I in Study IV  ) clinically and histopatho logically evolved from MF. Three patients also

γ
γ
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the tumour sample  of case 11. Loss of chromosome 10 remained in all follow-up samples of the respective patients, despite

of therapy. In the above two cases with progressive disease, the loss of chromosome 10 was associated with a gain of 8 or

8q. 

The previous treatments did not explain the copy number changes observed Previous treatment did not explain the

genetic chan ges, since untre ated patien ts or patients with different treatments (cases 5, 6, 9, and 10) showed  changes in

CGH similar to those of electron beam-treated patients (cases 7 and  11). Also, two electron be am treated patients (cases 1

and 4) sho wed no ch anges in CG H.    

The CGH changes associated with disease progression Mos t  pa t ien ts  w ith  changes  in  CGH had rapid disease

progression, since five of six pa tients died within o ne year (includ ing patient 6, who died after the writing of the Study IV,

11 mon ths after the first samp ling). 

8.4.     The first CTCL-specific chromosome aberration found and the gene affected  identified

Aberrations of chromosome 12 are  frequently found in CTC L patients The most often affected chromosome in the

peripheral blood clones observed by MFISH or SKY was chromosome 12. Five of seven consecutive patients with Sézary

syndrome, showed a clonal structural aberration of chromosome 12 and one (case 7) showed a non-clonal deletion of 12q

with a clonal monosomy of chromosome 12 (Table  VI). Five of the 6 MF patients studied with these methods showed non-

clonal deletions of chromosome 12. All structural clonal aberrations of chromosome 12 involved bands q21 or 22, although

in case 4, ow ing to the small size  of the fragmen t of 12  t rans located ,  the  breakpoin t was defined  by CGH  only .

Additionally, case 13 had enh(12)(q15)(q21) in CGH of blood lymphocytes. Case 15 showed del(12)(q21q ?23) in  4/100

metaphases in G-banding of blood lymphocytes.  Structural aberrations of chromosome 17 were also detected in 5 SS-

patients, but these aberrations could involve either p or q.  Chromosome 12 aberrations were also detected in the skin

lesions of cases 24 and 25, which showed a suspicion2 of dim(12 )(q15q 21) and  dim(12) (q15q 21) by C GH, resp ectively. 

Three cases (case s 1,3 and 4) showed a translocation with chromosome 18 in multi-colour FISH. One  (case 3)  had a

balanced translocation with 18q , another showed a translocation with 18 p with loss of much of the 12q-arm (case 1)

(Table VI) , and in the third one (case 4), the aberration involved also chromosome 22. In case 5, a translocation between

chromosomes 4q, 10 and 12q was found.

Specification of the break point in chromosome 12 The aberrations of cases 1, 2 and 3, in which enough cell material

was available,  were studied with locus-specific FISH. Cases 1 and 2 showed large delet ions of   chromosome 12,

del(12)( q15q1 5)(q21 .1 q24)  and del(1 2)(q12 q21), resp ectively  (Figure  12).  The ba lanced tran slocation of case 3 was

within the minima l commo n region of d eletions in case s 1 and 2, an d divided  the signal of YAC  855F7  between

chromosomes 12 and 18 (Figure 12), enabling us to  fine map the ge ne affected. 

 

The YAC 855F7, is  part of  the YAC-contig WC12.4 (NCBI: www.ncbi.nlm.nih.gov)  and spans the region between

markers CHLC.GATA65A12 and WI-6487. Fo ur overlap ping BA C-prob es,  RP11 -781A6 , RP11-494K17, RP11-136F16,

RP11-36P3, each with a  marker  represented in the YAC 855F7 by PCR-a nalysis (SHGC-155034, G62498, SHGC-79622,

D12S2006, respectively)  were further used. Signal division in FISH analyses indicated that the translocation breakpoint lies

within BAC-probes RP11- 494K17 and 136F16 (Figure  13), which both contain parts of NAV3 gene (ge nomic co ntig

NT_019546) disrupted by the translocation. No other mapped genes or ESTs were located in the tra nslocation b reakpoin t.

The breakpoint of 18q involved in the balanced translocation of case 3, splits YAC 852H2 (loca ted between markers

AFM357TD 5 and AFM191XC 9P) and BAC 450M 22 (AC016165, included within YAC 852H2)  into two parts, one 
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  Table VI. Proportion of clonal cells and composite karyotypes of the clones observed in multicolour FISH of blood samples and specified with 
  G- banding

Patient Diagnosis Proportion 
of clonal
cells

Composite karyotypea Special remarks 

  1
  

  SS 10/10 
(100%)

69-73,XY,-X[10],der(Y)t(Y;8)(?;?)[10],
der(1)t(1;16)(q32;?)[10],
+2[4],der(2)t(2;17)(p?21;q?21)[9], +3[7],der(4)t(4;1)(?;?)[10],
der(5)t(4;5)(q26 or 28;?q21)x1-2[10],-7[10],+8[2],-10[9],
der(12)t(12;18)(q?22;p11)x2 [10],
der(14)t(5;7;14)(q?13;q?11q36;p11)x2[10],  
der(16)t(1;16)(q32;p13),der(16)t(1;16)(?;?p)[10],-17[7],
der(18)t(12;18)(?;p?)x1-2[10],+19[10],+22[9][cp10]

der(12) specified with locus specific probes as 
der(12)del(12)(q?21q24)t(12;18)(q24;p11.3). 
Other breakpoints specified with G-bandi ng.

  2   SS 20/22 
(91%)

36-98,X,-Y[17],der(1)t(1;9)(1pter->?1q11.1::9?->9?)x1-
2[20],+5[8], del(5)(q21)x2-4[20],+7[9],+7,+7[3],
del(7)(q?32)[8],ins(7;17)(p14;q25q12)[2],+8[18],
del(8)(q?)[2],+9[16],der(9)t(1;9)(q10;?q10)del(1)(q?)x1-4[20],
der(9)t(1;9)(q?->?::q11.1->pter)x1-2[7],+10[7],  
del(10)(p11 or 12)x1-2[18],del(12)(q?2)[13],-14[3],-
17[3],i(17)(q10)[7], ider(17)t(7;17)(?;q?25)[5],
der(17)t(10;17)(?;p?11.2)[2],+21[6], 
-22[3][cp19]

del(12) specif ied with locus specific probes
 as del(12q11q21)

  3
 
  SS 11/11 

(100%)

44-91,XY,der(1)t(1;22)(q?42;?)[2],
der(1)t(1;10)(p?34;?)t(1;22)(q?42;?)[9],
der(1)t(1;11)(q21;p?14)[3],
der(1)t(1;11)(q21;p?14)t(10;11)(?;p15)[9],
der(3)t(3;5)(q25;q?15)[10],der(3)t(3;6)(q25;q22)[11],
der(5)t(5;7)(q?15;q?)[11],del(6)(q2)[3],
der(6)t(1;6)(6pter->6q22::1q21->1q23)[6],
del(7)(q31)[10],der(7)t(7;10)(?q31;?)[10],+8[11],
der(8)t(8;17)(?p1;?q1)[11],del(9)(q13)[11],-10[8],
der(10)t(10;11)(?;?)t(10;17)(?;?)x1-2[10],
der(11)t(1;11)(q24;p14)[11],t(12;18)(q15or21;q21)[11],
del(15)(q1~21)[11],der(16)t(16;20)(q?;?)[11],
],-17[11],der(17)t(7;17)(q?;q?),der(20)t(X;20)(?;?)[11],
der(20)t(16;20)(?;?)[11][cp11]

t(12;18) specified with locus specific probes 
as t(12;18)(q21;q2 1).
Other breakpoints specified with G-bandi ng.
Additionally, one cell with 
der(10)t(11 ;10)(?;?)

  4   SS 30/39 
(77%)

44-46,XX[4]X[7],t(X;3)(q12;p11)[6],
der(2)t(10;2;10;2;10;13;14;13;14)[30],t(2;11)(q21;q11)[8],
der(4)t(4;13)(q22;?)t(4;13)(q31;?)[30],+7[11],
+del(8)(q22)[2],del(9)(q11)[3],der(10)t(8;10)[5],-13[7],
der(13)t(2;13)[10],i(17)(q10)[12],der(17)t(X;17)(?p;p?11.2)[7],
der(18)t(12;18)(?;?p)t(12;22)(?;?)[30],
der(19)t(19;21)(p13;q11)[30],-21[30][cp30]

Breakpoints specified partly  with 
G-banding

  5   SS 16/24 
(67%)

39-48, XY[13], der(2)t(2;13)(p?21;?)[10],
der(2)t(1;2)(?;q?35)t(2;13)(p16or21;q?)[3],
der(3)t(3;9)(p21;p13)x1-2[14],
der(4)t(4;12)(q31;?)[14],-5[3],del(8)(q?)[2],-9[12],-10[10],
der(12)t(10;12)(?;q21.3 or q22)[13],-13[15],
der(15)t(1;15)(?;p11.1)[9],der(16)t(10;16)(?;q24)[2],
del(17)(p?)[9],-18[5],del(18)(p?)[3],
der(19)t(15;19)(?;p13.3)[3],-20[3],-22[2][cp16]

Additionally, one cell with
der(12)t(10;12)(?;q21.3 or22)
t(10;12)(?;?)t(10;12)(?;?) 
and one other cell with del(12)(q12q21)
One cell with sex chromosomes XXXY, 
two cells with -Y

  6   SS 3/45 
(6.7%)

86-92,XXYY,t(2;6)(q33;q24 or 25)[3],
der(2)t(2;6)(q33;q24 or 25)[3],-11[3]

Two of the clonal cells showed -12

 
  7   SS 5/24 

(20.8%)
30-45,XY,-12[5]

Additionally 1 cell with karyotype 51X,i(Y)(q),
+der(3),+del(5)(p11.1),+?del(12)(q21 q24.1).
iYq observed previously in G-banding as 
a clonal abnormal ity.

Nonclonal aberrations of chromosome 12
In previous G-band ed blood samples t hree 
different and one sideline clone, which
diasappeared before the present sample
(Study II)

Nonclonal aberrations of chromosome 12

  8   MF 2/70
(2.9%)

46,XY,dup(18)(q?;q?)[2]

9
  
  MF 2/25 

(8.0%)
46,XY,del(9)(q11.1)[2]

10   MF 0/54 (0%)

11   MF 0/43
(0.0 %)

12   MF 7/50
(14.0%)

46-49,XX,+10[7],del(10)(p?11.2)(q?11.2)[7] Nonclonal aberrations of chromosome 12
TCR beta analysis showed different TCR
clones In  skin and blood (Muche et al. 2004)

_________________________________________________________________________________________________________________
aISCN1995. For clonality of whole extra chromosomes, 3 cells required (Karenko et al. 1997, ISCN 1995, Muche et al.
2004). Derivative chromosomes originating from  more than four chromosomes have been presented as a chromosome list.
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giving a signal in 18q and the other in 12q.  All BACs located in 18q proximal to 450M22 remain in 18q, whereas BACs

and YA Cs below  the break p oint distally move to chromosome 12q in the translocation (Table IV). Although most of the

material lost from the aberrant 12q in case  2 , was  to ta lly  de leted  (for CGH see Study IV), a small part of 12q24 was

translocated to 18p (PAC 144J4 ; Figure 12), to the region of BAC 683L23, par tly translocated to 12q24. BAC683L23

contains Hs18_11016_33_1_1, Hs18_11016_33_2_1, LOC284210, Hs_18_33_3_1, IL9RP4, ROCK1, and a small part of

distal USP 14. Othe r, more pro ximal BA Cs in 18p  studied, rem ained in their re spective loc ations in 18p .  

Figure 12. Two SS-

p a t i e n t s  h a d  a

de le t io n  a n d  o n e

had a translo cation

in 12q21.1 in their

blood lymphocyte

a s  s h o w n  w i t h

Y A C s  a n d  B A C s .

P a r t  o f  t h e

c h r o m o s o m e s

studied are shown as

v e r t i c a l c o lu m n s .

F i l l - i n  s y m b o ls

r e p r e s e n t i n g  t h e

hybridization  results

a r e  e x p l a i n e d  i n

lower right.

Figure 13.  DNA repre sented in BACs 786A1, 494K17, 136F16 and 36P3 together comprise the NAV3 gene .

Hybridiz ation of BA Cs RP1 1-781A 6, RP11-494K17,  RP11-136F16, RP11 -36P3 ( AC07 3552.1 , AC022 268.5 ,

AC073571.14, and AC073608.19, respectively) together spanning  the whole NAV3 gene, indicated the transloca tion

breakpo int as division of BAC-probes RP11- 494K17 and 136F16 between chromosomes 12q and 18q. The whole BAC

781A6 remained in chromosome 12 and the whole BAC 36P3 was translocated to chromosome 18q. Fill-in symbols  of bars

indicating  BACs and their parts remaining in chromosome 12 or translocated to chromosome 18q are explained in lower

left.
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NAV3 deletion/translocation is found in interphase cells of skin lesions of CTCL patients The translocation observed

in lymphocyte metaphases of one SS patient  (case 3)  was also observed in the locus-specific FISH to lesional skin touch

preparation (Table VII).  Deletions of the NAV3-gene were observed in solid tissue samples of the three other SS patients

studied (case 1, lymph node and cases 2 and 13, skin), and in the lesional skin of 11 of 17 (65%) patients with various

stages of MF (Table VII ).  The NAV3 dele tions were fou nd in the skin lesio ns of 4 of 8 (5 0%) pa tients with early M F

(stages IA-IIA) and a deletion or a translocation was observed  in 11 of 13  (85%)  patients with ad vanced M F or SS w ith

locus-spec ific FISH (Table  VII). The deletion was equally well found in touch preparations from archival skin samples as

in more recent samples. There  was no con sistent associatio n between the  NAV 3 deletion o r the type of pre vious therap y.

All patients with NAV 3 deletion o r translocation  had a frequ ently relapsing d isease desp ite therapy or h ad died of CTCL.

Of the 5 patients not showing NAV3 deletion in their skin lesions, 3 had an early stage disease. Two of them had received

PUV A or electro n beam the rapy and o ne was untrea ted (case 17 ).  

Demonstration of NAV3 mutation in the microscopically intact chromosome arm To de tect mutations in the NAV3

gene, blood lymphocyte-derived DNA of cases 1 and 3 was sequenced (enough material available) and that of case 2 was

analysed with DHPLC. In case 1, a point missense mutation G->A in exon 37 (cDNA nucleotide 1010 6643; NM_019403),

resulting in amino acid change E2200K was found. No mutation changing amino acid was found in the NAV3 gene from

cases 2 or 3. Seven polymorphic variations have been recorded in NAV3 coding re gion (NT_ 019546 ) and two of these

changes (4509G->A and 4830C->T, NM_019403) were also observed in cases 1 and 3. Altogether, the NAV3 gene region,

spanning ap proxima tely 381K b of chrom osomal se quence, co ntains 849  polymorp hic sites.  

NAV3 is expressed in normal human T lymphocytes With RT -PCR,  N AV3 m RNA c ould be detected in polyclona lly

activated T-lymphocytes, as well as in human foetal liver cells and astrocytes.

 

                 Table VII. Result of FISH with NAV3 specific bacs 136F16 and 36P3 to skin lesion or lymph node and disease characteristics

Patient nr.1a Diagnosis Stage Treatmentb Disease Aberrant cells in FISH, %
outcomec Deletion Translocation

1 SS PUVA EB Ch DOD 68
2 SS EB Ch DOD 44
3  SSd PUVA DOD 48           

13 SS UVA DOD 50
8  MF  IA PUVA EB AR 32

14  MF IB PUVA AR 50
15  MF  IB PUVA AR 55
16 MF  IBe EB REM 8
17  MF IB REM 3
18 MF  IBe PUVA † Other 5
19  MF IBf PUVA EB Ch AR 32
9 MF IIA EB AR 10

10  MF IIB PUVA EB I Ch AR 44
11 MF IIB PUVA EB I Ch AR 8
12 MF IIB PUVA EB Ch DOD 44
20  MF  IIBe PUVA EB DOD 22
21  MF  IIBe EB DOD 58
22  MF  IIBe I R DOD 4
23  MF IIIe Ch DOD 38
24  MF  IVA PUVA EB Ch DOD 44
25  MF  IVA PUVA DOD 28

Control 1 DLE DLE 10
Control 2 ECZ ECZ 6
Control 3 DLE DLE 8
Control 4 ECZ ECZ 6
Control 5 ECZ ECZ 8
Control 6 ECZ ECZ 7
Control 7 ECZ ECZ 4
Control 8 ECZ ECZ 0
Control 9 ECZ ECZ 10

                       aArranged according to the diagnosis. Cases 4 to 7  were not studied due to lack of frozen material.
                       bPUVA: Psoralen + ultraviolet A, EB: electron beam, I: Interferon-" , Ch: Chemotherapy, R: Retinoids
                        cDOD: Died of disease,†Other: Died of another cause than CTCL, REM: Clinical remission, AR: alive, relapsing disease
                        dPreceded by MF. eBiopsies of skin lesion obtained 5 ot 15 years earlier and stored in liquid nitrogen.  fCD30-positive

α
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9.         DISCUSSION

Chro mosom al aberr ations in  peripheral blood associate with the activity or progression of CTCL or large plaque

parap soriasis. G-band ing,  FISH  or EDI SH show ed  statistically increa sed aberr ation freque ncies for chromosomes 1,3,

6, 8, 9, 11, 13/21, 15  and 17 between the diagnostic groups (Studies I and II). The aberration level of chromosomes 6, 8,

9, 11, 13 /21, 15 an d 17 (Stu dy II) was elev ated in active d isease com pared with h ealthy controls. P atients in complete

clinical remission differed from healthy controls for aberrations in three different chromosomes (chromosomes 1, 6, 11)

studied, and for the total percentage of aberrant metaphases in G-banding. On the other hand, as the abe rration level o f

chromosomes 9, 8, 13/21, 15 and 17 was elevated in active disease but not in remission, the difference in chromosomal

variety could reflect either increased  chrom osom al instab ility or increased  number o f malignant cells, b oth involvin g

especially chromosomes 9, 8, 13/21, 15 and 17. The  lack of statistically signific ant difference in paired comparisons

between patients with active disease and in remission, could be due to the smaller number of patients in remission (8 versus

32). On the other hand, despite the small number non-CTCL PUV A-patients (4 samples), significant differences between

them and th e group o f  CTCL  patients with active  disease were  observed . 

It is noteworthy that patients with active but stable disease (neither complete regression of previous skin lesions nor

appearance of new ones), as a group,  show significant differences from healthy controls for the same chromosomes (1, 6,

11 and G tot , see Table  3 in Study II, Karenko et al. 2003) as patients in remission. Thus, aberrations of those chromosomes

might be a ha llmark of existing  disease, eve n sub-clinical, but aberrations of the other chromosomes could be more

important in the progression of the disease. Patients with active, progressing disease showed significant differences from

patients in stable remission, for chromosomes 1, 6, 8, 11 and 17 in EDISH or G-banding. Thus, the frequency of aberrations

of chromosomes 1, 6 and 11, also aberrant in remission, seems to increase further with progression of the disease.

The increasing aberration level of chromosomes 8 and 17 along with increasing clinical activity of the disease, might reflect

mutations of tumour suppressor gene p53, (17p13), or c-myc oncogene (8q24.12 –q24.13), not analysable  with the methods

used in this study. Mutations of p53 gene have been observed in advanced CTCL (tumour-stage or tran sformed; G aratti et

al. 1995, McG regor et al. 1999,  M arrogi et al. 1999), and the expression of bo th p53 (wild -type or muta ted) and C -myc

increases with advancing disease (K anavaros et al. 1994, L i et al. 1998). On the other hand, in primary cutaneous T-cell

lymphoma, no correlation between p53 expression and prognosis has been found (van Haselen et al. 1997). In  this study,

chromo some 8 a berrations w ere elevated  in all samples re presenting a p rogressiv e disease. H owever, as th e material i s

small, it does no t exclude the e xistence of pr ogressive ca ses with no chro mosom e 8 abno rmalities. 

Clonal versus non-clonal abnormalities In both studies chromos omal clon es observe d in G-ban ding assoc iated with

disease activity, and often death ensued in 3 of 4 (Study I) or 4 of 7 cases (Study II) with a clone during 22 and  29 months

of  follow-up, re spectively, whic h confirms previous reports  (Whang-Peng et al. 1982,  Shapiro et al. 1987). The methods

used in Studies I and II also revealed large karyotype variation typical to CTCL (e.g. Whang-Peng et al. 1982, Berger and

Bernhe im 1987 ) and the exte nt of non-clon al abnorm alities, which may b e a result of chromoso mal instability. Based on

studies of CTC L-derived  cell lines, a hypo thesis of polyclo nal, "geno traumatic", genetically unstable cells has been

presented  (Kaltoft et al. 1992, 199 4; Thestrup-Ped ersen et al. 1994) stating tha t non-maligna nt, genetically unsta ble cells

develop  into tumour c ells with chromosomal aberrations, and that a single patient may have (in vitro) several chromosomal

clones grown out of the “genotraumatic”, chromoso mally norma l but unstable stra in (Kaltoft et al. 1994). T he studie s

concerned have the pit fa l ls  of in vi tro  s tudies ,  where long-term cel l  cul t ivat ion per se  can  cause  chromosomal

abnormalities, but the theory would nicely fit the gradual development of CTCL from precursor lesions. The present study

(I and II)  showed for the first time elevated frequency of non-clonal chromosomal aberrations in LPP, and in the Study II,

a chromosomal clone in a patient whose clinical and histopathological  diagnosis was LPP. Thus, whether cells with non-

clonal chro mosom al aberratio ns really are ma lignant or represent a premalignant form, can not be decided by the Studies

I or II, but cer tainly the aberra tions associate  with diagnosis a nd disease  activity. 

Thus, Studies I  and II indica te, that chromosomal studies with G-banding and in situ  hybridizations with centromere-

specific probes may be used as an aid for diagnostic or prognostic purposes also in the difficult diagnostic procedure
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(Willemze 1987, Payne et al. 1992, Shapiro and Pinto 1994) of the early stages of MF. As these studies confirmed the large

variation of ch romoso mal abnormalities observed previously in CTCL (e.g. Whang-Peng et al. 1982), a combination of

several different probes and G-banding should be applied.

Methodological aspects. Abnormal cells observed with G-banding were more common in MF-pa tients than in SS -patients

(in only Study I), whereas in situ  hybridization showed more abnormal cells in SS-patients than in MF-patients. This

difference may reflect the well-known difficulties in propagating CTCL-cells in vitro (Burg et al. 1978 w ith references to

earlier studies, Bunn et al. 1980a , Dalloul et al. 1992, Abram s et al. 1993, Hindkjær et al. 1993, Berger et al.  2002).

Despite the  small sizes of the g roups tested , statistical concordances for both methods were achieved for several numerical

aberrations and in situ  hybridizations (Study I). EDISH  and FISH  showed c ompara ble results (Stud y I). Thus, th e

application of ED ISH develop ed (Study II) can be used  without an expensive fluorescence microscope, and gives

permanent,  archival preparations. The  concord ant change in  both the chro mosom al and clinical sta tus showed  statistically

significant agreement in EDISH only fo r chromosome 17, whereas in G-banding significant agreement for chromosomes

1, 8, 9, 15  and 17 w ere found. T he difference  in sensitivity between G-banging and EDISH might be caused by the higher

aberration rate in healthy controls  in EDISH versus healthy controls in G-banding, which lowers sensitivity of the EDISH

for small differen ces in  abe rra tion  leve ls .   G-banding a lso shows struc tural abnor malities not de tectable with wit h

centromere-specific in situ  hybridization. However, a rather high aberration rate in G-banding of some of the health y

laboratory workers used as controls (in Study II) was observed. It might reflect their past exposure to clastogenic agents,

which cannot be totally excluded, and may have slightly reduced   the statistical sensitivity of G -banding to  only slightly

elevated aberration rates in the patients. On the other hand, neither w ere the patien ts selected acc ording to  their past

occupational exposures. Also for laborato ry-methodo logical reaso ns, the patient d ata obtaine d by in situ hybridizations of

centrome re-specific pro bes should  always be co mpared  to controls. 

The finding of abundant cells with chromosomally aberrant clones, stable over time, and well studied with other methods

(Study II and  IV), was th e prerequisite for using FICTION, that enabled the study of the phenotype of the individual

malignant cells in two SS-patients.

Chromosoma l aberrations and previous treatments  Since our patients were mostly not treatment-naive (for ethical

reasons) when the sampling was performed during the follow-up it may be speculated that some treatment might have

induced chromosomal aberrations. However, in any study, no association with any  treatment modalities or chromosomal

clones could be o bserved, as clones were  observed in patients with different treatment histories o r without any preceding

treatment. The elevated frequencies of non-clonal aberrations in patients could neither be explained statistically (study II)

by treatment w ith PUV A, the most c ommon  precedin g therapy. 

Cell  maturity in the light of the phenotype expressed  Phenotyp ically, Sezary cells  have been considered to  be

CD4+,CD 45RO+,CD 45RA-, and functionally of Th2-type (Vow els et al. 1992, Saed et al. 1994,  Dummer et al. 1996).

However, the chro mosom ally clonal cells o f our patients co mmonly ex pressed a lso CD4 5RA, no rmally observed in naive

T-cells (Cle ment et al.  1988). They also expressed CDw150 (SLAM ), which is normally express ed on CD45RO+

periphera l blood m emory cells (T h0/Th1 ) and rapid ly up-regulated on activated T c ells (Cocks et al. 1995). CDw150

directs the immune response towards Th0-Th1 pathway (Aversa et al. 1997). 

Normally, naive CD45RA+ cel ls express IL-2,  and mature CD45RO+ cells  express IL-4,  IL-5, IL-10 (Th2),  or  IFN-(

(Th1). A  strong coe xpression o f both isoform s occurs du ring transit ion from CD45RA+  to CD45RO + (Dbright in flow

cytometry), with expression of IL-2 and IFN-( (LaSalle and Hafler 1991, Picker et al. 1993a, Hamann et al. 1996).  In

healthy persons, such cells are found in peripheral blood and in secondary lymphoid organs (Picker et al. 1993a, Hamann

et al. 1996). Cells with weaker coexpression of CD45RA/RO (Ddull)  express mainly RO+ type cytokines, IL-4, IL-5, IL-10

or IFN-(, and have been suggested to represent some stage in T cell differentiation or resting primed T cells (Hamann et

al. 1996). T he differentia tion of naive to Th1 or Th2 cells seems to go through a phase where naive cells express small

amounts of IL-4 with IL-2 (Kamogawa et al. 1993, Bullens et al. 1999). The chromosomally clonal cells of our patients

characteristically expressed IL-4, typical of RO+ type Th2 cells, but only in one case was IL-10 expression observed.

γ
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Despite the  variable exp ression of C Dw150, the clonal cells of our patients did not express IFN-(, usually upregulated by

CDw150 (Cocks et al. 1995). Taken together, the phenotype CD45RA+, CD45RO+, CDw150±, IL-4+,   IL-2-, IFN-(-, and

with the variation of IL-10 expression between the patients, the clonal cells seem to be intermediate forms between naive

CD45RA+ and CD45RO+ Th2 cells. Possibly, they might represent cells that have not attained complete  maturity, or they

could be mature Th2 cells partly reverted towards a more naive or resting T cell type (Hamann et al. 1996). The differences

in the immunohistologic staining intensities in immunohistology of IL-4-positive cells must be interpreted with caution, and

the interactions with other cells in the microenvironment were not studied. O ur observa tion of malignant cells with th e

phenotype CD45RA+, CD45RO+ is in concordance with the heterogeneity of RA+, RA+/RO+, RO+ expression between

four SS patients studied with flow cytometry by Urban and coworkers (1999, abstract) in cells rearranged for the TCR Vb

gene. The chromosomal clones with supernum erary copies of chromosome 8 in our patients represented the chromosomal

clones  and were stable over time.

 Interestingly, the IL-4 positivity may contribute  to the low frequency of apoptotic cells found in skin lesions of CTCL patients,

as IL-4 blocks the action of caspase 3 (Manna and Aggarwal 1998), and IL-4 producing T cells have been shown to be resistant

to activation-induced apopto sis (Carbonari et al.  2000).  In contrast to Vermeer et al. (1999), who showed cytotoxic

T-lymphocyte-associated granzyme B and cytotoxic-granule-associated TIA protein expression in morpho logically identified

malignant cells in Mycos is fungoides patients, we did not find notable  granzyme B expression in the chromo somally clonal

cells of our Sézary syndrome patients, although the reference sample  of lymphomatoid papulosis  showed clear positive

staining.

Interpretations concerning timing and compartment of malignization Our finding of cells representing a  malignant

chromosomal clone  in lymph nodes of both patients in Study III with dermato pathic lymphono ditis histology and obtained

even several months prior to malignant infiltrate in the skin (case 1), can be interpreted in two ways. First, malignant clones

may rise extracutane ously and they may invade lymph nodes early in the course of the disease, or they may arise in lymph

nodes. In study V, one patient had different chromosomal clones in the skin and the blood, and the TCR clones in those tissues

were equally different from each other (Study V; Muche et al. 2004).  It is also noteworthy that even if the SS of case 2 (Study

III) evolved from MF by clinical and histopathological criteria, the high percentage (30%) of Sézary cells in the blood during

the patch stage skin lesion might be interpreted as systemic involveme nt.  Second ly, malignant cells  may arise in the skin,

which is still histopathologica lly undiagnostic of CTCL. Heald  et al. (1993), on the basis of the CD45RO and CLA positivity

of blood lymphocytes defined malignant with TCR-family immunoh istology, suggested that CTCL cells could rise from T-cells

undergoing virgin-to memory transition in lymph nodes in a microenvironment upregulating CLA epitope (Picker et al. 1993b),

or memory cells activated in the skin. The present study (III) now shows the partly virgin properties of the cells. As they may

also result from partial reversion toward a more naive cell type, further studies are needed to firmly establish the initial

compartment of the malignant transformation. The concept of early systemic nature of CTCL has gained evidence also from

some other studies (Whang-Peng et al. 1982, Veelken et al. 1995, Dommann et al. 1996, Trotter et al. 1997, Tok et al. 1998,

Muche et al. 2004) and early extracutaneous T-cell chromosomal aberrations or T-cell clonality has been verified even in large

or small plaque parapso riasis recently (Study I, Muche et al. 1999). Thus, lymph node biopsies should be obtained during the

early phases of CTCL, as early as possible, to demon strate the presence of malignant cells and to study their relationship  to

other cell types presenting or secreting cytokines.

Amplified or deleted chromosomal regions were found by CGH (Study IV, which  was the first CGH study of CTCL

published). Later studies (Fischer et al. 2001, 2004, Mao et al. 2002) have confirmed our findings concerning chromosome 10q

loss and aberrations in chromosome 17 in German and British patients. Microsatellite instability in the tumour suppressor gene

PTEN in 10q23 in CTCL was shown in 10/44 CTCL patients (23%), most with advanced disease (Scarisbrick et al. 2000). As

the minimal common region in of the loss in the CGH studies both in the Study I and the study of Mao et al. (2002) was more

distal, 10q25-q26 and 10q26, respectively, the finding of another important tumour suppressor gene in chromosome 10 more

distally than PTEN is expectable. 

The most common abnormality in the study of Mao et al. (2002) was gain in 1p36, which we have observed  later and only in

a few cases (Muche et al. 2004 and  unpublished observations). In addition, abnormalities of chromosome 13 were more rare
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in their study than in ours. As the observations of Fischer et al. (2001, 2004) in a German patient material show more

resemblance with our results, there may be some underlying factor either in the causation of the disease or in the genetic

background. In our study (Study IV), the DNA copy number changes did not differentiate between SS, whether the disease had

evolved through MF or begun directly as SS.  The CGH-findings were reprodu cible with only little variation between follow-up

samples or samples taken from different tissues. 

Multicolour FISH identified  the most common structural chromosome aberration in CTCL Because  previous studies (I

and II) had shown a vast number of marker chromosom es, e.g. unidentifiable, structurally aberrant chromosomes in CTCL,

multicolour FISH was used to reveal the chromosomal origins of structurally aberrant chromosome s.  First, we found that a

deletion or translocation of the q-arm of chromosome 12 was the most common recurrent change detected by multicolour FISH

in the blood lymphocytes in 6 of 7 (86%) consecutively presenting SS patients. Three of them, studied with locus-spec ific

FISH, showed a deletion or translocation of NAV3. A deletion of NAV3 region was subsequently observed, in the skin lesions

of 11/17 (65%) random ly selected MF patients and one SS-patient whose blood was studied with CGH only. 

Chromosome 12 abnormalities have been a frequent finding in CTCL in previous cytogenetic studies. Earlier cytogenetic

studies have already suggested that aberrations of 12q are among the most common alterations in CTCL (Whang-Peng et al.

1982, Schlegelberger et al. 1994a) but the reported frequencies of chromosomal abnormalities are influenced by the detection

methods used (Mao et al. 2003b). Mao and coworkers (2003b) recently reviewed 274 karyotypes, most of them G-banded,

published in 27 articles, and found that aberration of 12q was among the eleven most commo nly altered chromosome arms,

with structural aberrations found in 7% of the CTCL cases. In comparison, the most commo nly observed aberratio ns of 1p

occurred in 11% of cases. The complex chromosomal alterations found in the present study would have been very difficult or

impossible  to be resolved without techniques such as MFISH or SKY, which made it possible  to identify the origins of

chromosome parts involved in rearrange ments and to reveal the composition of aberrations designated only as markers in G-

banding (Study I). 

The distribution and similarity of chromosomal clones in the different tissues of CTCL patient as studied by chromosome

analysis or locus-spe cific FISH  Despite of the NAV3 deletion observed in skin, most MF patients  had only non-clonal

aberrations of chromosome 12 were in their blood samples. In analogy, Barbieri and coworkers (1986) found inv(12)(q15;q24)

in combination with an additional chromosome 12 in the skin but not in the blood of an early stage MF-pa tient.This  is in

accordance with our previous results (Study I), in which G-banding of blood lymphocytes detected a clonal aberration of

chromosome 12 in only one MF patient (47,XY,+12),  whereas non-clonal aberrations of chromosome 12q occurred in 8/10 MF

patients (data not shown). However, the skin lesions of 5 of the latter cases with non-clonal aberrations of chromosome 12 in

the blood, were subseque ntly included in Study V and examined with locus specific FISH, and 4 of them showed a deletion of

NAV3. The fifth patient with no NAV3 deletion (case 16) has remained in remission for over 10 years now after EB therapy

(Study II). Due to the lack of contemporaneous blood samples and skin biopsies in the two other cases, it is not possible  to

conclude, whether the NAV3 deletion first occurred in the skin or in the blood. However, one of the latter cases (case 15)

showed a clonal deletion in 12q in blood G-banding 3 years before the skin sample. Thus, G-banding of blood either does not

always reveal subtle deletions of chromosome 12 observab le with locus-specific  FISH, or the frequency of malignant cells

bearing chromosome 12 aberrations is too low in blood to be detected with cytogenetics, especially in the early stages of MF.

Blood clones could  represent different subclones than the clones in skin, as the blood clones of cases 20 and 21 studied with

G-banding and showing marker chromosomes (4/100 and 2/100 metaphases, respectively,  the latter contemporaneous with the

skin sample) both included one clonal cell with monosomy of chromosome 12 as an additional aberration. Skin and blood

clones may also be totally different clones, as depicted by case 12, whose blood MFISH showed a clonal aberration of

chromosome 10, and non-clonal aberrations of 12q.  This patient, with a deletion of NAV3 in skin, also had a different TCR

gamma clone in skin compared to blood (Muche et al. 2004). On the other hand, some cases may belong to subgroups of CTCL

without NAV3 aberrations, as there are cases showing other chromosomal abnormalities (Study II, Muche et al. 2004). 

Chromosomal aberrations inactivating tumour suppressor genes and NAV3. The fact that the most common chromosomal

aberration type we found in 12q was deletion, strongly suggests that the region harbours a tumour suppressor gene. The two SS-

patients studied, with long deletions proxima lly and distally in the 12q showed the minimal common region in 12q21 covered
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by 7 YAC-long contig, with approximate size of 6 Mb. This region may well contain tens or hundreds of genes. By serendipity ,

a third SS patient showed a balanced translocation with breakpoint right in the middle  of the minimal region of deletion.

Reciprocal translocations, even from one donor chromosome to several recipient chromosom es, have previously  been used to

pinpoint the location of target tumour suppressor genes, as was the case for example  for the retinoblastoma gene (Davison et

al. 1979, Higgins et al. 1989, Mitchell  and Cowell  1989). In addition, inactivation of the well known tumour suppressor gene

APC (adenomatous polyposis  coli) by reciprocal translocation has also been reported (van der Luijit 1995). The mapping of

translocation break-point in the above mentioned SS patient showed that the translocation disrupted a gene for the human

homolog of unc-53, the NAV3 (also named POMFIL1; Coy et al. 2002, Maes et al. 2002). 

The structure of NAV3 and cell signalling. The NAV3 gene has previously  not been associated with any lymphoid

malignancy and was thus an unexpected target of the recurrent aberration associated with CTCL. The NAV3 gene is large,

spanning around 400 Kb of genomic  sequence, and has only recently been cloned Coy et al. 2002, Maes et al. 2002. NAV3 is

one of the three human homologues of unc-53, a gene involved in axonal elongation in Caeno rhabditis  elegans (Merrill  et al.

2002, Frauwirth and Thompson 2002, review). NAV3 consists of 40 exons, and is known to be expressed in brain, placenta and

colon. Three exons are differentially spliced. It is believed that NAV3 has arisen through duplication of NAV1 and NAV2

(HELAD1, RAINB1),  situated in 1q32.1  and 11p15.1, respectively (Coy et al. 2002, Maes et al. 2002). Like unc-53, all three

homologues have an AAA-d omain characteristic  of ATP-ases,  and ATP/GT P-binding sites (P-loops). NAV3 shows a large

number of phosphorylation sites, a leucine zipper domain, coiled-coil  domains and PXXP motifs, binding sites for SH3-domain

of Src (Coy et al. 2002). Unc-53 interacts with SEM-5, the nematode homologue of human GRB2, which is an intermediato r

in cell signalling e.g. by CD28 a costimulatory molecule  involved in T-cell  activation (Stringham et al. 2002; Frauwirth  and

Thompson 2002, Moghal and Sternberg 2003, reviews). GRB2 is also  an inhibitory regulator of STAT3 transcription (Zhang

et al. 2003).  Interestingly,  a constitutive activation of STAT 3 and an abnormal balance of STAT5 isoforms have been

observed in Sézary syndrome Eriksen et al. 2001, Mitchell  et al. 2003).  NAV2 and NAV3 also have calponin-like (CH)

domains 30 conferring actin binding to many cytoskeletal and signalling molecules (Frauwirth and Thompson 2002, Krawczyk

and Penninger 2001 reviews).   Recently,  T-helper cells of most patients with Sézary  syndrome have been shown to express

T-plastin, an actin binding  molecule normally  not expressed in T-cells, that regulates cell structure and motility (Su et al.

2003).

Potential roles of NAV3 as a pore complex protein  and helicase. Mouse  NAV3/POMFIL1 was recently shown to locate in

nuclear pore complexes (Coy et al. 2002), which may indicate a function in nucleocyto plasmic transport regulation (Linder and

Stutz 2001).  Nuclear pore complexes are also involved in cell cycle regulation, and kinetochore formation. In yeast, mutations

in nucleoporins lead to defects in chromosome segregation (Fahrenkrog and Aebi 2003, review). Like NAV2, NAV3 also

shows the properties of a helicase and exonuclease  as predicted by its protein  sequence (Ishiguro et al. 2002). NAV2 is

upregulated in colorectal cancer, like ReQ helicases BLM and WRN, belonging to the superfamily  II helicases (Ishiguro et al.

2002).  If also NAV3 has helicase-like properties in the maintenance of the stability of chromosom es, its deficiency,  like

deficiencies of BLM and WRN, could cause a hyper-recombination phenotype, which includes formation of deletion mutants

and possibly also loss of heterozygo sity (LOH), and increase in sister chromatid  exchanges, as has been observed in CTCL

(Limon et al. 1995, Scarisbrick et al. 2000; Nakayama et al. 2002, review), too. Thus, a defective NAV3 might, with other

possible  defects contribute  to the genomic  instability observed in CTCL (Kaltoft  et al. 1994, Schultz and Zakian 1994, Paz-y-

Mino et al. 2002). The only other tumour association of the reduced or absent expression of NAV3/POMFIL1 has been

reported in neuroblastoma cell lines (Coy et al. 2002).

The inactivation of the remaining allele of NAV3. If the NAV3 is a classical tumour suppressor gene important for aetiology

or progression of CTCL, one would expect to find inactivation of the remaining allele of the gene. We were able to sequence

only two of the SS cases and one was studied with DHLPC. One of them had a missense mutation showing, that both alleles

were aberrant in this case. However, it is difficult to predict the functional consequence of the missense mutation. Thus, at this

point we cannot be sure, that the mutation found is an inactivating one. In addition to mutations, the remaining allele of a

tumour suppressor gene is frequently  inactivated by epigen etic events, such as promoter hypermethylation, in cancer cells

(Jones and Baylin 2002 review) . Hypermethylation is a frequent event silencing the p16INK4a gene in CTCL (Navas et al. 2000).

Whether NAV3 is hypermethylated in CTCL, needs to be studied. Another possibility is that the loss of only one copy of the
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gene could  result in the inactivation of the gene. Such nonclassical tumour suppressor genes showing haploinsufficient

phenotype are called nonclassical tumour suppressors. Well-known examples are mouse Cdk inhibitor p27Kip1 and human

PTEN (DiCristofano et al. 1998, Kwabi-Addo et al. 2001, Byun et al. 2003; Sherr 2004, review) and NKX3.1 (Bhatia-Gaur

et al. 1999, Magee et al. 2003). They may also manifest haploinsufficent effects with collaborating mutations affecting other

tumour suppressor genes or oncogenes.   Humans heterozygous for the BLMAsh have a slightly increased risk of colorecta l

cancer (Gruber et al. 2002). Consistently, mice heterozygous for BLM mutations have and increased risk of malignancies after

infection with murine leukaemia  virus. Mice heterozygous for both BLM mutations and  APC (adenomatous polyposis  coli)

mutations developed intestinal tumours more quickly than mice heterozygous for APC alone - without viral challenge (Goss et

al. 2002). Haploinsufficient tumour suppressor genes are more difficult to investigate than the classical ones, but new evidence

of established or possible  non-classical tumour suppressors is emerging (Sharpless  et al. 2001, Kemkemer et al. 2002,

Kucherla pati et al. 2002, Bai et al. 2003, Bassing et al. 2003,  Bernert et al. 2003, Celeste et al. 2003,  Deans et al. 2003,

Dumon-Jones et al. 2003,  Hauguel and Buntz  2003,  Matsuno  et al.2003, Moshous  et al. 2003, Steinemann et al. 2003,

Srivastava et al. 2003, Dai et al. 2004, McPherson et al. 2004; Sherr 2004 review). - NAV3 may well show haploinsufficiency

in analogy to the gene-dosage effects in behavioral tests observed  in mice with mutations in the mammalian analogue of Unc-

53 (Peeters et al. 2004).

Deletion of  NAV3 occurs early in comparison to other gene aberrations known in CTCL. The deletion of NAV3 seems to

be a relatively early event during the pathogen esis of CTCL, since it detectable  with locus-spec ific FISH in the skin of half of

the patients  with early MF (stages IA to IIB) whereas it was observed in 85% of cases with a later stage CTCL. In previous

studies, genetic aberrations of some known tumour suppressor genes studied, like PTEN p15, p16, and p53, or overexpression

of the latter, have been observed but each with lower frequencies than deletions of NAV3, especially  at early stages of the

disease (Garatti  et al. 1995,  Lauritzen et al. 1995,  Li et al. 1998,  Marrogi et al. 1999, McGregor et al. 1999, Navas et al.

2000, Scarisbrick et al. 2000, 2002). In a genomic  microarray study of selected genes, not including NAV3, JUNB (19p13)

along with CTSB,  RAF1 and PAK1  showed amplifications  in 5/7 CTCL cases studied (5 with SS, 2 with MF)  whereas real-

time-PCR showed amplification of JUNB in 6/14 (43%) MF and 4/22 SS (9%) cases Mao et al. 2003 .  Also, in the present

study, the aberrations in 12q were more common than aberrations of chromosomes 1, 10 or 19,   associated with Sézary

syndrome (Whang-Peng et al. 1982, present Study IV, Mao et al. 2002, 2003 ). The overexpression of JUNB was recently

confirmed by a cDNA array of Sézary patients (Kari et al. 2003)

The deletion of 12q, with the putative target gene, NAV3, is the first chromosomal aberration found to be associated with the

majority of the most common forms of CTCL. It is obvious that also other aberrations are required to explain the complex

pathogen esis of CTCL, and various subgroups of CTCL are expected to be revealed. Studies providing information about the

function of NAV3 in T cells and in CTCL are warranted and under way. 

10.        CONCLUSIONS

Cytogene tic and molecular cytogenetic  in situ hybridizations were used to find  the most common chromosomal abnormalities

observed in CTCL. These methods can be used both in the diagnostics and follow-up of CTCL. The phenotype of individually

identified malignant cells in Sezary syndrome was studied in situ, and found to be intermediate between naive CD45RA+ and

mature CD45RO+ Th2 cells. The most common DNA level gains and losses were screened with CGH showing common

deletions in 10q25q26 and 13q21q22, and gains in chromosome 8 and 17q21q25. These findings have paved the way to future

studies of oncogenes and tumour suppressor genes affected in CTCL. Such information can be used for the future development

of targeted therapy. The first chromosome aberration specific  to CTCL, chromosome 12q deletions or translocations, were

found with 24-colour hybridizations. The gene involved was identified with locus-spec ific hybridizations.  The gene is NAV3,

a putative tumour suppressor gene in CTCL. It  is deleted in the majority of cases, also in the early stages, and the deletion can

be used in diagnostics.  In the future, studies concerning the role of NAV3 in signal transduction, nuclear transport,   helicase

properties and malignant transformation are warranted. 
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