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SUMMARY

The coding region of the apolipoprotein B (apoB) gene was

screened for previously unknown mutations in hyperlipidemic

Finnish patients, using single-strand conformation analysis as

the detection method. ApoB gene exons 2 to 25, 27 and 28 were

amplified as a whole, and exons 26 and 29 in six and three

overlapping segments, respectively. Altogether, twelve new

variants of apoB were detected. Four of them were silent

variants, and three other were considered not likely to affect

lipid levels. Possible lipid effects of the other five apoB

variants were assessed in hyperlipidemic families and patients,

in the normal population and patiens undergoing coronary

angiography, and during diet or drug intervention. In addition,

effects of earlier known apoB variants, the apoB ins/del,

Thr71 SIle and Ala591 SVal, on serum lipid levels were stud ied.

The newly detected Val703 SIle polymorphism seemed to affect

triglyceride levels in healthy subjects, and the Ala591 SVal

polymorphism serum apoB levels in hypertriglyceridemic subjects.

The His1896 SArg polymorphism was shown to affect serum total and

LDL cholesterol concentrations in healthy men during low-fat,

low-cholesterol diet. No statistically significant lipid effects

of three other apoB polymorphisms, the Asn1887 SSer, Arg4243 SThr,

and Ala4454 SThr, could be detected in the subjects studied. A

new immunogenetic apoB polymorphism, detectable by monoclonal

antibody D7.2 and associated with both Asn1887 SSer and

His1896 SArg variations was characterized.
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1. INTRODUCTION

The risk of coronary artery disease (CAD) is correlated with

elevated serum levels of total cholesterol, low density

lipoprotein (LDL) cholesterol, apolipoprotein B (apoB) and

triglycerides, as well as with low levels of high density

lipoprotein (HDL) cholesterol (1-5). Although heritability

estimates, genetic models and modes of transmission vary between

different study settings, a considerable portion of the

variability of serum levels of these lipids and lipoproteins is

believed to be genetically determined (6-8). One of the

candidate genes possibly involved in this variation is the apoB

gene.

The apoB gene encodes for two protein isoforms, apoB-100 and

apoB-48, of which apoB-48 is composed of the first 2552

(approximately 48 percent) amino acids of apoB-100. ApoB-100 is

the major lipid-binding protein constituent of very low density

(VLDL), intermediate density (IDL) and low density (LDL)

lipoproteins and functions in LDL also as a ligand for the LDL

receptor (LDLR) (9,10). The main role of apoB-48 is to bind

lipids in chylomicrons (CM) (9,10). The enormous size of apoB

and its gene, and the variability of lipid phenotypes have made

studying the pat hogenetic role of apoB in dyslipidemias

difficult. The most common approach has been the use of

population association studies. Several genetic polymorphic

variants of apoB have been described, many of which have been

associated with elevated serum cholesterol, triglyceride, LDL-

cholesterol or apoB levels in different populations (9,11,12).

Among the most studied is the silent XbaI restriction fragment

length polymorphism (RFLP), which has been associated with serum

lipid levels and CAD in several populations, especially the

Finns (12). To date, three mutations of apoB with major effects

on serum lipid levels have been characterized, the apoB

Arg3500 SGln (13,14), Arg3531 SCys (15), and Arg3500 STrp mutations

(16). All have been shown to elevate serum total and LDL

cholesterol levels (17-21). None of these mutations have so far
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been detected in the Finnish population.

For decades, the Finns have belonged to populations with a high

incidence of dyslipidemias, especially hypercholesterolemia, and

thus increased risk of CAD (22,23). Although primary preventive

measures have lead to major declines in both co ronary risk

factors and the incidence of CAD (24-26), CAD mortality in the

Finns is still among the highest in the world (27,28). As a

nationally and regionally isolated population, the Finns are

genetically exceptionally homogeneous (29,30), a fact reflected

in the existence of four common unique LDLR mutations causing

familial hypercholesterolemia (FH) (31), and in the apparent

absence of the apoB Arg3500 SGln mutation in the Finnish

population (32). With these facts in mind, the series of studies

presented in this thesis were designed to search for previously

unknown apoB genetic variants characteristic to Finns which

could explain part of the commonly occurring dyslipidemias in

this country.
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2. REVIEW OF THE LITERATURE

2.1. General outline of lipoprotein metabolism

2.1.1. Plasma lipids and lipoproteins

The major lipids in the body are triglycerides (Tg), cholesterol

(free choles terol, FC, and cholesterol esters, CE), and

phospholipids (Pl) (10,33). Triglycerides serve as a source of

energy and are stored in adipose tissue. Cholesterol serves as

a component of cell membranes and as a precursor for steroid

hormones and bile acids. Phospholipids are major components of

cellular membranes and lipid-transporting lipoproteins. As

hydrophobic compounds, cholesterol and triglycerides cannot

dissolve directly in plasma but are carried in the circulation

together with the amphipathic Pl as water-soluble lipoproteins.

Basically, all lipoproteins are organized into a hydrophobic

core of neutral lipids (Tg and CE), and a hydrophilic surface

coat of polar lipids (FC and Pl) and apolipoproteins. Although

lipoprotein particles, differing in their relative lipid and

apolipoprotein composition, size, density and function actually

form a heterogenous continuum, major classes of lipoproteins

have been defined. A traditional classification, based on the

density at which lipoproteins float during ultracentrifugation,

divides them into chylomicrons (CM), very low density

lipoproteins (VLDL), intermediate density lipop roteins (IDL),

low density lipoproteins (LDL), and high density lipoproteins

(HDL) (10,33). Additionally, lipoproteins can be classified on

the basis of particle size, electrophoretic mobility, or

apolipoprotein content. Within the classical lipoprotein

fractions, especially the LDL and HDL fractions have been shown

to be comprised of several distinct subclasses differing in

their density, particle size or apolipoprotein composition

(34-36), reflecting steps in lipoprotein metabolism. In addition

to the classic five lipoprotein classes, a heterogeneous class

of LDL-like lipoprotein particles termed lipoprotein(a)

containing apolipoprotein(a) and apoB-100 as protein moiety has
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been characterized (37,38). The major characteristics of these

lipoprotein classes are presented in Table 1.

2.1.2. Apolipoproteins

Apolipoproteins are specific protein components of lipoproteins.

They act as structural lipid binding components of lipoproteins

(apoA-I, apo A-II, apoB-48, apoB-100), as ligands for

lipoprotein receptors (apoA-I, apoB-100, and apoE), as

inhibitors for lipoprotein-receptor interactions (apoC-I and

apoC-III), as modulators of the activity of enzymes involved in

lipoprotein metabolism (apoA family, apoC family), and as

cofactors in lipid transport between lipoproteins (apoA-IV)

(10,39). Characteristics and physiological functions of ten of

the best known apoliporoteins are summarized in Table 2.

Additionally five minor apolipoproteins, termed apoD, apoF,

apoG, apoH ( A2-glycoprotein), apoI (serum amyloid A), and apoJ

(clusterin), have been characterized (39,40). Their

physiological roles are still largely unknown.

2.1.3. Lipoprotein metabolism

Lipid and lipoprotein metabolism can be divided into two

pathways, the exogenous pathway involved in the transport of

dietary lipids, and the endogenous pathway, both schematically

illustrated in Figure 1. In the intestine, absorbed and re-

esterified Tg, CE and Pl are packed into apoB-48-containing CM,

and secreted via the lymph to the circulation (10,41).

Thereafter, CM Tg are rapidly hydrolyzed by lipoprotein lipase

(LPL) and to some extent also by hepatic lipase (HL), which

process, together with other changes in the lipid and

apolipoprotein con tent of the particles, results in the

formation of smaller, cholesterol-enriched CM remnants. CM

remnants are removed from the plasma mainly by the liver through

the LDLR and to a smaller extent through the LDL receptor-

related protein (LRP-1), or cell surface proteoglycans (PG)

(10,42). Under normal conditions, most of the absorbed Tg
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carried by the CM is used in the extrahep atic tissues whereas

nearly all cholesterol is delivered to the li ver. A small

portion of CM remnants seems to be cleared by peripheral tissues

as well (43).

The endogenous lipid transport system can be divided into two

subsystems: the apoB-100 lipoprotein system (VLDL, IDL and LDL)

and the apoA-I lipoprotein system (HDL). The apoB-100 system

begins with the hepatic assembly and secretion of apoB-100-

containing VLDL particles (10). Thereafter, VLDL Tg are

hydrolyzed in peripheral tissues by LPL, and the particles

converted to smaller Tg-depleted remnant particles. A part of

VLDL remnants are directly cl eared from the plasma by hepatic

and possibly also peripheral receptor-mediated mechanisms

(10,42,43). The remaining particles enter into the VLDL-IDL-LDL

cascade, where most of the core Tg in the particles are

hydrolyzed by LPL and HL, leading to the formation of IDL and

LDL particles. Some of the IDL particles are conceivably removed

by the liver via LDLR or LRP-1. The rest are converted to LDL

particles. Most of the LDL particles are cleared by the liver

through the LDLR, other receptors and non-receptor-mediated,

still poorly defined pathways playing a smaller role in LDL

clearance (10,44).

The metabolism of the apoAI-containing HDL-particles is

intimately connected with both the exogenous and endogenous

lipid transport pathways. HDL particles are derived from

precursor complexes secreted by the liver and intestine. They

are the main mediators of the reverse cholesterol transport

system whereby cholesterol synthesized or deposited in

peripheral cells is returned to the liver (4,10,45). This

process begins with the removal of FC from cell membranes to

nascent HDL particles (35,46) and esterification of FC by

lecithin cholesterol acyl transferase (LCAT), after which the CE

is transferred to the hydrophobic core of the HDL particle. In

this process, nascent HDLs are converted to spherical lipid-rich

HDL. Part of the HDL core CE is then transferred to apoB-48- or
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apoB-100-containing lipoproteins in exhange for Tg by the

cholesteryl ester transfer protein (CETP), whereafter these

transferred CEs can either be removed from the circulation by

the liver or redistributed to peripheral cells. The CEs

remaining in the HDL particles are taken up by hepatocytes

either via receptor-mediated endocytosis by of apoE-containing

HDL particles by the LDLR, LRP-1, or the putative HDL

holoparticle receptor, or through selective removal of HDL CE by

the hepatic scavenger receptor BI (4,5,10). At the same time, Tg

transferred from other lipoproteins to HDL are hydrolyzed by HL,

leading to the conversion of Tg-rich HDL 2 to Tg-poor HDL 3

particles, and release of free apo-AI and lipid-poor HDL to be

reused in the reverse cholesterol transport cycle (35,45).

Besides the exchange of CE for Tg, the complex interplay of HDL

with other lipoproteins during reverse cholesterol transport

involves exchange of other components as well, such as

apolipoproteins and Pl. Thus, HDL particles can be considered to

serve in plasma as a reservoir of lipids and apolipoproteins for

apoB-100 and apoB-48-containing lipoproteins (10,42).

2.1.4. Factors regulating lipid and lipoprotein levels

2.1.4.1. Diet, other lifestyle factors, age, gender, and obesity

The metabolism and plasma levels of lipids and lipoproteins are

influenced by several non-genetic factors, including both

dietary as well as other lifestyle factors, age, gender and the

degree and distribution of body fat. A summary of the effects of

these factors on plasma lipid and lipoprotein levels is shown in

Table 3.

Of all dietary constituents, the amount and composition of fatty

acids and the amount of cholesterol seem to be the most

important modulators of serum lipid and lipoprotein metabolism,

and therefore have been targeted in dietary recommendations

aimed at reducing lipoprotein levels and CAD risk. Dietary fats

are composed of mixtures of saturated, monounsaturated or
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polyunsaturated fatty acids. Of these, most saturated fatty

acids raise serum total and LDL c holesterol by impairing the

clearance of LDL, whereas the polyunsaturated and mono-

unsaturated fatty acids, when substituted for saturated fatty

acids, reduce serum cholesterol levels (47,48). Thus, reductions

of total dietary fat to 30% of total calories and dietary

saturated fatty acids to 10% of total calories with a moderate

increase in polyunsaturated and monounsaturated fatty acids in

the diet is considered beneficial (49). The influence of dietary

cholesterol on plasma lipoproteins is variable (48,50,51), but

usually, high levels of cholesterol consumption have been

associated with elevations of cholesterol in all lipoprotein

classes, an effect enhanced when cholesterol is consumed with

saturated fatty acids (47,48,52). Current recommendations

suggest a limitation of dietary cholesterol to 300 mg/day (49).

Compared with the effects of dietary fatty acids and cholesterol

on lipid and lipoprotein levels, the effects of other dietary

components, such as carbohydrates (52,53), soluble fibre (54),

and proteins (55,56) are more subtle and also variable and have

not lead to major dietary recommendations. Dietary alcohol

raises Tg and HDL cholesterol levels, and lowers LDL cholesterol

(57). A high overall caloric intake increases hepatic VLDL

synthesis, resulting in hypertriglyceridemia and hyper-

cholesterolemia (52).

Besides diet, several other lifestyle factors such as tobacco

smoking (58), physical activity (59), and psychological stress

(60), are associated with variations in lipid and lipoprotein

levels. However, knowledge of the relative importance of these

factors on lipid levels and their variability is currently

limited. In stead, the effects of age (61-63), gender (61,62),

menopausal (63,64) and menstrual (65) status in women, and the

degree (66-70) and distribution (66,70) of body fat are more

pronounced and should be taken into account when estimating the

effects of genetic variation on lipid and lipoprotein levels. In

addition, endocrinological, renal and hepatic diseases, diabetes

mellitus, and drugs are known to affect lipid metabolism and
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have to be considered when lipid effects of other factors such

as genes are estimated (52,71,72).

2.1.4.2. Genes

A considerable portion of the variability in serum levels of

lipids and lipoproteins between individuals as well as the

variability of changes induced in these levels by factors such

as dietary modifications and weight reduction is believed to be

genetically determined. Several polymorphisms in the genes

encoding for various proteins involved in lipid metabolism have

been characterized, some of which have been associated with

serum lipid levels or responses to diet in populations. The most

studied and well characterized genetic variants in this respect

are located in the apoE and apoB genes.

ApoE is a pro tein constituent of the triglyceride-rich

lipoproteins VLDL, ßVLDL, IDL, CM, their remnants, and apoE-rich

HDL (39,73-76). It mediates the interaction of these particles

with cell surface receptors, and occupies a central role in

determining the metab olic fate of lipoproteins. A role in the

reverse cholesterol transport for apoE has also been postulated

(39). The apoE gene exhibits a common polymorphism with three

alleles coding for three protein isoforms of apoE (E2, E3, and

E4). In population studies, the apoE4 isoform has been

associated with higher and apoE2 with lower serum total and LDL

cholesterol and apoB levels (39,75,77). Compared with apoE3,

apoE2 is defective in receptor binding, leading to reduced

cholesterol delivery to the liver and up-regulation of LDLR,

whereby LDL clearance is increased (39,75). ApoE4, while binding

to receptors equally well as apoE3, seems to be metabolized more

rapidly, leading to cholesterol accumulation in hepatic cells

and down-regulation of LDLR (39,75). In addition, subjects with

the apoE4 isoform absorb cholesterol more efficiently than

carriers of the other two isoforms (75). Carriers of the E4

allele have also been shown to be more responsive to dietary

modifications (75,76).
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In addition to the apoE gene, polymorphisms in several other

genes have been associated with variations in lipid and

lipoprotein levels. To date, such associations have been

reported from genetic variants in the LDLR gene (74,78,79), the

LRP-1 gene (80), the VLDL receptor gene (79), the scavenger

receptor BI gene (81), genes in the apoAI-CIII-AIV cluster

(39,76,82), the apoCI gene (83), the LPL gene (79,84-86), the HL

gene (87), the CETP gene (88,89), the MTP gene (90), the fatty

acid binding protein-2 gene (91,92), the paraoxonase gene

(91,93-95), and the haptoglobin gene (96). The magnitude of the

effect of each of these polymorphisms on plasma lipid levels is

probably small for the individual. Since the sequences causing

these polymorphisms are common, most individuals are likely to

carry several such lipid-affecting genetic variants, which, when

combined, may lead to major changes in lipid levels. Similarly,

if common enough, they can also have an impact on serum lipid

levels at the population level as well.

Besides gene polymorphisms affecting lipid and lipoprotein

levels in the population, occasionally a single mutation is

capable of producing an abnormal lipoprotein phenotype

genetically transmitted as a familial dyslipoprotei nemia. The

underlying genetic change of some forms of familial dyslipo-

protei nemias is known (97). Among these are mutations in the

LDLR gene leading to the production of missing or defective LDLR

and causing FH (44), and mutations in the apoB gene producing a

LDLR-binding defective apoB-100, termed familial defective apoB-

100 (FDB) (15-17). Hypobetalipoproteinemia and abetalipo-

proteinemia have been linked to mutations in the apoB and MTP

gene, respectively (98,99). On the other hand, the exact

underlying genetic defect of some other common syndromes such as

familial hypertriglyceridemia or familial combined hyper-

lipidemia is still unknown. Of the possible candidate genes, the

apoB, apoCIII and LPL genes have been excluded as causative

factors for familial hyper-triglyceridemia (100), and the LPL,

HL, hormone-sensitive lipase and several other candidate genes

as causative for familial combined hyperlipidemia (101,102).
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Recently, linkage of familial combined hyperlipidemia to two

novel loci on chromosomes 1 and 11 has been reported (102,103).

2.2. Gen etic approaches to study heritability of plasma lipid

traits and hyperlipidemias

The classical approach to estimate the relative contribution of

genetic and environmental factors for a particular trait has

been to use biometrical methods c omparing individuals who are

likely to share genes and environment to different extents, such

as identical and non-identical twins, sibling pairs, and parents

and children. These methods have demonstrated a significant

impact of genetic variation in determining the plasma levels of

total, LDL, and HDL cholesterol, apoB and apoAI, with reported

heritabilities in the range of 0.4-0.6 (6,7). For Tg, reported

estimates of heritability are more variable, ranging from 0.2 to

0.8 (104,105), and for Lp(a), higher, over 0.9 (6,106). Family

studies and complex segregation analyses have found evidence for

a major gene determining levels of total, LDL and HDL

cholesterol, apoB and apoAI, with both environmental factors and

genes of small or intermediate effect making a contribution (6).

After establishing evidence for the existence of a major gene

affecting lipid metabolism, the next problem is to identify this

gene. To accomplish this, two approaches can be used (107). In

the candidate gene approach, an association between lipid and

lipoprotein levels and a genetic marker of a known gene whose

product is believed to be important in lipid metabolism is

looked for. In the random search strategy, novel genes involved

in lipid metabolism are searched for by screening the whole

human genome with hundreds or more of random markers distributed

across the genome and associating them with lipid parameters.

While the majority of studies of genetic determinants of lipid

metabolism published so far have been based on the study of

candidate genes, recent developments in molecular genetics and

automatization of genotyping have made the random search

approach more feasible.
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Depending on the material studied, differing strategies in

searching for genes involved in lipid metabolism can be adapted

(107,108). Of these strategies, classical linkage analysis is

one of the most powerful methods to find the chromosomal

localization and to identify major disease causing genes. It is

based on calculation of the genetic distance between a genetic

marker and the supposed disease locus in families where the

inheritance of these two loci can be followed. If the loci

cosegregate more often than expected by chance, they are said to

be linked; the more tightly the loci are linked, the more close

they are in the genome (108). Linkage analysis and its

modifications such as the affected-pedigree-member and the sib-

pair analysis have been used to identify disease loci in

dyslipidemias. However, besides the need for informative

families of sufficiently large size, the need to know the mode

of inheritance of the disease or trait in question, and the fact

that low penetrance of the trait, the multiple loci involved,

and phenocopies (i.e. the same phenotype produced by different

loci) weaken the strength of the analysis, the use of linkage

analysis in lip oprotein genetics is further hampered by

difficulties in estimating the cutoff levels for normal and

abnormal lipid and lipoprotein concentrations (107).

Population association studies take advantage of the same

principle of genetic closeness of a candidate locus and a

supposed disease locus leading to linkage disequilibrium between

these two loci. If a genetic marker and a disease or trait occur

in the same individual more often than expected by chance, they

are said to be associated (108). Analysis of the association of

a genetic marker with a specific trait in populations has been

the most widely used approach to study the effects of candidate

genes on lipoprotein traits (6,107). In contrast to linkage

analysis, knowledge of the mode of inheritance is not needed in

association studies, neither do the latter suffer from

incomplete penetrance, and families are not necessary for the

study. However, large samples are nee ded, and the populations

studied should be well stratified in terms of factors such as
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age, sex, and ethnic composition (6,12,107). This approach has

been most successful in genetically homogeneous populations

where the effects of variation in genes other than those being

studied are expected to be lower than in genetically more

heterogeneous groups (30). In the case of highly polymorphic

genes, such as the apoB gene, powerful association studies have

also been performed using combinations of polymorphic markers

lying in the same chr omosome, termed haplotypes, as markers

instead of single diallelic markers (12,107).

2.3. Apolipoprotein B: structure and function

In humans, apoB exists in two isoforms, apoB-100 and apoB-48,

both always attached to lipids. ApoB-48 is normally found in

fasting plasma in very low concentrations, in the range of only

a few cg/ml, whereas apoB-100 concentrations range normally from

60 to 120 mg/dl (9). More than 90% of apoB-100 is found in the

LDL fraction. Due to the large size of apoB, its extreme

hydrophobicity and thus poor solubility in aqueous buffers after

delipidation, its tendency to aggregate, and its sensitivity to

degradation, direct studies of apoB structure have been

difficult (109). Only after the cloning of the apoB gene and

uncovering of the nucleotide and amino acid sequence of the

protein have details of its structure and functional domains

been elucidated.

2.3.1. Structure of the apoB gene

The apoB gene is located on the short arm of chromosome 2

(110-112). The complementary DNA (cDNA) and part of intronic

nucleotide sequences, the deduced amino acid sequence as well as

molecular organization of the apoB gene are known (113-118). In

humans, the apoB gene is expressed mainly in liver hepatocytes

and intestinal epithelial cells (111); to a small extent,

expression of the human gene has been found also in the heart

(119), aortic endothelial cells (120), fibroblasts (121) as well

as kidney, colon and stomach (122). The apoB gene, with over 43
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kilobases (kb), is organized into 29 exons and 28 introns, shown

schematically in Figure 2. Two of the exons, exon 26 (7572 bp)

and exon 29 (1906 bp), are exceptionally large. The apoB cDNA is

composed of 14121 nucleotides, with 5´ and 3´ untranslated

regions of 128 and 304 bp, respectively (116). Outside the apoB

gene, two 5´ and one 3´ nuclear matrix attachment regions

ranging from J5.2 kb upstream of the gene to a few hundred bp 3´

to the gene have been identified (123). This 47.5 kb domain has

been suggested to represent a topologically sequestered

functional unit containing both the regulatory elements and

coding region of the gene (123). However, recent studies in

transgenic mice expressing the human apoB gene have shown that

while this 47.5 kb domain is sufficient for expression of the

apoB gene in the liver (124,125) as well as in the heart (126),

intestinal expression is dependent on an enhancer element

located outside this matrix attachment domain and situated

between 54 and 62 kb 5´ to the structural gene (127). In the 5´

part of the 47.5 kb domain, the apoB gene contains classical

promotor structures such as a TATA box and a CAAT box within 60

bp upstream from the transcriptional start site (113). In

addition, several other regulatory elements have been identified

extending from a negative regulatory element -2738 to -1802 bp

upstream from the transcription start site (128) through a

promoter region between nucleotides +1 to -898 (129) to the

first untranslated exon containing both positive and negative

regulatory elements (130), and enhancer elements located in the

second (131) and third (132) introns of the gene. The 3´ end of

the apoB gene also contains two sites possibly involved in gene

expression regulation: the first is localized in the 3´

untranslated region of the gene about 80 bases beyond the

translational stop codon in exon 29, and the second in the

middle of the AT-rich hypervariable region (133). The exon 29

site has been postulated to have a role in transcription

termination, whereas the site located inside the 3´ VNTR region

may provide an accessible region of DNA for the action of

topoisomerase II, an enzyme that alters the topological state of

DNA during transcription (133). Besides the identification of
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these regulatory regions and motifs and some of the nuclear

proteins binding to these regulatory elements (134-136), not

much is known about the mechanisms and factors regulating the

level of gene expression in apoB expressing tissues. In adult

humans, the apoB gene seems to be constitutively expressed, with

relatively constant steady state levels of messenger RNA (mRNA)

even under conditions in which the level of apoB production

changes significantly (9,137,138).

2.3.2. ApoB mRNA editing

ApoB-48 is produced by the same gene as apoB-100 through a

mechanism termed mRNA editing. In this process, the apoB mRNA is

posttranscriptionally deaminated at nucleotide 6666,

substituting a uracil for a normal cytosine, changing codon 2153

from CAA to UAA, and replacing the normal glutamine with a

termination codon (139-143). Thus, an apoB protein with 2152

amino acids and about 48% of the size of full length apoB is

produced. The mRNA editing process involves a specific RNA

binding cytidine deami nase (143-147), termed the apoB mRNA

editing enzyme catalytic complex-1 (APOBEC-1), and auxiliary

factors that complement APOBEC-1 in apoB mRNA editing in the so

called 'editosome' complex (143,146,148). The gene for human

APOBEC-1, located in chromosome 12, has been cloned (149-153).

In adult humans and rabbits, APOBEC-1 expression is restricted

almost exclusively to gastrointestinal epithelial cells, whereas

in the rat and mouse, the gene is more widely expressed (143).

The auxiliary protein factors required for apoB mRNA editing are

widely distributed in mammalian tissues, including many that do

not synthesize apoB (143,146-148,154). To date, one APOBEC-1

binding pro tein suggested to be involved in apoB mRNA editing

has been cloned (155), and some others have been partly

character ized (148,154). Under physiological conditions, apoB

mRNA editing is a very specific process leading to the

deamination of only cytidine 6666 of apoB mRNA. Several sequence

elements in apoB mRNA ne eded for efficient editing have been

ident ified (143,156,157). Computer modelling and ribonuclease
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probing of wild type and mutant apoB mRNA substrates suggest

that the secondary structure required for proper editing

involves a stem loop which contains the cytidine 6666 to be

edited within the loop (157). To date, it is not known whether

defective apoB mRNA editing in human intestine leads to a

specific disease or not. One polymorphism in the human APOBEC-1

gene has been described, but this polymorphisms seems to bd

functionally silent (152). Likewise, no genetic variant of the

apoB gene located close to the editing site and affecting

efficient editing has been identified so far.

2.3.3. Structure of the apo B protein

In the liver and intestine, the mRNA of apoB codes for a 4560 to

4565 amino acid and a 2176 to 2181 amino acid protein,

respectively. Before either of these peptides are translocated

to the endoplasmic reticulum, an amino-terminal 24 to 29 amino

acid signal peptide is cotranslationally cleaved from the

growing nascent peptide. Thus, a full-length mature apoB-100

protein comprised of 4536 amino acids and with a calculated

amino acid molecular weight of approximately than 550 kDaltons

(kDa), and a 2152 amino acid apoB-48 with a molecular weight of

264 kDA are produced (115,117,158,159). The sequence of the

apoB-100 polypeptide chain is unique, although homology with

other apolipoproteins, the microsomal triglyceride transfer

protein (MTP) and vitellogenin has been found (160-164). In

addition, the apoB polypeptide sequence contains several long

internal repeats (160). In lipoproteins, apoB is glycosylated:

4-9% of its mass is carbohydrate linked to asparagine residues

(165). Of the 19 potential N-linked glycosylation sites of apoB,

at least 16 have been found to be glycosylated (166). The

distribution of the glycosylated asparagines is asymmetric,

clustering in the vicinity of the putative LDLR binding site,

but whether this clustering has any role in LDLR binding is not

known (167). During apoB synthesis, glucose trimming of

asparagine residues seems to be important for proper association
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of apoB with endoplasmic reticulum-resident proteins such as

calnexin and calretic ulin (168). ApoB contains 25 cysteine

residues, 16 of which are known to exist in disulfide form,

forming cys teine bridges in the molecule (169,170). The

distribution of the cysteines is uneven, 12 occurring within the

first 500 amino acids of the protein and all of them being

involved in cysteine bridge formation (170). The amino-terminal

cyst eine bridges are believed to stabilize the amino-terminal

end of apoB into a globular domain (170). Proper folding of this

domain is believed to be essential for lipoprotein assembly and

secretion (171,172). Furthermore, the disulfide bond between

cysteines 218 and 234 seems to have an important functional role

in lipoprotein assembly separate from a structural role in apoB

folding (173). A cysteine bridge between residues 3167 and 3297

takes part in the c onformational organization of the LDLR

binding site of apoB (158). In addition, a disulfide bond

between apoB cysteine 4326 and apo(a) cysteine 4057 is involved

in Lp(a) assembly (174-177).

The tertiary structure and conformation of apoB-100 in

lipoprotein particles has been explored by a number of methods.

Original analyses of the accessibility of apoB-100 to

proteolytic enzymes such as trypsin suggested apoB-100 to have

five broad domains (166). Based on combined data from trypsin

accessibility studies (166), studies with monoclonal antibodies

(mAb) against native and delipidated apoB-100 (178-180) and

electron microscopic studies with negatively stained lipid

extracted LDL (181), the following model has been put forward,

with the apoB -100 suggested to have a globular amino terminal

end extending away from the lipoprotein particle and a belt-like

structure with apoB sequences partly inside the particle and

partly on the surface of the particle (166,181). Further support

for this model has come from immunoelectron (182) and cryo-

electron microscopic studies (183,184). A recent cryo-electron

microscopic study (185) suggests that the first 89% of apoB

wraps like a ribbon once around the LDL particle, while the

carboxyl-terminal 11% constitutes a bow that crosses the ribbon
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and brings this part of apoB near the putative LDLR binding

site. A schematic illustration of this ribbon-and-bow model is

shown in Figure 3a. Based on the primary sequence of apoB,

circular dichroism spectra and infrared spectroscopy analyses,

LDL apoB is known to present both ?-helixes and A-structure

(158,186). Studies using computer-assisted methods searching for

amino acid sequences in the apoB protein capable of forming

amphipathic ?-helixes and A-sheets to identify lipid-associating

domains of apoB-100 have also suggested a pentapartite structure

(Figure 3b) for apoB in LDL: NH 2- ?1- A1- ?2- A2- ?3-COOH, with ?1

representing the globular amino -terminal domain (187,188). CM

apoB-48 would thus be comprised of only two domains, the

globular amino-terminal ?1 domain and a second domain of a

cluster of amphipathic A-sheets. When compared, the trypsin-

accessible and computer-identified domains and domains

accessible or not accessible to mAbs seem to be closely

correlated (189) and agree also with experimental thermodynamic

data indicating a five-domain, folding organization for apoB-100

(190).

2.3.4. ApoB functions and functional domains

2.3.4.1. Lipid binding domains

The main function of both isoforms of apoB relate to their

ability to bind lipids: in the absence of apoB-48 or apoB-100,

no CM or VLDL particles are formed and lipid absorption and

transport is severely hampered as can be seen in homozygous

abetalipoproteinemia and some forms of homozygous hypobeta-

lipoproteinemia (98,191). The ability of apoB to bind lipids

resides in the multiple hydrophobic domains present throughout

the length of the protein (114,158). Cell cultures expressing

truncated apoB proteins of varying size seem to confirm this:

the smaller the apoB protein, the smaller the quantity of core

lipids in the secreted lipoprotein (192). Both the amphipathic

?-helices 2 and 3 and the amphipathic A-sheet clusters have high

lipid binding potential, of which the ?-clusters are claimed to
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bind lipids reversibly and the A-clusters irreversibly (187).

Analyses of the effects of progressive lipidation of apoB-100 on

its immunoreactivity suggest that the A-domains represent

inflexible regions of apoB structure that could act as a

backbone during lipoprotein assembly, whereas the amphipathic ?-

helical domains would represent flexible lipid-binding regions

that allow the particles to accommodate varying amounts of lipid

during lipoprotein assembly and intravascular metabolism (189).

The wide dispersion of lipid-binding sequences has been assumed

to explain the fact that apoB is never exchanged between

lipoprotein particles, in contrast to other apolipoproteins,

which have only one or two putative lipid binding domains and

are readily exchangable (9,10). ApoB-48 has been suggested to

contain only one lipid-binding domain, a cluster of A-sheets

(187). A recent study with cells expressing recombinant

truncated human apoB-48 showed that these A-strands are critical

determinants of lipoprotein assembly, with very short

hydrophobic sequences from 152 to 237 amino acids mediating the

recruitment of large quantities of Tg into the lipoprotein

particle (193).

2.3.4.2. Receptor binding domains

In LDL particles, apoB-100 functions as a ligand for the LDLR

(44). Much interest has been focussed on the putative receptor

binding region of apoB. Several kinds of observations point

towards the car boxyl-terminal portion of the apoB molecule as

the receptor binding region. Among these are studies with

carboxyl-terminally truncated natural apoB variants (194),

studies with apoB mutations causing defective binding of LDL

with LDLR (14-16), studies using mAbs with epitopes in the

carboxyl-terminal region of apoB blocking LDLR binding (179),

apoB sequ ence analyses identifying positively charged regions

assumed to interact with the negatively charged regions in the

ligand-binding domain of the LDLR (158), indentification of

sequence homology with the receptor binding region of the other

LDLR ligand, apoE (158), and chemical modifica tion of the
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positively charged amino acid residues ar ginine and lysine of

apoB leading to abolishment of LDLR binding (195,196). The LDLR

binding domain of apoB has been suggested to lie somewhere

between two regions enriched with arginine and lysine residues,

amino acids 3147-3157 (Site A) and 3359-3367 (Site B), in a

region containing a disulfide bond between cysteines 3167 and

3297 bringing the two short amino acid sequences close to each

other (158). However, studies with mAbs suggest that even a

larger part of the protein, spanning amino acids 2285 and 4081

(179) or 2935 and 4189 (180) could be involved. Recent

observations with transgenic mice expressing mutant forms of

human apoB suggest that Site B is critical for LDLR binding and

forms the actual binding site (197). In favor of this

hypothesis, this region is evolutionally highly conserved (198),

binds heparin (199), is ext remely similar to the site on apoE

that binds to the LDLR (158) and seems also in vivo to be needed

for LDLR binding since natural apoB truncations lacking this

region cannot bind to the LDLR (194,200) whereas apoB:s

truncated distally to this site show receptor binding capacity

(201-203). Besides the actual LDLR binding site, the carboxyl-

terminal end of apoB seems also to influence the efficiency of

LDLR binding. Immunoelectron microscopic studies su ggest that

the carboxyl terminus of apoB beginning at amino acid residue

4050 constitutes a bow-like structure that stretches back into

one hemisphere of LDL and crosses the linear ribbon-like part of

apoB between residues 3000 and 3500, bringing the carboxyl-

terminal part of apoB-100 near to the actual LDLR binding site

(185). Since apoB truncations lacking the carboxyl-terminal

sequences show increased clearance and binding to LDLR compared

with full-length apoB-100 (202-204), the carboxyl-terminal

sequences have been suggested to act as a negative regulator of

LDLR binding. Studies with gene-targeted mice show that removal

of the carboxyl-terminal 20% of apoB increases the binding

activity of normally receptor-negative VLDL to the LDLR (197).

In addition, this 20% of apoB-100 seems also to be necessary in

order for the apoB Arg3500 SGln mutation to disrupt receptor

binding (197). Thus, it has been proposed that the carb oxyl-
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terminus of apoB-100 normally functions to inhibit the

interaction of VLDL apoB-100 with the LDLR, but after the

conversion of triglyceride-rich VLDL to smaller cholesterol-rich

LDL, an interaction with a region encompassing Arg 3500

modulates the conformation of the carboxyl tail allowing the

interaction of the actual receptor binding site with the LDLR.

Mutation in this modulator element such as the Arg3500 SGln

change would abolish this interaction, resulting in disrupted

LDLR binding of LDL (197).

ApoB-containing lipoproteins have been shown to bind to other

receptors of the LDLR superfamily (42,205-207) as well as to the

scavenger receptors (205,208), the lipolysis-stimulated receptor

(209), and the asialoglycoprotein receptor (210). However, data

on whether the LDLR binding region, other regions or any sites

of lipoprotein apoB have any direct function in these receptor-

ligand interactions is still limited. A mAb against the

receptor-binding region of apoB-100 (mAb 4G3) has been shown to

inhibit the interaction of LDL with and endo cytosis by one

member of the LDLR family, LRP-2 (211). Since a natural apoB

variant, B70.5, lacking the LDLR binding site B still binds to

LRP-2, the sites recognized by these two receptors seem to

differ (200). The amino terminus of apoB (amino acids 547-735)

has been proposed to have a specific function in the recognition

of malondialdehyde-modified LDLs by class A scavenger receptors

(212). Also, apoB-100 has been suggested to be one ligand for

the lipolysis-stimulated receptor (213). Finally, an amino-

terminal site of apoB with no heparin binding affinity located

at or near the LPL-binding domain has been suggested to mediate

binding of Tg-rich lipoproteins to a partly characterized

receptor in human monocytes and macrophages (214).

2.3.4.3. Domains involved in lipoprotein(a) assembly

Lipoprotein(a) is a lipoprotein particle similar to LDL in terms

of lipid content and composition containing apoB-100 covalently

linked by a disulfide bond to apo(a) (38,106). After the
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secretion of apo(a) from the liver, Lp(a) particles are

assembled on the hepatocyte cell surface or in the circulation

through processes involving both initial noncovalent and

covalent linkages between apoB-100 and apo(a) (215,216). The

noncovalent association is mediated by amino-terminal apoB

sequences between residues 680 and 781 (217), and apo(a) kringle

IV types 6-8 (218). For the formation of a stable Lp(a)

particle, a covalent disulfide bond between cysteines 4057 and

4326 of the apo(a) and apoB proteins, respectively, is required

(174-177). In addition to these sites, the carboxyl terminus of

apoB, especially amino acid residues 4331-4397, and possibly

also the LDLR binding region of apoB, although not absolutely

required, seem however to be necessary for efficient Lp(a)

assembly (219,220).

2.3.4.4. LPL binding domain

Lipoprotein lipase (LPL) has multiple roles in lipoprotein

metabolism (221-226). It is generally accepted to be the major

enzyme responsible for hydrolysis of lipoprotein Tg molecules at

the luminal surface or capillary endothelium (223,224). In

addition, LPL has been suggested to facilitate cellular uptake

of lipoprotein particles either by acting as a bridge anchoring

the lipoproteins to cells or matrix, or by acting directly as a

ligand for lipoprotein receptors (221,223,226). In v itro,

enhanced receptor binding and cellular uptake of a variety of

lipoproteins via LPL has been demonstrated in conjunction with

essentially all known members of the LDLR superfamily as well as

the scavenger receptors (226), but the biological relevance of

this effect in vivo has so far not been elucidated. Within

arteries, LPL bound to the subendothelial wall PGs has been

shown to increase binding of both native and oxidized LDL

(227- 229) as well as other lipoproteins (230,231) to the

arterial wall matrix, leading to entrapment of lipoproteins in

the subendothelial space which is believed to be one of the key

initiating events in the pathogenesis of atherosclerosis (232).
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For long, LPL has been believed to bind to endothelial cells via

electrostatic interactions with heparan sulphate PGs (233,234).

However, studies with cultured endothelial cells suggested that

LPL binding to the endothelium involves both PG and non-PG

binding sites (235). The non-PG binding site was identified as

a 116 kDa heparin-releasable protein (hrp-116) which was shown

to confer specificity to the binding of LPL to the endothelial

cells (235,236). The sequence of hrp-116 is identical with four

different regions in the amino terminus of apoB, and hrp-116 is

also recognized by mAbs against amino-terminal epitopes of apoB

(237). Amino-terminal fragments of apoB and mAbs against the

apoB amino terminus compete with LPL binding to endothelial

cells (237). ApoB is expressed and synthesized in endothelial

cells, and pulse-chase studies suggest initial production of

full-length apoB-100 with further degradation to produce the

116-kDa apoB fragment which is thereafter released from the

cells with heparin and is able to bind LPL (120). Cell-surface

expression studies of the amino-terminal apoB region (apoB-17,

amino acid residues 1-771) demonstrate that this domain of apoB

is not only able to mediate the association of LPL with the

cells but that the LPL-apoB interaction is also more stable than

the LPL-PG association (238). Based on these observations, it

has been suggested that apoB fragments such as the hrp-116,

expressed on the surface of endothelial cells, provide a high-

affinity binding site that stabilizes LPL activity and delays

its release into the bloodstream and eventual catabolism in the

liver (238).

LPL is known to associate with most lipoprotein classes (239),

but whether this binding is mediated through lipoprotein lipids

or apolipoproteins has not been fully clarified. Studies with

mAbs against apoB, thrombin digested fragments of apoB,

delipidated LDL, and a recombinant truncated amino-terminal

fragment of apoB in a solid phase assay free of lipoprotein

receptors and cell surface PGs suggest that LPL association with

LDL involves protein-protein interaction with the amino-terminal

end of apoB (240). The association of LDL with LPL in solution
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is also diminished by antibodies against the amino-terminal

region of apoB (241). These experimets, identifying the amino-

terminal globular region of apoB as a mediator for the LPL-

lipoprotein association, were carried out with LDL. However,

since LPL has been shown to be associ ated with all classes of

apoB-c ontaining lipoproteins in postheparin plasma (239,242),

since all apoB-containing lipoproteins are able to compete with

the VLDL-LPL-interaction (243) as well as inhibit LPL-induced

VLDL hydrolysis (244), and since binding of LPL with VLDL was

similar to that of LDL (240), it has been sug gested that the

amino terminus of apoB acts as a binding site for LPL in all

apoB-containing lipoprotein classes (241). This specific

interaction between LPL and lipoprotein apoB has been proposed

to play a role in facilitating Tg hydrolysis of circulating

triglyceride-rich apoB-containing lipoproteins (240). As to the

biological role for the well-documented LPL association with

LDL, which is not a physiologic substrate for LPL-catalyzed Tg

hydrolysis, another role for this specific protein-protein

interaction has been postulated, suggesting that LDL particles

could act as carriers of LPL molecules dissociated from the

endothelial surface and circulating in the bloodstream,

preventing LPL from readhering to the vessel wall and allowing

its clearance by the liver (241). On the other hand, an

intera ction of LDL with LPL in the vessel wall would lead to

accumulation of LDL in the subendothelial matrix (229). Both

hypotheses have to be confirmed by further stud ies. Also, the

exact LPL binding motif in the amino terminus of apoB needs to

be defined.

2.3.4.5. Hepatic lipase binding domain

Like LPL, hepatic lipase (HL) is a multifunctional protein

exhibiting both enzymatic and other functions in lipoprotein

metabolism (223,245,246). HL acts as an acylhydrolase and as a

phospholipase and is essential for LDL production and

conversions in the HDL fraction during lipoprotein metabolism.

HL may also mediate the unloading of cholesterol from HDL to the



33

liver and to steroidogenic tissues such as the ovaries and

adrenal glands (245). In addition, HL has been postulated to

promote apoB-containing lipoprotein, especially CM remnant

uptake by cells either by acting as a bridge between cell

surface PGs and the lipoprotein, or by acting as a direct ligand

for lipoprotein receptors, such as LRP-1 (245-248). Like LPL,

the HL-lipoprotein interaction has been suggested to involve

protein-protein interactions. While the interaction between CM

and VLDL remnants and HL might involve apoE, HL has also been

shown to associate with LDL (242). In vitro, HL enhances LDL

uptake via LDLR (249), and it can also bind to hrp-116 (250).

Thus, direct interaction of HL with apoB seems plausible and has

recently been demonstrated in ligand blot studies which show

that HL binds to apoB but not to apoE or apoAI (251). While the

exact site(s) in apoB mediating these interactions have not yet

been identified, the site of apoB interacting with HL and LPL

seems to differ: both carboxyl-terminal and amino-terminal

regions of apoB seem to be involved in the apoB-HL interaction,

which is futhermore not inhibited by LPL (251).

2.3.4.6. Heparin and proteoglycan binding domains

Proteoglycans (PG) are large molecules consisting of linear

heteropolysaccharide chains termed glycosaminoglycans (GAG)

covalently attached to a core protein through a short

nonpolymeric polysaccharide linker (252-254). PGs are found both

in intracellular granules, at cell surfaces and extracellularly,

with different types of PGs predominating in different sites.

ApoB-containing lipoproteins are known to interact with both

cell surface and matrix PGs (252). Association with cell surface

PGs, either directly or through a bridging action of LPL or HL,

has been suggested to facilitate receptor mediated clearance of

lipoproteins, but some types of heparan sulfate PGs may function

also directly as lipoprotein receptors (254). On the other hand,

matrix PGs have been suggested to be involved in the retention

of cholesterol-rich atherogenic lipoproteins within the intima

of the vessel wall (255). The lipoprotein-PG association of
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apoB-containing lipoproteins is believed to be mediated through

an interaction of apoE and apoB regions rich in positively

charged amino acids, such as arginine and lysine, with the

negatively charged polysaccharides in PGs (252,256,257). Seven

heparin-binding sites evenly distributed throughout the apoB

molecule have been identified (amino acids 5-99, 205-279, 875-

932, 2016-2151, 3134-3209, 3356-3489, and 3659-3719), with the

two sites exhibiting the highest affinity for heparin located in

the putative LDLR binding region of apoB (199). Still other

sites have been suggested to be involved in the binding of apoB

with chondroitin sulphate PGs (amino acids 2106-2121, 3145-3157,

3359-3377, and 4230-4254) (258). The relative role of these

putative sites, identified in delipidated or synthetic apoB-

fragments, in the apoB-PG interaction of lipid-containing

lipoproteins is not precisely known. Separate sites seem to be

used for binding with differing PGs (259). Differences in PG

binding between lipoprotein classes and subclasses suggest that

the lipid composition and conformation of binding sites may also

determine which sites are used (259-261). In a ddition,

modulating factors such as LPL and apoE, or apoB modifications

such as proteolysis or fusion of lipoproteins may affect the

apoB-PG interaction (262-264). Recently, studies with transgenic

mice expressing recombinant mutated human apoB identified apoB

amino acids 3359-3369 as the principal site for LDL apoB-PG

interaction (265). This same site has also been identified to be

the major LDLR binding site of apoB (197). While an artificial

mutation at this site disrupting the sequence of positive

charges was shown to abolish the affinity of LDL for the PGs

studied (265), no natural apoB mutations at this site

interfering with apoB-PG interactions have been characterized so

far. In addition to the carboxyl-terminal PG-binding region, the

amino-terminal globular region of apoB has also been shown to

mediate binding of both apoB-100 and apoB-48-containing

lipoproteins with PGs (266). To date, no metabolic defects

connected with abnormal apoB-PG interaction are known.

Theoretically, an altered apoB-PG interaction might modulate

both receptor-mediated metabolism and artery wall entrapment of
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several kinds of apoB-containing lipoproteins.

2.3.4.7. Microsomal triglyceride transfer protein binding domain

The assembly of apoB-containing lipoproteins requires the

association of lipid with the nascent apoB polypeptide while the

protein is still being translated. This first step of

lipi dation, initiated after the folding of the amino-terminal

disulfide bonded domain of apoB (172), involves a specific

microsomal triglyceride transfer protein (MTP) (99,267). ApoB

and MTP have been shown to associate physically through both

ionic and hydrophobic interactions (268,269). The amino terminal

18% of apoB seems to be essential for optimum MTP binding

capacity, with both increasing length of the apoB polypeptide

and lipidation decreasing this affinity (268). In particular,

lysine and arginine residues in the amino terminus of apoB

differing from those associated with PG of LDLR binding seem to

be critical for the binding of apoB with MTP (269). Recent

studies have delineated two major amino-terminal sites on apoB

for MTP binding: one located between amino acid residues 1-264,

and another, centered on residues 512-592 but including flanking

residues 430-511 and 640-711 (163,270,271). Several mutations of

the MTP gene leading to defective hepatic lipoprotein assembly

and secretion and a disease entity termed abetalipoproteinemia

have been described (99). To date, no apoB mutations in the MTP

binding domain leading to a comparable metabolic defect have

been characterized.

2.3.4.8. Other functions and functional domains of apoB

Besides its roles in lipoprotein metabolism, several other

functions for apoB still waiting for verification and detailed

information concerning their mechanisms and physiological

relevance have been proposed. Based on studies with genetically

engineered mice, a putative role in normal fetal development,

possibly relating to lipid nutrient transport to developing

embryos (272-275), as well as a role in spermatogenesis
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(274,276) has been suggested. ApoB has been proposed to have

domains binding benzo(a)pyrene (277), thyroxin (located at amino

acid residues 471-539, 1438-1481 and 3250-4536) (278), and

nucleolin, a nuclear protein expressed also at the surface of

cultured hepatic cells (279). Other pu tative apoB functions

include enzymatic activities such as phospholipase A1 and A2

activity (280) and protein tyrosine kinase activity (residues

3788-4006) (281). ApoB-100 seems to inhibit the procoagulant

action of tissue factor (amino acids 3147-3160) (282,283). In

addition, its carboxyl terminus has recently been shown to

mediate binding of the platelet-activating factor acetyl-

hydrolase to LDL particles (283).

2.4. Metabolism of apolipoprotein B

2.4.1. ApoB synthesis and secretion

In humans, apoB-containing lipoproteins are synthesized mainly

in liver hepatocytes and intestinal epithelial cells (143,284).

To a small extent, apoB is produced in other tissues as well,

some of which, such as the heart, have been shown to synthesize

and secrete lipoproteins (285), and some of which, such as

aortic endothelial cells, have not (120). The synth esis and

secretion of apoB-containing lipoproteins is a complex process

requiring the association of lipid with the apoB polypeptide in

an appropriate temporal sequence (41,286-288). ApoB synthesis

takes place in the rough endoplasmic reticulum (RER), where,

while still being translated, the nascent polypeptide enters the

RER lumen through a proteinaceous channel, the translocon,

directed by the amino terminal signal peptide sequence, which is

thereafter cleaved from the growing peptide chain (286,289).

Soon after translocation, the amino terminus of apoB is folded

into a gl obular domain through a process involving several ER

proteins, which act e ither as catalysts for the formation of

disulfide bonds in this region, or as chaperones protecting the

growing chain from degradation (288,290). Proper folding of the

amino-terminus of apoB, mediated partly through the formation of
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disulfide bonds in this domain, is required to initiate MTP-

dependent lipid transfer to nascent apoB in the RER (172).

Especially, the bond between cysteines 218 and 234 is of

importance for efficient lipoprotein assembly and secretion

(173). The MTP-binding site of apoB has been located within this

amino-terminal globular domain (163,270,271). During

translation, the translocation of apoB into the RER lumen has

been postulated to pause at certain points in a way not

affecting chain synthesis. This translocational pausing,

dictated by so called pause transfer sequences of apoB, has been

proposed to be important for lipid binding of apoB or to allow

the nascent apoB to interact with other macromolecules involved

in the regulation of lipoprotein synthesis and degradation

(286,291). While studies with cell-free systems have suggested

that translocational pausing does occur (286,291,292), it is not

known, whether this phenomenon can regulate apoB synthesis or

secretion in vivo (289). After translation and translocation,

apoB seems to associate with the inner leaflet of the ER

membrane, but whether this newly sy nthesized apoB assumes a

transmembrane orientation or is totally translocated into the ER

lumen is not clear (284,293). The transmembrane orientation is

supported by the fact that apoB associates with cytosolic

proteins (294), and that two regions of apoB (amino acids 690-

797 and 3221-3240) seem to be exposed to the cytosol in the

secretory pathway of HepG2 cells (293). This pattern of

transmembrane orientation could help in keeping the apoB protein

close to ER-resident proteins, functioning both as regulators of

lipidation or degradation of apoB (293). A fter initial apoB

protein synthesis, assembly of apoB-containing lipoproteins

occurs in a putative two-step process in which a primordial

lipoprotein particle is formed in the RER, and expansion of the

lipid core then occurs in a second step in the smooth

endoplasmic reticulum (SER), and, possibly, the Golgi apparatus

(41,99,143,284,295). The first lipidation step seems to be

required for the protection of apoB from degradation (41,288).

After formation of the primordial lipoprotein particle, more

lipids are added to the partilce either sequentially as it moves
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along the secretory pathway, or through a fusion of the

primordial particle with preformed triglyceride-rich lipid

particles in the RER/SER junction (41,287,295-297). MTP is

generally accepted to mediate the co -translational first

lipidation step, but its role in the s econd step is still a

matter of dispute (41,99,295). After the second lipidation step,

the particles are transported to the Golgi apparatus for further

modulation where they are glycosylated, phosphorylated and

aquire additional phospholipids, whereafter the mature

lipoprotein particles are rapidly secreted (284,298).

Regulation of the secretion of apoB-containing lipoproteins is

a co- and post-translational process. ApoB mRNA has a relatively

long half life, with levels that do not usually change

substantially in si tuations where apoB secretion is altered

(284,286,287). Instead, apoB secretion is regulated through

intracellular degradation of newly synthesized apoB (286). ApoB

degradation has been shown to occur at every step of lipoprotein

synthesis, ranging from co-translational degradation of

misfolded nascent apoB peptides to degradation of preformed

lipoprotein particles in the ER, Golgi or lysosomes (287,288).

Two major apoB degradation pathways have been characterized. In

the ubiquitin-proteasome pathway, misfolded or poorly lipidated

apoB is tagged by ubiquitin to be degraded by a cytosolic multi-

subunit protease complex termed the proteasome (286,299) in a

process involving other cytosolic chaperone-like proteins such

as the heat shock protein 70 (300). This proteasome-mediated

degradation has been shown to occur both co- and post-

traslationally (301,302). In this degradation pathway, the apoB

chain has to be translocated back to the cytosol from the lumen

of the ER, either through the translocon complex involved in

early apoB chain synthesis, or other not yet characterized

specialized retrotranslocons (288,302). Unassembled or aberrant

apoB retained in the ER are also degraded by proteases inside

the ER lumen. This degradation pathway seems to involve ER

resident molecular chaperones such as calnexin or calreticulin

and ER proteases such as ER 60 (284,286,290). In some species,
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the main site of apoB degradation is in the Golgi or post-Golgi

department; details of apoB degradation in these locations are

still limited (286,287).

The most important factor regulating apoB degradation is

intracellular lipid availability (41,284,287), which seems also

to be the main mediator of other factors affecting lipoprotein

secretion, such as hormones and diet. ApoB in lipoproteins with

inadequate lipids is incorrectly folded and destined to be

degraded (143,286). The major lipids secreted in the newly

formed lipoproteins are Tg, FC, CE, and Pl. Of these, Pl,

especially phosphatidylcholine, though required for the normal

secretion of apoB-containing lipoproteins, are usually found in

cells in quantities exceeding the amounts needed for lipoprotein

assembly and are therefore not likely to be main regulators of

lipoprotein degradation or secretion (284,303,304). However,

phospholipid composition may regulate apoB degradation: in

vitro, enrichment of microsomal membranes with phosphatidyl-

monomethylamine impairs apoB secretion, possibly by inhibiting

the restart of translocation after pausing, and directing apoB

to degradation instead of secretion (292). Availability of the

other main lipid components of apoB-containing lipoproteins, Tg

and cholesterol, plays a major role in the efficient assembly

and secretion of lipoproteins. The relative contribution of Tg

and cholesterol or CE in this regulation is still a matter of

discussion: studies favoring both factors have been published

(41,287,296,305,306). Besides phospholipids, the composition of

other lipids in the assembled lipoproteins seems to be of

importance as well: in vitro, n-3 fatty acids increase apoB

degradation (307), and oxidized fatty acids interfere with the

assembly and secretion of TGRLP particles (308).

Apart from the lipidation-assisted folding of apoB, lipoprotein

maturation involves other post-translational modifications such

as glycosylation and phosphorylaton. While glycosylation appears

not to be crucial in apoB secretion regulation, aberrant

glycosylation has been shown to disrupt the assembly and
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secretion of apoB-containing lipoproteins (286,309,310). To

date, no role for the post-translational phosphorylation of apoB

in lipoprotein secretion or degradation regulation is known

(286,309).

The lipoprotein particles secreted by the liver are

heterogeneous in terms of their lipid composition and size (36).

Mainly, the liver produces lipoproteins of the VLDL class;

these, in turn, can be subdivided into large, buoyant,

triglyceride-rich VLDL1 particles and to small, dense,

cholesterol-enriched VLDL2 particles (36,311,312). In addition,

part of the LDL particles in the circulation are postulated to

be secreted directly from the liver (36,311). The intracellular

mechanisms regulating the lipid composition and thus the

spectrum of lipoproteins secreted from the liver are largely

unknown. Factors affecting apoB degradation during lipoprotein

synthesis affect mainly the number of particles secreted.

However, there seem to be both common elements that regulate the

secretion of lipoproteins in general (such as estrogen,

regulating secretion of both VLDL1 and 2), and factors with

independent effects on the secretion of distinct lipoprotein

subclasses (such as insulin, inhibiting VLDL1 secretion

(36,312).

2.4.2. Intravascular metabolism of apoB-containing lipoproteins

After the secretion of CM particles into intestinal lymph, and

VLDL particles into the space of Disse in the liver, both

triglyceride-rich particles und ergo several modifications

affecting both their lipid and apolipoprotein composition before

their final removal from the circulation through lipoprotein

receptors (9,10,36,42,313). These modifications include

hydrolysis of some of their core Tg, removal of surface

components to HDL particles, changes in their apolipoprotein

content, and exchange of non-hydrolyzed Tg for CE derived from

HDL particles. These modifications lead to the formation of

smaller, CE-enriched remnant particles and to the production of
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IDL and LDL particles from VLDL precursors. Despite these

considerable changes in both the lipid and protein composition

of lipoproteins during their intravascular metabolism, the

primary structure of their apoB moiety remains unchanged

throughout the metabolic cascade. However, the tertiary

organization of apoB und ergoes modifications during these

processes. This is reflected in dif ferences in immunochemical

reactivity of mAbs against apoB epitopes between lipoprotein

classes (314) and can also be visualized as structural

differences between lipoprotein classes detected by cryo-electon

microscopy (315). Some of these conformational changes may have

effects on apoB functions such as affinity for lipoprotein

receptors (197) or PGs (259).

2.4.3. Receptor mediated and receptor-independent metabolism of

apoB-containing lipoproteins

LDLR-mediated lipoprotein uptake to hepatic and peripheral cells

is the major mechanism for lipoprotein catabolism (44,316). In

this process, apoB-containing particles are specifically bound

to the LDLR in a process facilitated by cell surface GAGs, and,

possibly by LPL and HL (42,317). Receptor-bound lipoproteins are

internalized by endocytosis and transported into lysosomes where

their lipids and apolipoproteins are degraded. The cholesterol

liberated from the lipoprotein particle regulates cell

cholesterol homeostasis by down-regulating LDLR expression,

diminishing cholesterol synthesis and increasing cholesterol

esterification (44). The ligand for the LDLR in LDL is apoB; in

other apoB-containing lipoproteins, apoE molecules, inhibited by

apoC:s, mediate the interaction with the re ceptor (42). Since

several mol ecules of apoE associate with a single lipoprotein

particle, apoE-containing lipoproteins are more effectively

bound and catabolized than LDL particles, which contain only one

apoB-100 molecule (44). The removal of LDL particles in plasma

is mediated mainly through hepatic LDLR, whereas peripheral

LDLR, other lipoprotein receptors and non-receptor-mediated

pathways play a less important role (10,44). The LDLR pathway is
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also considered to comprise the main route for hepatic

lipoprotein remnant catabolism (42,313).

In recent years, several other cellular receptors structurally

related to the LDLR have been characterized (206,207). They all

show high affinity for a polipoprotein E and an inhibitory

protein termed the receptor-associated protein (RAP) (318), but

their tissue distribution and preferred ligands vary

considerably, and their physiological contribution to

lipoprotein metabolism in humans has still to be determined. Of

these LDLR family receptors, the LDL receptor-related protein

(LRP-1) (319) may be involved in LDLR-independent lipoprotein

remnant catabolism in the liver (42,320), and the VLDL-receptor

(321,322) has been suggested to function in the cle arance of

large CM and VLDL remnants in peripheral tissues (43). The

physiological functions of other LDLR family receptors such as

the apoE receptor 2 (LR7/8B) (323), LR11 (324), and LRP-2

(megalin or glycoprotein 330) (325,326) are largely unknown.

LRP-2 mediates LDL endocytosis in vitro, but its mainly

extravascular expression seems to preclude its role in clearance

of LDL directly from the blood in vivo (211). Two other non-

LDLR-related receptor proteins believed to be involved in

lipoprotein metabolism have been characterized. Of these, the

lipolysis-stimulated receptor has been suggested to mediate the

cellular uptake of large TGRLP in the liver (209). Instead, the

role of the hepatic asialoglycoprotein receptor in lipoprotein

metabolism is still disputable (42,320,327).

Much of the chol esterol that accumulates in atherosclerotic

plaques is found within monocyte-macrophages. Uptake of

lipoproteins in these cells seems to occur through specialized

receptors, two types of which have been characterized. One class

of these receptors mediates apoE-independent uptake of TGRLP

such as CM into macrophages, leading to their conversion into

foam cells (214,328-330). Still another class of macrophage

receptors termed scavenger receptors and recognizing modified,

such as oxidized, lipoproteins may be even more important for
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foam cell formation (208,331). Besides macrophages, these

receptors are expressed in other cells, such as endothelial and

vascular smooth muscle cells. As opposed to the LDLR pathway,

uptake of lipoproteins through scavenger receptors is not

followed by down-regulation of receptor expression: in fact,

some types are upregulated by oxidized LDL (208). Besides

mediating selective cholesterol uptake from HDL particles to

liver and steroidogenic tissues and cholesterol removal from

peripheral cells to HDL, the scavenger receptor BI (SR-BI) binds

also native LDL and VLDL with high affinity in vitro (332). In

transgenic mice overexpressing SR-BI, LDL and apoB levels are

decreased, and in vitro studies show selective uptake of LDL CE

mediated by SR-BI (332). While the exact role of SR-BI in

lipoprotein metabolism in humans is not known, recently, genetic

variation in the human SR-BI gene was associated with both LDL

and HDL cholesterol levels (81). Apart from SR-BI, other

scavenger receptors seem to recognize only modified, mostly

ozidized apoB-containing lipoproteins. Therefore, they are not

likely to be main mediators of normal lipoprotein catabolism.

A minor part of lipoprotein particles have been suggested to be

catabolized through receptor-independent pathways. Among

possible mechanisms are direct internalization and eventual

degradation of LDL through cell-surface heparan sulfate PGs

belonging to the syndecan and perlecan family (254), and

selective CE uptake from LDL bound to hepatic or peripheral

cells mediated by proteins other than the SR-BI (333,334). In

addition, nonspecific low affinity mechanisms such as fluid

endocytosis and adsorptive endocytosis, possibly facilitated by

cell surface proteoglycans, may take part in lipoprotein uptake

(10,335,336). The physiological relevance of all these

mechanisms is still unknown.

2.4.4. Oxidative and other modifications of apoB-containing

lipoproteins and their role in atherogenesis

Besides modifications involved in their lipid-carrier function,
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apoB-containing lipoproteins undergo other changes in vivo, many

of which are commonly regarded to be involved in the patho-

genesis of atherosclerosis. Lipoprotein oxidation is among the

most important of these (337-341). All lipoproteins, especially

LDL, are susceptible to oxidation (337), and although oxidation

mainly involves lipoprotein lipids, apoB protein is also known

to be modified (340,341). Among apoB oxidative modifications are

lipid derivative adduct formation with apoB amino acids such as

lysine, and cross-link generation between lipids and the apoB

protein or within apoB, and, in addition, direct oxidation of

amino acids such as tryptophan, arginine and histidine (337,339,

341). The relative and temporal role of protein modification in

the oxidation process is still a matter of discussion. While

oxidative modification of apoB, leading to protein aggregation

and fragmentation, is usually considered to be a relatively late

phenomenon in lipoprotein oxidation, some apoB changes seem to

occur already at the earl iest stages of LDL oxidation (341).

Depending on the extent of oxidative modifications, a h etero-

geneous continuum of oxidized lipoproteins ranging from

minimally modified LDL (mm-LDL) to fully oxidized lipoproteins

is produced. A major difference between mm-LDL and fully

oxidized LDL lies in their receptor-mediated metabolism: the

former are recognized by the LDLR, whereas the latter are taken

up by scavenger receptors (339,341). So far, no apoB domains

especially sensitive to oxidative modification, or apoB genetic

variants associated with changes in lipoprotein oxidazibility

have been identified.

In addition to oxidation, lipoproteins are also known to be

glycated in vivo (342,343). Nonenzymatic pr otein glycation by

glucose is a physiological process resulting either from direct

interaction of glucose with serum proteins, or a modification of

proteins with low molecular weight, highly reactive advanced

glycation end products (AGE), formed during degradation of other

glycated proteins (344). In lipoproteins, AGE modification may

involve li pids as well. Sugar residues in glycated LDL are

readily auto-oxidized, generating superoxide radicals which
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stimulate further LDL lipid and protein oxidation (343). AGE-LDL

show reduced affinity for the LDLR, but are instead taken up by

vascular cells through both scavenger and specific AGE-

receptors, leading to several cellular injury responses

(344-347). ApoB lysine residues are known to be important in

both the initial glycation and AGE-modification of the protein

(344). While lysine residues within the putative apoB LDLR

binding site seem to be protected from glycation, residues in

close proximity to this site are modified, and may explain the

reduced affinity of AGE-LDL for the LDLR (344). In addition, a

domain of apoB between residues 1388 and 1453, detected by AGE-

specific antibodies seems to be specifically modified (348), and

still other sites, showing changes in their immunoreactivity

after LDL glycation have been identified (344). Elevated amounts

of circulating AGE-LDL, detected in diabetics, patients with

renal insufficiency, and in hyperlipidemia, may partly explain

the increased CAD risk in these subjects. So far, no apoB

genetic variants associated with altered glycation sensitivity

have been identified.

Sialic acid is a terminal residue of the carbohydrate chains of

glycoproteins, such as lipoproteins (349). The high surface

charge associated with sialic acid plays an important role in

the prevention of lipoprotein aggregation (350). Desialylation

of LDL particles leads to several changes in their biological

behaviour, many of which have been suggested to play a role in

the early steps of atherosclerosis (351). Like normal LDL,

desialylated LDL are recognized by the LDLR (352,353), but seem

also to be taken up through scavenger receptors (352), the

hepatic asialoglycoprotein receptor (350), a galactose-specific

macrophage lectin receptor (353), and through direct

phagocytosis of aggregated desialylated LDL particles (351).

Desialylated LDL are smaller, denser, more negatively charged,

more prone to PG binding and aggregation than normal LDL

particles, and more suspectible to oxidation (351). In vitro,

these changes are reflected in increased uptake of desialylated

LDL by fibroblast and smooth muscle cells (354) and in their
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accumulation in aortic intimal cells and macrophages (352,353).

In vivo, the catabolism of desialylated LDL has been shown to be

accelerated (355). LDL desialylation seems to occur in vivo: LDL

particles isolated from healthy subjects is partly desialylated,

and even more desialylated LDL particles are found in the plasma

of diabetics and CAD patients (351). However, the exact

mechanism of LDL desialylation is not known, and no specific

apoB sites have been shown to be involved in LDL desialylation

processes.

Increased levels of plasma homocysteine have been associated

with an increased risk for CAD (356,357). Homocysteine may

modify lipoproteins either by facilitating LDL oxidation

(356,357), or by forming adducts with apoB ly sine residues,

leading to particles with f oam-cell formation capacity (357).

Whether homocysteine-modified LDL are present in vivo is not

known, and thus, the mechanism of the homocysteine and CAD

association has not yet been uncovered (357). The ethanol

oxidation product acetaldehyde is known to be chemically highly

reactive, forming adducts with proteins in alcoholics.

Modification of LDL apoB by acetaldehyde reduces its binding

affinity to the LDLR (358), and in vivo, ace taldehyde

modification of VLDL apoB has been shown to decrease fractional

catabolic rates for both VLDL, IDL and LDL, and to reduce the

fraction of VLDL converted to LDL (359). Considerable

qualitative heterogeneity in these metabolic changes have

however been observed and thus, the physiological relevance of

lipoprotein modification by acetaldehyde remains to be

determined.

Atheroscler osis is a complex and continuous process. Starting

with modulations of vascular endothelial cell function, it

continues by accumulation of lipids in the subendothelial cell

matrix and recruitment of monocytes into the arterial wall with

their transformation to machrophages, and is later followed by

smooth muscle cell migration and proliferation, and the

formation of a fibrous plaque, the rupture of which eventually
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leads to thrombus formation (232,255,338,339,341,360,361).

Oxidatively or otherwise modified lipoproteins seem to play an

important role in atherogenesis. The initial endothelial changes

are believed to be mediated through actions of native or only

minimally modified lipoprotein particles (232,339,362), or their

remnants (363,364). After their transport and entrapment into

the subendothelial matrix, both normal and modified lipoproteins

undergo further oxidative (339,341) and enzymatic modifications

(365-368), and are thereafter taken up into arterial wall cells

through scavenger and other specific receptors (361), or through

non-receptor-dependent mechanisms (336). Uptake of modified

lipoproteins leads to cellular activa tion and further lipo-

protein trapping and modification (339,360). Atherosclerotic

lesions contain both lipids and components of apoB. To what

extent specificity of the s teps leading to full blown athero-

sclerosis is due to lipoprotein apoB is not known; some role in

the initial lipoprotein attachment to the endothelium (237), in

the subendothelial matrix trapping (232,265), and receptor-

mediated uptake of modi fied lipoproteins to macrophages (212)

seem to be dependent on their apoB moiety.

2.5. ApoB genetic variants and lipids

2.5.1. Polymorphisms

Among the first polymorphisms of apoB to be characterized were

the antigen group (Ag) polymorphisms detected by the use of

alloantibodies produced in multiply transfused patients (369).

These Ag polymorphisms were based on antigens a 1/d, c/g, h/i,

t/z, and x/y, which appeared to be products of five closely

linked allele pairs (370). Later on, DNA changes corresponding

to each of the five Ag epitopes were identified, and all were

found to be detectable at the DNA level by restriction

endonuc leases (371). Since the availability of the original

alloantibodies for these Ag epitopes is limited, these

polymorphisms are currently analyzed either at the DNA level as

RFLPs, or at the protein level with mAbs.
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Besides the Ag polymorphisms, several other apoB genetic

variants have been characterized and studied in populations.

Among these, the most important are the three-allele

insertion/deletion polymorphism situated in the signal peptide

of apoB (372), the XbaI polymorphism in exon 26 (113,373,374),

and a multiallelic locus at the 3´ end of the gene termed 3´VNTR

(375,376). In the following, the main characteristics and

effects of the major polymorphisms of apoB, in 5´ to 3´ order,

are discussed. The nucleotide and amino acid sequence and

numbering used in defining apoB variants is based on the

sequence published by Knott et al. (116). Therefore, some

polymorphisms will be presented as a change from the actually

rare allele to the common one. A summary of apoB polymorphisms

as well as hypercholesterolemia-producing and neutral apoB

mutations is shown in Table 4.

The apoB signal peptide insertion/deletion polymorphism was

first characterized as a two-allelic genetic variant leading to

the insertion or deletion of three codons coding for the signal

peptide, which thus contains either 27 or 24 amino acids, the

allele containing 27 amino acids designated as the insertion

(ins), and the allele with 24 amino acids the deletion (del)

allele (372). Later on, a third allele encoding a signal peptide

with 29 amino acids was detected: this third allele seems to be

present at a low frequency (0.03 to 0.08) only in Amerindians

(377,378). In Caucasians, the allele frecuency of the del allele

is approximately 0.30 (379-381); in non-Caucasoid populations,

lower frequencies have been reported (378,380,382-388). Several

studies have addressed the effects of the ins/del polymorphism

on lipid levels in both healthy, hyperlipidemic and CAD patient

populations. Some of these studies have shown an association of

the del allele with higher serum total or LDL cholesterol, Tg or

apoB levels (379-384,389-397), while in the Finns, an

association between the ins allele and higher Tg levels has been

detected (398), and yet some studies have found no effect of the

ins/del polymorphism on lipid levels (378,385-387,399-402).

Three studies have found an association between the del allele
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and the extent or presence of atherosclerosis or myocardial

infarction (380,391,403), two studies an association between CAD

and the ins allele (404,405), while in others, no allele

frequency differences between healthy or CAD populations could

be seen (392,396,406-408). Concerning lipid responses to dietary

change, ins/ins homoz ygotes have been shown to be more

resp onsive both to modifications in dietary fat and fibre

compared to del/del homozygotes (78,395). This response is

variable, being more consistent in del/del homozygotes (409).

The ins allele has also been associated with larger lipid

changes after a fat challenge (410-412). The mechanism by which

the ins/del polymorphism affects lipid levels is presently not

known with certanity. The signal peptide is cleaved away from

the growing apoB nascent polypeptide chain early in lipoprotein

synthesis and cannot be inv olved directly in their metabolism

after particle assembly and secretion. Studies using genetically

modified yeast cells, in which the apoB signal peptide region

was added to yeast invertase, have shown the del allele to be

defective as opposed to the ins allele with respect to invertase

secretion from the cell (413). Molecular modelling suggests that

the del allele is not hydrophobic enough to be effectively

translocated through the ER membrane (414). This could,

hypothetically, lead to reduced lipoprotein secretion in del/del

homozygotes, a hypothesis gaining some support from a recent

apoB turnover study in obese men showing higher hepatic VLDL

apoB secretion in ins/ins homozygotes compared with ins/del

heterozygotes or del/del homozygotes (415). This hypothetical

apoB secretion model contrasts with the documented associations

of the del allele with higher lipid levels in population

studies. One explanation for this apparent discrepancy could be

that these observed associations in population studies reflect

a linkage disequilibrium of the ins/del polymorphism with some

other polymorphic site of the apoB gene.

The Ag(c/g) polymorphism results from a C ST change at cDNA

nucleotide 421 leading to a Thr SIle change at amino acid residue

71 of apoB (416,417). It can be detected both with restriction
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endonucleases ApaLI (416) and Bsp12861 (416) and with mAbs MB19

(418,419), BIP45 (420) and D2E1 (421). The frequency of the

Ag(c) (apoB 412 Ile, ApaLI-, restriction site absent) allele in

Cauca sian populations is estimated to be approximately 0.30

(420,422-424). In other racial groups, cons iderably lower

frequencies have been reported (370,425). The Ag(c) allele has

been associated with higher serum apoB and LDL cholesterol

concentrations in Finnish children (426), the Ag(c/g) phenotype

with higher serum apoB concentrations (423) and, the Ag(c)

allele connected with the XbaI+ allele with higher serum total

and LDL cholesterol in Finnish healthy men (427). Several other

studies have not detected significant associations between the

Ag(c/g) polymorphism and lipid levels (424,428-430). In

Congolese blacks, the Ag(c) was associated with lower serum apoB

levels (425). Only two studies have addressed the possible

effects of the Ag(c/g) polymorphism on the risk of CAD, with no

signs of significant association (424,428).

The Ag(a 1/d) polymorphism, resulting from a T SC change at cDNA

nucleotide 1981 and producing a Ala SVal change in amino acid 591

of the mature apoB protein (431), can be detected with

restriction endonuclease AluI (431) and with mAb H11G3 (421).

The allele frequency of the apoB 591 Ala (Ag(d), AluI+,

restriction site present) allele in Caucasians is approximately

0.45 (370,432). In Chinese, its frequency is much lower, 0.16

(433), and in Africans, much higher, 0.93 (370). Data on lipid

effects of the Ag(a 1/d) variation are so far limited. The 591 Val

allele has been associated with larger postprandial TGRLP

responses after a fat load (410). In patients suffering from

ischemic stroke, serum apoB concentrations have been found to be

higher in the carriers of the 591 Ala allele (434). No studies

addressing the eff ects of this polymorphism on CAD risk have

been publ ished. According to data from both Finnish and other

studies, the signal peptide del and the Ag(d) (apoB 591 Ala)

allele seem to be closely associated (398,410).

The XbaI polymorphism, a T SC change at nucleotide 7673 with no
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change in the threonine residue 2488 of apoB (113,373,374), is

one of the most studied apoB polymorphisms. In Caucasian healthy

populations, the reported allele frequency of the XbaI+ allele

has ranged from 0.40 to 0.60 (373,435), and a similar frequency

has also been reported in healthy Finns (427,436). In non-

Caucasoid pop ulations, the frequency of the XbaI+ allele is

considerably lower, from 0.01 in the Chinese (433,437) to 0.29

in a population of South Asian descent (382). A summary of XbaI

population studies addressing its effects on serum cholesterol,

Tg or apoB levels or on the risk of CAD is shown in Table 5.

Many, but not all studies show an association of the XbaI+

allele with serum lipid and lipoprotein levels. These effects of

the XbaI site on lipid levels seem to be especially clear in the

Finnish population. In Asian populations, the XbaI+ allele (very

rare in these populations) is associated also with lower serum

HDL cholesterol or apoAI levels (382,384,406,438-440), contra-

dictory to a few studies in Caucasians, including the Finns,

which show an association of the XbaI+ allele with higher serum

HDL cholesterol or apoAI levels (441,442). In addition to

studies listed in Table 5, some studies have suggested an effect

of the XbaI polymorphism on postprandial lipid responses (443),

responses to dietary changes (395,442,444-446) and to lipid

lowering drugs (447), as well as on the intra-individual lipid

variability over time (448). As for CAD, several studies show an

association of the XbaI- allele with the presence of CAD. Being

a silent polymorphism, the XbaI change cannot be the causative

factor in these associations and effects. Rather, this site is

believed to be in linkage disequilibrium with another apoB

genetic variant influencing lipid levels or predisposing to CAD.

Regardless of the actual site of apoB mediating the association

detected with the XbaI polymorphism, it does not seem to act

through changes in the production of apoB- containing lipo-

proteins. In hepatoma-derived liver cell lines, the XbaI poly-

morphism has no detec table effect on cholesterol, Tg or apoB

secretion (449), and kinetic studies show similar LDL production

rates across different XbaI genotypes (450,451). On the other

hand, kinetic studies have shown that LDL particles from XbaI+/+
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homozygotes exhibit lower fractional clea rance rates compared

with XbaI-/- LDL particles (402,450-452). In addition, lower

LDLR-dependent degradation rates by mononuclear cells (453) and

fibroblasts (454) of the XbaI+/+ LDL particles have been

detected. These two lines of studies point towards an

association of the XbaI+ allele with a factor affecting LDL

removal from the circulation.

The Ag(x/y) polymorphism has been linked to two different DNA

polymorphisms of apoB: a C ST change at nucleotide 8344 (exon

26), leading to a Pro SLeu change in amino acid 2712 (455), and

detectable with restriction endonucleases MaeI (371) and BfaI

(456), and an A SG change at cDNA nucleotide 13141 (exon 29) with

an apoB Asn4311 SSer change (457), detectable with Eco57I (456).

The Ag(x) epitope represents the allele encoding both 2712 Leu

and 4311 Ser (458). The Ag(x/y) and the XbaI polymorphisms are

closely linked, with the Ag(x) allele associating with the XbaI-

allele (459,460). In Caucasians, including the Finns, Ag(x)

allele frequencies of 0.20 to 0.40 have been reported, whereas

the frequency of the Ag(x) allele in non-Caucasoid populations

is highly variable (422,458,461). In population studies, the

Ag(x) allele has been associated with lower serum total and LDL

cholesterol, apoB and Tg levels and with higher serum HDL

cholesterol and apo AI levels (458,462,463). Of these

associations, the most significant have been detected in the

Finnish population (462). So far, no association between the

Ag(x/y) polymorphism and CAD has been detected (404,463).

The Ag(h/i) polymorphism associates with a G SA change at

nucleotide 11041, and leads to an Arg SGln substitution at amino

acid 3611, detectable with MspI (464,465). With an allele

frequency of the 3611 Gln (MspI-, Ag(h)) allele in the range of

0.02-0.14 in Caucasian as well as non-Caucasian populations, it

is the least frequent of the apoB antigenic polymorphisms

(370,406,465,466). Most population studies reported to date show

no association between this polymorphism and lipid levels

(378,390,393,402,437,465-470) or the presence of CAD (406,407,
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437,471-474). Still, in a few studies, the rare Ag(h) allele has

been associated with higher serum lipid levels (79,475-477). As

for CAD, associations with both the rare MspI- (478) and the

common MspI+ allele (470) have been reported.

The Ag(t/z) polymorphism represents the apoB EcoRI RFLP, which

is the result of an A SG change at nucleotide 12669 (exon 29)

producing a Lys to Glu change at amino acid 4154 (113,479,480).

Reported allele frequencies of the 4154 Lys (Ag(z), EcoRI-)

allele have ranged between 0.10 to 0.20 in most Caucasian as

well as African populations (370,388,404,479,481,482). In Asian

and Amerindian populations, lower 4154 Lys allele frequencies

have been detected (378,384,385,440,466,483). In most population

studies, no effect of this polymorphism on serum lipid and

lipoprotein levels have been detected (78,79,378,382,385,390,

393,400,404,406,432,437,438,440,441,466-469,476,477,484-490).

Some studies show an association between the 4154 Lys allele and

elevated serum cholesterol, Tg or apoB levels (470,491-495) and

still others report an association of lower serum cholesterol

levels with the 4154 Lys allele (402,475,483,496). The Ag(t/z)

polymorphism seems not to have an effect on lipid responses to

changes in diet (444,445,497). Both studies showing an increased

risk for developing CAD in carriers of the 4154 Lys allele

(440,441,478,485,488,491), as well as a neutral role for the

Ag(t/z) polymorphism in the pathogenesis of CAD have been

published (382,400,406,407,435,470,472,476,484,498). In patients

with non-insulin-dependent diabetes mellitus (NIDDM), 4154 Glu

homozygosity associates with an increased risk for CAD (499).

There are also reports on the association of the 4154 Lys allele

with NIDDM (492), with high (500) or low BMI (494), and blood

pressure (501). Two studies have shown age-dependent selection

towards lower prevalence of the 4154 Lys allele in very old

compared with younger subjects (473,502). The biological

mechanisms for all these associations are far from being clear.

No relation between cholesterol, Tg and apoB secretion from

hepatoma derived liver cell lines and the EcoRI genotype has

been detected (449). Studies on the effects of the 4154 Lys
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allele on LDL fractional catabolic rate have shown both

decreased (451), increased (402,500) and invariant rates of

clea rance (450); the only LDL binding study reported to date

could not demonstrate an effect of this polymorphism on LDL

binding to fibroblasts (503).

The apoB 3´VNTR polymorphism (variable number of tandem repeats)

or 3´HVR (hypervariable region) consists of a multiallelic locus

with repetitive 11 to 16 bp AT-rich DNA sequences beginning 73

bp 3´ to the second polyadenylation signal (375,376). The 3´VNTR

was originally defined as a simple length polymorphism,

resulting from differing numbers (from 22 to 57) of repeated

sequences, and it is most often genotyped based on this size

variation by polymerase chain reaction-based methods in ordinary

agarose (504) or denaturing acrylamide electrophoresis gels

(505). Before the development of these methods, a crude estimate

of the different-sized alleles was achieved with restriction

endonucleases such as MspI, BamHI, and HindIII with or without

SspI (485,487). The majority of length variation resides in the

5´ end of the repeat array constituting from 4 to 15 copy

numbers of one specific 30 bp repeat unit containing the 15 bp

sequences termed x and y (376,506,507). In addition, the number

and type of other repeats which are considered derivatives of

the basic x and y repeats have been shown to vary between

different alleles (506-509). Usually, apoB 3´ VNTR alleles are

named according to the number of repeats. Depending on whether

an 11 bp sequence in the 3´ boundary of this region is included

as a repeat or not, two nomenclatures with mainly even (repeat

not included) (505) or odd numbers of repeats (504) have been

proposed. To date, 26 different-sized 3´VNTR alleles have been

characterized in humans (504,505,510,511). Despite being widely

used in population association studies, definition of the 3´VNTR

site on the basis of size alone is an oversimplification. The

repetitive core sequences seem to exhibit considerably more

genetic variation than has hitherto been known. According to

careful sequence analyses, alleles with an equal number and type

of repeats, formerly believed to be identical, still differ in
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sequence. Structural analysis of 18 size-characterized alleles

resulted in the detection of altogether 39 alleles with up to 6

alleles bearing the same number of repeats (509). As a

multiallelic locus with a high grade (from 0.70 to 0.90) of

heterozygosity (511), the apoB 3´VNTR is a good genetic marker

to be used, for example, in forensic analyses. In lipid

genetics, the high number of possible alleles leads to

difficulties in associating single alleles with lipid levels or

CAD. Therefore, for practical purposes, most association studies

have divided the 3´VNTR alleles into groups containing large or

small alleles, a definition largely based on the known bimodal

distribution of different-sized alleles in populations. In most

populations, alleles containing 35 and 37 repeats (odd number

nomenclature) form the larger, and alleles 47 and 49 the other

distribution peak (387,397,504,505,512-514). In the Koreans, an

unimodal distribution with a peak on allele 35 (515), and in

African populations, unimodal peaks on alleles 35 or 37 and with

a considerable number of both large and small alleles as well

the presence of unique alleles not detected in Caucasians

(510,511) have been reported. A small number of studies seem to

connect single apoB 3´VNTR alleles with serum lipid levels

(381,397,514,516-519), and one study has shown an association of

apoB 3´VNTR allele 35 with essential hypertension (520).

However, most studies have not detected significant lipid

associations (387,390,393,440,471,478,485,486,493,515,521,522).

While the definition of a large allele has varied in different

studies, large alleles have been associated with an increased

risk of CAD in many (440,471,478,485,522,523), but not all

studies (381,393,493,516,518).

In addition to these common apoB polymorphisms, several other

polymorphic sites in the apoB gene have been detected (Table 4).

Most of them have been reported shortly after the cloning of the

apoB gene and represent classical RFLPs. For some of these, the

exact site of DNA variation has later been identified. Also,

intronic polymorphisms have been detected. Data on the effects

of these polymorphisms on serum lipid levels or CAD risk are
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limited. The apoB 5´VNTR locus has been e xcluded from causing

familial hypertriglyceridemia (100), and it seems not to

asso ciate with serum lipid levels or CAD (524). Recently, an

association of the -516 T allele located in the promoter area of

the apoB gene with elevated LDL cholesterol levels and acute

myocardial in farction was reported (525). Based on in vitro

transfection experiments, the LDL-cholesterol elevating effect

of this variant was suggested to be due to an increased rate of

apoB transcription. One study has shown the apoB promoter region

-265 T allele to have an LDL cholesterol and apoB lowering

effect in healthy subjects (404). Neither the StyI polymorphism

in intron 2 or the HincII polymorphism in intron 4 have been

associated with serum cholesterol levels (475,515,526). The

intron 4 PvuII polymorphism, while linked with serum apoB levels

in one large kindred (517,527), seems not to be associated with

either lipid levels or CAD in population studies (441,484,515).

With regard to other apoB polymorphisms listed in table 4, no

reported data on their effects are available.

Any attempts to measure the contribution of apoB genetic

variants to hyperlipidemias and CAD have been confounded by the

variable, sometimes even opposing results in association studies

analyzing the effect of apoB polymorphisms on lipid levels.

Several reasons for this can be suggested (12). Sample sizes

have often been too small to adequately show associations

between a genetic variant and lipid levels, when the effect is

small. Genetic heterogeneity of the studied sample and the way

in which the statistical analyses are carried out may have also

affected the results of these association studies. According to

one hypothesis, another explanation for the discrepant results

could be that it is not the single apoB polymorphism per se, but

a combination of DNA and amino acid changes in the whole apoB

protein that is affecting lipid levels (528). Thus, attempts to

associate lipid levels with specific combinations of several

apoB polymorphic alleles, termed haplotypes, could be more

informative. Some studies have analyzed partial haplotypes for

a small number of apoB polymorphisms (441,475,477,488,498). More
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detailed haplotypes, however, are difficult to deduce

unambiguously in unrelated subjects. Therefore, while a few

studies using this approach have been r eported (515,528,529),

large scale studies of this kind are not likely to gain wide use

in apoB association analyses.

2.5.2. Mutations

2.5.2.1. ApoB mutations causing hyperlipidemia

The first apoB heritable defect shown to be associated with

hypercholesterolemia was an A SG transition at cDNA nucleotide

10708, leading to an Arg SGln change at apoB amino acid 3500 and

to the production of ligand-defective apoB-100, resulting in a

disease entity termed familial defective apolipoprotein B (FDB)

(13,14). Despite lying outside the putative apoB LDLR bin ding

site, the mutation has been sug gested to change the three-

dimensional structure of the binding area so that LDL particles

possessing mutated apoB have reduced binding affinity to the

receptor (530). Proof favoring this hypothesis has recently been

obtained from studies in transgenic mice expressing the human

FDB mutation (197). In vivo, LDL particles from FDB hetero-

zygotes exhibit plasma clearance rates (531,532) and LDLR

binding affinities (13) of less than 50% and 33% of normal,

respectively. The binding affinity of isolated 3500 Gln LDL

particles is much lower, approximately 9% of normal (533). This

leads to an accumulation of LDL particles carrying mutated apoB

in the circulation (533,534). The receptor-mediated metabolism

of VLDL and IDL particles seems to be normal, possibly because

these particles can be removed by the LDLR pathway through

interactions of the rece ptor with lipoprotein particle apoE

(532,535-537). This has been suggested to explain the fact that

the few 3500 Gln homozygotes detected so far do not seem to

suffer from a more severe disease than heterozygotes (538-540).

The phenotypic characteristics of FDB carriers range from a

disease indistinguishable from FH (18,541,542) through moderate

hyperlipidemia (17,543) to normal serum lipid levels (534,544-
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546). Considerable variability between lipid levels in FDB

carriers belonging to the same families has also been reported

(544-546). The mutation can, but is not always expressed during

childhood (18,547). An increased risk of CAD, possibly

reflecting live-long blood lipid levels in FDB carriers has been

reported (18,536,544,546,548). The Arg3500 SGln mutation has been

detected in several Caucasian populations and, depending on the

type of population studied, has been estimated to occur with a

frequency of 1/71-1/1322 (15,17,2 0,548-553), with the highest

prevalence reported recently in Germany. In Caucasians, most FDB

carriers have identical apoB haplotypes (526,544,554-557),

suggesting a common founder for the mutation. In the few FDB

carriers detected in other racial groups and one German patient,

haplotype analyses point towards recurrent new mutations

different from the Caucasian ancestor mutation (16,551,558,559).

Despite its frequency in other populations, the FDB mutation

seems to be absent from the Finns (32). Based on the distri-

bution of FDB carriers, the common haplotype of the mut ation,

and knowledge of early human migrations, the original FDB

mutation has been suggested to have occurred in a common

ancestor living in Europe about 6750 years ago (560).

Recently, two other apoB mutations have been associated with an

FDB-like clinical disease. The first to be detected was the apoB

Arg3531 SCys mutation (15); the second affected the same apoB

3500 codon but now with a substitu tion of Trp for Arg (16).

These mutations are more rare than the original FDB mutation.

Both have been shown to result in defective b inding of LDL to

the LDLR and leading to hypercholesterolemia although it has

been suggested that the clinical disease produced by these

mutations is less severe than that produced by the Arg3500 SGln

mutation (20,21,548). So far, the Arg3531 SCys mutation has been

detected in 26 families, some of which are of Celtic origin and

share a unique haplot ype, while others seem to have occurred

separately and are associated with four separate apoB haplotypes

(15,21,456,548,557,561). The Arg3500 STrp mutation has so far

been detected in one Scottish and two German families and twelve
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subjects of Asian desc ent; haplotype analyses in the latter

point toward a common ancestor whereas the Scottish and the two

German mutations each seem to have occurred independently

(16,20,562,563).

All three hypercholesterolemia-producing apoB mutations are

located in the vicinity of the putative LDLR binding site. Thus

it is not surprising, that their effects on lipid metabolism are

similar and seem to involve the ability of apoB to act as a

ligand for the LDLR. Recently, several reports on methods to

detect all these apoB mutations easily in population samples

have been published (16,20,557,564-566). With these methods, the

relative importance of the new apoB variants in producing

hypercholesterolemia at the population level can be assessed.

2.5.2.2. ApoB mutations causing hypobetalipoproteinemia

In contrast with the few hypercholesterolemia-producing apoB

variants, several unique mutations associated with low

cholesterol levels and a disease entity termed familial

hypobetalipoproteinemia (FHBL) have been characterized (98).

Most of them lead to the production of apoB variants truncated

at different points of the peptide. A summary of mutations

reported to date to be associated with FHBL, distributed

throughout the apoB gene, is shown in Table 6. Usually, the

truncated apoB protein is present in plasma in very small

amounts in varying lipoprotein subclasses. Two mechanisms seem

to lead to this. Firstly, kinetic studies suggest that the

production of the truncated apoB is diminished (202,567-569),

with the secretion rate of truncated apoB d irectly related to

the size of the protein (567). In vitro studies suggest that the

low production of truncated apoB protein results from an

increased rate of cytoplasmic degradation of the mutant apoB

mRNA (570). Secondly, the clearance of lipoproteins containing

the abnormal apoB may be accelerated (202-204,571). A mouse

model for FHBL with an apoB 83-like truncated apoB suggests that

both mechanisms account for the low plasma levels of the
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abnormal apoB species (572). At the same time, the plasma

concentrations of full-length apoB-100 in FHBL patients is also

often reduced to a level which is less than half of that

expected from normal apoB allele production. This has been

attributed to both diminished production (573,574) and increased

catabolism (574) of apoB-100 in FHBL heterozygotes. Clinically,

heterozygous FHBL carriers manifest as asymptomatic subjects

with low (less than 50% of normal) plasma total and LDL

cholesterol levels. Compound FHBL heterozygotes (201,575,576)

and homozygotes (203,577-581) show varying signs, ranging from

fat malabsorption, liver and neurological abnormalities to

complete absence of symptoms. With a gene frequency of only

0.0001 in the general populat ion, truncated apoB variants are

likely to explain only a minor part of persistent hypobeta-

lipoproteinemia, most cases being related to other causes, such

as the E3/E3 genotype (582). However, in normo- or hypo-

cholesterolemic healthy s ubjects, FHBL mutations are detected

more often, with reported mutation frequencies from 0.002 to

0.013 (98,583).

2.5.2.3. Neutral apoB mutations

Rare apoB variants not having any effect on lipid levels may be

termed neutral mutations. Many of these represent actual

polymorphisms. Silent mutations producing no amino acid change

are also likely to be neutral in terms of lipid effects

(21,561,562). In addition, for several of them, such as the

Phe1410 SLeu, Glu2539 SLys, Ala3094 SThr, His3292 SAsp, Lys3400 SThr,

and Arg3480 SPro mutations, data on lipid levels are either

totally lacking or otherwise too restricted to assess possible

associations with the DNA variant (565,584,585). Among the first

neutral apoB variants to be detected was the Arg4019 STrp

mutation ( apoB Hopkins), which did not associate with the

hyperlipidemic phenotype presented in the family in which the

mutation was detected (586). Another more studied neutral apoB

mutation is the Glu3405 SGln mutation, which, although showing

changes in LDLR binding studies has not been associated with
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hyperlipidemia in family or population studies (20,561,587,588).

The Val3894 SIle mutation, claimed to be associated with

hypocholesterolemia (585), has been described in a single family

including also one hypocholesterolemic non-carrier, pointing

towards a neutral effect of this mutation on serum cholesterol

levels. The Ser3252 SGly, Ala3371 SVal, Val3396 SMet and

Ser3455 SArg mutations seem either not to be associated with

hyperlipidemia or to influence the LDLR binding activity of apoB

(561,588).

2.6. Methods to detect DNA variations

2.6.1. Search for new variations

2.6.1.1. Southern blot hybridization

Restriction fragment length polymorphism (RFLP) analysis (589)

with either genomic DNA or cloned DNA from a liver cDNA library

(complementary DNA prod uced from liver mRNA) as the template,

and the Southern blot hybridization technique as the detection

method (590) was one of the earliest methods to detect apoB

variations. This method is based on digestion of the DNA sample

with a restriction endonuclease cu tting the DNA strand at or

near a specific enzyme recognition site, e lectrophoretic

separation of the digested fragments, and detection of target

sequences by hybridization with sequence-specific probes labeled

with radioisotope, fluorescent, or chemiluminescent tags (591).

If the sequence recognized or the site cut by the enzyme is

altered by a mutation, the abolishment or creation of a new

restriction site results in a change in the length of the

digested fr agments. Since most point mutations occur on sites

not harboring restriction sites, the Southern technique is now

rarely used in the search for new mutations. In direct assays of

gene structure, it remains a useful method for detecting large

deletions or gene rearrangements.
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2.6.1.2. Single-strand conformation polymorphism analysis

The polymerase chain reaction-based (592,593) single-strand

conforma tion polymorphism analysis (SSCP) method (594,595) is

one of the most widely used techniques to search for point

mutations, and it has been used with success in the search for

vari ants of the apoB gene as well (490,561,584,585). SSCP

analysis is based on the t endency of single-stranded DNA

molecules to adopt a specific three-dimensional conformation

that is uniquely dependent on their nucl eotide sequence

composition under non-denaturing conditions. A change in a

single base may affect this conformation, resulting in an

altered ele ctrophoretic migration pattern of the mutant DNA

strand in a non-denaturing polyacrylamide gel. SSCP has been

reported to be most sensitive when used to detect sequence

variation in PCR amplified DNA molecules 300 bp or less in size

(596). Due to constraints on the ability of small DNA fragments

to form stable secondary structures, there appears to be a lower

sizw limit (100 bp) as well (597). Within the optimal size range

of DNA fragments (200 bp), SSCP is sensitive enough to detect up

to 70-90% of single base substitutions (596). However, several

reports show succesful detection of mutations in much larger, up

to 700 bp, fragments, provided several differing electrophoresis

conditions such as temperature, buffer concentrations, gel

composition, running time and power are used (598-600). Besides

the size of the segment to be analyzed and electrophoretic

conditions used, the sensitivity of SSCP seems also to depend on

the sequence composition of the whole DNA fragment, whereas the

position and type of mutation seems to be of less importance

(597). In fact, base substitutions as close as 6 bp to the 3´

end of the amplification primer have been detected by SSCP

(601). As the conformation of RNA molecules is more stable than

that of single-stranded DNA, a modified SSCP procedure based of

the generation of a single-stranded RNA transcript has been

developed (602). In spite of its efficiency, leading to up to

95% detection of variations, this ssRNA-SSCP-method seems to be

too inconvenient for large scale SSCP screening. Most often,
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SSCP analyses are carried out using radioactive nucleotides in

the PCR and detecting the moving pattern of the fragment by

autoradiography. Alternatively, non-isotopic modifications such

as SSCP with silver or ethidium bromide staining (603,604), and

methods using fluorescence labeling and an automated DNA

sequencer (605,606) may be used. Among other modifications to

the classical SSCP protocol are restriction enzyme digestion of

large PCR fragments before SSCP (607,608), the use of multiplex

(609), allele-specific (610) or a symmetric (611) PCR products

for SSCP analysis, or dideoxy chain termination to localize the

approximate position of an SSCP variation in a sequence, a

method termed dideoxy fingerprinting (612). High throuhgput

modifications of SSCP for mutational analyses have also been

developed (596).

2.6.1.3. Denaturing gradient gel electrophoresis and temperature

gradient gel electrophoresis

Double-stranded DNA molecules are typically organized into high-

and low-melting domains. If a DNA molecule in solution is

subjected to an increasing temperature or concentration of

denaturant, such as urea or formamide, the low-temperature

melting domain will eventually become single-stranded. The

denatu ring condition at which a domain melts is specific and

sequence-dependent, so that a single base-pair substitution may

alter the point at which the transition to the melted state

occurs. Transition of double-stranded DNA molecules into partly

dissociated strands leads to a decrease of their electrophoretic

mobility. These properties of DNA form the basis of both the

denaturing gradient gel electrophoresis (DGGE) method (613,614)

and the temperature gradient gel electrophoresis (TGGE)

techniques (615,616). Since the behaviour of a DNA fragment in

a denaturing gradient gel can be predicted from the base-pair

sequence (617), the melting characteristics of the fragment can

be altered by addition of a GC-rich sequence termed a GC-clamp

to the fragment (618,619). The sensitivity of DGGE can also be

enhanced with the use of heteroduplex DNA molecules between
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wildtype and mutant sequence, generated either during PCR

cycling of by mixing of PCR products, for the analysis

(620,621). DGGE is a reliable and sensitive method even if

relatively large DNA fragments, up to several hundred bp (621)

are studied, and has the advantage that mostly, non-radioactive

means for the detection of difference in the moving pattern can

be used. Thus, DGGE is being more and more used in screening

studies, either alone or combined with SSCP. DGGE has been

adapted to apoB gene mutation screening as well (16,21,457,562,

565,622,623). TGGE has been used less often: only two studies on

the use of TGGE in apoB gene screening have been published

(20,624).

2.6.1.4. Heteroduplex analysis

In addition to their differentation under denaturing conditions,

heteroduplex DNA molecules containing internal mismatches show

altered migration when compared with corre ctly matching

homoduplexes also in nondenaturing polyacrylamide gels

(625-627). Reported sensitivities of this heteroduplex analysis

(HA) method lie in the same range as SSCP (627,628). Both

isotopic and non-isotopic detection methods can be used for HA,

and, in addition, both SSCP and HA can be performed

simultaneously (627,629). A HA-based mutation detection protocol

has been described and used in apoB screening (456,542,564), and

has been suggested to be equally sensitive but more simple than

DGGE in the detection of the apoB Arg3500 SGln mutation (623).

2.6.1.5. Other methods detecting DNA mismatches

Several mutation detection methods applying either chemical or

enzymatic modification of mismatched base pairs in heteroduplex

DNA strands have been developed. One of these is the chemical

cleavage of mismatch (CCM) method (630,631), which is based on

modification of mismathced bases by chemicals such as osmium

tetroxide or hydroxylamine, cleavage of the DNA at the modified

mismatch by piperidine, and electrophoretic detection of the
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cleavage products. CCM has the andvantage of a relatively low

size constraint in mutation scanning, being effective in

detecting mutations in PCR products up to 1.7 kb in length

(632). Three reports of apoB genetic screening with CCM have

been published (458,633,634), but in spite of its sensitivity,

CCM has not otherwise been used in large scale apoB mutation

screening studies. Among other techniques used in mismatch

detection are modification of mismatches with carbodiimide

(635,636), cleavage of mismatched bases between a wild-type RNA

probe and mutant DNA by RNaseA (637), and mismatch modification

or cleavage with bacterial mismatch repair proteins (638-640) or

bacteriophage resolvases (641,642). Neither of these latter

methods have been used in apoB mutation screening.

2.6.1.6. Direct sequencing

Compared with other mutation detection methods, sequence

analysis of DNA has the advantage of simultaneously det ecting

and characterizing the location and nature of the DNA change.

DNA sequencing protocols used in most laboratories apply the

Sanger dideoxy chain termination method (643) and direct

sequencing of PCR products, but cloned templates de rived from

genomic or a mplified DNA have also been used as sequencing

templates. Several procedures for direct sequencing of double-

stranded PCR amplification products have been described (644).

To overcome problems associated with strand annealing in double-

stranded DNA sequencing, methods to produce single-stranded

templates have been developed. The method used in this thesis is

the solid-phase sequencing technique (645,646). In this method,

one of the amplification primers is biotinylated, leading to the

generation of a double-stranded amplification product with one

strand biotinylated. Taking advantage of the high affinity

between biotin and streptavidin, the PCR product can then be

captured on an avidin-coated solid phase, after which the non-

biotinylated strand can be melted and washed away, leaving the

biotinylated single-strand template immobilized on the solid

phase to be used for sequencing. Other modifications of this
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principle use the non-biotinylated (647) or both strands

(bidirectional solid-phase sequencing) (648) as the sequencing

template. Single-stranded sequence templates can also be

generated by other methods such as the asymmetric PCR technique

(649), the thermal asymmetric PCR technique (650), and by

exonuclease digestion of the PCR-product (651). Originally,

direct sequencing procedures required much manual work and were

therefore considered too labor intensive for large scale

mutation screening. Recent developments in the use of automation

and new fluorescence detection technology has greatly

facilitated the use of direct sequencing in these kinds of

studies (652). A semi-automated DNA mutation screening procedure

to detect genetic variants in the vicinity of the apoB

Arg3500 SGln mutation has been presented (653).

2.6.2. Screening methods for known variants

2.6.2.1. Allele-specific oligonucleotide methods

Allele-specific oligonucleotides (ASO) are short nucleotide

probes complementary to a specific allelic sequence. When

hybridized with a DNA sample, they form stable duplexes only

with the allele con taining the complementary sequence with no

mismatches. Mutation detec tion techniques based on ASOs are

particularly useful when the DNA variant in question does not

change restriction endonuclease sites. One of the most widely

used is the ASO hybridization technique (654,655), in which the

region surrounding the target DNA sequence is cloned or

amplified with PCR, the samples applied to a solid support which

is then hybridized with an oligonucleotide probe. Alternatively,

the DNA template can be scanned for several possible sequence

variants by studying its hybridization to an array of

immobilized probes (656). This method has been widely used in

the identification of the apoB Arg3500 SGln mutation in both

population and family studies (14,15,17,32,402,534,544,549,

550,555,558,560,561,657-665), and it is still in use in some

research laboratories in the detection of other apoB variants
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(561,584). In addition to ASO hybridization, specific alleles

can also be distinguished through the generation of allele-

specific PCR products by using ASOs differing at their 3´ end as

primers that allow efficient amplification only if no mismatches

exist between the ASO primer and the DNA te mplate. In the

literature, this type of method has been termed as allele-

specific PCR (ASPCR) (666), amplifi cation refractory mutation

system (ARMS) (667), allele-specific amplification (ASA) (668),

or PCR amplification of specific alleles (PASA) (669). To

overcome problems associated with unspecific DNA amplification

in ASPCR, further modifications, such as the competitive oligo-

nucleotide priming (COP) and competitive blocker oligonucleotide

methods (670,671) have been developed. Some of these allele-

specific PCR methods have been adapted to mutation screening of

the apoB gene as well (672-676).

2.6.2.2. Restriction endonuclease recognition of mutant alleles

If a DNA variant changes the cutting or recognition site of a

restriction end onuclease, the presence of this specific

nucleotide change can be easily detected in PCR-amplified DNA

strands surrounding the enzyme cutting site by endonuclease

digestion and electrophoresis of the different-sized digestion

products in ordinary agarose or polyacrylamide gels (592). This

restriction fragment length polymorphism (RFLP) method is now

widely used in the genotyping for apoB RFLPs such as the XbaI

polymorphism (19,378,390,395,443,456,562,677,678), and the

Arg3500 STrp (548,566) and Arg3531 SCys (15) mutations. As a

modification of RFLP analysis, a method to artificially create

new restriction sites on PCR amplification products using

mutagenic PCR primers has been described (679-681), and has been

used to screen for the apoB Arg3500 SGln (557,682-688),

Arg3531 SCys (557), and Glu3405 SGln (20) mutations.

2.6.2.3. Solid-phase minisequencing

The solid-phase minisequencing technique (689,690) is capable of
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recognizing basically any kind of nucleotide transitions. Like

solid-phase sequencing, this method is based on the generation

of a biotinylated single-stranded DNA template on a solid phase.

Thereafter, a sequence-specific oligonucleotide primer, termed

the detection primer, ending just 3´ to the nucleotide of

interest, is allowed to hybridize to the immobilized DNA strand,

and the detection primer is elongated by one nucleotide using a

DNA polymerase. In order to identify specific alleles, separate

extension reactions are performed so that each reaction contains

only the complementary, either radioactively or non-radio-

actively labeled, nucleotide of the sequence of interest. The

amount of nucleotide incorporation in each reaction reflects the

presence of the complementary nucleotide at the 3´-end of the

detection primer. The solid-phase minisequencing technique is

easy to perform even when large numbers of samples are analyzed,

and it has been succesfully used for mutation detection in

several types of study settings, ranging from hereditary

diseases to the analysis of mutations in solid tumors (690).

Compared with ASO hybridization, minisequencing takes advantage

of the specificity of the DNA polymerase to differentiate

between the mutant and no rmal nucleotides, whereas ASO

hybridization relies on the specificity of base pairing between

the probe and template. Thus, less stringent reaction conditions

in the minisequencing method are needed. A few reports on the

use of this method in detecting apoB genetic variants have been

published (691), but so far this method has not gained wide use

in lipid gene research.

2.6.2.4. Other methods

In principle, methods used in mutation scanning such as SSCP,

DGGE, TGGE, HA, or CCM, can be used in the screening of DNA

samples for known mutations as well. However, since these are

not capable of identifying specific nucleotide changes,

identical DNA movement patterns from differing mutations can

produce f alse results, and they are also not particularly

suitable for simultaneous screening of large numbers of samples.
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In spite of this, DGGE analysis has been adapted to

simultaneously screen for the apoB Arg3480 SPro, Arg3500 SGln,

Arg3500 STrp and Arg3531 SCys mutations (16,565), TGGE analysis in

the detection of Arg3500 SGln, Arg3500 STrp and Arg3531 SCys

mutations (20), and HA analysis in the detection of the

Arg3500 SGln and Arg3531 SCys mutations (564). Among other, less

frequently used mutation identification methods are the

oligonucleotide ligation assay (OLA) (692) and the ligation

chain reaction (LCR) method (693, 694). Recently, an automated

OLA-based screening procedure for simultaneous screening of

several LDLR mutations and the 3500 Arg SGln mutation has been

described (695).
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3. AIMS OF THE PRESENT STUDY

The general purpose of this series of studies was to search for

new variants in the apoB gene possibly causing moderate to

severe hyperlipidemias in the Finnish population.

The specific aims were:

1) To set up an SSCP-based mutation screening method to cover

the whole coding area of the apoB gene and to look for and

characterize new apoB variants in hyperlipidemic patients.

2) To evaluate the effects of new polymorphisms detected by

screening on serum lipid and lipoprotein levels in

hyperlipidemic families and patients, in the normal population,

in diet and drug intervention studies, and in patients

undergoing coronary angiography.

3) To evaluate the effects of the signal peptide ins/del,

Thr71 SIle and Ala591 SVal polymorphisms on serum lipid and

lipoprotein meta bolism in normo- and hyperlipidemic study

populations.

4) To evaluate effects of an immunogenetic polymorphism of

apoB, detectable with mAb D7.2 and consisting of two apoB

genetic variants, Asn1887 SSer and His1896 SArg, on lipid and

lipoprotein levels during dietary intervention.
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4. SUBJECTS AND METHODS

4.1. Subjects

ApoB gene screening analyses, allele frequency estimations and

evalua tion of lipid effects of detected genetic variants were

carried out in several different study materials summarized in

Table 7.

4.1.1. Kuopio district hypercholesterolemic subjects and

families (Groups 1a and 1)

Screening of the coding region of the apoB gene (exons 2 to 29)

for new variants by SSCP was carried out in twenty-nine

hypercholesterolemic subjects. These subjects were selected from

a group of ninety-two probands with primary non-FH

hypercholesterolemia identified in Kuopio province in connection

with a population-based study on familial aggregation of

hypercholesterolemia originally based on the FINNMONICA 1987

population risk factor survey (696). None of the 92 probands was

a carrier of the apoB Arg3500 SGln mutation, but one subject was

a carrier of the FH-Helsinki and two were carriers of the FH-

Pohjois-Karjala mutation. These three subjects were included in

allele frequency estimations of new polymorphisms detected in

this study, but were excluded from final lipid and lipoprotein

calculations. The selection of probands to be screened with SSCP

was based on the lipid data of the families of the remaining 89

probands, leading to the selection of 29 subjects belonging to

families in which inherited hypercholesterolemia appeared most

likely. In addition to lipid data, DNA samples taken from family

members of the probands were used to confirm segregation of new

apoB variants. Besides SSCP screening, al lele frequencies and

lipid e ffects of the apoB Val703 SIle, Arg4243 SThr, and

Ala4454 SThr polymorphisms were analyzed in the whole group of 89

hypercholesterolemic non-FH subjects. In the following chapters,

the Kuopio district 29 probands will be referred to as Group 1a

and the whole group of 92 probands (which contains the subgroup
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1a) as Group 1. (I, II, IV, unpublished).

4.1.2. Non-FH hypercholesterolemic patients (Group 2)

ApoB gene exons 26 to 29 were screened for new variants in a

group of 39 patients with hyperlipidemia resembling classical

FH. In addition to the absence of major LDL-receptor gene

rear rangements and the FH-Helsinki, FH-North Karelia and apoB

Arg3500 SGln mutations in the whole group, defects in either the

coding or proximal promoter area of the LDL-receptor gene had

been excluded in 31 of these patients (31). Allele frequencies

of the apoB Asn1887 SSer and His1896 SArg polymorphisms were also

assessed in this group. (II, unpublished).

4.1.3. Hypertriglyceridemic patients (Group 3)

DNA samples from 76 severely hypertriglyceridemic patients,

originally studied for the effects of LPL variants 291 Asn SSer

and 477 Ser STer on lipid metabolism (697), were subjected to

SSCP-screening for DNA variants in apoB gene exons 2 to 16 and

21. Both persistently (38 patients) and sporadically (38

patients) hypertriglyceridemic patients were studied, and since

the only exclusion criterion used was intravenous alimentation

at the time of the study, this group contained subjects with

secondary causes of hypertriglyceridemia as well. 10 of the

patients were carriers of the LPL 291 Ser, and 14 carriers of

the LPL 447 Ter allele. (IV).

4.1.4. Diet study participants (Group 4)

The identification and characterization of the mAb D7.2

polymorphism, located in the 5´ end of apoB exon 26, was carried

out in a group of 102 apparently healthy subjects who had

partici pated in three dietary intervention studies in North

Karelia, and belonged to identical intervention groups (442).

Serum and DNA samples were also available from family members of

the two study participants who showed the most marked shifts in
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their mAb D7.2 displacement curves. (III). DNA samples from the

102 diet study participants were also used to analyze allele

frequencies and lipid effects of the apoB Val703 SIle (69

subjects), Arg4243 SThr and Ala4454 SThr polymorphisms (II,IV).

Previously published data from the same group concerning the

effects of the apoB Ag(c/g) and Ag(a 1/d) polymorphisms were used

for comparisons in study IV. The dietary interventions carried

out in this group consisted of a 2-week baseline period, a 6- or

12-week intervention period during wich the diet was modified to

provide a low-fat, low-cholesterol content as well as a ratio of

polyunsaturated to saturated fatty acids approximating 1, and a

5- to 6-week switchback period. During the baseline and

switchback periods, the participants were on their normal free-

choice diets.

4.1.5. Random population sample of healthy subjects (Group 5)

Analyses of allele frequencies and lipid effects of apoB

polymorphisms Val703 SIle, Arg4243 SThr and Ala4454 SThr were

carried out in a group of eighty-eight apparently healthy

subjects selected from a random sample of Finnish subjects born

in 1954 (698). (II, IV). Samples from a subgroup of twenty

subjects were analyzed to assess the allele frequency of the

silent polymorphism at the third base of apoB codon 2285 (I).

4.1.6. Drug intervention study participants (Group 6)

Effects of the apoB Arg4243 SThr and Ala4454 SThr polymorphisms on

serum lipid levels and their responses to antihyperlipidemic

medication were analyzed in 220 hypercholes terolemic patients

participating in two multicenter drug trials carried out at 19

centers in Southern and Eastern Finland (32,699). Both patients

with FH and other primary hypercholesterolemia were included.

The trials compared the effects of gemfibrozil (1200 mg/d) with

different daily doses of lovastatin (20 to 80 mg/d) in a double-

blind parallel study setting (32) and, as an extension, in an

open-label switch study setting with patients origi nally
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belonging to the gemfibrozil group in the parallel study (699).

(II).

4.1.7. Coronary angiography patients (Group 7)

Allele frequencies of the apoB Asn1887 SSer and His1896 SArg

polymorphisms and their effects on serum lipid and lipoprotein

levels were assessed in 327 Finnish patients undergoing coronary

angiography because of suspected ischaemic heart disease (700)

(unpublished). Coronary angiography verified CAD in 205 of these

patients, and 122 were free of CAD. In addition, effects of the

earlier known apoB immunogenetic variants, Ag(c/g) and Ag(a 1/d)

on lipid levels were assessed in a group of 160 patients

collected from the same population of subjects undergoing

coronary angiography (IV). Of these subjects, 76 had

angiographically normal coronary arteries, and 84 were shown to

have CAD.

4.1.8. Normal voluntary controls (Group 8)

Allele frequencies and lipid effects of the apoB Asn1887 SSer and

His1896 SArg polymorphisms were assessed in a group of 72

voluntary subjects, who had contacted community health centers

for various reasons not related to CAD and who showed no

symptoms of ischemic heart disease or any ECG changes indicative

of CAD (701) (unpublished).

4.1.9. Subjects used as SSCP homogeneity controls

To verify the homogeneity of SSCP analyses carried out at

different time points, two DNA samples from apparently healthy

Finnish subjects were used as standards in each SSCP-run. For

the apoB polymorphism geno- or phenotypings, samples from

subjects with known geno- or phenotypes were used as controls.

In the case of a new apoB polymorphism, only control samples

perviously genotyped by DNA sequencing were used. In SSCP

analyses flanking the region coding for the apoB Arg3500 SGln
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mutation, a DNA sample from a known FDB carrier (a gift from Dr

Stephen Humphries, University College London Medical School,

London, UK) was included.

4.2. Lipids, lipoproteins and apolipoproteins

All blood samples for lipid and lipoprotein analyses were drawn

after an overnight fast. Cholesterol and Tg determinations in

the whole plasma, serum, or lipoprotein fractions were carried

out by enzymatic methods using commercial kits (Boehringer

Mannheim, Germany) (702,703). LDL cholesterol concentrations

were calculated according to the Friedewald formula (704),

except for Groups 3, and 8, and severely hypertriglyceridemic (>

4.0 mmol/l) subjects in Groups 6 and 7, in which LDL cholesterol

concentrations were determined through isolation of the LDL

fraction by sequential ultracentrifugation (705). In Group 1

subjects with Tg > 4.0 mmol/l, the LDL fraction was isolated

using a combined preparative ultracentrif ugation and

precipitation method (705,706). HDL cholesterol concentrations

were determined after precipitation of the VLDL and LDL

fractions by dextran sulphate - MgCl 2 (706), except for Groups 3

and 8, where HDL concentrations were estimated after isolation

of the corresponding density fraction by sequential

ultracentrifugation, and Group 5, where precipitation with

heparin - MnCl 2 was used for HDL isolation (707). ApoB

concentrations were determined by an immunoturbidic method based

on the immunoprecipitation of apoB in liquid phase (Orion

Diagnostica, Espoo, Finland) (Groups 1, 5, 6, 7, and 8) (708,

709), or by the radial immunodiffusion method (Behringwerke,

Marburg, Germany) (Groups 3 and 4) (710).

4.3. DNA analyses

4.3.1. DNA extraction

Genomic DNA was extracted from periph eral blood leukocytes by

phenol and chloroform extraction and ethanol precipitation
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(711), or directly by a rapid cell lysis procedure (Group 3)

(712).

4.3.2. Polymerase chain reactions and enzyme digestions

ApoB exons were amplified either as a whole (exons 2 to 25, 27,

and 28), or in six (exon 26), or three (exon 29) overlapping

fragments using oligonucleotides designed according to published

sequences (118) and presented in Table 8. All oligonucleotides

were synthesized using standard phosphoramidite chemistry (713)

by an Applied Biosystems DNA synthesizer model 392 (Foster City,

CA, USA) at the Institute of Biotechnology, University of

Helsinki, Finland. All amplification reactions were conducted in

an automatic Perkin Elmer/Cetus Thermal Cycler (Norwalk, CT,

USA) in a total volume of 50 µl with 50 ng of genomic DNA (or 5

µl of DNA mixture in samples extracted by rapid cell lysis), 50

pmol of each oligonucleotide used as primer, 0.5 µl of

deoxycytidine 5´-[ ?- 32P]triphosphate (Amersham International,

Amersham, UK), 1.25 U of Taq DNA polymerase (Promega, Madison,

WI, USA) or Dynazyme DNA polymerase (Finnzymes, Espoo, Finland),

and nucleotides, amplification buffer and MgCl 2 as specified by

the manufacturer. After an initial denaturation step of 95 bC for

5 min, the PCR reaction was carried out using a cycle number,

and temperature and duration of denaturation, annealing and

elongation steps in accordance with the size of the fragment to

be amplified. Usually, 27 to 35 cycles of a denaturation step at

95bC for 30 to 60 s, an annealing step at 52-60 bC for 30 to 60 s,

and an elongation step at 72 bC for 45 s to 5 min were carried

out. Sometimes, two to three smaller exons were amplified in the

same multiplex PCR reaction in which case, in order to be able

to identify individual exons later in SSCP gels, control

reactions amplified with only one set of primers were included.

Prior to SSCP analysis, the 1190- to 1435-bp fragments of exon

26, and the 632- to 698-bp amplified fragments of exon 29 were

cut into smaller pieces with two (exon 26) or one (exon 29)

restriction enzymes (New England Biolabs, Beverly, ME, USA) in

reactions conducted in a volume of 30 µl at 37 bC for 3 hr with 5-
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10 µl of the PCR amplification product, 10-15 U of each enzyme,

and the buffer recommended by the manufacturer. To identify the

different-sized digestion products of exon 26 fragments in the

SSCP gels, one sample was subjected to both simultaneous

digestion with both enzymes and to di gestion with each enzyme

alone. Characteristics of the amplification products, the

enzymes used, their cutting sites, and sizes of digestion

products are listed in Table 9.

4.3.3. Single-strand conformation polymorphism analyses of apoB

exons 2 to 29

For the SSCP analysis, the amplification and digestion products

were diluted 1:5 with 10 mM EDTA and 0.1% SDS, and mixed 1:1

with 95% formamide, 0.05% bromphenol blue, and 0.05% xylene

cyanol. The samples were thereafter denatured at 80 bC for 4 to 6

min, and 2-5 µl of each sample was applied to a vertical

polyacrylamide gel running apparatus (Bio-Rad Laboratories,

Richmond, CA, USA) for electrophoresis. Depending on the size of

the fragments to be analyzed, SSCP gels for each analysis were

electrophoresed with differing concentrations of polyacrylamide

(5 or 12%, 1:60 bisacrylamide:acrylamide, Bio-Rad Laboratories),

glycerol (0, 5 or 10%), or Tris-borate/EDTA buffer (0.5 or 1 ×),

differing running time (4 to 24 hr), power (10 to 50 W), and

temperature (+8 or +20 bC). At least three, usually more differing

sets of electrophoresis conditions were used to achieve

satisfactory resolution of the amplification and digestion

products. Two or three samples with nondenatured DNA (size

control), two standard samples from apparently healthy subjects

(SSCP homogeneity control), as well as samples with individual

exon amplification products (multiplex PCR), or individual

endonuclease digestion products (exon 26 fragments) were

included in each analysis. After the run, gels were dried on

filter paper in a Bio-Rad vacuum gel dryer and exposed X-ray

film at -80 bC for 1-5 days with an intensifying screen.
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4.3.4. Solid-phase sequencing

DNA fragments showing mobility shifts in SSCP analysis were

sequenced according to the direct solid-phase sequencing method

(646). DNA segments to be sequenced were amplified with a set of

primers of which one was biotinylated at its 5´ end. The

biotinylation of the primers was carried out using dC-biotin

phosphoramidite directly on the DNA synthesizer (714).

Amplification products were purified by letting 25 µl of the PCR

product bind for 1 hr to avidin-coated polystyrene particles

(Baxter Healthcare Corporation, Mundelein, IL, USA), washing the

particles twice with TENT buffer (40 mM Tris-HCL, 50 mM NaCl, 1

mM EDTA, 0.01% Tween 20), and denaturing the bound DNA strands

with NaOH (50 mM, 5 min). After two final washes, the single-

stranded avidin-bound DNA strand was sequenced by the Sanger

dideoxy termination method (643) using T7 DNA polymerase

(Sequenase version 2.0, U nited States Biochemical, Cleveland,

OH, USA), [ ?- 35S]dATP (Amersham International), and 50 pmol of

the non-biotinylated PCR primer as the sequencing oligo-

nucleotide. Sequencing reactions were electrophoresed on a 6%

polyacrylamide/7 M urea gel, after which the gels were fixed,

dried, exposed to X-ray film, and manually analyzed. The oligo-

nucleotides used and characteristics of the PCR products for the

sequencing reactions to identify the SSCP shifts seen in apoB

gene exons 15, 18 and 27, in the 422-bp segment cut from the

second fragment of apoB exon 26 by BanI, the 501-bp fragment cut

from the same exon 26 fragment by EcoRI, the 400-bp segment in

the middle of the third fragment of exon 26, in the 5´ 246-bp

segment of frag ment 29b, and in the 5´ 403-bp segment of

fragment 29c are shown in Table 10.

4.3.5. Solid-phase minisequencing

DNA changes not easily detectable by use of the PCR-RFLP

analysis were genotyped with the primer guided nuclotide

incorporated assay (689), carried out on streptavidin coated

microtiter wells using the solid-phase minisequencing method
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(690). Biotinylated PCR products were produced in amplification

reactions conducted in a volume of 50 µl with 200 ng of genomic

DNA, 20 pmol of the biotinylated primer, 100 pmol of the non-

biotinylated primer, 1.25 U of Dynazyme DNA polymerase

(Finnzymes), and with nucleotides and amplification buffer as

recommended by the manufacturer. After PCR, a 10 µl aliquot of

the PCR mixture was captured on microtiter wells (Streptavidin

Covalent ScintiStrips TM; Wallac Oy, Turku, Finland) with 40 µl of

buffer (0.15 M NaCl, 20 mM NaHPO 4, 0.1% Tween 20 at pH 7.4) and

incubated for 1.5 h at 37 bC. The bound PCR products were

thereafer denatured with 100 µl 50 mM NaOH for 5 min at 20 bC, and

the wells washed 3-5 times at 20 bC with 350 µl of a buffer

containing 40 mM Tris-HCl, 1 mM EDTA, 50 mM NaCl, and 0.1% Tween

20 at pH 8.8. The minisequencing reaction was carried out by

addition of the detection step primer (20 pmol), the appropriate
3H dNTP (2 pmol) (Amersham International), and 0.5 U Dynazyme DNA

polymerase (Finnzymes) in 50 µl of a buffer containing 50mM KCl,

10 mM Tris-HCL, 0.1% Triton X-100, and 4 mM MgCl 2 to the micro-

titration plate wells, and allowing the extension reaction to

proceed for 10 min at 50 bC with gentle shaking. After this, the

wells were washed three times as described above, treated with

100 µl of 50 mM NaOH, and air-dried for 60 min at 20 bC. The

quantity of the the 3H-labeled dNTPs incorporated was determined

thereafter in a Wallac MicroBeta TM scintillation counter. The

oligonucleotides used for the PCR and minisequencing reactions

and the labeled nucleotides for the wild-type and mutant alleles

for the A5869 SG (Asn1887 SSer), A5896 SG (His1896 SArg), G12937 SC

(Arg4243 SThr), and G13569 SA (Ala4454 SThr) changes are shown in

Table 10.

4.3.6. PCR-RFLP analyses

Several of the newly detected DNA variants as well as the

earlier known polymorphisms of apoB represent re striction

fragment length changes detectable with a specific endonuclease,

enabling rapid genotyping through PCR and enzyme digestion,

followed by ethidium-bromide-stained agarose gel electro-
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phoresis. In this study, genotyping for these RFLPs was carried

out from amplified DNA fragments flanking the DNA variant to be

studied in reactions conducted for 3 hr at 37 bC in 30 µl with 10-

20 µl of the PCR mixture, 10-15 U of the enzyme in question, and

the buffers recommended by the manufacturer (New England

Biolabs). The presence or absence of a cutting site was

thereafter visualized in a ethidium bromide-stained 1-3% agarose

gel. Details of the PCR-RFLP analyses used in this study are

shown in Table 11.

4.3.7. Ins/del genotyping

Genotyping for the signal pep tide ins/del polymorphism of the

apoB gene was carried out using PCR followed by electrophoresis

in a polyacrylamide gel (372,715). The primers used are shown in

Table 11. The PCR reaction was conducted in a total volume of 50

µl, with primer, DNA, nucleotide, buffer and polymerase

concentrations as described earlier, except for the addition of

10% dimethylsulphoxide, and with 50 cycles of denaturation at

94bC for 1 min and simultaneous annealing and extension at 65 bC

for 1.5 min after the initial 6 min denaturation step at 94 bC

(372,715). The amplification products were thereafter electro-

phoresed in 8% polyacrylamide gels at 90 V for 5 hr and

visualized by ethidium bromide staining.

4.3.8. Apo B 3´VNTR genotyping

To confirm segregation of newly detected apoB genetic variants

in family members of carriers, apoB 3´VNTR genotyping was

performed using denaturing polyacrylamide gel electrophoresis

(716), with primers as shown in Table 11, and an amplification

mixture identical to that of the SSCP-PCR mixtures. After

initial denaturation, 26 cycles with denaturation at 94 bC for 1

min and simultaneous annealing and extension at 55 bC for 7 min

followed. The amplified samples were diluted 1:1 with a mixture

containing 95% formamide, 20 mM EDTA, 0.05% bromphenol blue and

0.05% xylene cyanol, incubated at 72 bC for 3 min and run on a
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denaturing polyacrylamide/7M urea gel at 75W and 48 bC for 3.5 hr,

after which the gels were dried on f ilter paper and

autoradiographed.

4.4. Antibody binding assays

4.4.1. Ag phenotyping

Phenotyping for the apoB antigen polymorphisms Ag c/g, a 1/d, x/y,

h/i and t/z in study Groups 4 and 7 (Study IV) was performed by

the passive hemagglutination inhibition technique (717,718).

This method is based on the inhibition of the anti-Ag serum

-induced hemagglutination of human erythrocytes coated with the

LDL to be studied by normal human sera. The human anti-Ag serum

was extracted from multiply transfused patients having developed

antibodies against epitopes of the foreign LDL particles

contained in the transfused blood preparations.

4.4.2. mAb D7.2 assays

A solid-phase enzyme-linked immunosorbent assay (419) was used

to detect the apoB mAb D7.2 polymorphism (Group 4, Study III).

This method detects the binding affinity of the LDL particles

studied to a specific mAb against LDL-apoB, and it has been used

also to detect the Ag(c/g) polymorphism (mAb 19) (419), and the

apoB Arg3500 SGln mutation (mAb 47) (32). Briefly, the wells of

microtiter plates were coated with 150 µl of standard-LDL (1

µg/ml), and extra binding sites were saturated by incubation

with 3% albumin solution for 4 hr at room temperature. The mAb

D7.2 and increasing amounts of sample LDL were loaded to each

LDL-coated well and allowed to incubate for 4 hr at room

temperature, after which the wells were washed three times with

1% BSA-PBS followed by the addition of a second antibody

conjugated to alkaline phosphatase. The amount of antibody bound

was thereafter detected by spectrophotometry. The antibody D7.2

used for these anal yses was a generous gift from Dr Gus

Schonfeld and Dr Elaine Krul (Lipid Research Center, Washington
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University, St. Louis, MO, USA.).

4.5. Statistical methods

Allele frequencies of apoB polymorphisms were estimated using

the gene counting method, and differences in the observed allele

frequencies between study populations were tested by m
2 analysis

and Fisher's exact test (II, III, IV). These tests were also

used to estimate associations between the apoB Asn1887 SSer and

His1896 SArg polymorphisms and the mAb D7.2 polymorphism (III).

Other statistical analyses were carried out with the BMDP

statistical software package (BMDP Statistical Software Inc.,

Los Angeles, CA). The mean values of serum lipid and lipoprotein

levels between different genotypes were compared by analysis of

variance (ANOVA), repeated after adjustments for BMI (III), or

BMI and age (II and IV). In case of non-normal distribution,

logarithmically transformed values were used for comparison. If

statistically sign ificant differences in sample variances

according to Levene's test were detected, Welch and Brown-

Forsythe statistics instead of ANOVA were used (IV).
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5. RESULTS

5.1. Screening for and characterization of apoB genetic variants

(I, II, IV, and unpublished)

The SSCP method was used to screen for new apoB variants in the

gene region encoding the apoB protein (exons 2 to 29),

consisting of 13911 nucleotides (Table 9). This was accomplished

through amplification of the small exons 2 to 25, 27 and 28 as

a whole, and the large exons 26 and 29 in six and three

overlapping fragments, respectiv ely. Since the amplified

fragments of exons 26 and 29 were too large for SSCP analysis,

they were cut into smaller segments by restriction endonucleases

prior to the SSCP gel run. With this strategy, SSCP analysis of

altogether 50 amplified and digested segments of the apoB gene

ranging from 80 to 579 bp in size was carried out. Due to the

large size variation of the analyzed segments, several different

electrophoretic conditions were used. All DNA samples showing a

shift in the SSCP moving pattern were subjected to a second SSCP

analysis before further characterization. In some cases,

especially when SSCP shifts in the largest segments were

detected, additional SSCP analyses, using another set of primers

flanking the suspected area, and another restriction

endonuclease were performed. The DNA change behind each shift

was identified by direct sequencing of the segment in question.

After identification, detection of new variants in families and

population sa mples was carried out either by SSCP, direct

sequencing, PCR-RFLP, or solid-phase minisequencing. Available

samples from family members of carriers of the new DNA changes

were used to confirm segregation in families as well as

cosegr egation with the apoB 3´VNTR. Identical DNA variants

detected in two or more unrelated SSCP-sc reened subjects were

suspected to represent apoB polymorphisms, in which case,

especially if family data suggested lipid effects, their

occurrence and allele frequencies were further assessed in

Finnish normo- and hyperlipidemic population samples.
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SSCP screening of the whole apoB gene coding area (exons 2 to

29) was carried out in a group of twenty-nine moderately

hypercholesterolemic probands selected from a sample of 92

hypercholesterolemic families identified in the Kuopio district

(Group 1a). In addition, apoB gene exons 26 to 29 were screened

in a group of thirty-nine patients with severe

hypercholesterolemia resembling FH, in whom both major Finnish

LDLR gene mutations and the apoB Arg3500 SGln mutation had been

excluded (Group 2). By choosing exons 26 to 29 for screening in

this material, we aimed at covering apoB regions possibly

contributing to the LDL-LDLR interactions, including sites

located apart from the actual LDLR binding site, such as the

carboxyl-terminal region of apoB (185,197). In severely

hypertriglyceridemic patients (Group 3), SSCP screening was

carried out in apoB gene exons 2 to 16 and 21, containing the

apoB domain interacting specifically with LPL (240).

Since apoB is known to be a highly polymorphic protein, several

SSCP moving pattern shifts were ant icipated. All previously

known common apoB genetic variants situated in the regions

included in our analyses were detected and could be easily

genotyped in the SSCP gels. The SSCP-based genotyping of these

apoB polymorphisms was verified through additional PCR-RFLP

analyses (ApaLI, AluI, XbaI, BfaI, MspI, and EcoRI). In

addition, twelve new apoB variants, located in exons 15, 18, 26,

27 and 29, were detected. In the following, these new apoB

variants will be presented according to their order in the 5´ to

3´ direction of the gene. All new apoB variants are also shown

in Table 4.

In the hypertriglyceridemic patients (Group 3), analysis of apoB

gene exon 15 revealed one subject with an SSCP-shift resulting

from a G SA change at cDNA nucleotide 2316, changing codon 703

from GTC to ATC, and generating a Val SIle change in the mature

apoB protein. Further studies in Kuopio district probands (Group

1) led to the identification of seven more carriers of this apoB

Val703 SIle change. Family studies confirmed the segregation of
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this variant in each family, with the cosegregation of the 703

Ile allele with the apoB 3´VNTR allele 45. Allele frequency

analyses in the Kuopio district hyperch olesterolemic patients

(Group 1, n=78), in the diet study participants (Group 4, n=69),

and in the random sample of healthy Finns (Group 5, n=83),

confirmed the polymorphic nature of the apoB Val703 SIle change

with frequencies of the 703 Ile allele of 0.045, 0.036 and 0.048

in these populations, respectively (differences not

significant). Compared with the o ther studied groups, the 703

Ile allele in the hypertriglyceridemic patients (Group 3) was

slightly but not significantly underrepresentated (one carrier

in 76 patients, allele frequency 0.007). During the course of

this study, this Val703 SIle variant has also been detected in a

family with hypobetalipoproteinemia, not however cosegregating

with the FHBL phenotype (719). (IV)

Three Kuopio district Group 1a probands showed a shift in the

SSCP analysis of apoB exon 18. In the fami lies of these

probands, the shift cos egregated with apoB 3´ VNTR allele 49.

The DNA change producing this shift results from a C ST change in

the third nucleotide of apoB codon 875 (AAC SAAT), with no change

in the amino acid sequence of apoB (apoB Asn875 SAsn), and with

no effect on the lipid phenotype in the studied families. No

further studies to determine its allele frequency in the Finnish

population were therefore carried out. During the course of this

study, this apoB polymorphism was also reported in a French

population of thirty-five apoB 3´VNTR allele 49 carriers, with

a rare allele frequency of 0.032 and a weak association with the

3´VNTR 49 allele (584). (Unpublished).

Exon 26 contains the region coding for all three FDB-producing

apoB mutations, the Arg3500 SGln (14), Arg3500 STrp (16), and

Arg3531 SCys (15) mutation. With this in mind, this region was

especially carefully analyzed in both the moderately as well as

the severely hypercholesterolemic patient groups (Groups 1a and

2). In spite of the readily identified mobility shift in the DNA

sample from a known 3500 Gln carrier, no similar or other
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mobility shifts in this region were detected in our SSCP

analyses. Instead, four other apoB genetic variants were

detected in exon 26. Of these, the A SG changes at cDNA

nucleotides 5869 and 5896, leading to Asn1887 SSer and

His1896 SArg changes, respectively, are more thoroughly

characterized in connection with their association with the

newly described mAb D7.2 polymorphism later in this section. The

detection of a mobility shift between nucleotides 6506 and 7007

(the 3´ end of fragment 26b cut with EcoRI) in one Group 2

severely hypercholesterolemic proband led to the identification

of a new apoB mutation, a deletion of nucleotides 6766-6768.

This ATG deletion removes the second and third bases of codon

2186 (Asp) and the first of 2187 (Glu), leading to a frameshift

which generates a GAG codon, produces a Glu residue at the site

of the deletion, and deletes the Asp 2186. The segregation of

this apoB del Asp 2186 variant in family members was confirmed,

yet with no clear effects on the lipid phenotype. The fourth DNA

variant detected in exon 26 was a T SC change in the third base

of codon 2285 (GAT SGAC) at cDNA nucleotide 7064, with no change

in the amino acid sequence of apoB (apoB Asp2285 SAsp). This

T7064 SC change is also detectable with MaeII (113). Genotyped

with SSCP, the apoB T7064 SC polymorphism was shown to be closely

linked with the XbaI RFLP, with the 7064 C allele occurring in

conjunction with the XbaI- allele. The allele frequency of the

C allele was similar to the XbaI- allele in both hyper-

cholesterolemic patients (Group 1a) and a subgroup of 20 healthy

subjects from Group 5 (0.500 and 0.525, respectively). (I,II).

Exon 27 analysis revealed an A SG change at cDNA nucleotide

11961, leading to a Thr3918 SAla (ACT SGCT) variation. This

variant was found in one hypercholesterolemic Group 2 patient.

Additional DNA was available from only the proband´s sister,

who, although severely hypercholesterolemic, had not inherited

this apoB mutation. Thus, this variant was considered unlikely

to be the cause of the FH-like hypercholesterolemia in this

family, and no further attempts to identify more carriers were

considered necessary. This apoB variant has also been documented
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in the French population 3´VNTR allele 49 carriers with an

allele frequency of the 3918 Ala allele of 0.006 and linkage

disequilibrium with the 3´VNTR 49 allele (584). No lipid data

from this study population have been reported. (II).

SSCP analysis of apoB exon 29 revealed three moving pattern

changes. A complex change in the 5´ end of fra gment 29b was

shown to be the result of three closely located DNA changes at

nucleotides 12922, 12935, and 12937. The nucleotide 12922 T SC

substitution produces a Val4238 SAla (GTA SGCA) change. It was

detected in two normocholesterolemic subjects (control samples),

of which no family data was available, and was thus not further

characterized. The second change, a T SC substitution at

nucleotide 12935, is silent at the protein level (Tyr4242 STyr,

TATSTAC), but produces a new RsaI cutting site at nucleotide

12933. The segregtion of this variant was followed in five

families (both hyper- and normocholesterolemic), with no clear

effects on the lipid phenotype, and no further attempts to

assess the allele frequency of the RsaI+ allele in other Finnish

populations were carried out. The third component of this

polymorphic area was a G SC change resulting in an Arg4243 SThr

variation. Its segregation was followed in five hyper-

cholesterolemic families (Group 1a), in which the 4243 Thr

allele was shown to cosegregate with 3´VNTR alleles 47 or 49,

but again, no clear effects on the lipid phenotype were

detected. Studies in other Finnish populations (Groups 1, 4, 5,

and 6) revealed an allele frequency of the 4243 Thr allele of

0.017, 0.034, 0.028 and 0.047, respectively, with no

statistically significant differences between these populations.

Ag haplotyping analyses in Group 4 revealed no association of

the 4243 Thr allele with any common Ag haplotype. (II).

SSCP analysis in four Kuopio district Group 1a patients showed

a mobility shift in the 5´ half of segment 29c. It was produced

by a GSA change at nucleotide 13569 resulting in an Ala4454 SThr

(GCCSACC) variation. Later on, its segregation was followed in

eight families, showing cosegregation of the 4454 Thr allele
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with 3´VNTR allele 35. In other Finnish population samples

(Groups 1, 4, 5 and 6), this polymorphism was detected with an

allele frequency of the 4454 Thr allele of 0.022, 0.020, 0.017

and 0.022, respectively (no differences between different

populations). Ag haplotyping and 3´VNTR analyses in Group 4

showed an association between the apoB Ag haplotype xa 1gti and,

as in families, 3´VNTR allele 35. This same apoB variant has

been detected in the French population with an allele frequency

of the 4454 Thr allele of 0.039 (584). In the French subjects,

the 4454 Thr allele seems not to associate with the apoB 3´VNTR

49 allele. (II).

Two hypercholesterolemic Group 2 patients showed a SSCP shift in

the 3´ half of fragment 29c. This shift resides in the non-

coding area of exon 29, and it cannot affect the amino acid

sequence of apoB. While DNA changes in non-coding regions of

exons can have some effect on gene expression and are in

principle of interest, this SSCP shift did not seem to associate

with lipid parameters in the families of these probands and was

thus not further characterized. (II).

5.2. Identification and characterization of the apoB D7.2 Ag

polymorphism (III)

In connection with analyses of lipid and lipoprotein responses

to changes in diet in the apparently healthy diet study group

(Group 4), LDL samples were tested for apoB variants with a

panel of mAbs. In 18 of the 102 subjects tested, a marked shift

to the right of displacement curves against mAb D7.2 was

detected. In two individuals, this change in binding affinity

was clearly stronger than in the remaining 16. Some of the

family members of these subjects showed s imilar shifts in mAb

D7.2 displacement curves, suggesting a genetic basis for the

changes in binding affinity. However, the observed changes in

families were too complex to be the result of a common biallelic

apoB genetic variant.
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The epitope of mAb D7.2 lies between apoB amino acids 1878 and

2148 (201). The availability of the SS CP-based mutation

detection system covering the DNA region coding for the mAb D7.2

epitope offered us a possibility to explore the DNA change

causing the changes observed in the Ag binding assays. SSCP

analysis of the 5´ end of fragment 26b showed a complex mobility

shift suggesting either a three-allelic polymo rphism or two

closely located mutations. DNA sequencing revealed two A SG

transitions at cDNA nu cleotides 5869 and 5896, leading to

Asn1887 SSer (AAT SAGT) and His1896 SArg (CAT SCGT) changes. The two

subjects expressing the most marked shifts in their mAb D7.2

displacement curves were shown to be doubly heterozygous for

both DNA variants. Family data collected from relatives of these

two subjects confirmed the segregation of the DNA variants as

well as a relatioship between the DNA variation and the binding

affinity of LDL apoB with mAb D7.2.

Genotyping of other participants of the diet study (Group 4) was

carried out by the PCR-RFLP technique. The A5896 SG change

removes a normal BsrDI cutting site at nucleotide 5863, whereas

the A5896 SG change produces a new RsaI cutting site at

nucleotide 5897. C ompared with binding assay data, subjects

homozygous for both common alleles of these polymorphisms

usually showed normal immunoreactivity with mAb D7.2. All

subjects heterozygous for the 1887 Ser allele showed reduced

binding irrespective of their apoB 1896 genotype. However, only

11 of the 18 subjects carrying the 1896 Arg allele and

homozygous for the 1887 Asn allele showed detectable shifts in

the displacement curves, suggesting a less severe effect of the

1896 His allele on the mAb D7.2 epitope. Since the displacement

curves from the compound heterozygotes were shifted even more to

the right than those from 1887 Ser heterozygotes alone, an

additive effect of both polymorphisms on the immunoreactivity of

LDL with mAb D7.2 is suggested. Genotyping data from Group 4

subjects showed no further association b etween the two

polymorphisms, and family data indicated that they were not

inherited in the same apoB allele. Ag phenotyping, 3´VNTR, and
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XbaI RFLP genotyping of the new polymorphisms showed association

of the 1896 Arg allele with the xa 1gti-3´VNTR 35-X- (XbaI-

allele) haplotype in the diet study participants, and with the

3´VNTR 35-X- allele in families. With regard to the 1887 Ser

allele, no common haplotype was shared by the carriers. In

families, the 1887 Ser allele cosegregated with 3´VNTR alleles

33 and 37.

Allele frequency estimations carried out in Group 4 and other

Finnish population samples (Groups 1a, 2, 7, 8) after either

PCR-RFLP or solid-phase minisequencing genotyping showed similar

frequencies for the rare alleles of both polymorphisms. For the

Asn1887 SSer polymorphism, an allele frequency of the Ser allele

in Groups 1a, 2, 4, 7 and 8 of 0.034, 0.013, 0.025, 0.035 and

0.011, respectively, was es timated. The observed allele

frequency differences were not statistically significant, nor

were differences between the allele frequencies detected in

Group 7 subjects irrespectively whether they had (0.037) or had

not (0.027) angiographically documented CAD. In accordance with

our studies in the Finnish population, similar allele

frequencies of the 1887 Ser allele have also been detected in

both a French population of apoB 3´ VNTR allele 49 carriers

(0.032) (584), in French hypercholesterolemic subjects (0.053)

(720), and a No rwegian population of hypercholesterolemic

patients (0.024) (585). As for the His1896 SArg polymorphism,

estimated Arg allele frequencies in Groups 1a, 2, 4, 7 and 8

were 0.034, 0.051, 0.110, 0.043 and 0.062, respectively. The

allele frequency differences between these groups were not

statistically significant except for the diet study (Group 4)

and coronary angiography subjects (Group 7), between which the

difference in observed allele frequencies became significant

(p=0.0014, Fisher's excact test). Further analysis of Group 7

showed that this allele frequency difference was confined to

patients with CAD (allele frequency 0.034, difference compared

with Group 4 significant, p=0.0006), whereas those with angio-

graphically normal coronary arteries had a 1896 Arg allele

frequency (0.058) similar to and not statistically significantly
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different from the other groups. In addition to the Finns, the

His1896 SArg polymorphism has also been detected in Norwegian and

French hypercholesterolemics with an allele frequency of 0.024

in both populations (585,720).

5.3. Lipid and lipoprotein effects of the new apoB variants in

exons 26 to 29 in Finnish populations (II, III, unpublished)

Lipid and lipoprotein effects of the Asn1887 SSer and His1896 SArg

polymorphisms were assessed in the diet study participants

(Group 4), in the patients undergoing coronary ang iography

(Group 7, unpublished results), and a group of healthy subjects

free of symptoms or signs of CAD (Group 8, unpublished results).

Due to the low number of 1887 Ser allele carriers in women of

all these groups, and in the healthy men (Group 8) statistical

calculations were restricted to Group 4 and 7 men only. As shown

in Tables 12 and 13, the Asn1887 SSer polymorphism did not show

significant effects on baseline serum lipid and lipoprotein

levels or their responses to dietary change in these subjects.

Due to the low number of subjects heterozygous for the 1887 Ser

allele, a moderate effect of this allele on serum lipid or

lipoprotein concentrations cannot, however, be totally ruled

out.

Effects of the His1896 SArg polymorphism on serum lipid and

lipoprotein levels were estimated in both male and female

subjects of Groups 4, 7 and 8. Results of these analyses are

summarized in Tables 14 to 17. In the diet study, no differences

in baseline or swithcback lipid or lipoprotein levels between

the apoB His1896 SArg genotypes could be observed in either sex

(Tables 14 and 15). During the diet intervention, men carrying

the 1896 Arg allele tended to exhibit slightly higher serum

total (p= 0.0792), LDL cholesterol (p=0.0494), and apoB levels

(p=0.0814), leading to smaller increases in total and LDL

cholesterol and apoB levels when changing back from the

intervention to the original diet. Hi gher serum total and LDL

chole sterol levels were also observed in carriers of the apoB
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1896 Arg allele when male Group 7 subjects with no signs of

angiographic CAD were studied (Table 16). No differences between

His1896 SArg genotypes were observed in Group 7 men with CAD or

Group 8 healthy men. In Group 4, 7 and 8 women, no significant

differences between genotypes were detected (Table 17).

Lipid and lipoprotein effects of the apoB Arg4243 SThr and

Ala4454 SThr polymorphisms were assessed in the 89 Kuopio

district hypercholesterolemic subjects (Group 1), the diet study

subjects (Group 4), the healthy population sample (Group 5), and

in the drug intervention participants (Group 6). Results in

males and females were similar. Therefore, combined results for

both sexes are presented (Tables 18 and 19). Allele frequencies

of the rare Thr alleles of both polymorphisms were low, and in

general, no statistically significant effects on either baseline

lipid levels, diet responses or responses to drug intervention

could be detected. In Groups 4 and 5, initial analyses of the

lipid effects of the Ala4454 SThr polymorphism seemed to show

significant differences. These differences were however towards

opposite directions, and lost signif icance after repeated

calculations. More precisely, in Group 5, 4454 Thr carriers

exhibited slightly higher LDL cholesterol levels compared to

4454 Ala homozygotes (Table 19). In this group, all 4454 Thr

carriers were men, and when calculations were repeated after

exclusion of women and after adjusting for BMI, this difference

was no longer significant (p=0.0679). Group 4 included only one

female 4454 Thr carrier. Analyses of the male subjects in this

group (three 4454 Thr carriers) suggested a baseline LDL

cholesterol l owering effect of the rare Thr allele (4.97±1.07

and 3.59±0.57 mmol/l for the Ala/Ala and Ala/Thr genotypes,

respectively, p=0.0335). In repeated calculations adjusted for

age and BMI, this difference between genotypes was no longer

statistically significant (p=0.0555). Based on these

calculations, our conclusion was that this polymorphism is not

likely to be a major determinant of LDL cholesterol levels. As

mentioned earlier, no associations with the lipid phenotype and

the carrier status for the apoB Arg4243 SThr or Ala4454 SVal
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variants in the small number of families available for study

were seen.

Of the other DNA variants in apoB exons 26 to 29, the del 2186

Asp, Thr3918 SAla, Val4238 SAla, the silent Tyr4242 STyr mutation,

and the non-characterized apoB variant in the non-coding region

of exon 29, were either detected in normocholesterolemic

subjects or were not associated with the lipid phenotype in the

families of the mutation carriers. Thus, no further attempts to

characterize their possible lipid or lipoprotein effects at the

population level were carried out. In view of the close

connection of the new silent Asp2285 SAsp polymorphism with the

well known and widely studied apoB XbaI polymorphism, no

additional information regarding its associations with lipids or

lipoproteins was anticipated. Therefore, no population studies

conserning the effects of this polymorphism were performed.

5.4. Lipid and lipoprotein effects of the apoB variants in the

amino-terminal region of apoB in Finnish populations (IV)

Since the Val703 SIle change was originally detected in only one

severly hypertriglyceridemic Group 3 patient, an analysis of its

lipid or lipoprotein effects in this group was not possible.

Instead, the effects of the 703 Ile allele were assessed in

Kuopio district hypercholesterolemic probands (Group 1), the

diet study population (Group 4), and in the random sample of

healthy subjects (Group 5). A summary of these results is shown

in Table 20, both sexes combined. In Groups 1 and 4, no lipid

effects of the 703 Ile allele could be dete cted. In Group 5,

lipid and lipoprotein analyses showed an association between

lower serum Tg levels and the 703 Ile allele. This effect was

more pronounced in males (1.41±0.31 and 0.83±0.16 mmol/l for the

33 Val/Val homozygotes and the 4 Val/Ile heterozygotes,

respect ively, p=0.0040); in females, the difference was not

significant (0.84±0.43 and 0.67±0.21 mmol/l, p=0.4837). Although

larger po pulation samples would be needed to confirm this

finding, both the association detected in Group 5 and the slight
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underrepresentation of the apoB 703 Ile allele in severely

hypertriglyceridemic Group 3 patients could point towards a

triglyceride-lowering effect of this allele.

With the recently proposed hypothesis of a specific function for

the globular apoB amino-terminal domain in the interactions

between LPL and lipoproteins (240), we were interested in

studying whether any lipid or lipoprotein effects of previously

known apoB polymorphisms situated in this region, the Thr71 SIle

and Ala591 SVal, could be seen in severely hypertriglyceridemic

patients. Since the apoB signal peptide ins/del polymorphism is

known to be in close linkage disequilibrium with the Thr71 SIle

polymorphism (398), genotyping of the ins/del polymorphism was

included in the study of hypertriglyceridemic patients. For

comparison, lipid and lipoprotein effects of the Thr71 SIle and

Ala591 SVal polymorphisms were additionally analyzed in both the

diet study population (Group 4) and in subjects undergoing

coronary angiography (Group 7). A summary of these analyses is

shown in Tables 21 to 23, both sexes combined.

Results from the lipid and lipoprotein analyses in the

hypertriglyceridemic patients (Table 21) showed that the 591 Ala

allele was associated with higher serum apoB levels in both

sexes, remaining statistically significant even after adjusting

for age and BMI (p=0.0113, Figure 4.). The 71 Ile allele showed

a non-significant trend in the same direction, and a similar

trend was also detected for the signal peptide del allele. By

combining the subjects with at l east one of both alleles

associated with elevated apoB levels, in other words, those

homozygous or heterozygous for both rare alleles (apoB 71 Ile +

and 591 Ala +; apoB 1.56 ± 0.44 mg/ml, n=35) and comparing them

with those homozygous for both common alleles (apoB 71 Thr/Thr

and 591 Val/Val; apoB 1.18 ± 0.46 mg/ml, n=20), results showed

signifi cantly higher apoB levels in the group consisting of

carriers of the "apoB-elevat ing" alleles (p=0.0044 after

adjustment for age and BMI). To analyse the effects of these

"apoB-elevating" alleles in normolipidemic populations, similar
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comparisons were made in the diet study and the coronary

angiography p opulations (Groups 4 and 7). In Group 4, no

significant effects on baseline lipid and lipoprotein levels of

either polymorphism, whether alone or combined were detected

(Table 22). The slight triglyceride-l owering effect of the 71

Ile allele in this group did not remain statistically

significant when adjusted for age and BMI (p=0.0836 for the

whole group, p=0.3964 and 0.0904 for males and females,

respectively). Likewise, no differences in lipid and lipoprotein

levels between genotypes of either polymorphism in Group 7 were

detected (Table 23), regardless of whether the whole group or

subjects with or without CAD were studied (data not shown).

However, when hypertriglyceridemic (serum Tg A2.00 mmol/l) Group

7 subjects alone were analyzed, men with the 591 Ala/Ala

genotype showed significantly higher (p=0.0154 after age and BMI

adjustment) apoB concentrations (1.27 ± 0.20 mg/ml, n=9) when

compared with the 591 Val/Ala or Val/Val men (apoB 1.01 ± 0.17

mg/ml, n=11; apoB 1.07 ± 0.20, n=10, respectively). When divided

into hypertriglyceridemic men with or without CAD, this apoB-

elevating effect of the 591 Ala allele was still significant in

men with CAD (n=22, p=0.0464 after age and BMI adjustment). In

males with healthy coronary arteries, this trend was no longer

significant (n=8, p=0.1559). Unfor tunately, the number of

subjects with serum Tg level A 2.00 mmol/l in Group 4 was too

low for meaningful comparisons. Nevertheless, the results

obtained in other groups could point towards an apoB-elevating

role of the 71 Ile and 591 Ala alleles (or their combination),

expressed only in context of hypertriglyceridemia.
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6. DISCUSSION

6.1. Evaluation of the mutation screening methodology

Of the mutation detection methods, both SSCP, DGGE (457,622),

TGGE (20) and HA (456,542) have been successfully used to screen

and detect apoB variants; most studies have applied SSCP

(490,561,584,585). Of the new apoB mutations associated with

defective binding of LDL apoB to the LDLR, the Arg3531 SCys

variant was originally detected by SSCP (15), and the

Arg3500 STrp by DGGE screening (16). A recent SSCP analysis-based

study (561) detected seven variations in the sequence

surrounding the putative receptor binding domain of apoB. When

DGGE, SSCP and HA were compared, DGGE was found to be the most

reliable and HA the si mplest method of the three for the

detection and distinction between the three apoB FDB mutations

(623). Developments in technical equipments, with the arrival of

systems capable of casting both nondenaturing SSCP and the more

demanding DGGE gels will probably result in a shift of the apoB

mutation s creening methods towards DGGE or a combination of

different techniques.

The SSCP technique was chosen for our apoB screening studies

because we wanted to screen large regions of the apoB gene in a

relatively easy and reproducible way within a reasonable time

scale. The ability to analyze several fragments at the same time

by the use of restriction endonucleases or the multiplex PCR

technique was regarded as an advantage. Some of the DNA

fragments in our SSCP analyses were much larger than currently

considered optimal. Thus, efforts were focussed on achievment of

maximal resolution of the fragments through analysis under

several differing SSCP conditions as well as repetition of the

SSCP analyses either after additional PCR reactions covering

smaller regions of the gene or after other restriction

endonuc lease digestions when a mobility shift in the original

SSCP gels was suspected.
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With our SSCP protocol, all the previously known common apoB

variants situated in the exonic regions screened were easily

identifiable, as was the Arg3500 SGln mutation in the FDB-

positive control sample. In addition, altogether twelve new

variants were detected, some of which resulted from complex DNA

variations located very close to each other and were still

distinguishable in the SSCP gels. In spite of this, the

existence of yet more DNA variations, in particular in the

largest fragments, not detected by us cannot be excluded.

6.2. Rationale for the apoB screening strategy

For long, the putative apoB LDLR binding domain was suggested to

be located between two short apoB segments that contain clusters

of positively charged amino acids and include amino acids 3147-

3157 and 3359-3367, with a disulphide bridge between cysteines

3167 and 3297 bringing these clusters close to each other (158).

Recent studies with transgenic mice expressing mutant forms of

apoB have delineated the actual receptor binding site to amino

acids 3359-3369 (197). Several lines of evidence indicate, that

other regions of apoB surrounding this "core domain" are also

involved in the receptor binding function of apoB. These studies

include work using anti-apoB mAbs wich block binding of LDL to

the LDLR, studies using chemically modified LDL, and studies

with naturally occurring truncated apoB variants. Thus, a domain

of apoB between amino acids 2285 and 4189 has been implicated to

be involved in LDLR binding (179,180). The carboxyl-terminal

domain of apoB has been suggested to play a negative regulatory

role in this function (185,197). Therefore, to cover the domains

of apoB possibly involved in either LDL binding to the LDLR or

in its regulation, practically the whole 3´ two-thirds of the

gene should be considered to be screened. The search for

hypercholesterolemia-producing apoB mutations has so far largely

concentrated on the LDLR binding region of apoB

(490,561,622,633), and only few studies have spanned the

screened area to other parts of the gene (457,584). In the

studies presented in this thesis, the screening system for apoB
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variants in hypercholesterolemic subjects was extended to exons

26 to 29 including amino acids 1384-4536.

The globular amino-terminal domain of apoB (amino acids 1-1000)

has recently been suggested to play several differing roles in

lipopr otein metabolism. Among these is an interaction between

LPL and apoB-containing lipoproteins, taking place either in the

circulation or at the vessel wall. In vitro data have shown that

LPL associates with LDL and VLDL through specific protein-

protein interactions involving the amino-terminal end of apoB

(240). A protein shownt to be comprised of the amino terminus of

apoB has been extracted from vascular endothelial cells and has

been shown to affect the binding of LPL to vascular endothelium

in vitro (237). ApoB expression has also been detected in

vascular endothelial cells (120). While the biological relevance

of these findings is still unknown, it is tempting to

hypothesize, that a defect in the bin ding of LPL to apoB-

containing lipoproteins, either in the circulation or in the

tissue vasculature, could affect the effectiveness of LPL

mediated Tg hydrolysis. In addition, expression of an apoB

terminal fragment in vascular endothelium, if confirmed in vivo,

could suggest a new function for the apoB protein in the

trapping of LPL to arterial vasculature and the development of

atherosclerosis not connected with the lipid carrier ability of

apoB. In this the sis, an attempt to test the first hypothesis

was made by looking for new variants and studying the effects of

already known variants in this region of apoB in severely

hypertriglyceridemic patients. The choice of exons (2 to 16 and

21) to be screened in this material was based on the original

findings delineating the LPL-associating domain of apoB (240).

Based on the above delineated apoB functional regions, three

different types of screening studies were carried out. Firstly,

DNA variants in the region coding for the LDLR binding domain of

apoB were looked for in hypercholesterolemic subjects. Two types

of results were aimed at: either the detection of a Finnish FDB-

producing mutation, most likely to be found in severely
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hypercholesterolemic patients (Group 2), or a common apoB

polymorphisms with a more moderate effect on lipid metabolism

detectable in subjects with moderate hyper-cholesterolemia

(Group 1a). Secondly, severely hyper-triglyceridemic subjects

(Group 3) were screened to detect variants in the amino-terminal

end of apoB, possibly affecting the apoB-LPL interaction. In

addition, screening of all apoB exons was carried out in

moderately hypercholesterolemic Group 1a subjects. To date, only

one other complete screening of the apoB gene coding area has

been reported (584). This French survey included 35 subjects

participating in an epidemiological study to look for possible

associations with CAD in subjects who were carriers the apoB

3´VNTR 49 allele, and did not report lipid data. To our

knowledge, the studies presented in this thesis comprise the

first attempt to screen for apoB variants in the whole gene in

hyperlipidemic subjects.

6.3. Limitations of the studied materials

With regard to the sel ection of the studied materials, two

questions arise: firs tly, the probability of finding a lipid-

level changing mut ation in the patient groups included, and

secondly, the power of the sample studied to detect lipid

effects of the new variants at the population level.

Compared with the many polymorphisms of apoB, real apoB

mutations are rare. After the description of the so far best

characterized and common apoB mutation (Arg3500 SGln) (14), it

took several years to find other apoB variants associated with

moderate to severe hypercholesterolemia. These Arg3500 STrp and

Arg3531 SCys mutations (15,16) are even more rare than the

original FDB mutation and had not even been found until several

hundreds of hypercholesterolemic patients had been screened. In

view of this, our attempts to look for a new FDB-like mutation

in a small group of 68 patients is modest. The Finnish

population is however genetically uniquely homogenous. Although

the otherwise fairly common FDB mutation seems to be absent from
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this population (32), several Finnish LDLR mutations have been

detected and characterized in only a small group of

hypercholesterolemic patients (31). A subgroup (31 patients) of

the hypercholesterolemic subjects screened by us were highly

selected, lacking detectable LDLR def ects. Thus, if a Finnish

FDB-pr oducing mutation exists, it should have been found in a

patient ma terial such as that studied here. Two mutations in

this group were in fact detected, both with no lipid effects in

studied families. As to the possible role of the amino terminus

of apoB in triglyceride metabolism, no previous reports of apoB

genetic screening in hypertriglyceridemia or apoB mutations

associated with it have been published. Hypertriglyceridemia is

a heterogeneous lipid disorder, often running in families, but

with a poorly understood genetic basis. Therefore, in order to

concentrate on DNA variants with major effects, only patients

with severe hypertriglyceridemia, although relatively widely and

arbitrarly selected, were included.

With respect to the new polymorphic variants of apoB detected by

these studies, no earlier knowledge of their frequency in the

Finnish population was available. When studying their effects at

the population level in the materials available for study, we

discovered that none of these polymorphic variants was frequent

enough to detect moderate effects on the genotypic variance on

lipid and lipoprotein levels. The problem of population sample

size has been common in all apoB association studies reported so

far (12). Also, the genetic heterogeneity of the studied

populations has been considered to be a drawback in these

studies (12). While the genetic homogeneity of the Finns is

likely to overcome the last drawback, clearly, larger population

samples in the range of hundreds to thousands of subjects would

be needed to confirm or exclude the suggestive findings of the

possible lipid effects of the new apoB variants.

When assessing the effects of any apoB polymorphism on lipid

metabolism, two additional aspects should be considered. The

first is the concept of a specific hyperlipidemia-producing apoB
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haplotype, referring to polymorphic variations in the same apoB

molecule producing the observed effect only in combination with

each other. Screening for unknown variants in carriers of such

specific hyperlipidemia-producing haplotypes has been suggested

to improve the possibility of identifying relevant apoB variants

(12). Another aspect not usually considered is the well known

influence of the apoE polymorphism on lipid levels (74,75). Most

apoB association or screening studies have not taken this effect

into account, which might have obscured the results obtained in

this study as well.

6.4. Detection of new variants of apo B and their

characterization

In genetic research, the detection of a new mutation or

polymorphism should be followed by mutation expression

experiments and a thorough char acterization of the mutated

protein and its biological effects. The enormous size of apoB

and the special features of its biological behaviour have made

this task difficult. In vitro, apoB gene may be expressed in

hepatic or other cells capable of producing lipids as well,

leading to the production of lipoproteins, the characteristics

of which, including density, lipid composition, and size, can

then be analyzed. With regard to the biological functions of in

vitro expressed apoB, their LDLR binding capacity is reasonably

easily st udied with either peripheral blood lymphocytes,

fibroblasts or other cells expressing the LDLR such as the

macrophage cell line U937 (44,721). However, in vitro apoB

expression studies are often hampered by the low level of gene

expression, and by the fact that recombinant LDL secreted by

cultured cells usually lacks normal receptor-binding activity

(197). Therefore, in order to analyze changes in lipoprotein

metabolism caused by apoB mutati ons, in vivo techniques are

needed. So far, the only practical approach to study in vivo

effects of apoB mutations has been based on the extraction of

lipoproteins from natural mutant carriers (preferrably

homozygotes) (533), and on the study of their behaviour in
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different in vivo kinetic study settings. With recent

developments in the research of genetically modified animals

such as mice, some of these difficulties of apoB mutation

studies have been overcome (722,723). So far, in most studies

identifying new apoB variants, including those presented in this

thesis, characterization of new variants has been restricted to

attempts to associate the DNA changes with serum lipid and

lipoprotein levels either in families or in groups of unrelated

subjects.

Altogether twelve new variants of apoB were detected by SSCP in

our study populations. Four of them were silent changes, of

which, the two variations at codons 875 and 2285 were easily

identified as polymorphisms, whereas the Tyr4242 STyr variant in

exon 29, detected in three families, and the noncharacterized

DNA variant in the noncoding area in exon 29, detected in two

families, were considered mutations. Since no amino acid changes

were produced by these variants and no association between the

DNA change and the lipid phenotype in families was observed, no

further studies to characterize these silent changes were

considered necessary. Of the eight nonsense DNA changes, two

mutations were seen in only single hypercho lesterolemic

families. Neither the del mutation at Asp 2186, nor the

Thr3918 SAla mutation seemed to cosegregate with the severe

hypercholesterolemia present in the probands, and no further

studies to characterize their effects on lipid metabolism were

carried out. The third rare variant, Val4238 SAla, was detected

in two control DNA samples from normocholesterolemic subjects

and thus considered not to be of sufficient interest for further

study. The remaining five nonsense DNA changes identified by us

were all shown to represent new apoB polymorph isms with rare

allele frequencies ranging from 0.02 (Asn1887 SSer and

Ala4454 SThr) to 0.11 (His1896 SArg). In spite of the relative

rareness of the variant alleles, an attempt to study their

effects on lipid and lipoprotein levels in different study

settings was carried out.
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6.5. Lipid and lipoprotein effects of the new carboxyl-terminal

polymorphisms of apoB

Effects of the Asn1887 SSer and His1896 SArg variations, composing

the mAb D7.2 polymorphism were studied in healthy subjects

(Groups 4 and 8), and patients undergoing coronary angiography

(Group 7). While the effect on the reactivity against mAb D7.2

was more clear with the 1887 Ser allele compared with the 1896

Arg allele, only the latter seemed to exhibit effects on lipid

phenotype. Altogether, lipid data collected from the diet study

participants, patients undergoing coronary angiography, and the

healthy control group pointed towards a cholesterol- and apoB-

raising effect of the 1896 Arg allele. In the diet study

participants, this effect was observed in men and was detectable

only during a low-fat, low-cholesterol diet. In coronary

angiography patients, a slight total and LDL cholesterol

elevating effect of the 1896 Arg allele was obesereved in men

with no angiographically detectable vessel disease. This effect

was not observed in men with angiographic CAD. One explanation

for the fact that lipid effects were seen solely during diet

intervention in the diet study, but already at baseline in the

angiographically healthy males could be that subjects with

suspected CAD had changed their eating habits, and were

consuming a diet which in fact resembled the low-fat low

cholesterol diet of the North Karelia study. Why the same effect

was not observed in men with CAD is not known, but serum LDL

cholesterol levels in angiographically healthy males were than

thosw of the male CAD patients ( 3.04±0.94 and 3.71±1.00,

p=0.0001 in the non-CAD and CAD subjects, respectively), or

control males (data not shown). Thus, it might be proposed that

a lower overall LDL cholesterol level is required for the LDL

cholesterol-elevating effect of the 1896 Arg allele to be

detected. The possible mechanism through which the His1896 SArg

change exerts its cholesterol- and apoB -raising effect is not

known. No signs of altered LDLR binding affinity of LDLs

extracted from the carriers of the 1896 Arg allele has been

detected (724), neither has mAb D7.2 been shown to inhibit the
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LDL-LDLR interaction (725). No lipid effects of the apoB 1896

Arg allele were detected in women. In all groups, women were

fewer in number, making a moderate effect of the 1896 Arg allele

more dif ficult to detect, and were also not matched for their

menstrual or menopausal status, which might have influenced the

results (65). In addition to differences in the effects of the

1896 allele on lipid levels between studied groups, the observed

1896 Arg allele frequencies were also different, with a higher

1896 allele frequency in the diet study participants, and a low

frequency in CAD subjects. While a low 1896 Arg allele frequency

might partly explain the missing lipid effects of this allele in

this group, it can also be suspected to relate to changes in CAD

risk. Therefore, the frequency of this allele was additionally

analyzed in another diet study population (228) collected from

the same area (228), showing similar allele frequencies and

similar statistical significances as Group 4 compared to other

groups (data not shown). Therefore, the allele frequency

difference was considered more likely to represent an enrichment

of the 1896 His allele in North Karelia, which is known to be a

genetic subisolate (726), than a sign of underrepresentation of

this allele in subjects with CAD.

With regard to the apoB Asn1887 SSer polymorphism, no major lipid

effects in the studied materials were detected. However, so far,

only small numbers of 1887 Asn/Ser heterozygotes have been

analyzed, thus not outruling moderate effects of the 1887 Ser

allele on lipid levels not detectable with a small population.

As with the His1896 SArg polymorphism, no changes in the LDLR

binding affinity have been detected in 1887 Ser allele carriers

(724). This polymorphism has been detected with an allele

frequency similar to the Finns at least in the Fr ench and

Norwegian populations (584,585,720). No data concerning the

lipid effects of the 1887 Ser allele in these samples are

available. Recently, LDL particles from 1887 Ser allele carriers

were re ported to show increased electrophoretic mobility as a

sign of increased LDL electronegativity (720).
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Lipid and lipoprotein effects of the Arg4243 SThr and Ala4454 SThr

polymorphisms were analyzed both in normolipidemic Finnish

population samples (Groups 4 and 5) and in hypercholesterolemic

subjects (Groups 1 and 6). No differ ences between allele

frequencies, or significant lipid effects in the different

populations could be detected. Since frequencies of the rare

alleles of both polymorphisms were low, the number of observed

heterozygotes remained small, weakening the power of the

analyses to detect moderate lipid or lipoprotein effects. The

Ala4454 SThr polymorphism was tested for its effects on LDLR

binding affinity and no detectable change was observed (724). To

date, only the Ala4454 SThr polymorphism has been detected in

other Caucasian populations, with a slightly higher allele

frequency in the French (0.039) than in the Finnish population

(0.020) (584).

6.6. Lipid and lipoprotein effects of the amino-terminal

polymorphisms of apoB

The only new apoB polymorphism characterized in the amino-

terminal part of apoB, Val703 SIle, was originally detected in a

sample of severely hypertriglyceridemic patients (Group 3).

Further studies involving both normolipidemic and hyper-

cholesterolemic subjects s howed that this DNA variant was a

polymorphism and that it seemed to be underrepresented in the

hypertriglyceridemic patients. As to its lipid or lipoprotein

effects, a Tg-lowering effect was observed in normolipidemic

relatively young Finnish healthy subjects (Group 5). No effects

were observed either in the slightly older population of diet

study participants (Group 4) or hypercholes terolemic subjects

(Group 1). Again, the frequency of the rare apoB 703 Ile allele

was relatively low. It would clearly be of much interest to

study the effects of this apoB polymorphism in larger population

samples. The possible mechanism(s) of the Tg-lowering effect of

the Val703 SIle polymorphism is not known; since it is located in

the apoB domain suggested to interact with LPL (240), one

explanation might be an accelerating effect on the LPL mediated
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hydrolysis of Tg-rich particles. So far, this apoB polymorphism

has not been detected in other populations.

Two previously characterized apoB polymorphims, Thr71 SIle and

Ala591 SVal, are situated in the proposed LPL-binding domain of

apoB. In earlier studies, the 71 Ile allele has been associated

with higher serum apoB concentrations in Finnish children (426)

and healthy adults (423), the 591 Val allele with larger

postprandial TGRLP responses after a fat load (410), and the 591

Ala allele with higher serum apoB concentrations in ischemic

stroke patients (434). In the hypertriglyceridemic patients

studied by us, a signifcant association between 591 Ala carrier

status and higher serum apoB concentrations was detected. The

same association was also observed when the 71 Ile and 591 Ala

alleles were combined. In normolipidemic populations, this

association could not be detected. Thus, these results would

point towards an apoB-raising effect of these amino-terminal

apoB polymorphisms, expressed only in the setting of

hypertriglyceridemia. These results are preliminary and need to

be confirmed in other studies. Also, the mechanism(s) through

which this kind of effect is brought about are not known.
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7. SUMMARY AND CONCLUSIONS

The main points and conclusions of the present study are:

1) SSCP is a technically easy, reproducible and effective

method offering the possibility of screening for mutations even

in large genes such as the apoB gene. In the studies presented

here, twelve new apoB variants were detected. All the previously

known apoB polymorphisms and the Arg3500 SGln mutation were also

easily identifiable by SSCP.

2) The amino terminus of apoB seems to have some impact in Tg

and apoB metabolism, as suggested by the recent findings of an

LPL-binding amino-terminal apoB domain. A new polymorphism of

apoB, the Val703 SIle variation, is associated with lower serum

Tg levels in healthy relatively young subjects and seems also to

be underrepresented in severely hypertriglyceridemic patients.

The Ala591 SVal polymorphism, alone or in combination with the

apoB Thr71 SIle polymorphism, is associated with higher serum

apoB levels in hypertriglyceridemic subjects.

3) The His1896 SArg variation seems to have a tendency to

increase serum total and LDL cholesterol concentrations in

healthy men during a low-fat, low cholesterol diet. The

mechanism of this effect is not known. No direct changes in LDLR

binding affinity have been detected. Since this polymorphism can

be detected immunologically as well, some changes of the

configuration of apoB-containing lipoproteins are possible.

Kinetic studies would be needed to clarify the mechanisms of

this polymorphism on cholesterol metabolism in vivo.

4) The Asn1887 SSer, Arg4246 SThr, and Ala4454 SThr polymorphisms

detected in this study have so far not been shown to affect any

lipid or lipoprotein parameters in different Finnish populations

and study settings. Allele frequencies have however been too low

for the detection of moderate effects. Larger population studies

would be needed.
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5) No FDB-like mutation characteristic to Finns seems to be

present in the highly selected severely hypercholesterolemic

study population screened for DNA changes in the 3´ two-thirds

of the apoB gene covering the whole LDLR binding region of apoB

and its surroundings.
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TABLES



TABLE 1. Characteristics of the major human plasma lipoproteins.

Lipo- Density Molecular Diameter Lipid composition Apolipoproteins
protein (g/dl) weight nm (% of lipids)

(kDa) Tg Chol Pl

CM < 0.95 400×10 3 75-1200 80-95 2-7 3-9 B-48, AI, AII,
AIV, CI-III, E

VLDL 0.95-1.006 10-80×10 3 30-80 55-80 5-15 10-20 B-100, CI-III, E

IDL 1.006-1.019 5-10×10 3 25-35 20-50 20-40 15-25 B-100, CI-III, E

LDL 1.019-1.063 2.3×10 3 18-25 5-15 40-50 20-25 B-100

HDL 1.063-1.210 1.7-3.6×10 2 5-12 5-10 15-25 20-30 AI-II, AIV, CI-III, E

Lp(a) 1.050-1.090 5×10 3 28 similar to LDL B-100, apo(a)

Data from Rudel et al. 1986, Durrington 1995, Ginsberg 1998 (10,38,727).



TABLE 2. Characteristics of the major apolipoprotein
_______________________________________________________________________________________________________________________________ _____________________________________________________________

Name Chromo- Peptide Molecular Lipo- Functions
some length weight protein

(aa)* (kDa)
_______________________________________________________________________________________________________________________________ _____________________________________________________________

A-I 11 243 28 HDL,CM structural (HDL),
LCAT activation,
receptor ligand
(SR-BI), promotes
cholesterol efflux

A-II 1 77 17 HDL,CM structural (HDL),
HL, LPL activation
LCAT modulator

A-IV 11 377 46 HDL,CM LCAT activator, LPL
modulator, function
in Tg transport?

(a) 6 4529 e 250-800 Lp(a) unknown

B-100 2 4536 540 VLDL, structural, LDLR
IDL,LDL ligand

B-48 2 2152 264 CM structural

C-I 19 57 6.6 CM,VLDL LRP and LDLR
IDL,HDL interaction

inhibitor,
LCAT activator

C-II 19 79 8.9 CM,VLDL LPL activator
IDL,HDL

C-III 11 79 8.8 CM,VLDL LPL inhibitor
IDL,HDL apoE-mediated

remnant removal
inhibitor

E 19 299 34 CM,VLDL receptor ligand,
IDL,HDL reverse cholesterol

transport, cell
growth and immune
response
regulation?

_______________________________________________________________________________________________________________________________ _____________________________________________________________

* aa = amino acids.
e based on cDNA analysis of one apo(a) isoform; otherwise highly variable
(728).
Data from Patsch and Gotto 96, Tailleux and Fruchart 96, Ginsberg 98
(10,35,39).



TABLE 3. Effects of age, gender, obesity, diet and other lifestyle factors
on lipid and lipoprotein levels.

________________________________________________________________________

Chol Tg LDL- HDL- Reference
chol chol

________________________________________________________________________

Age UUUU UUUU UUUU UUUU (61-63)

Sex (male) UUUU UUUU UUUU VVVV (61)

Obesity UUUU UUUU UUUU VVVV (66-70)

Diet

Fatty acids (47,48,729)

Saturated UUUU UUUU UUUU

PUFA* VVVV VVVV e VVVV VVVV

MUFA* VVVV VVVV UUUU

Cholesterol UUUU UUUU UUUU (48,50,51)

Carbohydrate # VVVV UUUU VVVV VVVV (53,730)

Fibre VVVV VVVV VVVV

(54)

Protein (plant) VVVV VVVV UUUU

(56,731-733)

Alcohol UUUU VVVV UUUU (57)

High caloric UUUU UUUU (52)
intake

Smoking UUUU UUUU UUUU VVVV (58)

Physical activity VVVV VVVV UUUU (59)

Stress UUUU UUUU UUUU (60)

* PUFA = polyunsaturated fatty acid, MUFA = monounsaturated fatty acid.
Effects produced when substituted for saturated
fatty acids.
e Effect of omega-3 PUFA only.
# Low-fat, high-carbohydrate diet.



TABLE 4. ApoB genetic variants reported to date. Mutations associated with hypobeta-lipoproteinemia excluded.

Site* Mutation Outcome RFLP Ag Allele Number of Reference
ass e frequency # families

-4kb AvaII+/- 0.20 734

5'VNTR -3256bp (TG) n repeat, 7 alleles (TG) 14 0.78 554,735
(TG) 15 0.19

Reduc -1860/80 (A) n(TA) m repeat, 6 alleles 0.36,0.29 584
(2 smallest)

Prom -837 G SA 0.48 584,736

Prom -516 C ST 0.31 584,736

Prom -265 C ST MspI+/- 0.21 719,737
MscI-/+

Prom +14 CSG AluI-/+ 719

Ex 1 del162-170 del Leu-Ala-Leu -16-14 0.27 372
signal peptide 27 S24 aa

Ex 1 ins CTGCTG 194/5 ins Leu-Leu -6/-5 0.03 377
signal peptide 27 S29 aa

In 2 A SG +722 StyI+/- 0.01 634

In 3 G ST +92 0.47 734

Ex 4 C421ST Thr71 SIle ApaLI+/- g/c 0.26 416,417
Bsp12861+/-

MB19 2/1 418,419
BIP45, D2E1 420,421

In 4 C SA + 171 HincII-/+ 0.20 554,734,738

In 4 G SA -523 to ex 5 PvuII-/+ 0.04 554,734,738,739



In 5 C ST -9 to ex 6 MnII+/- 719

Ex 14 C1981ST Ala591 SVal AluI+/- d/a 1 0.56 431
H11G3 421

Ex 15 G2316SA Val703 SIle Alw26I+/- 0.04 719,740
BsmAI+/-

Ex 18 C2834ST Asn875SAsn 0.03 584

In 20 TTTA repeats and sequence variation 5' to the Alu element, 7 alleles 741,742

In 20 sequence variation in the Alu element, 12 alleles 742

In 20 A SG -146 to ex 21 BalI-/+ 0.50 734

Ex 26 C4439SG Phe1410SLeu 1 584

Ex 26 A5869 SG Asn1887SSer BsrdI+/- D7.2 0.02 743

Ex 26 A5896 SG His1896 SArg RsaI-/+ D7.2 0.11 743

Ex 26 del6766-8 del Asp2186 1 744

Ex 26 T7064 SC Asp2285SAsp MaeII-/+ 0.63 113,575,745

Ex 26 T7673 SC Thr2488 SThr XbaI+/- 0.63 113,373,374

Ex 26 G7824SA Glu2539 SLys 0.009 584

Ex 26 C8344ST Pro2712 SLeu MaeI-/+ y/x 0.29 371,455,456,458
BfaI-/+

Ex 26 G9489SA Ala3094 SThr 1 584

Ex 26 A9963 SG Ser3252 SGly 7 561

Ex 26 C10083 SG His3292 SAsp 1 585

Ex 26 G10259SA Leu3350 SLeu PstI +/- 0.01 20,561,588

Ex 26 C10321 ST Ala3371 SVal AluI +/- 1 588

Ex 26 G10397SA Val3396 SMet 1 561

Ex 26 A10408 SC Lys3400 SThr 1 585

Ex 26 G10422SC Glu3405 SGln 0.01 20,561,587



TABLE 4, continued.

Site Mutation Outcome RFLP Ag Allele Number of Reference
ass frequency families

Ex 26 C10574 SA Ser3455 SArg 1 561

Ex 26 G10648SC Arg3480 SPro 565

Ex 26 C10707 ST Arg3500 STrp 15 16

Ex 26 G10708SA Arg3500 SGln 0.001 14

Ex 26 T10760 SG Leu3517SLeu 1 562

Ex 26 C10790 ST Ala3527 SAla 1 562

Ex 26 C10800 ST Arg3531 SCys NsiI-/+ 26 15

Ex 26 G10829ST Thr3540 SThr 21

Ex 26 C10835 ST Asn3542 SAsn 21

Ex 26 C10865 ST Thr3552 SThr 21

Ex 26 G11041SA Arg3611 SGln MspI+/- i/h 0.06 464,465

Ex 26 G11889SA Val3894 SIle RsaI-/+ 1 585

Ex 27 A11961 SG Thr3918 SAla 0.01 1 584,744

In 27 G SC +50 - 0.20 584

Ex 29 C12264 ST Arg4019 STrp MspI+/- 1 586

Ex 29 G12510SA Val4101 SMet 0.08 584

Ex 29 A12669 SG Lys4154 SGlu EcoRI-/+ z/t 0.84 113,479,480

Ex 29 T12922 SC Val4238 SAla 2 744

Ex 29 T12935 SC Tyr4242 STyr RsaI-/+ 3 744

Ex 29 G12937SC Arg4243 SThr 0.03 457,744



Ex 29 A13141 SG Asn4311SSer Eco57I-/+ y/x 0.29 456-458

Ex 29 G13569SA Ala4454 SThr 0.02 584,744

3'VNTR 73 bp 3' to the 2. polyadenylation signal 26 alleles 375,376
22-57 repeats of 11-16 bp sequences

In addition, rare TaqI, EcoRV, StuI and RsaI polymorphisms have been reported. Their exact
location is currently not known (9).
* Reduc = reducer segment of the apoB gene, Prom = promoter, Ex = exon, In = intron.
e Antigenic association with either monoclonal (mAb) or alloantibodies (Ag).
# Bolded numbers denote allele frequencies reported in the Finns.



TABLE 5. Associations between alleles of the apoB XbaI polymorphism and
serum total cholesterol, triglycerides, apoB or CAD in population studies.

Study population XbaI association § Reference

High levels of
Source* Sample e n S# TC Tg apoB CAD

Norway h 56 B X+ 0 X+ - 746
USA (c) CAD+h 219 B 0 X- 0 0 484
USA (c) MI/h 84/84 B 0 0 0 X- 485
GB (c) ns 83 M X+ X+ 0 - 747
Italy h 79 B - 0 - - 748
GB (c) HL/h 133/62 B X+ X+ - - 486
Finland h 176 B X+ 0 0 - 427
Japan HL/h 53/54 B 0 0 0 0 749
France h 53 B X- - - - 429
GB (c) MI/h 100/62 M - - - 0 498
GB (c) HL/h 124/34 B 0 X+ - - 487
Norway HC 64 M 0 0 X+ - 750
GB ATH/h 205/139 B 0 0 0 X- 488
GB (c) CAD+h 290 M 0 0 0 X- 475
Finland FH 120 B X+ 0 - - 751
Sweden h 187 B 0 0 0 - 752
GB (c) CAD/h 124/146 M 0 0 0 X- 441
Sweden MI/h 52/52 M 0 X- 0 0 753
USA (c) CAD/h 111/128 M 0 0 0 0 478
Norway h 170 M 0 0 0 - 521
Austria CAD/h 106/118 M 0 0 0 0 491
Germany FCHL/h 321/107 B X+ 0 0 - 467
USA (c) >90-y 41 B 0 0 0 - 754
Italy h ch 209 B 0 0 0 - 468
Finland HL 221 M X+ 0 - - 447
Finland h ch 307 B X+ 0 - - 436
Italy h 82 M 0 - 0 - 755
Finland FH 51 B X+ 0 - - 756
GB (c) NIDDM 95 B 0 0 0 0 492
Sri Lan CAD/h 95/95 M 0 X+ - X- 472
Finland HL 211 B 0 0 - - 757
GB (a) CAD/h 46/107 M 0 0 - - 382
Denmark MI/h 50/39 M X+ 0 0 X- 493
USA (c) CAD/h 274/162 B X+ - X+ - 490
Italy HL/h 44/35 B - - - 0 758
Austral CAD/h 122/80 B 0 0 0 X- 435
Finland CAD/h 111/142 B X+ 0 0 0 759
Sweden MI/h 87/91 M X+ 0 0 0 404
China h 221 B 0 0 0 - 438
China CAD/h 139/149 B 0 0 0 0 406
Spain h 228 M X+ 0 X+ - 760
Norway MI/h 238/621 B X+ 0 X+ X- 761
Italy HL/h 76/79 B - - - 0 762
Italy CAD/h 39/40 M - - - 0 763
China h 148 M 0 0 0 - 514
Israel CAD off 525 B X+ 0 X+ - 764
Denmark h 464 M X+ 0 X+ - 390



TABLE 5, continued.

High levels of
Source Sample n S TC Tg apoB CAD

Singapo h 181 B X+ X+ 0 - 384
GB HC/h 280/265 B X+ - - - 476
Finland NIDDM 268 B X+ X+ - 0 499
Java h 231 B 0 X+ - - 385
Denmark FH 99 B 0 0 - - 765
Denmark HL+CAD 318 B X+ 0 - - 393
Finland 100-y 364 B 0 0 0 - 766
USA (c) CAD/h 444/404 B - - - 0 407
Finland CAD/h 82/50 M 0 0 - 0 767
China CAD/h 80/60 B 0 0 0 X+ 439
Finland h 52 M 0 0 - - 768
China CAD/h 148/153 B 0 0 0 - 437
Europe CAD/h off 682/312 B X+ 0 X+ - 381
China CAD/h 103/100 B 0 0 0 X+ 440
Nigeria h 1222 B 0 0 0 - 386
Italy CAD/h 45/118 F X+ 0 0 0 400
Europe FDB 205 B 0 0 - - 19
Japan h 1328 B 0 - - - 387
Chech hl/h ch 82/86 B 0 0 0 - 769
China ch 93 B X+ 0 0 - 770
Russia CAD/h 94/122 M 0 0 - 0 470
Asia HL/h 131/374 B 0 0 0 - 466
Norway hl+RR/h 108/64 B 0 0 0 0 477
Brazil(i)h 82 B 0 0 0 - 378
Finland HC 48 B X+ 0 X+ - 402

* Country of origin; c=caucasian, a=asian, i=indian.
e h, healthy, CAD, coronary artery disease, MI, myocardial

infarction, ns, not specified, HL, hyperlipidemic, HC,
hypercholesterolemic, ATH, atherosclerotic (both CAD and
peripheral), FH, familial hypercholesterolemia, FCHL,
familial combined hyperlipidemia, y, years, ch, children,
NIDDM, non-insulin-dependent diabetes mellitus, off,
offspring, FDB, familial defective apoB, RR, hypertensive
subjects.

# S, sex, M, male, F, female, B, both sexes.
§ TC, total cholesterol, Tg, triglycerides, X+, association with the XbaI+

allele, X-, the XbaI - allele, 0, no significant association detected, -,
not analyzed.
Significance level p<0.05 or less.



TABLE 6. Apolipoprotein B gene mutations associated with familial hypobetalipoproteinemia.

Name Site* Mutation e ApoB size Outcome § Reference
(aa) #

ApoB-2(4) in 5 G ST, +1 to ex 5 152 splicing defect 575,719
no apoB in plasma

ApoB-9 ex 10 C1443 ST 411 Arg412 STer 575
no apoB in plasma

ApoB-25 deletion of 694 1085 Gly1014 SVal-72aa-Ter1086 577
bp, from intron no apoB in plasma
20 to intron 21

ApoB-27.6 in 24 T SC, base +2 1282 Ser1254 SArg-28aa-Ter1283 579,771
splice site disruption
activation of cryptic
splice site in intron 24
traces in plasma

ApoB-29 ex 25 C4125 ST 1305 Arg1306 STer 772
no apoB in plasma

ApoB-31 ex 26 del 4480 1425 Gly1424 SVal-Tyr-Ter1426 773

ApoB-32 ex 26 C4557 ST 1449 Gln1450 STer 774

ApoB-32.5 ex 26 T4631 SG 1473 Tyr1474 STer 775

ApoB-37 ex 26 del 5391-4 1728 Asn1728 SVal-Ter1729 776,777

ApoB-38.7 ex 26 C5472 ST 1754 Gln1755 STer 581

ApoB 38.9 ex 26 del 5444 1767 Asn1745 SLys-4aa-Ter1768 778

ApoB 38.95 ex 26 del 5478-91 1767 Val1757 SThr-10aa-Ter1768 779

ApoB-39 ex 26 del 5591 1799 His1795 SMet-4aa-Ter1800 772

ApoB-40 ex 26 del 5694-5 1829 Val1829 SCys-Ter1830 201,780

ApoB-43.7 ex 26 C6162 ST 1984 Arg1985 STer 568



ApoB-44.4 ex 26 ins 11 bp 2014 Ala2012 SGlu-2aa-Ter2015 781
6243/4

ApoB-45.2 ex 26 T6368 SA 2052 Tyr2053 STer 580

ApoB-46 ex 26 C6381 ST 2057 Arg2058 STer 782

ApoB-48.4 ex 26 del 6686 2166 Lys2159 SLys-7aa-Ter2167 783

ApoB-50 ex 26 C6963 ST 2251 Gln2252 STer 578

ApoB-52 ex 26 del 7279-83 2361 Val2357 SAsp-4aa-Ter2362 784

ApoB-52.8 ex 26 del 7295 2395 Tyr2362 STyr-33aa-Ter2396 775

ApoB-52.8 ex 26 del 7359 2395 Thr2364 SHis-11aa-Ter2396 775

ApoB-54.8 ex 26 C7665 ST 2485 Arg2486 STer 785

ApoB-55 ex 26 C7692 ST 2494 Arg2495 STer 781,786,787
(independent
mutations)

ApoB-61 ex 26 del 8525-61 2784 Ser2772 SSer-12aa-Ter2785 788

ApoB-67 ex 26 del 9327 3040 Lys3040 SArg-Ter3041 789

ApoB-70.5 ex 26 ins A9754/60 3196 Asn3184 SLys-12aa-Ter3197 790

ApoB-75 ex 26 del 10366 3386 Thr3386 SMet-Ter3387 202

ApoB-82 ex 26 C11411 SA 3733 Cys3734 STer 775

ApoB-83 ex 26 C11458 SA 3749 Ser3750 STer 791

ApoB-86 ex 26 del 11840 3896/4536 Asn3877 SLys-19aa-Ter3897 576
reading frame restoration
yields 10% of normal apoB-100

ApoB-87 ex 28 del 12032 3978 Glu3942 SAsn-36aa-Ter3979 203

ApoB-89 ex 29 del 12309 4039 Glu4034 SArg-5aa-Ter4040 201,780

* In = intron, ex = exon. e Del = deletion, ins = insertion.
# Aa = amino acids. § Ter = termination codon.



TABLE 7. Summary of the studied materials used in SSCP screening, allele frequency analyses and estimations of lipid
effects of newly detected DNA variants.

Group n M/F* Type of analysis e Description Reference

1 89 48/41 Allele frequency and Kuopio district subjects (696)
lipid effects of codon Primary hypercholesterolemia
703,4243,4454 pm:s Cholesterol A 8 mmol/l

ApoB Arg3500 SGln excluded
Three subjects (2/1) with

FH excluded

1a 29 12/17 Exon 2-29 SSCP screening Kuopio district subjects (696)
Allele frequency of Subgroup based on family data

codon 1887,1896 pm:s

2 39 23/16 Exon 26-29 SSCP screening Non-FH hypercholesterolemia (31)
Allele frequency of codon Cholesterol A 8 mmol/l and

1887,1896 pm:s tendom xanthomas in the
proband and a first-degree
relative

LDLR defects and apoB
Arg3500 SGln excluded

3 76 66/10 Exon 2-16 and 21 screening Severe hypertriglyceridemia (697)
Triglyceride s > 6 mmol/l

4 102 48/54 Characterization of mAb North Karelia diet study (442)
D7.2 polymorphism Apparently healthy

Allele frequency and
lipid effects of codon 703,
1887,1896,4243,4454 pm:s

Lipid effects of Ag(c/g) and
Ag(a 1/d) pm:s

5 88 41/47 Allele frequency and Random sample of Finns born (698)
lipid effects of codon in 1954
703,4243,4454 pm:s Apparently healthy



6 220 112/108 Allele frequency and Drug intervention study (32,699)
lipid effects of codon Cholesterol A 6.2 mmol/l
4243,4454 pm:s Triglycerides @ 4.0 mmol/l

FH not excluded

7 327 217/110 Allele frequency and Coronary angiography patients (700)
lipid effects of codon CAD 205 ( M/F 162/43)
1887,1896 pm:s Non-CAD 122 (55/67)

160 98/62 Lipid effects of Ag(c/g) Coronary angiography patients (700)
and Ag(a 1/d) pm:s Ag(c/g) and Ag(a 1/d) data

available
CAD 84 (64/20)
Non-CAD 76 (34/42)

8 72 45/27 Allele frequency and Normal voluntary controls (701)
lipid effects of codon No symptoms or signs of CAD
1887,1896 pm:s

* M = male , F = female.
e pm = polymorphism.



TABLE 8. Oligonucleotides used as primers in SSCP screening of exons 2 to 29 of the
apoB gene.

Primer Upstream (sense) Downstream (antisense)

Exon 2 5´ CTC ACA GAA TTT CTT TCT CC 5´ AGA TGC CTT ACT TGG ACA G
Exon 3 5´ TGT GGC TGA CGT ATT TCT C 5´ TCC CTC CTG CCT GCA TC
Exon 4 5´ AAC CTC AAT GCT CTG CTA CC 5´ TGC GTG TGC TCA TGT ACA AC
Exon 5 5´ ATT TCC GTG ACC ATC CTC TC 5´ ACT GCT ATC AGC TTT CTA AAT C
Exon 6 5´ GTG TTG AAT ACA TGT GGT TGC 5´ TAA TAA GAG GAT GCT CCT TGC
Exon 7 5´ GAT CAA AAT GCT CGT CTC C 5´ AGG GTT GCA TCA CAT GAC
Exon 8 5´ AAT AGT ATG TTC TGG CCA TC 5´ ATT TTC CAG CAA CTA TGT GG
Exon 9 5´ CAC TTT CCA TCT TCC AGG T 5´ AAG TTC AGT CAG TTA CCA TC
Exon 10 5´ TGA AGG TGG TCT GTA TAA CT 5´ AGA AAT ACA TGT GAA ACT CAC
Exon 11 5´ AAG TCC TGA CTC TCT TCT C 5´ AAA AGT GCT TCT GAA ATG ATG
Exon 12 5´ CCT GAT GGG TTC TTG TTT C 5´ AAC TTT CAC TTT CAG ACC TC
Exon 13 5´ GGA CAG TGA TAA CCA TCT CC 5´ AGT GGT ATA TGG GGT GAA TAG
Exon 14 5´ AAT AAC ATG GTG TGT CAG CTC 5´ CTA GAG AAC CTC AAA CTC TTC
Exon 15 5´ CCA TTT TCT TGT CTG ATT TTC 5´ CTT TCC TTA AGA AGA TAC TTC
Exon 16 5´ CTC ACT GGC CAT TTT ATT AC 5´ AAC CAA CTC TGG TCT CAT G
Exon 17 5´ TTA TTT GCT CTC CCT TGT TG 5´ CTA AGA AAT CAA AAG GCA AAC
Exon 18 5´ GAA TCT GAA TAG GTT GTT TTC 5´ GGC TGA AAG AAT TAC CCT C
Exon 19 5´ GAC TTG GCA ATA ACT CAG G 5´ GGA AGG TGA GAA AAT GCT G
Exon 20 5´ ACA TTA TGC ATG TCT TCA TTG 5´ ATG AGG CAG CTG TGT TTT G
Exon 21 5´ TAC CAC ACA TCT CTT GAT TC 5´ CAG TGC AGG TCA GAT GAC
Exon 22 5´ ATT GGT GCC AAC TGA TTT TC 5´ ACT TTG GAA GTG CTC ACA C
Exon 23 5´ AGT ACC ATT CAC AAC TAT TTC 5´ ATC CAT GTA TTT ATT GAC TGG
Exon 24 5´ TTA CCT TAA AAA TCT CCT GTC 5´ AAG AAG CCT TGC TGC TTT C
Exon 25 5´ TGA CTG TGG GGA TGT TAT C 5´ TGC ACC CTT TAC CTG AGC
Exon 26a 5´ ACA TAT GAC CAC AAG AAT ACG 5´ TGA ACC TTA GCA ACA CTG TC
Exon 26b 5´ ACA TCT ATG CCA TCT CTT CTG 5´ ATC AAT AGC CTC AAT GTG TTG
Exon 26c 5´ AAG AGA CAC ATA CAG AAT ATA G 5´ ACA AAG TCA ATT GTA AAG GAA G
Exon 26d 5´ GTT TTC CAC ACC AGA ATT TAC 5´ TAT ACT GAT TGA ACC TAG CAC
Exon 26e 5´ TAA CTA TGC ACT GTT TCT GAG 5´ GAG TAC AGC ATT GAA GAA TTG
Exon 26f 5´ AGT CAA AAC CTA CTG TCT CTT 5´ TCA TAT TCT AGG AAC TGT ACG



Exon 27 5´ ACA AAA TCT CTC CTA TAC AG 5´ TCA ATA AAA GCT CCA TAC TG
Exon 28 5´ TCT GTT TTT CTG CTT TCA GG 5´ CAT TAG GTG GTA TTT ACC TG
Exon 29a 5´ TCC TCT CCA GAT AAA AAA CTC 5´ TCT GAA CCA TTA TGG ACT TTC
Exon 29b 5´ ATG TTC ATA AGG GAG GTA GG 5´ TTC CTG AAT ATT TCT GTG CAG
Exon 29c 5´ TAC TTC CCA ACT CTC AAG TC 5´ TAT GAT ACA CAA TAA AGA CTC C

Sequence data from Ludwig et al. 1987 (118).



TABLE 9. Characteristics of PCR-amplified fragments of the apoB gene, restriction enzymes used, and sizes of
digestion products screened with SSCP.

Fragment* Nucleotide Amino Product Restriction Cutting Digestion
position in acids size enzymes sites product size
cDNA e (bp) # (cDNA) (bp)

2 211-249 1-14 80 - - -
3 250-365 14-52 170 - - -
4 366-511 53-101 207 - - -
5 512-665 101-152 211 - - -
6 666-821 153-204 244 - - -
7 822-946 205-246 180 - - -
8 947-1032 246-275 170 - - -
9 1033-1252 275-348 293 - - -
10 1253-1480 348-424 277 - - -
11 1481-1598 424-463 191 - - -
12 1599-1745 464-512 217 - - -
13 1746-1957 513-583 278 - - -
14 1958-2195 583-662 311 - - -
15 2196-2372 663-721 239 - - -
16 2373-2564 722-785 267 - - -
17 2565-2732 786-841 227 - - -
18 2733-2944 842-912 258 - - -
19 2945-3127 912-973 264 - - -
20 3128-3249 973-1014 183 - - -
21 3250-3460 1014-1084 283 - - -
22 3461-3636 1084-1143 243 - - -
23 3637-3824 1143-1205 259 - - -
24 3825-3970 1206-1254 205 - - -
25 3971-4344 1254-1379 437 - - -
26a 4359-5707 1384-1833 1348 BanI 4713 354 + 579 + 417

HincII 5291
26b 5641-7007 1811-2266 1366 BanI 6063 422 + 443 + 501

EcoRI 6506
26c 6936-8125 2243-2639 1190 HindIII 7335 400 + 577 + 213

AvaII 7912
26d 8060-9417 2617-3070 1358 AseI 8584 524 + 398 + 436

EcoO109I 8982
26e 9344-10540 3045-3444 1197 EcoO109I 9859 515 + 402 + 280

PstI 10261
26f 10474-11908 3422-3900 1435 EcoO109I 10850 377 + 541 + 518



BglII 11390
27 11916-12031 3903-3941 153 - - -
28 12032-12215 3941-4003 220 - - -
29a 12216-12847 4003-4213 632 PstI 12454 239 + 393
29b 12783-13478 4192-4423 696 EcoO109I 13028 246 + 450
29c 13424-14121 4405-4536 698 DraI 13826 403 + 295

* Fragment numbering refers to apoB gene exons.
e Nucleotide numbering according to Knott et al., 1986 (116).
# Exons 2 to 25, 27 and 28 amplified with intronic primers flanking the exons (118).



TABLE 10. Oligonucleotides used as primers in solid-phase sequencing and minisequencing reactions, and in apoB
ins/del and 3´VNTR genotyping.

Fragment Upstream (sense) Downstream (antisense)

15 5´ CCA TTT TCT TGT CTG ATT TTC 5´ CTT TCC TTA AGA AGA TAC TTC (b)*
18 5´ GAA TCT GAA TAG GTT GTT TTC 5´ GGC TGA AAG AAT TAC CCT C (b)
26b/422 e 5´ CCT ACC AAA ATA ATG AAA TAA AAC (b) 5´ TCT TGA GTT TCC AGG TGC CT
26b/1887/1896 # 5´ TGC ATT TCA GCA ATG TCT TCC (b) 5´ TGG AGC CTT TGT AAT CAT GTG
1887 D § 5´ CCC AGA GAG CGA GTT TCC CA
1896 D 5 TGC TAT ACA GCT GCC CAG TA
26b/501 5´ GGA AAA CTC CCA CAG CAA G 5´ ATC AAT AGC CTC AAT GTG TTG (b)
26c/400 5´ AAG AGA CAC ATA CAG AAT ATA G 5´ TCT TGA CAG CAT CAT CAA TAA A (b)
27 5´ ACA AAA TCT CTC CTA TAC AG (b) 5´ TCA ATA AAA GCT CCA TAC TG
29b/246 5´ ATG TTC ATA AGG GAG GTA GG 5´ TCT ATT AGT TGG AAA ATG AAT TG (b)
29b/4243 # 5´ CTA GGG AGG AAC TTT GCA C (b) 5´ TCT ATT AGT TGG AAA ATG AAT TG
4243D 5´ GAT AAA TCT TTC AAC AGT TCC
29c/403 5´ ATA TTG TCA GTG CCT CTA AC 5´ GTG AAA GTT CAA TTG GAA AAG (b)
29c/4454 # 5´ ATA TTG TCA GTG CCT CTA AC (b) 5´ TGG TCT GAA AAA TCT TGC AG
4454D 5´ TAT TTT CTT CGT CGC AAT GG
ins/del 5´ CAG CTG GCG ATG GAC CCG CCG A 5´ ACC GGC CCT GGC GCC CGC CAG CA
3´VNTR 5´ ATG GAA ACG GAG AAA TTA TG 5´ CCT TCT CAC TTG GCA ATA AC

Sequence data from Ludwig et al. 1987 (118).
* b = biotinylated.
e 26b/422 denotes the 422 bp digestion product of fragment 26b.
# Primers used to produce template for minisequencing of the apoB 1887, 1896, 4243 and 4454

polymorphisms.
§ D = detection step primer.



TABLE 11. PCR-RFLP analyses of apoB polymorphisms studied.

ApoB SSCP Nucleotide Product Restriction Cutting Digestion product
polymorphism fragment position size enzyme site sizes when site

in cDNA* (bp) e (cDNA) present (bp) #

Thr71 SIle 4 366-511 207 ApaLI 416 82 + 124

Ala591 SVal 14 1958-2195 311 AluI 1980 49 + 201 + 43

Val703 SIle 15 2196-2372 239 Alw26I 2321 155 + 84

Asn1887 SSer 26b 5641-6081 441 BsrDI 5873 173 + 60 + 208

His1896 SArg 26b 5641-6081 441 RsaI 5897 256 + 185

Thr2488 SThr 26c 6936-8125 1190 XbaI 7682 747 + 443

Pro2712 SLeu 26d 8060-9417 1358 BfaI 8343 176 + 108 + 488 + 570

Arg3611 SGln 26f 10474-11908 1435 MspI 11039 566 + 869

Lys4154 SGlu 29a 12216-12847 632 EcoRI 12669 453 + 178

* Nucleotide numbering according to Knott et. al. 1986 (116).
e Exons 4, 14 and 15 amplified with intronic primers flanking the exons.
# Amplified segment contains both variant and invariant cutting sites. Bolded figures denote

digestion products involved in the polymorphic variation.



TABLE 12. Serum lipid and lipoprotein levels in Group 4 men with and
without the apoB Asn1887 SSer DNA change during dietary intervention.

Asn/Asn Asn/Ser P
(n=44) (n=3)

Tot-chol (mmol/l)
B 6.57 ± 1.22 6.19 ± 0.80 0.5924
I 5.20 ± 0.85 5.29 ± 0.30 0.8608
S 6.30 ± 0.96 5.98 ± 1.39 0.5931

LDL-chol (mmol/l)
B 4.90 ± 1.14 4.68 ± 0.64 0.7371
I 3.80 ± 0.81 3.94 ± 0.17 0.7728
S 4.64 ± 0.95 4.47 ± 1.25 0.7772

Tot-tg (mmol/l)
B 1.43 ± 1.10 1.30 ± 0.38 0.8345
I 1.25 ± 0.64 1.14 ± 0.16 0.7742
S 1.30 ± 0.81 0.97 ± 0.22 0.4876

HDL-chol (mmol/l)
B 1.38 ± 0.34 1.25 ± 0.31 0.5093
I 1.16 ± 0.26 1.13 ± 0.25 0.8601
S 1.40 ± 0.31 1.32 ± 0.30 0.6479

ApoB (mg/ml)
B 1.25 ± 0.27 1.34 ± 0.03 0.5457
I 1.09 ± 0.26 1.25 ± 0.21 0.3064
S 1.28 ± 0.26 1.36 ± 0.21 0.6010

B=baseline, I=intervention, S=switchback period.
Values expressed as mean ± S.D.



TABLE 13. Serum lipid levels in Group 7 men with angiographically detected CAD or with normal coronary arteries with
or without the apoB Asn1887 SSer change.

CAD Non-CAD

Asn/Asn Asn/Ser P Asn/Asn Asn/Ser P
(n=150) (n=10) (n=52) (n=3)

Tot-chol 5.74 5.12 0.0861 5.09 5.17 0.8868
(mmol/l) (±1.12) (±0.89) (±0.91) (±1.64)

LDL-chol 3.74 3.16 0.0767 3.04 3.01 0.9599
(mmol/l) (±1.00) (±0.78) (±0.94) (±1.23)

Tot-tg 1.89 1.67 0.4689 1.66 0.93 0.2055
(mmol/l) (±0.95) (±0.59) (±0.94) (±0.26)

HDL-chol 1.13 1.20 0.4805 1.30 1.73 0.0638
(mmol/l) (±0.28) (±0.24) (±0.38) (±0.49)

ApoB 1.01 0.90 0.0658 0.89 0.89 0.9630
(mg/ml) (±0.20) (±0.11) (±0.21) (±0.15)

Values expressed as mean ± S.D.



TABLE 14. Serum lipid and lipoprotein levels in Group 4 men with and
without the apoB His1896 SArg DNA change during dietary intervention.

His/His His/Arg P
(n=37) (n=10)

Tot-chol (mmol/l)
B 6.52 ± 1.23 6.67 ± 1.10 0.7141
I 5.10 ± 0.77 5.62 ± 0.95 0.0792
S 6.31 ± 0.98 6.16 ± 1.00 0.6723

LDL-chol (mmol/l)
B 4.84 ± 1.14 5.08 ± 1.02 0.5392
I 3.69 ± 0.74 4.24 ± 0.82 0.0494
S 4.64 ± 0.98 4.58 ± 0.95 0.8807

Tot-tg (mmol/l)
B 1.42 ± 1.14 1.45 ± 0.80 0.9292
I 1.19 ± 0.57 1.44 ± 0.77 0.2604
S 1.26 ± 0.81 1.37 ± 0.74 0.6969

HDL-chol (mmol/l)
B 1.40 ± 0.37 1.30 ± 0.18 0.4378
I 1.17 ± 0.28 1.09 ± 0.12 0.3857
S 1.43 ± 0.34 1.30 ± 0.16 0.2777

ApoB (mg/ml)
B 1.13 ± 0.27 1.34 ± 0.24 0.2226
I 1.06 ± 0.26 1.22 ± 0.21 0.0814
S 1.29 ± 0.28 1.27 ± 0.19 0.8364

B=baseline, I=intervention, S=switchback period. Values
expressed as mean ± S.D.



TABLE 15. Serum lipid and lipoprotein levels in Group 4 women with and
without the apoB His1896 SArg DNA change during dietary intervention.

His/His His/Arg P
(n=43) (n=10)

Tot-chol (mmol/l)
B 5.89 ± 1.12 5.78 ± 0.45 0.7527
I 4.88 ± 1.03 4.61 ± 0.84 0.4512
S 5.79 ± 1.20 5.65 ± 0.84 0.6945

LDL-chol (mmol/l)
B 4.20 ± 1.05 4.04 ± 0.43 0.6195
I 3.41 ± 0.91 3.12 ± 0.74 0.3455
S 4.04 ± 1.05 3.90 ± 0.78 0.9398

Tot-tg (mmol/l)
B 0.94 ± 0.27 0.90 ± 0.30 0.7308
I 0.98 ± 0.38 0.91 ± 0.38 0.5829
S 0.99 ± 0.44 0.98 ± 0.45 0.9398

HDL-chol (mmol/l)
B 1.50 ± 0.34 1.56 ± 0.17 0.5965
I 1.27 ± 0.32 1.31 ± 0.13 0.6864
S 1.55 ± 0.32 1.55 ± 0.14 0.9710

ApoB (mg/ml)
B 1.11 ± 0.30 1.11 ± 0.27 0.8132
I 0.95 ± 0.26 0.94 ± 0.38 0.9686
S 1.12 ± 0.29 1.07 ± 0.22 0.6056

B=baseline, I=intervention, S=switchback period. Values
expressed as mean ± S.D.



TABLE 16. Serum lipid levels in Group 7 men with angiographically detected CAD or with normal coronary arteries, and
in healthy control men (Group 8) with or without the apoB His1896 SArg change.

CAD Non-CAD Controls

His/His His/Arg P His/His His/Arg P His/His His/Arg P
(n=151) (n=11) (n=48) (n=7) (n=40) (n=5)

Tot-chol 5.73 5.46 0.4385 5.00 5.71 0.0610 5.88 6.21 0.4258
(mmol/l) (±1.13) (±0.88) (±0.91) (±0.98) (±0.93) (±0.27)

LDL-chol 3.73 3.43 0.3600 2.94 3.72 0.0400 4.04 4.41 0.3522
mmol/l) (±1.01) (±0.92) (±0.89) (±1.10) (±0.87) (±0.41)

Tot-tg 1.85 2.18 0.2622 1.62 1.40 0.5471 1.12 1.21 0.6405
(mmol/l) (±0.90) (±1.21) (±0.97) (±0.56) (±0.36) (±0.37)

HDL-chol 1.13 1.17 0.6876 1.32 1.36 0.7583 1.54 1.58 0.8328
(mmol/l) (±0.28) (±0.31) (±0.37) (±0.52) (±0.40) (±0.42)

ApoB 1.01 0.99 0.7117 0.88 0.96 0.3420 0.97 1.01 0.6294
(mg/100ml) (±0.19) (±0.31) (±0.20) (±0.24) (±0.20) (±0.12)

Values expressed as mean ± S.D.



TABLE 17. Serum lipid levels in Group 7 women with angiographically detected CAD or with normal coronary arteries,
and in healthy control women (Group 8) with or without the apoB His1896 SArg change.

CAD Non-CAD Controls

His/His His/Arg P His/His His/Arg P His/His His/Arg P
(n=40) (n=3) (n=58) (n=7) (n=23) (n=4)

Tot-chol 6.03 5.49 0.4927 5.15 5.36 0.6157 5.85 5.70 0.8318
(mmol/l) (±1.32) (±0.58) (±1.07) (±0.80) (±1.20) (±1.35)

LDL-chol 3.94 3.42 0.5010 3.06 3.13 0.8390 3.93 3.85 0.8911
(mmol/l) (±1.29) (±0.59) (±0.96) (±0.78) (±1.15) (±1.04)

Tot-tg 1.95 1.78 0.7450 1.33 1.48 0.4961 1.16 1.02 0.4547
(mmol/l) (±0.91) (±0.75) (±0.53) (±0.77) (±0.34) (±0.30)

HDL-chol 1.20 1.26 0.7519 1.47 1.55 0.6457 1.68 1.70 0.8862
(mmol/l) (±0.31) (±0.31) (±0.44) (±0.28) (±0.30) (±0.46)

ApoB 1.10 0.95 0.5094 0.85 0.84 0.8006 0.93 0.84 0.4896
(mg/ml) (±0.38) (±0.10) (±0.18) (±0.19) (±0.22) (±0.23)

Values expressed as mean ± S.D.



TABLE 18. Serum lipid and lipoprotein levels in Group 4 subjects with and without the apoB Arg4243 SThr or
Ala4454 SThr DNA changes during dietary intervention.

4243 Arg/Arg 4243 Arg/Thr P 4454 Ala/Ala 4454 Ala/Thr P

(n=95) (n=7) (n=98) (n=4)

Tot-chol (mmol/l)
B 6.16 ± 1.12 6.72 ± 1.58 0.2411 6.20 ± 1.15 5.97 ± 1.31 0.6941
I 5.00 ± 0.92 5.26 ± 1.13 0.5010 5.01 ± 0.93 4.98 ± 0.97 0.9435
S 6.02 ± 1.09 6.03 ± 1.14 0.9815 6.02 ± 1.09 6.03 ± 1.02 0.9799

LDL-chol (mmol/l)
B 4.47 ± 1.05 5.09 ± 1.46 0.1771 4.52 ± 1.07 4.30 ± 1.50 0.6918
I 3.55 ± 0.85 3.88 ± 1.05 0.3661 3.57 ± 0.86 3.55 ± 1.03 0.9605
S 4.31 ± 1.02 4.36 ± 1.08 0.8860 4.31 ± 1.02 4.26 ± 1.19 0.9278

Tot-tg (mmol/l)*
B 1.15 ± 0.77 1.42 ± 1.22 0.5858 1.18 ± 0.80 0.77 ± 0.34 0.1891
I 1.08 ± 0.51 1.34 ± 0.72 0.2826 1.11 ± 0.52 0.72 ± 0.34 0.1030
S 1.11 ± 0.60 1.32 ± 1.09 0.6366 1.14 ± 0.65 0.80 ± 0.37 0.2631

HDL-chol (mmol/l)
B 1.45 ± 0.33 1.35 ± 0.41 0.4629 1.44 ± 0.33 1.52 ± 0.30 0.6714
I 1.23 ± 0.28 1.11 ± 0.26 0.3251 1.22 ± 0.28 1.29 ± 0.15 0.6374
S 1.49 ± 0.31 1.40 ± 0.34 0.4643 1.48 ± 0.31 1.60 ± 0.34 0.4136

ApoB (mg/ml)
B 1.16 ± 0.29 1.25 ± 0.26 0.4490 1.17 ± 0.28 1.07 ± 0.46 0.5069
I 1.01 ± 0.28 1.08 ± 0.32 0.5436 1.02 ± 0.28 0.95 ± 0.28 0.6022
S 1.19 ± 0.28 1.20 ± 0.28 0.9391 1.20 ± 0.28 1.16 ± 0.34 0.8186

B=baseline, I=intervention, S=switchback period. Values expressed as mean ± S.D.
* Statistical calculations were made using log-normalized values.



TABLE 19. Serum lipid and lipoprotein levels in Kuopio district
hyperlipidemics (Group 1), the random sample of healthy subjects (Group 5),
and drug intervention participants (Group 6, baseline levels) with and
without the apoB Arg4243 SThr or Ala4454 SThr changes.

Geno- Kuopio Random sample Drug inter-
type (n) (n) vention (n)

Tot- Arg/Arg 8.32±1.07 (81) 5.10±0.90 (83) 9.0±1.7 (192)
chol Arg/Thr 7.82±0.56 (3) 5.43±1.00 (5) 9.4±1.9 (19)

P=0.4293 P=0.4374 P=0.2938

Ala/Ala 8.27±1.07 (83) 5.09±0.90 (85) 9.0±1.7 (211)
Ala/Thr 8.78±0.43 (4) 5.94±0.56 (3) 9.1±1.9 (9)

P=0.3467 P=0.1104 P=0.7774

LDL- Arg/Arg 5.82±0.94 (81) 2.84±0.88 (83) 6.8±1.7 (192)
chol Arg/Thr 5.48±0.88 (3) 3.16±1.03 (5) 7.2±2.1 (19)

P=0.5349 P=0.4382 P=0.2979

Ala/Ala 5.79±0.94 (83) 2.82±0.87 (85) 6.8±1.8 (211)
Ala/Thr 6.27±0.31 (4) 3.99±0.66 (3) 7.0±2.0 (9)

P=0.3184 P=0.0227 P=0.7140

Tot- Arg/Arg 2.40±1.72 (81) 1.02±0.64 (83) 2.08±1.09 (192)
tg* Arg/Thr 2.62±0.83 (3) 1.67±1.03 (5) 1.93±0.79 (19)

P=0.5765 P=0.2062 e P=0.5676

Ala/Ala 2.42±1.70 (83) 1.05±0.68 (85) 2.07±1.06 (211)
Ala/Thr 1.70±1.05 (4) 1.35±0.60 (3) 1.79±0.65 (9)

P=0.3459 P=0.3478 P=0.4127

HDL- Arg/Arg 1.41±0.48 (81) 1.78±0.50 (83) 1.26±0.30 (192)
chol Arg/Thr 1.17±0.26 (3) 1.52±0.37 (5) 1.31±0.39 (19)

P=0.3817 P=0.2400 P=0.4904

Ala/Ala 1.39±0.46 (83) 1.78±0.49 (85) 1.27±0.31 (211)
Ala/Thr 1.74±0.62 (4) 1.34±0.38 (3) 1.33±0.52 (9)

P=0.1444 P=0.1261 P=0.5509

ApoB Arg/Arg 1.56±0.34 (81) 1.03±0.23 (83) 1.74±0.37 (192)
Arg/Thr 1.53±0.20 (3) 1.34±0.65 (5) 1.78±0.44 (19)

P=0.9084 P=0.3499 e P=0.6824

Ala/Ala 1.55±0.33 (83) 1.04±0.27 (85) 1.74±0.39 (211)
Ala/Thr 1.66±0.39 (4) 1.24±0.04 (3) 1.70±0.39 (9)

P=0.5063 P=0.2291 P=0.7690

Values expressed as mean ± S.D. Tot-chol, LDL-Chol, Tot-tg, and HDL-chol,
mmol/l; and apoB, mg/ml.
* Statistical calculations were made using log-normalized values.
e Welch and Brown-Forsythe statistics.



TABLE 20. Effects of the apoB Val703 SIle polymorphism on serum lipid and lipoprotein concentrations in the
hypercholesterolemic Kuopio district patients (Group 1), random sample of healthy subjects (Group 5), and diet study
participants (Group 4, baseline levels).

Hypercholesterolemic Normolipidemic groups

Genotype Kuopio n Random healthy n Diet study n

Tot-chol Val/Val 8.27 ± 1.08 69 5.14 ± 0.95 75 6.23 ± 1.12 64
(mmol/l) Val/Ile 8.73 ± 1.14 6 4.92 ± 0.64 8 5.52 ± 1.04 5

P=0.3249 P=0.5332 P=0.1771

LDL-chol Val/Val 5.76 ± 0.91 69 2.86 ± 0.92 75 4.53 ± 1.07 64
(mmol/l) Val/Ile 6.46 ± 0.97 6 2.79 ± 0.45 8 3.94 ± 1.05 5

P=0.0768 P=0.7075 e 0.2324

Tot-tg* Val/Val 2.32 ± 1.76 69 1.09 ± 0.70 75 1.18 ± 0.87 64
(mmol/l) Val/Ile 2.36 ± 0.59 6 0.75 ± 0.19 8 0.91 ± 0.42 5

P=0.5687 P=0.0140 e P=0.4106

HDL-chol Val/Val 1.46 ± 0.50 69 1.76 ± 0.49 75 1.46 ± 0.32 64
(mmol/l) Val/Ile 1.20 ± 0.17 6 1.79 ± 0.32 8 1.40 ± 0.25 5

P=0.2146 P=0.8810 P=0.6959

ApoB Val/Val 1.51 ± 0.33 69 1.06 ± 0.28 75 1.19 ± 0.28 64
(mg/ml) Val/Ile 1.73 ± 0.27 6 0.94 ± 0.26 8 1.01 ± 0.30 5

p=0.1444 p=0.2669 p=0.1550

Values expressed as mean ± SD.
* Statistical calculations were made using log-normalized values.
e Welch and Brown-Forsythe statistics.



TABLE 21. Effects of the apoB ins/del, Thr71 SIle, and Ala591 SVal polymorphisms on lipid and lipoprotein levels in
severely hypertriglyceridemic subjects (Group 3).

Ins/Ins Ins/Del Del/Del Thr/Thr Thr/Ile Ile/Ile Val/Val Val/Ala Ala/Ala
(n=40) (n=29) (n=5) (n=39) (n=32) (n=5) (n=22) (n=37) (n=17)

Tot-chol 7.41 7.72 7.57 7.43 7.54 8.03 7.17 7.57 7.86
(mmol/l) (±1.92) (±2.79) (±1.78) (±1.94) (±2.70) (±1.52) (±1.40) (±2.20) (±3.17)

P=0.8511 P=0.8553 P=0.6330

LDL-chol 3.02 3.19 2.98 2.99 3.24 2.53 2.84 3.11 3.26
mmol/l (±1.32) (±1.26) (±1.05) (±1.32) (±1.22) (±0.92) (±1.31) (±1.29) (±1.14)

P=0.8448 P=0.4423 P=0.5609

Tot-tg 8.34 7.59 8.28 8.47 7.15 9.92 8.06 8.23 7.47
(mmol/l)* (±7.36) (±6.20) (±7.13) (±7.41) (±6.03) (±6.28) (±6.49) (±7.22) (±6.39)

P=0.9552 P=0.4792 P=0.9369

HDL-chol 0.97 0.92 1.05 0.97 0.90 1.05 0.98 0.90 1.01
(mmol/l) (±0.36) (±0.25) (±0.21) (±0.36) (±0.24) (±0.21) (±0.44) (±0.25) (±0.19)

P=0.6050 P=0.4535 P=0.3576

ApoB 1.37 1.47 1.71 1.37 1.47 1.73 1.20 1.54 1.51
(mg/ml) (±0.56) (±0.46) (±0.33) (±0.57) (±0.44) (±0.30) (±0.44) (±0.57) (±0.33)

P=0.3399 P=0.2911 P=0.0372

Values expressed as mean ± S.D.
* Statistical calculations were made using log-normalized values.



TABLE 22. Effects of the apoB Thr71 SIle and Ala591 SVal polymorphisms, alone or combined, on baseline lipid and
lipoprotein levels in the diet study participants (Group 4).

Thr/Thr Thr/Ile Ile/Ile Val/Val Val/Ala Ala/Ala Val/Val Ala+/Ile+
(n=57) (n=45) (n=5) (n=32) (n=54) (n=21) Thr/Thr

(n=27) (n=45)

Tot-chol 6.29 6.04 6.60 6.11 6.18 6.38 6.16 6.12
(mmol/l) (±1.05) (±1.24) (±1.44) (±1.00) (±1.19) (±1.28) (±1.03) (±1.30)

P=0.4083 P=0.6942 P=0.9076

LDL-chol 4.59 4.40 4.77 4.46 4.49 4.68 4.50 4.46
(mmol/l) (±1.10) (±1.09) (±0.96) (±1.02) (±1.14) (±1.08) (±1.05) (±1.10)

P=0.5830 P=0.7445 P=0.8595

Tot-tg 1.35 0.98 0.79 1.17 1.18 1.12 1.25 0.99
(mmol/l)* (±0.98) (±0.42) (±0.24) (±0.74) (±0.90) (±0.59) (±0.77) (±0.42)

P=0.0209 e P=0.9856 P=0.0771

HDL-chol 1.43 1.45 1.67 1.42 1.46 1.48 1.41 1.47
(mmol/l) (±0.32) (±0.31) (±0.54) (±0.25) (±0.34) (±0.40) (±0.26) (±0.35)

P=0.2737 P=0.7751 P=0.4122

ApoB 1.22 1.09 1.20 1.15 1.17 1.18 1.17 1.12
(mg/ml) (±0.29) (±0.27) (±0.26) (±0.27) (±0.31) (±0.25) (±0.26) (±0.27)

P=0.0759 P=0.8856 P=0.3853

Values expressed as mean ± S.D.
* Statistical calculations were made using log-normalized values.
e Welch and Brown-Forsythe statistics.



TABLE 23. Effects of the apoB Thr71 SIle and Ala591 SVal polymorphisms, alone or combined, on lipid and lipoprotein
levels in subjects undergoing coronary angiography (Group 7).

Thr/Thr Thr/Ile Ile/Ile Val/Val Val/Ala Ala/Ala Val/Val Ala+/Ile+
(n=73) (n=73) (n=14) (n=38) (n=74) (n=41) Thr/Thr

(n=33) (n=76)

Tot-chol 5.22 5.38 5.63 5.24 5.31 5.41 5.16 5.36
(mmol/l) (±1.09) (±0.91) (±1.11) (±0.92) (±1.05) (±1.05) (±0.91) (±0.96)

P=0.3134 P=0.7477 P=0.2910

LDL-chol 3.18 3.32 3.60 3.20 3.28 3.34 3.12 3.31
(mmol/l) (±0.99) (±0.88) (±0.98) (±0.90) (±0.97) (±0.95) (±0.83) (±0.88)

P=0.2846 P=0.8107 P=0.2963

Tot-tg 1.87 1.60 1.79 1.95 1.63 1.74 2.04 1.67
(mmol/l)* (±1.14) (±0.84) (±0.82) (±1.19) (±0.93) (±0.89) (±1.25) (±0.88)

P=0.2910 P=0.2583 P=0.0957

HDL-chol 1.21 1.32 1.22 1.21 1.29 1.29 1.16 1.30
(mmol/l) (±0.37) (±0.41) (±0.24) (±0.35) (±0.38) (±0.42) (±0.30) (±0.39)

P=0.1851 P=0.5500 P=0.0814

ApoB 0.94 0.94 0.99 0.94 0.93 0.97 0.95 0.95
(mg/ml) (±0.20) (±0.22) (±0.32) (±0.20) (±0.19) (±0.30) (±0.20) (±0.25)

P=0.6873 P=0.6714 P=0.9549

Values expressed as mean ± S.D.
* Statistical calculations were made using log-normalized values.
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Figure 1.  Schematic illustration of lipoprotein metabolism: endogenous and exogenous pathways:
See chapter 2.1.3. for details.
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Figure 2.  Schematic representation of the apoB gene and localization of its regulatory motifs.
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Figure 3.  (a) Schematic illustration of the ribbon-and-bow model for the organization of apoB on
lipoprotein particles. (b) Schematic diagram of the five-domain structure of apoB. α1, amphipathic
helix cluster 1, ß1 and ß2, amphipathic ß-sheet clusters 1 and 2 (irreversible lipid binding domains),
α2 and α3, amphipathic helix clusters 2 and 3  (reversible lipid binding domains).
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Figure 4.  Effects of the apoB Val591     Ala polymorphism alone, and the apoB Thr71    Ile
and Val591     Ala polymorphisms combined on serum apoB levels in severely hypertriglyceridemic
Group 3 patients.
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